• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <net/dst.h>
66 #include <net/checksum.h>
67 #include <net/tcp_states.h>
68 #include <linux/net_tstamp.h>
69 #include <net/smc.h>
70 #include <net/l3mdev.h>
71 
72 /*
73  * This structure really needs to be cleaned up.
74  * Most of it is for TCP, and not used by any of
75  * the other protocols.
76  */
77 
78 /* Define this to get the SOCK_DBG debugging facility. */
79 #define SOCK_DEBUGGING
80 #ifdef SOCK_DEBUGGING
81 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
82 					printk(KERN_DEBUG msg); } while (0)
83 #else
84 /* Validate arguments and do nothing */
85 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)86 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
87 {
88 }
89 #endif
90 
91 /* This is the per-socket lock.  The spinlock provides a synchronization
92  * between user contexts and software interrupt processing, whereas the
93  * mini-semaphore synchronizes multiple users amongst themselves.
94  */
95 typedef struct {
96 	spinlock_t		slock;
97 	int			owned;
98 	wait_queue_head_t	wq;
99 	/*
100 	 * We express the mutex-alike socket_lock semantics
101 	 * to the lock validator by explicitly managing
102 	 * the slock as a lock variant (in addition to
103 	 * the slock itself):
104 	 */
105 #ifdef CONFIG_DEBUG_LOCK_ALLOC
106 	struct lockdep_map dep_map;
107 #endif
108 } socket_lock_t;
109 
110 struct sock;
111 struct proto;
112 struct net;
113 
114 typedef __u32 __bitwise __portpair;
115 typedef __u64 __bitwise __addrpair;
116 
117 /**
118  *	struct sock_common - minimal network layer representation of sockets
119  *	@skc_daddr: Foreign IPv4 addr
120  *	@skc_rcv_saddr: Bound local IPv4 addr
121  *	@skc_hash: hash value used with various protocol lookup tables
122  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
123  *	@skc_dport: placeholder for inet_dport/tw_dport
124  *	@skc_num: placeholder for inet_num/tw_num
125  *	@skc_family: network address family
126  *	@skc_state: Connection state
127  *	@skc_reuse: %SO_REUSEADDR setting
128  *	@skc_reuseport: %SO_REUSEPORT setting
129  *	@skc_bound_dev_if: bound device index if != 0
130  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
131  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
132  *	@skc_prot: protocol handlers inside a network family
133  *	@skc_net: reference to the network namespace of this socket
134  *	@skc_node: main hash linkage for various protocol lookup tables
135  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
136  *	@skc_tx_queue_mapping: tx queue number for this connection
137  *	@skc_rx_queue_mapping: rx queue number for this connection
138  *	@skc_flags: place holder for sk_flags
139  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
140  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
141  *	@skc_incoming_cpu: record/match cpu processing incoming packets
142  *	@skc_refcnt: reference count
143  *
144  *	This is the minimal network layer representation of sockets, the header
145  *	for struct sock and struct inet_timewait_sock.
146  */
147 struct sock_common {
148 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
149 	 * address on 64bit arches : cf INET_MATCH()
150 	 */
151 	union {
152 		__addrpair	skc_addrpair;
153 		struct {
154 			__be32	skc_daddr;
155 			__be32	skc_rcv_saddr;
156 		};
157 	};
158 	union  {
159 		unsigned int	skc_hash;
160 		__u16		skc_u16hashes[2];
161 	};
162 	/* skc_dport && skc_num must be grouped as well */
163 	union {
164 		__portpair	skc_portpair;
165 		struct {
166 			__be16	skc_dport;
167 			__u16	skc_num;
168 		};
169 	};
170 
171 	unsigned short		skc_family;
172 	volatile unsigned char	skc_state;
173 	unsigned char		skc_reuse:4;
174 	unsigned char		skc_reuseport:1;
175 	unsigned char		skc_ipv6only:1;
176 	unsigned char		skc_net_refcnt:1;
177 	int			skc_bound_dev_if;
178 	union {
179 		struct hlist_node	skc_bind_node;
180 		struct hlist_node	skc_portaddr_node;
181 	};
182 	struct proto		*skc_prot;
183 	possible_net_t		skc_net;
184 
185 #if IS_ENABLED(CONFIG_IPV6)
186 	struct in6_addr		skc_v6_daddr;
187 	struct in6_addr		skc_v6_rcv_saddr;
188 #endif
189 
190 	atomic64_t		skc_cookie;
191 
192 	/* following fields are padding to force
193 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194 	 * assuming IPV6 is enabled. We use this padding differently
195 	 * for different kind of 'sockets'
196 	 */
197 	union {
198 		unsigned long	skc_flags;
199 		struct sock	*skc_listener; /* request_sock */
200 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
201 	};
202 	/*
203 	 * fields between dontcopy_begin/dontcopy_end
204 	 * are not copied in sock_copy()
205 	 */
206 	/* private: */
207 	int			skc_dontcopy_begin[0];
208 	/* public: */
209 	union {
210 		struct hlist_node	skc_node;
211 		struct hlist_nulls_node skc_nulls_node;
212 	};
213 	unsigned short		skc_tx_queue_mapping;
214 #ifdef CONFIG_XPS
215 	unsigned short		skc_rx_queue_mapping;
216 #endif
217 	union {
218 		int		skc_incoming_cpu;
219 		u32		skc_rcv_wnd;
220 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
221 	};
222 
223 	refcount_t		skc_refcnt;
224 	/* private: */
225 	int                     skc_dontcopy_end[0];
226 	union {
227 		u32		skc_rxhash;
228 		u32		skc_window_clamp;
229 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 	};
231 	/* public: */
232 };
233 
234 struct bpf_sk_storage;
235 
236 /**
237   *	struct sock - network layer representation of sockets
238   *	@__sk_common: shared layout with inet_timewait_sock
239   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
240   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
241   *	@sk_lock:	synchronizer
242   *	@sk_kern_sock: True if sock is using kernel lock classes
243   *	@sk_rcvbuf: size of receive buffer in bytes
244   *	@sk_wq: sock wait queue and async head
245   *	@sk_rx_dst: receive input route used by early demux
246   *	@sk_dst_cache: destination cache
247   *	@sk_dst_pending_confirm: need to confirm neighbour
248   *	@sk_policy: flow policy
249   *	@sk_receive_queue: incoming packets
250   *	@sk_wmem_alloc: transmit queue bytes committed
251   *	@sk_tsq_flags: TCP Small Queues flags
252   *	@sk_write_queue: Packet sending queue
253   *	@sk_omem_alloc: "o" is "option" or "other"
254   *	@sk_wmem_queued: persistent queue size
255   *	@sk_forward_alloc: space allocated forward
256   *	@sk_napi_id: id of the last napi context to receive data for sk
257   *	@sk_ll_usec: usecs to busypoll when there is no data
258   *	@sk_allocation: allocation mode
259   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
260   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
261   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
262   *	@sk_sndbuf: size of send buffer in bytes
263   *	@__sk_flags_offset: empty field used to determine location of bitfield
264   *	@sk_padding: unused element for alignment
265   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
266   *	@sk_no_check_rx: allow zero checksum in RX packets
267   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
