1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Implementation of the security services.
4 *
5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 * Support for enhanced MLS infrastructure.
11 * Support for context based audit filters.
12 *
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 *
15 * Added conditional policy language extensions
16 *
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 *
19 * Added support for NetLabel
20 * Added support for the policy capability bitmap
21 *
22 * Updated: Chad Sellers <csellers@tresys.com>
23 *
24 * Added validation of kernel classes and permissions
25 *
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 *
28 * Added support for bounds domain and audit messaged on masked permissions
29 *
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 *
32 * Added support for runtime switching of the policy type
33 *
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39 */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/mutex.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlabel.h>
52
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68
69 /* Policy capability names */
70 const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
71 "network_peer_controls",
72 "open_perms",
73 "extended_socket_class",
74 "always_check_network",
75 "cgroup_seclabel",
76 "nnp_nosuid_transition"
77 };
78
79 static struct selinux_ss selinux_ss;
80
selinux_ss_init(struct selinux_ss ** ss)81 void selinux_ss_init(struct selinux_ss **ss)
82 {
83 rwlock_init(&selinux_ss.policy_rwlock);
84 mutex_init(&selinux_ss.status_lock);
85 *ss = &selinux_ss;
86 }
87
88 /* Forward declaration. */
89 static int context_struct_to_string(struct policydb *policydb,
90 struct context *context,
91 char **scontext,
92 u32 *scontext_len);
93
94 static void context_struct_compute_av(struct policydb *policydb,
95 struct context *scontext,
96 struct context *tcontext,
97 u16 tclass,
98 struct av_decision *avd,
99 struct extended_perms *xperms);
100
selinux_set_mapping(struct policydb * pol,struct security_class_mapping * map,struct selinux_map * out_map)101 static int selinux_set_mapping(struct policydb *pol,
102 struct security_class_mapping *map,
103 struct selinux_map *out_map)
104 {
105 u16 i, j;
106 unsigned k;
107 bool print_unknown_handle = false;
108
109 /* Find number of classes in the input mapping */
110 if (!map)
111 return -EINVAL;
112 i = 0;
113 while (map[i].name)
114 i++;
115
116 /* Allocate space for the class records, plus one for class zero */
117 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
118 if (!out_map->mapping)
119 return -ENOMEM;
120
121 /* Store the raw class and permission values */
122 j = 0;
123 while (map[j].name) {
124 struct security_class_mapping *p_in = map + (j++);
125 struct selinux_mapping *p_out = out_map->mapping + j;
126
127 /* An empty class string skips ahead */
128 if (!strcmp(p_in->name, "")) {
129 p_out->num_perms = 0;
130 continue;
131 }
132
133 p_out->value = string_to_security_class(pol, p_in->name);
134 if (!p_out->value) {
135 pr_info("SELinux: Class %s not defined in policy.\n",
136 p_in->name);
137 if (pol->reject_unknown)
138 goto err;
139 p_out->num_perms = 0;
140 print_unknown_handle = true;
141 continue;
142 }
143
144 k = 0;
145 while (p_in->perms[k]) {
146 /* An empty permission string skips ahead */
147 if (!*p_in->perms[k]) {
148 k++;
149 continue;
150 }
151 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
152 p_in->perms[k]);
153 if (!p_out->perms[k]) {
154 pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
155 p_in->perms[k], p_in->name);
156 if (pol->reject_unknown)
157 goto err;
158 print_unknown_handle = true;
159 }
160
161 k++;
162 }
163 p_out->num_perms = k;
164 }
165
166 if (print_unknown_handle)
167 pr_info("SELinux: the above unknown classes and permissions will be %s\n",
168 pol->allow_unknown ? "allowed" : "denied");
169
170 out_map->size = i;
171 return 0;
172 err:
173 kfree(out_map->mapping);
174 out_map->mapping = NULL;
175 return -EINVAL;
176 }
177
178 /*
179 * Get real, policy values from mapped values
180 */
181
unmap_class(struct selinux_map * map,u16 tclass)182 static u16 unmap_class(struct selinux_map *map, u16 tclass)
183 {
184 if (tclass < map->size)
185 return map->mapping[tclass].value;
186
187 return tclass;
188 }
189
190 /*
191 * Get kernel value for class from its policy value
192 */
map_class(struct selinux_map * map,u16 pol_value)193 static u16 map_class(struct selinux_map *map, u16 pol_value)
194 {
195 u16 i;
196
197 for (i = 1; i < map->size; i++) {
198 if (map->mapping[i].value == pol_value)
199 return i;
200 }
201
202 return SECCLASS_NULL;
203 }
204
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)205 static void map_decision(struct selinux_map *map,
206 u16 tclass, struct av_decision *avd,
207 int allow_unknown)
208 {
209 if (tclass < map->size) {
210 struct selinux_mapping *mapping = &map->mapping[tclass];
211 unsigned int i, n = mapping->num_perms;
212 u32 result;
213
214 for (i = 0, result = 0; i < n; i++) {
215 if (avd->allowed & mapping->perms[i])
216 result |= 1<<i;
217 if (allow_unknown && !mapping->perms[i])
218 result |= 1<<i;
219 }
220 avd->allowed = result;
221
222 for (i = 0, result = 0; i < n; i++)
223 if (avd->auditallow & mapping->perms[i])
224 result |= 1<<i;
225 avd->auditallow = result;
226
227 for (i = 0, result = 0; i < n; i++) {
228 if (avd->auditdeny & mapping->perms[i])
229 result |= 1<<i;
230 if (!allow_unknown && !mapping->perms[i])
231 result |= 1<<i;
232 }
233 /*
234 * In case the kernel has a bug and requests a permission
235 * between num_perms and the maximum permission number, we
236 * should audit that denial
237 */
238 for (; i < (sizeof(u32)*8); i++)
239 result |= 1<<i;
240 avd->auditdeny = result;
241 }
242 }
243
security_mls_enabled(struct selinux_state * state)244 int security_mls_enabled(struct selinux_state *state)
245 {
246 struct policydb *p = &state->ss->policydb;
247
248 return p->mls_enabled;
249 }
250
251 /*
252 * Return the boolean value of a constraint expression
253 * when it is applied to the specified source and target
254 * security contexts.
255 *
256 * xcontext is a special beast... It is used by the validatetrans rules
257 * only. For these rules, scontext is the context before the transition,
258 * tcontext is the context after the transition, and xcontext is the context
259 * of the process performing the transition. All other callers of
260 * constraint_expr_eval should pass in NULL for xcontext.
261 */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)262 static int constraint_expr_eval(struct policydb *policydb,
263 struct context *scontext,
264 struct context *tcontext,
265 struct context *xcontext,
266 struct constraint_expr *cexpr)
267 {
268 u32 val1, val2;
269 struct context *c;
270 struct role_datum *r1, *r2;
271 struct mls_level *l1, *l2;
272 struct constraint_expr *e;
273 int s[CEXPR_MAXDEPTH];
274 int sp = -1;
275
276 for (e = cexpr; e; e = e->next) {
277 switch (e->expr_type) {
278 case CEXPR_NOT:
279 BUG_ON(sp < 0);
280 s[sp] = !s[sp];
281 break;
282 case CEXPR_AND:
283 BUG_ON(sp < 1);
284 sp--;
285 s[sp] &= s[sp + 1];
286 break;
287 case CEXPR_OR:
288 BUG_ON(sp < 1);
289 sp--;
290 s[sp] |= s[sp + 1];
291 break;
292 case CEXPR_ATTR:
293 if (sp == (CEXPR_MAXDEPTH - 1))
294 return 0;
295 switch (e->attr) {
296 case CEXPR_USER:
297 val1 = scontext->user;
298 val2 = tcontext->user;
299 break;
300 case CEXPR_TYPE:
301 val1 = scontext->type;
302 val2 = tcontext->type;
303 break;
304 case CEXPR_ROLE:
305 val1 = scontext->role;
306 val2 = tcontext->role;
307 r1 = policydb->role_val_to_struct[val1 - 1];
308 r2 = policydb->role_val_to_struct[val2 - 1];
309 switch (e->op) {
310 case CEXPR_DOM:
311 s[++sp] = ebitmap_get_bit(&r1->dominates,
312 val2 - 1);
313 continue;
314 case CEXPR_DOMBY:
315 s[++sp] = ebitmap_get_bit(&r2->dominates,
316 val1 - 1);
317 continue;
318 case CEXPR_INCOMP:
319 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
320 val2 - 1) &&
321 !ebitmap_get_bit(&r2->dominates,
322 val1 - 1));
323 continue;
324 default:
325 break;
326 }
327 break;
328 case CEXPR_L1L2:
329 l1 = &(scontext->range.level[0]);
330 l2 = &(tcontext->range.level[0]);
331 goto mls_ops;
332 case CEXPR_L1H2:
333 l1 = &(scontext->range.level[0]);
334 l2 = &(tcontext->range.level[1]);
335 goto mls_ops;
336 case CEXPR_H1L2:
337 l1 = &(scontext->range.level[1]);
338 l2 = &(tcontext->range.level[0]);
339 goto mls_ops;
340 case CEXPR_H1H2:
341 l1 = &(scontext->range.level[1]);
342 l2 = &(tcontext->range.level[1]);
343 goto mls_ops;
344 case CEXPR_L1H1:
345 l1 = &(scontext->range.level[0]);
346 l2 = &(scontext->range.level[1]);
347 goto mls_ops;
348 case CEXPR_L2H2:
349 l1 = &(tcontext->range.level[0]);
350 l2 = &(tcontext->range.level[1]);
351 goto mls_ops;
352 mls_ops:
353 switch (e->op) {
354 case CEXPR_EQ:
355 s[++sp] = mls_level_eq(l1, l2);
356 continue;
357 case CEXPR_NEQ:
358 s[++sp] = !mls_level_eq(l1, l2);
359 continue;
360 case CEXPR_DOM:
361 s[++sp] = mls_level_dom(l1, l2);
362 continue;
363 case CEXPR_DOMBY:
364 s[++sp] = mls_level_dom(l2, l1);
365 continue;
366 case CEXPR_INCOMP:
367 s[++sp] = mls_level_incomp(l2, l1);
368 continue;
369 default:
370 BUG();
371 return 0;
372 }
373 break;
374 default:
375 BUG();
376 return 0;
377 }
378
379 switch (e->op) {
380 case CEXPR_EQ:
381 s[++sp] = (val1 == val2);
382 break;
383 case CEXPR_NEQ:
384 s[++sp] = (val1 != val2);
385 break;
386 default:
387 BUG();
388 return 0;
389 }
390 break;
391 case CEXPR_NAMES:
392 if (sp == (CEXPR_MAXDEPTH-1))
393 return 0;
394 c = scontext;
395 if (e->attr & CEXPR_TARGET)
396 c = tcontext;
397 else if (e->attr & CEXPR_XTARGET) {
398 c = xcontext;
399 if (!c) {
400 BUG();
401 return 0;
402 }
403 }
404 if (e->attr & CEXPR_USER)
405 val1 = c->user;
406 else if (e->attr & CEXPR_ROLE)
407 val1 = c->role;
408 else if (e->attr & CEXPR_TYPE)
409 val1 = c->type;
410 else {
411 BUG();
412 return 0;
413 }
414
415 switch (e->op) {
416 case CEXPR_EQ:
417 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
418 break;
419 case CEXPR_NEQ:
420 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
421 break;
422 default:
423 BUG();
424 return 0;
425 }
426 break;
427 default:
428 BUG();
429 return 0;
430 }
431 }
432
433 BUG_ON(sp != 0);
434 return s[0];
435 }
436
437 /*
438 * security_dump_masked_av - dumps masked permissions during
439 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
440 */
dump_masked_av_helper(void * k,void * d,void * args)441 static int dump_masked_av_helper(void *k, void *d, void *args)
442 {
443 struct perm_datum *pdatum = d;
444 char **permission_names = args;
445
446 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
447
448 permission_names[pdatum->value - 1] = (char *)k;
449
450 return 0;
451 }
452
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)453 static void security_dump_masked_av(struct policydb *policydb,
454 struct context *scontext,
455 struct context *tcontext,
456 u16 tclass,
457 u32 permissions,
458 const char *reason)
459 {
460 struct common_datum *common_dat;
461 struct class_datum *tclass_dat;
462 struct audit_buffer *ab;
463 char *tclass_name;
464 char *scontext_name = NULL;
465 char *tcontext_name = NULL;
466 char *permission_names[32];
467 int index;
468 u32 length;
469 bool need_comma = false;
470
471 if (!permissions)
472 return;
473
474 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
475 tclass_dat = policydb->class_val_to_struct[tclass - 1];
476 common_dat = tclass_dat->comdatum;
477
478 /* init permission_names */
479 if (common_dat &&
480 hashtab_map(common_dat->permissions.table,
481 dump_masked_av_helper, permission_names) < 0)
482 goto out;
483
484 if (hashtab_map(tclass_dat->permissions.table,
485 dump_masked_av_helper, permission_names) < 0)
486 goto out;
487
488 /* get scontext/tcontext in text form */
489 if (context_struct_to_string(policydb, scontext,
490 &scontext_name, &length) < 0)
491 goto out;
492
493 if (context_struct_to_string(policydb, tcontext,
494 &tcontext_name, &length) < 0)
495 goto out;
496
497 /* audit a message */
498 ab = audit_log_start(audit_context(),
499 GFP_ATOMIC, AUDIT_SELINUX_ERR);
500 if (!ab)
501 goto out;
502
503 audit_log_format(ab, "op=security_compute_av reason=%s "
504 "scontext=%s tcontext=%s tclass=%s perms=",
505 reason, scontext_name, tcontext_name, tclass_name);
506
507 for (index = 0; index < 32; index++) {
508 u32 mask = (1 << index);
509
510 if ((mask & permissions) == 0)
511 continue;
512
513 audit_log_format(ab, "%s%s",
514 need_comma ? "," : "",
515 permission_names[index]
516 ? permission_names[index] : "????");
517 need_comma = true;
518 }
519 audit_log_end(ab);
520 out:
521 /* release scontext/tcontext */
522 kfree(tcontext_name);
523 kfree(scontext_name);
524
525 return;
526 }
527
528 /*
529 * security_boundary_permission - drops violated permissions
530 * on boundary constraint.
