• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/mutex.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlabel.h>
52 
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 
69 /* Policy capability names */
70 const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
71 	"network_peer_controls",
72 	"open_perms",
73 	"extended_socket_class",
74 	"always_check_network",
75 	"cgroup_seclabel",
76 	"nnp_nosuid_transition"
77 };
78 
79 static struct selinux_ss selinux_ss;
80 
selinux_ss_init(struct selinux_ss ** ss)81 void selinux_ss_init(struct selinux_ss **ss)
82 {
83 	rwlock_init(&selinux_ss.policy_rwlock);
84 	mutex_init(&selinux_ss.status_lock);
85 	*ss = &selinux_ss;
86 }
87 
88 /* Forward declaration. */
89 static int context_struct_to_string(struct policydb *policydb,
90 				    struct context *context,
91 				    char **scontext,
92 				    u32 *scontext_len);
93 
94 static void context_struct_compute_av(struct policydb *policydb,
95 				      struct context *scontext,
96 				      struct context *tcontext,
97 				      u16 tclass,
98 				      struct av_decision *avd,
99 				      struct extended_perms *xperms);
100 
selinux_set_mapping(struct policydb * pol,struct security_class_mapping * map,struct selinux_map * out_map)101 static int selinux_set_mapping(struct policydb *pol,
102 			       struct security_class_mapping *map,
103 			       struct selinux_map *out_map)
104 {
105 	u16 i, j;
106 	unsigned k;
107 	bool print_unknown_handle = false;
108 
109 	/* Find number of classes in the input mapping */
110 	if (!map)
111 		return -EINVAL;
112 	i = 0;
113 	while (map[i].name)
114 		i++;
115 
116 	/* Allocate space for the class records, plus one for class zero */
117 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
118 	if (!out_map->mapping)
119 		return -ENOMEM;
120 
121 	/* Store the raw class and permission values */
122 	j = 0;
123 	while (map[j].name) {
124 		struct security_class_mapping *p_in = map + (j++);
125 		struct selinux_mapping *p_out = out_map->mapping + j;
126 
127 		/* An empty class string skips ahead */
128 		if (!strcmp(p_in->name, "")) {
129 			p_out->num_perms = 0;
130 			continue;
131 		}
132 
133 		p_out->value = string_to_security_class(pol, p_in->name);
134 		if (!p_out->value) {
135 			pr_info("SELinux:  Class %s not defined in policy.\n",
136 			       p_in->name);
137 			if (pol->reject_unknown)
138 				goto err;
139 			p_out->num_perms = 0;
140 			print_unknown_handle = true;
141 			continue;
142 		}
143 
144 		k = 0;
145 		while (p_in->perms[k]) {
146 			/* An empty permission string skips ahead */
147 			if (!*p_in->perms[k]) {
148 				k++;
149 				continue;
150 			}
151 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
152 							    p_in->perms[k]);
153 			if (!p_out->perms[k]) {
154 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
155 				       p_in->perms[k], p_in->name);
156 				if (pol->reject_unknown)
157 					goto err;
158 				print_unknown_handle = true;
159 			}
160 
161 			k++;
162 		}
163 		p_out->num_perms = k;
164 	}
165 
166 	if (print_unknown_handle)
167 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
168 		       pol->allow_unknown ? "allowed" : "denied");
169 
170 	out_map->size = i;
171 	return 0;
172 err:
173 	kfree(out_map->mapping);
174 	out_map->mapping = NULL;
175 	return -EINVAL;
176 }
177 
178 /*
179  * Get real, policy values from mapped values
180  */
181 
unmap_class(struct selinux_map * map,u16 tclass)182 static u16 unmap_class(struct selinux_map *map, u16 tclass)
183 {
184 	if (tclass < map->size)
185 		return map->mapping[tclass].value;
186 
187 	return tclass;
188 }
189 
190 /*
191  * Get kernel value for class from its policy value
192  */
map_class(struct selinux_map * map,u16 pol_value)193 static u16 map_class(struct selinux_map *map, u16 pol_value)
194 {
195 	u16 i;
196 
197 	for (i = 1; i < map->size; i++) {
198 		if (map->mapping[i].value == pol_value)
199 			return i;
200 	}
201 
202 	return SECCLASS_NULL;
203 }
204 
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)205 static void map_decision(struct selinux_map *map,
206 			 u16 tclass, struct av_decision *avd,
207 			 int allow_unknown)
208 {
209 	if (tclass < map->size) {
210 		struct selinux_mapping *mapping = &map->mapping[tclass];
211 		unsigned int i, n = mapping->num_perms;
212 		u32 result;
213 
214 		for (i = 0, result = 0; i < n; i++) {
215 			if (avd->allowed & mapping->perms[i])
216 				result |= 1<<i;
217 			if (allow_unknown && !mapping->perms[i])
218 				result |= 1<<i;
219 		}
220 		avd->allowed = result;
221 
222 		for (i = 0, result = 0; i < n; i++)
223 			if (avd->auditallow & mapping->perms[i])
224 				result |= 1<<i;
225 		avd->auditallow = result;
226 
227 		for (i = 0, result = 0; i < n; i++) {
228 			if (avd->auditdeny & mapping->perms[i])
229 				result |= 1<<i;
230 			if (!allow_unknown && !mapping->perms[i])
231 				result |= 1<<i;
232 		}
233 		/*
234 		 * In case the kernel has a bug and requests a permission
235 		 * between num_perms and the maximum permission number, we
236 		 * should audit that denial
237 		 */
238 		for (; i < (sizeof(u32)*8); i++)
239 			result |= 1<<i;
240 		avd->auditdeny = result;
241 	}
242 }
243 
security_mls_enabled(struct selinux_state * state)244 int security_mls_enabled(struct selinux_state *state)
245 {
246 	struct policydb *p = &state->ss->policydb;
247 
248 	return p->mls_enabled;
249 }
250 
251 /*
252  * Return the boolean value of a constraint expression
253  * when it is applied to the specified source and target
254  * security contexts.
255  *
256  * xcontext is a special beast...  It is used by the validatetrans rules
257  * only.  For these rules, scontext is the context before the transition,
258  * tcontext is the context after the transition, and xcontext is the context
259  * of the process performing the transition.  All other callers of
260  * constraint_expr_eval should pass in NULL for xcontext.
261  */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)262 static int constraint_expr_eval(struct policydb *policydb,
263 				struct context *scontext,
264 				struct context *tcontext,
265 				struct context *xcontext,
266 				struct constraint_expr *cexpr)
267 {
268 	u32 val1, val2;
269 	struct context *c;
270 	struct role_datum *r1, *r2;
271 	struct mls_level *l1, *l2;
272 	struct constraint_expr *e;
273 	int s[CEXPR_MAXDEPTH];
274 	int sp = -1;
275 
276 	for (e = cexpr; e; e = e->next) {
277 		switch (e->expr_type) {
278 		case CEXPR_NOT:
279 			BUG_ON(sp < 0);
280 			s[sp] = !s[sp];
281 			break;
282 		case CEXPR_AND:
283 			BUG_ON(sp < 1);
284 			sp--;
285 			s[sp] &= s[sp + 1];
286 			break;
287 		case CEXPR_OR:
288 			BUG_ON(sp < 1);
289 			sp--;
290 			s[sp] |= s[sp + 1];
291 			break;
292 		case CEXPR_ATTR:
293 			if (sp == (CEXPR_MAXDEPTH - 1))
294 				return 0;
295 			switch (e->attr) {
296 			case CEXPR_USER:
297 				val1 = scontext->user;
298 				val2 = tcontext->user;
299 				break;
300 			case CEXPR_TYPE:
301 				val1 = scontext->type;
302 				val2 = tcontext->type;
303 				break;
304 			case CEXPR_ROLE:
305 				val1 = scontext->role;
306 				val2 = tcontext->role;
307 				r1 = policydb->role_val_to_struct[val1 - 1];
308 				r2 = policydb->role_val_to_struct[val2 - 1];
309 				switch (e->op) {
310 				case CEXPR_DOM:
311 					s[++sp] = ebitmap_get_bit(&r1->dominates,
312 								  val2 - 1);
313 					continue;
314 				case CEXPR_DOMBY:
315 					s[++sp] = ebitmap_get_bit(&r2->dominates,
316 								  val1 - 1);
317 					continue;
318 				case CEXPR_INCOMP:
319 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
320 								    val2 - 1) &&
321 						   !ebitmap_get_bit(&r2->dominates,
322 								    val1 - 1));
323 					continue;
324 				default:
325 					break;
326 				}
327 				break;
328 			case CEXPR_L1L2:
329 				l1 = &(scontext->range.level[0]);
330 				l2 = &(tcontext->range.level[0]);
331 				goto mls_ops;
332 			case CEXPR_L1H2:
333 				l1 = &(scontext->range.level[0]);
334 				l2 = &(tcontext->range.level[1]);
335 				goto mls_ops;
336 			case CEXPR_H1L2:
337 				l1 = &(scontext->range.level[1]);
338 				l2 = &(tcontext->range.level[0]);
339 				goto mls_ops;
340 			case CEXPR_H1H2:
341 				l1 = &(scontext->range.level[1]);
342 				l2 = &(tcontext->range.level[1]);
343 				goto mls_ops;
344 			case CEXPR_L1H1:
345 				l1 = &(scontext->range.level[0]);
346 				l2 = &(scontext->range.level[1]);
347 				goto mls_ops;
348 			case CEXPR_L2H2:
349 				l1 = &(tcontext->range.level[0]);
350 				l2 = &(tcontext->range.level[1]);
351 				goto mls_ops;
352 mls_ops:
353 			switch (e->op) {
354 			case CEXPR_EQ:
355 				s[++sp] = mls_level_eq(l1, l2);
356 				continue;
357 			case CEXPR_NEQ:
358 				s[++sp] = !mls_level_eq(l1, l2);
359 				continue;
360 			case CEXPR_DOM:
361 				s[++sp] = mls_level_dom(l1, l2);
362 				continue;
363 			case CEXPR_DOMBY:
364 				s[++sp] = mls_level_dom(l2, l1);
365 				continue;
366 			case CEXPR_INCOMP:
367 				s[++sp] = mls_level_incomp(l2, l1);
368 				continue;
369 			default:
370 				BUG();
371 				return 0;
372 			}
373 			break;
374 			default:
375 				BUG();
376 				return 0;
377 			}
378 
379 			switch (e->op) {
380 			case CEXPR_EQ:
381 				s[++sp] = (val1 == val2);
382 				break;
383 			case CEXPR_NEQ:
384 				s[++sp] = (val1 != val2);
385 				break;
386 			default:
387 				BUG();
388 				return 0;
389 			}
390 			break;
391 		case CEXPR_NAMES:
392 			if (sp == (CEXPR_MAXDEPTH-1))
393 				return 0;
394 			c = scontext;
395 			if (e->attr & CEXPR_TARGET)
396 				c = tcontext;
397 			else if (e->attr & CEXPR_XTARGET) {
398 				c = xcontext;
399 				if (!c) {
400 					BUG();
401 					return 0;
402 				}
403 			}
404 			if (e->attr & CEXPR_USER)
405 				val1 = c->user;
406 			else if (e->attr & CEXPR_ROLE)
407 				val1 = c->role;
408 			else if (e->attr & CEXPR_TYPE)
409 				val1 = c->type;
410 			else {
411 				BUG();
412 				return 0;
413 			}
414 
415 			switch (e->op) {
416 			case CEXPR_EQ:
417 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
418 				break;
419 			case CEXPR_NEQ:
420 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
421 				break;
422 			default:
423 				BUG();
424 				return 0;
425 			}
426 			break;
427 		default:
428 			BUG();
429 			return 0;
430 		}
431 	}
432 
433 	BUG_ON(sp != 0);
434 	return s[0];
435 }
436 
437 /*
438  * security_dump_masked_av - dumps masked permissions during
439  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
440  */
dump_masked_av_helper(void * k,void * d,void * args)441 static int dump_masked_av_helper(void *k, void *d, void *args)
442 {
443 	struct perm_datum *pdatum = d;
444 	char **permission_names = args;
445 
446 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
447 
448 	permission_names[pdatum->value - 1] = (char *)k;
449 
450 	return 0;
451 }
452 
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)453 static void security_dump_masked_av(struct policydb *policydb,
454 				    struct context *scontext,
455 				    struct context *tcontext,
456 				    u16 tclass,
457 				    u32 permissions,
458 				    const char *reason)
459 {
460 	struct common_datum *common_dat;
461 	struct class_datum *tclass_dat;
462 	struct audit_buffer *ab;
463 	char *tclass_name;
464 	char *scontext_name = NULL;
465 	char *tcontext_name = NULL;
466 	char *permission_names[32];
467 	int index;
468 	u32 length;
469 	bool need_comma = false;
470 
471 	if (!permissions)
472 		return;
473 
474 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
475 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
476 	common_dat = tclass_dat->comdatum;
477 
478 	/* init permission_names */
479 	if (common_dat &&
480 	    hashtab_map(common_dat->permissions.table,
481 			dump_masked_av_helper, permission_names) < 0)
482 		goto out;
483 
484 	if (hashtab_map(tclass_dat->permissions.table,
485 			dump_masked_av_helper, permission_names) < 0)
486 		goto out;
487 
488 	/* get scontext/tcontext in text form */
489 	if (context_struct_to_string(policydb, scontext,
490 				     &scontext_name, &length) < 0)
491 		goto out;
492 
493 	if (context_struct_to_string(policydb, tcontext,
494 				     &tcontext_name, &length) < 0)
495 		goto out;
496 
497 	/* audit a message */
498 	ab = audit_log_start(audit_context(),
499 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
500 	if (!ab)
501 		goto out;
502 
503 	audit_log_format(ab, "op=security_compute_av reason=%s "
504 			 "scontext=%s tcontext=%s tclass=%s perms=",
505 			 reason, scontext_name, tcontext_name, tclass_name);
506 
507 	for (index = 0; index < 32; index++) {
508 		u32 mask = (1 << index);
509 
510 		if ((mask & permissions) == 0)
511 			continue;
512 
513 		audit_log_format(ab, "%s%s",
514 				 need_comma ? "," : "",
515 				 permission_names[index]
516 				 ? permission_names[index] : "????");
517 		need_comma = true;
518 	}
519 	audit_log_end(ab);
520 out:
521 	/* release scontext/tcontext */
522 	kfree(tcontext_name);
523 	kfree(scontext_name);
524 
525 	return;
526 }
527 
528 /*
529  * security_boundary_permission - drops violated permissions
530  * on boundary constraint.
