1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71
72 #include <linux/uaccess.h>
73 #include <trace/events/skb.h>
74 #include <linux/highmem.h>
75 #include <linux/capability.h>
76 #include <linux/user_namespace.h>
77 #include <linux/indirect_call_wrapper.h>
78
79 #include "datagram.h"
80
81 struct kmem_cache *skbuff_head_cache __ro_after_init;
82 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
83 #ifdef CONFIG_SKB_EXTENSIONS
84 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
85 #endif
86 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
87 EXPORT_SYMBOL(sysctl_max_skb_frags);
88
89 /**
90 * skb_panic - private function for out-of-line support
91 * @skb: buffer
92 * @sz: size
93 * @addr: address
94 * @msg: skb_over_panic or skb_under_panic
95 *
96 * Out-of-line support for skb_put() and skb_push().
97 * Called via the wrapper skb_over_panic() or skb_under_panic().
98 * Keep out of line to prevent kernel bloat.
99 * __builtin_return_address is not used because it is not always reliable.
100 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])101 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
102 const char msg[])
103 {
104 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
105 msg, addr, skb->len, sz, skb->head, skb->data,
106 (unsigned long)skb->tail, (unsigned long)skb->end,
107 skb->dev ? skb->dev->name : "<NULL>");
108 BUG();
109 }
110
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)111 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
112 {
113 skb_panic(skb, sz, addr, __func__);
114 }
115
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)116 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
117 {
118 skb_panic(skb, sz, addr, __func__);
119 }
120
121 /*
122 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
123 * the caller if emergency pfmemalloc reserves are being used. If it is and
124 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
125 * may be used. Otherwise, the packet data may be discarded until enough
126 * memory is free
127 */
128 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
129 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
130
__kmalloc_reserve(size_t size,gfp_t flags,int node,unsigned long ip,bool * pfmemalloc)131 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
132 unsigned long ip, bool *pfmemalloc)
133 {
134 void *obj;
135 bool ret_pfmemalloc = false;
136
137 /*
138 * Try a regular allocation, when that fails and we're not entitled
139 * to the reserves, fail.
140 */
141 obj = kmalloc_node_track_caller(size,
142 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
143 node);
144 if (obj || !(gfp_pfmemalloc_allowed(flags)))
145 goto out;
146
147 /* Try again but now we are using pfmemalloc reserves */
148 ret_pfmemalloc = true;
149 obj = kmalloc_node_track_caller(size, flags, node);
150
151 out:
152 if (pfmemalloc)
153 *pfmemalloc = ret_pfmemalloc;
154
155 return obj;
156 }
157
158 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
159 * 'private' fields and also do memory statistics to find all the
160 * [BEEP] leaks.
161 *
162 */
163
164 /**
165 * __alloc_skb - allocate a network buffer
166 * @size: size to allocate
167 * @gfp_mask: allocation mask
168 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
169 * instead of head cache and allocate a cloned (child) skb.
170 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
171 * allocations in case the data is required for writeback
172 * @node: numa node to allocate memory on
173 *
174 * Allocate a new &sk_buff. The returned buffer has no headroom and a
175 * tail room of at least size bytes. The object has a reference count
176 * of one. The return is the buffer. On a failure the return is %NULL.
177 *
178 * Buffers may only be allocated from interrupts using a @gfp_mask of
179 * %GFP_ATOMIC.
180 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)181 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
182 int flags, int node)
183 {
184 struct kmem_cache *cache;
185 struct skb_shared_info *shinfo;
186 struct sk_buff *skb;
187 u8 *data;
188 bool pfmemalloc;
189
190 cache = (flags & SKB_ALLOC_FCLONE)
191 ? skbuff_fclone_cache : skbuff_head_cache;
192
193 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
194 gfp_mask |= __GFP_MEMALLOC;
195
196 /* Get the HEAD */
197 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
198 if (!skb)
199 goto out;
200 prefetchw(skb);
201
202 /* We do our best to align skb_shared_info on a separate cache
203 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
204 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
205 * Both skb->head and skb_shared_info are cache line aligned.
206 */
207 size = SKB_DATA_ALIGN(size);
208 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
209 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
210 if (!data)
211 goto nodata;
212 /* kmalloc(size) might give us more room than requested.
213 * Put skb_shared_info exactly at the end of allocated zone,
214 * to allow max possible filling before reallocation.
215 */
216 size = SKB_WITH_OVERHEAD(ksize(data));
217 prefetchw(data + size);
218
219 /*
220 * Only clear those fields we need to clear, not those that we will
221 * actually initialise below. Hence, don't put any more fields after
222 * the tail pointer in struct sk_buff!
223 */
224 memset(skb, 0, offsetof(struct sk_buff, tail));
225 /* Account for allocated memory : skb + skb->head */
226 skb->truesize = SKB_TRUESIZE(size);
227 skb->pfmemalloc = pfmemalloc;
228 refcount_set(&skb->users, 1);
229 skb->head = data;
230 skb->data = data;
231 skb_reset_tail_pointer(skb);
232 skb->end = skb->tail + size;
233 skb->mac_header = (typeof(skb->mac_header))~0U;
234 skb->transport_header = (typeof(skb->transport_header))~0U;
235
236 /* make sure we initialize shinfo sequentially */
237 shinfo = skb_shinfo(skb);
238 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
239 atomic_set(&shinfo->dataref, 1);
240
241 if (flags & SKB_ALLOC_FCLONE) {
242 struct sk_buff_fclones *fclones;
243
244 fclones = container_of(skb, struct sk_buff_fclones, skb1);
245
246 skb->fclone = SKB_FCLONE_ORIG;
247 refcount_set(&fclones->fclone_ref, 1);
248
249 fclones->skb2.fclone = SKB_FCLONE_CLONE;
250 }
251 out:
252 return skb;
253 nodata:
254 kmem_cache_free(cache, skb);
255 skb = NULL;
256 goto out;
257 }
258 EXPORT_SYMBOL(__alloc_skb);
259
260 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)261 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
262 void *data, unsigned int frag_size)
263 {
264 struct skb_shared_info *shinfo;
265 unsigned int size = frag_size ? : ksize(data);
266
267 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
268
269 /* Assumes caller memset cleared SKB */
270 skb->truesize = SKB_TRUESIZE(size);
271 refcount_set(&skb->users, 1);
272 skb->head = data;
273 skb->data = data;
274 skb_reset_tail_pointer(skb);
275 skb->end = skb->tail + size;
276 skb->mac_header = (typeof(skb->mac_header))~0U;
277 skb->transport_header = (typeof(skb->transport_header))~0U;
278
279 /* make sure we initialize shinfo sequentially */
280 shinfo = skb_shinfo(skb);
281 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
282 atomic_set(&shinfo->dataref, 1);
283
284 return skb;
285 }
286
287 /**
288 * __build_skb - build a network buffer
289 * @data: data buffer provided by caller
290 * @frag_size: size of data, or 0 if head was kmalloced
291 *
292 * Allocate a new &sk_buff. Caller provides space holding head and
293 * skb_shared_info. @data must have been allocated by kmalloc() only if
294 * @frag_size is 0, otherwise data should come from the page allocator
295 * or vmalloc()
296 * The return is the new skb buffer.
297 * On a failure the return is %NULL, and @data is not freed.
298 * Notes :
299 * Before IO, driver allocates only data buffer where NIC put incoming frame
300 * Driver should add room at head (NET_SKB_PAD) and
301 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
302 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
303 * before giving packet to stack.
304 * RX rings only contains data buffers, not full skbs.
305 */
__build_skb(void * data,unsigned int frag_size)306 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
307 {
308 struct sk_buff *skb;
309
310 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
311 if (unlikely(!skb))
312 return NULL;
313
314 memset(skb, 0, offsetof(struct sk_buff, tail));
315
316 return __build_skb_around(skb, data, frag_size);
317 }
318
319 /* build_skb() is wrapper over __build_skb(), that specifically
320 * takes care of skb->head and skb->pfmemalloc
321 * This means that if @frag_size is not zero, then @data must be backed
322 * by a page fragment, not kmalloc() or vmalloc()
323 */
build_skb(void * data,unsigned int frag_size)324 struct sk_buff *build_skb(void *data, unsigned int frag_size)
325 {
326 struct sk_buff *skb = __build_skb(data, frag_size);
327
328 if (skb && frag_size) {
329 skb->head_frag = 1;
330 if (page_is_pfmemalloc(virt_to_head_page(data)))
331 skb->pfmemalloc = 1;
332 }
333 return skb;
334 }
335 EXPORT_SYMBOL(build_skb);
336
337 /**
338 * build_skb_around - build a network buffer around provided skb
339 * @skb: sk_buff provide by caller, must be memset cleared
340 * @data: data buffer provided by caller
341 * @frag_size: size of data, or 0 if head was kmalloced
342 */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)343 struct sk_buff *build_skb_around(struct sk_buff *skb,
344 void *data, unsigned int frag_size)
345 {
346 if (unlikely(!skb))
347 return NULL;
348
349 skb = __build_skb_around(skb, data, frag_size);
350
351 if (skb && frag_size) {
352 skb->head_frag = 1;
353 if (page_is_pfmemalloc(virt_to_head_page(data)))
354 skb->pfmemalloc = 1;
355 }
356 return skb;
357 }
358 EXPORT_SYMBOL(build_skb_around);
359
360 #define NAPI_SKB_CACHE_SIZE 64
361
362 struct napi_alloc_cache {
363 struct page_frag_cache page;
364 unsigned int skb_count;
365 void *skb_cache[NAPI_SKB_CACHE_SIZE];
366 };
367
368 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
369 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
370
__napi_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)371 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
372 {
373 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
374
375 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
376 }
377
napi_alloc_frag(unsigned int fragsz)378 void *napi_alloc_frag(unsigned int fragsz)
379 {
380 fragsz = SKB_DATA_ALIGN(fragsz);
381
382 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
383 }
384 EXPORT_SYMBOL(napi_alloc_frag);
385
386 /**
387 * netdev_alloc_frag - allocate a page fragment
388 * @fragsz: fragment size
389 *
390 * Allocates a frag from a page for receive buffer.
391 * Uses GFP_ATOMIC allocations.
392 */
netdev_alloc_frag(unsigned int fragsz)393 void *netdev_alloc_frag(unsigned int fragsz)
394 {
395 struct page_frag_cache *nc;
396 void *data;
397
398 fragsz = SKB_DATA_ALIGN(fragsz);
399 if (in_irq() || irqs_disabled()) {
400 nc = this_cpu_ptr(&netdev_alloc_cache);
401 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
402 } else {
403 local_bh_disable();
404 data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
405 local_bh_enable();
406 }
407 return data;
408 }
409 EXPORT_SYMBOL(netdev_alloc_frag);
410
411 /**
412 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
413 * @dev: network device to receive on
414 * @len: length to allocate
415 * @gfp_mask: get_free_pages mask, passed to alloc_skb
416 *
417 * Allocate a new &sk_buff and assign it a usage count of one. The
418 * buffer has NET_SKB_PAD headroom built in. Users should allocate
419 * the headroom they think they need without accounting for the
420 * built in space. The built in space is used for optimisations.
421 *
422 * %NULL is returned if there is no free memory.
423 */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)424 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
425 gfp_t gfp_mask)
426 {
427 struct page_frag_cache *nc;
428 struct sk_buff *skb;
429 bool pfmemalloc;
430 void *data;
431
432 len += NET_SKB_PAD;
433
434 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
435 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
436 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
437 if (!skb)
438 goto skb_fail;
439 goto skb_success;
440 }
441
442 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
443 len = SKB_DATA_ALIGN(len);
444
445 if (sk_memalloc_socks())
446 gfp_mask |= __GFP_MEMALLOC;
447
448 if (in_irq() || irqs_disabled()) {
449 nc = this_cpu_ptr(&netdev_alloc_cache);
450 data = page_frag_alloc(nc, len, gfp_mask);
451 pfmemalloc = nc->pfmemalloc;
452 } else {
453 local_bh_disable();
454 nc = this_cpu_ptr(&napi_alloc_cache.page);
455 data = page_frag_alloc(nc, len, gfp_mask);
456 pfmemalloc = nc->pfmemalloc;
457 local_bh_enable();
458 }
459
460 if (unlikely(!data))
461 return NULL;
462
463 skb = __build_skb(data, len);
464 if (unlikely(!skb)) {
465 skb_free_frag(data);
466 return NULL;
467 }
468
469 /* use OR instead of assignment to avoid clearing of bits in mask */
470 if (pfmemalloc)
471 skb->pfmemalloc = 1;
472 skb->head_frag = 1;
473
474 skb_success:
475 skb_reserve(skb, NET_SKB_PAD);
476 skb->dev = dev;
477
478 skb_fail:
479 return skb;
480 }
481 EXPORT_SYMBOL(__netdev_alloc_skb);
482
483 /**
484 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
485 * @napi: napi instance this buffer was allocated for
486 * @len: length to allocate
487 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
488 *
489 * Allocate a new sk_buff for use in NAPI receive. This buffer will
490 * attempt to allocate the head from a special reserved region used
491 * only for NAPI Rx allocation. By doing this we can save several
492 * CPU cycles by avoiding having to disable and re-enable IRQs.
493 *
494 * %NULL is returned if there is no free memory.
495 */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)496 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
497 gfp_t gfp_mask)
498 {
499 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
500 struct sk_buff *skb;
501 void *data;
502
503 len += NET_SKB_PAD + NET_IP_ALIGN;
504
505 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
506 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
507 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
508 if (!skb)
509 goto skb_fail;
510 goto skb_success;
511 }
512
513 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
514 len = SKB_DATA_ALIGN(len);
515
516 if (sk_memalloc_socks())
517 gfp_mask |= __GFP_MEMALLOC;
518
519 data = page_frag_alloc(&nc->page, len, gfp_mask);
520 if (unlikely(!data))
521 return NULL;
522
523 skb = __build_skb(data, len);
524 if (unlikely(!skb)) {
525 skb_free_frag(data);
526 return NULL;
527 }
528
529 /* use OR instead of assignment to avoid clearing of bits in mask */
530 if (nc->page.pfmemalloc)
531 skb->pfmemalloc = 1;
532 skb->head_frag = 1;
533
534 skb_success:
535 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
536 skb->dev = napi->dev;
537
538 skb_fail:
539 return skb;
540 }
541 EXPORT_SYMBOL(__napi_alloc_skb);
542
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)543 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
544 int size, unsigned int truesize)
545 {
546 skb_fill_page_desc(skb, i, page, off, size);
547 skb->len += size;
548 skb->data_len += size;
549 skb->truesize += truesize;
550 }
551 EXPORT_SYMBOL(skb_add_rx_frag);
552
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)553 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
554 unsigned int truesize)
555 {
556 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
557
558 skb_frag_size_add(frag, size);
559 skb->len += size;
560 skb->data_len += size;
561 skb->truesize += truesize;
562 }
563 EXPORT_SYMBOL(skb_coalesce_rx_frag);
564
skb_drop_list(struct sk_buff ** listp)565 static void skb_drop_list(struct sk_buff **listp)
566 {
567 kfree_skb_list(*listp);
568 *listp = NULL;
569 }
570
skb_drop_fraglist(struct sk_buff * skb)571 static inline void skb_drop_fraglist(struct sk_buff *skb)
572 {
573 skb_drop_list(&skb_shinfo(skb)->frag_list);
574 }
575
skb_clone_fraglist(struct sk_buff * skb)576 static void skb_clone_fraglist(struct sk_buff *skb)
577 {
578 struct sk_buff *list;
579
580 skb_walk_frags(skb, list)
581 skb_get(list);
582 }
583
skb_free_head(struct sk_buff * skb)584 static void skb_free_head(struct sk_buff *skb)
585 {
586 unsigned char *head = skb->head;
587
588 if (skb->head_frag)
589 skb_free_frag(head);
590 else
591 kfree(head);
592 }
593
skb_release_data(struct sk_buff * skb)594 static void skb_release_data(struct sk_buff *skb)
595 {
596 struct skb_shared_info *shinfo = skb_shinfo(skb);
597 int i;
598
599 if (skb->cloned &&
600 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
601 &shinfo->dataref))
602 return;
603
604 for (i = 0; i < shinfo->nr_frags; i++)
605 __skb_frag_unref(&shinfo->frags[i]);
606
607 if (shinfo->frag_list)
608 kfree_skb_list(shinfo->frag_list);
609
610 skb_zcopy_clear(skb, true);
611 skb_free_head(skb);
612 }
613
614 /*
615 * Free an skbuff by memory without cleaning the state.
616 */
kfree_skbmem(struct sk_buff * skb)617 static void kfree_skbmem(struct sk_buff *skb)
618 {
619 struct sk_buff_fclones *fclones;
620
621 switch (skb->fclone) {
622 case SKB_FCLONE_UNAVAILABLE:
623 kmem_cache_free(skbuff_head_cache, skb);
624 return;
625
626 case SKB_FCLONE_ORIG:
627 fclones = container_of(skb, struct sk_buff_fclones, skb1);
628
629 /* We usually free the clone (TX completion) before original skb
630 * This test would have no chance to be true for the clone,
631 * while here, branch prediction will be good.
632 */
633 if (refcount_read(&fclones->fclone_ref) == 1)
634 goto fastpath;
635 break;
636
637 default: /* SKB_FCLONE_CLONE */
638 fclones = container_of(skb, struct sk_buff_fclones, skb2);
639 break;
640 }
641 if (!refcount_dec_and_test(&fclones->fclone_ref))
642 return;
643 fastpath:
644 kmem_cache_free(skbuff_fclone_cache, fclones);
645 }
646
skb_release_head_state(struct sk_buff * skb)647 void skb_release_head_state(struct sk_buff *skb)
648 {
649 skb_dst_drop(skb);
650 if (skb->destructor) {
651 WARN_ON(in_irq());
652 skb->destructor(skb);
653 }
654 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
655 nf_conntrack_put(skb_nfct(skb));
656 #endif
657 skb_ext_put(skb);
658 }
659
660 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)661 static void skb_release_all(struct sk_buff *skb)
662 {
663 skb_release_head_state(skb);
664 if (likely(skb->head))
665 skb_release_data(skb);
666 }
667
668 /**
669 * __kfree_skb - private function
670 * @skb: buffer
671 *
672 * Free an sk_buff. Release anything attached to the buffer.
673 * Clean the state. This is an internal helper function. Users should
674 * always call kfree_skb
675 */
676
__kfree_skb(struct sk_buff * skb)677 void __kfree_skb(struct sk_buff *skb)
678 {
679 skb_release_all(skb);
680 kfree_skbmem(skb);
681 }
682 EXPORT_SYMBOL(__kfree_skb);
683
684 /**
685 * kfree_skb - free an sk_buff
686 * @skb: buffer to free
687 *
688 * Drop a reference to the buffer and free it if the usage count has
689 * hit zero.
690 */
kfree_skb(struct sk_buff * skb)691 void kfree_skb(struct sk_buff *skb)
692 {
693 if (!skb_unref(skb))
694 return;
695
696 trace_kfree_skb(skb, __builtin_return_address(0));
697 __kfree_skb(skb);
698 }
699 EXPORT_SYMBOL(kfree_skb);
700
kfree_skb_list(struct sk_buff * segs)701 void kfree_skb_list(struct sk_buff *segs)
702 {
703 while (segs) {
704 struct sk_buff *next = segs->next;
705
706 kfree_skb(segs);
707 segs = next;
708 }
709 }
710 EXPORT_SYMBOL(kfree_skb_list);
711
712 /* Dump skb information and contents.
713 *
714 * Must only be called from net_ratelimit()-ed paths.
715 *
716 * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
717 */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)718 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
719 {
720 static atomic_t can_dump_full = ATOMIC_INIT(5);
721 struct skb_shared_info *sh = skb_shinfo(skb);
722 struct net_device *dev = skb->dev;
723 struct sock *sk = skb->sk;
724 struct sk_buff *list_skb;
725 bool has_mac, has_trans;
726 int headroom, tailroom;
727 int i, len, seg_len;
728
729 if (full_pkt)
730 full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0;
731
732 if (full_pkt)
733 len = skb->len;
734 else
735 len = min_t(int, skb->len, MAX_HEADER + 128);
736
737 headroom = skb_headroom(skb);
738 tailroom = skb_tailroom(skb);
739
740 has_mac = skb_mac_header_was_set(skb);
741 has_trans = skb_transport_header_was_set(skb);
742
743 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
744 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
745 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
746 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
747 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
748 level, skb->len, headroom, skb_headlen(skb), tailroom,
749 has_mac ? skb->mac_header : -1,
750 has_mac ? skb_mac_header_len(skb) : -1,
751 skb->network_header,
752 has_trans ? skb_network_header_len(skb) : -1,
753 has_trans ? skb->transport_header : -1,
754 sh->tx_flags, sh->nr_frags,
755 sh->gso_size, sh->gso_type, sh->gso_segs,
756 skb->csum, skb->ip_summed, skb->csum_complete_sw,
757 skb->csum_valid, skb->csum_level,
758 skb->hash, skb->sw_hash, skb->l4_hash,
759 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
760
761 if (dev)
762 printk("%sdev name=%s feat=0x%pNF\n",
763 level, dev->name, &dev->features);
764 if (sk)
765 printk("%ssk family=%hu type=%u proto=%u\n",
766 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
767
768 if (full_pkt && headroom)
769 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
770 16, 1, skb->head, headroom, false);
771
772 seg_len = min_t(int, skb_headlen(skb), len);
773 if (seg_len)
774 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
775 16, 1, skb->data, seg_len, false);
776 len -= seg_len;
777
778 if (full_pkt && tailroom)
779 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
780 16, 1, skb_tail_pointer(skb), tailroom, false);
781
782 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
783 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
784 u32 p_off, p_len, copied;
785 struct page *p;
786 u8 *vaddr;
787
788 skb_frag_foreach_page(frag, skb_frag_off(frag),
789 skb_frag_size(frag), p, p_off, p_len,
790 copied) {
791 seg_len = min_t(int, p_len, len);
792 vaddr = kmap_atomic(p);
793 print_hex_dump(level, "skb frag: ",
794 DUMP_PREFIX_OFFSET,
795 16, 1, vaddr + p_off, seg_len, false);
796 kunmap_atomic(vaddr);
797 len -= seg_len;
798 if (!len)
799 break;
800 }
801 }
802
803 if (full_pkt && skb_has_frag_list(skb)) {
804 printk("skb fraglist:\n");
805 skb_walk_frags(skb, list_skb)
806 skb_dump(level, list_skb, true);
807 }
808 }
809 EXPORT_SYMBOL(skb_dump);
810
811 /**
812 * skb_tx_error - report an sk_buff xmit error
813 * @skb: buffer that triggered an error
814 *
815 * Report xmit error if a device callback is tracking this skb.
