1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /******************************************************************************
3 *
4 * (C)Copyright 1998,1999 SysKonnect,
5 * a business unit of Schneider & Koch & Co. Datensysteme GmbH.
6 *
7 * See the file "skfddi.c" for further information.
8 *
9 * The information in this file is provided "AS IS" without warranty.
10 *
11 ******************************************************************************/
12
13 #ifndef lint
14 static char const ID_sccs[] = "@(#)hwmtm.c 1.40 99/05/31 (C) SK" ;
15 #endif
16
17 #define HWMTM
18
19 #ifndef FDDI
20 #define FDDI
21 #endif
22
23 #include "h/types.h"
24 #include "h/fddi.h"
25 #include "h/smc.h"
26 #include "h/supern_2.h"
27 #include "h/skfbiinc.h"
28
29 /*
30 -------------------------------------------------------------
31 DOCUMENTATION
32 -------------------------------------------------------------
33 BEGIN_MANUAL_ENTRY(DOCUMENTATION)
34
35 T B D
36
37 END_MANUAL_ENTRY
38 */
39 /*
40 -------------------------------------------------------------
41 LOCAL VARIABLES:
42 -------------------------------------------------------------
43 */
44 #ifdef COMMON_MB_POOL
45 static SMbuf *mb_start = 0 ;
46 static SMbuf *mb_free = 0 ;
47 static int mb_init = FALSE ;
48 static int call_count = 0 ;
49 #endif
50
51 /*
52 -------------------------------------------------------------
53 EXTERNE VARIABLES:
54 -------------------------------------------------------------
55 */
56
57 #ifdef DEBUG
58 #ifndef DEBUG_BRD
59 extern struct smt_debug debug ;
60 #endif
61 #endif
62
63 #ifdef NDIS_OS2
64 extern u_char offDepth ;
65 extern u_char force_irq_pending ;
66 #endif
67
68 /*
69 -------------------------------------------------------------
70 LOCAL FUNCTIONS:
71 -------------------------------------------------------------
72 */
73
74 static void queue_llc_rx(struct s_smc *smc, SMbuf *mb);
75 static void smt_to_llc(struct s_smc *smc, SMbuf *mb);
76 static void init_txd_ring(struct s_smc *smc);
77 static void init_rxd_ring(struct s_smc *smc);
78 static void queue_txd_mb(struct s_smc *smc, SMbuf *mb);
79 static u_long init_descr_ring(struct s_smc *smc, union s_fp_descr volatile *start,
80 int count);
81 static u_long repair_txd_ring(struct s_smc *smc, struct s_smt_tx_queue *queue);
82 static u_long repair_rxd_ring(struct s_smc *smc, struct s_smt_rx_queue *queue);
83 static SMbuf* get_llc_rx(struct s_smc *smc);
84 static SMbuf* get_txd_mb(struct s_smc *smc);
85 static void mac_drv_clear_txd(struct s_smc *smc);
86
87 /*
88 -------------------------------------------------------------
89 EXTERNAL FUNCTIONS:
90 -------------------------------------------------------------
91 */
92 /* The external SMT functions are listed in cmtdef.h */
93
94 extern void* mac_drv_get_space(struct s_smc *smc, unsigned int size);
95 extern void* mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size);
96 extern void mac_drv_fill_rxd(struct s_smc *smc);
97 extern void mac_drv_tx_complete(struct s_smc *smc,
98 volatile struct s_smt_fp_txd *txd);
99 extern void mac_drv_rx_complete(struct s_smc *smc,
100 volatile struct s_smt_fp_rxd *rxd,
101 int frag_count, int len);
102 extern void mac_drv_requeue_rxd(struct s_smc *smc,
103 volatile struct s_smt_fp_rxd *rxd,
104 int frag_count);
105 extern void mac_drv_clear_rxd(struct s_smc *smc,
106 volatile struct s_smt_fp_rxd *rxd, int frag_count);
107
108 #ifdef USE_OS_CPY
109 extern void hwm_cpy_rxd2mb(void);
110 extern void hwm_cpy_txd2mb(void);
111 #endif
112
113 #ifdef ALL_RX_COMPLETE
114 extern void mac_drv_all_receives_complete(void);
115 #endif
116
117 extern u_long mac_drv_virt2phys(struct s_smc *smc, void *virt);
118 extern u_long dma_master(struct s_smc *smc, void *virt, int len, int flag);
119
120 #ifdef NDIS_OS2
121 extern void post_proc(void);
122 #else
123 extern void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
124 int flag);
125 #endif
126
127 extern int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
128 int la_len);
129
130 /*
131 -------------------------------------------------------------
132 PUBLIC FUNCTIONS:
133 -------------------------------------------------------------
134 */
135 void process_receive(struct s_smc *smc);
136 void fddi_isr(struct s_smc *smc);
137 void smt_free_mbuf(struct s_smc *smc, SMbuf *mb);
138 void init_driver_fplus(struct s_smc *smc);
139 void mac_drv_rx_mode(struct s_smc *smc, int mode);
140 void init_fddi_driver(struct s_smc *smc, u_char *mac_addr);
141 void mac_drv_clear_tx_queue(struct s_smc *smc);
142 void mac_drv_clear_rx_queue(struct s_smc *smc);
143 void hwm_tx_frag(struct s_smc *smc, char far *virt, u_long phys, int len,
144 int frame_status);
145 void hwm_rx_frag(struct s_smc *smc, char far *virt, u_long phys, int len,
146 int frame_status);
147
148 int mac_drv_init(struct s_smc *smc);
149 int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count, int frame_len,
150 int frame_status);
151
152 u_int mac_drv_check_space(void);
153
154 SMbuf* smt_get_mbuf(struct s_smc *smc);
155
156 #ifdef DEBUG
157 void mac_drv_debug_lev(struct s_smc *smc, int flag, int lev);
158 #endif
159
160 /*
161 -------------------------------------------------------------
162 MACROS:
163 -------------------------------------------------------------
164 */
165 #ifndef UNUSED
166 #ifdef lint
167 #define UNUSED(x) (x) = (x)
168 #else
169 #define UNUSED(x)
170 #endif
171 #endif
172
173 #ifdef USE_CAN_ADDR
174 #define MA smc->hw.fddi_canon_addr.a
175 #define GROUP_ADDR_BIT 0x01
176 #else
177 #define MA smc->hw.fddi_home_addr.a
178 #define GROUP_ADDR_BIT 0x80
179 #endif
180
181 #define RXD_TXD_COUNT (HWM_ASYNC_TXD_COUNT+HWM_SYNC_TXD_COUNT+\
182 SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT)
183
184 #ifdef MB_OUTSIDE_SMC
185 #define EXT_VIRT_MEM ((RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd) +\
186 MAX_MBUF*sizeof(SMbuf))
187 #define EXT_VIRT_MEM_2 ((RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd))
188 #else
189 #define EXT_VIRT_MEM ((RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd))
190 #endif
191
192 /*
193 * define critical read for 16 Bit drivers
194 */
195 #if defined(NDIS_OS2) || defined(ODI2)
196 #define CR_READ(var) ((var) & 0xffff0000 | ((var) & 0xffff))
197 #else
198 #define CR_READ(var) (__le32)(var)
199 #endif
200
201 #define IMASK_SLOW (IS_PLINT1 | IS_PLINT2 | IS_TIMINT | IS_TOKEN | \
202 IS_MINTR1 | IS_MINTR2 | IS_MINTR3 | IS_R1_P | \
203 IS_R1_C | IS_XA_C | IS_XS_C)
204
205 /*
206 -------------------------------------------------------------
207 INIT- AND SMT FUNCTIONS:
208 -------------------------------------------------------------
209 */
210
211
212 /*
213 * BEGIN_MANUAL_ENTRY(mac_drv_check_space)
214 * u_int mac_drv_check_space()
215 *
216 * function DOWNCALL (drvsr.c)
217 * This function calculates the needed non virtual
218 * memory for MBufs, RxD and TxD descriptors etc.
219 * needed by the driver.
220 *
221 * return u_int memory in bytes
222 *
223 * END_MANUAL_ENTRY
224 */
mac_drv_check_space(void)225 u_int mac_drv_check_space(void)
226 {
227 #ifdef MB_OUTSIDE_SMC
228 #ifdef COMMON_MB_POOL
229 call_count++ ;
230 if (call_count == 1) {
231 return EXT_VIRT_MEM;
232 }
233 else {
234 return EXT_VIRT_MEM_2;
235 }
236 #else
237 return EXT_VIRT_MEM;
238 #endif
239 #else
240 return 0;
241 #endif
242 }
243
244 /*
245 * BEGIN_MANUAL_ENTRY(mac_drv_init)
246 * void mac_drv_init(smc)
247 *
248 * function DOWNCALL (drvsr.c)
249 * In this function the hardware module allocates it's
250 * memory.
251 * The operating system dependent module should call
252 * mac_drv_init once, after the adatper is detected.
253 * END_MANUAL_ENTRY
254 */
mac_drv_init(struct s_smc * smc)255 int mac_drv_init(struct s_smc *smc)
256 {
257 if (sizeof(struct s_smt_fp_rxd) % 16) {
258 SMT_PANIC(smc,HWM_E0001,HWM_E0001_MSG) ;
259 }
260 if (sizeof(struct s_smt_fp_txd) % 16) {
261 SMT_PANIC(smc,HWM_E0002,HWM_E0002_MSG) ;
262 }
263
264 /*
265 * get the required memory for the RxDs and TxDs
266 */
267 if (!(smc->os.hwm.descr_p = (union s_fp_descr volatile *)
268 mac_drv_get_desc_mem(smc,(u_int)
269 (RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd)))) {
270 return 1; /* no space the hwm modul can't work */
271 }
272
273 /*
274 * get the memory for the SMT MBufs
275 */
276 #ifndef MB_OUTSIDE_SMC
277 smc->os.hwm.mbuf_pool.mb_start=(SMbuf *)(&smc->os.hwm.mbuf_pool.mb[0]) ;
278 #else
279 #ifndef COMMON_MB_POOL
280 if (!(smc->os.hwm.mbuf_pool.mb_start = (SMbuf *) mac_drv_get_space(smc,
281 MAX_MBUF*sizeof(SMbuf)))) {
282 return 1; /* no space the hwm modul can't work */
283 }
284 #else
285 if (!mb_start) {
286 if (!(mb_start = (SMbuf *) mac_drv_get_space(smc,
287 MAX_MBUF*sizeof(SMbuf)))) {
288 return 1; /* no space the hwm modul can't work */
289 }
290 }
291 #endif
292 #endif
293 return 0;
294 }
295
296 /*
297 * BEGIN_MANUAL_ENTRY(init_driver_fplus)
298 * init_driver_fplus(smc)
299 *
300 * Sets hardware modul specific values for the mode register 2
301 * (e.g. the byte alignment for the received frames, the position of the
302 * least significant byte etc.)