531  */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)532 static void type_attribute_bounds_av(struct policydb *policydb,
533 				     struct context *scontext,
534 				     struct context *tcontext,
535 				     u16 tclass,
536 				     struct av_decision *avd)
537 {
538 	struct context lo_scontext;
539 	struct context lo_tcontext, *tcontextp = tcontext;
540 	struct av_decision lo_avd;
541 	struct type_datum *source;
542 	struct type_datum *target;
543 	u32 masked = 0;
544 
545 	source = policydb->type_val_to_struct[scontext->type - 1];
546 	BUG_ON(!source);
547 
548 	if (!source->bounds)
549 		return;
550 
551 	target = policydb->type_val_to_struct[tcontext->type - 1];
552 	BUG_ON(!target);
553 
554 	memset(&lo_avd, 0, sizeof(lo_avd));
555 
556 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 	lo_scontext.type = source->bounds;
558 
559 	if (target->bounds) {
560 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 		lo_tcontext.type = target->bounds;
562 		tcontextp = &lo_tcontext;
563 	}
564 
565 	context_struct_compute_av(policydb, &lo_scontext,
566 				  tcontextp,
567 				  tclass,
568 				  &lo_avd,
569 				  NULL);
570 
571 	masked = ~lo_avd.allowed & avd->allowed;
572 
573 	if (likely(!masked))
574 		return;		/* no masked permission */
575 
576 	/* mask violated permissions */
577 	avd->allowed &= ~masked;
578 
579 	/* audit masked permissions */
580 	security_dump_masked_av(policydb, scontext, tcontext,
581 				tclass, masked, "bounds");
582 }
583 
584 /*
585  * flag which drivers have permissions
586  * only looking for ioctl based extended permssions
587  */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)588 void services_compute_xperms_drivers(
589 		struct extended_perms *xperms,
590 		struct avtab_node *node)
591 {
592 	unsigned int i;
593 
594 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
595 		/* if one or more driver has all permissions allowed */
596 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
599 		/* if allowing permissions within a driver */
600 		security_xperm_set(xperms->drivers.p,
601 					node->datum.u.xperms->driver);
602 	}
603 
604 	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
605 	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
606 		xperms->len = 1;
607 }
608 
609 /*
610  * Compute access vectors and extended permissions based on a context
611  * structure pair for the permissions in a particular class.
612  */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)613 static void context_struct_compute_av(struct policydb *policydb,
614 				      struct context *scontext,
615 				      struct context *tcontext,
616 				      u16 tclass,
617 				      struct av_decision *avd,
618 				      struct extended_perms *xperms)
619 {
620 	struct constraint_node *constraint;
621 	struct role_allow *ra;
622 	struct avtab_key avkey;
623 	struct avtab_node *node;
624 	struct class_datum *tclass_datum;
625 	struct ebitmap *sattr, *tattr;
626 	struct ebitmap_node *snode, *tnode;
627 	unsigned int i, j;
628 
629 	avd->allowed = 0;
630 	avd->auditallow = 0;
631 	avd->auditdeny = 0xffffffff;
632 	if (xperms) {
633 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
634 		xperms->len = 0;
635 	}
636 
637 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
638 		if (printk_ratelimit())
639 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
640 		return;
641 	}
642 
643 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
644 
645 	/*
646 	 * If a specific type enforcement rule was defined for
647 	 * this permission check, then use it.
648 	 */
649 	avkey.target_class = tclass;
650 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
651 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
652 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
653 	ebitmap_for_each_positive_bit(sattr, snode, i) {
654 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
655 			avkey.source_type = i + 1;
656 			avkey.target_type = j + 1;
657 			for (node = avtab_search_node(&policydb->te_avtab,
658 						      &avkey);
659 			     node;
660 			     node = avtab_search_node_next(node, avkey.specified)) {
661 				if (node->key.specified == AVTAB_ALLOWED)
662 					avd->allowed |= node->datum.u.data;
663 				else if (node->key.specified == AVTAB_AUDITALLOW)
664 					avd->auditallow |= node->datum.u.data;
665 				else if (node->key.specified == AVTAB_AUDITDENY)
666 					avd->auditdeny &= node->datum.u.data;
667 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
668 					services_compute_xperms_drivers(xperms, node);
669 			}
670 
671 			/* Check conditional av table for additional permissions */
672 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
673 					avd, xperms);
674 
675 		}
676 	}
677 
678 	/*
679 	 * Remove any permissions prohibited by a constraint (this includes
680 	 * the MLS policy).
681 	 */
682 	constraint = tclass_datum->constraints;
683 	while (constraint) {
684 		if ((constraint->permissions & (avd->allowed)) &&
685 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
686 					  constraint->expr)) {
687 			avd->allowed &= ~(constraint->permissions);
688 		}
689 		constraint = constraint->next;
690 	}
691 
692 	/*
693 	 * If checking process transition permission and the
694 	 * role is changing, then check the (current_role, new_role)
695 	 * pair.
696 	 */
697 	if (tclass == policydb->process_class &&
698 	    (avd->allowed & policydb->process_trans_perms) &&
699 	    scontext->role != tcontext->role) {
700 		for (ra = policydb->role_allow; ra; ra = ra->next) {
701 			if (scontext->role == ra->role &&
702 			    tcontext->role == ra->new_role)
703 				break;
704 		}
705 		if (!ra)
706 			avd->allowed &= ~policydb->process_trans_perms;
707 	}
708 
709 	/*
710 	 * If the given source and target types have boundary
711 	 * constraint, lazy checks have to mask any violated
712 	 * permission and notice it to userspace via audit.
713 	 */
714 	type_attribute_bounds_av(policydb, scontext, tcontext,
715 				 tclass, avd);
716 }
717 
security_validtrans_handle_fail(struct selinux_state * state,struct context * ocontext,struct context * ncontext,struct context * tcontext,u16 tclass)718 static int security_validtrans_handle_fail(struct selinux_state *state,
719 					   struct context *ocontext,
720 					   struct context *ncontext,
721 					   struct context *tcontext,
722 					   u16 tclass)
723 {
724 	struct policydb *p = &state->ss->policydb;
725 	char *o = NULL, *n = NULL, *t = NULL;
726 	u32 olen, nlen, tlen;
727 
728 	if (context_struct_to_string(p, ocontext, &o, &olen))
729 		goto out;
730 	if (context_struct_to_string(p, ncontext, &n, &nlen))
731 		goto out;
732 	if (context_struct_to_string(p, tcontext, &t, &tlen))
733 		goto out;
734 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
735 		  "op=security_validate_transition seresult=denied"
736 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
737 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
738 out:
739 	kfree(o);
740 	kfree(n);
741 	kfree(t);
742 
743 	if (!enforcing_enabled(state))
744 		return 0;
745 	return -EPERM;
746 }
747 
security_compute_validatetrans(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)748 static int security_compute_validatetrans(struct selinux_state *state,
749 					  u32 oldsid, u32 newsid, u32 tasksid,
750 					  u16 orig_tclass, bool user)
751 {
752 	struct policydb *policydb;
753 	struct sidtab *sidtab;
754 	struct context *ocontext;
755 	struct context *ncontext;
756 	struct context *tcontext;
757 	struct class_datum *tclass_datum;
758 	struct constraint_node *constraint;
759 	u16 tclass;
760 	int rc = 0;
761 
762 
763 	if (!state->initialized)
764 		return 0;
765 
766 	read_lock(&state->ss->policy_rwlock);
767 
768 	policydb = &state->ss->policydb;
769 	sidtab = state->ss->sidtab;
770 
771 	if (!user)
772 		tclass = unmap_class(&state->ss->map, orig_tclass);
773 	else
774 		tclass = orig_tclass;
775 
776 	if (!tclass || tclass > policydb->p_classes.nprim) {
777 		rc = -EINVAL;
778 		goto out;
779 	}
780 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
781 
782 	ocontext = sidtab_search(sidtab, oldsid);
783 	if (!ocontext) {
784 		pr_err("SELinux: %s:  unrecognized SID %d\n",
785 			__func__, oldsid);
786 		rc = -EINVAL;
787 		goto out;
788 	}
789 
790 	ncontext = sidtab_search(sidtab, newsid);
791 	if (!ncontext) {
792 		pr_err("SELinux: %s:  unrecognized SID %d\n",
793 			__func__, newsid);
794 		rc = -EINVAL;
795 		goto out;
796 	}
797 
798 	tcontext = sidtab_search(sidtab, tasksid);
799 	if (!tcontext) {
800 		pr_err("SELinux: %s:  unrecognized SID %d\n",
801 			__func__, tasksid);
802 		rc = -EINVAL;
803 		goto out;
804 	}
805 
806 	constraint = tclass_datum->validatetrans;
807 	while (constraint) {
808 		if (!constraint_expr_eval(policydb, ocontext, ncontext,
809 					  tcontext, constraint->expr)) {
810 			if (user)
811 				rc = -EPERM;
812 			else
813 				rc = security_validtrans_handle_fail(state,
814 								     ocontext,
815 								     ncontext,
816 								     tcontext,
817 								     tclass);
818 			goto out;
819 		}
820 		constraint = constraint->next;
821 	}
822 
823 out:
824 	read_unlock(&state->ss->policy_rwlock);
825 	return rc;
826 }
827 
security_validate_transition_user(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)828 int security_validate_transition_user(struct selinux_state *state,
829 				      u32 oldsid, u32 newsid, u32 tasksid,
830 				      u16 tclass)
831 {
832 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
833 					      tclass, true);
834 }
835 
security_validate_transition(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)836 int security_validate_transition(struct selinux_state *state,
837 				 u32 oldsid, u32 newsid, u32 tasksid,
838 				 u16 orig_tclass)
839 {
840 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
841 					      orig_tclass, false);
842 }
843 
844 /*
845  * security_bounded_transition - check whether the given
846  * transition is directed to bounded, or not.
847  * It returns 0, if @newsid is bounded by @oldsid.
848  * Otherwise, it returns error code.
849  *
850  * @oldsid : current security identifier
851  * @newsid : destinated security identifier
852  */
security_bounded_transition(struct selinux_state * state,u32 old_sid,u32 new_sid)853 int security_bounded_transition(struct selinux_state *state,
854 				u32 old_sid, u32 new_sid)
855 {
856 	struct policydb *policydb;
857 	struct sidtab *sidtab;
858 	struct context *old_context, *new_context;
859 	struct type_datum *type;
860 	int index;
861 	int rc;
862 
863 	if (!state->initialized)
864 		return 0;
865 
866 	read_lock(&state->ss->policy_rwlock);
867 
868 	policydb = &state->ss->policydb;
869 	sidtab = state->ss->sidtab;
870 
871 	rc = -EINVAL;
872 	old_context = sidtab_search(sidtab, old_sid);
873 	if (!old_context) {
874 		pr_err("SELinux: %s: unrecognized SID %u\n",
875 		       __func__, old_sid);
876 		goto out;
877 	}
878 
879 	rc = -EINVAL;
880 	new_context = sidtab_search(sidtab, new_sid);
881 	if (!new_context) {
882 		pr_err("SELinux: %s: unrecognized SID %u\n",
883 		       __func__, new_sid);
884 		goto out;
885 	}
886 
887 	rc = 0;
888 	/* type/domain unchanged */
889 	if (old_context->type == new_context->type)
890 		goto out;
891 
892 	index = new_context->type;
893 	while (true) {
894 		type = policydb->type_val_to_struct[index - 1];
895 		BUG_ON(!type);
896 
897 		/* not bounded anymore */
898 		rc = -EPERM;
899 		if (!type->bounds)
900 			break;
901 
902 		/* @newsid is bounded by @oldsid */
903 		rc = 0;
904 		if (type->bounds == old_context->type)
905 			break;
906 
907 		index = type->bounds;
908 	}
909 
910 	if (rc) {
911 		char *old_name = NULL;
912 		char *new_name = NULL;
913 		u32 length;
914 
915 		if (!context_struct_to_string(policydb, old_context,
916 					      &old_name, &length) &&
917 		    !context_struct_to_string(policydb, new_context,
918 					      &new_name, &length)) {
919 			audit_log(audit_context(),
920 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
921 				  "op=security_bounded_transition "
922 				  "seresult=denied "
923 				  "oldcontext=%s newcontext=%s",
924 				  old_name, new_name);
925 		}
926 		kfree(new_name);
927 		kfree(old_name);
928 	}
929 out:
930 	read_unlock(&state->ss->policy_rwlock);
931 
932 	return rc;
933 }
934 
avd_init(struct selinux_state * state,struct av_decision * avd)935 static void avd_init(struct selinux_state *state, struct av_decision *avd)
936 {
937 	avd->allowed = 0;
938 	avd->auditallow = 0;
939 	avd->auditdeny = 0xffffffff;
940 	avd->seqno = state->ss->latest_granting;
941 	avd->flags = 0;
942 }
943 
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)944 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
945 					struct avtab_node *node)
946 {
947 	unsigned int i;
948 
949 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
950 		if (xpermd->driver != node->datum.u.xperms->driver)
951 			return;
952 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
953 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
954 					xpermd->driver))
955 			return;
956 	} else {
957 		BUG();
958 	}
959 
960 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
961 		xpermd->used |= XPERMS_ALLOWED;
962 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
963 			memset(xpermd->allowed->p, 0xff,
964 					sizeof(xpermd->allowed->p));
965 		}
966 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
967 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
968 				xpermd->allowed->p[i] |=
969 					node->datum.u.xperms->perms.p[i];
970 		}
971 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
972 		xpermd->used |= XPERMS_AUDITALLOW;
973 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
974 			memset(xpermd->auditallow->p, 0xff,
975 					sizeof(xpermd->auditallow->p));
976 		}
977 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
978 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
979 				xpermd->auditallow->p[i] |=
980 					node->datum.u.xperms->perms.p[i];
981 		}
982 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
983 		xpermd->used |= XPERMS_DONTAUDIT;
984 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
985 			memset(xpermd->dontaudit->p, 0xff,
986 					sizeof(xpermd->dontaudit->p));
987 		}
988 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
989 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
990 				xpermd->dontaudit->p[i] |=
991 					node->datum.u.xperms->perms.p[i];
992 		}
993 	} else {
994 		BUG();
995 	}
996 }
997 
security_compute_xperms_decision(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)998 void security_compute_xperms_decision(struct selinux_state *state,
999 				      u32 ssid,
1000 				      u32 tsid,
1001 				      u16 orig_tclass,
1002 				      u8 driver,
1003 				      struct extended_perms_decision *xpermd)
1004 {
1005 	struct policydb *policydb;
1006 	struct sidtab *sidtab;
1007 	u16 tclass;
1008 	struct context *scontext, *tcontext;
1009 	struct avtab_key avkey;
1010 	struct avtab_node *node;
1011 	struct ebitmap *sattr, *tattr;
1012 	struct ebitmap_node *snode, *tnode;
1013 	unsigned int i, j;
1014 
1015 	xpermd->driver = driver;
1016 	xpermd->used = 0;
1017 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1018 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1019 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1020 
1021 	read_lock(&state->ss->policy_rwlock);
1022 	if (!state->initialized)
1023 		goto allow;
1024 
1025 	policydb = &state->ss->policydb;
1026 	sidtab = state->ss->sidtab;
1027 
1028 	scontext = sidtab_search(sidtab, ssid);
1029 	if (!scontext) {
1030 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1031 		       __func__, ssid);
1032 		goto out;
1033 	}
1034 
1035 	tcontext = sidtab_search(sidtab, tsid);
1036 	if (!tcontext) {
1037 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1038 		       __func__, tsid);
1039 		goto out;
1040 	}
1041 
1042 	tclass = unmap_class(&state->ss->map, orig_tclass);
1043 	if (unlikely(orig_tclass && !tclass)) {
1044 		if (policydb->allow_unknown)
1045 			goto allow;
1046 		goto out;
1047 	}
1048 
1049 
1050 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1051 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1052 		goto out;
1053 	}
1054 
1055 	avkey.target_class = tclass;
1056 	avkey.specified = AVTAB_XPERMS;
1057 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1058 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1059 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1060 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1061 			avkey.source_type = i + 1;
1062 			avkey.target_type = j + 1;
1063 			for (node = avtab_search_node(&policydb->te_avtab,
1064 						      &avkey);
1065 			     node;
1066 			     node = avtab_search_node_next(node, avkey.specified))
1067 				services_compute_xperms_decision(xpermd, node);
1068 
1069 			cond_compute_xperms(&policydb->te_cond_avtab,
1070 						&avkey, xpermd);
1071 		}
1072 	}
1073 out:
1074 	read_unlock(&state->ss->policy_rwlock);
1075 	return;
1076 allow:
1077 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1078 	goto out;
1079 }
1080 
1081 /**
1082  * security_compute_av - Compute access vector decisions.