816 * skb must be freed afterwards.
817 */
skb_tx_error(struct sk_buff * skb)818 void skb_tx_error(struct sk_buff *skb)
819 {
820 skb_zcopy_clear(skb, true);
821 }
822 EXPORT_SYMBOL(skb_tx_error);
823
824 /**
825 * consume_skb - free an skbuff
826 * @skb: buffer to free
827 *
828 * Drop a ref to the buffer and free it if the usage count has hit zero
829 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
830 * is being dropped after a failure and notes that
831 */
consume_skb(struct sk_buff * skb)832 void consume_skb(struct sk_buff *skb)
833 {
834 if (!skb_unref(skb))
835 return;
836
837 trace_consume_skb(skb);
838 __kfree_skb(skb);
839 }
840 EXPORT_SYMBOL(consume_skb);
841
842 /**
843 * consume_stateless_skb - free an skbuff, assuming it is stateless
844 * @skb: buffer to free
845 *
846 * Alike consume_skb(), but this variant assumes that this is the last
847 * skb reference and all the head states have been already dropped
848 */
__consume_stateless_skb(struct sk_buff * skb)849 void __consume_stateless_skb(struct sk_buff *skb)
850 {
851 trace_consume_skb(skb);
852 skb_release_data(skb);
853 kfree_skbmem(skb);
854 }
855
__kfree_skb_flush(void)856 void __kfree_skb_flush(void)
857 {
858 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
859
860 /* flush skb_cache if containing objects */
861 if (nc->skb_count) {
862 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
863 nc->skb_cache);
864 nc->skb_count = 0;
865 }
866 }
867
_kfree_skb_defer(struct sk_buff * skb)868 static inline void _kfree_skb_defer(struct sk_buff *skb)
869 {
870 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
871
872 /* drop skb->head and call any destructors for packet */
873 skb_release_all(skb);
874
875 /* record skb to CPU local list */
876 nc->skb_cache[nc->skb_count++] = skb;
877
878 #ifdef CONFIG_SLUB
879 /* SLUB writes into objects when freeing */
880 prefetchw(skb);
881 #endif
882
883 /* flush skb_cache if it is filled */
884 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
885 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
886 nc->skb_cache);
887 nc->skb_count = 0;
888 }
889 }
__kfree_skb_defer(struct sk_buff * skb)890 void __kfree_skb_defer(struct sk_buff *skb)
891 {
892 _kfree_skb_defer(skb);
893 }
894
napi_consume_skb(struct sk_buff * skb,int budget)895 void napi_consume_skb(struct sk_buff *skb, int budget)
896 {
897 if (unlikely(!skb))
898 return;
899
900 /* Zero budget indicate non-NAPI context called us, like netpoll */
901 if (unlikely(!budget)) {
902 dev_consume_skb_any(skb);
903 return;
904 }
905
906 if (!skb_unref(skb))
907 return;
908
909 /* if reaching here SKB is ready to free */
910 trace_consume_skb(skb);
911
912 /* if SKB is a clone, don't handle this case */
913 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
914 __kfree_skb(skb);
915 return;
916 }
917
918 _kfree_skb_defer(skb);
919 }
920 EXPORT_SYMBOL(napi_consume_skb);
921
922 /* Make sure a field is enclosed inside headers_start/headers_end section */
923 #define CHECK_SKB_FIELD(field) \
924 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
925 offsetof(struct sk_buff, headers_start)); \
926 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
927 offsetof(struct sk_buff, headers_end)); \
928
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)929 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
930 {
931 new->tstamp = old->tstamp;
932 /* We do not copy old->sk */
933 new->dev = old->dev;
934 memcpy(new->cb, old->cb, sizeof(old->cb));
935 skb_dst_copy(new, old);
936 __skb_ext_copy(new, old);
937 __nf_copy(new, old, false);
938
939 /* Note : this field could be in headers_start/headers_end section
940 * It is not yet because we do not want to have a 16 bit hole
941 */
942 new->queue_mapping = old->queue_mapping;
943
944 memcpy(&new->headers_start, &old->headers_start,
945 offsetof(struct sk_buff, headers_end) -
946 offsetof(struct sk_buff, headers_start));
947 CHECK_SKB_FIELD(protocol);
948 CHECK_SKB_FIELD(csum);
949 CHECK_SKB_FIELD(hash);
950 CHECK_SKB_FIELD(priority);
951 CHECK_SKB_FIELD(skb_iif);
952 CHECK_SKB_FIELD(vlan_proto);
953 CHECK_SKB_FIELD(vlan_tci);
954 CHECK_SKB_FIELD(transport_header);
955 CHECK_SKB_FIELD(network_header);
956 CHECK_SKB_FIELD(mac_header);
957 CHECK_SKB_FIELD(inner_protocol);
958 CHECK_SKB_FIELD(inner_transport_header);
959 CHECK_SKB_FIELD(inner_network_header);
960 CHECK_SKB_FIELD(inner_mac_header);
961 CHECK_SKB_FIELD(mark);
962 #ifdef CONFIG_NETWORK_SECMARK
963 CHECK_SKB_FIELD(secmark);
964 #endif
965 #ifdef CONFIG_NET_RX_BUSY_POLL
966 CHECK_SKB_FIELD(napi_id);
967 #endif
968 #ifdef CONFIG_XPS
969 CHECK_SKB_FIELD(sender_cpu);
970 #endif
971 #ifdef CONFIG_NET_SCHED
972 CHECK_SKB_FIELD(tc_index);
973 #endif
974
975 }
976
977 /*
978 * You should not add any new code to this function. Add it to
979 * __copy_skb_header above instead.
980 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)981 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
982 {
983 #define C(x) n->x = skb->x
984
985 n->next = n->prev = NULL;
986 n->sk = NULL;
987 __copy_skb_header(n, skb);
988
989 C(len);
990 C(data_len);
991 C(mac_len);
992 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
993 n->cloned = 1;
994 n->nohdr = 0;
995 n->peeked = 0;
996 C(pfmemalloc);
997 n->destructor = NULL;
998 C(tail);
999 C(end);
1000 C(head);
1001 C(head_frag);
1002 C(data);
1003 C(truesize);
1004 refcount_set(&n->users, 1);
1005
1006 atomic_inc(&(skb_shinfo(skb)->dataref));
1007 skb->cloned = 1;
1008
1009 return n;
1010 #undef C
1011 }
1012
1013 /**
1014 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1015 * @first: first sk_buff of the msg
1016 */
alloc_skb_for_msg(struct sk_buff * first)1017 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1018 {
1019 struct sk_buff *n;
1020
1021 n = alloc_skb(0, GFP_ATOMIC);
1022 if (!n)
1023 return NULL;
1024
1025 n->len = first->len;
1026 n->data_len = first->len;
1027 n->truesize = first->truesize;
1028
1029 skb_shinfo(n)->frag_list = first;
1030
1031 __copy_skb_header(n, first);
1032 n->destructor = NULL;
1033
1034 return n;
1035 }
1036 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1037
1038 /**
1039 * skb_morph - morph one skb into another
1040 * @dst: the skb to receive the contents
1041 * @src: the skb to supply the contents
1042 *
1043 * This is identical to skb_clone except that the target skb is
1044 * supplied by the user.
1045 *
1046 * The target skb is returned upon exit.
1047 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1048 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1049 {
1050 skb_release_all(dst);
1051 return __skb_clone(dst, src);
1052 }
1053 EXPORT_SYMBOL_GPL(skb_morph);
1054
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1055 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1056 {
1057 unsigned long max_pg, num_pg, new_pg, old_pg;
1058 struct user_struct *user;
1059
1060 if (capable(CAP_IPC_LOCK) || !size)
1061 return 0;
1062
1063 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1064 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1065 user = mmp->user ? : current_user();
1066
1067 do {
1068 old_pg = atomic_long_read(&user->locked_vm);
1069 new_pg = old_pg + num_pg;
1070 if (new_pg > max_pg)
1071 return -ENOBUFS;
1072 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1073 old_pg);
1074
1075 if (!mmp->user) {
1076 mmp->user = get_uid(user);
1077 mmp->num_pg = num_pg;
1078 } else {
1079 mmp->num_pg += num_pg;
1080 }
1081
1082 return 0;
1083 }
1084 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1085
mm_unaccount_pinned_pages(struct mmpin * mmp)1086 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1087 {
1088 if (mmp->user) {
1089 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1090 free_uid(mmp->user);
1091 }
1092 }
1093 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1094
sock_zerocopy_alloc(struct sock * sk,size_t size)1095 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1096 {
1097 struct ubuf_info *uarg;
1098 struct sk_buff *skb;
1099
1100 WARN_ON_ONCE(!in_task());
1101
1102 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1103 if (!skb)
1104 return NULL;
1105
1106 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1107 uarg = (void *)skb->cb;
1108 uarg->mmp.user = NULL;
1109
1110 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1111 kfree_skb(skb);
1112 return NULL;
1113 }
1114
1115 uarg->callback = sock_zerocopy_callback;
1116 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1117 uarg->len = 1;
1118 uarg->bytelen = size;
1119 uarg->zerocopy = 1;
1120 refcount_set(&uarg->refcnt, 1);
1121 sock_hold(sk);
1122
1123 return uarg;
1124 }
1125 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1126
skb_from_uarg(struct ubuf_info * uarg)1127 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1128 {
1129 return container_of((void *)uarg, struct sk_buff, cb);
1130 }
1131
sock_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1132 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1133 struct ubuf_info *uarg)
1134 {
1135 if (uarg) {
1136 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1137 u32 bytelen, next;
1138
1139 /* realloc only when socket is locked (TCP, UDP cork),
1140 * so uarg->len and sk_zckey access is serialized
1141 */
1142 if (!sock_owned_by_user(sk)) {
1143 WARN_ON_ONCE(1);
1144 return NULL;
1145 }
1146
1147 bytelen = uarg->bytelen + size;
1148 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1149 /* TCP can create new skb to attach new uarg */
1150 if (sk->sk_type == SOCK_STREAM)
1151 goto new_alloc;
1152 return NULL;
1153 }
1154
1155 next = (u32)atomic_read(&sk->sk_zckey);
1156 if ((u32)(uarg->id + uarg->len) == next) {
1157 if (mm_account_pinned_pages(&uarg->mmp, size))
1158 return NULL;
1159 uarg->len++;
1160 uarg->bytelen = bytelen;
1161 atomic_set(&sk->sk_zckey, ++next);
1162
1163 /* no extra ref when appending to datagram (MSG_MORE) */
1164 if (sk->sk_type == SOCK_STREAM)
1165 sock_zerocopy_get(uarg);
1166
1167 return uarg;
1168 }
1169 }
1170
1171 new_alloc:
1172 return sock_zerocopy_alloc(sk, size);
1173 }
1174 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1175
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1176 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1177 {
1178 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1179 u32 old_lo, old_hi;
1180 u64 sum_len;
1181
1182 old_lo = serr->ee.ee_info;
1183 old_hi = serr->ee.ee_data;
1184 sum_len = old_hi - old_lo + 1ULL + len;
1185
1186 if (sum_len >= (1ULL << 32))
1187 return false;
1188
1189 if (lo != old_hi + 1)
1190 return false;
1191
1192 serr->ee.ee_data += len;
1193 return true;
1194 }
1195
sock_zerocopy_callback(struct ubuf_info * uarg,bool success)1196 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1197 {
1198 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1199 struct sock_exterr_skb *serr;
1200 struct sock *sk = skb->sk;
1201 struct sk_buff_head *q;
1202 unsigned long flags;
1203 u32 lo, hi;
1204 u16 len;
1205
1206 mm_unaccount_pinned_pages(&uarg->mmp);
1207
1208 /* if !len, there was only 1 call, and it was aborted
1209 * so do not queue a completion notification
1210 */
1211 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1212 goto release;
1213
1214 len = uarg->len;
1215 lo = uarg->id;
1216 hi = uarg->id + len - 1;
1217
1218 serr = SKB_EXT_ERR(skb);
1219 memset(serr, 0, sizeof(*serr));
1220 serr->ee.ee_errno = 0;
1221 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1222 serr->ee.ee_data = hi;
1223 serr->ee.ee_info = lo;
1224 if (!success)
1225 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1226
1227 q = &sk->sk_error_queue;
1228 spin_lock_irqsave(&q->lock, flags);
1229 tail = skb_peek_tail(q);
1230 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1231 !skb_zerocopy_notify_extend(tail, lo, len)) {
1232 __skb_queue_tail(q, skb);
1233 skb = NULL;
1234 }
1235 spin_unlock_irqrestore(&q->lock, flags);
1236
1237 sk->sk_error_report(sk);
1238
1239 release:
1240 consume_skb(skb);
1241 sock_put(sk);
1242 }
1243 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1244
sock_zerocopy_put(struct ubuf_info * uarg)1245 void sock_zerocopy_put(struct ubuf_info *uarg)
1246 {
1247 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1248 if (uarg->callback)
1249 uarg->callback(uarg, uarg->zerocopy);
1250 else
1251 consume_skb(skb_from_uarg(uarg));
1252 }
1253 }
1254 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1255
sock_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1256 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1257 {
1258 if (uarg) {
1259 struct sock *sk = skb_from_uarg(uarg)->sk;
1260
1261 atomic_dec(&sk->sk_zckey);
1262 uarg->len--;
1263
1264 if (have_uref)
1265 sock_zerocopy_put(uarg);
1266 }
1267 }
1268 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1269
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1270 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1271 {
1272 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1273 }
1274 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1275
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1276 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1277 struct msghdr *msg, int len,
1278 struct ubuf_info *uarg)
1279 {
1280 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1281 struct iov_iter orig_iter = msg->msg_iter;
1282 int err, orig_len = skb->len;
1283
1284 /* An skb can only point to one uarg. This edge case happens when
1285 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1286 */
1287 if (orig_uarg && uarg != orig_uarg)
1288 return -EEXIST;
1289
1290 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1291 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1292 struct sock *save_sk = skb->sk;
1293
1294 /* Streams do not free skb on error. Reset to prev state. */
1295 msg->msg_iter = orig_iter;
1296 skb->sk = sk;
1297 ___pskb_trim(skb, orig_len);
1298 skb->sk = save_sk;
1299 return err;
1300 }
1301
1302 skb_zcopy_set(skb, uarg, NULL);
1303 return skb->len - orig_len;
1304 }
1305 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1306
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1307 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1308 gfp_t gfp_mask)
1309 {
1310 if (skb_zcopy(orig)) {
1311 if (skb_zcopy(nskb)) {
1312 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1313 if (!gfp_mask) {
1314 WARN_ON_ONCE(1);
1315 return -ENOMEM;
1316 }
1317 if (skb_uarg(nskb) == skb_uarg(orig))
1318 return 0;
1319 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1320 return -EIO;
1321 }
1322 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1323 }
1324 return 0;
1325 }
1326
1327 /**
1328 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1329 * @skb: the skb to modify
1330 * @gfp_mask: allocation priority
1331 *
1332 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1333 * It will copy all frags into kernel and drop the reference
1334 * to userspace pages.
1335 *
1336 * If this function is called from an interrupt gfp_mask() must be
1337 * %GFP_ATOMIC.
1338 *
1339 * Returns 0 on success or a negative error code on failure
1340 * to allocate kernel memory to copy to.
1341 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1342 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1343 {
1344 int num_frags = skb_shinfo(skb)->nr_frags;
1345 struct page *page, *head = NULL;
1346 int i, new_frags;
1347 u32 d_off;
1348
1349 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1350 return -EINVAL;
1351
1352 if (!num_frags)
1353 goto release;
1354
1355 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1356 for (i = 0; i < new_frags; i++) {
1357 page = alloc_page(gfp_mask);
1358 if (!page) {
1359 while (head) {
1360 struct page *next = (struct page *)page_private(head);
1361 put_page(head);
1362 head = next;
1363 }
1364 return -ENOMEM;
1365 }
1366 set_page_private(page, (unsigned long)head);
1367 head = page;
1368 }
1369
1370 page = head;
1371 d_off = 0;
1372 for (i = 0; i < num_frags; i++) {
1373 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1374 u32 p_off, p_len, copied;
1375 struct page *p;
1376 u8 *vaddr;
1377
1378 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1379 p, p_off, p_len, copied) {
1380 u32 copy, done = 0;
1381 vaddr = kmap_atomic(p);
1382
1383 while (done < p_len) {
1384 if (d_off == PAGE_SIZE) {
1385 d_off = 0;
1386 page = (struct page *)page_private(page);
1387 }
1388 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1389 memcpy(page_address(page) + d_off,
1390 vaddr + p_off + done, copy);
1391 done += copy;
1392 d_off += copy;
1393 }
1394 kunmap_atomic(vaddr);
1395 }
1396 }
1397
1398 /* skb frags release userspace buffers */
1399 for (i = 0; i < num_frags; i++)
1400 skb_frag_unref(skb, i);
1401
1402 /* skb frags point to kernel buffers */
1403 for (i = 0; i < new_frags - 1; i++) {
1404 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1405 head = (struct page *)page_private(head);
1406 }
1407 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1408 skb_shinfo(skb)->nr_frags = new_frags;
1409
1410 release:
1411 skb_zcopy_clear(skb, false);
1412 return 0;
1413 }
1414 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1415
1416 /**
1417 * skb_clone - duplicate an sk_buff
1418 * @skb: buffer to clone
1419 * @gfp_mask: allocation priority
1420 *
1421 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1422 * copies share the same packet data but not structure. The new
1423 * buffer has a reference count of 1. If the allocation fails the
1424 * function returns %NULL otherwise the new buffer is returned.
1425 *
1426 * If this function is called from an interrupt gfp_mask() must be
1427 * %GFP_ATOMIC.
1428 */
1429
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1430 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1431 {
1432 struct sk_buff_fclones *fclones = container_of(skb,
1433 struct sk_buff_fclones,
1434 skb1);
1435 struct sk_buff *n;
1436
1437 if (skb_orphan_frags(skb, gfp_mask))
1438 return NULL;
1439
1440 if (skb->fclone == SKB_FCLONE_ORIG &&
1441 refcount_read(&fclones->fclone_ref) == 1) {
1442 n = &fclones->skb2;
1443 refcount_set(&fclones->fclone_ref, 2);
1444 } else {
1445 if (skb_pfmemalloc(skb))
1446 gfp_mask |= __GFP_MEMALLOC;
1447
1448 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1449 if (!n)
1450 return NULL;
1451
1452 n->fclone = SKB_FCLONE_UNAVAILABLE;
1453 }
1454
1455 return __skb_clone(n, skb);
1456 }
1457 EXPORT_SYMBOL(skb_clone);
1458
skb_headers_offset_update(struct sk_buff * skb,int off)1459 void skb_headers_offset_update(struct sk_buff *skb, int off)
1460 {
1461 /* Only adjust this if it actually is csum_start rather than csum */
1462 if (skb->ip_summed == CHECKSUM_PARTIAL)
1463 skb->csum_start += off;
1464 /* {transport,network,mac}_header and tail are relative to skb->head */
1465 skb->transport_header += off;
1466 skb->network_header += off;
1467 if (skb_mac_header_was_set(skb))
1468 skb->mac_header += off;
1469 skb->inner_transport_header += off;
1470 skb->inner_network_header += off;
1471 skb->inner_mac_header += off;
1472 }
1473 EXPORT_SYMBOL(skb_headers_offset_update);
1474
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1475 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1476 {
1477 __copy_skb_header(new, old);
1478
1479 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1480 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1481 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1482 }
1483 EXPORT_SYMBOL(skb_copy_header);
1484
skb_alloc_rx_flag(const struct sk_buff * skb)1485 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1486 {
1487 if (skb_pfmemalloc(skb))
1488 return SKB_ALLOC_RX;
1489 return 0;
1490 }
1491
1492 /**
1493 * skb_copy - create private copy of an sk_buff
1494 * @skb: buffer to copy
1495 * @gfp_mask: allocation priority
1496 *
1497 * Make a copy of both an &sk_buff and its data. This is used when the
1498 * caller wishes to modify the data and needs a private copy of the
1499 * data to alter. Returns %NULL on failure or the pointer to the buffer
1500 * on success. The returned buffer has a reference count of 1.
1501 *
1502 * As by-product this function converts non-linear &sk_buff to linear
1503 * one, so that &sk_buff becomes completely private and caller is allowed
1504 * to modify all the data of returned buffer. This means that this
1505 * function is not recommended for use in circumstances when only
1506 * header is going to be modified. Use pskb_copy() instead.
1507 */
1508
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1509 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1510 {
1511 int headerlen = skb_headroom(skb);
1512 unsigned int size = skb_end_offset(skb) + skb->data_len;
1513 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1514 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1515
1516 if (!n)
1517 return NULL;
1518
1519 /* Set the data pointer */
1520 skb_reserve(n, headerlen);
1521 /* Set the tail pointer and length */
1522 skb_put(n, skb->len);
1523
1524 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1525
1526 skb_copy_header(n, skb);
1527 return n;
1528 }
1529 EXPORT_SYMBOL(skb_copy);
1530
1531 /**
1532 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1533 * @skb: buffer to copy
1534 * @headroom: headroom of new skb
1535 * @gfp_mask: allocation priority
1536 * @fclone: if true allocate the copy of the skb from the fclone
1537 * cache instead of the head cache; it is recommended to set this
1538 * to true for the cases where the copy will likely be cloned
1539 *
1540 * Make a copy of both an &sk_buff and part of its data, located
1541 * in header. Fragmented data remain shared. This is used when
1542 * the caller wishes to modify only header of &sk_buff and needs
1543 * private copy of the header to alter. Returns %NULL on failure
1544 * or the pointer to the buffer on success.
1545 * The returned buffer has a reference count of 1.