268   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
269   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
270   *	@sk_gso_max_size: Maximum GSO segment size to build
271   *	@sk_gso_max_segs: Maximum number of GSO segments
272   *	@sk_pacing_shift: scaling factor for TCP Small Queues
273   *	@sk_lingertime: %SO_LINGER l_linger setting
274   *	@sk_backlog: always used with the per-socket spinlock held
275   *	@sk_callback_lock: used with the callbacks in the end of this struct
276   *	@sk_error_queue: rarely used
277   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
278   *			  IPV6_ADDRFORM for instance)
279   *	@sk_err: last error
280   *	@sk_err_soft: errors that don't cause failure but are the cause of a
281   *		      persistent failure not just 'timed out'
282   *	@sk_drops: raw/udp drops counter
283   *	@sk_ack_backlog: current listen backlog
284   *	@sk_max_ack_backlog: listen backlog set in listen()
285   *	@sk_uid: user id of owner
286   *	@sk_priority: %SO_PRIORITY setting
287   *	@sk_type: socket type (%SOCK_STREAM, etc)
288   *	@sk_protocol: which protocol this socket belongs in this network family
289   *	@sk_peer_pid: &struct pid for this socket's peer
290   *	@sk_peer_cred: %SO_PEERCRED setting
291   *	@sk_rcvlowat: %SO_RCVLOWAT setting
292   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
293   *	@sk_sndtimeo: %SO_SNDTIMEO setting
294   *	@sk_txhash: computed flow hash for use on transmit
295   *	@sk_filter: socket filtering instructions
296   *	@sk_timer: sock cleanup timer
297   *	@sk_stamp: time stamp of last packet received
298   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
299   *	@sk_tsflags: SO_TIMESTAMPING socket options
300   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
301   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
302   *	@sk_socket: Identd and reporting IO signals
303   *	@sk_user_data: RPC layer private data
304   *	@sk_frag: cached page frag
305   *	@sk_peek_off: current peek_offset value
306   *	@sk_send_head: front of stuff to transmit
307   *	@sk_security: used by security modules
308   *	@sk_mark: generic packet mark
309   *	@sk_cgrp_data: cgroup data for this cgroup
310   *	@sk_memcg: this socket's memory cgroup association
311   *	@sk_write_pending: a write to stream socket waits to start
312   *	@sk_state_change: callback to indicate change in the state of the sock
313   *	@sk_data_ready: callback to indicate there is data to be processed
314   *	@sk_write_space: callback to indicate there is bf sending space available
315   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
316   *	@sk_backlog_rcv: callback to process the backlog
317   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
318   *	@sk_reuseport_cb: reuseport group container
319   *	@sk_rcu: used during RCU grace period
320   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
321   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
322   *	@sk_txtime_unused: unused txtime flags
323   */
324 struct sock {
325 	/*
326 	 * Now struct inet_timewait_sock also uses sock_common, so please just
327 	 * don't add nothing before this first member (__sk_common) --acme
328 	 */
329 	struct sock_common	__sk_common;
330 #define sk_node			__sk_common.skc_node
331 #define sk_nulls_node		__sk_common.skc_nulls_node
332 #define sk_refcnt		__sk_common.skc_refcnt
333 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
334 #ifdef CONFIG_XPS
335 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
336 #endif
337 
338 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
339 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
340 #define sk_hash			__sk_common.skc_hash
341 #define sk_portpair		__sk_common.skc_portpair
342 #define sk_num			__sk_common.skc_num
343 #define sk_dport		__sk_common.skc_dport
344 #define sk_addrpair		__sk_common.skc_addrpair
345 #define sk_daddr		__sk_common.skc_daddr
346 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
347 #define sk_family		__sk_common.skc_family
348 #define sk_state		__sk_common.skc_state
349 #define sk_reuse		__sk_common.skc_reuse
350 #define sk_reuseport		__sk_common.skc_reuseport
351 #define sk_ipv6only		__sk_common.skc_ipv6only
352 #define sk_net_refcnt		__sk_common.skc_net_refcnt
353 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
354 #define sk_bind_node		__sk_common.skc_bind_node
355 #define sk_prot			__sk_common.skc_prot
356 #define sk_net			__sk_common.skc_net
357 #define sk_v6_daddr		__sk_common.skc_v6_daddr
358 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
359 #define sk_cookie		__sk_common.skc_cookie
360 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
361 #define sk_flags		__sk_common.skc_flags
362 #define sk_rxhash		__sk_common.skc_rxhash
363 
364 	socket_lock_t		sk_lock;
365 	atomic_t		sk_drops;
366 	int			sk_rcvlowat;
367 	struct sk_buff_head	sk_error_queue;
368 	struct sk_buff		*sk_rx_skb_cache;
369 	struct sk_buff_head	sk_receive_queue;
370 	/*
371 	 * The backlog queue is special, it is always used with
372 	 * the per-socket spinlock held and requires low latency
373 	 * access. Therefore we special case it's implementation.
374 	 * Note : rmem_alloc is in this structure to fill a hole
375 	 * on 64bit arches, not because its logically part of
376 	 * backlog.
377 	 */
378 	struct {
379 		atomic_t	rmem_alloc;
380 		int		len;
381 		struct sk_buff	*head;
382 		struct sk_buff	*tail;
383 	} sk_backlog;
384 #define sk_rmem_alloc sk_backlog.rmem_alloc
385 
386 	int			sk_forward_alloc;
387 #ifdef CONFIG_NET_RX_BUSY_POLL
388 	unsigned int		sk_ll_usec;
389 	/* ===== mostly read cache line ===== */
390 	unsigned int		sk_napi_id;
391 #endif
392 	int			sk_rcvbuf;
393 
394 	struct sk_filter __rcu	*sk_filter;
395 	union {
396 		struct socket_wq __rcu	*sk_wq;
397 		struct socket_wq	*sk_wq_raw;
398 	};
399 #ifdef CONFIG_XFRM
400 	struct xfrm_policy __rcu *sk_policy[2];
401 #endif
402 	struct dst_entry	*sk_rx_dst;
403 	struct dst_entry __rcu	*sk_dst_cache;
404 	atomic_t		sk_omem_alloc;
405 	int			sk_sndbuf;
406 
407 	/* ===== cache line for TX ===== */
408 	int			sk_wmem_queued;
409 	refcount_t		sk_wmem_alloc;
410 	unsigned long		sk_tsq_flags;
411 	union {
412 		struct sk_buff	*sk_send_head;
413 		struct rb_root	tcp_rtx_queue;
414 	};
415 	struct sk_buff		*sk_tx_skb_cache;
416 	struct sk_buff_head	sk_write_queue;
417 	__s32			sk_peek_off;
418 	int			sk_write_pending;
419 	__u32			sk_dst_pending_confirm;
420 	u32			sk_pacing_status; /* see enum sk_pacing */
421 	long			sk_sndtimeo;
422 	struct timer_list	sk_timer;
423 	__u32			sk_priority;
424 	__u32			sk_mark;
425 	unsigned long		sk_pacing_rate; /* bytes per second */
426 	unsigned long		sk_max_pacing_rate;
427 	struct page_frag	sk_frag;
428 	netdev_features_t	sk_route_caps;
429 	netdev_features_t	sk_route_nocaps;
430 	netdev_features_t	sk_route_forced_caps;
431 	int			sk_gso_type;
432 	unsigned int		sk_gso_max_size;
433 	gfp_t			sk_allocation;
434 	__u32			sk_txhash;
435 
436 	/*
437 	 * Because of non atomicity rules, all
438 	 * changes are protected by socket lock.