531 */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)532 static void type_attribute_bounds_av(struct policydb *policydb,
533 struct context *scontext,
534 struct context *tcontext,
535 u16 tclass,
536 struct av_decision *avd)
537 {
538 struct context lo_scontext;
539 struct context lo_tcontext, *tcontextp = tcontext;
540 struct av_decision lo_avd;
541 struct type_datum *source;
542 struct type_datum *target;
543 u32 masked = 0;
544
545 source = policydb->type_val_to_struct[scontext->type - 1];
546 BUG_ON(!source);
547
548 if (!source->bounds)
549 return;
550
551 target = policydb->type_val_to_struct[tcontext->type - 1];
552 BUG_ON(!target);
553
554 memset(&lo_avd, 0, sizeof(lo_avd));
555
556 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 lo_scontext.type = source->bounds;
558
559 if (target->bounds) {
560 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 lo_tcontext.type = target->bounds;
562 tcontextp = &lo_tcontext;
563 }
564
565 context_struct_compute_av(policydb, &lo_scontext,
566 tcontextp,
567 tclass,
568 &lo_avd,
569 NULL);
570
571 masked = ~lo_avd.allowed & avd->allowed;
572
573 if (likely(!masked))
574 return; /* no masked permission */
575
576 /* mask violated permissions */
577 avd->allowed &= ~masked;
578
579 /* audit masked permissions */
580 security_dump_masked_av(policydb, scontext, tcontext,
581 tclass, masked, "bounds");
582 }
583
584 /*
585 * flag which drivers have permissions
586 * only looking for ioctl based extended permssions
587 */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)588 void services_compute_xperms_drivers(
589 struct extended_perms *xperms,
590 struct avtab_node *node)
591 {
592 unsigned int i;
593
594 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
595 /* if one or more driver has all permissions allowed */
596 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
599 /* if allowing permissions within a driver */
600 security_xperm_set(xperms->drivers.p,
601 node->datum.u.xperms->driver);
602 }
603
604 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
605 if (node->key.specified & AVTAB_XPERMS_ALLOWED)
606 xperms->len = 1;
607 }
608
609 /*
610 * Compute access vectors and extended permissions based on a context
611 * structure pair for the permissions in a particular class.
612 */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)613 static void context_struct_compute_av(struct policydb *policydb,
614 struct context *scontext,
615 struct context *tcontext,
616 u16 tclass,
617 struct av_decision *avd,
618 struct extended_perms *xperms)
619 {
620 struct constraint_node *constraint;
621 struct role_allow *ra;
622 struct avtab_key avkey;
623 struct avtab_node *node;
624 struct class_datum *tclass_datum;
625 struct ebitmap *sattr, *tattr;
626 struct ebitmap_node *snode, *tnode;
627 unsigned int i, j;
628
629 avd->allowed = 0;
630 avd->auditallow = 0;
631 avd->auditdeny = 0xffffffff;
632 if (xperms) {
633 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
634 xperms->len = 0;
635 }
636
637 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
638 if (printk_ratelimit())
639 pr_warn("SELinux: Invalid class %hu\n", tclass);
640 return;
641 }
642
643 tclass_datum = policydb->class_val_to_struct[tclass - 1];
644
645 /*
646 * If a specific type enforcement rule was defined for
647 * this permission check, then use it.
648 */
649 avkey.target_class = tclass;
650 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
651 sattr = &policydb->type_attr_map_array[scontext->type - 1];
652 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
653 ebitmap_for_each_positive_bit(sattr, snode, i) {
654 ebitmap_for_each_positive_bit(tattr, tnode, j) {
655 avkey.source_type = i + 1;
656 avkey.target_type = j + 1;
657 for (node = avtab_search_node(&policydb->te_avtab,
658 &avkey);
659 node;
660 node = avtab_search_node_next(node, avkey.specified)) {
661 if (node->key.specified == AVTAB_ALLOWED)
662 avd->allowed |= node->datum.u.data;
663 else if (node->key.specified == AVTAB_AUDITALLOW)
664 avd->auditallow |= node->datum.u.data;
665 else if (node->key.specified == AVTAB_AUDITDENY)
666 avd->auditdeny &= node->datum.u.data;
667 else if (xperms && (node->key.specified & AVTAB_XPERMS))
668 services_compute_xperms_drivers(xperms, node);
669 }
670
671 /* Check conditional av table for additional permissions */
672 cond_compute_av(&policydb->te_cond_avtab, &avkey,
673 avd, xperms);
674
675 }
676 }
677
678 /*
679 * Remove any permissions prohibited by a constraint (this includes
680 * the MLS policy).
681 */
682 constraint = tclass_datum->constraints;
683 while (constraint) {
684 if ((constraint->permissions & (avd->allowed)) &&
685 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
686 constraint->expr)) {
687 avd->allowed &= ~(constraint->permissions);
688 }
689 constraint = constraint->next;
690 }
691
692 /*
693 * If checking process transition permission and the
694 * role is changing, then check the (current_role, new_role)
695 * pair.
696 */
697 if (tclass == policydb->process_class &&
698 (avd->allowed & policydb->process_trans_perms) &&
699 scontext->role != tcontext->role) {
700 for (ra = policydb->role_allow; ra; ra = ra->next) {
701 if (scontext->role == ra->role &&
702 tcontext->role == ra->new_role)
703 break;
704 }
705 if (!ra)
706 avd->allowed &= ~policydb->process_trans_perms;
707 }
708
709 /*
710 * If the given source and target types have boundary
711 * constraint, lazy checks have to mask any violated
712 * permission and notice it to userspace via audit.
713 */
714 type_attribute_bounds_av(policydb, scontext, tcontext,
715 tclass, avd);
716 }
717
security_validtrans_handle_fail(struct selinux_state * state,struct context * ocontext,struct context * ncontext,struct context * tcontext,u16 tclass)718 static int security_validtrans_handle_fail(struct selinux_state *state,
719 struct context *ocontext,
720 struct context *ncontext,
721 struct context *tcontext,
722 u16 tclass)
723 {
724 struct policydb *p = &state->ss->policydb;
725 char *o = NULL, *n = NULL, *t = NULL;
726 u32 olen, nlen, tlen;
727
728 if (context_struct_to_string(p, ocontext, &o, &olen))
729 goto out;
730 if (context_struct_to_string(p, ncontext, &n, &nlen))
731 goto out;
732 if (context_struct_to_string(p, tcontext, &t, &tlen))
733 goto out;
734 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
735 "op=security_validate_transition seresult=denied"
736 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
737 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
738 out:
739 kfree(o);
740 kfree(n);
741 kfree(t);
742
743 if (!enforcing_enabled(state))
744 return 0;
745 return -EPERM;
746 }
747
security_compute_validatetrans(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)748 static int security_compute_validatetrans(struct selinux_state *state,
749 u32 oldsid, u32 newsid, u32 tasksid,
750 u16 orig_tclass, bool user)
751 {
752 struct policydb *policydb;
753 struct sidtab *sidtab;
754 struct context *ocontext;
755 struct context *ncontext;
756 struct context *tcontext;
757 struct class_datum *tclass_datum;
758 struct constraint_node *constraint;
759 u16 tclass;
760 int rc = 0;
761
762
763 if (!state->initialized)
764 return 0;
765
766 read_lock(&state->ss->policy_rwlock);
767
768 policydb = &state->ss->policydb;
769 sidtab = state->ss->sidtab;
770
771 if (!user)
772 tclass = unmap_class(&state->ss->map, orig_tclass);
773 else
774 tclass = orig_tclass;
775
776 if (!tclass || tclass > policydb->p_classes.nprim) {
777 rc = -EINVAL;
778 goto out;
779 }
780 tclass_datum = policydb->class_val_to_struct[tclass - 1];
781
782 ocontext = sidtab_search(sidtab, oldsid);
783 if (!ocontext) {
784 pr_err("SELinux: %s: unrecognized SID %d\n",
785 __func__, oldsid);
786 rc = -EINVAL;
787 goto out;
788 }
789
790 ncontext = sidtab_search(sidtab, newsid);
791 if (!ncontext) {
792 pr_err("SELinux: %s: unrecognized SID %d\n",
793 __func__, newsid);
794 rc = -EINVAL;
795 goto out;
796 }
797
798 tcontext = sidtab_search(sidtab, tasksid);
799 if (!tcontext) {
800 pr_err("SELinux: %s: unrecognized SID %d\n",
801 __func__, tasksid);
802 rc = -EINVAL;
803 goto out;
804 }
805
806 constraint = tclass_datum->validatetrans;
807 while (constraint) {
808 if (!constraint_expr_eval(policydb, ocontext, ncontext,
809 tcontext, constraint->expr)) {
810 if (user)
811 rc = -EPERM;
812 else
813 rc = security_validtrans_handle_fail(state,
814 ocontext,
815 ncontext,
816 tcontext,
817 tclass);
818 goto out;
819 }
820 constraint = constraint->next;
821 }
822
823 out:
824 read_unlock(&state->ss->policy_rwlock);
825 return rc;
826 }
827
security_validate_transition_user(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)828 int security_validate_transition_user(struct selinux_state *state,
829 u32 oldsid, u32 newsid, u32 tasksid,
830 u16 tclass)
831 {
832 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
833 tclass, true);
834 }
835
security_validate_transition(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)836 int security_validate_transition(struct selinux_state *state,
837 u32 oldsid, u32 newsid, u32 tasksid,
838 u16 orig_tclass)
839 {
840 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
841 orig_tclass, false);
842 }
843
844 /*
845 * security_bounded_transition - check whether the given
846 * transition is directed to bounded, or not.
847 * It returns 0, if @newsid is bounded by @oldsid.
848 * Otherwise, it returns error code.
849 *
850 * @oldsid : current security identifier
851 * @newsid : destinated security identifier
852 */
security_bounded_transition(struct selinux_state * state,u32 old_sid,u32 new_sid)853 int security_bounded_transition(struct selinux_state *state,
854 u32 old_sid, u32 new_sid)
855 {
856 struct policydb *policydb;
857 struct sidtab *sidtab;
858 struct context *old_context, *new_context;
859 struct type_datum *type;
860 int index;
861 int rc;
862
863 if (!state->initialized)
864 return 0;
865
866 read_lock(&state->ss->policy_rwlock);
867
868 policydb = &state->ss->policydb;
869 sidtab = state->ss->sidtab;
870
871 rc = -EINVAL;
872 old_context = sidtab_search(sidtab, old_sid);
873 if (!old_context) {
874 pr_err("SELinux: %s: unrecognized SID %u\n",
875 __func__, old_sid);
876 goto out;
877 }
878
879 rc = -EINVAL;
880 new_context = sidtab_search(sidtab, new_sid);
881 if (!new_context) {
882 pr_err("SELinux: %s: unrecognized SID %u\n",
883 __func__, new_sid);
884 goto out;
885 }
886
887 rc = 0;
888 /* type/domain unchanged */
889 if (old_context->type == new_context->type)
890 goto out;
891
892 index = new_context->type;
893 while (true) {
894 type = policydb->type_val_to_struct[index - 1];
895 BUG_ON(!type);
896
897 /* not bounded anymore */
898 rc = -EPERM;
899 if (!type->bounds)
900 break;
901
902 /* @newsid is bounded by @oldsid */
903 rc = 0;
904 if (type->bounds == old_context->type)
905 break;
906
907 index = type->bounds;
908 }
909
910 if (rc) {
911 char *old_name = NULL;
912 char *new_name = NULL;
913 u32 length;
914
915 if (!context_struct_to_string(policydb, old_context,
916 &old_name, &length) &&
917 !context_struct_to_string(policydb, new_context,
918 &new_name, &length)) {
919 audit_log(audit_context(),
920 GFP_ATOMIC, AUDIT_SELINUX_ERR,
921 "op=security_bounded_transition "
922 "seresult=denied "
923 "oldcontext=%s newcontext=%s",
924 old_name, new_name);
925 }
926 kfree(new_name);
927 kfree(old_name);
928 }
929 out:
930 read_unlock(&state->ss->policy_rwlock);
931
932 return rc;
933 }
934
avd_init(struct selinux_state * state,struct av_decision * avd)935 static void avd_init(struct selinux_state *state, struct av_decision *avd)
936 {
937 avd->allowed = 0;
938 avd->auditallow = 0;
939 avd->auditdeny = 0xffffffff;
940 avd->seqno = state->ss->latest_granting;
941 avd->flags = 0;
942 }
943
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)944 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
945 struct avtab_node *node)
946 {
947 unsigned int i;
948
949 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
950 if (xpermd->driver != node->datum.u.xperms->driver)
951 return;
952 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
953 if (!security_xperm_test(node->datum.u.xperms->perms.p,
954 xpermd->driver))
955 return;
956 } else {
957 BUG();
958 }
959
960 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
961 xpermd->used |= XPERMS_ALLOWED;
962 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
963 memset(xpermd->allowed->p, 0xff,
964 sizeof(xpermd->allowed->p));
965 }
966 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
967 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
968 xpermd->allowed->p[i] |=
969 node->datum.u.xperms->perms.p[i];
970 }
971 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
972 xpermd->used |= XPERMS_AUDITALLOW;
973 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
974 memset(xpermd->auditallow->p, 0xff,
975 sizeof(xpermd->auditallow->p));
976 }
977 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
978 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
979 xpermd->auditallow->p[i] |=
980 node->datum.u.xperms->perms.p[i];
981 }
982 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
983 xpermd->used |= XPERMS_DONTAUDIT;
984 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
985 memset(xpermd->dontaudit->p, 0xff,
986 sizeof(xpermd->dontaudit->p));
987 }
988 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
989 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
990 xpermd->dontaudit->p[i] |=
991 node->datum.u.xperms->perms.p[i];
992 }
993 } else {
994 BUG();
995 }
996 }
997
security_compute_xperms_decision(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)998 void security_compute_xperms_decision(struct selinux_state *state,
999 u32 ssid,
1000 u32 tsid,
1001 u16 orig_tclass,
1002 u8 driver,
1003 struct extended_perms_decision *xpermd)
1004 {
1005 struct policydb *policydb;
1006 struct sidtab *sidtab;
1007 u16 tclass;
1008 struct context *scontext, *tcontext;
1009 struct avtab_key avkey;
1010 struct avtab_node *node;
1011 struct ebitmap *sattr, *tattr;
1012 struct ebitmap_node *snode, *tnode;
1013 unsigned int i, j;
1014
1015 xpermd->driver = driver;
1016 xpermd->used = 0;
1017 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1018 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1019 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1020
1021 read_lock(&state->ss->policy_rwlock);
1022 if (!state->initialized)
1023 goto allow;
1024
1025 policydb = &state->ss->policydb;
1026 sidtab = state->ss->sidtab;
1027
1028 scontext = sidtab_search(sidtab, ssid);
1029 if (!scontext) {
1030 pr_err("SELinux: %s: unrecognized SID %d\n",
1031 __func__, ssid);
1032 goto out;
1033 }
1034
1035 tcontext = sidtab_search(sidtab, tsid);
1036 if (!tcontext) {
1037 pr_err("SELinux: %s: unrecognized SID %d\n",
1038 __func__, tsid);
1039 goto out;
1040 }
1041
1042 tclass = unmap_class(&state->ss->map, orig_tclass);
1043 if (unlikely(orig_tclass && !tclass)) {
1044 if (policydb->allow_unknown)
1045 goto allow;
1046 goto out;
1047 }
1048
1049
1050 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1051 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1052 goto out;
1053 }
1054
1055 avkey.target_class = tclass;
1056 avkey.specified = AVTAB_XPERMS;
1057 sattr = &policydb->type_attr_map_array[scontext->type - 1];
1058 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1059 ebitmap_for_each_positive_bit(sattr, snode, i) {
1060 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1061 avkey.source_type = i + 1;
1062 avkey.target_type = j + 1;
1063 for (node = avtab_search_node(&policydb->te_avtab,
1064 &avkey);
1065 node;
1066 node = avtab_search_node_next(node, avkey.specified))
1067 services_compute_xperms_decision(xpermd, node);
1068
1069 cond_compute_xperms(&policydb->te_cond_avtab,
1070 &avkey, xpermd);
1071 }
1072 }
1073 out:
1074 read_unlock(&state->ss->policy_rwlock);
1075 return;
1076 allow:
1077 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1078 goto out;
1079 }
1080
1081 /**
1082 * security_compute_av - Compute access vector decisions.