1546 */
1547
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1548 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1549 gfp_t gfp_mask, bool fclone)
1550 {
1551 unsigned int size = skb_headlen(skb) + headroom;
1552 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1553 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1554
1555 if (!n)
1556 goto out;
1557
1558 /* Set the data pointer */
1559 skb_reserve(n, headroom);
1560 /* Set the tail pointer and length */
1561 skb_put(n, skb_headlen(skb));
1562 /* Copy the bytes */
1563 skb_copy_from_linear_data(skb, n->data, n->len);
1564
1565 n->truesize += skb->data_len;
1566 n->data_len = skb->data_len;
1567 n->len = skb->len;
1568
1569 if (skb_shinfo(skb)->nr_frags) {
1570 int i;
1571
1572 if (skb_orphan_frags(skb, gfp_mask) ||
1573 skb_zerocopy_clone(n, skb, gfp_mask)) {
1574 kfree_skb(n);
1575 n = NULL;
1576 goto out;
1577 }
1578 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1579 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1580 skb_frag_ref(skb, i);
1581 }
1582 skb_shinfo(n)->nr_frags = i;
1583 }
1584
1585 if (skb_has_frag_list(skb)) {
1586 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1587 skb_clone_fraglist(n);
1588 }
1589
1590 skb_copy_header(n, skb);
1591 out:
1592 return n;
1593 }
1594 EXPORT_SYMBOL(__pskb_copy_fclone);
1595
1596 /**
1597 * pskb_expand_head - reallocate header of &sk_buff
1598 * @skb: buffer to reallocate
1599 * @nhead: room to add at head
1600 * @ntail: room to add at tail
1601 * @gfp_mask: allocation priority
1602 *
1603 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1604 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1605 * reference count of 1. Returns zero in the case of success or error,
1606 * if expansion failed. In the last case, &sk_buff is not changed.
1607 *
1608 * All the pointers pointing into skb header may change and must be
1609 * reloaded after call to this function.
1610 */
1611
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1612 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1613 gfp_t gfp_mask)
1614 {
1615 int i, osize = skb_end_offset(skb);
1616 int size = osize + nhead + ntail;
1617 long off;
1618 u8 *data;
1619
1620 BUG_ON(nhead < 0);
1621
1622 BUG_ON(skb_shared(skb));
1623
1624 size = SKB_DATA_ALIGN(size);
1625
1626 if (skb_pfmemalloc(skb))
1627 gfp_mask |= __GFP_MEMALLOC;
1628 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1629 gfp_mask, NUMA_NO_NODE, NULL);
1630 if (!data)
1631 goto nodata;
1632 size = SKB_WITH_OVERHEAD(ksize(data));
1633
1634 /* Copy only real data... and, alas, header. This should be
1635 * optimized for the cases when header is void.
1636 */
1637 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1638
1639 memcpy((struct skb_shared_info *)(data + size),
1640 skb_shinfo(skb),
1641 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1642
1643 /*
1644 * if shinfo is shared we must drop the old head gracefully, but if it
1645 * is not we can just drop the old head and let the existing refcount
1646 * be since all we did is relocate the values
1647 */
1648 if (skb_cloned(skb)) {
1649 if (skb_orphan_frags(skb, gfp_mask))
1650 goto nofrags;
1651 if (skb_zcopy(skb))
1652 refcount_inc(&skb_uarg(skb)->refcnt);
1653 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1654 skb_frag_ref(skb, i);
1655
1656 if (skb_has_frag_list(skb))
1657 skb_clone_fraglist(skb);
1658
1659 skb_release_data(skb);
1660 } else {
1661 skb_free_head(skb);
1662 }
1663 off = (data + nhead) - skb->head;
1664
1665 skb->head = data;
1666 skb->head_frag = 0;
1667 skb->data += off;
1668 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1669 skb->end = size;
1670 off = nhead;
1671 #else
1672 skb->end = skb->head + size;
1673 #endif
1674 skb->tail += off;
1675 skb_headers_offset_update(skb, nhead);
1676 skb->cloned = 0;
1677 skb->hdr_len = 0;
1678 skb->nohdr = 0;
1679 atomic_set(&skb_shinfo(skb)->dataref, 1);
1680
1681 skb_metadata_clear(skb);
1682
1683 /* It is not generally safe to change skb->truesize.
1684 * For the moment, we really care of rx path, or
1685 * when skb is orphaned (not attached to a socket).
1686 */
1687 if (!skb->sk || skb->destructor == sock_edemux)
1688 skb->truesize += size - osize;
1689
1690 return 0;
1691
1692 nofrags:
1693 kfree(data);
1694 nodata:
1695 return -ENOMEM;
1696 }
1697 EXPORT_SYMBOL(pskb_expand_head);
1698
1699 /* Make private copy of skb with writable head and some headroom */
1700
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1701 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1702 {
1703 struct sk_buff *skb2;
1704 int delta = headroom - skb_headroom(skb);
1705
1706 if (delta <= 0)
1707 skb2 = pskb_copy(skb, GFP_ATOMIC);
1708 else {
1709 skb2 = skb_clone(skb, GFP_ATOMIC);
1710 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1711 GFP_ATOMIC)) {
1712 kfree_skb(skb2);
1713 skb2 = NULL;
1714 }
1715 }
1716 return skb2;
1717 }
1718 EXPORT_SYMBOL(skb_realloc_headroom);
1719
1720 /**
1721 * skb_copy_expand - copy and expand sk_buff
1722 * @skb: buffer to copy
1723 * @newheadroom: new free bytes at head
1724 * @newtailroom: new free bytes at tail
1725 * @gfp_mask: allocation priority
1726 *
1727 * Make a copy of both an &sk_buff and its data and while doing so
1728 * allocate additional space.
1729 *
1730 * This is used when the caller wishes to modify the data and needs a
1731 * private copy of the data to alter as well as more space for new fields.
1732 * Returns %NULL on failure or the pointer to the buffer
1733 * on success. The returned buffer has a reference count of 1.
1734 *
1735 * You must pass %GFP_ATOMIC as the allocation priority if this function
1736 * is called from an interrupt.
1737 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1738 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1739 int newheadroom, int newtailroom,
1740 gfp_t gfp_mask)
1741 {
1742 /*
1743 * Allocate the copy buffer
1744 */
1745 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1746 gfp_mask, skb_alloc_rx_flag(skb),
1747 NUMA_NO_NODE);
1748 int oldheadroom = skb_headroom(skb);
1749 int head_copy_len, head_copy_off;
1750
1751 if (!n)
1752 return NULL;
1753
1754 skb_reserve(n, newheadroom);
1755
1756 /* Set the tail pointer and length */
1757 skb_put(n, skb->len);
1758
1759 head_copy_len = oldheadroom;
1760 head_copy_off = 0;
1761 if (newheadroom <= head_copy_len)
1762 head_copy_len = newheadroom;
1763 else
1764 head_copy_off = newheadroom - head_copy_len;
1765
1766 /* Copy the linear header and data. */
1767 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1768 skb->len + head_copy_len));
1769
1770 skb_copy_header(n, skb);
1771
1772 skb_headers_offset_update(n, newheadroom - oldheadroom);
1773
1774 return n;
1775 }
1776 EXPORT_SYMBOL(skb_copy_expand);
1777
1778 /**
1779 * __skb_pad - zero pad the tail of an skb
1780 * @skb: buffer to pad
1781 * @pad: space to pad
1782 * @free_on_error: free buffer on error
1783 *
1784 * Ensure that a buffer is followed by a padding area that is zero
1785 * filled. Used by network drivers which may DMA or transfer data
1786 * beyond the buffer end onto the wire.
1787 *
1788 * May return error in out of memory cases. The skb is freed on error
1789 * if @free_on_error is true.
1790 */
1791
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)1792 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1793 {
1794 int err;
1795 int ntail;
1796
1797 /* If the skbuff is non linear tailroom is always zero.. */
1798 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1799 memset(skb->data+skb->len, 0, pad);
1800 return 0;
1801 }
1802
1803 ntail = skb->data_len + pad - (skb->end - skb->tail);
1804 if (likely(skb_cloned(skb) || ntail > 0)) {
1805 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1806 if (unlikely(err))
1807 goto free_skb;
1808 }
1809
1810 /* FIXME: The use of this function with non-linear skb's really needs
1811 * to be audited.
1812 */
1813 err = skb_linearize(skb);
1814 if (unlikely(err))
1815 goto free_skb;
1816
1817 memset(skb->data + skb->len, 0, pad);
1818 return 0;
1819
1820 free_skb:
1821 if (free_on_error)
1822 kfree_skb(skb);
1823 return err;
1824 }
1825 EXPORT_SYMBOL(__skb_pad);
1826
1827 /**
1828 * pskb_put - add data to the tail of a potentially fragmented buffer
1829 * @skb: start of the buffer to use
1830 * @tail: tail fragment of the buffer to use
1831 * @len: amount of data to add
1832 *
1833 * This function extends the used data area of the potentially
1834 * fragmented buffer. @tail must be the last fragment of @skb -- or
1835 * @skb itself. If this would exceed the total buffer size the kernel
1836 * will panic. A pointer to the first byte of the extra data is
1837 * returned.
1838 */
1839
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1840 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1841 {
1842 if (tail != skb) {
1843 skb->data_len += len;
1844 skb->len += len;
1845 }
1846 return skb_put(tail, len);
1847 }
1848 EXPORT_SYMBOL_GPL(pskb_put);
1849
1850 /**
1851 * skb_put - add data to a buffer
1852 * @skb: buffer to use
1853 * @len: amount of data to add
1854 *
1855 * This function extends the used data area of the buffer. If this would
1856 * exceed the total buffer size the kernel will panic. A pointer to the
1857 * first byte of the extra data is returned.
1858 */
skb_put(struct sk_buff * skb,unsigned int len)1859 void *skb_put(struct sk_buff *skb, unsigned int len)
1860 {
1861 void *tmp = skb_tail_pointer(skb);
1862 SKB_LINEAR_ASSERT(skb);
1863 skb->tail += len;
1864 skb->len += len;
1865 if (unlikely(skb->tail > skb->end))
1866 skb_over_panic(skb, len, __builtin_return_address(0));
1867 return tmp;
1868 }
1869 EXPORT_SYMBOL(skb_put);
1870
1871 /**
1872 * skb_push - add data to the start of a buffer
1873 * @skb: buffer to use
1874 * @len: amount of data to add
1875 *
1876 * This function extends the used data area of the buffer at the buffer
1877 * start. If this would exceed the total buffer headroom the kernel will
1878 * panic. A pointer to the first byte of the extra data is returned.
1879 */
skb_push(struct sk_buff * skb,unsigned int len)1880 void *skb_push(struct sk_buff *skb, unsigned int len)
1881 {
1882 skb->data -= len;
1883 skb->len += len;
1884 if (unlikely(skb->data < skb->head))
1885 skb_under_panic(skb, len, __builtin_return_address(0));
1886 return skb->data;
1887 }
1888 EXPORT_SYMBOL(skb_push);
1889
1890 /**
1891 * skb_pull - remove data from the start of a buffer
1892 * @skb: buffer to use
1893 * @len: amount of data to remove
1894 *
1895 * This function removes data from the start of a buffer, returning
1896 * the memory to the headroom. A pointer to the next data in the buffer
1897 * is returned. Once the data has been pulled future pushes will overwrite
1898 * the old data.
1899 */
skb_pull(struct sk_buff * skb,unsigned int len)1900 void *skb_pull(struct sk_buff *skb, unsigned int len)
1901 {
1902 return skb_pull_inline(skb, len);
1903 }
1904 EXPORT_SYMBOL(skb_pull);
1905
1906 /**
1907 * skb_trim - remove end from a buffer
1908 * @skb: buffer to alter
1909 * @len: new length
1910 *
1911 * Cut the length of a buffer down by removing data from the tail. If
1912 * the buffer is already under the length specified it is not modified.
1913 * The skb must be linear.
1914 */
skb_trim(struct sk_buff * skb,unsigned int len)1915 void skb_trim(struct sk_buff *skb, unsigned int len)
1916 {
1917 if (skb->len > len)
1918 __skb_trim(skb, len);
1919 }
1920 EXPORT_SYMBOL(skb_trim);
1921
1922 /* Trims skb to length len. It can change skb pointers.
1923 */
1924
___pskb_trim(struct sk_buff * skb,unsigned int len)1925 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1926 {
1927 struct sk_buff **fragp;
1928 struct sk_buff *frag;
1929 int offset = skb_headlen(skb);
1930 int nfrags = skb_shinfo(skb)->nr_frags;
1931 int i;
1932 int err;
1933
1934 if (skb_cloned(skb) &&
1935 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1936 return err;
1937
1938 i = 0;
1939 if (offset >= len)
1940 goto drop_pages;
1941
1942 for (; i < nfrags; i++) {
1943 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1944
1945 if (end < len) {
1946 offset = end;
1947 continue;
1948 }
1949
1950 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1951
1952 drop_pages:
1953 skb_shinfo(skb)->nr_frags = i;
1954
1955 for (; i < nfrags; i++)
1956 skb_frag_unref(skb, i);
1957
1958 if (skb_has_frag_list(skb))
1959 skb_drop_fraglist(skb);
1960 goto done;
1961 }
1962
1963 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1964 fragp = &frag->next) {
1965 int end = offset + frag->len;
1966
1967 if (skb_shared(frag)) {
1968 struct sk_buff *nfrag;
1969
1970 nfrag = skb_clone(frag, GFP_ATOMIC);
1971 if (unlikely(!nfrag))
1972 return -ENOMEM;
1973
1974 nfrag->next = frag->next;
1975 consume_skb(frag);
1976 frag = nfrag;
1977 *fragp = frag;
1978 }
1979
1980 if (end < len) {
1981 offset = end;
1982 continue;
1983 }
1984
1985 if (end > len &&
1986 unlikely((err = pskb_trim(frag, len - offset))))
1987 return err;
1988
1989 if (frag->next)
1990 skb_drop_list(&frag->next);
1991 break;
1992 }
1993
1994 done:
1995 if (len > skb_headlen(skb)) {
1996 skb->data_len -= skb->len - len;
1997 skb->len = len;
1998 } else {
1999 skb->len = len;
2000 skb->data_len = 0;
2001 skb_set_tail_pointer(skb, len);
2002 }
2003
2004 if (!skb->sk || skb->destructor == sock_edemux)
2005 skb_condense(skb);
2006 return 0;
2007 }
2008 EXPORT_SYMBOL(___pskb_trim);
2009
2010 /* Note : use pskb_trim_rcsum() instead of calling this directly
2011 */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2012 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2013 {
2014 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2015 int delta = skb->len - len;
2016
2017 skb->csum = csum_block_sub(skb->csum,
2018 skb_checksum(skb, len, delta, 0),
2019 len);
2020 }
2021 return __pskb_trim(skb, len);
2022 }
2023 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2024
2025 /**
2026 * __pskb_pull_tail - advance tail of skb header
2027 * @skb: buffer to reallocate
2028 * @delta: number of bytes to advance tail
2029 *
2030 * The function makes a sense only on a fragmented &sk_buff,
2031 * it expands header moving its tail forward and copying necessary
2032 * data from fragmented part.
2033 *
2034 * &sk_buff MUST have reference count of 1.
2035 *
2036 * Returns %NULL (and &sk_buff does not change) if pull failed
2037 * or value of new tail of skb in the case of success.
2038 *
2039 * All the pointers pointing into skb header may change and must be
2040 * reloaded after call to this function.
2041 */
2042
2043 /* Moves tail of skb head forward, copying data from fragmented part,
2044 * when it is necessary.
2045 * 1. It may fail due to malloc failure.
2046 * 2. It may change skb pointers.
2047 *
2048 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2049 */
__pskb_pull_tail(struct sk_buff * skb,int delta)2050 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2051 {
2052 /* If skb has not enough free space at tail, get new one
2053 * plus 128 bytes for future expansions. If we have enough
2054 * room at tail, reallocate without expansion only if skb is cloned.
2055 */
2056 int i, k, eat = (skb->tail + delta) - skb->end;
2057
2058 if (eat > 0 || skb_cloned(skb)) {
2059 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2060 GFP_ATOMIC))
2061 return NULL;
2062 }
2063
2064 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2065 skb_tail_pointer(skb), delta));
2066
2067 /* Optimization: no fragments, no reasons to preestimate
2068 * size of pulled pages. Superb.
2069 */
2070 if (!skb_has_frag_list(skb))
2071 goto pull_pages;
2072
2073 /* Estimate size of pulled pages. */
2074 eat = delta;
2075 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2076 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2077
2078 if (size >= eat)
2079 goto pull_pages;
2080 eat -= size;
2081 }
2082
2083 /* If we need update frag list, we are in troubles.
2084 * Certainly, it is possible to add an offset to skb data,
2085 * but taking into account that pulling is expected to
2086 * be very rare operation, it is worth to fight against
2087 * further bloating skb head and crucify ourselves here instead.
2088 * Pure masohism, indeed. 8)8)
2089 */
2090 if (eat) {
2091 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2092 struct sk_buff *clone = NULL;
2093 struct sk_buff *insp = NULL;
2094
2095 do {
2096 if (list->len <= eat) {
2097 /* Eaten as whole. */
2098 eat -= list->len;
2099 list = list->next;
2100 insp = list;
2101 } else {
2102 /* Eaten partially. */
2103
2104 if (skb_shared(list)) {
2105 /* Sucks! We need to fork list. :-( */
2106 clone = skb_clone(list, GFP_ATOMIC);
2107 if (!clone)
2108 return NULL;
2109 insp = list->next;
2110 list = clone;
2111 } else {
2112 /* This may be pulled without
2113 * problems. */
2114 insp = list;
2115 }
2116 if (!pskb_pull(list, eat)) {
2117 kfree_skb(clone);
2118 return NULL;
2119 }
2120 break;
2121 }
2122 } while (eat);
2123
2124 /* Free pulled out fragments. */
2125 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2126 skb_shinfo(skb)->frag_list = list->next;
2127 kfree_skb(list);
2128 }
2129 /* And insert new clone at head. */
2130 if (clone) {
2131 clone->next = list;
2132 skb_shinfo(skb)->frag_list = clone;
2133 }
2134 }
2135 /* Success! Now we may commit changes to skb data. */
2136
2137 pull_pages:
2138 eat = delta;
2139 k = 0;
2140 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2141 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2142
2143 if (size <= eat) {
2144 skb_frag_unref(skb, i);
2145 eat -= size;
2146 } else {
2147 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2148
2149 *frag = skb_shinfo(skb)->frags[i];
2150 if (eat) {
2151 skb_frag_off_add(frag, eat);
2152 skb_frag_size_sub(frag, eat);
2153 if (!i)
2154 goto end;
2155 eat = 0;
2156 }
2157 k++;
2158 }
2159 }
2160 skb_shinfo(skb)->nr_frags = k;
2161
2162 end:
2163 skb->tail += delta;
2164 skb->data_len -= delta;
2165
2166 if (!skb->data_len)
2167 skb_zcopy_clear(skb, false);
2168
2169 return skb_tail_pointer(skb);
2170 }
2171 EXPORT_SYMBOL(__pskb_pull_tail);
2172
2173 /**
2174 * skb_copy_bits - copy bits from skb to kernel buffer
2175 * @skb: source skb
2176 * @offset: offset in source
2177 * @to: destination buffer
2178 * @len: number of bytes to copy
2179 *
2180 * Copy the specified number of bytes from the source skb to the
2181 * destination buffer.
2182 *
2183 * CAUTION ! :
2184 * If its prototype is ever changed,
2185 * check arch/{*}/net/{*}.S files,
2186 * since it is called from BPF assembly code.
2187 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2188 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2189 {
2190 int start = skb_headlen(skb);
2191 struct sk_buff *frag_iter;
2192 int i, copy;
2193
2194 if (offset > (int)skb->len - len)
2195 goto fault;
2196
2197 /* Copy header. */
2198 if ((copy = start - offset) > 0) {
2199 if (copy > len)
2200 copy = len;
2201 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2202 if ((len -= copy) == 0)
2203 return 0;
2204 offset += copy;
2205 to += copy;
2206 }
2207
2208 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2209 int end;
2210 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2211
2212 WARN_ON(start > offset + len);
2213
2214 end = start + skb_frag_size(f);
2215 if ((copy = end - offset) > 0) {
2216 u32 p_off, p_len, copied;
2217 struct page *p;
2218 u8 *vaddr;
2219
2220 if (copy > len)
2221 copy = len;
2222
2223 skb_frag_foreach_page(f,
2224 skb_frag_off(f) + offset - start,
2225 copy, p, p_off, p_len, copied) {
2226 vaddr = kmap_atomic(p);
2227 memcpy(to + copied, vaddr + p_off, p_len);
2228 kunmap_atomic(vaddr);
2229 }
2230
2231 if ((len -= copy) == 0)
2232 return 0;
2233 offset += copy;
2234 to += copy;
2235 }
2236 start = end;
2237 }
2238
2239 skb_walk_frags(skb, frag_iter) {
2240 int end;
2241
2242 WARN_ON(start > offset + len);
2243
2244 end = start + frag_iter->len;
2245 if ((copy = end - offset) > 0) {
2246 if (copy > len)
2247 copy = len;
2248 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2249 goto fault;
2250 if ((len -= copy) == 0)
2251 return 0;
2252 offset += copy;
2253 to += copy;
2254 }
2255 start = end;
2256 }
2257
2258 if (!len)
2259 return 0;
2260
2261 fault:
2262 return -EFAULT;
2263 }
2264 EXPORT_SYMBOL(skb_copy_bits);
2265
2266 /*
2267 * Callback from splice_to_pipe(), if we need to release some pages
2268 * at the end of the spd in case we error'ed out in filling the pipe.
2269 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2270 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2271 {
2272 put_page(spd->pages[i]);
2273 }
2274
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2275 static struct page *linear_to_page(struct page *page, unsigned int *len,
2276 unsigned int *offset,
2277 struct sock *sk)
2278 {
2279 struct page_frag *pfrag = sk_page_frag(sk);
2280
2281 if (!sk_page_frag_refill(sk, pfrag))
2282 return NULL;
2283
2284 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2285
2286 memcpy(page_address(pfrag->page) + pfrag->offset,
2287 page_address(page) + *offset, *len);
2288 *offset = pfrag->offset;
2289 pfrag->offset += *len;
2290
2291 return pfrag->page;
2292 }
2293
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2294 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2295 struct page *page,
2296 unsigned int offset)
2297 {
2298 return spd->nr_pages &&
2299 spd->pages[spd->nr_pages - 1] == page &&
2300 (spd->partial[spd->nr_pages - 1].offset +
2301 spd->partial[spd->nr_pages - 1].len == offset);
2302 }
2303
2304 /*
2305 * Fill page/offset/length into spd, if it can hold more pages.