303 * END_MANUAL_ENTRY
304 */
init_driver_fplus(struct s_smc * smc)305 void init_driver_fplus(struct s_smc *smc)
306 {
307 smc->hw.fp.mdr2init = FM_LSB | FM_BMMODE | FM_ENNPRQ | FM_ENHSRQ | 3 ;
308
309 #ifdef PCI
310 smc->hw.fp.mdr2init |= FM_CHKPAR | FM_PARITY ;
311 #endif
312 smc->hw.fp.mdr3init = FM_MENRQAUNLCK | FM_MENRS ;
313
314 #ifdef USE_CAN_ADDR
315 /* enable address bit swapping */
316 smc->hw.fp.frselreg_init = FM_ENXMTADSWAP | FM_ENRCVADSWAP ;
317 #endif
318 }
319
init_descr_ring(struct s_smc * smc,union s_fp_descr volatile * start,int count)320 static u_long init_descr_ring(struct s_smc *smc,
321 union s_fp_descr volatile *start,
322 int count)
323 {
324 int i ;
325 union s_fp_descr volatile *d1 ;
326 union s_fp_descr volatile *d2 ;
327 u_long phys ;
328
329 DB_GEN(3, "descr ring starts at = %p", start);
330 for (i=count-1, d1=start; i ; i--) {
331 d2 = d1 ;
332 d1++ ; /* descr is owned by the host */
333 d2->r.rxd_rbctrl = cpu_to_le32(BMU_CHECK) ;
334 d2->r.rxd_next = &d1->r ;
335 phys = mac_drv_virt2phys(smc,(void *)d1) ;
336 d2->r.rxd_nrdadr = cpu_to_le32(phys) ;
337 }
338 DB_GEN(3, "descr ring ends at = %p", d1);
339 d1->r.rxd_rbctrl = cpu_to_le32(BMU_CHECK) ;
340 d1->r.rxd_next = &start->r ;
341 phys = mac_drv_virt2phys(smc,(void *)start) ;
342 d1->r.rxd_nrdadr = cpu_to_le32(phys) ;
343
344 for (i=count, d1=start; i ; i--) {
345 DRV_BUF_FLUSH(&d1->r,DDI_DMA_SYNC_FORDEV) ;
346 d1++;
347 }
348 return phys;
349 }
350
init_txd_ring(struct s_smc * smc)351 static void init_txd_ring(struct s_smc *smc)
352 {
353 struct s_smt_fp_txd volatile *ds ;
354 struct s_smt_tx_queue *queue ;
355 u_long phys ;
356
357 /*
358 * initialize the transmit descriptors
359 */
360 ds = (struct s_smt_fp_txd volatile *) ((char *)smc->os.hwm.descr_p +
361 SMT_R1_RXD_COUNT*sizeof(struct s_smt_fp_rxd)) ;
362 queue = smc->hw.fp.tx[QUEUE_A0] ;
363 DB_GEN(3, "Init async TxD ring, %d TxDs", HWM_ASYNC_TXD_COUNT);
364 (void)init_descr_ring(smc,(union s_fp_descr volatile *)ds,
365 HWM_ASYNC_TXD_COUNT) ;
366 phys = le32_to_cpu(ds->txd_ntdadr) ;
367 ds++ ;
368 queue->tx_curr_put = queue->tx_curr_get = ds ;
369 ds-- ;
370 queue->tx_free = HWM_ASYNC_TXD_COUNT ;
371 queue->tx_used = 0 ;
372 outpd(ADDR(B5_XA_DA),phys) ;
373
374 ds = (struct s_smt_fp_txd volatile *) ((char *)ds +
375 HWM_ASYNC_TXD_COUNT*sizeof(struct s_smt_fp_txd)) ;
376 queue = smc->hw.fp.tx[QUEUE_S] ;
377 DB_GEN(3, "Init sync TxD ring, %d TxDs", HWM_SYNC_TXD_COUNT);
378 (void)init_descr_ring(smc,(union s_fp_descr volatile *)ds,
379 HWM_SYNC_TXD_COUNT) ;
380 phys = le32_to_cpu(ds->txd_ntdadr) ;
381 ds++ ;
382 queue->tx_curr_put = queue->tx_curr_get = ds ;
383 queue->tx_free = HWM_SYNC_TXD_COUNT ;
384 queue->tx_used = 0 ;
385 outpd(ADDR(B5_XS_DA),phys) ;
386 }
387
init_rxd_ring(struct s_smc * smc)388 static void init_rxd_ring(struct s_smc *smc)
389 {
390 struct s_smt_fp_rxd volatile *ds ;
391 struct s_smt_rx_queue *queue ;
392 u_long phys ;
393
394 /*
395 * initialize the receive descriptors
396 */
397 ds = (struct s_smt_fp_rxd volatile *) smc->os.hwm.descr_p ;
398 queue = smc->hw.fp.rx[QUEUE_R1] ;
399 DB_GEN(3, "Init RxD ring, %d RxDs", SMT_R1_RXD_COUNT);
400 (void)init_descr_ring(smc,(union s_fp_descr volatile *)ds,
401 SMT_R1_RXD_COUNT) ;
402 phys = le32_to_cpu(ds->rxd_nrdadr) ;
403 ds++ ;
404 queue->rx_curr_put = queue->rx_curr_get = ds ;
405 queue->rx_free = SMT_R1_RXD_COUNT ;
406 queue->rx_used = 0 ;
407 outpd(ADDR(B4_R1_DA),phys) ;
408 }
409
410 /*
411 * BEGIN_MANUAL_ENTRY(init_fddi_driver)
412 * void init_fddi_driver(smc,mac_addr)
413 *
414 * initializes the driver and it's variables
415 *
416 * END_MANUAL_ENTRY
417 */
init_fddi_driver(struct s_smc * smc,u_char * mac_addr)418 void init_fddi_driver(struct s_smc *smc, u_char *mac_addr)
419 {
420 SMbuf *mb ;
421 int i ;
422
423 init_board(smc,mac_addr) ;
424 (void)init_fplus(smc) ;
425
426 /*
427 * initialize the SMbufs for the SMT
428 */
429 #ifndef COMMON_MB_POOL
430 mb = smc->os.hwm.mbuf_pool.mb_start ;
431 smc->os.hwm.mbuf_pool.mb_free = (SMbuf *)NULL ;
432 for (i = 0; i < MAX_MBUF; i++) {
433 mb->sm_use_count = 1 ;
434 smt_free_mbuf(smc,mb) ;
435 mb++ ;
436 }
437 #else
438 mb = mb_start ;
439 if (!mb_init) {
440 mb_free = 0 ;
441 for (i = 0; i < MAX_MBUF; i++) {
442 mb->sm_use_count = 1 ;
443 smt_free_mbuf(smc,mb) ;
444 mb++ ;
445 }
446 mb_init = TRUE ;
447 }
448 #endif
449
450 /*
451 * initialize the other variables
452 */
453 smc->os.hwm.llc_rx_pipe = smc->os.hwm.llc_rx_tail = (SMbuf *)NULL ;
454 smc->os.hwm.txd_tx_pipe = smc->os.hwm.txd_tx_tail = NULL ;
455 smc->os.hwm.pass_SMT = smc->os.hwm.pass_NSA = smc->os.hwm.pass_DB = 0 ;
456 smc->os.hwm.pass_llc_promisc = TRUE ;
457 smc->os.hwm.queued_rx_frames = smc->os.hwm.queued_txd_mb = 0 ;
458 smc->os.hwm.detec_count = 0 ;
459 smc->os.hwm.rx_break = 0 ;
460 smc->os.hwm.rx_len_error = 0 ;
461 smc->os.hwm.isr_flag = FALSE ;
462
463 /*
464 * make sure that the start pointer is 16 byte aligned
465 */
466 i = 16 - ((long)smc->os.hwm.descr_p & 0xf) ;
467 if (i != 16) {
468 DB_GEN(3, "i = %d", i);
469 smc->os.hwm.descr_p = (union s_fp_descr volatile *)
470 ((char *)smc->os.hwm.descr_p+i) ;
471 }
472 DB_GEN(3, "pt to descr area = %p", smc->os.hwm.descr_p);
473
474 init_txd_ring(smc) ;
475 init_rxd_ring(smc) ;
476 mac_drv_fill_rxd(smc) ;
477
478 init_plc(smc) ;
479 }
480
481
smt_get_mbuf(struct s_smc * smc)482 SMbuf *smt_get_mbuf(struct s_smc *smc)
483 {
484 register SMbuf *mb ;
485
486 #ifndef COMMON_MB_POOL
487 mb = smc->os.hwm.mbuf_pool.mb_free ;
488 #else
489 mb = mb_free ;
490 #endif
491 if (mb) {
492 #ifndef COMMON_MB_POOL
493 smc->os.hwm.mbuf_pool.mb_free = mb->sm_next ;
494 #else
495 mb_free = mb->sm_next ;
496 #endif
497 mb->sm_off = 8 ;
498 mb->sm_use_count = 1 ;
499 }
500 DB_GEN(3, "get SMbuf: mb = %p", mb);
501 return mb; /* May be NULL */
502 }
503
smt_free_mbuf(struct s_smc * smc,SMbuf * mb)504 void smt_free_mbuf(struct s_smc *smc, SMbuf *mb)
505 {
506
507 if (mb) {
508 mb->sm_use_count-- ;
509 DB_GEN(3, "free_mbuf: sm_use_count = %d", mb->sm_use_count);
510 /*
511 * If the use_count is != zero the MBuf is queued
512 * more than once and must not queued into the
513 * free MBuf queue
514 */
515 if (!mb->sm_use_count) {
516 DB_GEN(3, "free SMbuf: mb = %p", mb);
517 #ifndef COMMON_MB_POOL
518 mb->sm_next = smc->os.hwm.mbuf_pool.mb_free ;
519 smc->os.hwm.mbuf_pool.mb_free = mb ;
520 #else
521 mb->sm_next = mb_free ;
522 mb_free = mb ;
523 #endif
524 }
525 }
526 else
527 SMT_PANIC(smc,HWM_E0003,HWM_E0003_MSG) ;
528 }
529
530
531 /*
532 * BEGIN_MANUAL_ENTRY(mac_drv_repair_descr)
533 * void mac_drv_repair_descr(smc)
534 *
535 * function called from SMT (HWM / hwmtm.c)
536 * The BMU is idle when this function is called.
537 * Mac_drv_repair_descr sets up the physical address
538 * for all receive and transmit queues where the BMU
539 * should continue.
540 * It may be that the BMU was reseted during a fragmented
541 * transfer. In this case there are some fragments which will
542 * never completed by the BMU. The OWN bit of this fragments
543 * must be switched to be owned by the host.
544 *
545 * Give a start command to the receive BMU.
546 * Start the transmit BMUs if transmit frames pending.
