1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Asymmetric public-key cryptography key type
3 *
4 * See Documentation/crypto/asymmetric-keys.txt
5 *
6 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
7 * Written by David Howells (dhowells@redhat.com)
8 */
9 #include <keys/asymmetric-subtype.h>
10 #include <keys/asymmetric-parser.h>
11 #include <crypto/public_key.h>
12 #include <linux/seq_file.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/ctype.h>
16 #include <keys/system_keyring.h>
17 #include <keys/user-type.h>
18 #include "asymmetric_keys.h"
19
20 MODULE_LICENSE("GPL");
21
22 const char *const key_being_used_for[NR__KEY_BEING_USED_FOR] = {
23 [VERIFYING_MODULE_SIGNATURE] = "mod sig",
24 [VERIFYING_FIRMWARE_SIGNATURE] = "firmware sig",
25 [VERIFYING_KEXEC_PE_SIGNATURE] = "kexec PE sig",
26 [VERIFYING_KEY_SIGNATURE] = "key sig",
27 [VERIFYING_KEY_SELF_SIGNATURE] = "key self sig",
28 [VERIFYING_UNSPECIFIED_SIGNATURE] = "unspec sig",
29 };
30 EXPORT_SYMBOL_GPL(key_being_used_for);
31
32 static LIST_HEAD(asymmetric_key_parsers);
33 static DECLARE_RWSEM(asymmetric_key_parsers_sem);
34
35 /**
36 * find_asymmetric_key - Find a key by ID.
37 * @keyring: The keys to search.
38 * @id_0: The first ID to look for or NULL.
39 * @id_1: The second ID to look for or NULL.
40 * @partial: Use partial match if true, exact if false.
41 *
42 * Find a key in the given keyring by identifier. The preferred identifier is
43 * the id_0 and the fallback identifier is the id_1. If both are given, the
44 * lookup is by the former, but the latter must also match.
45 */
find_asymmetric_key(struct key * keyring,const struct asymmetric_key_id * id_0,const struct asymmetric_key_id * id_1,bool partial)46 struct key *find_asymmetric_key(struct key *keyring,
47 const struct asymmetric_key_id *id_0,
48 const struct asymmetric_key_id *id_1,
49 bool partial)
50 {
51 struct key *key;
52 key_ref_t ref;
53 const char *lookup;
54 char *req, *p;
55 int len;
56
57 BUG_ON(!id_0 && !id_1);
58
59 if (id_0) {
60 lookup = id_0->data;
61 len = id_0->len;
62 } else {
63 lookup = id_1->data;
64 len = id_1->len;
65 }
66
67 /* Construct an identifier "id:<keyid>". */
68 p = req = kmalloc(2 + 1 + len * 2 + 1, GFP_KERNEL);
69 if (!req)
70 return ERR_PTR(-ENOMEM);
71
72 if (partial) {
73 *p++ = 'i';
74 *p++ = 'd';
75 } else {
76 *p++ = 'e';
77 *p++ = 'x';
78 }
79 *p++ = ':';
80 p = bin2hex(p, lookup, len);
81 *p = 0;
82
83 pr_debug("Look up: \"%s\"\n", req);
84
85 ref = keyring_search(make_key_ref(keyring, 1),
86 &key_type_asymmetric, req, true);
87 if (IS_ERR(ref))
88 pr_debug("Request for key '%s' err %ld\n", req, PTR_ERR(ref));
89 kfree(req);
90
91 if (IS_ERR(ref)) {
92 switch (PTR_ERR(ref)) {
93 /* Hide some search errors */
94 case -EACCES:
95 case -ENOTDIR:
96 case -EAGAIN:
97 return ERR_PTR(-ENOKEY);
98 default:
99 return ERR_CAST(ref);
100 }
101 }
102
103 key = key_ref_to_ptr(ref);
104 if (id_0 && id_1) {
105 const struct asymmetric_key_ids *kids = asymmetric_key_ids(key);
106
107 if (!kids->id[1]) {
108 pr_debug("First ID matches, but second is missing\n");
109 goto reject;
110 }
111 if (!asymmetric_key_id_same(id_1, kids->id[1])) {
112 pr_debug("First ID matches, but second does not\n");
113 goto reject;
114 }
115 }
116
117 pr_devel("<==%s() = 0 [%x]\n", __func__, key_serial(key));
118 return key;
119
120 reject:
121 key_put(key);
122 return ERR_PTR(-EKEYREJECTED);
123 }
124 EXPORT_SYMBOL_GPL(find_asymmetric_key);
125
126 /**
127 * asymmetric_key_generate_id: Construct an asymmetric key ID
128 * @val_1: First binary blob
129 * @len_1: Length of first binary blob
130 * @val_2: Second binary blob
131 * @len_2: Length of second binary blob
132 *
133 * Construct an asymmetric key ID from a pair of binary blobs.