2306 */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2307 static bool spd_fill_page(struct splice_pipe_desc *spd,
2308 struct pipe_inode_info *pipe, struct page *page,
2309 unsigned int *len, unsigned int offset,
2310 bool linear,
2311 struct sock *sk)
2312 {
2313 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2314 return true;
2315
2316 if (linear) {
2317 page = linear_to_page(page, len, &offset, sk);
2318 if (!page)
2319 return true;
2320 }
2321 if (spd_can_coalesce(spd, page, offset)) {
2322 spd->partial[spd->nr_pages - 1].len += *len;
2323 return false;
2324 }
2325 get_page(page);
2326 spd->pages[spd->nr_pages] = page;
2327 spd->partial[spd->nr_pages].len = *len;
2328 spd->partial[spd->nr_pages].offset = offset;
2329 spd->nr_pages++;
2330
2331 return false;
2332 }
2333
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2334 static bool __splice_segment(struct page *page, unsigned int poff,
2335 unsigned int plen, unsigned int *off,
2336 unsigned int *len,
2337 struct splice_pipe_desc *spd, bool linear,
2338 struct sock *sk,
2339 struct pipe_inode_info *pipe)
2340 {
2341 if (!*len)
2342 return true;
2343
2344 /* skip this segment if already processed */
2345 if (*off >= plen) {
2346 *off -= plen;
2347 return false;
2348 }
2349
2350 /* ignore any bits we already processed */
2351 poff += *off;
2352 plen -= *off;
2353 *off = 0;
2354
2355 do {
2356 unsigned int flen = min(*len, plen);
2357
2358 if (spd_fill_page(spd, pipe, page, &flen, poff,
2359 linear, sk))
2360 return true;
2361 poff += flen;
2362 plen -= flen;
2363 *len -= flen;
2364 } while (*len && plen);
2365
2366 return false;
2367 }
2368
2369 /*
2370 * Map linear and fragment data from the skb to spd. It reports true if the
2371 * pipe is full or if we already spliced the requested length.
2372 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2373 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2374 unsigned int *offset, unsigned int *len,
2375 struct splice_pipe_desc *spd, struct sock *sk)
2376 {
2377 int seg;
2378 struct sk_buff *iter;
2379
2380 /* map the linear part :
2381 * If skb->head_frag is set, this 'linear' part is backed by a
2382 * fragment, and if the head is not shared with any clones then
2383 * we can avoid a copy since we own the head portion of this page.
2384 */
2385 if (__splice_segment(virt_to_page(skb->data),
2386 (unsigned long) skb->data & (PAGE_SIZE - 1),
2387 skb_headlen(skb),
2388 offset, len, spd,
2389 skb_head_is_locked(skb),
2390 sk, pipe))
2391 return true;
2392
2393 /*
2394 * then map the fragments
2395 */
2396 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2397 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2398
2399 if (__splice_segment(skb_frag_page(f),
2400 skb_frag_off(f), skb_frag_size(f),
2401 offset, len, spd, false, sk, pipe))
2402 return true;
2403 }
2404
2405 skb_walk_frags(skb, iter) {
2406 if (*offset >= iter->len) {
2407 *offset -= iter->len;
2408 continue;
2409 }
2410 /* __skb_splice_bits() only fails if the output has no room
2411 * left, so no point in going over the frag_list for the error
2412 * case.
2413 */
2414 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2415 return true;
2416 }
2417
2418 return false;
2419 }
2420
2421 /*
2422 * Map data from the skb to a pipe. Should handle both the linear part,
2423 * the fragments, and the frag list.
2424 */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2425 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2426 struct pipe_inode_info *pipe, unsigned int tlen,
2427 unsigned int flags)
2428 {
2429 struct partial_page partial[MAX_SKB_FRAGS];
2430 struct page *pages[MAX_SKB_FRAGS];
2431 struct splice_pipe_desc spd = {
2432 .pages = pages,
2433 .partial = partial,
2434 .nr_pages_max = MAX_SKB_FRAGS,
2435 .ops = &nosteal_pipe_buf_ops,
2436 .spd_release = sock_spd_release,
2437 };
2438 int ret = 0;
2439
2440 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2441
2442 if (spd.nr_pages)
2443 ret = splice_to_pipe(pipe, &spd);
2444
2445 return ret;
2446 }
2447 EXPORT_SYMBOL_GPL(skb_splice_bits);
2448
2449 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2450 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2451 int len)
2452 {
2453 unsigned int orig_len = len;
2454 struct sk_buff *head = skb;
2455 unsigned short fragidx;
2456 int slen, ret;
2457
2458 do_frag_list:
2459
2460 /* Deal with head data */
2461 while (offset < skb_headlen(skb) && len) {
2462 struct kvec kv;
2463 struct msghdr msg;
2464
2465 slen = min_t(int, len, skb_headlen(skb) - offset);
2466 kv.iov_base = skb->data + offset;
2467 kv.iov_len = slen;
2468 memset(&msg, 0, sizeof(msg));
2469 msg.msg_flags = MSG_DONTWAIT;
2470
2471 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2472 if (ret <= 0)
2473 goto error;
2474
2475 offset += ret;
2476 len -= ret;
2477 }
2478
2479 /* All the data was skb head? */
2480 if (!len)
2481 goto out;
2482
2483 /* Make offset relative to start of frags */
2484 offset -= skb_headlen(skb);
2485
2486 /* Find where we are in frag list */
2487 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2488 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2489
2490 if (offset < skb_frag_size(frag))
2491 break;
2492
2493 offset -= skb_frag_size(frag);
2494 }
2495
2496 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2497 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2498
2499 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2500
2501 while (slen) {
2502 ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2503 skb_frag_off(frag) + offset,
2504 slen, MSG_DONTWAIT);
2505 if (ret <= 0)
2506 goto error;
2507
2508 len -= ret;
2509 offset += ret;
2510 slen -= ret;
2511 }
2512
2513 offset = 0;
2514 }
2515
2516 if (len) {
2517 /* Process any frag lists */
2518
2519 if (skb == head) {
2520 if (skb_has_frag_list(skb)) {
2521 skb = skb_shinfo(skb)->frag_list;
2522 goto do_frag_list;
2523 }
2524 } else if (skb->next) {
2525 skb = skb->next;
2526 goto do_frag_list;
2527 }
2528 }
2529
2530 out:
2531 return orig_len - len;
2532
2533 error:
2534 return orig_len == len ? ret : orig_len - len;
2535 }
2536 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2537
2538 /**
2539 * skb_store_bits - store bits from kernel buffer to skb
2540 * @skb: destination buffer
2541 * @offset: offset in destination
2542 * @from: source buffer
2543 * @len: number of bytes to copy
2544 *
2545 * Copy the specified number of bytes from the source buffer to the
2546 * destination skb. This function handles all the messy bits of
2547 * traversing fragment lists and such.
2548 */
2549
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2550 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2551 {
2552 int start = skb_headlen(skb);
2553 struct sk_buff *frag_iter;
2554 int i, copy;
2555
2556 if (offset > (int)skb->len - len)
2557 goto fault;
2558
2559 if ((copy = start - offset) > 0) {
2560 if (copy > len)
2561 copy = len;
2562 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2563 if ((len -= copy) == 0)
2564 return 0;
2565 offset += copy;
2566 from += copy;
2567 }
2568
2569 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2570 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2571 int end;
2572
2573 WARN_ON(start > offset + len);
2574
2575 end = start + skb_frag_size(frag);
2576 if ((copy = end - offset) > 0) {
2577 u32 p_off, p_len, copied;
2578 struct page *p;
2579 u8 *vaddr;
2580
2581 if (copy > len)
2582 copy = len;
2583
2584 skb_frag_foreach_page(frag,
2585 skb_frag_off(frag) + offset - start,
2586 copy, p, p_off, p_len, copied) {
2587 vaddr = kmap_atomic(p);
2588 memcpy(vaddr + p_off, from + copied, p_len);
2589 kunmap_atomic(vaddr);
2590 }
2591
2592 if ((len -= copy) == 0)
2593 return 0;
2594 offset += copy;
2595 from += copy;
2596 }
2597 start = end;
2598 }
2599
2600 skb_walk_frags(skb, frag_iter) {
2601 int end;
2602
2603 WARN_ON(start > offset + len);
2604
2605 end = start + frag_iter->len;
2606 if ((copy = end - offset) > 0) {
2607 if (copy > len)
2608 copy = len;
2609 if (skb_store_bits(frag_iter, offset - start,
2610 from, copy))
2611 goto fault;
2612 if ((len -= copy) == 0)
2613 return 0;
2614 offset += copy;
2615 from += copy;
2616 }
2617 start = end;
2618 }
2619 if (!len)
2620 return 0;
2621
2622 fault:
2623 return -EFAULT;
2624 }
2625 EXPORT_SYMBOL(skb_store_bits);
2626
2627 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2628 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2629 __wsum csum, const struct skb_checksum_ops *ops)
2630 {
2631 int start = skb_headlen(skb);
2632 int i, copy = start - offset;
2633 struct sk_buff *frag_iter;
2634 int pos = 0;
2635
2636 /* Checksum header. */
2637 if (copy > 0) {
2638 if (copy > len)
2639 copy = len;
2640 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2641 skb->data + offset, copy, csum);
2642 if ((len -= copy) == 0)
2643 return csum;
2644 offset += copy;
2645 pos = copy;
2646 }
2647
2648 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2649 int end;
2650 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2651
2652 WARN_ON(start > offset + len);
2653
2654 end = start + skb_frag_size(frag);
2655 if ((copy = end - offset) > 0) {
2656 u32 p_off, p_len, copied;
2657 struct page *p;
2658 __wsum csum2;
2659 u8 *vaddr;
2660
2661 if (copy > len)
2662 copy = len;
2663
2664 skb_frag_foreach_page(frag,
2665 skb_frag_off(frag) + offset - start,
2666 copy, p, p_off, p_len, copied) {
2667 vaddr = kmap_atomic(p);
2668 csum2 = INDIRECT_CALL_1(ops->update,
2669 csum_partial_ext,
2670 vaddr + p_off, p_len, 0);
2671 kunmap_atomic(vaddr);
2672 csum = INDIRECT_CALL_1(ops->combine,
2673 csum_block_add_ext, csum,
2674 csum2, pos, p_len);
2675 pos += p_len;
2676 }
2677
2678 if (!(len -= copy))
2679 return csum;
2680 offset += copy;
2681 }
2682 start = end;
2683 }
2684
2685 skb_walk_frags(skb, frag_iter) {
2686 int end;
2687
2688 WARN_ON(start > offset + len);
2689
2690 end = start + frag_iter->len;
2691 if ((copy = end - offset) > 0) {
2692 __wsum csum2;
2693 if (copy > len)
2694 copy = len;
2695 csum2 = __skb_checksum(frag_iter, offset - start,
2696 copy, 0, ops);
2697 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2698 csum, csum2, pos, copy);
2699 if ((len -= copy) == 0)
2700 return csum;
2701 offset += copy;
2702 pos += copy;
2703 }
2704 start = end;
2705 }
2706 BUG_ON(len);
2707
2708 return csum;
2709 }
2710 EXPORT_SYMBOL(__skb_checksum);
2711
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2712 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2713 int len, __wsum csum)
2714 {
2715 const struct skb_checksum_ops ops = {
2716 .update = csum_partial_ext,
2717 .combine = csum_block_add_ext,
2718 };
2719
2720 return __skb_checksum(skb, offset, len, csum, &ops);
2721 }
2722 EXPORT_SYMBOL(skb_checksum);
2723
2724 /* Both of above in one bottle. */
2725
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len,__wsum csum)2726 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2727 u8 *to, int len, __wsum csum)
2728 {
2729 int start = skb_headlen(skb);
2730 int i, copy = start - offset;
2731 struct sk_buff *frag_iter;
2732 int pos = 0;
2733
2734 /* Copy header. */
2735 if (copy > 0) {
2736 if (copy > len)
2737 copy = len;
2738 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2739 copy, csum);
2740 if ((len -= copy) == 0)
2741 return csum;
2742 offset += copy;
2743 to += copy;
2744 pos = copy;
2745 }
2746
2747 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2748 int end;
2749
2750 WARN_ON(start > offset + len);
2751
2752 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2753 if ((copy = end - offset) > 0) {
2754 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755 u32 p_off, p_len, copied;
2756 struct page *p;
2757 __wsum csum2;
2758 u8 *vaddr;
2759
2760 if (copy > len)
2761 copy = len;
2762
2763 skb_frag_foreach_page(frag,
2764 skb_frag_off(frag) + offset - start,
2765 copy, p, p_off, p_len, copied) {
2766 vaddr = kmap_atomic(p);
2767 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2768 to + copied,
2769 p_len, 0);
2770 kunmap_atomic(vaddr);
2771 csum = csum_block_add(csum, csum2, pos);
2772 pos += p_len;
2773 }
2774
2775 if (!(len -= copy))
2776 return csum;
2777 offset += copy;
2778 to += copy;
2779 }
2780 start = end;
2781 }
2782
2783 skb_walk_frags(skb, frag_iter) {
2784 __wsum csum2;
2785 int end;
2786
2787 WARN_ON(start > offset + len);
2788
2789 end = start + frag_iter->len;
2790 if ((copy = end - offset) > 0) {
2791 if (copy > len)
2792 copy = len;
2793 csum2 = skb_copy_and_csum_bits(frag_iter,
2794 offset - start,
2795 to, copy, 0);
2796 csum = csum_block_add(csum, csum2, pos);
2797 if ((len -= copy) == 0)
2798 return csum;
2799 offset += copy;
2800 to += copy;
2801 pos += copy;
2802 }
2803 start = end;
2804 }
2805 BUG_ON(len);
2806 return csum;
2807 }
2808 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2809
__skb_checksum_complete_head(struct sk_buff * skb,int len)2810 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2811 {
2812 __sum16 sum;
2813
2814 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2815 /* See comments in __skb_checksum_complete(). */
2816 if (likely(!sum)) {
2817 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2818 !skb->csum_complete_sw)
2819 netdev_rx_csum_fault(skb->dev, skb);
2820 }
2821 if (!skb_shared(skb))
2822 skb->csum_valid = !sum;
2823 return sum;
2824 }
2825 EXPORT_SYMBOL(__skb_checksum_complete_head);
2826
2827 /* This function assumes skb->csum already holds pseudo header's checksum,
2828 * which has been changed from the hardware checksum, for example, by
2829 * __skb_checksum_validate_complete(). And, the original skb->csum must
2830 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2831 *
2832 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2833 * zero. The new checksum is stored back into skb->csum unless the skb is
2834 * shared.
2835 */
__skb_checksum_complete(struct sk_buff * skb)2836 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2837 {
2838 __wsum csum;
2839 __sum16 sum;
2840
2841 csum = skb_checksum(skb, 0, skb->len, 0);
2842
2843 sum = csum_fold(csum_add(skb->csum, csum));
2844 /* This check is inverted, because we already knew the hardware
2845 * checksum is invalid before calling this function. So, if the
2846 * re-computed checksum is valid instead, then we have a mismatch
2847 * between the original skb->csum and skb_checksum(). This means either
2848 * the original hardware checksum is incorrect or we screw up skb->csum
2849 * when moving skb->data around.
2850 */
2851 if (likely(!sum)) {
2852 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2853 !skb->csum_complete_sw)
2854 netdev_rx_csum_fault(skb->dev, skb);
2855 }
2856
2857 if (!skb_shared(skb)) {
2858 /* Save full packet checksum */
2859 skb->csum = csum;
2860 skb->ip_summed = CHECKSUM_COMPLETE;
2861 skb->csum_complete_sw = 1;
2862 skb->csum_valid = !sum;
2863 }
2864
2865 return sum;
2866 }
2867 EXPORT_SYMBOL(__skb_checksum_complete);
2868
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)2869 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2870 {
2871 net_warn_ratelimited(
2872 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2873 __func__);
2874 return 0;
2875 }
2876
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)2877 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2878 int offset, int len)
2879 {
2880 net_warn_ratelimited(
2881 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2882 __func__);
2883 return 0;
2884 }
2885
2886 static const struct skb_checksum_ops default_crc32c_ops = {
2887 .update = warn_crc32c_csum_update,
2888 .combine = warn_crc32c_csum_combine,
2889 };
2890
2891 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2892 &default_crc32c_ops;
2893 EXPORT_SYMBOL(crc32c_csum_stub);
2894
2895 /**
2896 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2897 * @from: source buffer
2898 *
2899 * Calculates the amount of linear headroom needed in the 'to' skb passed
2900 * into skb_zerocopy().
2901 */
2902 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)2903 skb_zerocopy_headlen(const struct sk_buff *from)
2904 {
2905 unsigned int hlen = 0;
2906
2907 if (!from->head_frag ||
2908 skb_headlen(from) < L1_CACHE_BYTES ||
2909 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2910 hlen = skb_headlen(from);
2911
2912 if (skb_has_frag_list(from))
2913 hlen = from->len;
2914
2915 return hlen;
2916 }
2917 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2918
2919 /**
2920 * skb_zerocopy - Zero copy skb to skb
2921 * @to: destination buffer
2922 * @from: source buffer
2923 * @len: number of bytes to copy from source buffer
2924 * @hlen: size of linear headroom in destination buffer
2925 *
2926 * Copies up to `len` bytes from `from` to `to` by creating references
2927 * to the frags in the source buffer.
2928 *
2929 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2930 * headroom in the `to` buffer.
2931 *
2932 * Return value:
2933 * 0: everything is OK
2934 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2935 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2936 */
2937 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)2938 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2939 {
2940 int i, j = 0;
2941 int plen = 0; /* length of skb->head fragment */
2942 int ret;
2943 struct page *page;
2944 unsigned int offset;
2945
2946 BUG_ON(!from->head_frag && !hlen);
2947
2948 /* dont bother with small payloads */
2949 if (len <= skb_tailroom(to))
2950 return skb_copy_bits(from, 0, skb_put(to, len), len);
2951
2952 if (hlen) {
2953 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2954 if (unlikely(ret))
2955 return ret;
2956 len -= hlen;
2957 } else {
2958 plen = min_t(int, skb_headlen(from), len);
2959 if (plen) {
2960 page = virt_to_head_page(from->head);
2961 offset = from->data - (unsigned char *)page_address(page);
2962 __skb_fill_page_desc(to, 0, page, offset, plen);
2963 get_page(page);
2964 j = 1;
2965 len -= plen;
2966 }
2967 }
2968
2969 to->truesize += len + plen;
2970 to->len += len + plen;
2971 to->data_len += len + plen;
2972
2973 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2974 skb_tx_error(from);
2975 return -ENOMEM;
2976 }
2977 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2978
2979 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2980 int size;
2981
2982 if (!len)
2983 break;
2984 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2985 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2986 len);
2987 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
2988 len -= size;
2989 skb_frag_ref(to, j);
2990 j++;
2991 }
2992 skb_shinfo(to)->nr_frags = j;
2993
2994 return 0;
2995 }
2996 EXPORT_SYMBOL_GPL(skb_zerocopy);
2997
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)2998 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2999 {
3000 __wsum csum;
3001 long csstart;
3002
3003 if (skb->ip_summed == CHECKSUM_PARTIAL)
3004 csstart = skb_checksum_start_offset(skb);
3005 else
3006 csstart = skb_headlen(skb);
3007
3008 BUG_ON(csstart > skb_headlen(skb));
3009
3010 skb_copy_from_linear_data(skb, to, csstart);
3011
3012 csum = 0;
3013 if (csstart != skb->len)
3014 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3015 skb->len - csstart, 0);
3016
3017 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3018 long csstuff = csstart + skb->csum_offset;
3019
3020 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3021 }
3022 }
3023 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3024
3025 /**
3026 * skb_dequeue - remove from the head of the queue
3027 * @list: list to dequeue from
3028 *
3029 * Remove the head of the list. The list lock is taken so the function
3030 * may be used safely with other locking list functions. The head item is
3031 * returned or %NULL if the list is empty.
3032 */
3033
skb_dequeue(struct sk_buff_head * list)3034 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3035 {
3036 unsigned long flags;
3037 struct sk_buff *result;
3038
3039 spin_lock_irqsave(&list->lock, flags);
3040 result = __skb_dequeue(list);
3041 spin_unlock_irqrestore(&list->lock, flags);
3042 return result;
3043 }
3044 EXPORT_SYMBOL(skb_dequeue);
3045
3046 /**
3047 * skb_dequeue_tail - remove from the tail of the queue
3048 * @list: list to dequeue from
3049 *
3050 * Remove the tail of the list. The list lock is taken so the function
3051 * may be used safely with other locking list functions. The tail item is
3052 * returned or %NULL if the list is empty.
3053 */
skb_dequeue_tail(struct sk_buff_head * list)3054 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3055 {
3056 unsigned long flags;
3057 struct sk_buff *result;
3058
3059 spin_lock_irqsave(&list->lock, flags);
3060 result = __skb_dequeue_tail(list);
3061 spin_unlock_irqrestore(&list->lock, flags);
3062 return result;
3063 }
3064 EXPORT_SYMBOL(skb_dequeue_tail);
3065
3066 /**
3067 * skb_queue_purge - empty a list
3068 * @list: list to empty
3069 *
3070 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3071 * the list and one reference dropped. This function takes the list
3072 * lock and is atomic with respect to other list locking functions.
3073 */
skb_queue_purge(struct sk_buff_head * list)3074 void skb_queue_purge(struct sk_buff_head *list)
3075 {
3076 struct sk_buff *skb;
3077 while ((skb = skb_dequeue(list)) != NULL)
3078 kfree_skb(skb);
3079 }
3080 EXPORT_SYMBOL(skb_queue_purge);
3081
3082 /**
3083 * skb_rbtree_purge - empty a skb rbtree
3084 * @root: root of the rbtree to empty
3085 * Return value: the sum of truesizes of all purged skbs.
3086 *
3087 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3088 * the list and one reference dropped. This function does not take
3089 * any lock. Synchronization should be handled by the caller (e.g., TCP
3090 * out-of-order queue is protected by the socket lock).