547 *
548 * END_MANUAL_ENTRY
549 */
mac_drv_repair_descr(struct s_smc * smc)550 void mac_drv_repair_descr(struct s_smc *smc)
551 {
552 u_long phys ;
553
554 if (smc->hw.hw_state != STOPPED) {
555 SK_BREAK() ;
556 SMT_PANIC(smc,HWM_E0013,HWM_E0013_MSG) ;
557 return ;
558 }
559
560 /*
561 * repair tx queues: don't start
562 */
563 phys = repair_txd_ring(smc,smc->hw.fp.tx[QUEUE_A0]) ;
564 outpd(ADDR(B5_XA_DA),phys) ;
565 if (smc->hw.fp.tx_q[QUEUE_A0].tx_used) {
566 outpd(ADDR(B0_XA_CSR),CSR_START) ;
567 }
568 phys = repair_txd_ring(smc,smc->hw.fp.tx[QUEUE_S]) ;
569 outpd(ADDR(B5_XS_DA),phys) ;
570 if (smc->hw.fp.tx_q[QUEUE_S].tx_used) {
571 outpd(ADDR(B0_XS_CSR),CSR_START) ;
572 }
573
574 /*
575 * repair rx queues
576 */
577 phys = repair_rxd_ring(smc,smc->hw.fp.rx[QUEUE_R1]) ;
578 outpd(ADDR(B4_R1_DA),phys) ;
579 outpd(ADDR(B0_R1_CSR),CSR_START) ;
580 }
581
repair_txd_ring(struct s_smc * smc,struct s_smt_tx_queue * queue)582 static u_long repair_txd_ring(struct s_smc *smc, struct s_smt_tx_queue *queue)
583 {
584 int i ;
585 int tx_used ;
586 u_long phys ;
587 u_long tbctrl ;
588 struct s_smt_fp_txd volatile *t ;
589
590 SK_UNUSED(smc) ;
591
592 t = queue->tx_curr_get ;
593 tx_used = queue->tx_used ;
594 for (i = tx_used+queue->tx_free-1 ; i ; i-- ) {
595 t = t->txd_next ;
596 }
597 phys = le32_to_cpu(t->txd_ntdadr) ;
598
599 t = queue->tx_curr_get ;
600 while (tx_used) {
601 DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORCPU) ;
602 tbctrl = le32_to_cpu(t->txd_tbctrl) ;
603
604 if (tbctrl & BMU_OWN) {
605 if (tbctrl & BMU_STF) {
606 break ; /* exit the loop */
607 }
608 else {
609 /*
610 * repair the descriptor
611 */
612 t->txd_tbctrl &= ~cpu_to_le32(BMU_OWN) ;
613 }
614 }
615 phys = le32_to_cpu(t->txd_ntdadr) ;
616 DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
617 t = t->txd_next ;
618 tx_used-- ;
619 }
620 return phys;
621 }
622
623 /*
624 * Repairs the receive descriptor ring and returns the physical address
625 * where the BMU should continue working.
626 *
627 * o The physical address where the BMU was stopped has to be
628 * determined. This is the next RxD after rx_curr_get with an OWN
629 * bit set.
630 * o The BMU should start working at beginning of the next frame.
631 * RxDs with an OWN bit set but with a reset STF bit should be
632 * skipped and owned by the driver (OWN = 0).
633 */
repair_rxd_ring(struct s_smc * smc,struct s_smt_rx_queue * queue)634 static u_long repair_rxd_ring(struct s_smc *smc, struct s_smt_rx_queue *queue)
635 {
636 int i ;
637 int rx_used ;
638 u_long phys ;
639 u_long rbctrl ;
640 struct s_smt_fp_rxd volatile *r ;
641
642 SK_UNUSED(smc) ;
643
644 r = queue->rx_curr_get ;
645 rx_used = queue->rx_used ;
646 for (i = SMT_R1_RXD_COUNT-1 ; i ; i-- ) {
647 r = r->rxd_next ;
648 }
649 phys = le32_to_cpu(r->rxd_nrdadr) ;
650
651 r = queue->rx_curr_get ;
652 while (rx_used) {
653 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
654 rbctrl = le32_to_cpu(r->rxd_rbctrl) ;
655
656 if (rbctrl & BMU_OWN) {
657 if (rbctrl & BMU_STF) {
658 break ; /* exit the loop */
659 }
660 else {
661 /*
662 * repair the descriptor
663 */
664 r->rxd_rbctrl &= ~cpu_to_le32(BMU_OWN) ;
665 }
666 }
667 phys = le32_to_cpu(r->rxd_nrdadr) ;
668 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ;
669 r = r->rxd_next ;
670 rx_used-- ;
671 }
672 return phys;
673 }
674
675
676 /*
677 -------------------------------------------------------------
678 INTERRUPT SERVICE ROUTINE:
679 -------------------------------------------------------------
680 */
681
682 /*
683 * BEGIN_MANUAL_ENTRY(fddi_isr)
684 * void fddi_isr(smc)
685 *
686 * function DOWNCALL (drvsr.c)
687 * interrupt service routine, handles the interrupt requests
688 * generated by the FDDI adapter.
689 *
690 * NOTE: The operating system dependent module must guarantee that the
691 * interrupts of the adapter are disabled when it calls fddi_isr.
692 *
693 * About the USE_BREAK_ISR mechanismn:
694 *
695 * The main requirement of this mechanismn is to force an timer IRQ when
696 * leaving process_receive() with leave_isr set. process_receive() may
697 * be called at any time from anywhere!
698 * To be sure we don't miss such event we set 'force_irq' per default.
699 * We have to force and Timer IRQ if 'smc->os.hwm.leave_isr' AND
700 * 'force_irq' are set. 'force_irq' may be reset if a receive complete
701 * IRQ is pending.
702 *
703 * END_MANUAL_ENTRY
704 */
fddi_isr(struct s_smc * smc)705 void fddi_isr(struct s_smc *smc)
706 {
707 u_long is ; /* ISR source */
708 u_short stu, stl ;
709 SMbuf *mb ;
710
711 #ifdef USE_BREAK_ISR
712 int force_irq ;
713 #endif
714
715 #ifdef ODI2
716 if (smc->os.hwm.rx_break) {
717 mac_drv_fill_rxd(smc) ;
718 if (smc->hw.fp.rx_q[QUEUE_R1].rx_used > 0) {
719 smc->os.hwm.rx_break = 0 ;
720 process_receive(smc) ;
721 }
722 else {
723 smc->os.hwm.detec_count = 0 ;
724 smt_force_irq(smc) ;
725 }
726 }
727 #endif
728 smc->os.hwm.isr_flag = TRUE ;
729
730 #ifdef USE_BREAK_ISR
731 force_irq = TRUE ;
732 if (smc->os.hwm.leave_isr) {
733 smc->os.hwm.leave_isr = FALSE ;
734 process_receive(smc) ;
735 }
736 #endif
737
738 while ((is = GET_ISR() & ISR_MASK)) {
739 NDD_TRACE("CH0B",is,0,0) ;
740 DB_GEN(7, "ISA = 0x%lx", is);
741
742 if (is & IMASK_SLOW) {
743 NDD_TRACE("CH1b",is,0,0) ;
744 if (is & IS_PLINT1) { /* PLC1 */
745 plc1_irq(smc) ;
746 }
747 if (is & IS_PLINT2) { /* PLC2 */
748 plc2_irq(smc) ;
749 }
750 if (is & IS_MINTR1) { /* FORMAC+ STU1(U/L) */
751 stu = inpw(FM_A(FM_ST1U)) ;
752 stl = inpw(FM_A(FM_ST1L)) ;
753 DB_GEN(6, "Slow transmit complete");
754 mac1_irq(smc,stu,stl) ;
755 }
756 if (is & IS_MINTR2) { /* FORMAC+ STU2(U/L) */
757 stu= inpw(FM_A(FM_ST2U)) ;
758 stl= inpw(FM_A(FM_ST2L)) ;
759 DB_GEN(6, "Slow receive complete");
760 DB_GEN(7, "stl = %x : stu = %x", stl, stu);
761 mac2_irq(smc,stu,stl) ;
762 }
763 if (is & IS_MINTR3) { /* FORMAC+ STU3(U/L) */
764 stu= inpw(FM_A(FM_ST3U)) ;
765 stl= inpw(FM_A(FM_ST3L)) ;
766 DB_GEN(6, "FORMAC Mode Register 3");
767 mac3_irq(smc,stu,stl) ;
768 }
769 if (is & IS_TIMINT) { /* Timer 82C54-2 */
770 timer_irq(smc) ;
771 #ifdef NDIS_OS2
772 force_irq_pending = 0 ;
773 #endif
774 /*
775 * out of RxD detection
776 */
777 if (++smc->os.hwm.detec_count > 4) {
778 /*
779 * check out of RxD condition
780 */
781 process_receive(smc) ;
782 }
783 }
784 if (is & IS_TOKEN) { /* Restricted Token Monitor */
785 rtm_irq(smc) ;
786 }
787 if (is & IS_R1_P) { /* Parity error rx queue 1 */
788 /* clear IRQ */
789 outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_P) ;
790 SMT_PANIC(smc,HWM_E0004,HWM_E0004_MSG) ;
791 }
792 if (is & IS_R1_C) { /* Encoding error rx queue 1 */
793 /* clear IRQ */
794 outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_C) ;
795 SMT_PANIC(smc,HWM_E0005,HWM_E0005_MSG) ;
796 }
797 if (is & IS_XA_C) { /* Encoding error async tx q */
798 /* clear IRQ */
799 outpd(ADDR(B5_XA_CSR),CSR_IRQ_CL_C) ;
800 SMT_PANIC(smc,HWM_E0006,HWM_E0006_MSG) ;
801 }
802 if (is & IS_XS_C) { /* Encoding error sync tx q */
803 /* clear IRQ */
804 outpd(ADDR(B5_XS_CSR),CSR_IRQ_CL_C) ;
805 SMT_PANIC(smc,HWM_E0007,HWM_E0007_MSG) ;
806 }
807 }
808
809 /*
810 * Fast Tx complete Async/Sync Queue (BMU service)
811 */
812 if (is & (IS_XS_F|IS_XA_F)) {
813 DB_GEN(6, "Fast tx complete queue");
814 /*
815 * clear IRQ, Note: no IRQ is lost, because
816 * we always service both queues
817 */
818 outpd(ADDR(B5_XS_CSR),CSR_IRQ_CL_F) ;
819 outpd(ADDR(B5_XA_CSR),CSR_IRQ_CL_F) ;
820 mac_drv_clear_txd(smc) ;
821 llc_restart_tx(smc) ;
822 }
823
824 /*
825 * Fast Rx Complete (BMU service)
826 */
827 if (is & IS_R1_F) {
828 DB_GEN(6, "Fast receive complete");
829 /* clear IRQ */
830 #ifndef USE_BREAK_ISR
831 outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_F) ;
832 process_receive(smc) ;
833 #else
834 process_receive(smc) ;
835 if (smc->os.hwm.leave_isr) {
836 force_irq = FALSE ;
837 } else {
838 outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_F) ;
839 process_receive(smc) ;
840 }
841 #endif
842 }
843
844 #ifndef NDIS_OS2
845 while ((mb = get_llc_rx(smc))) {
846 smt_to_llc(smc,mb) ;
847 }
848 #else
849 if (offDepth)
850 post_proc() ;
851
852 while (!offDepth && (mb = get_llc_rx(smc))) {
853 smt_to_llc(smc,mb) ;
854 }
855
856 if (!offDepth && smc->os.hwm.rx_break) {
857 process_receive(smc) ;
858 }
859 #endif
860 if (smc->q.ev_get != smc->q.ev_put) {
861 NDD_TRACE("CH2a",0,0,0) ;
862 ev_dispatcher(smc) ;
863 }
864 #ifdef NDIS_OS2
865 post_proc() ;
866 if (offDepth) { /* leave fddi_isr because */
867 break ; /* indications not allowed */
868 }
869 #endif
870 #ifdef USE_BREAK_ISR
871 if (smc->os.hwm.leave_isr) {
872 break ; /* leave fddi_isr */
873 }
874 #endif
875
876 /* NOTE: when the isr is left, no rx is pending */
877 } /* end of interrupt source polling loop */
878
879 #ifdef USE_BREAK_ISR
880 if (smc->os.hwm.leave_isr && force_irq) {
881 smt_force_irq(smc) ;
882 }
883 #endif
884 smc->os.hwm.isr_flag = FALSE ;
885 NDD_TRACE("CH0E",0,0,0) ;
886 }
887
888
889 /*
890 -------------------------------------------------------------
891 RECEIVE FUNCTIONS:
892 -------------------------------------------------------------
893 */
894
895 #ifndef NDIS_OS2
896 /*
897 * BEGIN_MANUAL_ENTRY(mac_drv_rx_mode)
898 * void mac_drv_rx_mode(smc,mode)
899 *
900 * function DOWNCALL (fplus.c)
901 * Corresponding to the parameter mode, the operating system
902 * dependent module can activate several receive modes.