134 */
asymmetric_key_generate_id(const void * val_1,size_t len_1,const void * val_2,size_t len_2)135 struct asymmetric_key_id *asymmetric_key_generate_id(const void *val_1,
136 size_t len_1,
137 const void *val_2,
138 size_t len_2)
139 {
140 struct asymmetric_key_id *kid;
141
142 kid = kmalloc(sizeof(struct asymmetric_key_id) + len_1 + len_2,
143 GFP_KERNEL);
144 if (!kid)
145 return ERR_PTR(-ENOMEM);
146 kid->len = len_1 + len_2;
147 memcpy(kid->data, val_1, len_1);
148 memcpy(kid->data + len_1, val_2, len_2);
149 return kid;
150 }
151 EXPORT_SYMBOL_GPL(asymmetric_key_generate_id);
152
153 /**
154 * asymmetric_key_id_same - Return true if two asymmetric keys IDs are the same.
155 * @kid_1, @kid_2: The key IDs to compare
156 */
asymmetric_key_id_same(const struct asymmetric_key_id * kid1,const struct asymmetric_key_id * kid2)157 bool asymmetric_key_id_same(const struct asymmetric_key_id *kid1,
158 const struct asymmetric_key_id *kid2)
159 {
160 if (!kid1 || !kid2)
161 return false;
162 if (kid1->len != kid2->len)
163 return false;
164 return memcmp(kid1->data, kid2->data, kid1->len) == 0;
165 }
166 EXPORT_SYMBOL_GPL(asymmetric_key_id_same);
167
168 /**
169 * asymmetric_key_id_partial - Return true if two asymmetric keys IDs
170 * partially match
171 * @kid_1, @kid_2: The key IDs to compare
172 */
asymmetric_key_id_partial(const struct asymmetric_key_id * kid1,const struct asymmetric_key_id * kid2)173 bool asymmetric_key_id_partial(const struct asymmetric_key_id *kid1,
174 const struct asymmetric_key_id *kid2)
175 {
176 if (!kid1 || !kid2)
177 return false;
178 if (kid1->len < kid2->len)
179 return false;
180 return memcmp(kid1->data + (kid1->len - kid2->len),
181 kid2->data, kid2->len) == 0;
182 }
183 EXPORT_SYMBOL_GPL(asymmetric_key_id_partial);
184
185 /**
186 * asymmetric_match_key_ids - Search asymmetric key IDs
187 * @kids: The list of key IDs to check
188 * @match_id: The key ID we're looking for
189 * @match: The match function to use
190 */
asymmetric_match_key_ids(const struct asymmetric_key_ids * kids,const struct asymmetric_key_id * match_id,bool (* match)(const struct asymmetric_key_id * kid1,const struct asymmetric_key_id * kid2))191 static bool asymmetric_match_key_ids(
192 const struct asymmetric_key_ids *kids,
193 const struct asymmetric_key_id *match_id,
194 bool (*match)(const struct asymmetric_key_id *kid1,
195 const struct asymmetric_key_id *kid2))
196 {
197 int i;
198
199 if (!kids || !match_id)
200 return false;
201 for (i = 0; i < ARRAY_SIZE(kids->id); i++)
202 if (match(kids->id[i], match_id))
203 return true;
204 return false;
205 }
206
207 /* helper function can be called directly with pre-allocated memory */
__asymmetric_key_hex_to_key_id(const char * id,struct asymmetric_key_id * match_id,size_t hexlen)208 inline int __asymmetric_key_hex_to_key_id(const char *id,
209 struct asymmetric_key_id *match_id,
210 size_t hexlen)
211 {
212 match_id->len = hexlen;
213 return hex2bin(match_id->data, id, hexlen);
214 }
215
216 /**
217 * asymmetric_key_hex_to_key_id - Convert a hex string into a key ID.