1083  * @ssid: source security identifier
1084  * @tsid: target security identifier
1085  * @tclass: target security class
1086  * @avd: access vector decisions
1087  * @xperms: extended permissions
1088  *
1089  * Compute a set of access vector decisions based on the
1090  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1091  */
security_compute_av(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1092 void security_compute_av(struct selinux_state *state,
1093 			 u32 ssid,
1094 			 u32 tsid,
1095 			 u16 orig_tclass,
1096 			 struct av_decision *avd,
1097 			 struct extended_perms *xperms)
1098 {
1099 	struct policydb *policydb;
1100 	struct sidtab *sidtab;
1101 	u16 tclass;
1102 	struct context *scontext = NULL, *tcontext = NULL;
1103 
1104 	read_lock(&state->ss->policy_rwlock);
1105 	avd_init(state, avd);
1106 	xperms->len = 0;
1107 	if (!state->initialized)
1108 		goto allow;
1109 
1110 	policydb = &state->ss->policydb;
1111 	sidtab = state->ss->sidtab;
1112 
1113 	scontext = sidtab_search(sidtab, ssid);
1114 	if (!scontext) {
1115 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1116 		       __func__, ssid);
1117 		goto out;
1118 	}
1119 
1120 	/* permissive domain? */
1121 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1122 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1123 
1124 	tcontext = sidtab_search(sidtab, tsid);
1125 	if (!tcontext) {
1126 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1127 		       __func__, tsid);
1128 		goto out;
1129 	}
1130 
1131 	tclass = unmap_class(&state->ss->map, orig_tclass);
1132 	if (unlikely(orig_tclass && !tclass)) {
1133 		if (policydb->allow_unknown)
1134 			goto allow;
1135 		goto out;
1136 	}
1137 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1138 				  xperms);
1139 	map_decision(&state->ss->map, orig_tclass, avd,
1140 		     policydb->allow_unknown);
1141 out:
1142 	read_unlock(&state->ss->policy_rwlock);
1143 	return;
1144 allow:
1145 	avd->allowed = 0xffffffff;
1146 	goto out;
1147 }
1148 
security_compute_av_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1149 void security_compute_av_user(struct selinux_state *state,
1150 			      u32 ssid,
1151 			      u32 tsid,
1152 			      u16 tclass,
1153 			      struct av_decision *avd)
1154 {
1155 	struct policydb *policydb;
1156 	struct sidtab *sidtab;
1157 	struct context *scontext = NULL, *tcontext = NULL;
1158 
1159 	read_lock(&state->ss->policy_rwlock);
1160 	avd_init(state, avd);
1161 	if (!state->initialized)
1162 		goto allow;
1163 
1164 	policydb = &state->ss->policydb;
1165 	sidtab = state->ss->sidtab;
1166 
1167 	scontext = sidtab_search(sidtab, ssid);
1168 	if (!scontext) {
1169 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1170 		       __func__, ssid);
1171 		goto out;
1172 	}
1173 
1174 	/* permissive domain? */
1175 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1176 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1177 
1178 	tcontext = sidtab_search(sidtab, tsid);
1179 	if (!tcontext) {
1180 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1181 		       __func__, tsid);
1182 		goto out;
1183 	}
1184 
1185 	if (unlikely(!tclass)) {
1186 		if (policydb->allow_unknown)
1187 			goto allow;
1188 		goto out;
1189 	}
1190 
1191 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1192 				  NULL);
1193  out:
1194 	read_unlock(&state->ss->policy_rwlock);
1195 	return;
1196 allow:
1197 	avd->allowed = 0xffffffff;
1198 	goto out;
1199 }
1200 
1201 /*
1202  * Write the security context string representation of
1203  * the context structure `context' into a dynamically
1204  * allocated string of the correct size.  Set `*scontext'
1205  * to point to this string and set `*scontext_len' to
1206  * the length of the string.
1207  */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1208 static int context_struct_to_string(struct policydb *p,
1209 				    struct context *context,
1210 				    char **scontext, u32 *scontext_len)
1211 {
1212 	char *scontextp;
1213 
1214 	if (scontext)
1215 		*scontext = NULL;
1216 	*scontext_len = 0;
1217 
1218 	if (context->len) {
1219 		*scontext_len = context->len;
1220 		if (scontext) {
1221 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1222 			if (!(*scontext))
1223 				return -ENOMEM;
1224 		}
1225 		return 0;
1226 	}
1227 
1228 	/* Compute the size of the context. */
1229 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1230 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1231 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1232 	*scontext_len += mls_compute_context_len(p, context);
1233 
1234 	if (!scontext)
1235 		return 0;
1236 
1237 	/* Allocate space for the context; caller must free this space. */
1238 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1239 	if (!scontextp)
1240 		return -ENOMEM;
1241 	*scontext = scontextp;
1242 
1243 	/*
1244 	 * Copy the user name, role name and type name into the context.
1245 	 */
1246 	scontextp += sprintf(scontextp, "%s:%s:%s",
1247 		sym_name(p, SYM_USERS, context->user - 1),
1248 		sym_name(p, SYM_ROLES, context->role - 1),
1249 		sym_name(p, SYM_TYPES, context->type - 1));
1250 
1251 	mls_sid_to_context(p, context, &scontextp);
1252 
1253 	*scontextp = 0;
1254 
1255 	return 0;
1256 }
1257 
1258 #include "initial_sid_to_string.h"
1259 
security_sidtab_hash_stats(struct selinux_state * state,char * page)1260 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1261 {
1262 	int rc;
1263 
1264 	read_lock(&state->ss->policy_rwlock);
1265 	rc = sidtab_hash_stats(state->ss->sidtab, page);
1266 	read_unlock(&state->ss->policy_rwlock);
1267 
1268 	return rc;
1269 }
1270 
security_get_initial_sid_context(u32 sid)1271 const char *security_get_initial_sid_context(u32 sid)
1272 {
1273 	if (unlikely(sid > SECINITSID_NUM))
1274 		return NULL;
1275 	return initial_sid_to_string[sid];
1276 }
1277 
security_sid_to_context_core(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1278 static int security_sid_to_context_core(struct selinux_state *state,
1279 					u32 sid, char **scontext,
1280 					u32 *scontext_len, int force,
1281 					int only_invalid)
1282 {
1283 	struct policydb *policydb;
1284 	struct sidtab *sidtab;
1285 	struct context *context;
1286 	int rc = 0;
1287 
1288 	if (scontext)
1289 		*scontext = NULL;
1290 	*scontext_len  = 0;
1291 
1292 	if (!state->initialized) {
1293 		if (sid <= SECINITSID_NUM) {
1294 			char *scontextp;
1295 
1296 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1297 			if (!scontext)
1298 				goto out;
1299 			scontextp = kmemdup(initial_sid_to_string[sid],
1300 					    *scontext_len, GFP_ATOMIC);
1301 			if (!scontextp) {
1302 				rc = -ENOMEM;
1303 				goto out;
1304 			}
1305 			*scontext = scontextp;
1306 			goto out;
1307 		}
1308 		pr_err("SELinux: %s:  called before initial "
1309 		       "load_policy on unknown SID %d\n", __func__, sid);
1310 		rc = -EINVAL;
1311 		goto out;
1312 	}
1313 	read_lock(&state->ss->policy_rwlock);
1314 	policydb = &state->ss->policydb;
1315 	sidtab = state->ss->sidtab;
1316 	if (force)
1317 		context = sidtab_search_force(sidtab, sid);
1318 	else
1319 		context = sidtab_search(sidtab, sid);
1320 	if (!context) {
1321 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1322 			__func__, sid);
1323 		rc = -EINVAL;
1324 		goto out_unlock;
1325 	}
1326 	if (only_invalid && !context->len)
1327 		rc = 0;
1328 	else
1329 		rc = context_struct_to_string(policydb, context, scontext,
1330 					      scontext_len);
1331 out_unlock:
1332 	read_unlock(&state->ss->policy_rwlock);
1333 out:
1334 	return rc;
1335 
1336 }
1337 
1338 /**
1339  * security_sid_to_context - Obtain a context for a given SID.
1340  * @sid: security identifier, SID
1341  * @scontext: security context
1342  * @scontext_len: length in bytes
1343  *
1344  * Write the string representation of the context associated with @sid
1345  * into a dynamically allocated string of the correct size.  Set @scontext
1346  * to point to this string and set @scontext_len to the length of the string.
1347  */
security_sid_to_context(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1348 int security_sid_to_context(struct selinux_state *state,
1349 			    u32 sid, char **scontext, u32 *scontext_len)
1350 {
1351 	return security_sid_to_context_core(state, sid, scontext,
1352 					    scontext_len, 0, 0);
1353 }
1354 
security_sid_to_context_force(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1355 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1356 				  char **scontext, u32 *scontext_len)
1357 {
1358 	return security_sid_to_context_core(state, sid, scontext,
1359 					    scontext_len, 1, 0);
1360 }
1361 
1362 /**
1363  * security_sid_to_context_inval - Obtain a context for a given SID if it
1364  *                                 is invalid.
1365  * @sid: security identifier, SID
1366  * @scontext: security context
1367  * @scontext_len: length in bytes
1368  *
1369  * Write the string representation of the context associated with @sid
1370  * into a dynamically allocated string of the correct size, but only if the
1371  * context is invalid in the current policy.  Set @scontext to point to
1372  * this string (or NULL if the context is valid) and set @scontext_len to
1373  * the length of the string (or 0 if the context is valid).
1374  */
security_sid_to_context_inval(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1375 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1376 				  char **scontext, u32 *scontext_len)
1377 {
1378 	return security_sid_to_context_core(state, sid, scontext,
1379 					    scontext_len, 1, 1);
1380 }
1381 
1382 /*
1383  * Caveat:  Mutates scontext.
1384  */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1385 static int string_to_context_struct(struct policydb *pol,
1386 				    struct sidtab *sidtabp,
1387 				    char *scontext,
1388 				    struct context *ctx,
1389 				    u32 def_sid)
1390 {
1391 	struct role_datum *role;
1392 	struct type_datum *typdatum;
1393 	struct user_datum *usrdatum;
1394 	char *scontextp, *p, oldc;
1395 	int rc = 0;
1396 
1397 	context_init(ctx);
1398 
1399 	/* Parse the security context. */
1400 
1401 	rc = -EINVAL;
1402 	scontextp = (char *) scontext;
1403 
1404 	/* Extract the user. */
1405 	p = scontextp;
1406 	while (*p && *p != ':')
1407 		p++;
1408 
1409 	if (*p == 0)
1410 		goto out;
1411 
1412 	*p++ = 0;
1413 
1414 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1415 	if (!usrdatum)
1416 		goto out;
1417 
1418 	ctx->user = usrdatum->value;
1419 
1420 	/* Extract role. */
1421 	scontextp = p;
1422 	while (*p && *p != ':')
1423 		p++;
1424 
1425 	if (*p == 0)
1426 		goto out;
1427 
1428 	*p++ = 0;
1429 
1430 	role = hashtab_search(pol->p_roles.table, scontextp);
1431 	if (!role)
1432 		goto out;
1433 	ctx->role = role->value;
1434 
1435 	/* Extract type. */
1436 	scontextp = p;
1437 	while (*p && *p != ':')
1438 		p++;
1439 	oldc = *p;
1440 	*p++ = 0;
1441 
1442 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1443 	if (!typdatum || typdatum->attribute)
1444 		goto out;
1445 
1446 	ctx->type = typdatum->value;
1447 
1448 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1449 	if (rc)
1450 		goto out;
1451 
1452 	/* Check the validity of the new context. */
1453 	rc = -EINVAL;
1454 	if (!policydb_context_isvalid(pol, ctx))
1455 		goto out;
1456 	rc = 0;
1457 out:
1458 	if (rc)
1459 		context_destroy(ctx);
1460 	return rc;
1461 }
1462 
context_add_hash(struct policydb * policydb,struct context * context)1463 int context_add_hash(struct policydb *policydb,
1464 		     struct context *context)
1465 {
1466 	int rc;
1467 	char *str;
1468 	int len;
1469 
1470 	if (context->str) {
1471 		context->hash = context_compute_hash(context->str);
1472 	} else {
1473 		rc = context_struct_to_string(policydb, context,
1474 					      &str, &len);
1475 		if (rc)
1476 			return rc;
1477 		context->hash = context_compute_hash(str);
1478 		kfree(str);
1479 	}
1480 	return 0;
1481 }
1482 
context_struct_to_sid(struct selinux_state * state,struct context * context,u32 * sid)1483 static int context_struct_to_sid(struct selinux_state *state,
1484 				 struct context *context, u32 *sid)
1485 {
1486 	int rc;
1487 	struct sidtab *sidtab = state->ss->sidtab;
1488 	struct policydb *policydb = &state->ss->policydb;
1489 
1490 	if (!context->hash) {
1491 		rc = context_add_hash(policydb, context);
1492 		if (rc)
1493 			return rc;
1494 	}
1495 
1496 	return sidtab_context_to_sid(sidtab, context, sid);
1497 }
1498 
security_context_to_sid_core(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1499 static int security_context_to_sid_core(struct selinux_state *state,
1500 					const char *scontext, u32 scontext_len,
1501 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1502 					int force)
1503 {
1504 	struct policydb *policydb;
1505 	struct sidtab *sidtab;
1506 	char *scontext2, *str = NULL;
1507 	struct context context;
1508 	int rc = 0;
1509 
1510 	/* An empty security context is never valid. */
1511 	if (!scontext_len)
1512 		return -EINVAL;
1513 
1514 	/* Copy the string to allow changes and ensure a NUL terminator */
1515 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1516 	if (!scontext2)
1517 		return -ENOMEM;
1518 
1519 	if (!state->initialized) {
1520 		int i;
1521 
1522 		for (i = 1; i < SECINITSID_NUM; i++) {
1523 			if (!strcmp(initial_sid_to_string[i], scontext2)) {
1524 				*sid = i;
1525 				goto out;
1526 			}
1527 		}
1528 		*sid = SECINITSID_KERNEL;
1529 		goto out;
1530 	}
1531 	*sid = SECSID_NULL;
1532 
1533 	if (force) {
1534 		/* Save another copy for storing in uninterpreted form */
1535 		rc = -ENOMEM;
1536 		str = kstrdup(scontext2, gfp_flags);
1537 		if (!str)
1538 			goto out;
1539 	}
1540 	read_lock(&state->ss->policy_rwlock);
1541 	policydb = &state->ss->policydb;
1542 	sidtab = state->ss->sidtab;
1543 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1544 				      &context, def_sid);
1545 	if (rc == -EINVAL && force) {
1546 		context.str = str;
1547 		context.len = strlen(str) + 1;
1548 		str = NULL;
1549 	} else if (rc)
1550 		goto out_unlock;
1551 	rc = context_struct_to_sid(state, &context, sid);
1552 	context_destroy(&context);
1553 out_unlock:
1554 	read_unlock(&state->ss->policy_rwlock);
1555 out:
1556 	kfree(scontext2);
1557 	kfree(str);
1558 	return rc;
1559 }
1560 
1561 /**
1562  * security_context_to_sid - Obtain a SID for a given security context.