1083 * @ssid: source security identifier
1084 * @tsid: target security identifier
1085 * @tclass: target security class
1086 * @avd: access vector decisions
1087 * @xperms: extended permissions
1088 *
1089 * Compute a set of access vector decisions based on the
1090 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1091 */
security_compute_av(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1092 void security_compute_av(struct selinux_state *state,
1093 u32 ssid,
1094 u32 tsid,
1095 u16 orig_tclass,
1096 struct av_decision *avd,
1097 struct extended_perms *xperms)
1098 {
1099 struct policydb *policydb;
1100 struct sidtab *sidtab;
1101 u16 tclass;
1102 struct context *scontext = NULL, *tcontext = NULL;
1103
1104 read_lock(&state->ss->policy_rwlock);
1105 avd_init(state, avd);
1106 xperms->len = 0;
1107 if (!state->initialized)
1108 goto allow;
1109
1110 policydb = &state->ss->policydb;
1111 sidtab = state->ss->sidtab;
1112
1113 scontext = sidtab_search(sidtab, ssid);
1114 if (!scontext) {
1115 pr_err("SELinux: %s: unrecognized SID %d\n",
1116 __func__, ssid);
1117 goto out;
1118 }
1119
1120 /* permissive domain? */
1121 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1122 avd->flags |= AVD_FLAGS_PERMISSIVE;
1123
1124 tcontext = sidtab_search(sidtab, tsid);
1125 if (!tcontext) {
1126 pr_err("SELinux: %s: unrecognized SID %d\n",
1127 __func__, tsid);
1128 goto out;
1129 }
1130
1131 tclass = unmap_class(&state->ss->map, orig_tclass);
1132 if (unlikely(orig_tclass && !tclass)) {
1133 if (policydb->allow_unknown)
1134 goto allow;
1135 goto out;
1136 }
1137 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1138 xperms);
1139 map_decision(&state->ss->map, orig_tclass, avd,
1140 policydb->allow_unknown);
1141 out:
1142 read_unlock(&state->ss->policy_rwlock);
1143 return;
1144 allow:
1145 avd->allowed = 0xffffffff;
1146 goto out;
1147 }
1148
security_compute_av_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1149 void security_compute_av_user(struct selinux_state *state,
1150 u32 ssid,
1151 u32 tsid,
1152 u16 tclass,
1153 struct av_decision *avd)
1154 {
1155 struct policydb *policydb;
1156 struct sidtab *sidtab;
1157 struct context *scontext = NULL, *tcontext = NULL;
1158
1159 read_lock(&state->ss->policy_rwlock);
1160 avd_init(state, avd);
1161 if (!state->initialized)
1162 goto allow;
1163
1164 policydb = &state->ss->policydb;
1165 sidtab = state->ss->sidtab;
1166
1167 scontext = sidtab_search(sidtab, ssid);
1168 if (!scontext) {
1169 pr_err("SELinux: %s: unrecognized SID %d\n",
1170 __func__, ssid);
1171 goto out;
1172 }
1173
1174 /* permissive domain? */
1175 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1176 avd->flags |= AVD_FLAGS_PERMISSIVE;
1177
1178 tcontext = sidtab_search(sidtab, tsid);
1179 if (!tcontext) {
1180 pr_err("SELinux: %s: unrecognized SID %d\n",
1181 __func__, tsid);
1182 goto out;
1183 }
1184
1185 if (unlikely(!tclass)) {
1186 if (policydb->allow_unknown)
1187 goto allow;
1188 goto out;
1189 }
1190
1191 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1192 NULL);
1193 out:
1194 read_unlock(&state->ss->policy_rwlock);
1195 return;
1196 allow:
1197 avd->allowed = 0xffffffff;
1198 goto out;
1199 }
1200
1201 /*
1202 * Write the security context string representation of
1203 * the context structure `context' into a dynamically
1204 * allocated string of the correct size. Set `*scontext'
1205 * to point to this string and set `*scontext_len' to
1206 * the length of the string.
1207 */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1208 static int context_struct_to_string(struct policydb *p,
1209 struct context *context,
1210 char **scontext, u32 *scontext_len)
1211 {
1212 char *scontextp;
1213
1214 if (scontext)
1215 *scontext = NULL;
1216 *scontext_len = 0;
1217
1218 if (context->len) {
1219 *scontext_len = context->len;
1220 if (scontext) {
1221 *scontext = kstrdup(context->str, GFP_ATOMIC);
1222 if (!(*scontext))
1223 return -ENOMEM;
1224 }
1225 return 0;
1226 }
1227
1228 /* Compute the size of the context. */
1229 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1230 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1231 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1232 *scontext_len += mls_compute_context_len(p, context);
1233
1234 if (!scontext)
1235 return 0;
1236
1237 /* Allocate space for the context; caller must free this space. */
1238 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1239 if (!scontextp)
1240 return -ENOMEM;
1241 *scontext = scontextp;
1242
1243 /*
1244 * Copy the user name, role name and type name into the context.
1245 */
1246 scontextp += sprintf(scontextp, "%s:%s:%s",
1247 sym_name(p, SYM_USERS, context->user - 1),
1248 sym_name(p, SYM_ROLES, context->role - 1),
1249 sym_name(p, SYM_TYPES, context->type - 1));
1250
1251 mls_sid_to_context(p, context, &scontextp);
1252
1253 *scontextp = 0;
1254
1255 return 0;
1256 }
1257
1258 #include "initial_sid_to_string.h"
1259
security_sidtab_hash_stats(struct selinux_state * state,char * page)1260 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1261 {
1262 int rc;
1263
1264 read_lock(&state->ss->policy_rwlock);
1265 rc = sidtab_hash_stats(state->ss->sidtab, page);
1266 read_unlock(&state->ss->policy_rwlock);
1267
1268 return rc;
1269 }
1270
security_get_initial_sid_context(u32 sid)1271 const char *security_get_initial_sid_context(u32 sid)
1272 {
1273 if (unlikely(sid > SECINITSID_NUM))
1274 return NULL;
1275 return initial_sid_to_string[sid];
1276 }
1277
security_sid_to_context_core(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1278 static int security_sid_to_context_core(struct selinux_state *state,
1279 u32 sid, char **scontext,
1280 u32 *scontext_len, int force,
1281 int only_invalid)
1282 {
1283 struct policydb *policydb;
1284 struct sidtab *sidtab;
1285 struct context *context;
1286 int rc = 0;
1287
1288 if (scontext)
1289 *scontext = NULL;
1290 *scontext_len = 0;
1291
1292 if (!state->initialized) {
1293 if (sid <= SECINITSID_NUM) {
1294 char *scontextp;
1295
1296 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1297 if (!scontext)
1298 goto out;
1299 scontextp = kmemdup(initial_sid_to_string[sid],
1300 *scontext_len, GFP_ATOMIC);
1301 if (!scontextp) {
1302 rc = -ENOMEM;
1303 goto out;
1304 }
1305 *scontext = scontextp;
1306 goto out;
1307 }
1308 pr_err("SELinux: %s: called before initial "
1309 "load_policy on unknown SID %d\n", __func__, sid);
1310 rc = -EINVAL;
1311 goto out;
1312 }
1313 read_lock(&state->ss->policy_rwlock);
1314 policydb = &state->ss->policydb;
1315 sidtab = state->ss->sidtab;
1316 if (force)
1317 context = sidtab_search_force(sidtab, sid);
1318 else
1319 context = sidtab_search(sidtab, sid);
1320 if (!context) {
1321 pr_err("SELinux: %s: unrecognized SID %d\n",
1322 __func__, sid);
1323 rc = -EINVAL;
1324 goto out_unlock;
1325 }
1326 if (only_invalid && !context->len)
1327 rc = 0;
1328 else
1329 rc = context_struct_to_string(policydb, context, scontext,
1330 scontext_len);
1331 out_unlock:
1332 read_unlock(&state->ss->policy_rwlock);
1333 out:
1334 return rc;
1335
1336 }
1337
1338 /**
1339 * security_sid_to_context - Obtain a context for a given SID.
1340 * @sid: security identifier, SID
1341 * @scontext: security context
1342 * @scontext_len: length in bytes
1343 *
1344 * Write the string representation of the context associated with @sid
1345 * into a dynamically allocated string of the correct size. Set @scontext
1346 * to point to this string and set @scontext_len to the length of the string.
1347 */
security_sid_to_context(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1348 int security_sid_to_context(struct selinux_state *state,
1349 u32 sid, char **scontext, u32 *scontext_len)
1350 {
1351 return security_sid_to_context_core(state, sid, scontext,
1352 scontext_len, 0, 0);
1353 }
1354
security_sid_to_context_force(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1355 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1356 char **scontext, u32 *scontext_len)
1357 {
1358 return security_sid_to_context_core(state, sid, scontext,
1359 scontext_len, 1, 0);
1360 }
1361
1362 /**
1363 * security_sid_to_context_inval - Obtain a context for a given SID if it
1364 * is invalid.
1365 * @sid: security identifier, SID
1366 * @scontext: security context
1367 * @scontext_len: length in bytes
1368 *
1369 * Write the string representation of the context associated with @sid
1370 * into a dynamically allocated string of the correct size, but only if the
1371 * context is invalid in the current policy. Set @scontext to point to
1372 * this string (or NULL if the context is valid) and set @scontext_len to
1373 * the length of the string (or 0 if the context is valid).
1374 */
security_sid_to_context_inval(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1375 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1376 char **scontext, u32 *scontext_len)
1377 {
1378 return security_sid_to_context_core(state, sid, scontext,
1379 scontext_len, 1, 1);
1380 }
1381
1382 /*
1383 * Caveat: Mutates scontext.
1384 */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1385 static int string_to_context_struct(struct policydb *pol,
1386 struct sidtab *sidtabp,
1387 char *scontext,
1388 struct context *ctx,
1389 u32 def_sid)
1390 {
1391 struct role_datum *role;
1392 struct type_datum *typdatum;
1393 struct user_datum *usrdatum;
1394 char *scontextp, *p, oldc;
1395 int rc = 0;
1396
1397 context_init(ctx);
1398
1399 /* Parse the security context. */
1400
1401 rc = -EINVAL;
1402 scontextp = (char *) scontext;
1403
1404 /* Extract the user. */
1405 p = scontextp;
1406 while (*p && *p != ':')
1407 p++;
1408
1409 if (*p == 0)
1410 goto out;
1411
1412 *p++ = 0;
1413
1414 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1415 if (!usrdatum)
1416 goto out;
1417
1418 ctx->user = usrdatum->value;
1419
1420 /* Extract role. */
1421 scontextp = p;
1422 while (*p && *p != ':')
1423 p++;
1424
1425 if (*p == 0)
1426 goto out;
1427
1428 *p++ = 0;
1429
1430 role = hashtab_search(pol->p_roles.table, scontextp);
1431 if (!role)
1432 goto out;
1433 ctx->role = role->value;
1434
1435 /* Extract type. */
1436 scontextp = p;
1437 while (*p && *p != ':')
1438 p++;
1439 oldc = *p;
1440 *p++ = 0;
1441
1442 typdatum = hashtab_search(pol->p_types.table, scontextp);
1443 if (!typdatum || typdatum->attribute)
1444 goto out;
1445
1446 ctx->type = typdatum->value;
1447
1448 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1449 if (rc)
1450 goto out;
1451
1452 /* Check the validity of the new context. */
1453 rc = -EINVAL;
1454 if (!policydb_context_isvalid(pol, ctx))
1455 goto out;
1456 rc = 0;
1457 out:
1458 if (rc)
1459 context_destroy(ctx);
1460 return rc;
1461 }
1462
context_add_hash(struct policydb * policydb,struct context * context)1463 int context_add_hash(struct policydb *policydb,
1464 struct context *context)
1465 {
1466 int rc;
1467 char *str;
1468 int len;
1469
1470 if (context->str) {
1471 context->hash = context_compute_hash(context->str);
1472 } else {
1473 rc = context_struct_to_string(policydb, context,
1474 &str, &len);
1475 if (rc)
1476 return rc;
1477 context->hash = context_compute_hash(str);
1478 kfree(str);
1479 }
1480 return 0;
1481 }
1482
context_struct_to_sid(struct selinux_state * state,struct context * context,u32 * sid)1483 static int context_struct_to_sid(struct selinux_state *state,
1484 struct context *context, u32 *sid)
1485 {
1486 int rc;
1487 struct sidtab *sidtab = state->ss->sidtab;
1488 struct policydb *policydb = &state->ss->policydb;
1489
1490 if (!context->hash) {
1491 rc = context_add_hash(policydb, context);
1492 if (rc)
1493 return rc;
1494 }
1495
1496 return sidtab_context_to_sid(sidtab, context, sid);
1497 }
1498
security_context_to_sid_core(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1499 static int security_context_to_sid_core(struct selinux_state *state,
1500 const char *scontext, u32 scontext_len,
1501 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1502 int force)
1503 {
1504 struct policydb *policydb;
1505 struct sidtab *sidtab;
1506 char *scontext2, *str = NULL;
1507 struct context context;
1508 int rc = 0;
1509
1510 /* An empty security context is never valid. */
1511 if (!scontext_len)
1512 return -EINVAL;
1513
1514 /* Copy the string to allow changes and ensure a NUL terminator */
1515 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1516 if (!scontext2)
1517 return -ENOMEM;
1518
1519 if (!state->initialized) {
1520 int i;
1521
1522 for (i = 1; i < SECINITSID_NUM; i++) {
1523 if (!strcmp(initial_sid_to_string[i], scontext2)) {
1524 *sid = i;
1525 goto out;
1526 }
1527 }
1528 *sid = SECINITSID_KERNEL;
1529 goto out;
1530 }
1531 *sid = SECSID_NULL;
1532
1533 if (force) {
1534 /* Save another copy for storing in uninterpreted form */
1535 rc = -ENOMEM;
1536 str = kstrdup(scontext2, gfp_flags);
1537 if (!str)
1538 goto out;
1539 }
1540 read_lock(&state->ss->policy_rwlock);
1541 policydb = &state->ss->policydb;
1542 sidtab = state->ss->sidtab;
1543 rc = string_to_context_struct(policydb, sidtab, scontext2,
1544 &context, def_sid);
1545 if (rc == -EINVAL && force) {
1546 context.str = str;
1547 context.len = strlen(str) + 1;
1548 str = NULL;
1549 } else if (rc)
1550 goto out_unlock;
1551 rc = context_struct_to_sid(state, &context, sid);
1552 context_destroy(&context);
1553 out_unlock:
1554 read_unlock(&state->ss->policy_rwlock);
1555 out:
1556 kfree(scontext2);
1557 kfree(str);
1558 return rc;
1559 }
1560
1561 /**
1562 * security_context_to_sid - Obtain a SID for a given security context.