218 * @id: The ID as a hex string.
219 */
asymmetric_key_hex_to_key_id(const char * id)220 struct asymmetric_key_id *asymmetric_key_hex_to_key_id(const char *id)
221 {
222 struct asymmetric_key_id *match_id;
223 size_t asciihexlen;
224 int ret;
225
226 if (!*id)
227 return ERR_PTR(-EINVAL);
228 asciihexlen = strlen(id);
229 if (asciihexlen & 1)
230 return ERR_PTR(-EINVAL);
231
232 match_id = kmalloc(sizeof(struct asymmetric_key_id) + asciihexlen / 2,
233 GFP_KERNEL);
234 if (!match_id)
235 return ERR_PTR(-ENOMEM);
236 ret = __asymmetric_key_hex_to_key_id(id, match_id, asciihexlen / 2);
237 if (ret < 0) {
238 kfree(match_id);
239 return ERR_PTR(-EINVAL);
240 }
241 return match_id;
242 }
243
244 /*
245 * Match asymmetric keys by an exact match on an ID.
246 */
asymmetric_key_cmp(const struct key * key,const struct key_match_data * match_data)247 static bool asymmetric_key_cmp(const struct key *key,
248 const struct key_match_data *match_data)
249 {
250 const struct asymmetric_key_ids *kids = asymmetric_key_ids(key);
251 const struct asymmetric_key_id *match_id = match_data->preparsed;
252
253 return asymmetric_match_key_ids(kids, match_id,
254 asymmetric_key_id_same);
255 }
256
257 /*
258 * Match asymmetric keys by a partial match on an IDs.
259 */
asymmetric_key_cmp_partial(const struct key * key,const struct key_match_data * match_data)260 static bool asymmetric_key_cmp_partial(const struct key *key,
261 const struct key_match_data *match_data)
262 {
263 const struct asymmetric_key_ids *kids = asymmetric_key_ids(key);
264 const struct asymmetric_key_id *match_id = match_data->preparsed;
265
266 return asymmetric_match_key_ids(kids, match_id,
267 asymmetric_key_id_partial);
268 }
269
270 /*
271 * Preparse the match criterion. If we don't set lookup_type and cmp,
272 * the default will be an exact match on the key description.
273 *
274 * There are some specifiers for matching key IDs rather than by the key
275 * description:
276 *
277 * "id:<id>" - find a key by partial match on any available ID
278 * "ex:<id>" - find a key by exact match on any available ID
279 *
280 * These have to be searched by iteration rather than by direct lookup because
281 * the key is hashed according to its description.
282 */
asymmetric_key_match_preparse(struct key_match_data * match_data)283 static int asymmetric_key_match_preparse(struct key_match_data *match_data)
284 {
285 struct asymmetric_key_id *match_id;
286 const char *spec = match_data->raw_data;
287 const char *id;
288 bool (*cmp)(const struct key *, const struct key_match_data *) =
289 asymmetric_key_cmp;
290
291 if (!spec || !*spec)
292 return -EINVAL;
293 if (spec[0] == 'i' &&
294 spec[1] == 'd' &&
295 spec[2] == ':') {
296 id = spec + 3;
297 cmp = asymmetric_key_cmp_partial;
298 } else if (spec[0] == 'e' &&
299 spec[1] == 'x' &&
300 spec[2] == ':') {
301 id = spec + 3;
302 } else {
303 goto default_match;
304 }
305
306 match_id = asymmetric_key_hex_to_key_id(id);
307 if (IS_ERR(match_id))
308 return PTR_ERR(match_id);
309
310 match_data->preparsed = match_id;
311 match_data->cmp = cmp;
312 match_data->lookup_type = KEYRING_SEARCH_LOOKUP_ITERATE;
313 return 0;
314
315 default_match:
316 return 0;
317 }
318
319 /*
320 * Free the preparsed the match criterion.