439 	 */
440 	unsigned int		__sk_flags_offset[0];
441 #ifdef __BIG_ENDIAN_BITFIELD
442 #define SK_FL_PROTO_SHIFT  16
443 #define SK_FL_PROTO_MASK   0x00ff0000
444 
445 #define SK_FL_TYPE_SHIFT   0
446 #define SK_FL_TYPE_MASK    0x0000ffff
447 #else
448 #define SK_FL_PROTO_SHIFT  8
449 #define SK_FL_PROTO_MASK   0x0000ff00
450 
451 #define SK_FL_TYPE_SHIFT   16
452 #define SK_FL_TYPE_MASK    0xffff0000
453 #endif
454 
455 	unsigned int		sk_padding : 1,
456 				sk_kern_sock : 1,
457 				sk_no_check_tx : 1,
458 				sk_no_check_rx : 1,
459 				sk_userlocks : 4,
460 				sk_protocol  : 8,
461 				sk_type      : 16;
462 #define SK_PROTOCOL_MAX U8_MAX
463 	u16			sk_gso_max_segs;
464 	u8			sk_pacing_shift;
465 	unsigned long	        sk_lingertime;
466 	struct proto		*sk_prot_creator;
467 	rwlock_t		sk_callback_lock;
468 	int			sk_err,
469 				sk_err_soft;
470 	u32			sk_ack_backlog;
471 	u32			sk_max_ack_backlog;
472 	kuid_t			sk_uid;
473 	struct pid		*sk_peer_pid;
474 	const struct cred	*sk_peer_cred;
475 	long			sk_rcvtimeo;
476 	ktime_t			sk_stamp;
477 #if BITS_PER_LONG==32
478 	seqlock_t		sk_stamp_seq;
479 #endif
480 	u16			sk_tsflags;
481 	u8			sk_shutdown;
482 	u32			sk_tskey;
483 	atomic_t		sk_zckey;
484 
485 	u8			sk_clockid;
486 	u8			sk_txtime_deadline_mode : 1,
487 				sk_txtime_report_errors : 1,
488 				sk_txtime_unused : 6;
489 
490 	struct socket		*sk_socket;
491 	void			*sk_user_data;
492 #ifdef CONFIG_SECURITY
493 	void			*sk_security;
494 #endif
495 	struct sock_cgroup_data	sk_cgrp_data;
496 	struct mem_cgroup	*sk_memcg;
497 	void			(*sk_state_change)(struct sock *sk);
498 	void			(*sk_data_ready)(struct sock *sk);
499 	void			(*sk_write_space)(struct sock *sk);
500 	void			(*sk_error_report)(struct sock *sk);
501 	int			(*sk_backlog_rcv)(struct sock *sk,
502 						  struct sk_buff *skb);
503 #ifdef CONFIG_SOCK_VALIDATE_XMIT
504 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
505 							struct net_device *dev,
506 							struct sk_buff *skb);
507 #endif
508 	void                    (*sk_destruct)(struct sock *sk);
509 	struct sock_reuseport __rcu	*sk_reuseport_cb;
510 #ifdef CONFIG_BPF_SYSCALL
511 	struct bpf_sk_storage __rcu	*sk_bpf_storage;
512 #endif
513 	struct rcu_head		sk_rcu;
514 };
515 
516 enum sk_pacing {
517 	SK_PACING_NONE		= 0,
518 	SK_PACING_NEEDED	= 1,
519 	SK_PACING_FQ		= 2,
520 };
521 
522 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
523 
524 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
525 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
526 
527 /*
528  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
529  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
530  * on a socket means that the socket will reuse everybody else's port
531  * without looking at the other's sk_reuse value.
532  */
533 
534 #define SK_NO_REUSE	0
535 #define SK_CAN_REUSE	1
536 #define SK_FORCE_REUSE	2
537 
538 int sk_set_peek_off(struct sock *sk, int val);
539 
sk_peek_offset(struct sock * sk,int flags)540 static inline int sk_peek_offset(struct sock *sk, int flags)
541 {
542 	if (unlikely(flags & MSG_PEEK)) {
543 		return READ_ONCE(sk->sk_peek_off);
544 	}
545 
546 	return 0;
547 }
548 
sk_peek_offset_bwd(struct sock * sk,int val)549 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
550 {
551 	s32 off = READ_ONCE(sk->sk_peek_off);
552 
553 	if (unlikely(off >= 0)) {
554 		off = max_t(s32, off - val, 0);
555 		WRITE_ONCE(sk->sk_peek_off, off);
556 	}
557 }
558 
sk_peek_offset_fwd(struct sock * sk,int val)559 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
560 {
561 	sk_peek_offset_bwd(sk, -val);
562 }
563 
564 /*
565  * Hashed lists helper routines
566  */
sk_entry(const struct hlist_node * node)567 static inline struct sock *sk_entry(const struct hlist_node *node)
568 {
569 	return hlist_entry(node, struct sock, sk_node);
570 }
571 
__sk_head(const struct hlist_head * head)572 static inline struct sock *__sk_head(const struct hlist_head *head)
573 {
574 	return hlist_entry(head->first, struct sock, sk_node);
575 }
576 
sk_head(const struct hlist_head * head)577 static inline struct sock *sk_head(const struct hlist_head *head)
578 {
579 	return hlist_empty(head) ? NULL : __sk_head(head);
580 }
581 
__sk_nulls_head(const struct hlist_nulls_head * head)582 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
583 {
584 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
585 }
586 
sk_nulls_head(const struct hlist_nulls_head * head)587 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
588 {
589 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
590 }
591 
sk_next(const struct sock * sk)592 static inline struct sock *sk_next(const struct sock *sk)
593 {
594 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
595 }
596 
sk_nulls_next(const struct sock * sk)597 static inline struct sock *sk_nulls_next(const struct sock *sk)
598 {
599 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
600 		hlist_nulls_entry(sk->sk_nulls_node.next,
601 				  struct sock, sk_nulls_node) :
602 		NULL;
603 }
604 
sk_unhashed(const struct sock * sk)605 static inline bool sk_unhashed(const struct sock *sk)
606 {
607 	return hlist_unhashed(&sk->sk_node);
608 }
609 
sk_hashed(const struct sock * sk)610 static inline bool sk_hashed(const struct sock *sk)
611 {
612 	return !sk_unhashed(sk);
613 }
614 
sk_node_init(struct hlist_node * node)615 static inline void sk_node_init(struct hlist_node *node)
616 {
617 	node->pprev = NULL;
618 }
619 
sk_nulls_node_init(struct hlist_nulls_node * node)620 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
621 {
622 	node->pprev = NULL;
623 }
624 
__sk_del_node(struct sock * sk)625 static inline void __sk_del_node(struct sock *sk)
626 {
627 	__hlist_del(&sk->sk_node);
628 }
629 
630 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)631 static inline bool __sk_del_node_init(struct sock *sk)
632 {
633 	if (sk_hashed(sk)) {
634 		__sk_del_node(sk);
635 		sk_node_init(&sk->sk_node);
636 		return true;
637 	}
638 	return false;
639 }
640 
641 /* Grab socket reference count. This operation is valid only
642    when sk is ALREADY grabbed f.e. it is found in hash table
643    or a list and the lookup is made under lock preventing hash table
644    modifications.
645  */
646 
sock_hold(struct sock * sk)647 static __always_inline void sock_hold(struct sock *sk)
648 {
649 	refcount_inc(&sk->sk_refcnt);
650 }
651 
652 /* Ungrab socket in the context, which assumes that socket refcnt
653    cannot hit zero, f.e. it is true in context of any socketcall.