1563 * @scontext: security context
1564 * @scontext_len: length in bytes
1565 * @sid: security identifier, SID
1566 * @gfp: context for the allocation
1567 *
1568 * Obtains a SID associated with the security context that
1569 * has the string representation specified by @scontext.
1570 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1571 * memory is available, or 0 on success.
1572 */
security_context_to_sid(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1573 int security_context_to_sid(struct selinux_state *state,
1574 const char *scontext, u32 scontext_len, u32 *sid,
1575 gfp_t gfp)
1576 {
1577 return security_context_to_sid_core(state, scontext, scontext_len,
1578 sid, SECSID_NULL, gfp, 0);
1579 }
1580
security_context_str_to_sid(struct selinux_state * state,const char * scontext,u32 * sid,gfp_t gfp)1581 int security_context_str_to_sid(struct selinux_state *state,
1582 const char *scontext, u32 *sid, gfp_t gfp)
1583 {
1584 return security_context_to_sid(state, scontext, strlen(scontext),
1585 sid, gfp);
1586 }
1587
1588 /**
1589 * security_context_to_sid_default - Obtain a SID for a given security context,
1590 * falling back to specified default if needed.
1591 *
1592 * @scontext: security context
1593 * @scontext_len: length in bytes
1594 * @sid: security identifier, SID
1595 * @def_sid: default SID to assign on error
1596 *
1597 * Obtains a SID associated with the security context that
1598 * has the string representation specified by @scontext.
1599 * The default SID is passed to the MLS layer to be used to allow
1600 * kernel labeling of the MLS field if the MLS field is not present
1601 * (for upgrading to MLS without full relabel).
1602 * Implicitly forces adding of the context even if it cannot be mapped yet.
1603 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1604 * memory is available, or 0 on success.
1605 */
security_context_to_sid_default(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1606 int security_context_to_sid_default(struct selinux_state *state,
1607 const char *scontext, u32 scontext_len,
1608 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1609 {
1610 return security_context_to_sid_core(state, scontext, scontext_len,
1611 sid, def_sid, gfp_flags, 1);
1612 }
1613
security_context_to_sid_force(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid)1614 int security_context_to_sid_force(struct selinux_state *state,
1615 const char *scontext, u32 scontext_len,
1616 u32 *sid)
1617 {
1618 return security_context_to_sid_core(state, scontext, scontext_len,
1619 sid, SECSID_NULL, GFP_KERNEL, 1);
1620 }
1621
compute_sid_handle_invalid_context(struct selinux_state * state,struct context * scontext,struct context * tcontext,u16 tclass,struct context * newcontext)1622 static int compute_sid_handle_invalid_context(
1623 struct selinux_state *state,
1624 struct context *scontext,
1625 struct context *tcontext,
1626 u16 tclass,
1627 struct context *newcontext)
1628 {
1629 struct policydb *policydb = &state->ss->policydb;
1630 char *s = NULL, *t = NULL, *n = NULL;
1631 u32 slen, tlen, nlen;
1632 struct audit_buffer *ab;
1633
1634 if (context_struct_to_string(policydb, scontext, &s, &slen))
1635 goto out;
1636 if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1637 goto out;
1638 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1639 goto out;
1640 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1641 audit_log_format(ab,
1642 "op=security_compute_sid invalid_context=");
1643 /* no need to record the NUL with untrusted strings */
1644 audit_log_n_untrustedstring(ab, n, nlen - 1);
1645 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1646 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1647 audit_log_end(ab);
1648 out:
1649 kfree(s);
1650 kfree(t);
1651 kfree(n);
1652 if (!enforcing_enabled(state))
1653 return 0;
1654 return -EACCES;
1655 }
1656
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1657 static void filename_compute_type(struct policydb *policydb,
1658 struct context *newcontext,
1659 u32 stype, u32 ttype, u16 tclass,
1660 const char *objname)
1661 {
1662 struct filename_trans ft;
1663 struct filename_trans_datum *otype;
1664
1665 /*
1666 * Most filename trans rules are going to live in specific directories
1667 * like /dev or /var/run. This bitmap will quickly skip rule searches
1668 * if the ttype does not contain any rules.
1669 */
1670 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1671 return;
1672
1673 ft.stype = stype;
1674 ft.ttype = ttype;
1675 ft.tclass = tclass;
1676 ft.name = objname;
1677
1678 otype = hashtab_search(policydb->filename_trans, &ft);
1679 if (otype)
1680 newcontext->type = otype->otype;
1681 }
1682
security_compute_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const char * objname,u32 * out_sid,bool kern)1683 static int security_compute_sid(struct selinux_state *state,
1684 u32 ssid,
1685 u32 tsid,
1686 u16 orig_tclass,
1687 u32 specified,
1688 const char *objname,
1689 u32 *out_sid,
1690 bool kern)
1691 {
1692 struct policydb *policydb;
1693 struct sidtab *sidtab;
1694 struct class_datum *cladatum = NULL;
1695 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1696 struct role_trans *roletr = NULL;
1697 struct avtab_key avkey;
1698 struct avtab_datum *avdatum;
1699 struct avtab_node *node;
1700 u16 tclass;
1701 int rc = 0;
1702 bool sock;
1703
1704 if (!state->initialized) {
1705 switch (orig_tclass) {
1706 case SECCLASS_PROCESS: /* kernel value */
1707 *out_sid = ssid;
1708 break;
1709 default:
1710 *out_sid = tsid;
1711 break;
1712 }
1713 goto out;
1714 }
1715
1716 context_init(&newcontext);
1717
1718 read_lock(&state->ss->policy_rwlock);
1719
1720 if (kern) {
1721 tclass = unmap_class(&state->ss->map, orig_tclass);
1722 sock = security_is_socket_class(orig_tclass);
1723 } else {
1724 tclass = orig_tclass;
1725 sock = security_is_socket_class(map_class(&state->ss->map,
1726 tclass));
1727 }
1728
1729 policydb = &state->ss->policydb;
1730 sidtab = state->ss->sidtab;
1731
1732 scontext = sidtab_search(sidtab, ssid);
1733 if (!scontext) {
1734 pr_err("SELinux: %s: unrecognized SID %d\n",
1735 __func__, ssid);
1736 rc = -EINVAL;
1737 goto out_unlock;
1738 }
1739 tcontext = sidtab_search(sidtab, tsid);
1740 if (!tcontext) {
1741 pr_err("SELinux: %s: unrecognized SID %d\n",
1742 __func__, tsid);
1743 rc = -EINVAL;
1744 goto out_unlock;
1745 }
1746
1747 if (tclass && tclass <= policydb->p_classes.nprim)
1748 cladatum = policydb->class_val_to_struct[tclass - 1];
1749
1750 /* Set the user identity. */
1751 switch (specified) {
1752 case AVTAB_TRANSITION:
1753 case AVTAB_CHANGE:
1754 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1755 newcontext.user = tcontext->user;
1756 } else {
1757 /* notice this gets both DEFAULT_SOURCE and unset */
1758 /* Use the process user identity. */
1759 newcontext.user = scontext->user;
1760 }
1761 break;
1762 case AVTAB_MEMBER:
1763 /* Use the related object owner. */
1764 newcontext.user = tcontext->user;
1765 break;
1766 }
1767
1768 /* Set the role to default values. */
1769 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1770 newcontext.role = scontext->role;
1771 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1772 newcontext.role = tcontext->role;
1773 } else {
1774 if ((tclass == policydb->process_class) || (sock == true))
1775 newcontext.role = scontext->role;
1776 else
1777 newcontext.role = OBJECT_R_VAL;
1778 }
1779
1780 /* Set the type to default values. */
1781 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1782 newcontext.type = scontext->type;
1783 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1784 newcontext.type = tcontext->type;
1785 } else {
1786 if ((tclass == policydb->process_class) || (sock == true)) {
1787 /* Use the type of process. */
1788 newcontext.type = scontext->type;
1789 } else {
1790 /* Use the type of the related object. */
1791 newcontext.type = tcontext->type;
1792 }
1793 }
1794
1795 /* Look for a type transition/member/change rule. */
1796 avkey.source_type = scontext->type;
1797 avkey.target_type = tcontext->type;
1798 avkey.target_class = tclass;
1799 avkey.specified = specified;
1800 avdatum = avtab_search(&policydb->te_avtab, &avkey);
1801
1802 /* If no permanent rule, also check for enabled conditional rules */
1803 if (!avdatum) {
1804 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1805 for (; node; node = avtab_search_node_next(node, specified)) {
1806 if (node->key.specified & AVTAB_ENABLED) {
1807 avdatum = &node->datum;
1808 break;
1809 }
1810 }
1811 }
1812
1813 if (avdatum) {
1814 /* Use the type from the type transition/member/change rule. */
1815 newcontext.type = avdatum->u.data;
1816 }
1817
1818 /* if we have a objname this is a file trans check so check those rules */
1819 if (objname)
1820 filename_compute_type(policydb, &newcontext, scontext->type,
1821 tcontext->type, tclass, objname);
1822
1823 /* Check for class-specific changes. */
1824 if (specified & AVTAB_TRANSITION) {
1825 /* Look for a role transition rule. */
1826 for (roletr = policydb->role_tr; roletr;
1827 roletr = roletr->next) {
1828 if ((roletr->role == scontext->role) &&
1829 (roletr->type == tcontext->type) &&
1830 (roletr->tclass == tclass)) {
1831 /* Use the role transition rule. */
1832 newcontext.role = roletr->new_role;
1833 break;
1834 }
1835 }
1836 }
1837
1838 /* Set the MLS attributes.
1839 This is done last because it may allocate memory. */
1840 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1841 &newcontext, sock);
1842 if (rc)
1843 goto out_unlock;
1844
1845 /* Check the validity of the context. */
1846 if (!policydb_context_isvalid(policydb, &newcontext)) {
1847 rc = compute_sid_handle_invalid_context(state, scontext,
1848 tcontext,
1849 tclass,
1850 &newcontext);
1851 if (rc)
1852 goto out_unlock;
1853 }
1854 /* Obtain the sid for the context. */
1855 rc = context_struct_to_sid(state, &newcontext, out_sid);
1856 out_unlock:
1857 read_unlock(&state->ss->policy_rwlock);
1858 context_destroy(&newcontext);
1859 out:
1860 return rc;
1861 }
1862
1863 /**
1864 * security_transition_sid - Compute the SID for a new subject/object.
1865 * @ssid: source security identifier
1866 * @tsid: target security identifier
1867 * @tclass: target security class
1868 * @out_sid: security identifier for new subject/object
1869 *
1870 * Compute a SID to use for labeling a new subject or object in the
1871 * class @tclass based on a SID pair (@ssid, @tsid).
1872 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1873 * if insufficient memory is available, or %0 if the new SID was
1874 * computed successfully.
1875 */
security_transition_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1876 int security_transition_sid(struct selinux_state *state,
1877 u32 ssid, u32 tsid, u16 tclass,
1878 const struct qstr *qstr, u32 *out_sid)
1879 {
1880 return security_compute_sid(state, ssid, tsid, tclass,
1881 AVTAB_TRANSITION,
1882 qstr ? qstr->name : NULL, out_sid, true);
1883 }
1884
security_transition_sid_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1885 int security_transition_sid_user(struct selinux_state *state,
1886 u32 ssid, u32 tsid, u16 tclass,
1887 const char *objname, u32 *out_sid)
1888 {
1889 return security_compute_sid(state, ssid, tsid, tclass,
1890 AVTAB_TRANSITION,
1891 objname, out_sid, false);
1892 }
1893
1894 /**
1895 * security_member_sid - Compute the SID for member selection.
1896 * @ssid: source security identifier
1897 * @tsid: target security identifier
1898 * @tclass: target security class
1899 * @out_sid: security identifier for selected member
1900 *
1901 * Compute a SID to use when selecting a member of a polyinstantiated
1902 * object of class @tclass based on a SID pair (@ssid, @tsid).
1903 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1904 * if insufficient memory is available, or %0 if the SID was
1905 * computed successfully.
1906 */
security_member_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1907 int security_member_sid(struct selinux_state *state,
1908 u32 ssid,
1909 u32 tsid,
1910 u16 tclass,
1911 u32 *out_sid)
1912 {
1913 return security_compute_sid(state, ssid, tsid, tclass,
1914 AVTAB_MEMBER, NULL,
1915 out_sid, false);
1916 }
1917
1918 /**
1919 * security_change_sid - Compute the SID for object relabeling.