321 */
asymmetric_key_match_free(struct key_match_data * match_data)322 static void asymmetric_key_match_free(struct key_match_data *match_data)
323 {
324 kfree(match_data->preparsed);
325 }
326
327 /*
328 * Describe the asymmetric key
329 */
asymmetric_key_describe(const struct key * key,struct seq_file * m)330 static void asymmetric_key_describe(const struct key *key, struct seq_file *m)
331 {
332 const struct asymmetric_key_subtype *subtype = asymmetric_key_subtype(key);
333 const struct asymmetric_key_ids *kids = asymmetric_key_ids(key);
334 const struct asymmetric_key_id *kid;
335 const unsigned char *p;
336 int n;
337
338 seq_puts(m, key->description);
339
340 if (subtype) {
341 seq_puts(m, ": ");
342 subtype->describe(key, m);
343
344 if (kids && kids->id[1]) {
345 kid = kids->id[1];
346 seq_putc(m, ' ');
347 n = kid->len;
348 p = kid->data;
349 if (n > 4) {
350 p += n - 4;
351 n = 4;
352 }
353 seq_printf(m, "%*phN", n, p);
354 }
355
356 seq_puts(m, " [");
357 /* put something here to indicate the key's capabilities */
358 seq_putc(m, ']');
359 }
360 }
361
362 /*
363 * Preparse a asymmetric payload to get format the contents appropriately for the
364 * internal payload to cut down on the number of scans of the data performed.
365 *
366 * We also generate a proposed description from the contents of the key that
367 * can be used to name the key if the user doesn't want to provide one.
368 */
asymmetric_key_preparse(struct key_preparsed_payload * prep)369 static int asymmetric_key_preparse(struct key_preparsed_payload *prep)
370 {
371 struct asymmetric_key_parser *parser;
372 int ret;
373
374 pr_devel("==>%s()\n", __func__);
375
376 if (prep->datalen == 0)
377 return -EINVAL;
378
379 down_read(&asymmetric_key_parsers_sem);
380
381 ret = -EBADMSG;
382 list_for_each_entry(parser, &asymmetric_key_parsers, link) {
383 pr_debug("Trying parser '%s'\n", parser->name);
384
385 ret = parser->parse(prep);
386 if (ret != -EBADMSG) {
387 pr_debug("Parser recognised the format (ret %d)\n",
388 ret);
389 break;
390 }
391 }
392
393 up_read(&asymmetric_key_parsers_sem);
394 pr_devel("<==%s() = %d\n", __func__, ret);
395 return ret;
396 }
397
398 /*
399 * Clean up the key ID list
400 */
asymmetric_key_free_kids(struct asymmetric_key_ids * kids)401 static void asymmetric_key_free_kids(struct asymmetric_key_ids *kids)
402 {
403 int i;
404
405 if (kids) {
406 for (i = 0; i < ARRAY_SIZE(kids->id); i++)
407 kfree(kids->id[i]);
408 kfree(kids);
409 }
410 }
411
412 /*
413 * Clean up the preparse data
414 */
asymmetric_key_free_preparse(struct key_preparsed_payload * prep)415 static void asymmetric_key_free_preparse(struct key_preparsed_payload *prep)
416 {
417 struct asymmetric_key_subtype *subtype = prep->payload.data[asym_subtype];
418 struct asymmetric_key_ids *kids = prep->payload.data[asym_key_ids];
419
420 pr_devel("==>%s()\n", __func__);
421
422 if (subtype) {
423 subtype->destroy(prep->payload.data[asym_crypto],
424 prep->payload.data[asym_auth]);
425 module_put(subtype->owner);
426 }
427 asymmetric_key_free_kids(kids);
428 kfree(prep->description);
429 }
430
431 /*
432 * dispose of the data dangling from the corpse of a asymmetric key
433 */
asymmetric_key_destroy(struct key * key)434 static void asymmetric_key_destroy(struct key *key)