1563  * @scontext: security context
1564  * @scontext_len: length in bytes
1565  * @sid: security identifier, SID
1566  * @gfp: context for the allocation
1567  *
1568  * Obtains a SID associated with the security context that
1569  * has the string representation specified by @scontext.
1570  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1571  * memory is available, or 0 on success.
1572  */
security_context_to_sid(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1573 int security_context_to_sid(struct selinux_state *state,
1574 			    const char *scontext, u32 scontext_len, u32 *sid,
1575 			    gfp_t gfp)
1576 {
1577 	return security_context_to_sid_core(state, scontext, scontext_len,
1578 					    sid, SECSID_NULL, gfp, 0);
1579 }
1580 
security_context_str_to_sid(struct selinux_state * state,const char * scontext,u32 * sid,gfp_t gfp)1581 int security_context_str_to_sid(struct selinux_state *state,
1582 				const char *scontext, u32 *sid, gfp_t gfp)
1583 {
1584 	return security_context_to_sid(state, scontext, strlen(scontext),
1585 				       sid, gfp);
1586 }
1587 
1588 /**
1589  * security_context_to_sid_default - Obtain a SID for a given security context,
1590  * falling back to specified default if needed.
1591  *
1592  * @scontext: security context
1593  * @scontext_len: length in bytes
1594  * @sid: security identifier, SID
1595  * @def_sid: default SID to assign on error
1596  *
1597  * Obtains a SID associated with the security context that
1598  * has the string representation specified by @scontext.
1599  * The default SID is passed to the MLS layer to be used to allow
1600  * kernel labeling of the MLS field if the MLS field is not present
1601  * (for upgrading to MLS without full relabel).
1602  * Implicitly forces adding of the context even if it cannot be mapped yet.
1603  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1604  * memory is available, or 0 on success.
1605  */
security_context_to_sid_default(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1606 int security_context_to_sid_default(struct selinux_state *state,
1607 				    const char *scontext, u32 scontext_len,
1608 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1609 {
1610 	return security_context_to_sid_core(state, scontext, scontext_len,
1611 					    sid, def_sid, gfp_flags, 1);
1612 }
1613 
security_context_to_sid_force(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid)1614 int security_context_to_sid_force(struct selinux_state *state,
1615 				  const char *scontext, u32 scontext_len,
1616 				  u32 *sid)
1617 {
1618 	return security_context_to_sid_core(state, scontext, scontext_len,
1619 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1620 }
1621 
compute_sid_handle_invalid_context(struct selinux_state * state,struct context * scontext,struct context * tcontext,u16 tclass,struct context * newcontext)1622 static int compute_sid_handle_invalid_context(
1623 	struct selinux_state *state,
1624 	struct context *scontext,
1625 	struct context *tcontext,
1626 	u16 tclass,
1627 	struct context *newcontext)
1628 {
1629 	struct policydb *policydb = &state->ss->policydb;
1630 	char *s = NULL, *t = NULL, *n = NULL;
1631 	u32 slen, tlen, nlen;
1632 	struct audit_buffer *ab;
1633 
1634 	if (context_struct_to_string(policydb, scontext, &s, &slen))
1635 		goto out;
1636 	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1637 		goto out;
1638 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1639 		goto out;
1640 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1641 	audit_log_format(ab,
1642 			 "op=security_compute_sid invalid_context=");
1643 	/* no need to record the NUL with untrusted strings */
1644 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1645 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1646 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1647 	audit_log_end(ab);
1648 out:
1649 	kfree(s);
1650 	kfree(t);
1651 	kfree(n);
1652 	if (!enforcing_enabled(state))
1653 		return 0;
1654 	return -EACCES;
1655 }
1656 
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1657 static void filename_compute_type(struct policydb *policydb,
1658 				  struct context *newcontext,
1659 				  u32 stype, u32 ttype, u16 tclass,
1660 				  const char *objname)
1661 {
1662 	struct filename_trans ft;
1663 	struct filename_trans_datum *otype;
1664 
1665 	/*
1666 	 * Most filename trans rules are going to live in specific directories
1667 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1668 	 * if the ttype does not contain any rules.
1669 	 */
1670 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1671 		return;
1672 
1673 	ft.stype = stype;
1674 	ft.ttype = ttype;
1675 	ft.tclass = tclass;
1676 	ft.name = objname;
1677 
1678 	otype = hashtab_search(policydb->filename_trans, &ft);
1679 	if (otype)
1680 		newcontext->type = otype->otype;
1681 }
1682 
security_compute_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const char * objname,u32 * out_sid,bool kern)1683 static int security_compute_sid(struct selinux_state *state,
1684 				u32 ssid,
1685 				u32 tsid,
1686 				u16 orig_tclass,
1687 				u32 specified,
1688 				const char *objname,
1689 				u32 *out_sid,
1690 				bool kern)
1691 {
1692 	struct policydb *policydb;
1693 	struct sidtab *sidtab;
1694 	struct class_datum *cladatum = NULL;
1695 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1696 	struct role_trans *roletr = NULL;
1697 	struct avtab_key avkey;
1698 	struct avtab_datum *avdatum;
1699 	struct avtab_node *node;
1700 	u16 tclass;
1701 	int rc = 0;
1702 	bool sock;
1703 
1704 	if (!state->initialized) {
1705 		switch (orig_tclass) {
1706 		case SECCLASS_PROCESS: /* kernel value */
1707 			*out_sid = ssid;
1708 			break;
1709 		default:
1710 			*out_sid = tsid;
1711 			break;
1712 		}
1713 		goto out;
1714 	}
1715 
1716 	context_init(&newcontext);
1717 
1718 	read_lock(&state->ss->policy_rwlock);
1719 
1720 	if (kern) {
1721 		tclass = unmap_class(&state->ss->map, orig_tclass);
1722 		sock = security_is_socket_class(orig_tclass);
1723 	} else {
1724 		tclass = orig_tclass;
1725 		sock = security_is_socket_class(map_class(&state->ss->map,
1726 							  tclass));
1727 	}
1728 
1729 	policydb = &state->ss->policydb;
1730 	sidtab = state->ss->sidtab;
1731 
1732 	scontext = sidtab_search(sidtab, ssid);
1733 	if (!scontext) {
1734 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1735 		       __func__, ssid);
1736 		rc = -EINVAL;
1737 		goto out_unlock;
1738 	}
1739 	tcontext = sidtab_search(sidtab, tsid);
1740 	if (!tcontext) {
1741 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1742 		       __func__, tsid);
1743 		rc = -EINVAL;
1744 		goto out_unlock;
1745 	}
1746 
1747 	if (tclass && tclass <= policydb->p_classes.nprim)
1748 		cladatum = policydb->class_val_to_struct[tclass - 1];
1749 
1750 	/* Set the user identity. */
1751 	switch (specified) {
1752 	case AVTAB_TRANSITION:
1753 	case AVTAB_CHANGE:
1754 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1755 			newcontext.user = tcontext->user;
1756 		} else {
1757 			/* notice this gets both DEFAULT_SOURCE and unset */
1758 			/* Use the process user identity. */
1759 			newcontext.user = scontext->user;
1760 		}
1761 		break;
1762 	case AVTAB_MEMBER:
1763 		/* Use the related object owner. */
1764 		newcontext.user = tcontext->user;
1765 		break;
1766 	}
1767 
1768 	/* Set the role to default values. */
1769 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1770 		newcontext.role = scontext->role;
1771 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1772 		newcontext.role = tcontext->role;
1773 	} else {
1774 		if ((tclass == policydb->process_class) || (sock == true))
1775 			newcontext.role = scontext->role;
1776 		else
1777 			newcontext.role = OBJECT_R_VAL;
1778 	}
1779 
1780 	/* Set the type to default values. */
1781 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1782 		newcontext.type = scontext->type;
1783 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1784 		newcontext.type = tcontext->type;
1785 	} else {
1786 		if ((tclass == policydb->process_class) || (sock == true)) {
1787 			/* Use the type of process. */
1788 			newcontext.type = scontext->type;
1789 		} else {
1790 			/* Use the type of the related object. */
1791 			newcontext.type = tcontext->type;
1792 		}
1793 	}
1794 
1795 	/* Look for a type transition/member/change rule. */
1796 	avkey.source_type = scontext->type;
1797 	avkey.target_type = tcontext->type;
1798 	avkey.target_class = tclass;
1799 	avkey.specified = specified;
1800 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1801 
1802 	/* If no permanent rule, also check for enabled conditional rules */
1803 	if (!avdatum) {
1804 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1805 		for (; node; node = avtab_search_node_next(node, specified)) {
1806 			if (node->key.specified & AVTAB_ENABLED) {
1807 				avdatum = &node->datum;
1808 				break;
1809 			}
1810 		}
1811 	}
1812 
1813 	if (avdatum) {
1814 		/* Use the type from the type transition/member/change rule. */
1815 		newcontext.type = avdatum->u.data;
1816 	}
1817 
1818 	/* if we have a objname this is a file trans check so check those rules */
1819 	if (objname)
1820 		filename_compute_type(policydb, &newcontext, scontext->type,
1821 				      tcontext->type, tclass, objname);
1822 
1823 	/* Check for class-specific changes. */
1824 	if (specified & AVTAB_TRANSITION) {
1825 		/* Look for a role transition rule. */
1826 		for (roletr = policydb->role_tr; roletr;
1827 		     roletr = roletr->next) {
1828 			if ((roletr->role == scontext->role) &&
1829 			    (roletr->type == tcontext->type) &&
1830 			    (roletr->tclass == tclass)) {
1831 				/* Use the role transition rule. */
1832 				newcontext.role = roletr->new_role;
1833 				break;
1834 			}
1835 		}
1836 	}
1837 
1838 	/* Set the MLS attributes.
1839 	   This is done last because it may allocate memory. */
1840 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1841 			     &newcontext, sock);
1842 	if (rc)
1843 		goto out_unlock;
1844 
1845 	/* Check the validity of the context. */
1846 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1847 		rc = compute_sid_handle_invalid_context(state, scontext,
1848 							tcontext,
1849 							tclass,
1850 							&newcontext);
1851 		if (rc)
1852 			goto out_unlock;
1853 	}
1854 	/* Obtain the sid for the context. */
1855 	rc = context_struct_to_sid(state, &newcontext, out_sid);
1856 out_unlock:
1857 	read_unlock(&state->ss->policy_rwlock);
1858 	context_destroy(&newcontext);
1859 out:
1860 	return rc;
1861 }
1862 
1863 /**
1864  * security_transition_sid - Compute the SID for a new subject/object.
1865  * @ssid: source security identifier
1866  * @tsid: target security identifier
1867  * @tclass: target security class
1868  * @out_sid: security identifier for new subject/object
1869  *
1870  * Compute a SID to use for labeling a new subject or object in the
1871  * class @tclass based on a SID pair (@ssid, @tsid).
1872  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1873  * if insufficient memory is available, or %0 if the new SID was
1874  * computed successfully.
1875  */
security_transition_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1876 int security_transition_sid(struct selinux_state *state,
1877 			    u32 ssid, u32 tsid, u16 tclass,
1878 			    const struct qstr *qstr, u32 *out_sid)
1879 {
1880 	return security_compute_sid(state, ssid, tsid, tclass,
1881 				    AVTAB_TRANSITION,
1882 				    qstr ? qstr->name : NULL, out_sid, true);
1883 }
1884 
security_transition_sid_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1885 int security_transition_sid_user(struct selinux_state *state,
1886 				 u32 ssid, u32 tsid, u16 tclass,
1887 				 const char *objname, u32 *out_sid)
1888 {
1889 	return security_compute_sid(state, ssid, tsid, tclass,
1890 				    AVTAB_TRANSITION,
1891 				    objname, out_sid, false);
1892 }
1893 
1894 /**
1895  * security_member_sid - Compute the SID for member selection.
1896  * @ssid: source security identifier
1897  * @tsid: target security identifier
1898  * @tclass: target security class
1899  * @out_sid: security identifier for selected member
1900  *
1901  * Compute a SID to use when selecting a member of a polyinstantiated
1902  * object of class @tclass based on a SID pair (@ssid, @tsid).
1903  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1904  * if insufficient memory is available, or %0 if the SID was
1905  * computed successfully.
1906  */
security_member_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1907 int security_member_sid(struct selinux_state *state,
1908 			u32 ssid,
1909 			u32 tsid,
1910 			u16 tclass,
1911 			u32 *out_sid)
1912 {
1913 	return security_compute_sid(state, ssid, tsid, tclass,
1914 				    AVTAB_MEMBER, NULL,
1915 				    out_sid, false);
1916 }
1917 
1918 /**
1919  * security_change_sid - Compute the SID for object relabeling.
1920  * @ssid: source security identifier
1921  * @tsid: target security identifier
1922  * @tclass: target security class
1923  * @out_sid: security identifier for selected member
1924  *
1925  * Compute a SID to use for relabeling an object of class @tclass
1926  * based on a SID pair (@ssid, @tsid).
1927  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1928  * if insufficient memory is available, or %0 if the SID was
1929  * computed successfully.