3091 */
skb_rbtree_purge(struct rb_root * root)3092 unsigned int skb_rbtree_purge(struct rb_root *root)
3093 {
3094 struct rb_node *p = rb_first(root);
3095 unsigned int sum = 0;
3096
3097 while (p) {
3098 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3099
3100 p = rb_next(p);
3101 rb_erase(&skb->rbnode, root);
3102 sum += skb->truesize;
3103 kfree_skb(skb);
3104 }
3105 return sum;
3106 }
3107
3108 /**
3109 * skb_queue_head - queue a buffer at the list head
3110 * @list: list to use
3111 * @newsk: buffer to queue
3112 *
3113 * Queue a buffer at the start of the list. This function takes the
3114 * list lock and can be used safely with other locking &sk_buff functions
3115 * safely.
3116 *
3117 * A buffer cannot be placed on two lists at the same time.
3118 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3119 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3120 {
3121 unsigned long flags;
3122
3123 spin_lock_irqsave(&list->lock, flags);
3124 __skb_queue_head(list, newsk);
3125 spin_unlock_irqrestore(&list->lock, flags);
3126 }
3127 EXPORT_SYMBOL(skb_queue_head);
3128
3129 /**
3130 * skb_queue_tail - queue a buffer at the list tail
3131 * @list: list to use
3132 * @newsk: buffer to queue
3133 *
3134 * Queue a buffer at the tail of the list. This function takes the
3135 * list lock and can be used safely with other locking &sk_buff functions
3136 * safely.
3137 *
3138 * A buffer cannot be placed on two lists at the same time.
3139 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3140 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3141 {
3142 unsigned long flags;
3143
3144 spin_lock_irqsave(&list->lock, flags);
3145 __skb_queue_tail(list, newsk);
3146 spin_unlock_irqrestore(&list->lock, flags);
3147 }
3148 EXPORT_SYMBOL(skb_queue_tail);
3149
3150 /**
3151 * skb_unlink - remove a buffer from a list
3152 * @skb: buffer to remove
3153 * @list: list to use
3154 *
3155 * Remove a packet from a list. The list locks are taken and this
3156 * function is atomic with respect to other list locked calls
3157 *
3158 * You must know what list the SKB is on.
3159 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3160 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3161 {
3162 unsigned long flags;
3163
3164 spin_lock_irqsave(&list->lock, flags);
3165 __skb_unlink(skb, list);
3166 spin_unlock_irqrestore(&list->lock, flags);
3167 }
3168 EXPORT_SYMBOL(skb_unlink);
3169
3170 /**
3171 * skb_append - append a buffer
3172 * @old: buffer to insert after
3173 * @newsk: buffer to insert
3174 * @list: list to use
3175 *
3176 * Place a packet after a given packet in a list. The list locks are taken
3177 * and this function is atomic with respect to other list locked calls.
3178 * A buffer cannot be placed on two lists at the same time.
3179 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3180 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3181 {
3182 unsigned long flags;
3183
3184 spin_lock_irqsave(&list->lock, flags);
3185 __skb_queue_after(list, old, newsk);
3186 spin_unlock_irqrestore(&list->lock, flags);
3187 }
3188 EXPORT_SYMBOL(skb_append);
3189
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3190 static inline void skb_split_inside_header(struct sk_buff *skb,
3191 struct sk_buff* skb1,
3192 const u32 len, const int pos)
3193 {
3194 int i;
3195
3196 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3197 pos - len);
3198 /* And move data appendix as is. */
3199 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3200 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3201
3202 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3203 skb_shinfo(skb)->nr_frags = 0;
3204 skb1->data_len = skb->data_len;
3205 skb1->len += skb1->data_len;
3206 skb->data_len = 0;
3207 skb->len = len;
3208 skb_set_tail_pointer(skb, len);
3209 }
3210
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3211 static inline void skb_split_no_header(struct sk_buff *skb,
3212 struct sk_buff* skb1,
3213 const u32 len, int pos)
3214 {
3215 int i, k = 0;
3216 const int nfrags = skb_shinfo(skb)->nr_frags;
3217
3218 skb_shinfo(skb)->nr_frags = 0;
3219 skb1->len = skb1->data_len = skb->len - len;
3220 skb->len = len;
3221 skb->data_len = len - pos;
3222
3223 for (i = 0; i < nfrags; i++) {
3224 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3225
3226 if (pos + size > len) {
3227 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3228
3229 if (pos < len) {
3230 /* Split frag.
3231 * We have two variants in this case:
3232 * 1. Move all the frag to the second
3233 * part, if it is possible. F.e.
3234 * this approach is mandatory for TUX,
3235 * where splitting is expensive.
3236 * 2. Split is accurately. We make this.
3237 */
3238 skb_frag_ref(skb, i);
3239 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3240 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3241 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3242 skb_shinfo(skb)->nr_frags++;
3243 }
3244 k++;
3245 } else
3246 skb_shinfo(skb)->nr_frags++;
3247 pos += size;
3248 }
3249 skb_shinfo(skb1)->nr_frags = k;
3250 }
3251
3252 /**
3253 * skb_split - Split fragmented skb to two parts at length len.
3254 * @skb: the buffer to split
3255 * @skb1: the buffer to receive the second part
3256 * @len: new length for skb
3257 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3258 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3259 {
3260 int pos = skb_headlen(skb);
3261
3262 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3263 SKBTX_SHARED_FRAG;
3264 skb_zerocopy_clone(skb1, skb, 0);
3265 if (len < pos) /* Split line is inside header. */
3266 skb_split_inside_header(skb, skb1, len, pos);
3267 else /* Second chunk has no header, nothing to copy. */
3268 skb_split_no_header(skb, skb1, len, pos);
3269 }
3270 EXPORT_SYMBOL(skb_split);
3271
3272 /* Shifting from/to a cloned skb is a no-go.
3273 *
3274 * Caller cannot keep skb_shinfo related pointers past calling here!
3275 */
skb_prepare_for_shift(struct sk_buff * skb)3276 static int skb_prepare_for_shift(struct sk_buff *skb)
3277 {
3278 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3279 }
3280
3281 /**
3282 * skb_shift - Shifts paged data partially from skb to another
3283 * @tgt: buffer into which tail data gets added
3284 * @skb: buffer from which the paged data comes from
3285 * @shiftlen: shift up to this many bytes
3286 *
3287 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3288 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3289 * It's up to caller to free skb if everything was shifted.
3290 *
3291 * If @tgt runs out of frags, the whole operation is aborted.
3292 *
3293 * Skb cannot include anything else but paged data while tgt is allowed
3294 * to have non-paged data as well.
3295 *
3296 * TODO: full sized shift could be optimized but that would need
3297 * specialized skb free'er to handle frags without up-to-date nr_frags.
3298 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3299 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3300 {
3301 int from, to, merge, todo;
3302 skb_frag_t *fragfrom, *fragto;
3303
3304 BUG_ON(shiftlen > skb->len);
3305
3306 if (skb_headlen(skb))
3307 return 0;
3308 if (skb_zcopy(tgt) || skb_zcopy(skb))
3309 return 0;
3310
3311 todo = shiftlen;
3312 from = 0;
3313 to = skb_shinfo(tgt)->nr_frags;
3314 fragfrom = &skb_shinfo(skb)->frags[from];
3315
3316 /* Actual merge is delayed until the point when we know we can
3317 * commit all, so that we don't have to undo partial changes
3318 */
3319 if (!to ||
3320 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3321 skb_frag_off(fragfrom))) {
3322 merge = -1;
3323 } else {
3324 merge = to - 1;
3325
3326 todo -= skb_frag_size(fragfrom);
3327 if (todo < 0) {
3328 if (skb_prepare_for_shift(skb) ||
3329 skb_prepare_for_shift(tgt))
3330 return 0;
3331
3332 /* All previous frag pointers might be stale! */
3333 fragfrom = &skb_shinfo(skb)->frags[from];
3334 fragto = &skb_shinfo(tgt)->frags[merge];
3335
3336 skb_frag_size_add(fragto, shiftlen);
3337 skb_frag_size_sub(fragfrom, shiftlen);
3338 skb_frag_off_add(fragfrom, shiftlen);
3339
3340 goto onlymerged;
3341 }
3342
3343 from++;
3344 }
3345
3346 /* Skip full, not-fitting skb to avoid expensive operations */
3347 if ((shiftlen == skb->len) &&
3348 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3349 return 0;
3350
3351 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3352 return 0;
3353
3354 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3355 if (to == MAX_SKB_FRAGS)
3356 return 0;
3357
3358 fragfrom = &skb_shinfo(skb)->frags[from];
3359 fragto = &skb_shinfo(tgt)->frags[to];
3360
3361 if (todo >= skb_frag_size(fragfrom)) {
3362 *fragto = *fragfrom;
3363 todo -= skb_frag_size(fragfrom);
3364 from++;
3365 to++;
3366
3367 } else {
3368 __skb_frag_ref(fragfrom);
3369 skb_frag_page_copy(fragto, fragfrom);
3370 skb_frag_off_copy(fragto, fragfrom);
3371 skb_frag_size_set(fragto, todo);
3372
3373 skb_frag_off_add(fragfrom, todo);
3374 skb_frag_size_sub(fragfrom, todo);
3375 todo = 0;
3376
3377 to++;
3378 break;
3379 }
3380 }
3381
3382 /* Ready to "commit" this state change to tgt */
3383 skb_shinfo(tgt)->nr_frags = to;
3384
3385 if (merge >= 0) {
3386 fragfrom = &skb_shinfo(skb)->frags[0];
3387 fragto = &skb_shinfo(tgt)->frags[merge];
3388
3389 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3390 __skb_frag_unref(fragfrom);
3391 }
3392
3393 /* Reposition in the original skb */
3394 to = 0;
3395 while (from < skb_shinfo(skb)->nr_frags)
3396 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3397 skb_shinfo(skb)->nr_frags = to;
3398
3399 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3400
3401 onlymerged:
3402 /* Most likely the tgt won't ever need its checksum anymore, skb on
3403 * the other hand might need it if it needs to be resent
3404 */
3405 tgt->ip_summed = CHECKSUM_PARTIAL;
3406 skb->ip_summed = CHECKSUM_PARTIAL;
3407
3408 /* Yak, is it really working this way? Some helper please? */
3409 skb->len -= shiftlen;
3410 skb->data_len -= shiftlen;
3411 skb->truesize -= shiftlen;
3412 tgt->len += shiftlen;
3413 tgt->data_len += shiftlen;
3414 tgt->truesize += shiftlen;
3415
3416 return shiftlen;
3417 }
3418
3419 /**
3420 * skb_prepare_seq_read - Prepare a sequential read of skb data
3421 * @skb: the buffer to read
3422 * @from: lower offset of data to be read
3423 * @to: upper offset of data to be read
3424 * @st: state variable
3425 *
3426 * Initializes the specified state variable. Must be called before
3427 * invoking skb_seq_read() for the first time.
3428 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3429 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3430 unsigned int to, struct skb_seq_state *st)
3431 {
3432 st->lower_offset = from;
3433 st->upper_offset = to;
3434 st->root_skb = st->cur_skb = skb;
3435 st->frag_idx = st->stepped_offset = 0;
3436 st->frag_data = NULL;
3437 }
3438 EXPORT_SYMBOL(skb_prepare_seq_read);
3439
3440 /**
3441 * skb_seq_read - Sequentially read skb data
3442 * @consumed: number of bytes consumed by the caller so far
3443 * @data: destination pointer for data to be returned
3444 * @st: state variable
3445 *
3446 * Reads a block of skb data at @consumed relative to the
3447 * lower offset specified to skb_prepare_seq_read(). Assigns
3448 * the head of the data block to @data and returns the length
3449 * of the block or 0 if the end of the skb data or the upper
3450 * offset has been reached.
3451 *
3452 * The caller is not required to consume all of the data
3453 * returned, i.e. @consumed is typically set to the number
3454 * of bytes already consumed and the next call to
3455 * skb_seq_read() will return the remaining part of the block.
3456 *
3457 * Note 1: The size of each block of data returned can be arbitrary,
3458 * this limitation is the cost for zerocopy sequential
3459 * reads of potentially non linear data.
3460 *
3461 * Note 2: Fragment lists within fragments are not implemented
3462 * at the moment, state->root_skb could be replaced with
3463 * a stack for this purpose.
3464 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3465 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3466 struct skb_seq_state *st)
3467 {
3468 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3469 skb_frag_t *frag;
3470
3471 if (unlikely(abs_offset >= st->upper_offset)) {
3472 if (st->frag_data) {
3473 kunmap_atomic(st->frag_data);
3474 st->frag_data = NULL;
3475 }
3476 return 0;
3477 }
3478
3479 next_skb:
3480 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3481
3482 if (abs_offset < block_limit && !st->frag_data) {
3483 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3484 return block_limit - abs_offset;
3485 }
3486
3487 if (st->frag_idx == 0 && !st->frag_data)
3488 st->stepped_offset += skb_headlen(st->cur_skb);
3489
3490 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3491 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3492 block_limit = skb_frag_size(frag) + st->stepped_offset;
3493
3494 if (abs_offset < block_limit) {
3495 if (!st->frag_data)
3496 st->frag_data = kmap_atomic(skb_frag_page(frag));
3497
3498 *data = (u8 *) st->frag_data + skb_frag_off(frag) +
3499 (abs_offset - st->stepped_offset);
3500
3501 return block_limit - abs_offset;
3502 }
3503
3504 if (st->frag_data) {
3505 kunmap_atomic(st->frag_data);
3506 st->frag_data = NULL;
3507 }
3508
3509 st->frag_idx++;
3510 st->stepped_offset += skb_frag_size(frag);
3511 }
3512
3513 if (st->frag_data) {
3514 kunmap_atomic(st->frag_data);
3515 st->frag_data = NULL;
3516 }
3517
3518 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3519 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3520 st->frag_idx = 0;
3521 goto next_skb;
3522 } else if (st->cur_skb->next) {
3523 st->cur_skb = st->cur_skb->next;
3524 st->frag_idx = 0;
3525 goto next_skb;
3526 }
3527
3528 return 0;
3529 }
3530 EXPORT_SYMBOL(skb_seq_read);
3531
3532 /**
3533 * skb_abort_seq_read - Abort a sequential read of skb data
3534 * @st: state variable
3535 *
3536 * Must be called if skb_seq_read() was not called until it
3537 * returned 0.
3538 */
skb_abort_seq_read(struct skb_seq_state * st)3539 void skb_abort_seq_read(struct skb_seq_state *st)
3540 {
3541 if (st->frag_data)
3542 kunmap_atomic(st->frag_data);
3543 }
3544 EXPORT_SYMBOL(skb_abort_seq_read);
3545
3546 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3547
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3548 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3549 struct ts_config *conf,
3550 struct ts_state *state)
3551 {
3552 return skb_seq_read(offset, text, TS_SKB_CB(state));
3553 }
3554
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3555 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3556 {
3557 skb_abort_seq_read(TS_SKB_CB(state));
3558 }
3559
3560 /**
3561 * skb_find_text - Find a text pattern in skb data
3562 * @skb: the buffer to look in
3563 * @from: search offset
3564 * @to: search limit
3565 * @config: textsearch configuration
3566 *
3567 * Finds a pattern in the skb data according to the specified
3568 * textsearch configuration. Use textsearch_next() to retrieve
3569 * subsequent occurrences of the pattern. Returns the offset
3570 * to the first occurrence or UINT_MAX if no match was found.
3571 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3572 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3573 unsigned int to, struct ts_config *config)
3574 {
3575 struct ts_state state;
3576 unsigned int ret;
3577
3578 config->get_next_block = skb_ts_get_next_block;
3579 config->finish = skb_ts_finish;
3580
3581 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3582
3583 ret = textsearch_find(config, &state);
3584 return (ret <= to - from ? ret : UINT_MAX);
3585 }
3586 EXPORT_SYMBOL(skb_find_text);
3587
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3588 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3589 int offset, size_t size)
3590 {
3591 int i = skb_shinfo(skb)->nr_frags;
3592
3593 if (skb_can_coalesce(skb, i, page, offset)) {
3594 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3595 } else if (i < MAX_SKB_FRAGS) {
3596 get_page(page);
3597 skb_fill_page_desc(skb, i, page, offset, size);
3598 } else {
3599 return -EMSGSIZE;
3600 }
3601
3602 return 0;
3603 }
3604 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3605
3606 /**
3607 * skb_pull_rcsum - pull skb and update receive checksum
3608 * @skb: buffer to update
3609 * @len: length of data pulled
3610 *
3611 * This function performs an skb_pull on the packet and updates
3612 * the CHECKSUM_COMPLETE checksum. It should be used on
3613 * receive path processing instead of skb_pull unless you know
3614 * that the checksum difference is zero (e.g., a valid IP header)
3615 * or you are setting ip_summed to CHECKSUM_NONE.
3616 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3617 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3618 {
3619 unsigned char *data = skb->data;
3620
3621 BUG_ON(len > skb->len);
3622 __skb_pull(skb, len);
3623 skb_postpull_rcsum(skb, data, len);
3624 return skb->data;
3625 }
3626 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3627
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)3628 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3629 {
3630 skb_frag_t head_frag;
3631 struct page *page;
3632
3633 page = virt_to_head_page(frag_skb->head);
3634 __skb_frag_set_page(&head_frag, page);
3635 skb_frag_off_set(&head_frag, frag_skb->data -
3636 (unsigned char *)page_address(page));
3637 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3638 return head_frag;
3639 }
3640
3641 /**
3642 * skb_segment - Perform protocol segmentation on skb.
3643 * @head_skb: buffer to segment
3644 * @features: features for the output path (see dev->features)
3645 *
3646 * This function performs segmentation on the given skb. It returns
3647 * a pointer to the first in a list of new skbs for the segments.
3648 * In case of error it returns ERR_PTR(err).
3649 */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3650 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3651 netdev_features_t features)
3652 {
3653 struct sk_buff *segs = NULL;
3654 struct sk_buff *tail = NULL;
3655 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3656 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3657 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3658 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3659 struct sk_buff *frag_skb = head_skb;
3660 unsigned int offset = doffset;
3661 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3662 unsigned int partial_segs = 0;
3663 unsigned int headroom;
3664 unsigned int len = head_skb->len;
3665 __be16 proto;
3666 bool csum, sg;
3667 int nfrags = skb_shinfo(head_skb)->nr_frags;
3668 int err = -ENOMEM;
3669 int i = 0;
3670 int pos;
3671 int dummy;
3672
3673 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3674 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3675 /* gso_size is untrusted, and we have a frag_list with a linear
3676 * non head_frag head.
3677 *
3678 * (we assume checking the first list_skb member suffices;
3679 * i.e if either of the list_skb members have non head_frag
3680 * head, then the first one has too).
3681 *
3682 * If head_skb's headlen does not fit requested gso_size, it
3683 * means that the frag_list members do NOT terminate on exact
3684 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3685 * sharing. Therefore we must fallback to copying the frag_list
3686 * skbs; we do so by disabling SG.
3687 */
3688 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3689 features &= ~NETIF_F_SG;
3690 }
3691
3692 __skb_push(head_skb, doffset);
3693 proto = skb_network_protocol(head_skb, &dummy);
3694 if (unlikely(!proto))
3695 return ERR_PTR(-EINVAL);
3696
3697 sg = !!(features & NETIF_F_SG);
3698 csum = !!can_checksum_protocol(features, proto);
3699
3700 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3701 if (!(features & NETIF_F_GSO_PARTIAL)) {
3702 struct sk_buff *iter;
3703 unsigned int frag_len;
3704
3705 if (!list_skb ||
3706 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3707 goto normal;
3708
3709 /* If we get here then all the required
3710 * GSO features except frag_list are supported.
3711 * Try to split the SKB to multiple GSO SKBs
3712 * with no frag_list.
3713 * Currently we can do that only when the buffers don't
3714 * have a linear part and all the buffers except
3715 * the last are of the same length.
3716 */
3717 frag_len = list_skb->len;
3718 skb_walk_frags(head_skb, iter) {
3719 if (frag_len != iter->len && iter->next)
3720 goto normal;
3721 if (skb_headlen(iter) && !iter->head_frag)
3722 goto normal;
3723
3724 len -= iter->len;
3725 }
3726
3727 if (len != frag_len)
3728 goto normal;
3729 }
3730
3731 /* GSO partial only requires that we trim off any excess that
3732 * doesn't fit into an MSS sized block, so take care of that
3733 * now.