903 *
904 * para mode = 1: RX_ENABLE_ALLMULTI enable all multicasts
905 * = 2: RX_DISABLE_ALLMULTI disable "enable all multicasts"
906 * = 3: RX_ENABLE_PROMISC enable promiscuous
907 * = 4: RX_DISABLE_PROMISC disable promiscuous
908 * = 5: RX_ENABLE_NSA enable rec. of all NSA frames
909 * (disabled after 'driver reset' & 'set station address')
910 * = 6: RX_DISABLE_NSA disable rec. of all NSA frames
911 *
912 * = 21: RX_ENABLE_PASS_SMT ( see description )
913 * = 22: RX_DISABLE_PASS_SMT ( " " )
914 * = 23: RX_ENABLE_PASS_NSA ( " " )
915 * = 24: RX_DISABLE_PASS_NSA ( " " )
916 * = 25: RX_ENABLE_PASS_DB ( " " )
917 * = 26: RX_DISABLE_PASS_DB ( " " )
918 * = 27: RX_DISABLE_PASS_ALL ( " " )
919 * = 28: RX_DISABLE_LLC_PROMISC ( " " )
920 * = 29: RX_ENABLE_LLC_PROMISC ( " " )
921 *
922 *
923 * RX_ENABLE_PASS_SMT / RX_DISABLE_PASS_SMT
924 *
925 * If the operating system dependent module activates the
926 * mode RX_ENABLE_PASS_SMT, the hardware module
927 * duplicates all SMT frames with the frame control
928 * FC_SMT_INFO and passes them to the LLC receive channel
929 * by calling mac_drv_rx_init.
930 * The SMT Frames which are sent by the local SMT and the NSA
931 * frames whose A- and C-Indicator is not set are also duplicated
932 * and passed.
933 * The receive mode RX_DISABLE_PASS_SMT disables the passing
934 * of SMT frames.
935 *
936 * RX_ENABLE_PASS_NSA / RX_DISABLE_PASS_NSA
937 *
938 * If the operating system dependent module activates the
939 * mode RX_ENABLE_PASS_NSA, the hardware module
940 * duplicates all NSA frames with frame control FC_SMT_NSA
941 * and a set A-Indicator and passed them to the LLC
942 * receive channel by calling mac_drv_rx_init.
943 * All NSA Frames which are sent by the local SMT
944 * are also duplicated and passed.
945 * The receive mode RX_DISABLE_PASS_NSA disables the passing
946 * of NSA frames with the A- or C-Indicator set.
947 *
948 * NOTE: For fear that the hardware module receives NSA frames with
949 * a reset A-Indicator, the operating system dependent module
950 * has to call mac_drv_rx_mode with the mode RX_ENABLE_NSA
951 * before activate the RX_ENABLE_PASS_NSA mode and after every
952 * 'driver reset' and 'set station address'.
953 *
954 * RX_ENABLE_PASS_DB / RX_DISABLE_PASS_DB
955 *
956 * If the operating system dependent module activates the
957 * mode RX_ENABLE_PASS_DB, direct BEACON frames
958 * (FC_BEACON frame control) are passed to the LLC receive
959 * channel by mac_drv_rx_init.
960 * The receive mode RX_DISABLE_PASS_DB disables the passing
961 * of direct BEACON frames.
962 *
963 * RX_DISABLE_PASS_ALL
964 *
965 * Disables all special receives modes. It is equal to
966 * call mac_drv_set_rx_mode successively with the
967 * parameters RX_DISABLE_NSA, RX_DISABLE_PASS_SMT,
968 * RX_DISABLE_PASS_NSA and RX_DISABLE_PASS_DB.
969 *
970 * RX_ENABLE_LLC_PROMISC
971 *
972 * (default) all received LLC frames and all SMT/NSA/DBEACON
973 * frames depending on the attitude of the flags
974 * PASS_SMT/PASS_NSA/PASS_DBEACON will be delivered to the
975 * LLC layer
976 *
977 * RX_DISABLE_LLC_PROMISC
978 *
979 * all received SMT/NSA/DBEACON frames depending on the
980 * attitude of the flags PASS_SMT/PASS_NSA/PASS_DBEACON
981 * will be delivered to the LLC layer.
982 * all received LLC frames with a directed address, Multicast
983 * or Broadcast address will be delivered to the LLC
984 * layer too.
985 *
986 * END_MANUAL_ENTRY
987 */
mac_drv_rx_mode(struct s_smc * smc,int mode)988 void mac_drv_rx_mode(struct s_smc *smc, int mode)
989 {
990 switch(mode) {
991 case RX_ENABLE_PASS_SMT:
992 smc->os.hwm.pass_SMT = TRUE ;
993 break ;
994 case RX_DISABLE_PASS_SMT:
995 smc->os.hwm.pass_SMT = FALSE ;
996 break ;
997 case RX_ENABLE_PASS_NSA:
998 smc->os.hwm.pass_NSA = TRUE ;
999 break ;
1000 case RX_DISABLE_PASS_NSA:
1001 smc->os.hwm.pass_NSA = FALSE ;
1002 break ;
1003 case RX_ENABLE_PASS_DB:
1004 smc->os.hwm.pass_DB = TRUE ;
1005 break ;
1006 case RX_DISABLE_PASS_DB:
1007 smc->os.hwm.pass_DB = FALSE ;
1008 break ;
1009 case RX_DISABLE_PASS_ALL:
1010 smc->os.hwm.pass_SMT = smc->os.hwm.pass_NSA = FALSE ;
1011 smc->os.hwm.pass_DB = FALSE ;
1012 smc->os.hwm.pass_llc_promisc = TRUE ;
1013 mac_set_rx_mode(smc,RX_DISABLE_NSA) ;
1014 break ;
1015 case RX_DISABLE_LLC_PROMISC:
1016 smc->os.hwm.pass_llc_promisc = FALSE ;
1017 break ;
1018 case RX_ENABLE_LLC_PROMISC:
1019 smc->os.hwm.pass_llc_promisc = TRUE ;
1020 break ;
1021 case RX_ENABLE_ALLMULTI:
1022 case RX_DISABLE_ALLMULTI:
1023 case RX_ENABLE_PROMISC:
1024 case RX_DISABLE_PROMISC:
1025 case RX_ENABLE_NSA:
1026 case RX_DISABLE_NSA:
1027 default:
1028 mac_set_rx_mode(smc,mode) ;
1029 break ;
1030 }
1031 }
1032 #endif /* ifndef NDIS_OS2 */
1033
1034 /*
1035 * process receive queue
1036 */
process_receive(struct s_smc * smc)1037 void process_receive(struct s_smc *smc)
1038 {
1039 int i ;
1040 int n ;
1041 int frag_count ; /* number of RxDs of the curr rx buf */
1042 int used_frags ; /* number of RxDs of the curr frame */
1043 struct s_smt_rx_queue *queue ; /* points to the queue ctl struct */
1044 struct s_smt_fp_rxd volatile *r ; /* rxd pointer */
1045 struct s_smt_fp_rxd volatile *rxd ; /* first rxd of rx frame */
1046 u_long rbctrl ; /* receive buffer control word */
1047 u_long rfsw ; /* receive frame status word */
1048 u_short rx_used ;
1049 u_char far *virt ;
1050 char far *data ;
1051 SMbuf *mb ;
1052 u_char fc ; /* Frame control */
1053 int len ; /* Frame length */
1054
1055 smc->os.hwm.detec_count = 0 ;
1056 queue = smc->hw.fp.rx[QUEUE_R1] ;
1057 NDD_TRACE("RHxB",0,0,0) ;
1058 for ( ; ; ) {
1059 r = queue->rx_curr_get ;
1060 rx_used = queue->rx_used ;
1061 frag_count = 0 ;
1062
1063 #ifdef USE_BREAK_ISR
1064 if (smc->os.hwm.leave_isr) {
1065 goto rx_end ;
1066 }
1067 #endif
1068 #ifdef NDIS_OS2
1069 if (offDepth) {
1070 smc->os.hwm.rx_break = 1 ;
1071 goto rx_end ;
1072 }
1073 smc->os.hwm.rx_break = 0 ;
1074 #endif
1075 #ifdef ODI2
1076 if (smc->os.hwm.rx_break) {
1077 goto rx_end ;
1078 }
1079 #endif
1080 n = 0 ;
1081 do {
1082 DB_RX(5, "Check RxD %p for OWN and EOF", r);
1083 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1084 rbctrl = le32_to_cpu(CR_READ(r->rxd_rbctrl));
1085
1086 if (rbctrl & BMU_OWN) {
1087 NDD_TRACE("RHxE",r,rfsw,rbctrl) ;
1088 DB_RX(4, "End of RxDs");
1089 goto rx_end ;
1090 }
1091 /*
1092 * out of RxD detection
1093 */
1094 if (!rx_used) {
1095 SK_BREAK() ;
1096 SMT_PANIC(smc,HWM_E0009,HWM_E0009_MSG) ;
1097 /* Either we don't have an RxD or all
1098 * RxDs are filled. Therefore it's allowed
1099 * for to set the STOPPED flag */
1100 smc->hw.hw_state = STOPPED ;
1101 mac_drv_clear_rx_queue(smc) ;
1102 smc->hw.hw_state = STARTED ;
1103 mac_drv_fill_rxd(smc) ;
1104 smc->os.hwm.detec_count = 0 ;
1105 goto rx_end ;
1106 }
1107 rfsw = le32_to_cpu(r->rxd_rfsw) ;
1108 if ((rbctrl & BMU_STF) != ((rbctrl & BMU_ST_BUF) <<5)) {
1109 /*
1110 * The BMU_STF bit is deleted, 1 frame is
1111 * placed into more than 1 rx buffer
1112 *
1113 * skip frame by setting the rx len to 0
1114 *
1115 * if fragment count == 0
1116 * The missing STF bit belongs to the
1117 * current frame, search for the
1118 * EOF bit to complete the frame
1119 * else
1120 * the fragment belongs to the next frame,
1121 * exit the loop and process the frame
1122 */
1123 SK_BREAK() ;
1124 rfsw = 0 ;
1125 if (frag_count) {
1126 break ;
1127 }
1128 }
1129 n += rbctrl & 0xffff ;
1130 r = r->rxd_next ;
1131 frag_count++ ;
1132 rx_used-- ;