1930  */
security_change_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1931 int security_change_sid(struct selinux_state *state,
1932 			u32 ssid,
1933 			u32 tsid,
1934 			u16 tclass,
1935 			u32 *out_sid)
1936 {
1937 	return security_compute_sid(state,
1938 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1939 				    out_sid, false);
1940 }
1941 
convert_context_handle_invalid_context(struct selinux_state * state,struct context * context)1942 static inline int convert_context_handle_invalid_context(
1943 	struct selinux_state *state,
1944 	struct context *context)
1945 {
1946 	struct policydb *policydb = &state->ss->policydb;
1947 	char *s;
1948 	u32 len;
1949 
1950 	if (enforcing_enabled(state))
1951 		return -EINVAL;
1952 
1953 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1954 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1955 			s);
1956 		kfree(s);
1957 	}
1958 	return 0;
1959 }
1960 
1961 struct convert_context_args {
1962 	struct selinux_state *state;
1963 	struct policydb *oldp;
1964 	struct policydb *newp;
1965 };
1966 
1967 /*
1968  * Convert the values in the security context
1969  * structure `oldc' from the values specified
1970  * in the policy `p->oldp' to the values specified
1971  * in the policy `p->newp', storing the new context
1972  * in `newc'.  Verify that the context is valid
1973  * under the new policy.
1974  */
convert_context(struct context * oldc,struct context * newc,void * p)1975 static int convert_context(struct context *oldc, struct context *newc, void *p)
1976 {
1977 	struct convert_context_args *args;
1978 	struct ocontext *oc;
1979 	struct role_datum *role;
1980 	struct type_datum *typdatum;
1981 	struct user_datum *usrdatum;
1982 	char *s;
1983 	u32 len;
1984 	int rc;
1985 
1986 	args = p;
1987 
1988 	if (oldc->str) {
1989 		s = kstrdup(oldc->str, GFP_KERNEL);
1990 		if (!s)
1991 			return -ENOMEM;
1992 
1993 		rc = string_to_context_struct(args->newp, NULL, s,
1994 					      newc, SECSID_NULL);
1995 		if (rc == -EINVAL) {
1996 			/*
1997 			 * Retain string representation for later mapping.
1998 			 *
1999 			 * IMPORTANT: We need to copy the contents of oldc->str
2000 			 * back into s again because string_to_context_struct()
2001 			 * may have garbled it.
2002 			 */
2003 			memcpy(s, oldc->str, oldc->len);
2004 			context_init(newc);
2005 			newc->str = s;
2006 			newc->len = oldc->len;
2007 			newc->hash = oldc->hash;
2008 			return 0;
2009 		}
2010 		kfree(s);
2011 		if (rc) {
2012 			/* Other error condition, e.g. ENOMEM. */
2013 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2014 			       oldc->str, -rc);
2015 			return rc;
2016 		}
2017 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2018 			oldc->str);
2019 		return 0;
2020 	}
2021 
2022 	context_init(newc);
2023 
2024 	/* Convert the user. */
2025 	rc = -EINVAL;
2026 	usrdatum = hashtab_search(args->newp->p_users.table,
2027 				  sym_name(args->oldp,
2028 					   SYM_USERS, oldc->user - 1));
2029 	if (!usrdatum)
2030 		goto bad;
2031 	newc->user = usrdatum->value;
2032 
2033 	/* Convert the role. */
2034 	rc = -EINVAL;
2035 	role = hashtab_search(args->newp->p_roles.table,
2036 			      sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2037 	if (!role)
2038 		goto bad;
2039 	newc->role = role->value;
2040 
2041 	/* Convert the type. */
2042 	rc = -EINVAL;
2043 	typdatum = hashtab_search(args->newp->p_types.table,
2044 				  sym_name(args->oldp,
2045 					   SYM_TYPES, oldc->type - 1));
2046 	if (!typdatum)
2047 		goto bad;
2048 	newc->type = typdatum->value;
2049 
2050 	/* Convert the MLS fields if dealing with MLS policies */
2051 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2052 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2053 		if (rc)
2054 			goto bad;
2055 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2056 		/*
2057 		 * Switching between non-MLS and MLS policy:
2058 		 * ensure that the MLS fields of the context for all
2059 		 * existing entries in the sidtab are filled in with a
2060 		 * suitable default value, likely taken from one of the
2061 		 * initial SIDs.
2062 		 */
2063 		oc = args->newp->ocontexts[OCON_ISID];
2064 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2065 			oc = oc->next;
2066 		rc = -EINVAL;
2067 		if (!oc) {
2068 			pr_err("SELinux:  unable to look up"
2069 				" the initial SIDs list\n");
2070 			goto bad;
2071 		}
2072 		rc = mls_range_set(newc, &oc->context[0].range);
2073 		if (rc)
2074 			goto bad;
2075 	}
2076 
2077 	/* Check the validity of the new context. */
2078 	if (!policydb_context_isvalid(args->newp, newc)) {
2079 		rc = convert_context_handle_invalid_context(args->state, oldc);
2080 		if (rc)
2081 			goto bad;
2082 	}
2083 
2084 	rc = context_add_hash(args->newp, newc);
2085 	if (rc)
2086 		goto bad;
2087 
2088 	return 0;
2089 bad:
2090 	/* Map old representation to string and save it. */
2091 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2092 	if (rc)
2093 		return rc;
2094 	context_destroy(newc);
2095 	newc->str = s;
2096 	newc->len = len;
2097 	newc->hash = context_compute_hash(s);
2098 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2099 		newc->str);
2100 	return 0;
2101 }
2102 
security_load_policycaps(struct selinux_state * state)2103 static void security_load_policycaps(struct selinux_state *state)
2104 {
2105 	struct policydb *p = &state->ss->policydb;
2106 	unsigned int i;
2107 	struct ebitmap_node *node;
2108 
2109 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2110 		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2111 
2112 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2113 		pr_info("SELinux:  policy capability %s=%d\n",
2114 			selinux_policycap_names[i],
2115 			ebitmap_get_bit(&p->policycaps, i));
2116 
2117 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2118 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2119 			pr_info("SELinux:  unknown policy capability %u\n",
2120 				i);
2121 	}
2122 
2123 	state->android_netlink_route = p->android_netlink_route;
2124 	selinux_nlmsg_init();
2125 }
2126 
2127 static int security_preserve_bools(struct selinux_state *state,
2128 				   struct policydb *newpolicydb);
2129 
2130 /**
2131  * security_load_policy - Load a security policy configuration.
2132  * @data: binary policy data
2133  * @len: length of data in bytes
2134  *
2135  * Load a new set of security policy configuration data,
2136  * validate it and convert the SID table as necessary.
2137  * This function will flush the access vector cache after
2138  * loading the new policy.
2139  */
security_load_policy(struct selinux_state * state,void * data,size_t len)2140 int security_load_policy(struct selinux_state *state, void *data, size_t len)
2141 {
2142 	struct policydb *policydb;
2143 	struct sidtab *oldsidtab, *newsidtab;
2144 	struct policydb *oldpolicydb, *newpolicydb;
2145 	struct selinux_mapping *oldmapping;
2146 	struct selinux_map newmap;
2147 	struct sidtab_convert_params convert_params;
2148 	struct convert_context_args args;
2149 	u32 seqno;
2150 	int rc = 0;
2151 	struct policy_file file = { data, len }, *fp = &file;
2152 
2153 	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2154 	if (!oldpolicydb) {
2155 		rc = -ENOMEM;
2156 		goto out;
2157 	}
2158 	newpolicydb = oldpolicydb + 1;
2159 
2160 	policydb = &state->ss->policydb;
2161 
2162 	newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2163 	if (!newsidtab) {
2164 		rc = -ENOMEM;
2165 		goto out;
2166 	}
2167 
2168 	if (!state->initialized) {
2169 		rc = policydb_read(policydb, fp);
2170 		if (rc) {
2171 			kfree(newsidtab);
2172 			goto out;
2173 		}
2174 
2175 		policydb->len = len;
2176 		rc = selinux_set_mapping(policydb, secclass_map,
2177 					 &state->ss->map);
2178 		if (rc) {
2179 			kfree(newsidtab);
2180 			policydb_destroy(policydb);
2181 			goto out;
2182 		}
2183 
2184 		rc = policydb_load_isids(policydb, newsidtab);
2185 		if (rc) {
2186 			kfree(newsidtab);
2187 			policydb_destroy(policydb);
2188 			goto out;
2189 		}
2190 
2191 		state->ss->sidtab = newsidtab;
2192 		security_load_policycaps(state);
2193 		state->initialized = 1;
2194 		seqno = ++state->ss->latest_granting;
2195 		selinux_complete_init();
2196 		avc_ss_reset(state->avc, seqno);
2197 		selnl_notify_policyload(seqno);
2198 		selinux_status_update_policyload(state, seqno);
2199 		selinux_netlbl_cache_invalidate();
2200 		selinux_xfrm_notify_policyload();
2201 		goto out;
2202 	}
2203 
2204 	rc = policydb_read(newpolicydb, fp);
2205 	if (rc) {
2206 		kfree(newsidtab);
2207 		goto out;
2208 	}
2209 
2210 	newpolicydb->len = len;
2211 	/* If switching between different policy types, log MLS status */
2212 	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2213 		pr_info("SELinux: Disabling MLS support...\n");
2214 	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2215 		pr_info("SELinux: Enabling MLS support...\n");
2216 
2217 	rc = policydb_load_isids(newpolicydb, newsidtab);
2218 	if (rc) {
2219 		pr_err("SELinux:  unable to load the initial SIDs\n");
2220 		policydb_destroy(newpolicydb);
2221 		kfree(newsidtab);
2222 		goto out;
2223 	}
2224 
2225 	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2226 	if (rc)
2227 		goto err;
2228 
2229 	rc = security_preserve_bools(state, newpolicydb);
2230 	if (rc) {
2231 		pr_err("SELinux:  unable to preserve booleans\n");
2232 		goto err;
2233 	}
2234 
2235 	oldsidtab = state->ss->sidtab;
2236 
2237 	/*
2238 	 * Convert the internal representations of contexts
2239 	 * in the new SID table.
2240 	 */
2241 	args.state = state;
2242 	args.oldp = policydb;
2243 	args.newp = newpolicydb;
2244 
2245 	convert_params.func = convert_context;
2246 	convert_params.args = &args;
2247 	convert_params.target = newsidtab;
2248 
2249 	rc = sidtab_convert(oldsidtab, &convert_params);
2250 	if (rc) {
2251 		pr_err("SELinux:  unable to convert the internal"
2252 			" representation of contexts in the new SID"
2253 			" table\n");
2254 		goto err;
2255 	}
2256 
2257 	/* Save the old policydb and SID table to free later. */
2258 	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2259 
2260 	/* Install the new policydb and SID table. */
2261 	write_lock_irq(&state->ss->policy_rwlock);
2262 	memcpy(policydb, newpolicydb, sizeof(*policydb));
2263 	state->ss->sidtab = newsidtab;
2264 	security_load_policycaps(state);
2265 	oldmapping = state->ss->map.mapping;
2266 	state->ss->map.mapping = newmap.mapping;
2267 	state->ss->map.size = newmap.size;
2268 	seqno = ++state->ss->latest_granting;
2269 	write_unlock_irq(&state->ss->policy_rwlock);
2270 
2271 	/* Free the old policydb and SID table. */
2272 	policydb_destroy(oldpolicydb);
2273 	sidtab_destroy(oldsidtab);
2274 	kfree(oldsidtab);
2275 	kfree(oldmapping);
2276 
2277 	avc_ss_reset(state->avc, seqno);
2278 	selnl_notify_policyload(seqno);
2279 	selinux_status_update_policyload(state, seqno);
2280 	selinux_netlbl_cache_invalidate();
2281 	selinux_xfrm_notify_policyload();
2282 
2283 	rc = 0;
2284 	goto out;
2285 
2286 err:
2287 	kfree(newmap.mapping);
2288 	sidtab_destroy(newsidtab);
2289 	kfree(newsidtab);
2290 	policydb_destroy(newpolicydb);
2291 
2292 out:
2293 	kfree(oldpolicydb);
2294 	return rc;
2295 }
2296 
security_policydb_len(struct selinux_state * state)2297 size_t security_policydb_len(struct selinux_state *state)
2298 {
2299 	struct policydb *p = &state->ss->policydb;
2300 	size_t len;
2301 
2302 	read_lock(&state->ss->policy_rwlock);
2303 	len = p->len;
2304 	read_unlock(&state->ss->policy_rwlock);
2305 
2306 	return len;
2307 }
2308 
2309 /**
2310  * security_port_sid - Obtain the SID for a port.
2311  * @protocol: protocol number
2312  * @port: port number
2313  * @out_sid: security identifier
2314  */
security_port_sid(struct selinux_state * state,u8 protocol,u16 port,u32 * out_sid)2315 int security_port_sid(struct selinux_state *state,
2316 		      u8 protocol, u16 port, u32 *out_sid)
2317 {
2318 	struct policydb *policydb;
2319 	struct sidtab *sidtab;
2320 	struct ocontext *c;
2321 	int rc = 0;
2322 
2323 	read_lock(&state->ss->policy_rwlock);
2324 
2325 	policydb = &state->ss->policydb;
2326 	sidtab = state->ss->sidtab;
2327 
2328 	c = policydb->ocontexts[OCON_PORT];
2329 	while (c) {
2330 		if (c->u.port.protocol == protocol &&
2331 		    c->u.port.low_port <= port &&
2332 		    c->u.port.high_port >= port)
2333 			break;
2334 		c = c->next;
2335 	}
2336 
2337 	if (c) {
2338 		if (!c->sid[0]) {
2339 			rc = context_struct_to_sid(state, &c->context[0],
2340 						   &c->sid[0]);
2341 			if (rc)
2342 				goto out;
2343 		}
2344 		*out_sid = c->sid[0];
2345 	} else {
2346 		*out_sid = SECINITSID_PORT;
2347 	}
2348 
2349 out:
2350 	read_unlock(&state->ss->policy_rwlock);
2351 	return rc;
2352 }
2353 
2354 /**
2355  * security_pkey_sid - Obtain the SID for a pkey.