3734 */
3735 partial_segs = len / mss;
3736 if (partial_segs > 1)
3737 mss *= partial_segs;
3738 else
3739 partial_segs = 0;
3740 }
3741
3742 normal:
3743 headroom = skb_headroom(head_skb);
3744 pos = skb_headlen(head_skb);
3745
3746 do {
3747 struct sk_buff *nskb;
3748 skb_frag_t *nskb_frag;
3749 int hsize;
3750 int size;
3751
3752 if (unlikely(mss == GSO_BY_FRAGS)) {
3753 len = list_skb->len;
3754 } else {
3755 len = head_skb->len - offset;
3756 if (len > mss)
3757 len = mss;
3758 }
3759
3760 hsize = skb_headlen(head_skb) - offset;
3761 if (hsize < 0)
3762 hsize = 0;
3763 if (hsize > len || !sg)
3764 hsize = len;
3765
3766 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3767 (skb_headlen(list_skb) == len || sg)) {
3768 BUG_ON(skb_headlen(list_skb) > len);
3769
3770 i = 0;
3771 nfrags = skb_shinfo(list_skb)->nr_frags;
3772 frag = skb_shinfo(list_skb)->frags;
3773 frag_skb = list_skb;
3774 pos += skb_headlen(list_skb);
3775
3776 while (pos < offset + len) {
3777 BUG_ON(i >= nfrags);
3778
3779 size = skb_frag_size(frag);
3780 if (pos + size > offset + len)
3781 break;
3782
3783 i++;
3784 pos += size;
3785 frag++;
3786 }
3787
3788 nskb = skb_clone(list_skb, GFP_ATOMIC);
3789 list_skb = list_skb->next;
3790
3791 if (unlikely(!nskb))
3792 goto err;
3793
3794 if (unlikely(pskb_trim(nskb, len))) {
3795 kfree_skb(nskb);
3796 goto err;
3797 }
3798
3799 hsize = skb_end_offset(nskb);
3800 if (skb_cow_head(nskb, doffset + headroom)) {
3801 kfree_skb(nskb);
3802 goto err;
3803 }
3804
3805 nskb->truesize += skb_end_offset(nskb) - hsize;
3806 skb_release_head_state(nskb);
3807 __skb_push(nskb, doffset);
3808 } else {
3809 nskb = __alloc_skb(hsize + doffset + headroom,
3810 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3811 NUMA_NO_NODE);
3812
3813 if (unlikely(!nskb))
3814 goto err;
3815
3816 skb_reserve(nskb, headroom);
3817 __skb_put(nskb, doffset);
3818 }
3819
3820 if (segs)
3821 tail->next = nskb;
3822 else
3823 segs = nskb;
3824 tail = nskb;
3825
3826 __copy_skb_header(nskb, head_skb);
3827
3828 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3829 skb_reset_mac_len(nskb);
3830
3831 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3832 nskb->data - tnl_hlen,
3833 doffset + tnl_hlen);
3834
3835 if (nskb->len == len + doffset)
3836 goto perform_csum_check;
3837
3838 if (!sg) {
3839 if (!nskb->remcsum_offload)
3840 nskb->ip_summed = CHECKSUM_NONE;
3841 SKB_GSO_CB(nskb)->csum =
3842 skb_copy_and_csum_bits(head_skb, offset,
3843 skb_put(nskb, len),
3844 len, 0);
3845 SKB_GSO_CB(nskb)->csum_start =
3846 skb_headroom(nskb) + doffset;
3847 continue;
3848 }
3849
3850 nskb_frag = skb_shinfo(nskb)->frags;
3851
3852 skb_copy_from_linear_data_offset(head_skb, offset,
3853 skb_put(nskb, hsize), hsize);
3854
3855 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3856 SKBTX_SHARED_FRAG;
3857
3858 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3859 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3860 goto err;
3861
3862 while (pos < offset + len) {
3863 if (i >= nfrags) {
3864 i = 0;
3865 nfrags = skb_shinfo(list_skb)->nr_frags;
3866 frag = skb_shinfo(list_skb)->frags;
3867 frag_skb = list_skb;
3868 if (!skb_headlen(list_skb)) {
3869 BUG_ON(!nfrags);
3870 } else {
3871 BUG_ON(!list_skb->head_frag);
3872
3873 /* to make room for head_frag. */
3874 i--;
3875 frag--;
3876 }
3877 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3878 skb_zerocopy_clone(nskb, frag_skb,
3879 GFP_ATOMIC))
3880 goto err;
3881
3882 list_skb = list_skb->next;
3883 }
3884
3885 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3886 MAX_SKB_FRAGS)) {
3887 net_warn_ratelimited(
3888 "skb_segment: too many frags: %u %u\n",
3889 pos, mss);
3890 err = -EINVAL;
3891 goto err;
3892 }
3893
3894 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3895 __skb_frag_ref(nskb_frag);
3896 size = skb_frag_size(nskb_frag);
3897
3898 if (pos < offset) {
3899 skb_frag_off_add(nskb_frag, offset - pos);
3900 skb_frag_size_sub(nskb_frag, offset - pos);
3901 }
3902
3903 skb_shinfo(nskb)->nr_frags++;
3904
3905 if (pos + size <= offset + len) {
3906 i++;
3907 frag++;
3908 pos += size;
3909 } else {
3910 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3911 goto skip_fraglist;
3912 }
3913
3914 nskb_frag++;
3915 }
3916
3917 skip_fraglist:
3918 nskb->data_len = len - hsize;
3919 nskb->len += nskb->data_len;
3920 nskb->truesize += nskb->data_len;
3921
3922 perform_csum_check:
3923 if (!csum) {
3924 if (skb_has_shared_frag(nskb) &&
3925 __skb_linearize(nskb))
3926 goto err;
3927
3928 if (!nskb->remcsum_offload)
3929 nskb->ip_summed = CHECKSUM_NONE;
3930 SKB_GSO_CB(nskb)->csum =
3931 skb_checksum(nskb, doffset,
3932 nskb->len - doffset, 0);
3933 SKB_GSO_CB(nskb)->csum_start =
3934 skb_headroom(nskb) + doffset;
3935 }
3936 } while ((offset += len) < head_skb->len);
3937
3938 /* Some callers want to get the end of the list.
3939 * Put it in segs->prev to avoid walking the list.
3940 * (see validate_xmit_skb_list() for example)
3941 */
3942 segs->prev = tail;
3943
3944 if (partial_segs) {
3945 struct sk_buff *iter;
3946 int type = skb_shinfo(head_skb)->gso_type;
3947 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3948
3949 /* Update type to add partial and then remove dodgy if set */
3950 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3951 type &= ~SKB_GSO_DODGY;
3952
3953 /* Update GSO info and prepare to start updating headers on
3954 * our way back down the stack of protocols.
3955 */
3956 for (iter = segs; iter; iter = iter->next) {
3957 skb_shinfo(iter)->gso_size = gso_size;
3958 skb_shinfo(iter)->gso_segs = partial_segs;
3959 skb_shinfo(iter)->gso_type = type;
3960 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3961 }
3962
3963 if (tail->len - doffset <= gso_size)
3964 skb_shinfo(tail)->gso_size = 0;
3965 else if (tail != segs)
3966 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3967 }
3968
3969 /* Following permits correct backpressure, for protocols
3970 * using skb_set_owner_w().
3971 * Idea is to tranfert ownership from head_skb to last segment.
3972 */
3973 if (head_skb->destructor == sock_wfree) {
3974 swap(tail->truesize, head_skb->truesize);
3975 swap(tail->destructor, head_skb->destructor);
3976 swap(tail->sk, head_skb->sk);
3977 }
3978 return segs;
3979
3980 err:
3981 kfree_skb_list(segs);
3982 return ERR_PTR(err);
3983 }
3984 EXPORT_SYMBOL_GPL(skb_segment);
3985
skb_gro_receive(struct sk_buff * p,struct sk_buff * skb)3986 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3987 {
3988 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3989 unsigned int offset = skb_gro_offset(skb);
3990 unsigned int headlen = skb_headlen(skb);
3991 unsigned int len = skb_gro_len(skb);
3992 unsigned int delta_truesize;
3993 struct sk_buff *lp;
3994
3995 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
3996 return -E2BIG;
3997
3998 lp = NAPI_GRO_CB(p)->last;
3999 pinfo = skb_shinfo(lp);
4000
4001 if (headlen <= offset) {
4002 skb_frag_t *frag;
4003 skb_frag_t *frag2;
4004 int i = skbinfo->nr_frags;
4005 int nr_frags = pinfo->nr_frags + i;
4006
4007 if (nr_frags > MAX_SKB_FRAGS)
4008 goto merge;
4009
4010 offset -= headlen;
4011 pinfo->nr_frags = nr_frags;
4012 skbinfo->nr_frags = 0;
4013
4014 frag = pinfo->frags + nr_frags;
4015 frag2 = skbinfo->frags + i;
4016 do {
4017 *--frag = *--frag2;
4018 } while (--i);
4019
4020 skb_frag_off_add(frag, offset);
4021 skb_frag_size_sub(frag, offset);
4022
4023 /* all fragments truesize : remove (head size + sk_buff) */
4024 delta_truesize = skb->truesize -
4025 SKB_TRUESIZE(skb_end_offset(skb));
4026
4027 skb->truesize -= skb->data_len;
4028 skb->len -= skb->data_len;
4029 skb->data_len = 0;
4030
4031 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4032 goto done;
4033 } else if (skb->head_frag) {
4034 int nr_frags = pinfo->nr_frags;
4035 skb_frag_t *frag = pinfo->frags + nr_frags;
4036 struct page *page = virt_to_head_page(skb->head);
4037 unsigned int first_size = headlen - offset;
4038 unsigned int first_offset;
4039
4040 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4041 goto merge;
4042
4043 first_offset = skb->data -
4044 (unsigned char *)page_address(page) +
4045 offset;
4046
4047 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4048
4049 __skb_frag_set_page(frag, page);
4050 skb_frag_off_set(frag, first_offset);
4051 skb_frag_size_set(frag, first_size);
4052
4053 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4054 /* We dont need to clear skbinfo->nr_frags here */
4055
4056 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4057 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4058 goto done;
4059 }
4060
4061 merge:
4062 delta_truesize = skb->truesize;
4063 if (offset > headlen) {
4064 unsigned int eat = offset - headlen;
4065
4066 skb_frag_off_add(&skbinfo->frags[0], eat);
4067 skb_frag_size_sub(&skbinfo->frags[0], eat);
4068 skb->data_len -= eat;
4069 skb->len -= eat;
4070 offset = headlen;
4071 }
4072
4073 __skb_pull(skb, offset);
4074
4075 if (NAPI_GRO_CB(p)->last == p)
4076 skb_shinfo(p)->frag_list = skb;
4077 else
4078 NAPI_GRO_CB(p)->last->next = skb;
4079 NAPI_GRO_CB(p)->last = skb;
4080 __skb_header_release(skb);
4081 lp = p;
4082
4083 done:
4084 NAPI_GRO_CB(p)->count++;
4085 p->data_len += len;
4086 p->truesize += delta_truesize;
4087 p->len += len;
4088 if (lp != p) {
4089 lp->data_len += len;
4090 lp->truesize += delta_truesize;
4091 lp->len += len;
4092 }
4093 NAPI_GRO_CB(skb)->same_flow = 1;
4094 return 0;
4095 }
4096 EXPORT_SYMBOL_GPL(skb_gro_receive);
4097
4098 #ifdef CONFIG_SKB_EXTENSIONS
4099 #define SKB_EXT_ALIGN_VALUE 8
4100 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4101
4102 static const u8 skb_ext_type_len[] = {
4103 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4104 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4105 #endif
4106 #ifdef CONFIG_XFRM
4107 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4108 #endif
4109 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4110 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4111 #endif
4112 };
4113
skb_ext_total_length(void)4114 static __always_inline unsigned int skb_ext_total_length(void)
4115 {
4116 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4117 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4118 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4119 #endif
4120 #ifdef CONFIG_XFRM
4121 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4122 #endif
4123 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4124 skb_ext_type_len[TC_SKB_EXT] +
4125 #endif
4126 0;
4127 }
4128
skb_extensions_init(void)4129 static void skb_extensions_init(void)
4130 {
4131 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4132 BUILD_BUG_ON(skb_ext_total_length() > 255);
4133
4134 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4135 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4136 0,
4137 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4138 NULL);
4139 }
4140 #else
skb_extensions_init(void)4141 static void skb_extensions_init(void) {}
4142 #endif
4143
skb_init(void)4144 void __init skb_init(void)
4145 {
4146 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4147 sizeof(struct sk_buff),
4148 0,
4149 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4150 offsetof(struct sk_buff, cb),
4151 sizeof_field(struct sk_buff, cb),
4152 NULL);
4153 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4154 sizeof(struct sk_buff_fclones),
4155 0,
4156 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4157 NULL);
4158 skb_extensions_init();
4159 }
4160
4161 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4162 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4163 unsigned int recursion_level)
4164 {
4165 int start = skb_headlen(skb);
4166 int i, copy = start - offset;
4167 struct sk_buff *frag_iter;
4168 int elt = 0;
4169
4170 if (unlikely(recursion_level >= 24))
4171 return -EMSGSIZE;
4172
4173 if (copy > 0) {
4174 if (copy > len)
4175 copy = len;
4176 sg_set_buf(sg, skb->data + offset, copy);
4177 elt++;
4178 if ((len -= copy) == 0)
4179 return elt;
4180 offset += copy;
4181 }
4182
4183 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4184 int end;
4185
4186 WARN_ON(start > offset + len);
4187
4188 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4189 if ((copy = end - offset) > 0) {
4190 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4191 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4192 return -EMSGSIZE;
4193
4194 if (copy > len)
4195 copy = len;
4196 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4197 skb_frag_off(frag) + offset - start);
4198 elt++;
4199 if (!(len -= copy))
4200 return elt;
4201 offset += copy;
4202 }
4203 start = end;
4204 }
4205
4206 skb_walk_frags(skb, frag_iter) {
4207 int end, ret;
4208
4209 WARN_ON(start > offset + len);
4210
4211 end = start + frag_iter->len;
4212 if ((copy = end - offset) > 0) {
4213 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4214 return -EMSGSIZE;
4215
4216 if (copy > len)
4217 copy = len;
4218 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4219 copy, recursion_level + 1);
4220 if (unlikely(ret < 0))
4221 return ret;
4222 elt += ret;
4223 if ((len -= copy) == 0)
4224 return elt;
4225 offset += copy;
4226 }
4227 start = end;
4228 }
4229 BUG_ON(len);
4230 return elt;
4231 }
4232
4233 /**
4234 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4235 * @skb: Socket buffer containing the buffers to be mapped
4236 * @sg: The scatter-gather list to map into
4237 * @offset: The offset into the buffer's contents to start mapping
4238 * @len: Length of buffer space to be mapped
4239 *
4240 * Fill the specified scatter-gather list with mappings/pointers into a
4241 * region of the buffer space attached to a socket buffer. Returns either
4242 * the number of scatterlist items used, or -EMSGSIZE if the contents
4243 * could not fit.
4244 */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4245 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4246 {
4247 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4248
4249 if (nsg <= 0)
4250 return nsg;
4251
4252 sg_mark_end(&sg[nsg - 1]);
4253
4254 return nsg;
4255 }
4256 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4257
4258 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4259 * sglist without mark the sg which contain last skb data as the end.
4260 * So the caller can mannipulate sg list as will when padding new data after
4261 * the first call without calling sg_unmark_end to expend sg list.
4262 *
4263 * Scenario to use skb_to_sgvec_nomark:
4264 * 1. sg_init_table
4265 * 2. skb_to_sgvec_nomark(payload1)
4266 * 3. skb_to_sgvec_nomark(payload2)
4267 *
4268 * This is equivalent to:
4269 * 1. sg_init_table
4270 * 2. skb_to_sgvec(payload1)
4271 * 3. sg_unmark_end
4272 * 4. skb_to_sgvec(payload2)
4273 *
4274 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4275 * is more preferable.
4276 */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4277 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4278 int offset, int len)
4279 {
4280 return __skb_to_sgvec(skb, sg, offset, len, 0);
4281 }
4282 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4283
4284
4285
4286 /**
4287 * skb_cow_data - Check that a socket buffer's data buffers are writable
4288 * @skb: The socket buffer to check.
4289 * @tailbits: Amount of trailing space to be added
4290 * @trailer: Returned pointer to the skb where the @tailbits space begins
4291 *
4292 * Make sure that the data buffers attached to a socket buffer are
4293 * writable. If they are not, private copies are made of the data buffers
4294 * and the socket buffer is set to use these instead.
4295 *
4296 * If @tailbits is given, make sure that there is space to write @tailbits
4297 * bytes of data beyond current end of socket buffer. @trailer will be
4298 * set to point to the skb in which this space begins.
4299 *
4300 * The number of scatterlist elements required to completely map the
4301 * COW'd and extended socket buffer will be returned.
4302 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4303 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4304 {
4305 int copyflag;
4306 int elt;
4307 struct sk_buff *skb1, **skb_p;
4308
4309 /* If skb is cloned or its head is paged, reallocate
4310 * head pulling out all the pages (pages are considered not writable
4311 * at the moment even if they are anonymous).
4312 */
4313 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4314 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4315 return -ENOMEM;
4316
4317 /* Easy case. Most of packets will go this way. */
4318 if (!skb_has_frag_list(skb)) {
4319 /* A little of trouble, not enough of space for trailer.
4320 * This should not happen, when stack is tuned to generate
4321 * good frames. OK, on miss we reallocate and reserve even more
4322 * space, 128 bytes is fair. */
4323
4324 if (skb_tailroom(skb) < tailbits &&
4325 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4326 return -ENOMEM;
4327
4328 /* Voila! */
4329 *trailer = skb;
4330 return 1;
4331 }
4332
4333 /* Misery. We are in troubles, going to mincer fragments... */
4334
4335 elt = 1;
4336 skb_p = &skb_shinfo(skb)->frag_list;
4337 copyflag = 0;
4338
4339 while ((skb1 = *skb_p) != NULL) {
4340 int ntail = 0;
4341
4342 /* The fragment is partially pulled by someone,
4343 * this can happen on input. Copy it and everything
4344 * after it. */
4345
4346 if (skb_shared(skb1))
4347 copyflag = 1;
4348
4349 /* If the skb is the last, worry about trailer. */
4350
4351 if (skb1->next == NULL && tailbits) {
4352 if (skb_shinfo(skb1)->nr_frags ||
4353 skb_has_frag_list(skb1) ||
4354 skb_tailroom(skb1) < tailbits)
4355 ntail = tailbits + 128;
4356 }
4357
4358 if (copyflag ||
4359 skb_cloned(skb1) ||
4360 ntail ||
4361 skb_shinfo(skb1)->nr_frags ||
4362 skb_has_frag_list(skb1)) {
4363 struct sk_buff *skb2;
4364
4365 /* Fuck, we are miserable poor guys... */
4366 if (ntail == 0)
4367 skb2 = skb_copy(skb1, GFP_ATOMIC);
4368 else
4369 skb2 = skb_copy_expand(skb1,
4370 skb_headroom(skb1),
4371 ntail,
4372 GFP_ATOMIC);
4373 if (unlikely(skb2 == NULL))
4374 return -ENOMEM;
4375
4376 if (skb1->sk)
4377 skb_set_owner_w(skb2, skb1->sk);
4378
4379 /* Looking around. Are we still alive?
4380 * OK, link new skb, drop old one */
4381
4382 skb2->next = skb1->next;
4383 *skb_p = skb2;
4384 kfree_skb(skb1);
4385 skb1 = skb2;
4386 }
4387 elt++;
4388 *trailer = skb1;
4389 skb_p = &skb1->next;
4390 }
4391
4392 return elt;
4393 }
4394 EXPORT_SYMBOL_GPL(skb_cow_data);
4395
sock_rmem_free(struct sk_buff * skb)4396 static void sock_rmem_free(struct sk_buff *skb)
4397 {
4398 struct sock *sk = skb->sk;
4399
4400 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4401 }
4402
skb_set_err_queue(struct sk_buff * skb)4403 static void skb_set_err_queue(struct sk_buff *skb)
4404 {
4405 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4406 * So, it is safe to (mis)use it to mark skbs on the error queue.
4407 */
4408 skb->pkt_type = PACKET_OUTGOING;
4409 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4410 }
4411
4412 /*
4413 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4414 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4415 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4416 {
4417 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4418 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4419 return -ENOMEM;
4420
4421 skb_orphan(skb);
4422 skb->sk = sk;
4423 skb->destructor = sock_rmem_free;
4424 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4425 skb_set_err_queue(skb);
4426
4427 /* before exiting rcu section, make sure dst is refcounted */
4428 skb_dst_force(skb);
4429
4430 skb_queue_tail(&sk->sk_error_queue, skb);
4431 if (!sock_flag(sk, SOCK_DEAD))
4432 sk->sk_error_report(sk);
4433 return 0;
4434 }
4435 EXPORT_SYMBOL(sock_queue_err_skb);
4436
is_icmp_err_skb(const struct sk_buff * skb)4437 static bool is_icmp_err_skb(const struct sk_buff *skb)
4438 {
4439 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4440 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4441 }
4442
sock_dequeue_err_skb(struct sock * sk)4443 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4444 {
4445 struct sk_buff_head *q = &sk->sk_error_queue;
4446 struct sk_buff *skb, *skb_next = NULL;
4447 bool icmp_next = false;
4448 unsigned long flags;
4449
4450 spin_lock_irqsave(&q->lock, flags);
4451 skb = __skb_dequeue(q);
4452 if (skb && (skb_next = skb_peek(q))) {
4453 icmp_next = is_icmp_err_skb(skb_next);
4454 if (icmp_next)
4455 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4456 }
4457 spin_unlock_irqrestore(&q->lock, flags);
4458
4459 if (is_icmp_err_skb(skb) && !icmp_next)
4460 sk->sk_err = 0;
4461
4462 if (skb_next)
4463 sk->sk_error_report(sk);
4464
4465 return skb;
4466 }
4467 EXPORT_SYMBOL(sock_dequeue_err_skb);
4468
4469 /**
4470 * skb_clone_sk - create clone of skb, and take reference to socket
4471 * @skb: the skb to clone
4472 *
4473 * This function creates a clone of a buffer that holds a reference on
4474 * sk_refcnt. Buffers created via this function are meant to be
4475 * returned using sock_queue_err_skb, or free via kfree_skb.
4476 *
4477 * When passing buffers allocated with this function to sock_queue_err_skb
4478 * it is necessary to wrap the call with sock_hold/sock_put in order to
4479 * prevent the socket from being released prior to being enqueued on
4480 * the sk_error_queue.
4481 */
skb_clone_sk(struct sk_buff * skb)4482 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4483 {
4484 struct sock *sk = skb->sk;
4485 struct sk_buff *clone;
4486
4487 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4488 return NULL;
4489
4490 clone = skb_clone(skb, GFP_ATOMIC);
4491 if (!clone) {
4492 sock_put(sk);
4493 return NULL;
4494 }
4495
4496 clone->sk = sk;
4497 clone->destructor = sock_efree;
4498
4499 return clone;
4500 }
4501 EXPORT_SYMBOL(skb_clone_sk);
4502
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4503 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4504 struct sock *sk,
4505 int tstype,
4506 bool opt_stats)
4507 {
4508 struct sock_exterr_skb *serr;
4509 int err;
4510
4511 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4512
4513 serr = SKB_EXT_ERR(skb);
4514 memset(serr, 0, sizeof(*serr));
4515 serr->ee.ee_errno = ENOMSG;
4516 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4517 serr->ee.ee_info = tstype;
4518 serr->opt_stats = opt_stats;
4519 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4520 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4521 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4522 if (sk->sk_protocol == IPPROTO_TCP &&
4523 sk->sk_type == SOCK_STREAM)
4524 serr->ee.ee_data -= sk->sk_tskey;
4525 }
4526
4527 err = sock_queue_err_skb(sk, skb);
4528
4529 if (err)
4530 kfree_skb(skb);
4531 }
4532
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4533 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4534 {
4535 bool ret;
4536
4537 if (likely(sysctl_tstamp_allow_data || tsonly))
4538 return true;
4539
4540 read_lock_bh(&sk->sk_callback_lock);
4541 ret = sk->sk_socket && sk->sk_socket->file &&
4542 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4543 read_unlock_bh(&sk->sk_callback_lock);
4544 return ret;
4545 }
4546
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4547 void skb_complete_tx_timestamp(struct sk_buff *skb,
4548 struct skb_shared_hwtstamps *hwtstamps)
4549 {
4550 struct sock *sk = skb->sk;
4551
4552 if (!skb_may_tx_timestamp(sk, false))
4553 goto err;
4554
4555 /* Take a reference to prevent skb_orphan() from freeing the socket,
4556 * but only if the socket refcount is not zero.