654  */
__sock_put(struct sock * sk)655 static __always_inline void __sock_put(struct sock *sk)
656 {
657 	refcount_dec(&sk->sk_refcnt);
658 }
659 
sk_del_node_init(struct sock * sk)660 static inline bool sk_del_node_init(struct sock *sk)
661 {
662 	bool rc = __sk_del_node_init(sk);
663 
664 	if (rc) {
665 		/* paranoid for a while -acme */
666 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
667 		__sock_put(sk);
668 	}
669 	return rc;
670 }
671 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
672 
__sk_nulls_del_node_init_rcu(struct sock * sk)673 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
674 {
675 	if (sk_hashed(sk)) {
676 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
677 		return true;
678 	}
679 	return false;
680 }
681 
sk_nulls_del_node_init_rcu(struct sock * sk)682 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
683 {
684 	bool rc = __sk_nulls_del_node_init_rcu(sk);
685 
686 	if (rc) {
687 		/* paranoid for a while -acme */
688 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
689 		__sock_put(sk);
690 	}
691 	return rc;
692 }
693 
__sk_add_node(struct sock * sk,struct hlist_head * list)694 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
695 {
696 	hlist_add_head(&sk->sk_node, list);
697 }
698 
sk_add_node(struct sock * sk,struct hlist_head * list)699 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
700 {
701 	sock_hold(sk);
702 	__sk_add_node(sk, list);
703 }
704 
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)705 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
706 {
707 	sock_hold(sk);
708 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
709 	    sk->sk_family == AF_INET6)
710 		hlist_add_tail_rcu(&sk->sk_node, list);
711 	else
712 		hlist_add_head_rcu(&sk->sk_node, list);
713 }
714 
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)715 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
716 {
717 	sock_hold(sk);
718 	hlist_add_tail_rcu(&sk->sk_node, list);
719 }
720 
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)721 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
722 {
723 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
724 }
725 
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)726 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
727 {
728 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
729 }
730 
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)731 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
732 {
733 	sock_hold(sk);
734 	__sk_nulls_add_node_rcu(sk, list);
735 }
736 
__sk_del_bind_node(struct sock * sk)737 static inline void __sk_del_bind_node(struct sock *sk)
738 {
739 	__hlist_del(&sk->sk_bind_node);
740 }
741 
sk_add_bind_node(struct sock * sk,struct hlist_head * list)742 static inline void sk_add_bind_node(struct sock *sk,
743 					struct hlist_head *list)
744 {
745 	hlist_add_head(&sk->sk_bind_node, list);
746 }
747 
748 #define sk_for_each(__sk, list) \
749 	hlist_for_each_entry(__sk, list, sk_node)
750 #define sk_for_each_rcu(__sk, list) \
751 	hlist_for_each_entry_rcu(__sk, list, sk_node)
752 #define sk_nulls_for_each(__sk, node, list) \
753 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
754 #define sk_nulls_for_each_rcu(__sk, node, list) \
755 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
756 #define sk_for_each_from(__sk) \
757 	hlist_for_each_entry_from(__sk, sk_node)
758 #define sk_nulls_for_each_from(__sk, node) \
759 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
760 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
761 #define sk_for_each_safe(__sk, tmp, list) \
762 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
763 #define sk_for_each_bound(__sk, list) \
764 	hlist_for_each_entry(__sk, list, sk_bind_node)
765 
766 /**
767  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
768  * @tpos:	the type * to use as a loop cursor.
769  * @pos:	the &struct hlist_node to use as a loop cursor.
770  * @head:	the head for your list.
771  * @offset:	offset of hlist_node within the struct.
772  *
773  */
774 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
775 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
776 	     pos != NULL &&						       \
777 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
778 	     pos = rcu_dereference(hlist_next_rcu(pos)))
779 
sk_user_ns(struct sock * sk)780 static inline struct user_namespace *sk_user_ns(struct sock *sk)
781 {
782 	/* Careful only use this in a context where these parameters
783 	 * can not change and must all be valid, such as recvmsg from
784 	 * userspace.
785 	 */
786 	return sk->sk_socket->file->f_cred->user_ns;
787 }
788 
789 /* Sock flags */
790 enum sock_flags {
791 	SOCK_DEAD,
792 	SOCK_DONE,
793 	SOCK_URGINLINE,
794 	SOCK_KEEPOPEN,
795 	SOCK_LINGER,
796 	SOCK_DESTROY,
797 	SOCK_BROADCAST,
798 	SOCK_TIMESTAMP,
799 	SOCK_ZAPPED,
800 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
801 	SOCK_DBG, /* %SO_DEBUG setting */
802 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
803 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
804 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
805 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
806 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
807 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
808 	SOCK_FASYNC, /* fasync() active */
809 	SOCK_RXQ_OVFL,
810 	SOCK_ZEROCOPY, /* buffers from userspace */
811 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
812 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
813 		     * Will use last 4 bytes of packet sent from
814 		     * user-space instead.
815 		     */
816 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
817 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
818 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
819 	SOCK_TXTIME,
820 	SOCK_XDP, /* XDP is attached */
821 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
822 };
823 
824 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
825 
sock_copy_flags(struct sock * nsk,struct sock * osk)826 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
827 {
828 	nsk->sk_flags = osk->sk_flags;
829 }
830 
sock_set_flag(struct sock * sk,enum sock_flags flag)831 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
832 {
833 	__set_bit(flag, &sk->sk_flags);
834 }
835 
sock_reset_flag(struct sock * sk,enum sock_flags flag)836 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
837 {
838 	__clear_bit(flag, &sk->sk_flags);
839 }
840 
sock_flag(const struct sock * sk,enum sock_flags flag)841 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
842 {
843 	return test_bit(flag, &sk->sk_flags);
844 }
845 
846 #ifdef CONFIG_NET
847 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)848 static inline int sk_memalloc_socks(void)
849 {
850 	return static_branch_unlikely(&memalloc_socks_key);
851 }
852 #else
853 
sk_memalloc_socks(void)854 static inline int sk_memalloc_socks(void)
855 {
856 	return 0;
857 }
858 
859 #endif
860 
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)861 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
862 {
863 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
864 }
865 
sk_acceptq_removed(struct sock * sk)866 static inline void sk_acceptq_removed(struct sock *sk)
867 {
868 	sk->sk_ack_backlog--;
869 }
870 
sk_acceptq_added(struct sock * sk)871 static inline void sk_acceptq_added(struct sock *sk)
872 {
873 	sk->sk_ack_backlog++;
874 }
875 
sk_acceptq_is_full(const struct sock * sk)876 static inline bool sk_acceptq_is_full(const struct sock *sk)
877 {
878 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
879 }
880 
881 /*
882  * Compute minimal free write space needed to queue new packets.
883  */
sk_stream_min_wspace(const struct sock * sk)884 static inline int sk_stream_min_wspace(const struct sock *sk)
885 {
886 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
887 }
888 
sk_stream_wspace(const struct sock * sk)889 static inline int sk_stream_wspace(const struct sock *sk)
890 {
891 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
892 }
893 
sk_wmem_queued_add(struct sock * sk,int val)894 static inline void sk_wmem_queued_add(struct sock *sk, int val)
895 {
896 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
897 }
898 
899 void sk_stream_write_space(struct sock *sk);
900 
901 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)902 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
903 {
904 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
905 	skb_dst_force(skb);
906 
907 	if (!sk->sk_backlog.tail)
908 		sk->sk_backlog.head = skb;
909 	else
910 		sk->sk_backlog.tail->next = skb;
911 
912 	sk->sk_backlog.tail = skb;
913 	skb->next = NULL;
914 }
915 
916 /*
917  * Take into account size of receive queue and backlog queue
918  * Do not take into account this skb truesize,
919  * to allow even a single big packet to come.
920  */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)921 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
922 {
923 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
924 
925 	return qsize > limit;
926 }
927 
928 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)929 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
930 					      unsigned int limit)
931 {
932 	if (sk_rcvqueues_full(sk, limit))
933 		return -ENOBUFS;
934 
935 	/*
936 	 * If the skb was allocated from pfmemalloc reserves, only
937 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
938 	 * helping free memory
939 	 */
940 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
941 		return -ENOMEM;
942 
943 	__sk_add_backlog(sk, skb);
944 	sk->sk_backlog.len += skb->truesize;
945 	return 0;
946 }
947 
948 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
949 
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)950 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
951 {
952 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
953 		return __sk_backlog_rcv(sk, skb);
954 
955 	return sk->sk_backlog_rcv(sk, skb);
956 }
957 
sk_incoming_cpu_update(struct sock * sk)958 static inline void sk_incoming_cpu_update(struct sock *sk)
959 {
960 	int cpu = raw_smp_processor_id();
961 
962 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
963 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
964 }
965 
sock_rps_record_flow_hash(__u32 hash)966 static inline void sock_rps_record_flow_hash(__u32 hash)
967 {
968 #ifdef CONFIG_RPS
969 	struct rps_sock_flow_table *sock_flow_table;
970 
971 	rcu_read_lock();
972 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
973 	rps_record_sock_flow(sock_flow_table, hash);
974 	rcu_read_unlock();
975 #endif
976 }
977 
sock_rps_record_flow(const struct sock * sk)978 static inline void sock_rps_record_flow(const struct sock *sk)
979 {
980 #ifdef CONFIG_RPS
981 	if (static_branch_unlikely(&rfs_needed)) {
982 		/* Reading sk->sk_rxhash might incur an expensive cache line
983 		 * miss.