435 {
436 struct asymmetric_key_subtype *subtype = asymmetric_key_subtype(key);
437 struct asymmetric_key_ids *kids = key->payload.data[asym_key_ids];
438 void *data = key->payload.data[asym_crypto];
439 void *auth = key->payload.data[asym_auth];
440
441 key->payload.data[asym_crypto] = NULL;
442 key->payload.data[asym_subtype] = NULL;
443 key->payload.data[asym_key_ids] = NULL;
444 key->payload.data[asym_auth] = NULL;
445
446 if (subtype) {
447 subtype->destroy(data, auth);
448 module_put(subtype->owner);
449 }
450
451 asymmetric_key_free_kids(kids);
452 }
453
asymmetric_restriction_alloc(key_restrict_link_func_t check,struct key * key)454 static struct key_restriction *asymmetric_restriction_alloc(
455 key_restrict_link_func_t check,
456 struct key *key)
457 {
458 struct key_restriction *keyres =
459 kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
460
461 if (!keyres)
462 return ERR_PTR(-ENOMEM);
463
464 keyres->check = check;
465 keyres->key = key;
466 keyres->keytype = &key_type_asymmetric;
467
468 return keyres;
469 }
470
471 /*
472 * look up keyring restrict functions for asymmetric keys
473 */
asymmetric_lookup_restriction(const char * restriction)474 static struct key_restriction *asymmetric_lookup_restriction(
475 const char *restriction)
476 {
477 char *restrict_method;
478 char *parse_buf;
479 char *next;
480 struct key_restriction *ret = ERR_PTR(-EINVAL);
481
482 if (strcmp("builtin_trusted", restriction) == 0)
483 return asymmetric_restriction_alloc(
484 restrict_link_by_builtin_trusted, NULL);
485
486 if (strcmp("builtin_and_secondary_trusted", restriction) == 0)
487 return asymmetric_restriction_alloc(
488 restrict_link_by_builtin_and_secondary_trusted, NULL);
489
490 parse_buf = kstrndup(restriction, PAGE_SIZE, GFP_KERNEL);
491 if (!parse_buf)
492 return ERR_PTR(-ENOMEM);
493
494 next = parse_buf;
495 restrict_method = strsep(&next, ":");
496
497 if ((strcmp(restrict_method, "key_or_keyring") == 0) && next) {
498 char *key_text;
499 key_serial_t serial;
500 struct key *key;
501 key_restrict_link_func_t link_fn =
502 restrict_link_by_key_or_keyring;
503 bool allow_null_key = false;
504
505 key_text = strsep(&next, ":");
506
507 if (next) {
508 if (strcmp(next, "chain") != 0)
509 goto out;
510
511 link_fn = restrict_link_by_key_or_keyring_chain;
512 allow_null_key = true;
513 }
514
515 if (kstrtos32(key_text, 0, &serial) < 0)
516 goto out;
517
518 if ((serial == 0) && allow_null_key) {
519 key = NULL;
520 } else {
521 key = key_lookup(serial);
522 if (IS_ERR(key)) {
523 ret = ERR_CAST(key);
524 goto out;
525 }
526 }
527
528 ret = asymmetric_restriction_alloc(link_fn, key);
529 if (IS_ERR(ret))
530 key_put(key);
531 }
532
533 out:
534 kfree(parse_buf);
535 return ret;
536 }
537
asymmetric_key_eds_op(struct kernel_pkey_params * params,const void * in,void * out)538 int asymmetric_key_eds_op(struct kernel_pkey_params *params,
539 const void *in, void *out)
540 {
541 const struct asymmetric_key_subtype *subtype;
542 struct key *key = params->key;
543 int ret;
544
545 pr_devel("==>%s()\n", __func__);
546
547 if (key->type != &key_type_asymmetric)
548 return -EINVAL;
549 subtype = asymmetric_key_subtype(key);
550 if (!subtype ||