1133 } while (!(rbctrl & BMU_EOF)) ;
1134 used_frags = frag_count ;
1135 DB_RX(5, "EOF set in RxD, used_frags = %d", used_frags);
1136
1137 /* may be next 2 DRV_BUF_FLUSH() can be skipped, because */
1138 /* BMU_ST_BUF will not be changed by the ASIC */
1139 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1140 while (rx_used && !(r->rxd_rbctrl & cpu_to_le32(BMU_ST_BUF))) {
1141 DB_RX(5, "Check STF bit in %p", r);
1142 r = r->rxd_next ;
1143 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1144 frag_count++ ;
1145 rx_used-- ;
1146 }
1147 DB_RX(5, "STF bit found");
1148
1149 /*
1150 * The received frame is finished for the process receive
1151 */
1152 rxd = queue->rx_curr_get ;
1153 queue->rx_curr_get = r ;
1154 queue->rx_free += frag_count ;
1155 queue->rx_used = rx_used ;
1156
1157 /*
1158 * ASIC Errata no. 7 (STF - Bit Bug)
1159 */
1160 rxd->rxd_rbctrl &= cpu_to_le32(~BMU_STF) ;
1161
1162 for (r=rxd, i=frag_count ; i ; r=r->rxd_next, i--){
1163 DB_RX(5, "dma_complete for RxD %p", r);
1164 dma_complete(smc,(union s_fp_descr volatile *)r,DMA_WR);
1165 }
1166 smc->hw.fp.err_stats.err_valid++ ;
1167 smc->mib.m[MAC0].fddiMACCopied_Ct++ ;
1168
1169 /* the length of the data including the FC */
1170 len = (rfsw & RD_LENGTH) - 4 ;
1171
1172 DB_RX(4, "frame length = %d", len);
1173 /*
1174 * check the frame_length and all error flags
1175 */
1176 if (rfsw & (RX_MSRABT|RX_FS_E|RX_FS_CRC|RX_FS_IMPL)){
1177 if (rfsw & RD_S_MSRABT) {
1178 DB_RX(2, "Frame aborted by the FORMAC");
1179 smc->hw.fp.err_stats.err_abort++ ;
1180 }
1181 /*
1182 * check frame status
1183 */
1184 if (rfsw & RD_S_SEAC2) {
1185 DB_RX(2, "E-Indicator set");
1186 smc->hw.fp.err_stats.err_e_indicator++ ;
1187 }
1188 if (rfsw & RD_S_SFRMERR) {
1189 DB_RX(2, "CRC error");
1190 smc->hw.fp.err_stats.err_crc++ ;
1191 }
1192 if (rfsw & RX_FS_IMPL) {
1193 DB_RX(2, "Implementer frame");
1194 smc->hw.fp.err_stats.err_imp_frame++ ;
1195 }
1196 goto abort_frame ;
1197 }
1198 if (len > FDDI_RAW_MTU-4) {
1199 DB_RX(2, "Frame too long error");
1200 smc->hw.fp.err_stats.err_too_long++ ;
1201 goto abort_frame ;
1202 }
1203 /*
1204 * SUPERNET 3 Bug: FORMAC delivers status words
1205 * of aborted frames to the BMU
1206 */
1207 if (len <= 4) {
1208 DB_RX(2, "Frame length = 0");
1209 goto abort_frame ;
1210 }
1211
1212 if (len != (n-4)) {
1213 DB_RX(4, "BMU: rx len differs: [%d:%d]", len, n);
1214 smc->os.hwm.rx_len_error++ ;
1215 goto abort_frame ;
1216 }
1217
1218 /*
1219 * Check SA == MA
1220 */
1221 virt = (u_char far *) rxd->rxd_virt ;
1222 DB_RX(2, "FC = %x", *virt);
1223 if (virt[12] == MA[5] &&
1224 virt[11] == MA[4] &&
1225 virt[10] == MA[3] &&
1226 virt[9] == MA[2] &&
1227 virt[8] == MA[1] &&
1228 (virt[7] & ~GROUP_ADDR_BIT) == MA[0]) {
1229 goto abort_frame ;
1230 }
1231
1232 /*
1233 * test if LLC frame
1234 */
1235 if (rfsw & RX_FS_LLC) {
1236 /*
1237 * if pass_llc_promisc is disable
1238 * if DA != Multicast or Broadcast or DA!=MA
1239 * abort the frame
1240 */
1241 if (!smc->os.hwm.pass_llc_promisc) {
1242 if(!(virt[1] & GROUP_ADDR_BIT)) {
1243 if (virt[6] != MA[5] ||
1244 virt[5] != MA[4] ||
1245 virt[4] != MA[3] ||
1246 virt[3] != MA[2] ||
1247 virt[2] != MA[1] ||
1248 virt[1] != MA[0]) {
1249 DB_RX(2, "DA != MA and not multi- or broadcast");
1250 goto abort_frame ;
1251 }
1252 }
1253 }
1254
1255 /*
1256 * LLC frame received
1257 */
1258 DB_RX(4, "LLC - receive");
1259 mac_drv_rx_complete(smc,rxd,frag_count,len) ;
1260 }
1261 else {
1262 if (!(mb = smt_get_mbuf(smc))) {
1263 smc->hw.fp.err_stats.err_no_buf++ ;
1264 DB_RX(4, "No SMbuf; receive terminated");
1265 goto abort_frame ;
1266 }
1267 data = smtod(mb,char *) - 1 ;
1268
1269 /*
1270 * copy the frame into a SMT_MBuf
1271 */
1272 #ifdef USE_OS_CPY
1273 hwm_cpy_rxd2mb(rxd,data,len) ;
1274 #else
1275 for (r=rxd, i=used_frags ; i ; r=r->rxd_next, i--){
1276 n = le32_to_cpu(r->rxd_rbctrl) & RD_LENGTH ;
1277 DB_RX(6, "cp SMT frame to mb: len = %d", n);
1278 memcpy(data,r->rxd_virt,n) ;
1279 data += n ;
1280 }
1281 data = smtod(mb,char *) - 1 ;
1282 #endif
1283 fc = *(char *)mb->sm_data = *data ;
1284 mb->sm_len = len - 1 ; /* len - fc */
1285 data++ ;
1286
1287 /*
1288 * SMT frame received
1289 */
1290 switch(fc) {
1291 case FC_SMT_INFO :
1292 smc->hw.fp.err_stats.err_smt_frame++ ;
1293 DB_RX(5, "SMT frame received");
1294
1295 if (smc->os.hwm.pass_SMT) {
1296 DB_RX(5, "pass SMT frame");
1297 mac_drv_rx_complete(smc, rxd,
1298 frag_count,len) ;
1299 }
1300 else {
1301 DB_RX(5, "requeue RxD");
1302 mac_drv_requeue_rxd(smc,rxd,frag_count);
1303 }
1304
1305 smt_received_pack(smc,mb,(int)(rfsw>>25)) ;
1306 break ;
1307 case FC_SMT_NSA :
1308 smc->hw.fp.err_stats.err_smt_frame++ ;
1309 DB_RX(5, "SMT frame received");
1310
1311 /* if pass_NSA set pass the NSA frame or */
1312 /* pass_SMT set and the A-Indicator */
1313 /* is not set, pass the NSA frame */
1314 if (smc->os.hwm.pass_NSA ||
1315 (smc->os.hwm.pass_SMT &&
1316 !(rfsw & A_INDIC))) {
1317 DB_RX(5, "pass SMT frame");
1318 mac_drv_rx_complete(smc, rxd,
1319 frag_count,len) ;
1320 }
1321 else {
1322 DB_RX(5, "requeue RxD");
1323 mac_drv_requeue_rxd(smc,rxd,frag_count);
1324 }
1325
1326 smt_received_pack(smc,mb,(int)(rfsw>>25)) ;
1327 break ;
1328 case FC_BEACON :
1329 if (smc->os.hwm.pass_DB) {
1330 DB_RX(5, "pass DB frame");
1331 mac_drv_rx_complete(smc, rxd,
1332 frag_count,len) ;
1333 }
1334 else {
1335 DB_RX(5, "requeue RxD");
1336 mac_drv_requeue_rxd(smc,rxd,frag_count);
1337 }
1338 smt_free_mbuf(smc,mb) ;
1339 break ;
1340 default :
1341 /*
1342 * unknown FC abort the frame
1343 */
1344 DB_RX(2, "unknown FC error");
1345 smt_free_mbuf(smc,mb) ;
1346 DB_RX(5, "requeue RxD");
1347 mac_drv_requeue_rxd(smc,rxd,frag_count) ;
1348 if ((fc & 0xf0) == FC_MAC)
1349 smc->hw.fp.err_stats.err_mac_frame++ ;
1350 else
1351 smc->hw.fp.err_stats.err_imp_frame++ ;
1352
1353 break ;
1354 }
1355 }
1356
1357 DB_RX(3, "next RxD is %p", queue->rx_curr_get);
1358 NDD_TRACE("RHx1",queue->rx_curr_get,0,0) ;
1359
1360 continue ;
1361 /*--------------------------------------------------------------------*/
1362 abort_frame:
1363 DB_RX(5, "requeue RxD");
1364 mac_drv_requeue_rxd(smc,rxd,frag_count) ;
1365
1366 DB_RX(3, "next RxD is %p", queue->rx_curr_get);
1367 NDD_TRACE("RHx2",queue->rx_curr_get,0,0) ;
1368 }
1369 rx_end:
1370 #ifdef ALL_RX_COMPLETE
1371 mac_drv_all_receives_complete(smc) ;
1372 #endif
1373 return ; /* lint bug: needs return detect end of function */
1374 }
1375
smt_to_llc(struct s_smc * smc,SMbuf * mb)1376 static void smt_to_llc(struct s_smc *smc, SMbuf *mb)
1377 {
1378 u_char fc ;
1379
1380 DB_RX(4, "send a queued frame to the llc layer");
1381 smc->os.hwm.r.len = mb->sm_len ;
1382 smc->os.hwm.r.mb_pos = smtod(mb,char *) ;
1383 fc = *smc->os.hwm.r.mb_pos ;
1384 (void)mac_drv_rx_init(smc,(int)mb->sm_len,(int)fc,
1385 smc->os.hwm.r.mb_pos,(int)mb->sm_len) ;
1386 smt_free_mbuf(smc,mb) ;
1387 }
1388
1389 /*
1390 * BEGIN_MANUAL_ENTRY(hwm_rx_frag)
1391 * void hwm_rx_frag(smc,virt,phys,len,frame_status)
1392 *
1393 * function MACRO (hardware module, hwmtm.h)
1394 * This function calls dma_master for preparing the
1395 * system hardware for the DMA transfer and initializes
1396 * the current RxD with the length and the physical and
1397 * virtual address of the fragment. Furthermore, it sets the
1398 * STF and EOF bits depending on the frame status byte,
1399 * switches the OWN flag of the RxD, so that it is owned by the
1400 * adapter and issues an rx_start.