984 		 *
985 		 * TCP_ESTABLISHED does cover almost all states where RFS
986 		 * might be useful, and is cheaper [1] than testing :
987 		 *	IPv4: inet_sk(sk)->inet_daddr
988 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
989 		 * OR	an additional socket flag
990 		 * [1] : sk_state and sk_prot are in the same cache line.
991 		 */
992 		if (sk->sk_state == TCP_ESTABLISHED)
993 			sock_rps_record_flow_hash(sk->sk_rxhash);
994 	}
995 #endif
996 }
997 
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)998 static inline void sock_rps_save_rxhash(struct sock *sk,
999 					const struct sk_buff *skb)
1000 {
1001 #ifdef CONFIG_RPS
1002 	if (unlikely(sk->sk_rxhash != skb->hash))
1003 		sk->sk_rxhash = skb->hash;
1004 #endif
1005 }
1006 
sock_rps_reset_rxhash(struct sock * sk)1007 static inline void sock_rps_reset_rxhash(struct sock *sk)
1008 {
1009 #ifdef CONFIG_RPS
1010 	sk->sk_rxhash = 0;
1011 #endif
1012 }
1013 
1014 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1015 	({	int __rc;						\
1016 		release_sock(__sk);					\
1017 		__rc = __condition;					\
1018 		if (!__rc) {						\
1019 			*(__timeo) = wait_woken(__wait,			\
1020 						TASK_INTERRUPTIBLE,	\
1021 						*(__timeo));		\
1022 		}							\
1023 		sched_annotate_sleep();					\
1024 		lock_sock(__sk);					\
1025 		__rc = __condition;					\
1026 		__rc;							\
1027 	})
1028 
1029 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1030 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1031 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1032 int sk_stream_error(struct sock *sk, int flags, int err);
1033 void sk_stream_kill_queues(struct sock *sk);
1034 void sk_set_memalloc(struct sock *sk);
1035 void sk_clear_memalloc(struct sock *sk);
1036 
1037 void __sk_flush_backlog(struct sock *sk);
1038 
sk_flush_backlog(struct sock * sk)1039 static inline bool sk_flush_backlog(struct sock *sk)
1040 {
1041 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1042 		__sk_flush_backlog(sk);
1043 		return true;
1044 	}
1045 	return false;
1046 }
1047 
1048 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1049 
1050 struct request_sock_ops;
1051 struct timewait_sock_ops;
1052 struct inet_hashinfo;
1053 struct raw_hashinfo;
1054 struct smc_hashinfo;
1055 struct module;
1056 
1057 /*
1058  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1059  * un-modified. Special care is taken when initializing object to zero.
1060  */
sk_prot_clear_nulls(struct sock * sk,int size)1061 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1062 {
1063 	if (offsetof(struct sock, sk_node.next) != 0)
1064 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1065 	memset(&sk->sk_node.pprev, 0,
1066 	       size - offsetof(struct sock, sk_node.pprev));
1067 }
1068 
1069 /* Networking protocol blocks we attach to sockets.
1070  * socket layer -> transport layer interface
1071  */
1072 struct proto {
1073 	void			(*close)(struct sock *sk,
1074 					long timeout);
1075 	int			(*pre_connect)(struct sock *sk,
1076 					struct sockaddr *uaddr,
1077 					int addr_len);
1078 	int			(*connect)(struct sock *sk,
1079 					struct sockaddr *uaddr,
1080 					int addr_len);
1081 	int			(*disconnect)(struct sock *sk, int flags);
1082 
1083 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1084 					  bool kern);
1085 
1086 	int			(*ioctl)(struct sock *sk, int cmd,
1087 					 unsigned long arg);
1088 	int			(*init)(struct sock *sk);
1089 	void			(*destroy)(struct sock *sk);
1090 	void			(*shutdown)(struct sock *sk, int how);
1091 	int			(*setsockopt)(struct sock *sk, int level,
1092 					int optname, char __user *optval,
1093 					unsigned int optlen);
1094 	int			(*getsockopt)(struct sock *sk, int level,
1095 					int optname, char __user *optval,
1096 					int __user *option);
1097 	void			(*keepalive)(struct sock *sk, int valbool);
1098 #ifdef CONFIG_COMPAT
1099 	int			(*compat_setsockopt)(struct sock *sk,
1100 					int level,
1101 					int optname, char __user *optval,
1102 					unsigned int optlen);
1103 	int			(*compat_getsockopt)(struct sock *sk,
1104 					int level,
1105 					int optname, char __user *optval,
1106 					int __user *option);
1107 	int			(*compat_ioctl)(struct sock *sk,
1108 					unsigned int cmd, unsigned long arg);
1109 #endif
1110 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1111 					   size_t len);
1112 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1113 					   size_t len, int noblock, int flags,
1114 					   int *addr_len);
1115 	int			(*sendpage)(struct sock *sk, struct page *page,
1116 					int offset, size_t size, int flags);
1117 	int			(*bind)(struct sock *sk,
1118 					struct sockaddr *uaddr, int addr_len);
1119 
1120 	int			(*backlog_rcv) (struct sock *sk,
1121 						struct sk_buff *skb);
1122 
1123 	void		(*release_cb)(struct sock *sk);
1124 
1125 	/* Keeping track of sk's, looking them up, and port selection methods. */
1126 	int			(*hash)(struct sock *sk);
1127 	void			(*unhash)(struct sock *sk);
1128 	void			(*rehash)(struct sock *sk);
1129 	int			(*get_port)(struct sock *sk, unsigned short snum);
1130 
1131 	/* Keeping track of sockets in use */
1132 #ifdef CONFIG_PROC_FS
1133 	unsigned int		inuse_idx;
1134 #endif
1135 
1136 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1137 	bool			(*stream_memory_read)(const struct sock *sk);
1138 	/* Memory pressure */
1139 	void			(*enter_memory_pressure)(struct sock *sk);
1140 	void			(*leave_memory_pressure)(struct sock *sk);
1141 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1142 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1143 	/*
1144 	 * Pressure flag: try to collapse.
1145 	 * Technical note: it is used by multiple contexts non atomically.
1146 	 * All the __sk_mem_schedule() is of this nature: accounting
1147 	 * is strict, actions are advisory and have some latency.