1920 * @ssid: source security identifier
1921 * @tsid: target security identifier
1922 * @tclass: target security class
1923 * @out_sid: security identifier for selected member
1924 *
1925 * Compute a SID to use for relabeling an object of class @tclass
1926 * based on a SID pair (@ssid, @tsid).
1927 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1928 * if insufficient memory is available, or %0 if the SID was
1929 * computed successfully.
1930 */
security_change_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1931 int security_change_sid(struct selinux_state *state,
1932 u32 ssid,
1933 u32 tsid,
1934 u16 tclass,
1935 u32 *out_sid)
1936 {
1937 return security_compute_sid(state,
1938 ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1939 out_sid, false);
1940 }
1941
convert_context_handle_invalid_context(struct selinux_state * state,struct context * context)1942 static inline int convert_context_handle_invalid_context(
1943 struct selinux_state *state,
1944 struct context *context)
1945 {
1946 struct policydb *policydb = &state->ss->policydb;
1947 char *s;
1948 u32 len;
1949
1950 if (enforcing_enabled(state))
1951 return -EINVAL;
1952
1953 if (!context_struct_to_string(policydb, context, &s, &len)) {
1954 pr_warn("SELinux: Context %s would be invalid if enforcing\n",
1955 s);
1956 kfree(s);
1957 }
1958 return 0;
1959 }
1960
1961 struct convert_context_args {
1962 struct selinux_state *state;
1963 struct policydb *oldp;
1964 struct policydb *newp;
1965 };
1966
1967 /*
1968 * Convert the values in the security context
1969 * structure `oldc' from the values specified
1970 * in the policy `p->oldp' to the values specified
1971 * in the policy `p->newp', storing the new context
1972 * in `newc'. Verify that the context is valid
1973 * under the new policy.
1974 */
convert_context(struct context * oldc,struct context * newc,void * p)1975 static int convert_context(struct context *oldc, struct context *newc, void *p)
1976 {
1977 struct convert_context_args *args;
1978 struct ocontext *oc;
1979 struct role_datum *role;
1980 struct type_datum *typdatum;
1981 struct user_datum *usrdatum;
1982 char *s;
1983 u32 len;
1984 int rc;
1985
1986 args = p;
1987
1988 if (oldc->str) {
1989 s = kstrdup(oldc->str, GFP_KERNEL);
1990 if (!s)
1991 return -ENOMEM;
1992
1993 rc = string_to_context_struct(args->newp, NULL, s,
1994 newc, SECSID_NULL);
1995 if (rc == -EINVAL) {
1996 /*
1997 * Retain string representation for later mapping.
1998 *
1999 * IMPORTANT: We need to copy the contents of oldc->str
2000 * back into s again because string_to_context_struct()
2001 * may have garbled it.
2002 */
2003 memcpy(s, oldc->str, oldc->len);
2004 context_init(newc);
2005 newc->str = s;
2006 newc->len = oldc->len;
2007 newc->hash = oldc->hash;
2008 return 0;
2009 }
2010 kfree(s);
2011 if (rc) {
2012 /* Other error condition, e.g. ENOMEM. */
2013 pr_err("SELinux: Unable to map context %s, rc = %d.\n",
2014 oldc->str, -rc);
2015 return rc;
2016 }
2017 pr_info("SELinux: Context %s became valid (mapped).\n",
2018 oldc->str);
2019 return 0;
2020 }
2021
2022 context_init(newc);
2023
2024 /* Convert the user. */
2025 rc = -EINVAL;
2026 usrdatum = hashtab_search(args->newp->p_users.table,
2027 sym_name(args->oldp,
2028 SYM_USERS, oldc->user - 1));
2029 if (!usrdatum)
2030 goto bad;
2031 newc->user = usrdatum->value;
2032
2033 /* Convert the role. */
2034 rc = -EINVAL;
2035 role = hashtab_search(args->newp->p_roles.table,
2036 sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2037 if (!role)
2038 goto bad;
2039 newc->role = role->value;
2040
2041 /* Convert the type. */
2042 rc = -EINVAL;
2043 typdatum = hashtab_search(args->newp->p_types.table,
2044 sym_name(args->oldp,
2045 SYM_TYPES, oldc->type - 1));
2046 if (!typdatum)
2047 goto bad;
2048 newc->type = typdatum->value;
2049
2050 /* Convert the MLS fields if dealing with MLS policies */
2051 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2052 rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2053 if (rc)
2054 goto bad;
2055 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2056 /*
2057 * Switching between non-MLS and MLS policy:
2058 * ensure that the MLS fields of the context for all
2059 * existing entries in the sidtab are filled in with a
2060 * suitable default value, likely taken from one of the
2061 * initial SIDs.
2062 */
2063 oc = args->newp->ocontexts[OCON_ISID];
2064 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2065 oc = oc->next;
2066 rc = -EINVAL;
2067 if (!oc) {
2068 pr_err("SELinux: unable to look up"
2069 " the initial SIDs list\n");
2070 goto bad;
2071 }
2072 rc = mls_range_set(newc, &oc->context[0].range);
2073 if (rc)
2074 goto bad;
2075 }
2076
2077 /* Check the validity of the new context. */
2078 if (!policydb_context_isvalid(args->newp, newc)) {
2079 rc = convert_context_handle_invalid_context(args->state, oldc);
2080 if (rc)
2081 goto bad;
2082 }
2083
2084 rc = context_add_hash(args->newp, newc);
2085 if (rc)
2086 goto bad;
2087
2088 return 0;
2089 bad:
2090 /* Map old representation to string and save it. */
2091 rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2092 if (rc)
2093 return rc;
2094 context_destroy(newc);
2095 newc->str = s;
2096 newc->len = len;
2097 newc->hash = context_compute_hash(s);
2098 pr_info("SELinux: Context %s became invalid (unmapped).\n",
2099 newc->str);
2100 return 0;
2101 }
2102
security_load_policycaps(struct selinux_state * state)2103 static void security_load_policycaps(struct selinux_state *state)
2104 {
2105 struct policydb *p = &state->ss->policydb;
2106 unsigned int i;
2107 struct ebitmap_node *node;
2108
2109 for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2110 state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2111
2112 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2113 pr_info("SELinux: policy capability %s=%d\n",
2114 selinux_policycap_names[i],
2115 ebitmap_get_bit(&p->policycaps, i));
2116
2117 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2118 if (i >= ARRAY_SIZE(selinux_policycap_names))
2119 pr_info("SELinux: unknown policy capability %u\n",
2120 i);
2121 }
2122
2123 state->android_netlink_route = p->android_netlink_route;
2124 selinux_nlmsg_init();
2125 }
2126
2127 static int security_preserve_bools(struct selinux_state *state,
2128 struct policydb *newpolicydb);
2129
2130 /**
2131 * security_load_policy - Load a security policy configuration.
2132 * @data: binary policy data
2133 * @len: length of data in bytes
2134 *
2135 * Load a new set of security policy configuration data,
2136 * validate it and convert the SID table as necessary.
2137 * This function will flush the access vector cache after
2138 * loading the new policy.
2139 */
security_load_policy(struct selinux_state * state,void * data,size_t len)2140 int security_load_policy(struct selinux_state *state, void *data, size_t len)
2141 {
2142 struct policydb *policydb;
2143 struct sidtab *oldsidtab, *newsidtab;
2144 struct policydb *oldpolicydb, *newpolicydb;
2145 struct selinux_mapping *oldmapping;
2146 struct selinux_map newmap;
2147 struct sidtab_convert_params convert_params;
2148 struct convert_context_args args;
2149 u32 seqno;
2150 int rc = 0;
2151 struct policy_file file = { data, len }, *fp = &file;
2152
2153 oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2154 if (!oldpolicydb) {
2155 rc = -ENOMEM;
2156 goto out;
2157 }
2158 newpolicydb = oldpolicydb + 1;
2159
2160 policydb = &state->ss->policydb;
2161
2162 newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2163 if (!newsidtab) {
2164 rc = -ENOMEM;
2165 goto out;
2166 }
2167
2168 if (!state->initialized) {
2169 rc = policydb_read(policydb, fp);
2170 if (rc) {
2171 kfree(newsidtab);
2172 goto out;
2173 }
2174
2175 policydb->len = len;
2176 rc = selinux_set_mapping(policydb, secclass_map,
2177 &state->ss->map);
2178 if (rc) {
2179 kfree(newsidtab);
2180 policydb_destroy(policydb);
2181 goto out;
2182 }
2183
2184 rc = policydb_load_isids(policydb, newsidtab);
2185 if (rc) {
2186 kfree(newsidtab);
2187 policydb_destroy(policydb);
2188 goto out;
2189 }
2190
2191 state->ss->sidtab = newsidtab;
2192 security_load_policycaps(state);
2193 state->initialized = 1;
2194 seqno = ++state->ss->latest_granting;
2195 selinux_complete_init();
2196 avc_ss_reset(state->avc, seqno);
2197 selnl_notify_policyload(seqno);
2198 selinux_status_update_policyload(state, seqno);
2199 selinux_netlbl_cache_invalidate();
2200 selinux_xfrm_notify_policyload();
2201 goto out;
2202 }
2203
2204 rc = policydb_read(newpolicydb, fp);
2205 if (rc) {
2206 kfree(newsidtab);
2207 goto out;
2208 }
2209
2210 newpolicydb->len = len;
2211 /* If switching between different policy types, log MLS status */
2212 if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2213 pr_info("SELinux: Disabling MLS support...\n");
2214 else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2215 pr_info("SELinux: Enabling MLS support...\n");
2216
2217 rc = policydb_load_isids(newpolicydb, newsidtab);
2218 if (rc) {
2219 pr_err("SELinux: unable to load the initial SIDs\n");
2220 policydb_destroy(newpolicydb);
2221 kfree(newsidtab);
2222 goto out;
2223 }
2224
2225 rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2226 if (rc)
2227 goto err;
2228
2229 rc = security_preserve_bools(state, newpolicydb);
2230 if (rc) {
2231 pr_err("SELinux: unable to preserve booleans\n");
2232 goto err;
2233 }
2234
2235 oldsidtab = state->ss->sidtab;
2236
2237 /*
2238 * Convert the internal representations of contexts
2239 * in the new SID table.
2240 */
2241 args.state = state;
2242 args.oldp = policydb;
2243 args.newp = newpolicydb;
2244
2245 convert_params.func = convert_context;
2246 convert_params.args = &args;
2247 convert_params.target = newsidtab;
2248
2249 rc = sidtab_convert(oldsidtab, &convert_params);
2250 if (rc) {
2251 pr_err("SELinux: unable to convert the internal"
2252 " representation of contexts in the new SID"
2253 " table\n");
2254 goto err;
2255 }
2256
2257 /* Save the old policydb and SID table to free later. */
2258 memcpy(oldpolicydb, policydb, sizeof(*policydb));
2259
2260 /* Install the new policydb and SID table. */
2261 write_lock_irq(&state->ss->policy_rwlock);
2262 memcpy(policydb, newpolicydb, sizeof(*policydb));
2263 state->ss->sidtab = newsidtab;
2264 security_load_policycaps(state);
2265 oldmapping = state->ss->map.mapping;
2266 state->ss->map.mapping = newmap.mapping;
2267 state->ss->map.size = newmap.size;
2268 seqno = ++state->ss->latest_granting;
2269 write_unlock_irq(&state->ss->policy_rwlock);
2270
2271 /* Free the old policydb and SID table. */
2272 policydb_destroy(oldpolicydb);
2273 sidtab_destroy(oldsidtab);
2274 kfree(oldsidtab);
2275 kfree(oldmapping);
2276
2277 avc_ss_reset(state->avc, seqno);
2278 selnl_notify_policyload(seqno);
2279 selinux_status_update_policyload(state, seqno);
2280 selinux_netlbl_cache_invalidate();
2281 selinux_xfrm_notify_policyload();
2282
2283 rc = 0;
2284 goto out;
2285
2286 err:
2287 kfree(newmap.mapping);
2288 sidtab_destroy(newsidtab);
2289 kfree(newsidtab);
2290 policydb_destroy(newpolicydb);
2291
2292 out:
2293 kfree(oldpolicydb);
2294 return rc;
2295 }
2296
security_policydb_len(struct selinux_state * state)2297 size_t security_policydb_len(struct selinux_state *state)
2298 {
2299 struct policydb *p = &state->ss->policydb;
2300 size_t len;
2301
2302 read_lock(&state->ss->policy_rwlock);
2303 len = p->len;
2304 read_unlock(&state->ss->policy_rwlock);
2305
2306 return len;
2307 }
2308
2309 /**
2310 * security_port_sid - Obtain the SID for a port.
2311 * @protocol: protocol number
2312 * @port: port number
2313 * @out_sid: security identifier
2314 */
security_port_sid(struct selinux_state * state,u8 protocol,u16 port,u32 * out_sid)2315 int security_port_sid(struct selinux_state *state,
2316 u8 protocol, u16 port, u32 *out_sid)
2317 {
2318 struct policydb *policydb;
2319 struct sidtab *sidtab;
2320 struct ocontext *c;
2321 int rc = 0;
2322
2323 read_lock(&state->ss->policy_rwlock);
2324
2325 policydb = &state->ss->policydb;
2326 sidtab = state->ss->sidtab;
2327
2328 c = policydb->ocontexts[OCON_PORT];
2329 while (c) {
2330 if (c->u.port.protocol == protocol &&
2331 c->u.port.low_port <= port &&
2332 c->u.port.high_port >= port)
2333 break;
2334 c = c->next;
2335 }
2336
2337 if (c) {
2338 if (!c->sid[0]) {
2339 rc = context_struct_to_sid(state, &c->context[0],
2340 &c->sid[0]);
2341 if (rc)
2342 goto out;
2343 }
2344 *out_sid = c->sid[0];
2345 } else {
2346 *out_sid = SECINITSID_PORT;
2347 }
2348
2349 out:
2350 read_unlock(&state->ss->policy_rwlock);
2351 return rc;
2352 }
2353
2354 /**
2355 * security_pkey_sid - Obtain the SID for a pkey.