1401 *
1402 * para virt virtual pointer to the fragment
1403 * len the length of the fragment
1404 * frame_status status of the frame, see design description
1405 *
1406 * NOTE: It is possible to call this function with a fragment length
1407 * of zero.
1408 *
1409 * END_MANUAL_ENTRY
1410 */
hwm_rx_frag(struct s_smc * smc,char far * virt,u_long phys,int len,int frame_status)1411 void hwm_rx_frag(struct s_smc *smc, char far *virt, u_long phys, int len,
1412 int frame_status)
1413 {
1414 struct s_smt_fp_rxd volatile *r ;
1415 __le32 rbctrl;
1416
1417 NDD_TRACE("RHfB",virt,len,frame_status) ;
1418 DB_RX(2, "hwm_rx_frag: len = %d, frame_status = %x", len, frame_status);
1419 r = smc->hw.fp.rx_q[QUEUE_R1].rx_curr_put ;
1420 r->rxd_virt = virt ;
1421 r->rxd_rbadr = cpu_to_le32(phys) ;
1422 rbctrl = cpu_to_le32( (((__u32)frame_status &
1423 (FIRST_FRAG|LAST_FRAG))<<26) |
1424 (((u_long) frame_status & FIRST_FRAG) << 21) |
1425 BMU_OWN | BMU_CHECK | BMU_EN_IRQ_EOF | len) ;
1426 r->rxd_rbctrl = rbctrl ;
1427
1428 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ;
1429 outpd(ADDR(B0_R1_CSR),CSR_START) ;
1430 smc->hw.fp.rx_q[QUEUE_R1].rx_free-- ;
1431 smc->hw.fp.rx_q[QUEUE_R1].rx_used++ ;
1432 smc->hw.fp.rx_q[QUEUE_R1].rx_curr_put = r->rxd_next ;
1433 NDD_TRACE("RHfE",r,le32_to_cpu(r->rxd_rbadr),0) ;
1434 }
1435
1436 /*
1437 * BEGINN_MANUAL_ENTRY(mac_drv_clear_rx_queue)
1438 *
1439 * void mac_drv_clear_rx_queue(smc)
1440 * struct s_smc *smc ;
1441 *
1442 * function DOWNCALL (hardware module, hwmtm.c)
1443 * mac_drv_clear_rx_queue is called by the OS-specific module
1444 * after it has issued a card_stop.
1445 * In this case, the frames in the receive queue are obsolete and
1446 * should be removed. For removing mac_drv_clear_rx_queue
1447 * calls dma_master for each RxD and mac_drv_clear_rxd for each
1448 * receive buffer.
1449 *
1450 * NOTE: calling sequence card_stop:
1451 * CLI_FBI(), card_stop(),
1452 * mac_drv_clear_tx_queue(), mac_drv_clear_rx_queue(),
1453 *
1454 * NOTE: The caller is responsible that the BMUs are idle
1455 * when this function is called.
1456 *
1457 * END_MANUAL_ENTRY
1458 */
mac_drv_clear_rx_queue(struct s_smc * smc)1459 void mac_drv_clear_rx_queue(struct s_smc *smc)
1460 {
1461 struct s_smt_fp_rxd volatile *r ;
1462 struct s_smt_fp_rxd volatile *next_rxd ;
1463 struct s_smt_rx_queue *queue ;
1464 int frag_count ;
1465 int i ;
1466
1467 if (smc->hw.hw_state != STOPPED) {
1468 SK_BREAK() ;
1469 SMT_PANIC(smc,HWM_E0012,HWM_E0012_MSG) ;
1470 return ;
1471 }
1472
1473 queue = smc->hw.fp.rx[QUEUE_R1] ;
1474 DB_RX(5, "clear_rx_queue");
1475
1476 /*
1477 * dma_complete and mac_drv_clear_rxd for all RxDs / receive buffers
1478 */
1479 r = queue->rx_curr_get ;
1480 while (queue->rx_used) {
1481 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1482 DB_RX(5, "switch OWN bit of RxD 0x%p", r);
1483 r->rxd_rbctrl &= ~cpu_to_le32(BMU_OWN) ;
1484 frag_count = 1 ;
1485 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ;
1486 r = r->rxd_next ;
1487 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1488 while (r != queue->rx_curr_put &&
1489 !(r->rxd_rbctrl & cpu_to_le32(BMU_ST_BUF))) {
1490 DB_RX(5, "Check STF bit in %p", r);
1491 r->rxd_rbctrl &= ~cpu_to_le32(BMU_OWN) ;
1492 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ;
1493 r = r->rxd_next ;
1494 DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1495 frag_count++ ;
1496 }
1497 DB_RX(5, "STF bit found");
1498 next_rxd = r ;
1499
1500 for (r=queue->rx_curr_get,i=frag_count; i ; r=r->rxd_next,i--){
1501 DB_RX(5, "dma_complete for RxD %p", r);
1502 dma_complete(smc,(union s_fp_descr volatile *)r,DMA_WR);
1503 }
1504
1505 DB_RX(5, "mac_drv_clear_rxd: RxD %p frag_count %d",
1506 queue->rx_curr_get, frag_count);
1507 mac_drv_clear_rxd(smc,queue->rx_curr_get,frag_count) ;
1508
1509 queue->rx_curr_get = next_rxd ;
1510 queue->rx_used -= frag_count ;
1511 queue->rx_free += frag_count ;
1512 }
1513 }
1514
1515
1516 /*
1517 -------------------------------------------------------------
1518 SEND FUNCTIONS:
1519 -------------------------------------------------------------
1520 */
1521
1522 /*
1523 * BEGIN_MANUAL_ENTRY(hwm_tx_init)
1524 * int hwm_tx_init(smc,fc,frag_count,frame_len,frame_status)
1525 *
1526 * function DOWN_CALL (hardware module, hwmtm.c)
1527 * hwm_tx_init checks if the frame can be sent through the
1528 * corresponding send queue.
1529 *
1530 * para fc the frame control. To determine through which
1531 * send queue the frame should be transmitted.
1532 * 0x50 - 0x57: asynchronous LLC frame
1533 * 0xD0 - 0xD7: synchronous LLC frame
1534 * 0x41, 0x4F: SMT frame to the network
1535 * 0x42: SMT frame to the network and to the local SMT
1536 * 0x43: SMT frame to the local SMT
1537 * frag_count count of the fragments for this frame
1538 * frame_len length of the frame
1539 * frame_status status of the frame, the send queue bit is already
1540 * specified
1541 *
1542 * return frame_status
1543 *
1544 * END_MANUAL_ENTRY
1545 */
hwm_tx_init(struct s_smc * smc,u_char fc,int frag_count,int frame_len,int frame_status)1546 int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count, int frame_len,
1547 int frame_status)
1548 {
1549 NDD_TRACE("THiB",fc,frag_count,frame_len) ;
1550 smc->os.hwm.tx_p = smc->hw.fp.tx[frame_status & QUEUE_A0] ;
1551 smc->os.hwm.tx_descr = TX_DESCRIPTOR | (((u_long)(frame_len-1)&3)<<27) ;
1552 smc->os.hwm.tx_len = frame_len ;
1553 DB_TX(3, "hwm_tx_init: fc = %x, len = %d", fc, frame_len);
1554 if ((fc & ~(FC_SYNC_BIT|FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1555 frame_status |= LAN_TX ;
1556 }
1557 else {
1558 switch (fc) {
1559 case FC_SMT_INFO :
1560 case FC_SMT_NSA :
1561 frame_status |= LAN_TX ;
1562 break ;
1563 case FC_SMT_LOC :
1564 frame_status |= LOC_TX ;
1565 break ;
1566 case FC_SMT_LAN_LOC :
1567 frame_status |= LAN_TX | LOC_TX ;
1568 break ;
1569 default :
1570 SMT_PANIC(smc,HWM_E0010,HWM_E0010_MSG) ;
1571 }
1572 }
1573 if (!smc->hw.mac_ring_is_up) {
1574 frame_status &= ~LAN_TX ;
1575 frame_status |= RING_DOWN ;
1576 DB_TX(2, "Ring is down: terminate LAN_TX");
1577 }
1578 if (frag_count > smc->os.hwm.tx_p->tx_free) {
1579 #ifndef NDIS_OS2
1580 mac_drv_clear_txd(smc) ;
1581 if (frag_count > smc->os.hwm.tx_p->tx_free) {
1582 DB_TX(2, "Out of TxDs, terminate LAN_TX");
1583 frame_status &= ~LAN_TX ;
1584 frame_status |= OUT_OF_TXD ;
1585 }
1586 #else
1587 DB_TX(2, "Out of TxDs, terminate LAN_TX");
1588 frame_status &= ~LAN_TX ;
1589 frame_status |= OUT_OF_TXD ;
1590 #endif
1591 }
1592 DB_TX(3, "frame_status = %x", frame_status);
1593 NDD_TRACE("THiE",frame_status,smc->os.hwm.tx_p->tx_free,0) ;
1594 return frame_status;
1595 }
1596
1597 /*
1598 * BEGIN_MANUAL_ENTRY(hwm_tx_frag)
1599 * void hwm_tx_frag(smc,virt,phys,len,frame_status)
1600 *
1601 * function DOWNCALL (hardware module, hwmtm.c)
1602 * If the frame should be sent to the LAN, this function calls
1603 * dma_master, fills the current TxD with the virtual and the
1604 * physical address, sets the STF and EOF bits dependent on
1605 * the frame status, and requests the BMU to start the
1606 * transmit.
1607 * If the frame should be sent to the local SMT, an SMT_MBuf
1608 * is allocated if the FIRST_FRAG bit is set in the frame_status.
1609 * The fragment of the frame is copied into the SMT MBuf.
1610 * The function smt_received_pack is called if the LAST_FRAG
1611 * bit is set in the frame_status word.
1612 *
1613 * para virt virtual pointer to the fragment
1614 * len the length of the fragment
1615 * frame_status status of the frame, see design description
1616 *
1617 * return nothing returned, no parameter is modified
1618 *
1619 * NOTE: It is possible to invoke this macro with a fragment length
1620 * of zero.
1621 *
1622 * END_MANUAL_ENTRY
1623 */
hwm_tx_frag(struct s_smc * smc,char far * virt,u_long phys,int len,int frame_status)1624 void hwm_tx_frag(struct s_smc *smc, char far *virt, u_long phys, int len,
1625 int frame_status)
1626 {
1627 struct s_smt_fp_txd volatile *t ;
1628 struct s_smt_tx_queue *queue ;
1629 __le32 tbctrl ;
1630
1631 queue = smc->os.hwm.tx_p ;
1632
1633 NDD_TRACE("THfB",virt,len,frame_status) ;
1634 /* Bug fix: AF / May 31 1999 (#missing)
1635 * snmpinfo problem reported by IBM is caused by invalid
1636 * t-pointer (txd) if LAN_TX is not set but LOC_TX only.
1637 * Set: t = queue->tx_curr_put here !