1148 	 */
1149 	unsigned long		*memory_pressure;
1150 	long			*sysctl_mem;
1151 
1152 	int			*sysctl_wmem;
1153 	int			*sysctl_rmem;
1154 	u32			sysctl_wmem_offset;
1155 	u32			sysctl_rmem_offset;
1156 
1157 	int			max_header;
1158 	bool			no_autobind;
1159 
1160 	struct kmem_cache	*slab;
1161 	unsigned int		obj_size;
1162 	slab_flags_t		slab_flags;
1163 	unsigned int		useroffset;	/* Usercopy region offset */
1164 	unsigned int		usersize;	/* Usercopy region size */
1165 
1166 	struct percpu_counter	*orphan_count;
1167 
1168 	struct request_sock_ops	*rsk_prot;
1169 	struct timewait_sock_ops *twsk_prot;
1170 
1171 	union {
1172 		struct inet_hashinfo	*hashinfo;
1173 		struct udp_table	*udp_table;
1174 		struct raw_hashinfo	*raw_hash;
1175 		struct smc_hashinfo	*smc_hash;
1176 	} h;
1177 
1178 	struct module		*owner;
1179 
1180 	char			name[32];
1181 
1182 	struct list_head	node;
1183 #ifdef SOCK_REFCNT_DEBUG
1184 	atomic_t		socks;
1185 #endif
1186 	int			(*diag_destroy)(struct sock *sk, int err);
1187 } __randomize_layout;
1188 
1189 int proto_register(struct proto *prot, int alloc_slab);
1190 void proto_unregister(struct proto *prot);
1191 int sock_load_diag_module(int family, int protocol);
1192 
1193 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1194 static inline void sk_refcnt_debug_inc(struct sock *sk)
1195 {
1196 	atomic_inc(&sk->sk_prot->socks);
1197 }
1198 
sk_refcnt_debug_dec(struct sock * sk)1199 static inline void sk_refcnt_debug_dec(struct sock *sk)
1200 {
1201 	atomic_dec(&sk->sk_prot->socks);
1202 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1203 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1204 }
1205 
sk_refcnt_debug_release(const struct sock * sk)1206 static inline void sk_refcnt_debug_release(const struct sock *sk)
1207 {
1208 	if (refcount_read(&sk->sk_refcnt) != 1)
1209 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1210 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1211 }
1212 #else /* SOCK_REFCNT_DEBUG */
1213 #define sk_refcnt_debug_inc(sk) do { } while (0)
1214 #define sk_refcnt_debug_dec(sk) do { } while (0)
1215 #define sk_refcnt_debug_release(sk) do { } while (0)
1216 #endif /* SOCK_REFCNT_DEBUG */
1217 
__sk_stream_memory_free(const struct sock * sk,int wake)1218 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1219 {
1220 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1221 		return false;
1222 
1223 	return sk->sk_prot->stream_memory_free ?
1224 		sk->sk_prot->stream_memory_free(sk, wake) : true;
1225 }
1226 
sk_stream_memory_free(const struct sock * sk)1227 static inline bool sk_stream_memory_free(const struct sock *sk)
1228 {
1229 	return __sk_stream_memory_free(sk, 0);
1230 }
1231 
__sk_stream_is_writeable(const struct sock * sk,int wake)1232 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1233 {
1234 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1235 	       __sk_stream_memory_free(sk, wake);
1236 }
1237 
sk_stream_is_writeable(const struct sock * sk)1238 static inline bool sk_stream_is_writeable(const struct sock *sk)
1239 {
1240 	return __sk_stream_is_writeable(sk, 0);
1241 }
1242 
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1243 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1244 					    struct cgroup *ancestor)
1245 {
1246 #ifdef CONFIG_SOCK_CGROUP_DATA
1247 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1248 				    ancestor);
1249 #else
1250 	return -ENOTSUPP;
1251 #endif
1252 }
1253 
sk_has_memory_pressure(const struct sock * sk)1254 static inline bool sk_has_memory_pressure(const struct sock *sk)
1255 {
1256 	return sk->sk_prot->memory_pressure != NULL;
1257 }
1258 
sk_under_memory_pressure(const struct sock * sk)1259 static inline bool sk_under_memory_pressure(const struct sock *sk)
1260 {
1261 	if (!sk->sk_prot->memory_pressure)
1262 		return false;
1263 
1264 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1265 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1266 		return true;
1267 
1268 	return !!*sk->sk_prot->memory_pressure;
1269 }
1270 
1271 static inline long
sk_memory_allocated(const struct sock * sk)1272 sk_memory_allocated(const struct sock *sk)
1273 {
1274 	return atomic_long_read(sk->sk_prot->memory_allocated);
1275 }
1276 
1277 static inline long
sk_memory_allocated_add(struct sock * sk,int amt)1278 sk_memory_allocated_add(struct sock *sk, int amt)
1279 {
1280 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1281 }
1282 
1283 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1284 sk_memory_allocated_sub(struct sock *sk, int amt)
1285 {
1286 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1287 }
1288 
sk_sockets_allocated_dec(struct sock * sk)1289 static inline void sk_sockets_allocated_dec(struct sock *sk)
1290 {
1291 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1292 }
1293 
sk_sockets_allocated_inc(struct sock * sk)1294 static inline void sk_sockets_allocated_inc(struct sock *sk)
1295 {
1296 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1297 }
1298 
1299 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1300 sk_sockets_allocated_read_positive(struct sock *sk)
1301 {
1302 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1303 }
1304 
1305 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1306 proto_sockets_allocated_sum_positive(struct proto *prot)
1307 {
1308 	return percpu_counter_sum_positive(prot->sockets_allocated);
1309 }
1310 
1311 static inline long
proto_memory_allocated(struct proto * prot)1312 proto_memory_allocated(struct proto *prot)
1313 {
1314 	return atomic_long_read(prot->memory_allocated);
1315 }
1316 
1317 static inline bool
proto_memory_pressure(struct proto * prot)1318 proto_memory_pressure(struct proto *prot)
1319 {
1320 	if (!prot->memory_pressure)
1321 		return false;
1322 	return !!*prot->memory_pressure;
1323 }
1324 
1325 
1326 #ifdef CONFIG_PROC_FS
1327 /* Called with local bh disabled */
1328 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1329 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1330 int sock_inuse_get(struct net *net);
1331 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1332 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1333 		int inc)
1334 {
1335 }
1336 #endif
1337 
1338 
1339 /* With per-bucket locks this operation is not-atomic, so that
1340  * this version is not worse.
1341  */
__sk_prot_rehash(struct sock * sk)1342 static inline int __sk_prot_rehash(struct sock *sk)
1343 {
1344 	sk->sk_prot->unhash(sk);
1345 	return sk->sk_prot->hash(sk);
1346 }
1347 
1348 /* About 10 seconds */
1349 #define SOCK_DESTROY_TIME (10*HZ)
1350 
1351 /* Sockets 0-1023 can't be bound to unless you are superuser */
1352 #define PROT_SOCK	1024
1353 
1354 #define SHUTDOWN_MASK	3
1355 #define RCV_SHUTDOWN	1
1356 #define SEND_SHUTDOWN	2
1357 
1358 #define SOCK_SNDBUF_LOCK	1
1359 #define SOCK_RCVBUF_LOCK	2
1360 #define SOCK_BINDADDR_LOCK	4
1361 #define SOCK_BINDPORT_LOCK	8
1362 
1363 struct socket_alloc {
1364 	struct socket socket;
1365 	struct inode vfs_inode;
1366 };
1367 
SOCKET_I(struct inode * inode)1368 static inline struct socket *SOCKET_I(struct inode *inode)
1369 {
1370 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1371 }
1372 
SOCK_INODE(struct socket * socket)1373 static inline struct inode *SOCK_INODE(struct socket *socket)
1374 {
1375 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1376 }
1377 
1378 /*
1379  * Functions for memory accounting
1380  */
1381 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1382 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1383 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1384 void __sk_mem_reclaim(struct sock *sk, int amount);
1385 
1386 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1387  * do not necessarily have 16x time more memory than 4KB ones.