2356  * @subnet_prefix: Subnet Prefix
2357  * @pkey_num: pkey number
2358  * @out_sid: security identifier
2359  */
security_ib_pkey_sid(struct selinux_state * state,u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2360 int security_ib_pkey_sid(struct selinux_state *state,
2361 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2362 {
2363 	struct policydb *policydb;
2364 	struct ocontext *c;
2365 	int rc = 0;
2366 
2367 	read_lock(&state->ss->policy_rwlock);
2368 
2369 	policydb = &state->ss->policydb;
2370 
2371 	c = policydb->ocontexts[OCON_IBPKEY];
2372 	while (c) {
2373 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2374 		    c->u.ibpkey.high_pkey >= pkey_num &&
2375 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2376 			break;
2377 
2378 		c = c->next;
2379 	}
2380 
2381 	if (c) {
2382 		if (!c->sid[0]) {
2383 			rc = context_struct_to_sid(state,
2384 						   &c->context[0],
2385 						   &c->sid[0]);
2386 			if (rc)
2387 				goto out;
2388 		}
2389 		*out_sid = c->sid[0];
2390 	} else
2391 		*out_sid = SECINITSID_UNLABELED;
2392 
2393 out:
2394 	read_unlock(&state->ss->policy_rwlock);
2395 	return rc;
2396 }
2397 
2398 /**
2399  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2400  * @dev_name: device name
2401  * @port: port number
2402  * @out_sid: security identifier
2403  */
security_ib_endport_sid(struct selinux_state * state,const char * dev_name,u8 port_num,u32 * out_sid)2404 int security_ib_endport_sid(struct selinux_state *state,
2405 			    const char *dev_name, u8 port_num, u32 *out_sid)
2406 {
2407 	struct policydb *policydb;
2408 	struct sidtab *sidtab;
2409 	struct ocontext *c;
2410 	int rc = 0;
2411 
2412 	read_lock(&state->ss->policy_rwlock);
2413 
2414 	policydb = &state->ss->policydb;
2415 	sidtab = state->ss->sidtab;
2416 
2417 	c = policydb->ocontexts[OCON_IBENDPORT];
2418 	while (c) {
2419 		if (c->u.ibendport.port == port_num &&
2420 		    !strncmp(c->u.ibendport.dev_name,
2421 			     dev_name,
2422 			     IB_DEVICE_NAME_MAX))
2423 			break;
2424 
2425 		c = c->next;
2426 	}
2427 
2428 	if (c) {
2429 		if (!c->sid[0]) {
2430 			rc = context_struct_to_sid(state, &c->context[0],
2431 						   &c->sid[0]);
2432 			if (rc)
2433 				goto out;
2434 		}
2435 		*out_sid = c->sid[0];
2436 	} else
2437 		*out_sid = SECINITSID_UNLABELED;
2438 
2439 out:
2440 	read_unlock(&state->ss->policy_rwlock);
2441 	return rc;
2442 }
2443 
2444 /**
2445  * security_netif_sid - Obtain the SID for a network interface.
2446  * @name: interface name
2447  * @if_sid: interface SID
2448  */
security_netif_sid(struct selinux_state * state,char * name,u32 * if_sid)2449 int security_netif_sid(struct selinux_state *state,
2450 		       char *name, u32 *if_sid)
2451 {
2452 	struct policydb *policydb;
2453 	struct sidtab *sidtab;
2454 	int rc = 0;
2455 	struct ocontext *c;
2456 
2457 	read_lock(&state->ss->policy_rwlock);
2458 
2459 	policydb = &state->ss->policydb;
2460 	sidtab = state->ss->sidtab;
2461 
2462 	c = policydb->ocontexts[OCON_NETIF];
2463 	while (c) {
2464 		if (strcmp(name, c->u.name) == 0)
2465 			break;
2466 		c = c->next;
2467 	}
2468 
2469 	if (c) {
2470 		if (!c->sid[0] || !c->sid[1]) {
2471 			rc = context_struct_to_sid(state, &c->context[0],
2472 						   &c->sid[0]);
2473 			if (rc)
2474 				goto out;
2475 			rc = context_struct_to_sid(state, &c->context[1],
2476 						   &c->sid[1]);
2477 			if (rc)
2478 				goto out;
2479 		}
2480 		*if_sid = c->sid[0];
2481 	} else
2482 		*if_sid = SECINITSID_NETIF;
2483 
2484 out:
2485 	read_unlock(&state->ss->policy_rwlock);
2486 	return rc;
2487 }
2488 
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2489 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2490 {
2491 	int i, fail = 0;
2492 
2493 	for (i = 0; i < 4; i++)
2494 		if (addr[i] != (input[i] & mask[i])) {
2495 			fail = 1;
2496 			break;
2497 		}
2498 
2499 	return !fail;
2500 }
2501 
2502 /**
2503  * security_node_sid - Obtain the SID for a node (host).
2504  * @domain: communication domain aka address family
2505  * @addrp: address
2506  * @addrlen: address length in bytes
2507  * @out_sid: security identifier
2508  */
security_node_sid(struct selinux_state * state,u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2509 int security_node_sid(struct selinux_state *state,
2510 		      u16 domain,
2511 		      void *addrp,
2512 		      u32 addrlen,
2513 		      u32 *out_sid)
2514 {
2515 	struct policydb *policydb;
2516 	int rc;
2517 	struct ocontext *c;
2518 
2519 	read_lock(&state->ss->policy_rwlock);
2520 
2521 	policydb = &state->ss->policydb;
2522 
2523 	switch (domain) {
2524 	case AF_INET: {
2525 		u32 addr;
2526 
2527 		rc = -EINVAL;
2528 		if (addrlen != sizeof(u32))
2529 			goto out;
2530 
2531 		addr = *((u32 *)addrp);
2532 
2533 		c = policydb->ocontexts[OCON_NODE];
2534 		while (c) {
2535 			if (c->u.node.addr == (addr & c->u.node.mask))
2536 				break;
2537 			c = c->next;
2538 		}
2539 		break;
2540 	}
2541 
2542 	case AF_INET6:
2543 		rc = -EINVAL;
2544 		if (addrlen != sizeof(u64) * 2)
2545 			goto out;
2546 		c = policydb->ocontexts[OCON_NODE6];
2547 		while (c) {
2548 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2549 						c->u.node6.mask))
2550 				break;
2551 			c = c->next;
2552 		}
2553 		break;
2554 
2555 	default:
2556 		rc = 0;
2557 		*out_sid = SECINITSID_NODE;
2558 		goto out;
2559 	}
2560 
2561 	if (c) {
2562 		if (!c->sid[0]) {
2563 			rc = context_struct_to_sid(state,
2564 						   &c->context[0],
2565 						   &c->sid[0]);
2566 			if (rc)
2567 				goto out;
2568 		}
2569 		*out_sid = c->sid[0];
2570 	} else {
2571 		*out_sid = SECINITSID_NODE;
2572 	}
2573 
2574 	rc = 0;
2575 out:
2576 	read_unlock(&state->ss->policy_rwlock);
2577 	return rc;
2578 }
2579 
2580 #define SIDS_NEL 25
2581 
2582 /**
2583  * security_get_user_sids - Obtain reachable SIDs for a user.
2584  * @fromsid: starting SID
2585  * @username: username
2586  * @sids: array of reachable SIDs for user
2587  * @nel: number of elements in @sids
2588  *
2589  * Generate the set of SIDs for legal security contexts
2590  * for a given user that can be reached by @fromsid.
2591  * Set *@sids to point to a dynamically allocated
2592  * array containing the set of SIDs.  Set *@nel to the
2593  * number of elements in the array.
2594  */
2595 
security_get_user_sids(struct selinux_state * state,u32 fromsid,char * username,u32 ** sids,u32 * nel)2596 int security_get_user_sids(struct selinux_state *state,
2597 			   u32 fromsid,
2598 			   char *username,
2599 			   u32 **sids,
2600 			   u32 *nel)
2601 {
2602 	struct policydb *policydb;
2603 	struct sidtab *sidtab;
2604 	struct context *fromcon, usercon;
2605 	u32 *mysids = NULL, *mysids2, sid;
2606 	u32 mynel = 0, maxnel = SIDS_NEL;
2607 	struct user_datum *user;
2608 	struct role_datum *role;
2609 	struct ebitmap_node *rnode, *tnode;
2610 	int rc = 0, i, j;
2611 
2612 	*sids = NULL;
2613 	*nel = 0;
2614 
2615 	if (!state->initialized)
2616 		goto out;
2617 
2618 	read_lock(&state->ss->policy_rwlock);
2619 
2620 	policydb = &state->ss->policydb;
2621 	sidtab = state->ss->sidtab;
2622 
2623 	context_init(&usercon);
2624 
2625 	rc = -EINVAL;
2626 	fromcon = sidtab_search(sidtab, fromsid);
2627 	if (!fromcon)
2628 		goto out_unlock;
2629 
2630 	rc = -EINVAL;
2631 	user = hashtab_search(policydb->p_users.table, username);
2632 	if (!user)
2633 		goto out_unlock;
2634 
2635 	usercon.user = user->value;
2636 
2637 	rc = -ENOMEM;
2638 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2639 	if (!mysids)
2640 		goto out_unlock;
2641 
2642 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2643 		role = policydb->role_val_to_struct[i];
2644 		usercon.role = i + 1;
2645 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2646 			usercon.type = j + 1;
2647 			/*
2648 			 * The same context struct is reused here so the hash
2649 			 * must be reset.
2650 			 */
2651 			usercon.hash = 0;
2652 
2653 			if (mls_setup_user_range(policydb, fromcon, user,
2654 						 &usercon))
2655 				continue;
2656 
2657 			rc = context_struct_to_sid(state, &usercon, &sid);
2658 			if (rc)
2659 				goto out_unlock;
2660 			if (mynel < maxnel) {
2661 				mysids[mynel++] = sid;
2662 			} else {
2663 				rc = -ENOMEM;
2664 				maxnel += SIDS_NEL;
2665 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2666 				if (!mysids2)
2667 					goto out_unlock;
2668 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2669 				kfree(mysids);
2670 				mysids = mysids2;
2671 				mysids[mynel++] = sid;
2672 			}
2673 		}
2674 	}
2675 	rc = 0;
2676 out_unlock:
2677 	read_unlock(&state->ss->policy_rwlock);
2678 	if (rc || !mynel) {
2679 		kfree(mysids);
2680 		goto out;
2681 	}
2682 
2683 	rc = -ENOMEM;
2684 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2685 	if (!mysids2) {
2686 		kfree(mysids);
2687 		goto out;
2688 	}
2689 	for (i = 0, j = 0; i < mynel; i++) {
2690 		struct av_decision dummy_avd;
2691 		rc = avc_has_perm_noaudit(state,
2692 					  fromsid, mysids[i],
2693 					  SECCLASS_PROCESS, /* kernel value */
2694 					  PROCESS__TRANSITION, AVC_STRICT,
2695 					  &dummy_avd);
2696 		if (!rc)
2697 			mysids2[j++] = mysids[i];
2698 		cond_resched();
2699 	}
2700 	rc = 0;
2701 	kfree(mysids);
2702 	*sids = mysids2;
2703 	*nel = j;
2704 out:
2705 	return rc;
2706 }
2707 
2708 /**
2709  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2710  * @fstype: filesystem type
2711  * @path: path from root of mount
2712  * @sclass: file security class
2713  * @sid: SID for path
2714  *
2715  * Obtain a SID to use for a file in a filesystem that
2716  * cannot support xattr or use a fixed labeling behavior like
2717  * transition SIDs or task SIDs.
2718  *
2719  * The caller must acquire the policy_rwlock before calling this function.
2720  */
__security_genfs_sid(struct selinux_state * state,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2721 static inline int __security_genfs_sid(struct selinux_state *state,
2722 				       const char *fstype,
2723 				       char *path,
2724 				       u16 orig_sclass,
2725 				       u32 *sid)
2726 {
2727 	struct policydb *policydb = &state->ss->policydb;
2728 	int len;
2729 	u16 sclass;
2730 	struct genfs *genfs;
2731 	struct ocontext *c;
2732 	int rc, cmp = 0;
2733 
2734 	while (path[0] == '/' && path[1] == '/')
2735 		path++;
2736 
2737 	sclass = unmap_class(&state->ss->map, orig_sclass);
2738 	*sid = SECINITSID_UNLABELED;
2739 
2740 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2741 		cmp = strcmp(fstype, genfs->fstype);
2742 		if (cmp <= 0)
2743 			break;
2744 	}
2745 
2746 	rc = -ENOENT;
2747 	if (!genfs || cmp)
2748 		goto out;
2749 
2750 	for (c = genfs->head; c; c = c->next) {
2751 		len = strlen(c->u.name);
2752 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2753 		    (strncmp(c->u.name, path, len) == 0))
2754 			break;
2755 	}
2756 
2757 	rc = -ENOENT;
2758 	if (!c)
2759 		goto out;
2760 
2761 	if (!c->sid[0]) {
2762 		rc = context_struct_to_sid(state, &c->context[0], &c->sid[0]);
2763 		if (rc)
2764 			goto out;
2765 	}
2766 
2767 	*sid = c->sid[0];
2768 	rc = 0;
2769 out:
2770 	return rc;
2771 }
2772 
2773 /**
2774  * security_genfs_sid - Obtain a SID for a file in a filesystem
2775  * @fstype: filesystem type
2776  * @path: path from root of mount
2777  * @sclass: file security class
2778  * @sid: SID for path
2779  *
2780  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2781  * it afterward.
2782  */
security_genfs_sid(struct selinux_state * state,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2783 int security_genfs_sid(struct selinux_state *state,
2784 		       const char *fstype,
2785 		       char *path,
2786 		       u16 orig_sclass,
2787 		       u32 *sid)
2788 {
2789 	int retval;
2790 
2791 	read_lock(&state->ss->policy_rwlock);
2792 	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2793 	read_unlock(&state->ss->policy_rwlock);
2794 	return retval;
2795 }
2796 
2797 /**
2798  * security_fs_use - Determine how to handle labeling for a filesystem.