4557 */
4558 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4559 *skb_hwtstamps(skb) = *hwtstamps;
4560 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4561 sock_put(sk);
4562 return;
4563 }
4564
4565 err:
4566 kfree_skb(skb);
4567 }
4568 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4569
__skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4570 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4571 struct skb_shared_hwtstamps *hwtstamps,
4572 struct sock *sk, int tstype)
4573 {
4574 struct sk_buff *skb;
4575 bool tsonly, opt_stats = false;
4576
4577 if (!sk)
4578 return;
4579
4580 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4581 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4582 return;
4583
4584 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4585 if (!skb_may_tx_timestamp(sk, tsonly))
4586 return;
4587
4588 if (tsonly) {
4589 #ifdef CONFIG_INET
4590 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4591 sk->sk_protocol == IPPROTO_TCP &&
4592 sk->sk_type == SOCK_STREAM) {
4593 skb = tcp_get_timestamping_opt_stats(sk);
4594 opt_stats = true;
4595 } else
4596 #endif
4597 skb = alloc_skb(0, GFP_ATOMIC);
4598 } else {
4599 skb = skb_clone(orig_skb, GFP_ATOMIC);
4600 }
4601 if (!skb)
4602 return;
4603
4604 if (tsonly) {
4605 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4606 SKBTX_ANY_TSTAMP;
4607 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4608 }
4609
4610 if (hwtstamps)
4611 *skb_hwtstamps(skb) = *hwtstamps;
4612 else
4613 skb->tstamp = ktime_get_real();
4614
4615 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4616 }
4617 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4618
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)4619 void skb_tstamp_tx(struct sk_buff *orig_skb,
4620 struct skb_shared_hwtstamps *hwtstamps)
4621 {
4622 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4623 SCM_TSTAMP_SND);
4624 }
4625 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4626
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)4627 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4628 {
4629 struct sock *sk = skb->sk;
4630 struct sock_exterr_skb *serr;
4631 int err = 1;
4632
4633 skb->wifi_acked_valid = 1;
4634 skb->wifi_acked = acked;
4635
4636 serr = SKB_EXT_ERR(skb);
4637 memset(serr, 0, sizeof(*serr));
4638 serr->ee.ee_errno = ENOMSG;
4639 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4640
4641 /* Take a reference to prevent skb_orphan() from freeing the socket,
4642 * but only if the socket refcount is not zero.
4643 */
4644 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4645 err = sock_queue_err_skb(sk, skb);
4646 sock_put(sk);
4647 }
4648 if (err)
4649 kfree_skb(skb);
4650 }
4651 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4652
4653 /**
4654 * skb_partial_csum_set - set up and verify partial csum values for packet
4655 * @skb: the skb to set
4656 * @start: the number of bytes after skb->data to start checksumming.
4657 * @off: the offset from start to place the checksum.
4658 *
4659 * For untrusted partially-checksummed packets, we need to make sure the values
4660 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4661 *
4662 * This function checks and sets those values and skb->ip_summed: if this
4663 * returns false you should drop the packet.
4664 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)4665 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4666 {
4667 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4668 u32 csum_start = skb_headroom(skb) + (u32)start;
4669
4670 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4671 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4672 start, off, skb_headroom(skb), skb_headlen(skb));
4673 return false;
4674 }
4675 skb->ip_summed = CHECKSUM_PARTIAL;
4676 skb->csum_start = csum_start;
4677 skb->csum_offset = off;
4678 skb_set_transport_header(skb, start);
4679 return true;
4680 }
4681 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4682
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)4683 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4684 unsigned int max)
4685 {
4686 if (skb_headlen(skb) >= len)
4687 return 0;
4688
4689 /* If we need to pullup then pullup to the max, so we
4690 * won't need to do it again.
4691 */
4692 if (max > skb->len)
4693 max = skb->len;
4694
4695 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4696 return -ENOMEM;
4697
4698 if (skb_headlen(skb) < len)
4699 return -EPROTO;
4700
4701 return 0;
4702 }
4703
4704 #define MAX_TCP_HDR_LEN (15 * 4)
4705
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)4706 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4707 typeof(IPPROTO_IP) proto,
4708 unsigned int off)
4709 {
4710 switch (proto) {
4711 int err;
4712
4713 case IPPROTO_TCP:
4714 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4715 off + MAX_TCP_HDR_LEN);
4716 if (!err && !skb_partial_csum_set(skb, off,
4717 offsetof(struct tcphdr,
4718 check)))
4719 err = -EPROTO;
4720 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4721
4722 case IPPROTO_UDP:
4723 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4724 off + sizeof(struct udphdr));
4725 if (!err && !skb_partial_csum_set(skb, off,
4726 offsetof(struct udphdr,
4727 check)))
4728 err = -EPROTO;
4729 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4730 }
4731
4732 return ERR_PTR(-EPROTO);
4733 }
4734
4735 /* This value should be large enough to cover a tagged ethernet header plus
4736 * maximally sized IP and TCP or UDP headers.
4737 */
4738 #define MAX_IP_HDR_LEN 128
4739
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)4740 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4741 {
4742 unsigned int off;
4743 bool fragment;
4744 __sum16 *csum;
4745 int err;
4746
4747 fragment = false;
4748
4749 err = skb_maybe_pull_tail(skb,
4750 sizeof(struct iphdr),
4751 MAX_IP_HDR_LEN);
4752 if (err < 0)
4753 goto out;
4754
4755 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4756 fragment = true;
4757
4758 off = ip_hdrlen(skb);
4759
4760 err = -EPROTO;
4761
4762 if (fragment)
4763 goto out;
4764
4765 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4766 if (IS_ERR(csum))
4767 return PTR_ERR(csum);
4768
4769 if (recalculate)
4770 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4771 ip_hdr(skb)->daddr,
4772 skb->len - off,
4773 ip_hdr(skb)->protocol, 0);
4774 err = 0;
4775
4776 out:
4777 return err;
4778 }
4779
4780 /* This value should be large enough to cover a tagged ethernet header plus
4781 * an IPv6 header, all options, and a maximal TCP or UDP header.
4782 */
4783 #define MAX_IPV6_HDR_LEN 256
4784
4785 #define OPT_HDR(type, skb, off) \
4786 (type *)(skb_network_header(skb) + (off))
4787
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)4788 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4789 {
4790 int err;
4791 u8 nexthdr;
4792 unsigned int off;
4793 unsigned int len;
4794 bool fragment;
4795 bool done;
4796 __sum16 *csum;
4797
4798 fragment = false;
4799 done = false;
4800
4801 off = sizeof(struct ipv6hdr);
4802
4803 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4804 if (err < 0)
4805 goto out;
4806
4807 nexthdr = ipv6_hdr(skb)->nexthdr;
4808
4809 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4810 while (off <= len && !done) {
4811 switch (nexthdr) {
4812 case IPPROTO_DSTOPTS:
4813 case IPPROTO_HOPOPTS:
4814 case IPPROTO_ROUTING: {
4815 struct ipv6_opt_hdr *hp;
4816
4817 err = skb_maybe_pull_tail(skb,
4818 off +
4819 sizeof(struct ipv6_opt_hdr),
4820 MAX_IPV6_HDR_LEN);
4821 if (err < 0)
4822 goto out;
4823
4824 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4825 nexthdr = hp->nexthdr;
4826 off += ipv6_optlen(hp);
4827 break;
4828 }
4829 case IPPROTO_AH: {
4830 struct ip_auth_hdr *hp;
4831
4832 err = skb_maybe_pull_tail(skb,
4833 off +
4834 sizeof(struct ip_auth_hdr),
4835 MAX_IPV6_HDR_LEN);
4836 if (err < 0)
4837 goto out;
4838
4839 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4840 nexthdr = hp->nexthdr;
4841 off += ipv6_authlen(hp);
4842 break;
4843 }
4844 case IPPROTO_FRAGMENT: {
4845 struct frag_hdr *hp;
4846
4847 err = skb_maybe_pull_tail(skb,
4848 off +
4849 sizeof(struct frag_hdr),
4850 MAX_IPV6_HDR_LEN);
4851 if (err < 0)
4852 goto out;
4853
4854 hp = OPT_HDR(struct frag_hdr, skb, off);
4855
4856 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4857 fragment = true;
4858
4859 nexthdr = hp->nexthdr;
4860 off += sizeof(struct frag_hdr);
4861 break;
4862 }
4863 default:
4864 done = true;
4865 break;
4866 }
4867 }
4868
4869 err = -EPROTO;
4870
4871 if (!done || fragment)
4872 goto out;
4873
4874 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4875 if (IS_ERR(csum))
4876 return PTR_ERR(csum);
4877
4878 if (recalculate)
4879 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4880 &ipv6_hdr(skb)->daddr,
4881 skb->len - off, nexthdr, 0);
4882 err = 0;
4883
4884 out:
4885 return err;
4886 }
4887
4888 /**
4889 * skb_checksum_setup - set up partial checksum offset
4890 * @skb: the skb to set up
4891 * @recalculate: if true the pseudo-header checksum will be recalculated
4892 */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)4893 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4894 {
4895 int err;
4896
4897 switch (skb->protocol) {
4898 case htons(ETH_P_IP):
4899 err = skb_checksum_setup_ipv4(skb, recalculate);
4900 break;
4901
4902 case htons(ETH_P_IPV6):
4903 err = skb_checksum_setup_ipv6(skb, recalculate);
4904 break;
4905
4906 default:
4907 err = -EPROTO;
4908 break;
4909 }
4910
4911 return err;
4912 }
4913 EXPORT_SYMBOL(skb_checksum_setup);
4914
4915 /**
4916 * skb_checksum_maybe_trim - maybe trims the given skb
4917 * @skb: the skb to check
4918 * @transport_len: the data length beyond the network header
4919 *
4920 * Checks whether the given skb has data beyond the given transport length.
4921 * If so, returns a cloned skb trimmed to this transport length.
4922 * Otherwise returns the provided skb. Returns NULL in error cases
4923 * (e.g. transport_len exceeds skb length or out-of-memory).
4924 *
4925 * Caller needs to set the skb transport header and free any returned skb if it
4926 * differs from the provided skb.
4927 */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)4928 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4929 unsigned int transport_len)
4930 {
4931 struct sk_buff *skb_chk;
4932 unsigned int len = skb_transport_offset(skb) + transport_len;
4933 int ret;
4934
4935 if (skb->len < len)
4936 return NULL;
4937 else if (skb->len == len)
4938 return skb;
4939
4940 skb_chk = skb_clone(skb, GFP_ATOMIC);
4941 if (!skb_chk)
4942 return NULL;
4943
4944 ret = pskb_trim_rcsum(skb_chk, len);
4945 if (ret) {
4946 kfree_skb(skb_chk);
4947 return NULL;
4948 }
4949
4950 return skb_chk;
4951 }
4952
4953 /**
4954 * skb_checksum_trimmed - validate checksum of an skb
4955 * @skb: the skb to check
4956 * @transport_len: the data length beyond the network header
4957 * @skb_chkf: checksum function to use
4958 *
4959 * Applies the given checksum function skb_chkf to the provided skb.
4960 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4961 *
4962 * If the skb has data beyond the given transport length, then a
4963 * trimmed & cloned skb is checked and returned.
4964 *
4965 * Caller needs to set the skb transport header and free any returned skb if it
4966 * differs from the provided skb.
4967 */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))4968 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4969 unsigned int transport_len,
4970 __sum16(*skb_chkf)(struct sk_buff *skb))
4971 {
4972 struct sk_buff *skb_chk;
4973 unsigned int offset = skb_transport_offset(skb);
4974 __sum16 ret;
4975
4976 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4977 if (!skb_chk)
4978 goto err;
4979
4980 if (!pskb_may_pull(skb_chk, offset))
4981 goto err;
4982
4983 skb_pull_rcsum(skb_chk, offset);
4984 ret = skb_chkf(skb_chk);
4985 skb_push_rcsum(skb_chk, offset);
4986
4987 if (ret)
4988 goto err;
4989
4990 return skb_chk;
4991
4992 err:
4993 if (skb_chk && skb_chk != skb)
4994 kfree_skb(skb_chk);
4995
4996 return NULL;
4997
4998 }
4999 EXPORT_SYMBOL(skb_checksum_trimmed);
5000
__skb_warn_lro_forwarding(const struct sk_buff * skb)5001 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5002 {
5003 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5004 skb->dev->name);
5005 }
5006 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5007
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5008 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5009 {
5010 if (head_stolen) {
5011 skb_release_head_state(skb);
5012 kmem_cache_free(skbuff_head_cache, skb);
5013 } else {
5014 __kfree_skb(skb);
5015 }
5016 }
5017 EXPORT_SYMBOL(kfree_skb_partial);
5018
5019 /**
5020 * skb_try_coalesce - try to merge skb to prior one
5021 * @to: prior buffer
5022 * @from: buffer to add
5023 * @fragstolen: pointer to boolean
5024 * @delta_truesize: how much more was allocated than was requested
5025 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5026 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5027 bool *fragstolen, int *delta_truesize)
5028 {
5029 struct skb_shared_info *to_shinfo, *from_shinfo;
5030 int i, delta, len = from->len;
5031
5032 *fragstolen = false;
5033
5034 if (skb_cloned(to))
5035 return false;
5036
5037 if (len <= skb_tailroom(to)) {
5038 if (len)
5039 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5040 *delta_truesize = 0;
5041 return true;
5042 }
5043
5044 to_shinfo = skb_shinfo(to);
5045 from_shinfo = skb_shinfo(from);
5046 if (to_shinfo->frag_list || from_shinfo->frag_list)
5047 return false;
5048 if (skb_zcopy(to) || skb_zcopy(from))
5049 return false;
5050
5051 if (skb_headlen(from) != 0) {
5052 struct page *page;
5053 unsigned int offset;
5054
5055 if (to_shinfo->nr_frags +
5056 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5057 return false;
5058
5059 if (skb_head_is_locked(from))
5060 return false;
5061
5062 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5063
5064 page = virt_to_head_page(from->head);
5065 offset = from->data - (unsigned char *)page_address(page);
5066
5067 skb_fill_page_desc(to, to_shinfo->nr_frags,
5068 page, offset, skb_headlen(from));
5069 *fragstolen = true;
5070 } else {
5071 if (to_shinfo->nr_frags +
5072 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5073 return false;
5074
5075 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5076 }
5077
5078 WARN_ON_ONCE(delta < len);
5079
5080 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5081 from_shinfo->frags,
5082 from_shinfo->nr_frags * sizeof(skb_frag_t));
5083 to_shinfo->nr_frags += from_shinfo->nr_frags;
5084
5085 if (!skb_cloned(from))
5086 from_shinfo->nr_frags = 0;
5087
5088 /* if the skb is not cloned this does nothing
5089 * since we set nr_frags to 0.
5090 */
5091 for (i = 0; i < from_shinfo->nr_frags; i++)
5092 __skb_frag_ref(&from_shinfo->frags[i]);
5093
5094 to->truesize += delta;
5095 to->len += len;
5096 to->data_len += len;
5097
5098 *delta_truesize = delta;
5099 return true;
5100 }
5101 EXPORT_SYMBOL(skb_try_coalesce);
5102
5103 /**
5104 * skb_scrub_packet - scrub an skb
5105 *
5106 * @skb: buffer to clean
5107 * @xnet: packet is crossing netns
5108 *
5109 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5110 * into/from a tunnel. Some information have to be cleared during these
5111 * operations.
5112 * skb_scrub_packet can also be used to clean a skb before injecting it in
5113 * another namespace (@xnet == true). We have to clear all information in the
5114 * skb that could impact namespace isolation.
5115 */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5116 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5117 {
5118 skb->pkt_type = PACKET_HOST;
5119 skb->skb_iif = 0;
5120 skb->ignore_df = 0;
5121 skb_dst_drop(skb);
5122 skb_ext_reset(skb);
5123 nf_reset_ct(skb);
5124 nf_reset_trace(skb);
5125
5126 #ifdef CONFIG_NET_SWITCHDEV
5127 skb->offload_fwd_mark = 0;
5128 skb->offload_l3_fwd_mark = 0;
5129 #endif
5130
5131 if (!xnet)
5132 return;
5133
5134 ipvs_reset(skb);
5135 skb->mark = 0;
5136 skb->tstamp = 0;
5137 }
5138 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5139
5140 /**
5141 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5142 *
5143 * @skb: GSO skb
5144 *
5145 * skb_gso_transport_seglen is used to determine the real size of the
5146 * individual segments, including Layer4 headers (TCP/UDP).
5147 *
5148 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5149 */
skb_gso_transport_seglen(const struct sk_buff * skb)5150 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5151 {
5152 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5153 unsigned int thlen = 0;
5154
5155 if (skb->encapsulation) {
5156 thlen = skb_inner_transport_header(skb) -
5157 skb_transport_header(skb);
5158
5159 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5160 thlen += inner_tcp_hdrlen(skb);
5161 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5162 thlen = tcp_hdrlen(skb);
5163 } else if (unlikely(skb_is_gso_sctp(skb))) {
5164 thlen = sizeof(struct sctphdr);
5165 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5166 thlen = sizeof(struct udphdr);
5167 }
5168 /* UFO sets gso_size to the size of the fragmentation
5169 * payload, i.e. the size of the L4 (UDP) header is already
5170 * accounted for.
5171 */
5172 return thlen + shinfo->gso_size;
5173 }
5174
5175 /**
5176 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5177 *
5178 * @skb: GSO skb
5179 *
5180 * skb_gso_network_seglen is used to determine the real size of the
5181 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5182 *
5183 * The MAC/L2 header is not accounted for.
5184 */
skb_gso_network_seglen(const struct sk_buff * skb)5185 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5186 {
5187 unsigned int hdr_len = skb_transport_header(skb) -
5188 skb_network_header(skb);
5189
5190 return hdr_len + skb_gso_transport_seglen(skb);
5191 }
5192
5193 /**
5194 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5195 *
5196 * @skb: GSO skb
5197 *
5198 * skb_gso_mac_seglen is used to determine the real size of the
5199 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5200 * headers (TCP/UDP).
5201 */
skb_gso_mac_seglen(const struct sk_buff * skb)5202 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5203 {
5204 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5205
5206 return hdr_len + skb_gso_transport_seglen(skb);
5207 }
5208
5209 /**
5210 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5211 *
5212 * There are a couple of instances where we have a GSO skb, and we
5213 * want to determine what size it would be after it is segmented.
5214 *
5215 * We might want to check:
5216 * - L3+L4+payload size (e.g. IP forwarding)
5217 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5218 *
5219 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5220 *
5221 * @skb: GSO skb
5222 *
5223 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5224 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5225 *
5226 * @max_len: The maximum permissible length.
5227 *
5228 * Returns true if the segmented length <= max length.
5229 */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5230 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5231 unsigned int seg_len,
5232 unsigned int max_len) {
5233 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5234 const struct sk_buff *iter;
5235
5236 if (shinfo->gso_size != GSO_BY_FRAGS)
5237 return seg_len <= max_len;
5238
5239 /* Undo this so we can re-use header sizes */
5240 seg_len -= GSO_BY_FRAGS;
5241
5242 skb_walk_frags(skb, iter) {
5243 if (seg_len + skb_headlen(iter) > max_len)
5244 return false;
5245 }
5246
5247 return true;
5248 }
5249
5250 /**
5251 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5252 *
5253 * @skb: GSO skb
5254 * @mtu: MTU to validate against
5255 *
5256 * skb_gso_validate_network_len validates if a given skb will fit a
5257 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5258 * payload.
5259 */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5260 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5261 {
5262 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5263 }
5264 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5265
5266 /**
5267 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5268 *
5269 * @skb: GSO skb
5270 * @len: length to validate against
5271 *
5272 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5273 * length once split, including L2, L3 and L4 headers and the payload.
5274 */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5275 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5276 {
5277 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5278 }
5279 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5280
skb_reorder_vlan_header(struct sk_buff * skb)5281 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5282 {
5283 int mac_len, meta_len;
5284 void *meta;
5285
5286 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5287 kfree_skb(skb);
5288 return NULL;
5289 }
5290
5291 mac_len = skb->data - skb_mac_header(skb);
5292 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5293 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5294 mac_len - VLAN_HLEN - ETH_TLEN);
5295 }
5296
5297 meta_len = skb_metadata_len(skb);
5298 if (meta_len) {
5299 meta = skb_metadata_end(skb) - meta_len;
5300 memmove(meta + VLAN_HLEN, meta, meta_len);
5301 }
5302
5303 skb->mac_header += VLAN_HLEN;
5304 return skb;
5305 }
5306
skb_vlan_untag(struct sk_buff * skb)5307 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5308 {
5309 struct vlan_hdr *vhdr;
5310 u16 vlan_tci;
5311
5312 if (unlikely(skb_vlan_tag_present(skb))) {
5313 /* vlan_tci is already set-up so leave this for another time */
5314 return skb;
5315 }
5316
5317 skb = skb_share_check(skb, GFP_ATOMIC);
5318 if (unlikely(!skb))
5319 goto err_free;
5320
5321 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5322 goto err_free;
5323
5324 vhdr = (struct vlan_hdr *)skb->data;
5325 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5326 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5327
5328 skb_pull_rcsum(skb, VLAN_HLEN);
5329 vlan_set_encap_proto(skb, vhdr);
5330
5331 skb = skb_reorder_vlan_header(skb);
5332 if (unlikely(!skb))
5333 goto err_free;
5334
5335 skb_reset_network_header(skb);
5336 skb_reset_transport_header(skb);
5337 skb_reset_mac_len(skb);
5338
5339 return skb;
5340
5341 err_free:
5342 kfree_skb(skb);
5343 return NULL;
5344 }
5345 EXPORT_SYMBOL(skb_vlan_untag);
5346
skb_ensure_writable(struct sk_buff * skb,int write_len)5347 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5348 {
5349 if (!pskb_may_pull(skb, write_len))
5350 return -ENOMEM;
5351
5352 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5353 return 0;
5354
5355 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5356 }
5357 EXPORT_SYMBOL(skb_ensure_writable);
5358
5359 /* remove VLAN header from packet and update csum accordingly.