1638 */
1639 t = queue->tx_curr_put ;
1640
1641 DB_TX(2, "hwm_tx_frag: len = %d, frame_status = %x", len, frame_status);
1642 if (frame_status & LAN_TX) {
1643 /* '*t' is already defined */
1644 DB_TX(3, "LAN_TX: TxD = %p, virt = %p", t, virt);
1645 t->txd_virt = virt ;
1646 t->txd_txdscr = cpu_to_le32(smc->os.hwm.tx_descr) ;
1647 t->txd_tbadr = cpu_to_le32(phys) ;
1648 tbctrl = cpu_to_le32((((__u32)frame_status &
1649 (FIRST_FRAG|LAST_FRAG|EN_IRQ_EOF))<< 26) |
1650 BMU_OWN|BMU_CHECK |len) ;
1651 t->txd_tbctrl = tbctrl ;
1652
1653 #ifndef AIX
1654 DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
1655 outpd(queue->tx_bmu_ctl,CSR_START) ;
1656 #else /* ifndef AIX */
1657 DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
1658 if (frame_status & QUEUE_A0) {
1659 outpd(ADDR(B0_XA_CSR),CSR_START) ;
1660 }
1661 else {
1662 outpd(ADDR(B0_XS_CSR),CSR_START) ;
1663 }
1664 #endif
1665 queue->tx_free-- ;
1666 queue->tx_used++ ;
1667 queue->tx_curr_put = t->txd_next ;
1668 if (frame_status & LAST_FRAG) {
1669 smc->mib.m[MAC0].fddiMACTransmit_Ct++ ;
1670 }
1671 }
1672 if (frame_status & LOC_TX) {
1673 DB_TX(3, "LOC_TX:");
1674 if (frame_status & FIRST_FRAG) {
1675 if(!(smc->os.hwm.tx_mb = smt_get_mbuf(smc))) {
1676 smc->hw.fp.err_stats.err_no_buf++ ;
1677 DB_TX(4, "No SMbuf; transmit terminated");
1678 }
1679 else {
1680 smc->os.hwm.tx_data =
1681 smtod(smc->os.hwm.tx_mb,char *) - 1 ;
1682 #ifdef USE_OS_CPY
1683 #ifdef PASS_1ST_TXD_2_TX_COMP
1684 hwm_cpy_txd2mb(t,smc->os.hwm.tx_data,
1685 smc->os.hwm.tx_len) ;
1686 #endif
1687 #endif
1688 }
1689 }
1690 if (smc->os.hwm.tx_mb) {
1691 #ifndef USE_OS_CPY
1692 DB_TX(3, "copy fragment into MBuf");
1693 memcpy(smc->os.hwm.tx_data,virt,len) ;
1694 smc->os.hwm.tx_data += len ;
1695 #endif
1696 if (frame_status & LAST_FRAG) {
1697 #ifdef USE_OS_CPY
1698 #ifndef PASS_1ST_TXD_2_TX_COMP
1699 /*
1700 * hwm_cpy_txd2mb(txd,data,len) copies 'len'
1701 * bytes from the virtual pointer in 'rxd'
1702 * to 'data'. The virtual pointer of the
1703 * os-specific tx-buffer should be written
1704 * in the LAST txd.
1705 */
1706 hwm_cpy_txd2mb(t,smc->os.hwm.tx_data,
1707 smc->os.hwm.tx_len) ;
1708 #endif /* nPASS_1ST_TXD_2_TX_COMP */
1709 #endif /* USE_OS_CPY */
1710 smc->os.hwm.tx_data =
1711 smtod(smc->os.hwm.tx_mb,char *) - 1 ;
1712 *(char *)smc->os.hwm.tx_mb->sm_data =
1713 *smc->os.hwm.tx_data ;
1714 smc->os.hwm.tx_data++ ;
1715 smc->os.hwm.tx_mb->sm_len =
1716 smc->os.hwm.tx_len - 1 ;
1717 DB_TX(3, "pass LLC frame to SMT");
1718 smt_received_pack(smc,smc->os.hwm.tx_mb,
1719 RD_FS_LOCAL) ;
1720 }
1721 }
1722 }
1723 NDD_TRACE("THfE",t,queue->tx_free,0) ;
1724 }
1725
1726
1727 /*
1728 * queues a receive for later send
1729 */
queue_llc_rx(struct s_smc * smc,SMbuf * mb)1730 static void queue_llc_rx(struct s_smc *smc, SMbuf *mb)
1731 {
1732 DB_GEN(4, "queue_llc_rx: mb = %p", mb);
1733 smc->os.hwm.queued_rx_frames++ ;
1734 mb->sm_next = (SMbuf *)NULL ;
1735 if (smc->os.hwm.llc_rx_pipe == NULL) {
1736 smc->os.hwm.llc_rx_pipe = mb ;
1737 }
1738 else {
1739 smc->os.hwm.llc_rx_tail->sm_next = mb ;
1740 }
1741 smc->os.hwm.llc_rx_tail = mb ;
1742
1743 /*
1744 * force an timer IRQ to receive the data
1745 */
1746 if (!smc->os.hwm.isr_flag) {
1747 smt_force_irq(smc) ;
1748 }
1749 }
1750
1751 /*
1752 * get a SMbuf from the llc_rx_queue
1753 */
get_llc_rx(struct s_smc * smc)1754 static SMbuf *get_llc_rx(struct s_smc *smc)
1755 {
1756 SMbuf *mb ;
1757
1758 if ((mb = smc->os.hwm.llc_rx_pipe)) {
1759 smc->os.hwm.queued_rx_frames-- ;
1760 smc->os.hwm.llc_rx_pipe = mb->sm_next ;
1761 }
1762 DB_GEN(4, "get_llc_rx: mb = 0x%p", mb);
1763 return mb;
1764 }
1765
1766 /*
1767 * queues a transmit SMT MBuf during the time were the MBuf is
1768 * queued the TxD ring
1769 */
queue_txd_mb(struct s_smc * smc,SMbuf * mb)1770 static void queue_txd_mb(struct s_smc *smc, SMbuf *mb)
1771 {
1772 DB_GEN(4, "_rx: queue_txd_mb = %p", mb);
1773 smc->os.hwm.queued_txd_mb++ ;
1774 mb->sm_next = (SMbuf *)NULL ;
1775 if (smc->os.hwm.txd_tx_pipe == NULL) {
1776 smc->os.hwm.txd_tx_pipe = mb ;
1777 }
1778 else {
1779 smc->os.hwm.txd_tx_tail->sm_next = mb ;
1780 }
1781 smc->os.hwm.txd_tx_tail = mb ;
1782 }
1783
1784 /*
1785 * get a SMbuf from the txd_tx_queue
1786 */
get_txd_mb(struct s_smc * smc)1787 static SMbuf *get_txd_mb(struct s_smc *smc)
1788 {
1789 SMbuf *mb ;
1790
1791 if ((mb = smc->os.hwm.txd_tx_pipe)) {
1792 smc->os.hwm.queued_txd_mb-- ;
1793 smc->os.hwm.txd_tx_pipe = mb->sm_next ;
1794 }
1795 DB_GEN(4, "get_txd_mb: mb = 0x%p", mb);
1796 return mb;
1797 }
1798
1799 /*
1800 * SMT Send function
1801 */
smt_send_mbuf(struct s_smc * smc,SMbuf * mb,int fc)1802 void smt_send_mbuf(struct s_smc *smc, SMbuf *mb, int fc)
1803 {
1804 char far *data ;
1805 int len ;
1806 int n ;
1807 int i ;
1808 int frag_count ;
1809 int frame_status ;
1810 SK_LOC_DECL(char far,*virt[3]) ;
1811 int frag_len[3] ;
1812 struct s_smt_tx_queue *queue ;
1813 struct s_smt_fp_txd volatile *t ;
1814 u_long phys ;
1815 __le32 tbctrl;
1816
1817 NDD_TRACE("THSB",mb,fc,0) ;
1818 DB_TX(4, "smt_send_mbuf: mb = 0x%p, fc = 0x%x", mb, fc);
1819
1820 mb->sm_off-- ; /* set to fc */
1821 mb->sm_len++ ; /* + fc */
1822 data = smtod(mb,char *) ;
1823 *data = fc ;
1824 if (fc == FC_SMT_LOC)
1825 *data = FC_SMT_INFO ;
1826
1827 /*
1828 * determine the frag count and the virt addresses of the frags
1829 */
1830 frag_count = 0 ;
1831 len = mb->sm_len ;
1832 while (len) {
1833 n = SMT_PAGESIZE - ((long)data & (SMT_PAGESIZE-1)) ;
1834 if (n >= len) {
1835 n = len ;
1836 }
1837 DB_TX(5, "frag: virt/len = 0x%p/%d", data, n);
1838 virt[frag_count] = data ;
1839 frag_len[frag_count] = n ;
1840 frag_count++ ;
1841 len -= n ;
1842 data += n ;
1843 }
1844
1845 /*
1846 * determine the frame status
1847 */
1848 queue = smc->hw.fp.tx[QUEUE_A0] ;
1849 if (fc == FC_BEACON || fc == FC_SMT_LOC) {
1850 frame_status = LOC_TX ;
1851 }
1852 else {
1853 frame_status = LAN_TX ;
1854 if ((smc->os.hwm.pass_NSA &&(fc == FC_SMT_NSA)) ||
1855 (smc->os.hwm.pass_SMT &&(fc == FC_SMT_INFO)))
1856 frame_status |= LOC_TX ;
1857 }
1858
1859 if (!smc->hw.mac_ring_is_up || frag_count > queue->tx_free) {
1860 frame_status &= ~LAN_TX;
1861 if (frame_status) {
1862 DB_TX(2, "Ring is down: terminate LAN_TX");
1863 }
1864 else {
1865 DB_TX(2, "Ring is down: terminate transmission");
1866 smt_free_mbuf(smc,mb) ;
1867 return ;
1868 }
1869 }
1870 DB_TX(5, "frame_status = 0x%x", frame_status);
1871
1872 if ((frame_status & LAN_TX) && (frame_status & LOC_TX)) {
1873 mb->sm_use_count = 2 ;
1874 }
1875
1876 if (frame_status & LAN_TX) {
1877 t = queue->tx_curr_put ;
1878 frame_status |= FIRST_FRAG ;
1879 for (i = 0; i < frag_count; i++) {
1880 DB_TX(5, "init TxD = 0x%p", t);
1881 if (i == frag_count-1) {
1882 frame_status |= LAST_FRAG ;
1883 t->txd_txdscr = cpu_to_le32(TX_DESCRIPTOR |
1884 (((__u32)(mb->sm_len-1)&3) << 27)) ;
1885 }
1886 t->txd_virt = virt[i] ;
1887 phys = dma_master(smc, (void far *)virt[i],
1888 frag_len[i], DMA_RD|SMT_BUF) ;
1889 t->txd_tbadr = cpu_to_le32(phys) ;
1890 tbctrl = cpu_to_le32((((__u32)frame_status &
1891 (FIRST_FRAG|LAST_FRAG)) << 26) |
1892 BMU_OWN | BMU_CHECK | BMU_SMT_TX |frag_len[i]) ;
1893 t->txd_tbctrl = tbctrl ;
1894 #ifndef AIX
1895 DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
1896 outpd(queue->tx_bmu_ctl,CSR_START) ;
1897 #else
1898 DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
1899 outpd(ADDR(B0_XA_CSR),CSR_START) ;
1900 #endif
1901 frame_status &= ~FIRST_FRAG ;
1902 queue->tx_curr_put = t = t->txd_next ;
1903 queue->tx_free-- ;
1904 queue->tx_used++ ;
1905 }
1906 smc->mib.m[MAC0].fddiMACTransmit_Ct++ ;
1907 queue_txd_mb(smc,mb) ;
1908 }
1909
1910 if (frame_status & LOC_TX) {
1911 DB_TX(5, "pass Mbuf to LLC queue");
1912 queue_llc_rx(smc,mb) ;
1913 }
1914
1915 /*
1916 * We need to unqueue the free SMT_MBUFs here, because it may
1917 * be that the SMT want's to send more than 1 frame for one down call
1918 */
1919 mac_drv_clear_txd(smc) ;
1920 NDD_TRACE("THSE",t,queue->tx_free,frag_count) ;
1921 }
1922
1923 /* BEGIN_MANUAL_ENTRY(mac_drv_clear_txd)
1924 * void mac_drv_clear_txd(smc)
1925 *
1926 * function DOWNCALL (hardware module, hwmtm.c)
1927 * mac_drv_clear_txd searches in both send queues for TxD's
1928 * which were finished by the adapter. It calls dma_complete
1929 * for each TxD. If the last fragment of an LLC frame is
1930 * reached, it calls mac_drv_tx_complete to release the
1931 * send buffer.