2799  * @sb: superblock in question
2800  */
security_fs_use(struct selinux_state * state,struct super_block * sb)2801 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2802 {
2803 	struct policydb *policydb;
2804 	struct sidtab *sidtab;
2805 	int rc = 0;
2806 	struct ocontext *c;
2807 	struct superblock_security_struct *sbsec = sb->s_security;
2808 	const char *fstype = sb->s_type->name;
2809 
2810 	read_lock(&state->ss->policy_rwlock);
2811 
2812 	policydb = &state->ss->policydb;
2813 	sidtab = state->ss->sidtab;
2814 
2815 	c = policydb->ocontexts[OCON_FSUSE];
2816 	while (c) {
2817 		if (strcmp(fstype, c->u.name) == 0)
2818 			break;
2819 		c = c->next;
2820 	}
2821 
2822 	if (c) {
2823 		sbsec->behavior = c->v.behavior;
2824 		if (!c->sid[0]) {
2825 			rc = context_struct_to_sid(state, &c->context[0],
2826 						   &c->sid[0]);
2827 			if (rc)
2828 				goto out;
2829 		}
2830 		sbsec->sid = c->sid[0];
2831 	} else {
2832 		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2833 					  &sbsec->sid);
2834 		if (rc) {
2835 			sbsec->behavior = SECURITY_FS_USE_NONE;
2836 			rc = 0;
2837 		} else {
2838 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2839 		}
2840 	}
2841 
2842 out:
2843 	read_unlock(&state->ss->policy_rwlock);
2844 	return rc;
2845 }
2846 
security_get_bools(struct selinux_state * state,int * len,char *** names,int ** values)2847 int security_get_bools(struct selinux_state *state,
2848 		       int *len, char ***names, int **values)
2849 {
2850 	struct policydb *policydb;
2851 	int i, rc;
2852 
2853 	if (!state->initialized) {
2854 		*len = 0;
2855 		*names = NULL;
2856 		*values = NULL;
2857 		return 0;
2858 	}
2859 
2860 	read_lock(&state->ss->policy_rwlock);
2861 
2862 	policydb = &state->ss->policydb;
2863 
2864 	*names = NULL;
2865 	*values = NULL;
2866 
2867 	rc = 0;
2868 	*len = policydb->p_bools.nprim;
2869 	if (!*len)
2870 		goto out;
2871 
2872 	rc = -ENOMEM;
2873 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2874 	if (!*names)
2875 		goto err;
2876 
2877 	rc = -ENOMEM;
2878 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2879 	if (!*values)
2880 		goto err;
2881 
2882 	for (i = 0; i < *len; i++) {
2883 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2884 
2885 		rc = -ENOMEM;
2886 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2887 				      GFP_ATOMIC);
2888 		if (!(*names)[i])
2889 			goto err;
2890 	}
2891 	rc = 0;
2892 out:
2893 	read_unlock(&state->ss->policy_rwlock);
2894 	return rc;
2895 err:
2896 	if (*names) {
2897 		for (i = 0; i < *len; i++)
2898 			kfree((*names)[i]);
2899 	}
2900 	kfree(*values);
2901 	goto out;
2902 }
2903 
2904 
security_set_bools(struct selinux_state * state,int len,int * values)2905 int security_set_bools(struct selinux_state *state, int len, int *values)
2906 {
2907 	struct policydb *policydb;
2908 	int i, rc;
2909 	int lenp, seqno = 0;
2910 	struct cond_node *cur;
2911 
2912 	write_lock_irq(&state->ss->policy_rwlock);
2913 
2914 	policydb = &state->ss->policydb;
2915 
2916 	rc = -EFAULT;
2917 	lenp = policydb->p_bools.nprim;
2918 	if (len != lenp)
2919 		goto out;
2920 
2921 	for (i = 0; i < len; i++) {
2922 		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2923 			audit_log(audit_context(), GFP_ATOMIC,
2924 				AUDIT_MAC_CONFIG_CHANGE,
2925 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2926 				sym_name(policydb, SYM_BOOLS, i),
2927 				!!values[i],
2928 				policydb->bool_val_to_struct[i]->state,
2929 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2930 				audit_get_sessionid(current));
2931 		}
2932 		if (values[i])
2933 			policydb->bool_val_to_struct[i]->state = 1;
2934 		else
2935 			policydb->bool_val_to_struct[i]->state = 0;
2936 	}
2937 
2938 	for (cur = policydb->cond_list; cur; cur = cur->next) {
2939 		rc = evaluate_cond_node(policydb, cur);
2940 		if (rc)
2941 			goto out;
2942 	}
2943 
2944 	seqno = ++state->ss->latest_granting;
2945 	rc = 0;
2946 out:
2947 	write_unlock_irq(&state->ss->policy_rwlock);
2948 	if (!rc) {
2949 		avc_ss_reset(state->avc, seqno);
2950 		selnl_notify_policyload(seqno);
2951 		selinux_status_update_policyload(state, seqno);
2952 		selinux_xfrm_notify_policyload();
2953 	}
2954 	return rc;
2955 }
2956 
security_get_bool_value(struct selinux_state * state,int index)2957 int security_get_bool_value(struct selinux_state *state,
2958 			    int index)
2959 {
2960 	struct policydb *policydb;
2961 	int rc;
2962 	int len;
2963 
2964 	read_lock(&state->ss->policy_rwlock);
2965 
2966 	policydb = &state->ss->policydb;
2967 
2968 	rc = -EFAULT;
2969 	len = policydb->p_bools.nprim;
2970 	if (index >= len)
2971 		goto out;
2972 
2973 	rc = policydb->bool_val_to_struct[index]->state;
2974 out:
2975 	read_unlock(&state->ss->policy_rwlock);
2976 	return rc;
2977 }
2978 
security_preserve_bools(struct selinux_state * state,struct policydb * policydb)2979 static int security_preserve_bools(struct selinux_state *state,
2980 				   struct policydb *policydb)
2981 {
2982 	int rc, nbools = 0, *bvalues = NULL, i;
2983 	char **bnames = NULL;
2984 	struct cond_bool_datum *booldatum;
2985 	struct cond_node *cur;
2986 
2987 	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2988 	if (rc)
2989 		goto out;
2990 	for (i = 0; i < nbools; i++) {
2991 		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2992 		if (booldatum)
2993 			booldatum->state = bvalues[i];
2994 	}
2995 	for (cur = policydb->cond_list; cur; cur = cur->next) {
2996 		rc = evaluate_cond_node(policydb, cur);
2997 		if (rc)
2998 			goto out;
2999 	}
3000 
3001 out:
3002 	if (bnames) {
3003 		for (i = 0; i < nbools; i++)
3004 			kfree(bnames[i]);
3005 	}
3006 	kfree(bnames);
3007 	kfree(bvalues);
3008 	return rc;
3009 }
3010 
3011 /*
3012  * security_sid_mls_copy() - computes a new sid based on the given
3013  * sid and the mls portion of mls_sid.
3014  */
security_sid_mls_copy(struct selinux_state * state,u32 sid,u32 mls_sid,u32 * new_sid)3015 int security_sid_mls_copy(struct selinux_state *state,
3016 			  u32 sid, u32 mls_sid, u32 *new_sid)
3017 {
3018 	struct policydb *policydb = &state->ss->policydb;
3019 	struct sidtab *sidtab = state->ss->sidtab;
3020 	struct context *context1;
3021 	struct context *context2;
3022 	struct context newcon;
3023 	char *s;
3024 	u32 len;
3025 	int rc;
3026 
3027 	rc = 0;
3028 	if (!state->initialized || !policydb->mls_enabled) {
3029 		*new_sid = sid;
3030 		goto out;
3031 	}
3032 
3033 	context_init(&newcon);
3034 
3035 	read_lock(&state->ss->policy_rwlock);
3036 
3037 	rc = -EINVAL;
3038 	context1 = sidtab_search(sidtab, sid);
3039 	if (!context1) {
3040 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3041 			__func__, sid);
3042 		goto out_unlock;
3043 	}
3044 
3045 	rc = -EINVAL;
3046 	context2 = sidtab_search(sidtab, mls_sid);
3047 	if (!context2) {
3048 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3049 			__func__, mls_sid);
3050 		goto out_unlock;
3051 	}
3052 
3053 	newcon.user = context1->user;
3054 	newcon.role = context1->role;
3055 	newcon.type = context1->type;
3056 	rc = mls_context_cpy(&newcon, context2);
3057 	if (rc)
3058 		goto out_unlock;
3059 
3060 	/* Check the validity of the new context. */
3061 	if (!policydb_context_isvalid(policydb, &newcon)) {
3062 		rc = convert_context_handle_invalid_context(state, &newcon);
3063 		if (rc) {
3064 			if (!context_struct_to_string(policydb, &newcon, &s,
3065 						      &len)) {
3066 				struct audit_buffer *ab;
3067 
3068 				ab = audit_log_start(audit_context(),
3069 						     GFP_ATOMIC,
3070 						     AUDIT_SELINUX_ERR);
3071 				audit_log_format(ab,
3072 						 "op=security_sid_mls_copy invalid_context=");
3073 				/* don't record NUL with untrusted strings */
3074 				audit_log_n_untrustedstring(ab, s, len - 1);
3075 				audit_log_end(ab);
3076 				kfree(s);
3077 			}
3078 			goto out_unlock;
3079 		}
3080 	}
3081 	rc = context_struct_to_sid(state, &newcon, new_sid);
3082 out_unlock:
3083 	read_unlock(&state->ss->policy_rwlock);
3084 	context_destroy(&newcon);
3085 out:
3086 	return rc;
3087 }
3088 
3089 /**
3090  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3091  * @nlbl_sid: NetLabel SID
3092  * @nlbl_type: NetLabel labeling protocol type
3093  * @xfrm_sid: XFRM SID
3094  *
3095  * Description:
3096  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3097  * resolved into a single SID it is returned via @peer_sid and the function
3098  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3099  * returns a negative value.  A table summarizing the behavior is below:
3100  *
3101  *                                 | function return |      @sid
3102  *   ------------------------------+-----------------+-----------------
3103  *   no peer labels                |        0        |    SECSID_NULL
3104  *   single peer label             |        0        |    <peer_label>
3105  *   multiple, consistent labels   |        0        |    <peer_label>
3106  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3107  *
3108  */
security_net_peersid_resolve(struct selinux_state * state,u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3109 int security_net_peersid_resolve(struct selinux_state *state,
3110 				 u32 nlbl_sid, u32 nlbl_type,
3111 				 u32 xfrm_sid,
3112 				 u32 *peer_sid)
3113 {
3114 	struct policydb *policydb = &state->ss->policydb;
3115 	struct sidtab *sidtab = state->ss->sidtab;
3116 	int rc;
3117 	struct context *nlbl_ctx;
3118 	struct context *xfrm_ctx;
3119 
3120 	*peer_sid = SECSID_NULL;
3121 
3122 	/* handle the common (which also happens to be the set of easy) cases
3123 	 * right away, these two if statements catch everything involving a
3124 	 * single or absent peer SID/label */
3125 	if (xfrm_sid == SECSID_NULL) {
3126 		*peer_sid = nlbl_sid;
3127 		return 0;
3128 	}
3129 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3130 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3131 	 * is present */
3132 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3133 		*peer_sid = xfrm_sid;
3134 		return 0;
3135 	}
3136 
3137 	/*
3138 	 * We don't need to check initialized here since the only way both
3139 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3140 	 * security server was initialized and state->initialized was true.
3141 	 */
3142 	if (!policydb->mls_enabled)
3143 		return 0;
3144 
3145 	read_lock(&state->ss->policy_rwlock);
3146 
3147 	rc = -EINVAL;
3148 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3149 	if (!nlbl_ctx) {
3150 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3151 		       __func__, nlbl_sid);
3152 		goto out;
3153 	}
3154 	rc = -EINVAL;
3155 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3156 	if (!xfrm_ctx) {
3157 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3158 		       __func__, xfrm_sid);
3159 		goto out;
3160 	}
3161 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3162 	if (rc)
3163 		goto out;
3164 
3165 	/* at present NetLabel SIDs/labels really only carry MLS
3166 	 * information so if the MLS portion of the NetLabel SID
3167 	 * matches the MLS portion of the labeled XFRM SID/label
3168 	 * then pass along the XFRM SID as it is the most
3169 	 * expressive */
3170 	*peer_sid = xfrm_sid;
3171 out:
3172 	read_unlock(&state->ss->policy_rwlock);
3173 	return rc;
3174 }
3175 
get_classes_callback(void * k,void * d,void * args)3176 static int get_classes_callback(void *k, void *d, void *args)
3177 {
3178 	struct class_datum *datum = d;
3179 	char *name = k, **classes = args;
3180 	int value = datum->value - 1;
3181 
3182 	classes[value] = kstrdup(name, GFP_ATOMIC);
3183 	if (!classes[value])
3184 		return -ENOMEM;
3185 
3186 	return 0;
3187 }
3188 
security_get_classes(struct selinux_state * state,char *** classes,int * nclasses)3189 int security_get_classes(struct selinux_state *state,
3190 			 char ***classes, int *nclasses)
3191 {
3192 	struct policydb *policydb = &state->ss->policydb;
3193 	int rc;
3194 
3195 	if (!state->initialized) {
3196 		*nclasses = 0;
3197 		*classes = NULL;
3198 		return 0;
3199 	}
3200 
3201 	read_lock(&state->ss->policy_rwlock);
3202 
3203 	rc = -ENOMEM;
3204 	*nclasses = policydb->p_classes.nprim;
3205 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3206 	if (!*classes)
3207 		goto out;
3208 
3209 	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3210 			*classes);
3211 	if (rc) {
3212 		int i;
3213 		for (i = 0; i < *nclasses; i++)
3214 			kfree((*classes)[i]);
3215 		kfree(*classes);
3216 	}
3217 
3218 out:
3219 	read_unlock(&state->ss->policy_rwlock);
3220 	return rc;
3221 }
3222 
get_permissions_callback(void * k,void * d,void * args)3223 static int get_permissions_callback(void *k, void *d, void *args)
3224 {
3225 	struct perm_datum *datum = d;
3226 	char *name = k, **perms = args;
3227 	int value = datum->value - 1;
3228 
3229 	perms[value] = kstrdup(name, GFP_ATOMIC);
3230 	if (!perms[value])
3231 		return -ENOMEM;
3232 
3233 	return 0;
3234 }
3235 
security_get_permissions(struct selinux_state * state,char * class,char *** perms,int * nperms)3236 int security_get_permissions(struct selinux_state *state,
3237 			     char *class, char ***perms, int *nperms)
3238 {
3239 	struct policydb *policydb = &state->ss->policydb;
3240 	int rc, i;
3241 	struct class_datum *match;
3242 
3243 	read_lock(&state->ss->policy_rwlock);
3244 
3245 	rc = -EINVAL;
3246 	match = hashtab_search(policydb->p_classes.table, class);
3247 	if (!match) {
3248 		pr_err("SELinux: %s:  unrecognized class %s\n",
3249 			__func__, class);
3250 		goto out;
3251 	}
3252 
3253 	rc = -ENOMEM;
3254 	*nperms = match->permissions.nprim;
3255 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3256 	if (!*perms)
3257 		goto out;
3258 
3259 	if (match->comdatum) {
3260 		rc = hashtab_map(match->comdatum->permissions.table,
3261 				get_permissions_callback, *perms);
3262 		if (rc)
3263 			goto err;
3264 	}
3265 
3266 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3267 			*perms);
3268 	if (rc)
3269 		goto err;
3270 
3271 out:
3272 	read_unlock(&state->ss->policy_rwlock);
3273 	return rc;
3274 
3275 err:
3276 	read_unlock(&state->ss->policy_rwlock);
3277 	for (i = 0; i < *nperms; i++)
3278 		kfree((*perms)[i]);
3279 	kfree(*perms);
3280 	return rc;
3281 }
3282 
security_get_reject_unknown(struct selinux_state * state)3283 int security_get_reject_unknown(struct selinux_state *state)
3284 {
3285 	return state->ss->policydb.reject_unknown;
3286 }
3287 
security_get_allow_unknown(struct selinux_state * state)3288 int security_get_allow_unknown(struct selinux_state *state)
3289 {
3290 	return state->ss->policydb.allow_unknown;
3291 }
3292 
3293 /**
3294  * security_policycap_supported - Check for a specific policy capability
3295  * @req_cap: capability
3296  *
3297  * Description:
3298  * This function queries the currently loaded policy to see if it supports the
3299  * capability specified by @req_cap.  Returns true (1) if the capability is
3300  * supported, false (0) if it isn't supported.