2356 * @subnet_prefix: Subnet Prefix
2357 * @pkey_num: pkey number
2358 * @out_sid: security identifier
2359 */
security_ib_pkey_sid(struct selinux_state * state,u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2360 int security_ib_pkey_sid(struct selinux_state *state,
2361 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2362 {
2363 struct policydb *policydb;
2364 struct ocontext *c;
2365 int rc = 0;
2366
2367 read_lock(&state->ss->policy_rwlock);
2368
2369 policydb = &state->ss->policydb;
2370
2371 c = policydb->ocontexts[OCON_IBPKEY];
2372 while (c) {
2373 if (c->u.ibpkey.low_pkey <= pkey_num &&
2374 c->u.ibpkey.high_pkey >= pkey_num &&
2375 c->u.ibpkey.subnet_prefix == subnet_prefix)
2376 break;
2377
2378 c = c->next;
2379 }
2380
2381 if (c) {
2382 if (!c->sid[0]) {
2383 rc = context_struct_to_sid(state,
2384 &c->context[0],
2385 &c->sid[0]);
2386 if (rc)
2387 goto out;
2388 }
2389 *out_sid = c->sid[0];
2390 } else
2391 *out_sid = SECINITSID_UNLABELED;
2392
2393 out:
2394 read_unlock(&state->ss->policy_rwlock);
2395 return rc;
2396 }
2397
2398 /**
2399 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2400 * @dev_name: device name
2401 * @port: port number
2402 * @out_sid: security identifier
2403 */
security_ib_endport_sid(struct selinux_state * state,const char * dev_name,u8 port_num,u32 * out_sid)2404 int security_ib_endport_sid(struct selinux_state *state,
2405 const char *dev_name, u8 port_num, u32 *out_sid)
2406 {
2407 struct policydb *policydb;
2408 struct sidtab *sidtab;
2409 struct ocontext *c;
2410 int rc = 0;
2411
2412 read_lock(&state->ss->policy_rwlock);
2413
2414 policydb = &state->ss->policydb;
2415 sidtab = state->ss->sidtab;
2416
2417 c = policydb->ocontexts[OCON_IBENDPORT];
2418 while (c) {
2419 if (c->u.ibendport.port == port_num &&
2420 !strncmp(c->u.ibendport.dev_name,
2421 dev_name,
2422 IB_DEVICE_NAME_MAX))
2423 break;
2424
2425 c = c->next;
2426 }
2427
2428 if (c) {
2429 if (!c->sid[0]) {
2430 rc = context_struct_to_sid(state, &c->context[0],
2431 &c->sid[0]);
2432 if (rc)
2433 goto out;
2434 }
2435 *out_sid = c->sid[0];
2436 } else
2437 *out_sid = SECINITSID_UNLABELED;
2438
2439 out:
2440 read_unlock(&state->ss->policy_rwlock);
2441 return rc;
2442 }
2443
2444 /**
2445 * security_netif_sid - Obtain the SID for a network interface.
2446 * @name: interface name
2447 * @if_sid: interface SID
2448 */
security_netif_sid(struct selinux_state * state,char * name,u32 * if_sid)2449 int security_netif_sid(struct selinux_state *state,
2450 char *name, u32 *if_sid)
2451 {
2452 struct policydb *policydb;
2453 struct sidtab *sidtab;
2454 int rc = 0;
2455 struct ocontext *c;
2456
2457 read_lock(&state->ss->policy_rwlock);
2458
2459 policydb = &state->ss->policydb;
2460 sidtab = state->ss->sidtab;
2461
2462 c = policydb->ocontexts[OCON_NETIF];
2463 while (c) {
2464 if (strcmp(name, c->u.name) == 0)
2465 break;
2466 c = c->next;
2467 }
2468
2469 if (c) {
2470 if (!c->sid[0] || !c->sid[1]) {
2471 rc = context_struct_to_sid(state, &c->context[0],
2472 &c->sid[0]);
2473 if (rc)
2474 goto out;
2475 rc = context_struct_to_sid(state, &c->context[1],
2476 &c->sid[1]);
2477 if (rc)
2478 goto out;
2479 }
2480 *if_sid = c->sid[0];
2481 } else
2482 *if_sid = SECINITSID_NETIF;
2483
2484 out:
2485 read_unlock(&state->ss->policy_rwlock);
2486 return rc;
2487 }
2488
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2489 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2490 {
2491 int i, fail = 0;
2492
2493 for (i = 0; i < 4; i++)
2494 if (addr[i] != (input[i] & mask[i])) {
2495 fail = 1;
2496 break;
2497 }
2498
2499 return !fail;
2500 }
2501
2502 /**
2503 * security_node_sid - Obtain the SID for a node (host).
2504 * @domain: communication domain aka address family
2505 * @addrp: address
2506 * @addrlen: address length in bytes
2507 * @out_sid: security identifier
2508 */
security_node_sid(struct selinux_state * state,u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2509 int security_node_sid(struct selinux_state *state,
2510 u16 domain,
2511 void *addrp,
2512 u32 addrlen,
2513 u32 *out_sid)
2514 {
2515 struct policydb *policydb;
2516 int rc;
2517 struct ocontext *c;
2518
2519 read_lock(&state->ss->policy_rwlock);
2520
2521 policydb = &state->ss->policydb;
2522
2523 switch (domain) {
2524 case AF_INET: {
2525 u32 addr;
2526
2527 rc = -EINVAL;
2528 if (addrlen != sizeof(u32))
2529 goto out;
2530
2531 addr = *((u32 *)addrp);
2532
2533 c = policydb->ocontexts[OCON_NODE];
2534 while (c) {
2535 if (c->u.node.addr == (addr & c->u.node.mask))
2536 break;
2537 c = c->next;
2538 }
2539 break;
2540 }
2541
2542 case AF_INET6:
2543 rc = -EINVAL;
2544 if (addrlen != sizeof(u64) * 2)
2545 goto out;
2546 c = policydb->ocontexts[OCON_NODE6];
2547 while (c) {
2548 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2549 c->u.node6.mask))
2550 break;
2551 c = c->next;
2552 }
2553 break;
2554
2555 default:
2556 rc = 0;
2557 *out_sid = SECINITSID_NODE;
2558 goto out;
2559 }
2560
2561 if (c) {
2562 if (!c->sid[0]) {
2563 rc = context_struct_to_sid(state,
2564 &c->context[0],
2565 &c->sid[0]);
2566 if (rc)
2567 goto out;
2568 }
2569 *out_sid = c->sid[0];
2570 } else {
2571 *out_sid = SECINITSID_NODE;
2572 }
2573
2574 rc = 0;
2575 out:
2576 read_unlock(&state->ss->policy_rwlock);
2577 return rc;
2578 }
2579
2580 #define SIDS_NEL 25
2581
2582 /**
2583 * security_get_user_sids - Obtain reachable SIDs for a user.
2584 * @fromsid: starting SID
2585 * @username: username
2586 * @sids: array of reachable SIDs for user
2587 * @nel: number of elements in @sids
2588 *
2589 * Generate the set of SIDs for legal security contexts
2590 * for a given user that can be reached by @fromsid.
2591 * Set *@sids to point to a dynamically allocated
2592 * array containing the set of SIDs. Set *@nel to the
2593 * number of elements in the array.
2594 */
2595
security_get_user_sids(struct selinux_state * state,u32 fromsid,char * username,u32 ** sids,u32 * nel)2596 int security_get_user_sids(struct selinux_state *state,
2597 u32 fromsid,
2598 char *username,
2599 u32 **sids,
2600 u32 *nel)
2601 {
2602 struct policydb *policydb;
2603 struct sidtab *sidtab;
2604 struct context *fromcon, usercon;
2605 u32 *mysids = NULL, *mysids2, sid;
2606 u32 mynel = 0, maxnel = SIDS_NEL;
2607 struct user_datum *user;
2608 struct role_datum *role;
2609 struct ebitmap_node *rnode, *tnode;
2610 int rc = 0, i, j;
2611
2612 *sids = NULL;
2613 *nel = 0;
2614
2615 if (!state->initialized)
2616 goto out;
2617
2618 read_lock(&state->ss->policy_rwlock);
2619
2620 policydb = &state->ss->policydb;
2621 sidtab = state->ss->sidtab;
2622
2623 context_init(&usercon);
2624
2625 rc = -EINVAL;
2626 fromcon = sidtab_search(sidtab, fromsid);
2627 if (!fromcon)
2628 goto out_unlock;
2629
2630 rc = -EINVAL;
2631 user = hashtab_search(policydb->p_users.table, username);
2632 if (!user)
2633 goto out_unlock;
2634
2635 usercon.user = user->value;
2636
2637 rc = -ENOMEM;
2638 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2639 if (!mysids)
2640 goto out_unlock;
2641
2642 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2643 role = policydb->role_val_to_struct[i];
2644 usercon.role = i + 1;
2645 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2646 usercon.type = j + 1;
2647 /*
2648 * The same context struct is reused here so the hash
2649 * must be reset.
2650 */
2651 usercon.hash = 0;
2652
2653 if (mls_setup_user_range(policydb, fromcon, user,
2654 &usercon))
2655 continue;
2656
2657 rc = context_struct_to_sid(state, &usercon, &sid);
2658 if (rc)
2659 goto out_unlock;
2660 if (mynel < maxnel) {
2661 mysids[mynel++] = sid;
2662 } else {
2663 rc = -ENOMEM;
2664 maxnel += SIDS_NEL;
2665 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2666 if (!mysids2)
2667 goto out_unlock;
2668 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2669 kfree(mysids);
2670 mysids = mysids2;
2671 mysids[mynel++] = sid;
2672 }
2673 }
2674 }
2675 rc = 0;
2676 out_unlock:
2677 read_unlock(&state->ss->policy_rwlock);
2678 if (rc || !mynel) {
2679 kfree(mysids);
2680 goto out;
2681 }
2682
2683 rc = -ENOMEM;
2684 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2685 if (!mysids2) {
2686 kfree(mysids);
2687 goto out;
2688 }
2689 for (i = 0, j = 0; i < mynel; i++) {
2690 struct av_decision dummy_avd;
2691 rc = avc_has_perm_noaudit(state,
2692 fromsid, mysids[i],
2693 SECCLASS_PROCESS, /* kernel value */
2694 PROCESS__TRANSITION, AVC_STRICT,
2695 &dummy_avd);
2696 if (!rc)
2697 mysids2[j++] = mysids[i];
2698 cond_resched();
2699 }
2700 rc = 0;
2701 kfree(mysids);
2702 *sids = mysids2;
2703 *nel = j;
2704 out:
2705 return rc;
2706 }
2707
2708 /**
2709 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2710 * @fstype: filesystem type
2711 * @path: path from root of mount
2712 * @sclass: file security class
2713 * @sid: SID for path
2714 *
2715 * Obtain a SID to use for a file in a filesystem that
2716 * cannot support xattr or use a fixed labeling behavior like
2717 * transition SIDs or task SIDs.
2718 *
2719 * The caller must acquire the policy_rwlock before calling this function.
2720 */
__security_genfs_sid(struct selinux_state * state,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2721 static inline int __security_genfs_sid(struct selinux_state *state,
2722 const char *fstype,
2723 char *path,
2724 u16 orig_sclass,
2725 u32 *sid)
2726 {
2727 struct policydb *policydb = &state->ss->policydb;
2728 int len;
2729 u16 sclass;
2730 struct genfs *genfs;
2731 struct ocontext *c;
2732 int rc, cmp = 0;
2733
2734 while (path[0] == '/' && path[1] == '/')
2735 path++;
2736
2737 sclass = unmap_class(&state->ss->map, orig_sclass);
2738 *sid = SECINITSID_UNLABELED;
2739
2740 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2741 cmp = strcmp(fstype, genfs->fstype);
2742 if (cmp <= 0)
2743 break;
2744 }
2745
2746 rc = -ENOENT;
2747 if (!genfs || cmp)
2748 goto out;
2749
2750 for (c = genfs->head; c; c = c->next) {
2751 len = strlen(c->u.name);
2752 if ((!c->v.sclass || sclass == c->v.sclass) &&
2753 (strncmp(c->u.name, path, len) == 0))
2754 break;
2755 }
2756
2757 rc = -ENOENT;
2758 if (!c)
2759 goto out;
2760
2761 if (!c->sid[0]) {
2762 rc = context_struct_to_sid(state, &c->context[0], &c->sid[0]);
2763 if (rc)
2764 goto out;
2765 }
2766
2767 *sid = c->sid[0];
2768 rc = 0;
2769 out:
2770 return rc;
2771 }
2772
2773 /**
2774 * security_genfs_sid - Obtain a SID for a file in a filesystem
2775 * @fstype: filesystem type
2776 * @path: path from root of mount
2777 * @sclass: file security class
2778 * @sid: SID for path
2779 *
2780 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2781 * it afterward.
2782 */
security_genfs_sid(struct selinux_state * state,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2783 int security_genfs_sid(struct selinux_state *state,
2784 const char *fstype,
2785 char *path,
2786 u16 orig_sclass,
2787 u32 *sid)
2788 {
2789 int retval;
2790
2791 read_lock(&state->ss->policy_rwlock);
2792 retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2793 read_unlock(&state->ss->policy_rwlock);
2794 return retval;
2795 }
2796
2797 /**
2798 * security_fs_use - Determine how to handle labeling for a filesystem.