1932 *
1933 * return nothing
1934 *
1935 * END_MANUAL_ENTRY
1936 */
mac_drv_clear_txd(struct s_smc * smc)1937 static void mac_drv_clear_txd(struct s_smc *smc)
1938 {
1939 struct s_smt_tx_queue *queue ;
1940 struct s_smt_fp_txd volatile *t1 ;
1941 struct s_smt_fp_txd volatile *t2 = NULL ;
1942 SMbuf *mb ;
1943 u_long tbctrl ;
1944 int i ;
1945 int frag_count ;
1946 int n ;
1947
1948 NDD_TRACE("THcB",0,0,0) ;
1949 for (i = QUEUE_S; i <= QUEUE_A0; i++) {
1950 queue = smc->hw.fp.tx[i] ;
1951 t1 = queue->tx_curr_get ;
1952 DB_TX(5, "clear_txd: QUEUE = %d (0=sync/1=async)", i);
1953
1954 for ( ; ; ) {
1955 frag_count = 0 ;
1956
1957 do {
1958 DRV_BUF_FLUSH(t1,DDI_DMA_SYNC_FORCPU) ;
1959 DB_TX(5, "check OWN/EOF bit of TxD 0x%p", t1);
1960 tbctrl = le32_to_cpu(CR_READ(t1->txd_tbctrl));
1961
1962 if (tbctrl & BMU_OWN || !queue->tx_used){
1963 DB_TX(4, "End of TxDs queue %d", i);
1964 goto free_next_queue ; /* next queue */
1965 }
1966 t1 = t1->txd_next ;
1967 frag_count++ ;
1968 } while (!(tbctrl & BMU_EOF)) ;
1969
1970 t1 = queue->tx_curr_get ;
1971 for (n = frag_count; n; n--) {
1972 tbctrl = le32_to_cpu(t1->txd_tbctrl) ;
1973 dma_complete(smc,
1974 (union s_fp_descr volatile *) t1,
1975 (int) (DMA_RD |
1976 ((tbctrl & BMU_SMT_TX) >> 18))) ;
1977 t2 = t1 ;
1978 t1 = t1->txd_next ;
1979 }
1980
1981 if (tbctrl & BMU_SMT_TX) {
1982 mb = get_txd_mb(smc) ;
1983 smt_free_mbuf(smc,mb) ;
1984 }
1985 else {
1986 #ifndef PASS_1ST_TXD_2_TX_COMP
1987 DB_TX(4, "mac_drv_tx_comp for TxD 0x%p", t2);
1988 mac_drv_tx_complete(smc,t2) ;
1989 #else
1990 DB_TX(4, "mac_drv_tx_comp for TxD 0x%x",
1991 queue->tx_curr_get);
1992 mac_drv_tx_complete(smc,queue->tx_curr_get) ;
1993 #endif
1994 }
1995 queue->tx_curr_get = t1 ;
1996 queue->tx_free += frag_count ;
1997 queue->tx_used -= frag_count ;
1998 }
1999 free_next_queue: ;
2000 }
2001 NDD_TRACE("THcE",0,0,0) ;
2002 }
2003
2004 /*
2005 * BEGINN_MANUAL_ENTRY(mac_drv_clear_tx_queue)
2006 *
2007 * void mac_drv_clear_tx_queue(smc)
2008 * struct s_smc *smc ;
2009 *
2010 * function DOWNCALL (hardware module, hwmtm.c)
2011 * mac_drv_clear_tx_queue is called from the SMT when
2012 * the RMT state machine has entered the ISOLATE state.
2013 * This function is also called by the os-specific module
2014 * after it has called the function card_stop().
2015 * In this case, the frames in the send queues are obsolete and
2016 * should be removed.
2017 *
2018 * note calling sequence:
2019 * CLI_FBI(), card_stop(),
2020 * mac_drv_clear_tx_queue(), mac_drv_clear_rx_queue(),
2021 *
2022 * NOTE: The caller is responsible that the BMUs are idle
2023 * when this function is called.
2024 *
2025 * END_MANUAL_ENTRY
2026 */
mac_drv_clear_tx_queue(struct s_smc * smc)2027 void mac_drv_clear_tx_queue(struct s_smc *smc)
2028 {
2029 struct s_smt_fp_txd volatile *t ;
2030 struct s_smt_tx_queue *queue ;
2031 int tx_used ;
2032 int i ;
2033
2034 if (smc->hw.hw_state != STOPPED) {
2035 SK_BREAK() ;
2036 SMT_PANIC(smc,HWM_E0011,HWM_E0011_MSG) ;
2037 return ;
2038 }
2039
2040 for (i = QUEUE_S; i <= QUEUE_A0; i++) {
2041 queue = smc->hw.fp.tx[i] ;
2042 DB_TX(5, "clear_tx_queue: QUEUE = %d (0=sync/1=async)", i);
2043
2044 /*
2045 * switch the OWN bit of all pending frames to the host
2046 */
2047 t = queue->tx_curr_get ;
2048 tx_used = queue->tx_used ;
2049 while (tx_used) {
2050 DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORCPU) ;
2051 DB_TX(5, "switch OWN bit of TxD 0x%p", t);
2052 t->txd_tbctrl &= ~cpu_to_le32(BMU_OWN) ;
2053 DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
2054 t = t->txd_next ;
2055 tx_used-- ;
2056 }
2057 }
2058
2059 /*
2060 * release all TxD's for both send queues
2061 */
2062 mac_drv_clear_txd(smc) ;
2063
2064 for (i = QUEUE_S; i <= QUEUE_A0; i++) {
2065 queue = smc->hw.fp.tx[i] ;
2066 t = queue->tx_curr_get ;
2067
2068 /*
2069 * write the phys pointer of the NEXT descriptor into the
2070 * BMU's current address descriptor pointer and set
2071 * tx_curr_get and tx_curr_put to this position
2072 */
2073 if (i == QUEUE_S) {
2074 outpd(ADDR(B5_XS_DA),le32_to_cpu(t->txd_ntdadr)) ;
2075 }
2076 else {
2077 outpd(ADDR(B5_XA_DA),le32_to_cpu(t->txd_ntdadr)) ;
2078 }
2079
2080 queue->tx_curr_put = queue->tx_curr_get->txd_next ;
2081 queue->tx_curr_get = queue->tx_curr_put ;
2082 }
2083 }
2084
2085
2086 /*
2087 -------------------------------------------------------------
2088 TEST FUNCTIONS:
2089 -------------------------------------------------------------
2090 */
2091
2092 #ifdef DEBUG
2093 /*
2094 * BEGIN_MANUAL_ENTRY(mac_drv_debug_lev)
2095 * void mac_drv_debug_lev(smc,flag,lev)
2096 *
2097 * function DOWNCALL (drvsr.c)
2098 * To get a special debug info the user can assign a debug level
2099 * to any debug flag.
2100 *
2101 * para flag debug flag, possible values are:
2102 * = 0: reset all debug flags (the defined level is
2103 * ignored)
2104 * = 1: debug.d_smtf
2105 * = 2: debug.d_smt
2106 * = 3: debug.d_ecm
2107 * = 4: debug.d_rmt
2108 * = 5: debug.d_cfm
2109 * = 6: debug.d_pcm
2110 *
2111 * = 10: debug.d_os.hwm_rx (hardware module receive path)
2112 * = 11: debug.d_os.hwm_tx(hardware module transmit path)
2113 * = 12: debug.d_os.hwm_gen(hardware module general flag)
2114 *
2115 * lev debug level
2116 *
2117 * END_MANUAL_ENTRY
2118 */
mac_drv_debug_lev(struct s_smc * smc,int flag,int lev)2119 void mac_drv_debug_lev(struct s_smc *smc, int flag, int lev)
2120 {
2121 switch(flag) {
2122 case (int)NULL:
2123 DB_P.d_smtf = DB_P.d_smt = DB_P.d_ecm = DB_P.d_rmt = 0 ;
2124 DB_P.d_cfm = 0 ;
2125 DB_P.d_os.hwm_rx = DB_P.d_os.hwm_tx = DB_P.d_os.hwm_gen = 0 ;
2126 #ifdef SBA
2127 DB_P.d_sba = 0 ;
2128 #endif
2129 #ifdef ESS
2130 DB_P.d_ess = 0 ;
2131 #endif
2132 break ;
2133 case DEBUG_SMTF:
2134 DB_P.d_smtf = lev ;
2135 break ;
2136 case DEBUG_SMT:
2137 DB_P.d_smt = lev ;
2138 break ;
2139 case DEBUG_ECM:
2140 DB_P.d_ecm = lev ;
2141 break ;
2142 case DEBUG_RMT:
2143 DB_P.d_rmt = lev ;
2144 break ;
2145 case DEBUG_CFM:
2146 DB_P.d_cfm = lev ;
2147 break ;
2148 case DEBUG_PCM:
2149 DB_P.d_pcm = lev ;
2150 break ;
2151 case DEBUG_SBA:
2152 #ifdef SBA
2153 DB_P.d_sba = lev ;
2154 #endif
2155 break ;
2156 case DEBUG_ESS:
2157 #ifdef ESS
2158 DB_P.d_ess = lev ;
2159 #endif
2160 break ;
2161 case DB_HWM_RX:
2162 DB_P.d_os.hwm_rx = lev ;
2163 break ;
2164 case DB_HWM_TX:
2165 DB_P.d_os.hwm_tx = lev ;
2166 break ;
2167 case DB_HWM_GEN:
2168 DB_P.d_os.hwm_gen = lev ;
2169 break ;
2170 default:
2171 break ;
2172 }
2173 }
2174 #endif
2175