3301  *
3302  */
security_policycap_supported(struct selinux_state * state,unsigned int req_cap)3303 int security_policycap_supported(struct selinux_state *state,
3304 				 unsigned int req_cap)
3305 {
3306 	struct policydb *policydb = &state->ss->policydb;
3307 	int rc;
3308 
3309 	read_lock(&state->ss->policy_rwlock);
3310 	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3311 	read_unlock(&state->ss->policy_rwlock);
3312 
3313 	return rc;
3314 }
3315 
3316 struct selinux_audit_rule {
3317 	u32 au_seqno;
3318 	struct context au_ctxt;
3319 };
3320 
selinux_audit_rule_free(void * vrule)3321 void selinux_audit_rule_free(void *vrule)
3322 {
3323 	struct selinux_audit_rule *rule = vrule;
3324 
3325 	if (rule) {
3326 		context_destroy(&rule->au_ctxt);
3327 		kfree(rule);
3328 	}
3329 }
3330 
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)3331 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3332 {
3333 	struct selinux_state *state = &selinux_state;
3334 	struct policydb *policydb = &state->ss->policydb;
3335 	struct selinux_audit_rule *tmprule;
3336 	struct role_datum *roledatum;
3337 	struct type_datum *typedatum;
3338 	struct user_datum *userdatum;
3339 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3340 	int rc = 0;
3341 
3342 	*rule = NULL;
3343 
3344 	if (!state->initialized)
3345 		return -EOPNOTSUPP;
3346 
3347 	switch (field) {
3348 	case AUDIT_SUBJ_USER:
3349 	case AUDIT_SUBJ_ROLE:
3350 	case AUDIT_SUBJ_TYPE:
3351 	case AUDIT_OBJ_USER:
3352 	case AUDIT_OBJ_ROLE:
3353 	case AUDIT_OBJ_TYPE:
3354 		/* only 'equals' and 'not equals' fit user, role, and type */
3355 		if (op != Audit_equal && op != Audit_not_equal)
3356 			return -EINVAL;
3357 		break;
3358 	case AUDIT_SUBJ_SEN:
3359 	case AUDIT_SUBJ_CLR:
3360 	case AUDIT_OBJ_LEV_LOW:
3361 	case AUDIT_OBJ_LEV_HIGH:
3362 		/* we do not allow a range, indicated by the presence of '-' */
3363 		if (strchr(rulestr, '-'))
3364 			return -EINVAL;
3365 		break;
3366 	default:
3367 		/* only the above fields are valid */
3368 		return -EINVAL;
3369 	}
3370 
3371 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3372 	if (!tmprule)
3373 		return -ENOMEM;
3374 
3375 	context_init(&tmprule->au_ctxt);
3376 
3377 	read_lock(&state->ss->policy_rwlock);
3378 
3379 	tmprule->au_seqno = state->ss->latest_granting;
3380 
3381 	switch (field) {
3382 	case AUDIT_SUBJ_USER:
3383 	case AUDIT_OBJ_USER:
3384 		rc = -EINVAL;
3385 		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3386 		if (!userdatum)
3387 			goto out;
3388 		tmprule->au_ctxt.user = userdatum->value;
3389 		break;
3390 	case AUDIT_SUBJ_ROLE:
3391 	case AUDIT_OBJ_ROLE:
3392 		rc = -EINVAL;
3393 		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3394 		if (!roledatum)
3395 			goto out;
3396 		tmprule->au_ctxt.role = roledatum->value;
3397 		break;
3398 	case AUDIT_SUBJ_TYPE:
3399 	case AUDIT_OBJ_TYPE:
3400 		rc = -EINVAL;
3401 		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3402 		if (!typedatum)
3403 			goto out;
3404 		tmprule->au_ctxt.type = typedatum->value;
3405 		break;
3406 	case AUDIT_SUBJ_SEN:
3407 	case AUDIT_SUBJ_CLR:
3408 	case AUDIT_OBJ_LEV_LOW:
3409 	case AUDIT_OBJ_LEV_HIGH:
3410 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3411 				     GFP_ATOMIC);
3412 		if (rc)
3413 			goto out;
3414 		break;
3415 	}
3416 	rc = 0;
3417 out:
3418 	read_unlock(&state->ss->policy_rwlock);
3419 
3420 	if (rc) {
3421 		selinux_audit_rule_free(tmprule);
3422 		tmprule = NULL;
3423 	}
3424 
3425 	*rule = tmprule;
3426 
3427 	return rc;
3428 }
3429 
3430 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3431 int selinux_audit_rule_known(struct audit_krule *rule)
3432 {
3433 	int i;
3434 
3435 	for (i = 0; i < rule->field_count; i++) {
3436 		struct audit_field *f = &rule->fields[i];
3437 		switch (f->type) {
3438 		case AUDIT_SUBJ_USER:
3439 		case AUDIT_SUBJ_ROLE:
3440 		case AUDIT_SUBJ_TYPE:
3441 		case AUDIT_SUBJ_SEN:
3442 		case AUDIT_SUBJ_CLR:
3443 		case AUDIT_OBJ_USER:
3444 		case AUDIT_OBJ_ROLE:
3445 		case AUDIT_OBJ_TYPE:
3446 		case AUDIT_OBJ_LEV_LOW:
3447 		case AUDIT_OBJ_LEV_HIGH:
3448 			return 1;
3449 		}
3450 	}
3451 
3452 	return 0;
3453 }
3454 
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule)3455 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3456 {
3457 	struct selinux_state *state = &selinux_state;
3458 	struct context *ctxt;
3459 	struct mls_level *level;
3460 	struct selinux_audit_rule *rule = vrule;
3461 	int match = 0;
3462 
3463 	if (unlikely(!rule)) {
3464 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3465 		return -ENOENT;
3466 	}
3467 
3468 	read_lock(&state->ss->policy_rwlock);
3469 
3470 	if (rule->au_seqno < state->ss->latest_granting) {
3471 		match = -ESTALE;
3472 		goto out;
3473 	}
3474 
3475 	ctxt = sidtab_search(state->ss->sidtab, sid);
3476 	if (unlikely(!ctxt)) {
3477 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3478 			  sid);
3479 		match = -ENOENT;
3480 		goto out;
3481 	}
3482 
3483 	/* a field/op pair that is not caught here will simply fall through
3484 	   without a match */
3485 	switch (field) {
3486 	case AUDIT_SUBJ_USER:
3487 	case AUDIT_OBJ_USER:
3488 		switch (op) {
3489 		case Audit_equal:
3490 			match = (ctxt->user == rule->au_ctxt.user);
3491 			break;
3492 		case Audit_not_equal:
3493 			match = (ctxt->user != rule->au_ctxt.user);
3494 			break;
3495 		}
3496 		break;
3497 	case AUDIT_SUBJ_ROLE:
3498 	case AUDIT_OBJ_ROLE:
3499 		switch (op) {
3500 		case Audit_equal:
3501 			match = (ctxt->role == rule->au_ctxt.role);
3502 			break;
3503 		case Audit_not_equal:
3504 			match = (ctxt->role != rule->au_ctxt.role);
3505 			break;
3506 		}
3507 		break;
3508 	case AUDIT_SUBJ_TYPE:
3509 	case AUDIT_OBJ_TYPE:
3510 		switch (op) {
3511 		case Audit_equal:
3512 			match = (ctxt->type == rule->au_ctxt.type);
3513 			break;
3514 		case Audit_not_equal:
3515 			match = (ctxt->type != rule->au_ctxt.type);
3516 			break;
3517 		}
3518 		break;
3519 	case AUDIT_SUBJ_SEN:
3520 	case AUDIT_SUBJ_CLR:
3521 	case AUDIT_OBJ_LEV_LOW:
3522 	case AUDIT_OBJ_LEV_HIGH:
3523 		level = ((field == AUDIT_SUBJ_SEN ||
3524 			  field == AUDIT_OBJ_LEV_LOW) ?
3525 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3526 		switch (op) {
3527 		case Audit_equal:
3528 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3529 					     level);
3530 			break;
3531 		case Audit_not_equal:
3532 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3533 					      level);
3534 			break;
3535 		case Audit_lt:
3536 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3537 					       level) &&
3538 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3539 					       level));
3540 			break;
3541 		case Audit_le:
3542 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3543 					      level);
3544 			break;
3545 		case Audit_gt:
3546 			match = (mls_level_dom(level,
3547 					      &rule->au_ctxt.range.level[0]) &&
3548 				 !mls_level_eq(level,
3549 					       &rule->au_ctxt.range.level[0]));
3550 			break;
3551 		case Audit_ge:
3552 			match = mls_level_dom(level,
3553 					      &rule->au_ctxt.range.level[0]);
3554 			break;
3555 		}
3556 	}
3557 
3558 out:
3559 	read_unlock(&state->ss->policy_rwlock);
3560 	return match;
3561 }
3562 
3563 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3564 
aurule_avc_callback(u32 event)3565 static int aurule_avc_callback(u32 event)
3566 {
3567 	int err = 0;
3568 
3569 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3570 		err = aurule_callback();
3571 	return err;
3572 }
3573 
aurule_init(void)3574 static int __init aurule_init(void)
3575 {
3576 	int err;
3577 
3578 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3579 	if (err)
3580 		panic("avc_add_callback() failed, error %d\n", err);
3581 
3582 	return err;
3583 }
3584 __initcall(aurule_init);
3585 
3586 #ifdef CONFIG_NETLABEL
3587 /**
3588  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3589  * @secattr: the NetLabel packet security attributes
3590  * @sid: the SELinux SID
3591  *
3592  * Description:
3593  * Attempt to cache the context in @ctx, which was derived from the packet in
3594  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3595  * already been initialized.
3596  *
3597  */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3598 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3599 				      u32 sid)
3600 {
3601 	u32 *sid_cache;
3602 
3603 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3604 	if (sid_cache == NULL)
3605 		return;
3606 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3607 	if (secattr->cache == NULL) {
3608 		kfree(sid_cache);
3609 		return;
3610 	}
3611 
3612 	*sid_cache = sid;
3613 	secattr->cache->free = kfree;
3614 	secattr->cache->data = sid_cache;
3615 	secattr->flags |= NETLBL_SECATTR_CACHE;
3616 }
3617 
3618 /**
3619  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3620  * @secattr: the NetLabel packet security attributes
3621  * @sid: the SELinux SID
3622  *
3623  * Description:
3624  * Convert the given NetLabel security attributes in @secattr into a
3625  * SELinux SID.  If the @secattr field does not contain a full SELinux
3626  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3627  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3628  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3629  * conversion for future lookups.  Returns zero on success, negative values on
3630  * failure.
3631  *
3632  */
security_netlbl_secattr_to_sid(struct selinux_state * state,struct netlbl_lsm_secattr * secattr,u32 * sid)3633 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3634 				   struct netlbl_lsm_secattr *secattr,
3635 				   u32 *sid)
3636 {
3637 	struct policydb *policydb = &state->ss->policydb;
3638 	struct sidtab *sidtab = state->ss->sidtab;
3639 	int rc;
3640 	struct context *ctx;
3641 	struct context ctx_new;
3642 
3643 	if (!state->initialized) {
3644 		*sid = SECSID_NULL;
3645 		return 0;
3646 	}
3647 
3648 	read_lock(&state->ss->policy_rwlock);
3649 
3650 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3651 		*sid = *(u32 *)secattr->cache->data;
3652 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3653 		*sid = secattr->attr.secid;
3654 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3655 		rc = -EIDRM;
3656 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3657 		if (ctx == NULL)
3658 			goto out;
3659 
3660 		context_init(&ctx_new);
3661 		ctx_new.user = ctx->user;
3662 		ctx_new.role = ctx->role;
3663 		ctx_new.type = ctx->type;
3664 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3665 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3666 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3667 			if (rc)
3668 				goto out;
3669 		}
3670 		rc = -EIDRM;
3671 		if (!mls_context_isvalid(policydb, &ctx_new))
3672 			goto out_free;
3673 
3674 		rc = context_struct_to_sid(state, &ctx_new, sid);
3675 		if (rc)
3676 			goto out_free;
3677 
3678 		security_netlbl_cache_add(secattr, *sid);
3679 
3680 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3681 	} else
3682 		*sid = SECSID_NULL;
3683 
3684 	read_unlock(&state->ss->policy_rwlock);
3685 	return 0;
3686 out_free:
3687 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3688 out:
3689 	read_unlock(&state->ss->policy_rwlock);
3690 	return rc;
3691 }
3692 
3693 /**
3694  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3695  * @sid: the SELinux SID
3696  * @secattr: the NetLabel packet security attributes
3697  *
3698  * Description:
3699  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3700  * Returns zero on success, negative values on failure.
3701  *
3702  */
security_netlbl_sid_to_secattr(struct selinux_state * state,u32 sid,struct netlbl_lsm_secattr * secattr)3703 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3704 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3705 {
3706 	struct policydb *policydb = &state->ss->policydb;
3707 	int rc;
3708 	struct context *ctx;
3709 
3710 	if (!state->initialized)
3711 		return 0;
3712 
3713 	read_lock(&state->ss->policy_rwlock);
3714 
3715 	rc = -ENOENT;
3716 	ctx = sidtab_search(state->ss->sidtab, sid);
3717 	if (ctx == NULL)
3718 		goto out;
3719 
3720 	rc = -ENOMEM;
3721 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3722 				  GFP_ATOMIC);
3723 	if (secattr->domain == NULL)
3724 		goto out;
3725 
3726 	secattr->attr.secid = sid;
3727 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3728 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3729 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3730 out:
3731 	read_unlock(&state->ss->policy_rwlock);
3732 	return rc;
3733 }
3734 #endif /* CONFIG_NETLABEL */
3735 
3736 /**
3737  * security_read_policy - read the policy.
3738  * @data: binary policy data
3739  * @len: length of data in bytes
3740  *
3741  */
security_read_policy(struct selinux_state * state,void ** data,size_t * len)3742 int security_read_policy(struct selinux_state *state,
3743 			 void **data, size_t *len)
3744 {
3745 	struct policydb *policydb = &state->ss->policydb;
3746 	int rc;
3747 	struct policy_file fp;
3748 
3749 	if (!state->initialized)
3750 		return -EINVAL;
3751 
3752 	*len = security_policydb_len(state);
3753 
3754 	*data = vmalloc_user(*len);
3755 	if (!*data)
3756 		return -ENOMEM;
3757 
3758 	fp.data = *data;
3759 	fp.len = *len;
3760 
3761 	read_lock(&state->ss->policy_rwlock);
3762 	rc = policydb_write(policydb, &fp);
3763 	read_unlock(&state->ss->policy_rwlock);
3764 
3765 	if (rc)
3766 		return rc;
3767 
3768 	*len = (unsigned long)fp.data - (unsigned long)*data;
3769 	return 0;
3770 
3771 }
3772