5360 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5361 */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5362 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5363 {
5364 struct vlan_hdr *vhdr;
5365 int offset = skb->data - skb_mac_header(skb);
5366 int err;
5367
5368 if (WARN_ONCE(offset,
5369 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5370 offset)) {
5371 return -EINVAL;
5372 }
5373
5374 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5375 if (unlikely(err))
5376 return err;
5377
5378 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5379
5380 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5381 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5382
5383 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5384 __skb_pull(skb, VLAN_HLEN);
5385
5386 vlan_set_encap_proto(skb, vhdr);
5387 skb->mac_header += VLAN_HLEN;
5388
5389 if (skb_network_offset(skb) < ETH_HLEN)
5390 skb_set_network_header(skb, ETH_HLEN);
5391
5392 skb_reset_mac_len(skb);
5393
5394 return err;
5395 }
5396 EXPORT_SYMBOL(__skb_vlan_pop);
5397
5398 /* Pop a vlan tag either from hwaccel or from payload.
5399 * Expects skb->data at mac header.
5400 */
skb_vlan_pop(struct sk_buff * skb)5401 int skb_vlan_pop(struct sk_buff *skb)
5402 {
5403 u16 vlan_tci;
5404 __be16 vlan_proto;
5405 int err;
5406
5407 if (likely(skb_vlan_tag_present(skb))) {
5408 __vlan_hwaccel_clear_tag(skb);
5409 } else {
5410 if (unlikely(!eth_type_vlan(skb->protocol)))
5411 return 0;
5412
5413 err = __skb_vlan_pop(skb, &vlan_tci);
5414 if (err)
5415 return err;
5416 }
5417 /* move next vlan tag to hw accel tag */
5418 if (likely(!eth_type_vlan(skb->protocol)))
5419 return 0;
5420
5421 vlan_proto = skb->protocol;
5422 err = __skb_vlan_pop(skb, &vlan_tci);
5423 if (unlikely(err))
5424 return err;
5425
5426 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5427 return 0;
5428 }
5429 EXPORT_SYMBOL(skb_vlan_pop);
5430
5431 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5432 * Expects skb->data at mac header.
5433 */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5434 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5435 {
5436 if (skb_vlan_tag_present(skb)) {
5437 int offset = skb->data - skb_mac_header(skb);
5438 int err;
5439
5440 if (WARN_ONCE(offset,
5441 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5442 offset)) {
5443 return -EINVAL;
5444 }
5445
5446 err = __vlan_insert_tag(skb, skb->vlan_proto,
5447 skb_vlan_tag_get(skb));
5448 if (err)
5449 return err;
5450
5451 skb->protocol = skb->vlan_proto;
5452 skb->mac_len += VLAN_HLEN;
5453
5454 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5455 }
5456 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5457 return 0;
5458 }
5459 EXPORT_SYMBOL(skb_vlan_push);
5460
5461 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)5462 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5463 __be16 ethertype)
5464 {
5465 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5466 __be16 diff[] = { ~hdr->h_proto, ethertype };
5467
5468 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5469 }
5470
5471 hdr->h_proto = ethertype;
5472 }
5473
5474 /**
5475 * skb_mpls_push() - push a new MPLS header after the mac header
5476 *
5477 * @skb: buffer
5478 * @mpls_lse: MPLS label stack entry to push
5479 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5480 * @mac_len: length of the MAC header
5481 *
5482 * Expects skb->data at mac header.
5483 *
5484 * Returns 0 on success, -errno otherwise.
5485 */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)5486 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5487 int mac_len, bool ethernet)
5488 {
5489 struct mpls_shim_hdr *lse;
5490 int err;
5491
5492 if (unlikely(!eth_p_mpls(mpls_proto)))
5493 return -EINVAL;
5494
5495 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5496 if (skb->encapsulation)
5497 return -EINVAL;
5498
5499 err = skb_cow_head(skb, MPLS_HLEN);
5500 if (unlikely(err))
5501 return err;
5502
5503 if (!skb->inner_protocol) {
5504 skb_set_inner_network_header(skb, mac_len);
5505 skb_set_inner_protocol(skb, skb->protocol);
5506 }
5507
5508 skb_push(skb, MPLS_HLEN);
5509 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5510 mac_len);
5511 skb_reset_mac_header(skb);
5512 skb_set_network_header(skb, mac_len);
5513
5514 lse = mpls_hdr(skb);
5515 lse->label_stack_entry = mpls_lse;
5516 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5517
5518 if (ethernet)
5519 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5520 skb->protocol = mpls_proto;
5521
5522 return 0;
5523 }
5524 EXPORT_SYMBOL_GPL(skb_mpls_push);
5525
5526 /**
5527 * skb_mpls_pop() - pop the outermost MPLS header
5528 *
5529 * @skb: buffer
5530 * @next_proto: ethertype of header after popped MPLS header
5531 * @mac_len: length of the MAC header
5532 * @ethernet: flag to indicate if ethernet header is present in packet
5533 *
5534 * Expects skb->data at mac header.
5535 *
5536 * Returns 0 on success, -errno otherwise.
5537 */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)5538 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5539 bool ethernet)
5540 {
5541 int err;
5542
5543 if (unlikely(!eth_p_mpls(skb->protocol)))
5544 return 0;
5545
5546 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5547 if (unlikely(err))
5548 return err;
5549
5550 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5551 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5552 mac_len);
5553
5554 __skb_pull(skb, MPLS_HLEN);
5555 skb_reset_mac_header(skb);
5556 skb_set_network_header(skb, mac_len);
5557
5558 if (ethernet) {
5559 struct ethhdr *hdr;
5560
5561 /* use mpls_hdr() to get ethertype to account for VLANs. */
5562 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5563 skb_mod_eth_type(skb, hdr, next_proto);
5564 }
5565 skb->protocol = next_proto;
5566
5567 return 0;
5568 }
5569 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5570
5571 /**
5572 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5573 *
5574 * @skb: buffer
5575 * @mpls_lse: new MPLS label stack entry to update to
5576 *
5577 * Expects skb->data at mac header.
5578 *
5579 * Returns 0 on success, -errno otherwise.
5580 */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)5581 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5582 {
5583 int err;
5584
5585 if (unlikely(!eth_p_mpls(skb->protocol)))
5586 return -EINVAL;
5587
5588 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5589 if (unlikely(err))
5590 return err;
5591
5592 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5593 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5594
5595 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5596 }
5597
5598 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5599
5600 return 0;
5601 }
5602 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5603
5604 /**
5605 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5606 *
5607 * @skb: buffer
5608 *
5609 * Expects skb->data at mac header.
5610 *
5611 * Returns 0 on success, -errno otherwise.
5612 */
skb_mpls_dec_ttl(struct sk_buff * skb)5613 int skb_mpls_dec_ttl(struct sk_buff *skb)
5614 {
5615 u32 lse;
5616 u8 ttl;
5617
5618 if (unlikely(!eth_p_mpls(skb->protocol)))
5619 return -EINVAL;
5620
5621 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5622 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5623 if (!--ttl)
5624 return -EINVAL;
5625
5626 lse &= ~MPLS_LS_TTL_MASK;
5627 lse |= ttl << MPLS_LS_TTL_SHIFT;
5628
5629 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5630 }
5631 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5632
5633 /**
5634 * alloc_skb_with_frags - allocate skb with page frags
5635 *
5636 * @header_len: size of linear part
5637 * @data_len: needed length in frags
5638 * @max_page_order: max page order desired.
5639 * @errcode: pointer to error code if any
5640 * @gfp_mask: allocation mask
5641 *
5642 * This can be used to allocate a paged skb, given a maximal order for frags.
5643 */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)5644 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5645 unsigned long data_len,
5646 int max_page_order,
5647 int *errcode,
5648 gfp_t gfp_mask)
5649 {
5650 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5651 unsigned long chunk;
5652 struct sk_buff *skb;
5653 struct page *page;
5654 int i;
5655
5656 *errcode = -EMSGSIZE;
5657 /* Note this test could be relaxed, if we succeed to allocate
5658 * high order pages...
5659 */
5660 if (npages > MAX_SKB_FRAGS)
5661 return NULL;
5662
5663 *errcode = -ENOBUFS;
5664 skb = alloc_skb(header_len, gfp_mask);
5665 if (!skb)
5666 return NULL;
5667
5668 skb->truesize += npages << PAGE_SHIFT;
5669
5670 for (i = 0; npages > 0; i++) {
5671 int order = max_page_order;
5672
5673 while (order) {
5674 if (npages >= 1 << order) {
5675 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5676 __GFP_COMP |
5677 __GFP_NOWARN,
5678 order);
5679 if (page)
5680 goto fill_page;
5681 /* Do not retry other high order allocations */
5682 order = 1;
5683 max_page_order = 0;
5684 }
5685 order--;
5686 }
5687 page = alloc_page(gfp_mask);
5688 if (!page)
5689 goto failure;
5690 fill_page:
5691 chunk = min_t(unsigned long, data_len,
5692 PAGE_SIZE << order);
5693 skb_fill_page_desc(skb, i, page, 0, chunk);
5694 data_len -= chunk;
5695 npages -= 1 << order;
5696 }
5697 return skb;
5698
5699 failure:
5700 kfree_skb(skb);
5701 return NULL;
5702 }
5703 EXPORT_SYMBOL(alloc_skb_with_frags);
5704
5705 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)5706 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5707 const int headlen, gfp_t gfp_mask)
5708 {
5709 int i;
5710 int size = skb_end_offset(skb);
5711 int new_hlen = headlen - off;
5712 u8 *data;
5713
5714 size = SKB_DATA_ALIGN(size);
5715
5716 if (skb_pfmemalloc(skb))
5717 gfp_mask |= __GFP_MEMALLOC;
5718 data = kmalloc_reserve(size +
5719 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5720 gfp_mask, NUMA_NO_NODE, NULL);
5721 if (!data)
5722 return -ENOMEM;
5723
5724 size = SKB_WITH_OVERHEAD(ksize(data));
5725
5726 /* Copy real data, and all frags */
5727 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5728 skb->len -= off;
5729
5730 memcpy((struct skb_shared_info *)(data + size),
5731 skb_shinfo(skb),
5732 offsetof(struct skb_shared_info,
5733 frags[skb_shinfo(skb)->nr_frags]));
5734 if (skb_cloned(skb)) {
5735 /* drop the old head gracefully */
5736 if (skb_orphan_frags(skb, gfp_mask)) {
5737 kfree(data);
5738 return -ENOMEM;
5739 }
5740 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5741 skb_frag_ref(skb, i);
5742 if (skb_has_frag_list(skb))
5743 skb_clone_fraglist(skb);
5744 skb_release_data(skb);
5745 } else {
5746 /* we can reuse existing recount- all we did was
5747 * relocate values
5748 */
5749 skb_free_head(skb);
5750 }
5751
5752 skb->head = data;
5753 skb->data = data;
5754 skb->head_frag = 0;
5755 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5756 skb->end = size;
5757 #else
5758 skb->end = skb->head + size;
5759 #endif
5760 skb_set_tail_pointer(skb, skb_headlen(skb));
5761 skb_headers_offset_update(skb, 0);
5762 skb->cloned = 0;
5763 skb->hdr_len = 0;
5764 skb->nohdr = 0;
5765 atomic_set(&skb_shinfo(skb)->dataref, 1);
5766
5767 return 0;
5768 }
5769
5770 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5771
5772 /* carve out the first eat bytes from skb's frag_list. May recurse into
5773 * pskb_carve()
5774 */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)5775 static int pskb_carve_frag_list(struct sk_buff *skb,
5776 struct skb_shared_info *shinfo, int eat,
5777 gfp_t gfp_mask)
5778 {
5779 struct sk_buff *list = shinfo->frag_list;
5780 struct sk_buff *clone = NULL;
5781 struct sk_buff *insp = NULL;
5782
5783 do {
5784 if (!list) {
5785 pr_err("Not enough bytes to eat. Want %d\n", eat);
5786 return -EFAULT;
5787 }
5788 if (list->len <= eat) {
5789 /* Eaten as whole. */
5790 eat -= list->len;
5791 list = list->next;
5792 insp = list;
5793 } else {
5794 /* Eaten partially. */
5795 if (skb_shared(list)) {
5796 clone = skb_clone(list, gfp_mask);
5797 if (!clone)
5798 return -ENOMEM;
5799 insp = list->next;
5800 list = clone;
5801 } else {
5802 /* This may be pulled without problems. */
5803 insp = list;
5804 }
5805 if (pskb_carve(list, eat, gfp_mask) < 0) {
5806 kfree_skb(clone);
5807 return -ENOMEM;
5808 }
5809 break;
5810 }
5811 } while (eat);
5812
5813 /* Free pulled out fragments. */
5814 while ((list = shinfo->frag_list) != insp) {
5815 shinfo->frag_list = list->next;
5816 kfree_skb(list);
5817 }
5818 /* And insert new clone at head. */
5819 if (clone) {
5820 clone->next = list;
5821 shinfo->frag_list = clone;
5822 }
5823 return 0;
5824 }
5825
5826 /* carve off first len bytes from skb. Split line (off) is in the
5827 * non-linear part of skb
5828 */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)5829 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5830 int pos, gfp_t gfp_mask)
5831 {
5832 int i, k = 0;
5833 int size = skb_end_offset(skb);
5834 u8 *data;
5835 const int nfrags = skb_shinfo(skb)->nr_frags;
5836 struct skb_shared_info *shinfo;
5837
5838 size = SKB_DATA_ALIGN(size);
5839
5840 if (skb_pfmemalloc(skb))
5841 gfp_mask |= __GFP_MEMALLOC;
5842 data = kmalloc_reserve(size +
5843 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5844 gfp_mask, NUMA_NO_NODE, NULL);
5845 if (!data)
5846 return -ENOMEM;
5847
5848 size = SKB_WITH_OVERHEAD(ksize(data));
5849
5850 memcpy((struct skb_shared_info *)(data + size),
5851 skb_shinfo(skb), offsetof(struct skb_shared_info,
5852 frags[skb_shinfo(skb)->nr_frags]));
5853 if (skb_orphan_frags(skb, gfp_mask)) {
5854 kfree(data);
5855 return -ENOMEM;
5856 }
5857 shinfo = (struct skb_shared_info *)(data + size);
5858 for (i = 0; i < nfrags; i++) {
5859 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5860
5861 if (pos + fsize > off) {
5862 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5863
5864 if (pos < off) {
5865 /* Split frag.
5866 * We have two variants in this case:
5867 * 1. Move all the frag to the second
5868 * part, if it is possible. F.e.
5869 * this approach is mandatory for TUX,
5870 * where splitting is expensive.
5871 * 2. Split is accurately. We make this.
5872 */
5873 skb_frag_off_add(&shinfo->frags[0], off - pos);
5874 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5875 }
5876 skb_frag_ref(skb, i);
5877 k++;
5878 }
5879 pos += fsize;
5880 }
5881 shinfo->nr_frags = k;
5882 if (skb_has_frag_list(skb))
5883 skb_clone_fraglist(skb);
5884
5885 if (k == 0) {
5886 /* split line is in frag list */
5887 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5888 }
5889 skb_release_data(skb);
5890
5891 skb->head = data;
5892 skb->head_frag = 0;
5893 skb->data = data;
5894 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5895 skb->end = size;
5896 #else
5897 skb->end = skb->head + size;
5898 #endif
5899 skb_reset_tail_pointer(skb);
5900 skb_headers_offset_update(skb, 0);
5901 skb->cloned = 0;
5902 skb->hdr_len = 0;
5903 skb->nohdr = 0;
5904 skb->len -= off;
5905 skb->data_len = skb->len;
5906 atomic_set(&skb_shinfo(skb)->dataref, 1);
5907 return 0;
5908 }
5909
5910 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)5911 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5912 {
5913 int headlen = skb_headlen(skb);
5914
5915 if (len < headlen)
5916 return pskb_carve_inside_header(skb, len, headlen, gfp);
5917 else
5918 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5919 }
5920
5921 /* Extract to_copy bytes starting at off from skb, and return this in
5922 * a new skb
5923 */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)5924 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5925 int to_copy, gfp_t gfp)
5926 {
5927 struct sk_buff *clone = skb_clone(skb, gfp);
5928
5929 if (!clone)
5930 return NULL;
5931
5932 if (pskb_carve(clone, off, gfp) < 0 ||
5933 pskb_trim(clone, to_copy)) {
5934 kfree_skb(clone);
5935 return NULL;
5936 }
5937 return clone;
5938 }
5939 EXPORT_SYMBOL(pskb_extract);
5940
5941 /**
5942 * skb_condense - try to get rid of fragments/frag_list if possible
5943 * @skb: buffer
5944 *
5945 * Can be used to save memory before skb is added to a busy queue.
5946 * If packet has bytes in frags and enough tail room in skb->head,
5947 * pull all of them, so that we can free the frags right now and adjust
5948 * truesize.
5949 * Notes:
5950 * We do not reallocate skb->head thus can not fail.
5951 * Caller must re-evaluate skb->truesize if needed.
5952 */
skb_condense(struct sk_buff * skb)5953 void skb_condense(struct sk_buff *skb)
5954 {
5955 if (skb->data_len) {
5956 if (skb->data_len > skb->end - skb->tail ||
5957 skb_cloned(skb))
5958 return;
5959
5960 /* Nice, we can free page frag(s) right now */
5961 __pskb_pull_tail(skb, skb->data_len);
5962 }
5963 /* At this point, skb->truesize might be over estimated,
5964 * because skb had a fragment, and fragments do not tell
5965 * their truesize.
5966 * When we pulled its content into skb->head, fragment
5967 * was freed, but __pskb_pull_tail() could not possibly
5968 * adjust skb->truesize, not knowing the frag truesize.
5969 */
5970 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5971 }
5972
5973 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)5974 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
5975 {
5976 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
5977 }
5978
skb_ext_alloc(void)5979 static struct skb_ext *skb_ext_alloc(void)
5980 {
5981 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5982
5983 if (new) {
5984 memset(new->offset, 0, sizeof(new->offset));
5985 refcount_set(&new->refcnt, 1);
5986 }
5987
5988 return new;
5989 }
5990
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)5991 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
5992 unsigned int old_active)
5993 {
5994 struct skb_ext *new;
5995
5996 if (refcount_read(&old->refcnt) == 1)
5997 return old;
5998
5999 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6000 if (!new)
6001 return NULL;
6002
6003 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6004 refcount_set(&new->refcnt, 1);
6005
6006 #ifdef CONFIG_XFRM
6007 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6008 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6009 unsigned int i;
6010
6011 for (i = 0; i < sp->len; i++)
6012 xfrm_state_hold(sp->xvec[i]);
6013 }
6014 #endif
6015 __skb_ext_put(old);
6016 return new;
6017 }
6018
6019 /**
6020 * skb_ext_add - allocate space for given extension, COW if needed
6021 * @skb: buffer
6022 * @id: extension to allocate space for
6023 *
6024 * Allocates enough space for the given extension.
6025 * If the extension is already present, a pointer to that extension
6026 * is returned.
6027 *
6028 * If the skb was cloned, COW applies and the returned memory can be
6029 * modified without changing the extension space of clones buffers.
6030 *
6031 * Returns pointer to the extension or NULL on allocation failure.
6032 */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6033 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6034 {
6035 struct skb_ext *new, *old = NULL;
6036 unsigned int newlen, newoff;
6037
6038 if (skb->active_extensions) {
6039 old = skb->extensions;
6040
6041 new = skb_ext_maybe_cow(old, skb->active_extensions);
6042 if (!new)
6043 return NULL;
6044
6045 if (__skb_ext_exist(new, id))
6046 goto set_active;
6047
6048 newoff = new->chunks;
6049 } else {
6050 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6051
6052 new = skb_ext_alloc();
6053 if (!new)
6054 return NULL;
6055 }
6056
6057 newlen = newoff + skb_ext_type_len[id];
6058 new->chunks = newlen;
6059 new->offset[id] = newoff;
6060 set_active:
6061 skb->extensions = new;
6062 skb->active_extensions |= 1 << id;
6063 return skb_ext_get_ptr(new, id);
6064 }
6065 EXPORT_SYMBOL(skb_ext_add);
6066
6067 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6068 static void skb_ext_put_sp(struct sec_path *sp)
6069 {
6070 unsigned int i;
6071
6072 for (i = 0; i < sp->len; i++)
6073 xfrm_state_put(sp->xvec[i]);
6074 }
6075 #endif
6076
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6077 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6078 {
6079 struct skb_ext *ext = skb->extensions;
6080
6081 skb->active_extensions &= ~(1 << id);
6082 if (skb->active_extensions == 0) {
6083 skb->extensions = NULL;
6084 __skb_ext_put(ext);
6085 #ifdef CONFIG_XFRM
6086 } else if (id == SKB_EXT_SEC_PATH &&
6087 refcount_read(&ext->refcnt) == 1) {
6088 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6089
6090 skb_ext_put_sp(sp);
6091 sp->len = 0;
6092 #endif
6093 }
6094 }
6095 EXPORT_SYMBOL(__skb_ext_del);
6096
__skb_ext_put(struct skb_ext * ext)6097 void __skb_ext_put(struct skb_ext *ext)
6098 {
6099 /* If this is last clone, nothing can increment
6100 * it after check passes. Avoids one atomic op.
6101 */
6102 if (refcount_read(&ext->refcnt) == 1)
6103 goto free_now;
6104
6105 if (!refcount_dec_and_test(&ext->refcnt))
6106 return;
6107 free_now:
6108 #ifdef CONFIG_XFRM
6109 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6110 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6111 #endif
6112
6113 kmem_cache_free(skbuff_ext_cache, ext);
6114 }
6115 EXPORT_SYMBOL(__skb_ext_put);
6116 #endif /* CONFIG_SKB_EXTENSIONS */
6117