551 !key->payload.data[0])
552 return -EINVAL;
553 if (!subtype->eds_op)
554 return -ENOTSUPP;
555
556 ret = subtype->eds_op(params, in, out);
557
558 pr_devel("<==%s() = %d\n", __func__, ret);
559 return ret;
560 }
561
asymmetric_key_verify_signature(struct kernel_pkey_params * params,const void * in,const void * in2)562 static int asymmetric_key_verify_signature(struct kernel_pkey_params *params,
563 const void *in, const void *in2)
564 {
565 struct public_key_signature sig = {
566 .s_size = params->in2_len,
567 .digest_size = params->in_len,
568 .encoding = params->encoding,
569 .hash_algo = params->hash_algo,
570 .digest = (void *)in,
571 .s = (void *)in2,
572 };
573
574 return verify_signature(params->key, &sig);
575 }
576
577 struct key_type key_type_asymmetric = {
578 .name = "asymmetric",
579 .preparse = asymmetric_key_preparse,
580 .free_preparse = asymmetric_key_free_preparse,
581 .instantiate = generic_key_instantiate,
582 .match_preparse = asymmetric_key_match_preparse,
583 .match_free = asymmetric_key_match_free,
584 .destroy = asymmetric_key_destroy,
585 .describe = asymmetric_key_describe,
586 .lookup_restriction = asymmetric_lookup_restriction,
587 .asym_query = query_asymmetric_key,
588 .asym_eds_op = asymmetric_key_eds_op,
589 .asym_verify_signature = asymmetric_key_verify_signature,
590 };
591 EXPORT_SYMBOL_GPL(key_type_asymmetric);
592
593 /**
594 * register_asymmetric_key_parser - Register a asymmetric key blob parser
595 * @parser: The parser to register
596 */
register_asymmetric_key_parser(struct asymmetric_key_parser * parser)597 int register_asymmetric_key_parser(struct asymmetric_key_parser *parser)
598 {
599 struct asymmetric_key_parser *cursor;
600 int ret;
601
602 down_write(&asymmetric_key_parsers_sem);
603
604 list_for_each_entry(cursor, &asymmetric_key_parsers, link) {
605 if (strcmp(cursor->name, parser->name) == 0) {
606 pr_err("Asymmetric key parser '%s' already registered\n",
607 parser->name);
608 ret = -EEXIST;
609 goto out;
610 }
611 }
612
613 list_add_tail(&parser->link, &asymmetric_key_parsers);
614
615 pr_notice("Asymmetric key parser '%s' registered\n", parser->name);
616 ret = 0;
617
618 out:
619 up_write(&asymmetric_key_parsers_sem);
620 return ret;
621 }
622 EXPORT_SYMBOL_GPL(register_asymmetric_key_parser);
623
624 /**
625 * unregister_asymmetric_key_parser - Unregister a asymmetric key blob parser
626 * @parser: The parser to unregister
627 */
unregister_asymmetric_key_parser(struct asymmetric_key_parser * parser)628 void unregister_asymmetric_key_parser(struct asymmetric_key_parser *parser)
629 {
630 down_write(&asymmetric_key_parsers_sem);
631 list_del(&parser->link);
632 up_write(&asymmetric_key_parsers_sem);
633
634 pr_notice("Asymmetric key parser '%s' unregistered\n", parser->name);
635 }
636 EXPORT_SYMBOL_GPL(unregister_asymmetric_key_parser);
637
638 /*
639 * Module stuff
640 */
asymmetric_key_init(void)641 static int __init asymmetric_key_init(void)
642 {
643 return register_key_type(&key_type_asymmetric);
644 }
645
asymmetric_key_cleanup(void)646 static void __exit asymmetric_key_cleanup(void)
647 {
648 unregister_key_type(&key_type_asymmetric);
649 }
650
651 module_init(asymmetric_key_init);
652 module_exit(asymmetric_key_cleanup);
653