2799 * @sb: superblock in question
2800 */
security_fs_use(struct selinux_state * state,struct super_block * sb)2801 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2802 {
2803 struct policydb *policydb;
2804 struct sidtab *sidtab;
2805 int rc = 0;
2806 struct ocontext *c;
2807 struct superblock_security_struct *sbsec = sb->s_security;
2808 const char *fstype = sb->s_type->name;
2809
2810 read_lock(&state->ss->policy_rwlock);
2811
2812 policydb = &state->ss->policydb;
2813 sidtab = state->ss->sidtab;
2814
2815 c = policydb->ocontexts[OCON_FSUSE];
2816 while (c) {
2817 if (strcmp(fstype, c->u.name) == 0)
2818 break;
2819 c = c->next;
2820 }
2821
2822 if (c) {
2823 sbsec->behavior = c->v.behavior;
2824 if (!c->sid[0]) {
2825 rc = context_struct_to_sid(state, &c->context[0],
2826 &c->sid[0]);
2827 if (rc)
2828 goto out;
2829 }
2830 sbsec->sid = c->sid[0];
2831 } else {
2832 rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2833 &sbsec->sid);
2834 if (rc) {
2835 sbsec->behavior = SECURITY_FS_USE_NONE;
2836 rc = 0;
2837 } else {
2838 sbsec->behavior = SECURITY_FS_USE_GENFS;
2839 }
2840 }
2841
2842 out:
2843 read_unlock(&state->ss->policy_rwlock);
2844 return rc;
2845 }
2846
security_get_bools(struct selinux_state * state,int * len,char *** names,int ** values)2847 int security_get_bools(struct selinux_state *state,
2848 int *len, char ***names, int **values)
2849 {
2850 struct policydb *policydb;
2851 int i, rc;
2852
2853 if (!state->initialized) {
2854 *len = 0;
2855 *names = NULL;
2856 *values = NULL;
2857 return 0;
2858 }
2859
2860 read_lock(&state->ss->policy_rwlock);
2861
2862 policydb = &state->ss->policydb;
2863
2864 *names = NULL;
2865 *values = NULL;
2866
2867 rc = 0;
2868 *len = policydb->p_bools.nprim;
2869 if (!*len)
2870 goto out;
2871
2872 rc = -ENOMEM;
2873 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2874 if (!*names)
2875 goto err;
2876
2877 rc = -ENOMEM;
2878 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2879 if (!*values)
2880 goto err;
2881
2882 for (i = 0; i < *len; i++) {
2883 (*values)[i] = policydb->bool_val_to_struct[i]->state;
2884
2885 rc = -ENOMEM;
2886 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2887 GFP_ATOMIC);
2888 if (!(*names)[i])
2889 goto err;
2890 }
2891 rc = 0;
2892 out:
2893 read_unlock(&state->ss->policy_rwlock);
2894 return rc;
2895 err:
2896 if (*names) {
2897 for (i = 0; i < *len; i++)
2898 kfree((*names)[i]);
2899 }
2900 kfree(*values);
2901 goto out;
2902 }
2903
2904
security_set_bools(struct selinux_state * state,int len,int * values)2905 int security_set_bools(struct selinux_state *state, int len, int *values)
2906 {
2907 struct policydb *policydb;
2908 int i, rc;
2909 int lenp, seqno = 0;
2910 struct cond_node *cur;
2911
2912 write_lock_irq(&state->ss->policy_rwlock);
2913
2914 policydb = &state->ss->policydb;
2915
2916 rc = -EFAULT;
2917 lenp = policydb->p_bools.nprim;
2918 if (len != lenp)
2919 goto out;
2920
2921 for (i = 0; i < len; i++) {
2922 if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2923 audit_log(audit_context(), GFP_ATOMIC,
2924 AUDIT_MAC_CONFIG_CHANGE,
2925 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2926 sym_name(policydb, SYM_BOOLS, i),
2927 !!values[i],
2928 policydb->bool_val_to_struct[i]->state,
2929 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2930 audit_get_sessionid(current));
2931 }
2932 if (values[i])
2933 policydb->bool_val_to_struct[i]->state = 1;
2934 else
2935 policydb->bool_val_to_struct[i]->state = 0;
2936 }
2937
2938 for (cur = policydb->cond_list; cur; cur = cur->next) {
2939 rc = evaluate_cond_node(policydb, cur);
2940 if (rc)
2941 goto out;
2942 }
2943
2944 seqno = ++state->ss->latest_granting;
2945 rc = 0;
2946 out:
2947 write_unlock_irq(&state->ss->policy_rwlock);
2948 if (!rc) {
2949 avc_ss_reset(state->avc, seqno);
2950 selnl_notify_policyload(seqno);
2951 selinux_status_update_policyload(state, seqno);
2952 selinux_xfrm_notify_policyload();
2953 }
2954 return rc;
2955 }
2956
security_get_bool_value(struct selinux_state * state,int index)2957 int security_get_bool_value(struct selinux_state *state,
2958 int index)
2959 {
2960 struct policydb *policydb;
2961 int rc;
2962 int len;
2963
2964 read_lock(&state->ss->policy_rwlock);
2965
2966 policydb = &state->ss->policydb;
2967
2968 rc = -EFAULT;
2969 len = policydb->p_bools.nprim;
2970 if (index >= len)
2971 goto out;
2972
2973 rc = policydb->bool_val_to_struct[index]->state;
2974 out:
2975 read_unlock(&state->ss->policy_rwlock);
2976 return rc;
2977 }
2978
security_preserve_bools(struct selinux_state * state,struct policydb * policydb)2979 static int security_preserve_bools(struct selinux_state *state,
2980 struct policydb *policydb)
2981 {
2982 int rc, nbools = 0, *bvalues = NULL, i;
2983 char **bnames = NULL;
2984 struct cond_bool_datum *booldatum;
2985 struct cond_node *cur;
2986
2987 rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2988 if (rc)
2989 goto out;
2990 for (i = 0; i < nbools; i++) {
2991 booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2992 if (booldatum)
2993 booldatum->state = bvalues[i];
2994 }
2995 for (cur = policydb->cond_list; cur; cur = cur->next) {
2996 rc = evaluate_cond_node(policydb, cur);
2997 if (rc)
2998 goto out;
2999 }
3000
3001 out:
3002 if (bnames) {
3003 for (i = 0; i < nbools; i++)
3004 kfree(bnames[i]);
3005 }
3006 kfree(bnames);
3007 kfree(bvalues);
3008 return rc;
3009 }
3010
3011 /*
3012 * security_sid_mls_copy() - computes a new sid based on the given
3013 * sid and the mls portion of mls_sid.
3014 */
security_sid_mls_copy(struct selinux_state * state,u32 sid,u32 mls_sid,u32 * new_sid)3015 int security_sid_mls_copy(struct selinux_state *state,
3016 u32 sid, u32 mls_sid, u32 *new_sid)
3017 {
3018 struct policydb *policydb = &state->ss->policydb;
3019 struct sidtab *sidtab = state->ss->sidtab;
3020 struct context *context1;
3021 struct context *context2;
3022 struct context newcon;
3023 char *s;
3024 u32 len;
3025 int rc;
3026
3027 rc = 0;
3028 if (!state->initialized || !policydb->mls_enabled) {
3029 *new_sid = sid;
3030 goto out;
3031 }
3032
3033 context_init(&newcon);
3034
3035 read_lock(&state->ss->policy_rwlock);
3036
3037 rc = -EINVAL;
3038 context1 = sidtab_search(sidtab, sid);
3039 if (!context1) {
3040 pr_err("SELinux: %s: unrecognized SID %d\n",
3041 __func__, sid);
3042 goto out_unlock;
3043 }
3044
3045 rc = -EINVAL;
3046 context2 = sidtab_search(sidtab, mls_sid);
3047 if (!context2) {
3048 pr_err("SELinux: %s: unrecognized SID %d\n",
3049 __func__, mls_sid);
3050 goto out_unlock;
3051 }
3052
3053 newcon.user = context1->user;
3054 newcon.role = context1->role;
3055 newcon.type = context1->type;
3056 rc = mls_context_cpy(&newcon, context2);
3057 if (rc)
3058 goto out_unlock;
3059
3060 /* Check the validity of the new context. */
3061 if (!policydb_context_isvalid(policydb, &newcon)) {
3062 rc = convert_context_handle_invalid_context(state, &newcon);
3063 if (rc) {
3064 if (!context_struct_to_string(policydb, &newcon, &s,
3065 &len)) {
3066 struct audit_buffer *ab;
3067
3068 ab = audit_log_start(audit_context(),
3069 GFP_ATOMIC,
3070 AUDIT_SELINUX_ERR);
3071 audit_log_format(ab,
3072 "op=security_sid_mls_copy invalid_context=");
3073 /* don't record NUL with untrusted strings */
3074 audit_log_n_untrustedstring(ab, s, len - 1);
3075 audit_log_end(ab);
3076 kfree(s);
3077 }
3078 goto out_unlock;
3079 }
3080 }
3081 rc = context_struct_to_sid(state, &newcon, new_sid);
3082 out_unlock:
3083 read_unlock(&state->ss->policy_rwlock);
3084 context_destroy(&newcon);
3085 out:
3086 return rc;
3087 }
3088
3089 /**
3090 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3091 * @nlbl_sid: NetLabel SID
3092 * @nlbl_type: NetLabel labeling protocol type
3093 * @xfrm_sid: XFRM SID
3094 *
3095 * Description:
3096 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3097 * resolved into a single SID it is returned via @peer_sid and the function
3098 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3099 * returns a negative value. A table summarizing the behavior is below:
3100 *
3101 * | function return | @sid
3102 * ------------------------------+-----------------+-----------------
3103 * no peer labels | 0 | SECSID_NULL
3104 * single peer label | 0 | <peer_label>
3105 * multiple, consistent labels | 0 | <peer_label>
3106 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3107 *
3108 */
security_net_peersid_resolve(struct selinux_state * state,u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3109 int security_net_peersid_resolve(struct selinux_state *state,
3110 u32 nlbl_sid, u32 nlbl_type,
3111 u32 xfrm_sid,
3112 u32 *peer_sid)
3113 {
3114 struct policydb *policydb = &state->ss->policydb;
3115 struct sidtab *sidtab = state->ss->sidtab;
3116 int rc;
3117 struct context *nlbl_ctx;
3118 struct context *xfrm_ctx;
3119
3120 *peer_sid = SECSID_NULL;
3121
3122 /* handle the common (which also happens to be the set of easy) cases
3123 * right away, these two if statements catch everything involving a
3124 * single or absent peer SID/label */
3125 if (xfrm_sid == SECSID_NULL) {
3126 *peer_sid = nlbl_sid;
3127 return 0;
3128 }
3129 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3130 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3131 * is present */
3132 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3133 *peer_sid = xfrm_sid;
3134 return 0;
3135 }
3136
3137 /*
3138 * We don't need to check initialized here since the only way both
3139 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3140 * security server was initialized and state->initialized was true.
3141 */
3142 if (!policydb->mls_enabled)
3143 return 0;
3144
3145 read_lock(&state->ss->policy_rwlock);
3146
3147 rc = -EINVAL;
3148 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3149 if (!nlbl_ctx) {
3150 pr_err("SELinux: %s: unrecognized SID %d\n",
3151 __func__, nlbl_sid);
3152 goto out;
3153 }
3154 rc = -EINVAL;
3155 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3156 if (!xfrm_ctx) {
3157 pr_err("SELinux: %s: unrecognized SID %d\n",
3158 __func__, xfrm_sid);
3159 goto out;
3160 }
3161 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3162 if (rc)
3163 goto out;
3164
3165 /* at present NetLabel SIDs/labels really only carry MLS
3166 * information so if the MLS portion of the NetLabel SID
3167 * matches the MLS portion of the labeled XFRM SID/label
3168 * then pass along the XFRM SID as it is the most
3169 * expressive */
3170 *peer_sid = xfrm_sid;
3171 out:
3172 read_unlock(&state->ss->policy_rwlock);
3173 return rc;
3174 }
3175
get_classes_callback(void * k,void * d,void * args)3176 static int get_classes_callback(void *k, void *d, void *args)
3177 {
3178 struct class_datum *datum = d;
3179 char *name = k, **classes = args;
3180 int value = datum->value - 1;
3181
3182 classes[value] = kstrdup(name, GFP_ATOMIC);
3183 if (!classes[value])
3184 return -ENOMEM;
3185
3186 return 0;
3187 }
3188
security_get_classes(struct selinux_state * state,char *** classes,int * nclasses)3189 int security_get_classes(struct selinux_state *state,
3190 char ***classes, int *nclasses)
3191 {
3192 struct policydb *policydb = &state->ss->policydb;
3193 int rc;
3194
3195 if (!state->initialized) {
3196 *nclasses = 0;
3197 *classes = NULL;
3198 return 0;
3199 }
3200
3201 read_lock(&state->ss->policy_rwlock);
3202
3203 rc = -ENOMEM;
3204 *nclasses = policydb->p_classes.nprim;
3205 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3206 if (!*classes)
3207 goto out;
3208
3209 rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3210 *classes);
3211 if (rc) {
3212 int i;
3213 for (i = 0; i < *nclasses; i++)
3214 kfree((*classes)[i]);
3215 kfree(*classes);
3216 }
3217
3218 out:
3219 read_unlock(&state->ss->policy_rwlock);
3220 return rc;
3221 }
3222
get_permissions_callback(void * k,void * d,void * args)3223 static int get_permissions_callback(void *k, void *d, void *args)
3224 {
3225 struct perm_datum *datum = d;
3226 char *name = k, **perms = args;
3227 int value = datum->value - 1;
3228
3229 perms[value] = kstrdup(name, GFP_ATOMIC);
3230 if (!perms[value])
3231 return -ENOMEM;
3232
3233 return 0;
3234 }
3235
security_get_permissions(struct selinux_state * state,char * class,char *** perms,int * nperms)3236 int security_get_permissions(struct selinux_state *state,
3237 char *class, char ***perms, int *nperms)
3238 {
3239 struct policydb *policydb = &state->ss->policydb;
3240 int rc, i;
3241 struct class_datum *match;
3242
3243 read_lock(&state->ss->policy_rwlock);
3244
3245 rc = -EINVAL;
3246 match = hashtab_search(policydb->p_classes.table, class);
3247 if (!match) {
3248 pr_err("SELinux: %s: unrecognized class %s\n",
3249 __func__, class);
3250 goto out;
3251 }
3252
3253 rc = -ENOMEM;
3254 *nperms = match->permissions.nprim;
3255 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3256 if (!*perms)
3257 goto out;
3258
3259 if (match->comdatum) {
3260 rc = hashtab_map(match->comdatum->permissions.table,
3261 get_permissions_callback, *perms);
3262 if (rc)
3263 goto err;
3264 }
3265
3266 rc = hashtab_map(match->permissions.table, get_permissions_callback,
3267 *perms);
3268 if (rc)
3269 goto err;
3270
3271 out:
3272 read_unlock(&state->ss->policy_rwlock);
3273 return rc;
3274
3275 err:
3276 read_unlock(&state->ss->policy_rwlock);
3277 for (i = 0; i < *nperms; i++)
3278 kfree((*perms)[i]);
3279 kfree(*perms);
3280 return rc;
3281 }
3282
security_get_reject_unknown(struct selinux_state * state)3283 int security_get_reject_unknown(struct selinux_state *state)
3284 {
3285 return state->ss->policydb.reject_unknown;
3286 }
3287
security_get_allow_unknown(struct selinux_state * state)3288 int security_get_allow_unknown(struct selinux_state *state)
3289 {
3290 return state->ss->policydb.allow_unknown;
3291 }
3292
3293 /**
3294 * security_policycap_supported - Check for a specific policy capability
3295 * @req_cap: capability
3296 *
3297 * Description:
3298 * This function queries the currently loaded policy to see if it supports the
3299 * capability specified by @req_cap. Returns true (1) if the capability is
3300 * supported, false (0) if it isn't supported.