1388  */
1389 #define SK_MEM_QUANTUM 4096
1390 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1391 #define SK_MEM_SEND	0
1392 #define SK_MEM_RECV	1
1393 
1394 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
sk_prot_mem_limits(const struct sock * sk,int index)1395 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1396 {
1397 	long val = sk->sk_prot->sysctl_mem[index];
1398 
1399 #if PAGE_SIZE > SK_MEM_QUANTUM
1400 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1401 #elif PAGE_SIZE < SK_MEM_QUANTUM
1402 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1403 #endif
1404 	return val;
1405 }
1406 
sk_mem_pages(int amt)1407 static inline int sk_mem_pages(int amt)
1408 {
1409 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1410 }
1411 
sk_has_account(struct sock * sk)1412 static inline bool sk_has_account(struct sock *sk)
1413 {
1414 	/* return true if protocol supports memory accounting */
1415 	return !!sk->sk_prot->memory_allocated;
1416 }
1417 
sk_wmem_schedule(struct sock * sk,int size)1418 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1419 {
1420 	if (!sk_has_account(sk))
1421 		return true;
1422 	return size <= sk->sk_forward_alloc ||
1423 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1424 }
1425 
1426 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1427 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1428 {
1429 	if (!sk_has_account(sk))
1430 		return true;
1431 	return size<= sk->sk_forward_alloc ||
1432 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1433 		skb_pfmemalloc(skb);
1434 }
1435 
sk_mem_reclaim(struct sock * sk)1436 static inline void sk_mem_reclaim(struct sock *sk)
1437 {
1438 	if (!sk_has_account(sk))
1439 		return;
1440 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1441 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1442 }
1443 
sk_mem_reclaim_partial(struct sock * sk)1444 static inline void sk_mem_reclaim_partial(struct sock *sk)
1445 {
1446 	if (!sk_has_account(sk))
1447 		return;
1448 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1449 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1450 }
1451 
sk_mem_charge(struct sock * sk,int size)1452 static inline void sk_mem_charge(struct sock *sk, int size)
1453 {
1454 	if (!sk_has_account(sk))
1455 		return;
1456 	sk->sk_forward_alloc -= size;
1457 }
1458 
sk_mem_uncharge(struct sock * sk,int size)1459 static inline void sk_mem_uncharge(struct sock *sk, int size)
1460 {
1461 	if (!sk_has_account(sk))
1462 		return;
1463 	sk->sk_forward_alloc += size;
1464 
1465 	/* Avoid a possible overflow.
1466 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1467 	 * is not called and more than 2 GBytes are released at once.
1468 	 *
1469 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1470 	 * no need to hold that much forward allocation anyway.
1471 	 */
1472 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1473 		__sk_mem_reclaim(sk, 1 << 20);
1474 }
1475 
1476 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1477 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1478 {
1479 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1480 	sk_wmem_queued_add(sk, -skb->truesize);
1481 	sk_mem_uncharge(sk, skb->truesize);
1482 	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1483 	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1484 		skb_zcopy_clear(skb, true);
1485 		sk->sk_tx_skb_cache = skb;
1486 		return;
1487 	}
1488 	__kfree_skb(skb);
1489 }
1490 
sock_release_ownership(struct sock * sk)1491 static inline void sock_release_ownership(struct sock *sk)
1492 {
1493 	if (sk->sk_lock.owned) {
1494 		sk->sk_lock.owned = 0;
1495 
1496 		/* The sk_lock has mutex_unlock() semantics: */
1497 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1498 	}
1499 }
1500 
1501 /*
1502  * Macro so as to not evaluate some arguments when
1503  * lockdep is not enabled.
1504  *
1505  * Mark both the sk_lock and the sk_lock.slock as a
1506  * per-address-family lock class.
1507  */
1508 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1509 do {									\
1510 	sk->sk_lock.owned = 0;						\
1511 	init_waitqueue_head(&sk->sk_lock.wq);				\
1512 	spin_lock_init(&(sk)->sk_lock.slock);				\
1513 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1514 			sizeof((sk)->sk_lock));				\
1515 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1516 				(skey), (sname));				\
1517 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1518 } while (0)
1519 
1520 #ifdef CONFIG_LOCKDEP
lockdep_sock_is_held(const struct sock * sk)1521 static inline bool lockdep_sock_is_held(const struct sock *sk)
1522 {
1523 	return lockdep_is_held(&sk->sk_lock) ||
1524 	       lockdep_is_held(&sk->sk_lock.slock);
1525 }
1526 #endif
1527 
1528 void lock_sock_nested(struct sock *sk, int subclass);
1529 
lock_sock(struct sock * sk)1530 static inline void lock_sock(struct sock *sk)
1531 {
1532 	lock_sock_nested(sk, 0);
1533 }
1534 
1535 void __release_sock(struct sock *sk);
1536 void release_sock(struct sock *sk);
1537 
1538 /* BH context may only use the following locking interface. */
1539 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1540 #define bh_lock_sock_nested(__sk) \
1541 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1542 				SINGLE_DEPTH_NESTING)
1543 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1544 
1545 bool lock_sock_fast(struct sock *sk);
1546 /**
1547  * unlock_sock_fast - complement of lock_sock_fast
1548  * @sk: socket
1549  * @slow: slow mode
1550  *
1551  * fast unlock socket for user context.
1552  * If slow mode is on, we call regular release_sock()
1553  */
unlock_sock_fast(struct sock * sk,bool slow)1554 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1555 {
1556 	if (slow)
1557 		release_sock(sk);
1558 	else
1559 		spin_unlock_bh(&sk->sk_lock.slock);
1560 }
1561 
1562 /* Used by processes to "lock" a socket state, so that
1563  * interrupts and bottom half handlers won't change it
1564  * from under us. It essentially blocks any incoming
1565  * packets, so that we won't get any new data or any
1566  * packets that change the state of the socket.
1567  *
1568  * While locked, BH processing will add new packets to
1569  * the backlog queue.  This queue is processed by the
1570  * owner of the socket lock right before it is released.
1571  *
1572  * Since ~2.3.5 it is also exclusive sleep lock serializing
1573  * accesses from user process context.
1574  */
1575 
sock_owned_by_me(const struct sock * sk)1576 static inline void sock_owned_by_me(const struct sock *sk)
1577 {
1578 #ifdef CONFIG_LOCKDEP
1579 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1580 #endif
1581 }
1582 
sock_owned_by_user(const struct sock * sk)1583 static inline bool sock_owned_by_user(const struct sock *sk)
1584 {
1585 	sock_owned_by_me(sk);
1586 	return sk->sk_lock.owned;
1587 }
1588 
sock_owned_by_user_nocheck(const struct sock * sk)1589 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1590 {
1591 	return sk->sk_lock.owned;
1592 }
1593 
1594 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1595 static inline bool sock_allow_reclassification(const struct sock *csk)
1596 {
1597 	struct sock *sk = (struct sock *)csk;
1598 
1599 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1600 }
1601 
1602 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1603 		      struct proto *prot, int kern);
1604 void sk_free(struct sock *sk);
1605 void sk_destruct(struct sock *sk);
1606 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1607 void sk_free_unlock_clone(struct sock *sk);
1608 
1609 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1610 			     gfp_t priority);
1611 void __sock_wfree(struct sk_buff *skb);
1612 void sock_wfree(struct sk_buff *skb);
1613 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1614 			     gfp_t priority);
1615 void skb_orphan_partial(struct sk_buff *skb);
1616 void sock_rfree(struct sk_buff *skb);
1617 void sock_efree(struct sk_buff *skb);
1618 #ifdef CONFIG_INET
1619 void sock_edemux(struct sk_buff *skb);
1620 #else
1621 #define sock_edemux sock_efree
1622 #endif
1623 
1624 int sock_setsockopt(struct socket *sock, int level, int op,
1625 		    char __user *optval, unsigned int optlen);
1626 
1627 int sock_getsockopt(struct socket *sock, int level, int op,
1628 		    char __user *optval, int __user *optlen);
1629 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1630 		   bool timeval, bool time32);
1631 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1632 				    int noblock, int *errcode);
1633 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1634 				     unsigned long data_len, int noblock,
1635 				     int *errcode, int max_page_order);
1636 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1637 void sock_kfree_s(struct sock *sk, void *mem, int size);
1638 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1639 void sk_send_sigurg(struct sock *sk);
1640 
1641 struct sockcm_cookie {
1642 	u64 transmit_time;
1643 	u32 mark;
1644 	u16 tsflags;
1645 };
1646 
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1647 static inline void sockcm_init(struct sockcm_cookie *sockc,
1648 			       const struct sock *sk)
1649 {
1650 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1651 }
1652 
1653 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1654 		     struct sockcm_cookie *sockc);
1655 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1656 		   struct sockcm_cookie *sockc);
1657 
1658 /*
1659  * Functions to fill in entries in struct proto_ops when a protocol
1660  * does not implement a particular function.