3301 *
3302 */
security_policycap_supported(struct selinux_state * state,unsigned int req_cap)3303 int security_policycap_supported(struct selinux_state *state,
3304 unsigned int req_cap)
3305 {
3306 struct policydb *policydb = &state->ss->policydb;
3307 int rc;
3308
3309 read_lock(&state->ss->policy_rwlock);
3310 rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3311 read_unlock(&state->ss->policy_rwlock);
3312
3313 return rc;
3314 }
3315
3316 struct selinux_audit_rule {
3317 u32 au_seqno;
3318 struct context au_ctxt;
3319 };
3320
selinux_audit_rule_free(void * vrule)3321 void selinux_audit_rule_free(void *vrule)
3322 {
3323 struct selinux_audit_rule *rule = vrule;
3324
3325 if (rule) {
3326 context_destroy(&rule->au_ctxt);
3327 kfree(rule);
3328 }
3329 }
3330
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)3331 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3332 {
3333 struct selinux_state *state = &selinux_state;
3334 struct policydb *policydb = &state->ss->policydb;
3335 struct selinux_audit_rule *tmprule;
3336 struct role_datum *roledatum;
3337 struct type_datum *typedatum;
3338 struct user_datum *userdatum;
3339 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3340 int rc = 0;
3341
3342 *rule = NULL;
3343
3344 if (!state->initialized)
3345 return -EOPNOTSUPP;
3346
3347 switch (field) {
3348 case AUDIT_SUBJ_USER:
3349 case AUDIT_SUBJ_ROLE:
3350 case AUDIT_SUBJ_TYPE:
3351 case AUDIT_OBJ_USER:
3352 case AUDIT_OBJ_ROLE:
3353 case AUDIT_OBJ_TYPE:
3354 /* only 'equals' and 'not equals' fit user, role, and type */
3355 if (op != Audit_equal && op != Audit_not_equal)
3356 return -EINVAL;
3357 break;
3358 case AUDIT_SUBJ_SEN:
3359 case AUDIT_SUBJ_CLR:
3360 case AUDIT_OBJ_LEV_LOW:
3361 case AUDIT_OBJ_LEV_HIGH:
3362 /* we do not allow a range, indicated by the presence of '-' */
3363 if (strchr(rulestr, '-'))
3364 return -EINVAL;
3365 break;
3366 default:
3367 /* only the above fields are valid */
3368 return -EINVAL;
3369 }
3370
3371 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3372 if (!tmprule)
3373 return -ENOMEM;
3374
3375 context_init(&tmprule->au_ctxt);
3376
3377 read_lock(&state->ss->policy_rwlock);
3378
3379 tmprule->au_seqno = state->ss->latest_granting;
3380
3381 switch (field) {
3382 case AUDIT_SUBJ_USER:
3383 case AUDIT_OBJ_USER:
3384 rc = -EINVAL;
3385 userdatum = hashtab_search(policydb->p_users.table, rulestr);
3386 if (!userdatum)
3387 goto out;
3388 tmprule->au_ctxt.user = userdatum->value;
3389 break;
3390 case AUDIT_SUBJ_ROLE:
3391 case AUDIT_OBJ_ROLE:
3392 rc = -EINVAL;
3393 roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3394 if (!roledatum)
3395 goto out;
3396 tmprule->au_ctxt.role = roledatum->value;
3397 break;
3398 case AUDIT_SUBJ_TYPE:
3399 case AUDIT_OBJ_TYPE:
3400 rc = -EINVAL;
3401 typedatum = hashtab_search(policydb->p_types.table, rulestr);
3402 if (!typedatum)
3403 goto out;
3404 tmprule->au_ctxt.type = typedatum->value;
3405 break;
3406 case AUDIT_SUBJ_SEN:
3407 case AUDIT_SUBJ_CLR:
3408 case AUDIT_OBJ_LEV_LOW:
3409 case AUDIT_OBJ_LEV_HIGH:
3410 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3411 GFP_ATOMIC);
3412 if (rc)
3413 goto out;
3414 break;
3415 }
3416 rc = 0;
3417 out:
3418 read_unlock(&state->ss->policy_rwlock);
3419
3420 if (rc) {
3421 selinux_audit_rule_free(tmprule);
3422 tmprule = NULL;
3423 }
3424
3425 *rule = tmprule;
3426
3427 return rc;
3428 }
3429
3430 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3431 int selinux_audit_rule_known(struct audit_krule *rule)
3432 {
3433 int i;
3434
3435 for (i = 0; i < rule->field_count; i++) {
3436 struct audit_field *f = &rule->fields[i];
3437 switch (f->type) {
3438 case AUDIT_SUBJ_USER:
3439 case AUDIT_SUBJ_ROLE:
3440 case AUDIT_SUBJ_TYPE:
3441 case AUDIT_SUBJ_SEN:
3442 case AUDIT_SUBJ_CLR:
3443 case AUDIT_OBJ_USER:
3444 case AUDIT_OBJ_ROLE:
3445 case AUDIT_OBJ_TYPE:
3446 case AUDIT_OBJ_LEV_LOW:
3447 case AUDIT_OBJ_LEV_HIGH:
3448 return 1;
3449 }
3450 }
3451
3452 return 0;
3453 }
3454
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule)3455 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3456 {
3457 struct selinux_state *state = &selinux_state;
3458 struct context *ctxt;
3459 struct mls_level *level;
3460 struct selinux_audit_rule *rule = vrule;
3461 int match = 0;
3462
3463 if (unlikely(!rule)) {
3464 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3465 return -ENOENT;
3466 }
3467
3468 read_lock(&state->ss->policy_rwlock);
3469
3470 if (rule->au_seqno < state->ss->latest_granting) {
3471 match = -ESTALE;
3472 goto out;
3473 }
3474
3475 ctxt = sidtab_search(state->ss->sidtab, sid);
3476 if (unlikely(!ctxt)) {
3477 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3478 sid);
3479 match = -ENOENT;
3480 goto out;
3481 }
3482
3483 /* a field/op pair that is not caught here will simply fall through
3484 without a match */
3485 switch (field) {
3486 case AUDIT_SUBJ_USER:
3487 case AUDIT_OBJ_USER:
3488 switch (op) {
3489 case Audit_equal:
3490 match = (ctxt->user == rule->au_ctxt.user);
3491 break;
3492 case Audit_not_equal:
3493 match = (ctxt->user != rule->au_ctxt.user);
3494 break;
3495 }
3496 break;
3497 case AUDIT_SUBJ_ROLE:
3498 case AUDIT_OBJ_ROLE:
3499 switch (op) {
3500 case Audit_equal:
3501 match = (ctxt->role == rule->au_ctxt.role);
3502 break;
3503 case Audit_not_equal:
3504 match = (ctxt->role != rule->au_ctxt.role);
3505 break;
3506 }
3507 break;
3508 case AUDIT_SUBJ_TYPE:
3509 case AUDIT_OBJ_TYPE:
3510 switch (op) {
3511 case Audit_equal:
3512 match = (ctxt->type == rule->au_ctxt.type);
3513 break;
3514 case Audit_not_equal:
3515 match = (ctxt->type != rule->au_ctxt.type);
3516 break;
3517 }
3518 break;
3519 case AUDIT_SUBJ_SEN:
3520 case AUDIT_SUBJ_CLR:
3521 case AUDIT_OBJ_LEV_LOW:
3522 case AUDIT_OBJ_LEV_HIGH:
3523 level = ((field == AUDIT_SUBJ_SEN ||
3524 field == AUDIT_OBJ_LEV_LOW) ?
3525 &ctxt->range.level[0] : &ctxt->range.level[1]);
3526 switch (op) {
3527 case Audit_equal:
3528 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3529 level);
3530 break;
3531 case Audit_not_equal:
3532 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3533 level);
3534 break;
3535 case Audit_lt:
3536 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3537 level) &&
3538 !mls_level_eq(&rule->au_ctxt.range.level[0],
3539 level));
3540 break;
3541 case Audit_le:
3542 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3543 level);
3544 break;
3545 case Audit_gt:
3546 match = (mls_level_dom(level,
3547 &rule->au_ctxt.range.level[0]) &&
3548 !mls_level_eq(level,
3549 &rule->au_ctxt.range.level[0]));
3550 break;
3551 case Audit_ge:
3552 match = mls_level_dom(level,
3553 &rule->au_ctxt.range.level[0]);
3554 break;
3555 }
3556 }
3557
3558 out:
3559 read_unlock(&state->ss->policy_rwlock);
3560 return match;
3561 }
3562
3563 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3564
aurule_avc_callback(u32 event)3565 static int aurule_avc_callback(u32 event)
3566 {
3567 int err = 0;
3568
3569 if (event == AVC_CALLBACK_RESET && aurule_callback)
3570 err = aurule_callback();
3571 return err;
3572 }
3573
aurule_init(void)3574 static int __init aurule_init(void)
3575 {
3576 int err;
3577
3578 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3579 if (err)
3580 panic("avc_add_callback() failed, error %d\n", err);
3581
3582 return err;
3583 }
3584 __initcall(aurule_init);
3585
3586 #ifdef CONFIG_NETLABEL
3587 /**
3588 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3589 * @secattr: the NetLabel packet security attributes
3590 * @sid: the SELinux SID
3591 *
3592 * Description:
3593 * Attempt to cache the context in @ctx, which was derived from the packet in
3594 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3595 * already been initialized.
3596 *
3597 */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3598 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3599 u32 sid)
3600 {
3601 u32 *sid_cache;
3602
3603 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3604 if (sid_cache == NULL)
3605 return;
3606 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3607 if (secattr->cache == NULL) {
3608 kfree(sid_cache);
3609 return;
3610 }
3611
3612 *sid_cache = sid;
3613 secattr->cache->free = kfree;
3614 secattr->cache->data = sid_cache;
3615 secattr->flags |= NETLBL_SECATTR_CACHE;
3616 }
3617
3618 /**
3619 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3620 * @secattr: the NetLabel packet security attributes
3621 * @sid: the SELinux SID
3622 *
3623 * Description:
3624 * Convert the given NetLabel security attributes in @secattr into a
3625 * SELinux SID. If the @secattr field does not contain a full SELinux
3626 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3627 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3628 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3629 * conversion for future lookups. Returns zero on success, negative values on
3630 * failure.
3631 *
3632 */
security_netlbl_secattr_to_sid(struct selinux_state * state,struct netlbl_lsm_secattr * secattr,u32 * sid)3633 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3634 struct netlbl_lsm_secattr *secattr,
3635 u32 *sid)
3636 {
3637 struct policydb *policydb = &state->ss->policydb;
3638 struct sidtab *sidtab = state->ss->sidtab;
3639 int rc;
3640 struct context *ctx;
3641 struct context ctx_new;
3642
3643 if (!state->initialized) {
3644 *sid = SECSID_NULL;
3645 return 0;
3646 }
3647
3648 read_lock(&state->ss->policy_rwlock);
3649
3650 if (secattr->flags & NETLBL_SECATTR_CACHE)
3651 *sid = *(u32 *)secattr->cache->data;
3652 else if (secattr->flags & NETLBL_SECATTR_SECID)
3653 *sid = secattr->attr.secid;
3654 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3655 rc = -EIDRM;
3656 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3657 if (ctx == NULL)
3658 goto out;
3659
3660 context_init(&ctx_new);
3661 ctx_new.user = ctx->user;
3662 ctx_new.role = ctx->role;
3663 ctx_new.type = ctx->type;
3664 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3665 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3666 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3667 if (rc)
3668 goto out;
3669 }
3670 rc = -EIDRM;
3671 if (!mls_context_isvalid(policydb, &ctx_new))
3672 goto out_free;
3673
3674 rc = context_struct_to_sid(state, &ctx_new, sid);
3675 if (rc)
3676 goto out_free;
3677
3678 security_netlbl_cache_add(secattr, *sid);
3679
3680 ebitmap_destroy(&ctx_new.range.level[0].cat);
3681 } else
3682 *sid = SECSID_NULL;
3683
3684 read_unlock(&state->ss->policy_rwlock);
3685 return 0;
3686 out_free:
3687 ebitmap_destroy(&ctx_new.range.level[0].cat);
3688 out:
3689 read_unlock(&state->ss->policy_rwlock);
3690 return rc;
3691 }
3692
3693 /**
3694 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3695 * @sid: the SELinux SID
3696 * @secattr: the NetLabel packet security attributes
3697 *
3698 * Description:
3699 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3700 * Returns zero on success, negative values on failure.
3701 *
3702 */
security_netlbl_sid_to_secattr(struct selinux_state * state,u32 sid,struct netlbl_lsm_secattr * secattr)3703 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3704 u32 sid, struct netlbl_lsm_secattr *secattr)
3705 {
3706 struct policydb *policydb = &state->ss->policydb;
3707 int rc;
3708 struct context *ctx;
3709
3710 if (!state->initialized)
3711 return 0;
3712
3713 read_lock(&state->ss->policy_rwlock);
3714
3715 rc = -ENOENT;
3716 ctx = sidtab_search(state->ss->sidtab, sid);
3717 if (ctx == NULL)
3718 goto out;
3719
3720 rc = -ENOMEM;
3721 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3722 GFP_ATOMIC);
3723 if (secattr->domain == NULL)
3724 goto out;
3725
3726 secattr->attr.secid = sid;
3727 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3728 mls_export_netlbl_lvl(policydb, ctx, secattr);
3729 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3730 out:
3731 read_unlock(&state->ss->policy_rwlock);
3732 return rc;
3733 }
3734 #endif /* CONFIG_NETLABEL */
3735
3736 /**
3737 * security_read_policy - read the policy.
3738 * @data: binary policy data
3739 * @len: length of data in bytes
3740 *
3741 */
security_read_policy(struct selinux_state * state,void ** data,size_t * len)3742 int security_read_policy(struct selinux_state *state,
3743 void **data, size_t *len)
3744 {
3745 struct policydb *policydb = &state->ss->policydb;
3746 int rc;
3747 struct policy_file fp;
3748
3749 if (!state->initialized)
3750 return -EINVAL;
3751
3752 *len = security_policydb_len(state);
3753
3754 *data = vmalloc_user(*len);
3755 if (!*data)
3756 return -ENOMEM;
3757
3758 fp.data = *data;
3759 fp.len = *len;
3760
3761 read_lock(&state->ss->policy_rwlock);
3762 rc = policydb_write(policydb, &fp);
3763 read_unlock(&state->ss->policy_rwlock);
3764
3765 if (rc)
3766 return rc;
3767
3768 *len = (unsigned long)fp.data - (unsigned long)*data;
3769 return 0;
3770
3771 }
3772