1661  */
1662 int sock_no_bind(struct socket *, struct sockaddr *, int);
1663 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1664 int sock_no_socketpair(struct socket *, struct socket *);
1665 int sock_no_accept(struct socket *, struct socket *, int, bool);
1666 int sock_no_getname(struct socket *, struct sockaddr *, int);
1667 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1668 int sock_no_listen(struct socket *, int);
1669 int sock_no_shutdown(struct socket *, int);
1670 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1671 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1672 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1673 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1674 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1675 int sock_no_mmap(struct file *file, struct socket *sock,
1676 		 struct vm_area_struct *vma);
1677 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1678 			 size_t size, int flags);
1679 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1680 				int offset, size_t size, int flags);
1681 
1682 /*
1683  * Functions to fill in entries in struct proto_ops when a protocol
1684  * uses the inet style.
1685  */
1686 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1687 				  char __user *optval, int __user *optlen);
1688 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1689 			int flags);
1690 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1691 				  char __user *optval, unsigned int optlen);
1692 int compat_sock_common_getsockopt(struct socket *sock, int level,
1693 		int optname, char __user *optval, int __user *optlen);
1694 int compat_sock_common_setsockopt(struct socket *sock, int level,
1695 		int optname, char __user *optval, unsigned int optlen);
1696 
1697 void sk_common_release(struct sock *sk);
1698 
1699 /*
1700  *	Default socket callbacks and setup code
1701  */
1702 
1703 /* Initialise core socket variables */
1704 void sock_init_data(struct socket *sock, struct sock *sk);
1705 
1706 /*
1707  * Socket reference counting postulates.
1708  *
1709  * * Each user of socket SHOULD hold a reference count.
1710  * * Each access point to socket (an hash table bucket, reference from a list,
1711  *   running timer, skb in flight MUST hold a reference count.
1712  * * When reference count hits 0, it means it will never increase back.
1713  * * When reference count hits 0, it means that no references from
1714  *   outside exist to this socket and current process on current CPU
1715  *   is last user and may/should destroy this socket.
1716  * * sk_free is called from any context: process, BH, IRQ. When
1717  *   it is called, socket has no references from outside -> sk_free
1718  *   may release descendant resources allocated by the socket, but
1719  *   to the time when it is called, socket is NOT referenced by any
1720  *   hash tables, lists etc.
1721  * * Packets, delivered from outside (from network or from another process)
1722  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1723  *   when they sit in queue. Otherwise, packets will leak to hole, when
1724  *   socket is looked up by one cpu and unhasing is made by another CPU.
1725  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1726  *   (leak to backlog). Packet socket does all the processing inside
1727  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1728  *   use separate SMP lock, so that they are prone too.
1729  */
1730 
1731 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1732 static inline void sock_put(struct sock *sk)
1733 {
1734 	if (refcount_dec_and_test(&sk->sk_refcnt))
1735 		sk_free(sk);
1736 }
1737 /* Generic version of sock_put(), dealing with all sockets
1738  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1739  */
1740 void sock_gen_put(struct sock *sk);
1741 
1742 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1743 		     unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1744 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1745 				 const int nested)
1746 {
1747 	return __sk_receive_skb(sk, skb, nested, 1, true);
1748 }
1749 
sk_tx_queue_set(struct sock * sk,int tx_queue)1750 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1751 {
1752 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1753 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1754 		return;
1755 	sk->sk_tx_queue_mapping = tx_queue;
1756 }
1757 
1758 #define NO_QUEUE_MAPPING	USHRT_MAX
1759 
sk_tx_queue_clear(struct sock * sk)1760 static inline void sk_tx_queue_clear(struct sock *sk)
1761 {
1762 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1763 }
1764 
sk_tx_queue_get(const struct sock * sk)1765 static inline int sk_tx_queue_get(const struct sock *sk)
1766 {
1767 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1768 		return sk->sk_tx_queue_mapping;
1769 
1770 	return -1;
1771 }
1772 
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)1773 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1774 {
1775 #ifdef CONFIG_XPS
1776 	if (skb_rx_queue_recorded(skb)) {
1777 		u16 rx_queue = skb_get_rx_queue(skb);
1778 
1779 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1780 			return;
1781 
1782 		sk->sk_rx_queue_mapping = rx_queue;
1783 	}
1784 #endif
1785 }
1786 
sk_rx_queue_clear(struct sock * sk)1787 static inline void sk_rx_queue_clear(struct sock *sk)
1788 {
1789 #ifdef CONFIG_XPS
1790 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1791 #endif
1792 }
1793 
1794 #ifdef CONFIG_XPS
sk_rx_queue_get(const struct sock * sk)1795 static inline int sk_rx_queue_get(const struct sock *sk)
1796 {
1797 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1798 		return sk->sk_rx_queue_mapping;
1799 
1800 	return -1;
1801 }
1802 #endif
1803 
sk_set_socket(struct sock * sk,struct socket * sock)1804 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1805 {
1806 	sk_tx_queue_clear(sk);
1807 	sk->sk_socket = sock;
1808 }
1809 
sk_sleep(struct sock * sk)1810 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1811 {
1812 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1813 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1814 }
1815 /* Detach socket from process context.
1816  * Announce socket dead, detach it from wait queue and inode.
1817  * Note that parent inode held reference count on this struct sock,
1818  * we do not release it in this function, because protocol
1819  * probably wants some additional cleanups or even continuing
1820  * to work with this socket (TCP).
1821  */
sock_orphan(struct sock * sk)1822 static inline void sock_orphan(struct sock *sk)
1823 {
1824 	write_lock_bh(&sk->sk_callback_lock);
1825 	sock_set_flag(sk, SOCK_DEAD);
1826 	sk_set_socket(sk, NULL);
1827 	sk->sk_wq  = NULL;
1828 	write_unlock_bh(&sk->sk_callback_lock);
1829 }
1830 
sock_graft(struct sock * sk,struct socket * parent)1831 static inline void sock_graft(struct sock *sk, struct socket *parent)
1832 {
1833 	WARN_ON(parent->sk);
1834 	write_lock_bh(&sk->sk_callback_lock);
1835 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1836 	parent->sk = sk;
1837 	sk_set_socket(sk, parent);
1838 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1839 	security_sock_graft(sk, parent);
1840 	write_unlock_bh(&sk->sk_callback_lock);
1841 }
1842 
1843 kuid_t sock_i_uid(struct sock *sk);
1844 unsigned long sock_i_ino(struct sock *sk);
1845 
sock_net_uid(const struct net * net,const struct sock * sk)1846 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1847 {
1848 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1849 }
1850 
net_tx_rndhash(void)1851 static inline u32 net_tx_rndhash(void)
1852 {
1853 	u32 v = prandom_u32();
1854 
1855 	return v ?: 1;
1856 }
1857 
sk_set_txhash(struct sock * sk)1858 static inline void sk_set_txhash(struct sock *sk)
1859 {
1860 	sk->sk_txhash = net_tx_rndhash();
1861 }
1862 
sk_rethink_txhash(struct sock * sk)1863 static inline void sk_rethink_txhash(struct sock *sk)
1864 {
1865 	if (sk->sk_txhash)
1866 		sk_set_txhash(sk);
1867 }
1868 
1869 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1870 __sk_dst_get(struct sock *sk)
1871 {
1872 	return rcu_dereference_check(sk->sk_dst_cache,
1873 				     lockdep_sock_is_held(sk));
1874 }
1875 
1876 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1877 sk_dst_get(struct sock *sk)
1878 {
1879 	struct dst_entry *dst;
1880 
1881 	rcu_read_lock();
1882 	dst = rcu_dereference(sk->sk_dst_cache);
1883 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1884 		dst = NULL;
1885 	rcu_read_unlock();
1886 	return dst;
1887 }
1888 
dst_negative_advice(struct sock * sk)1889 static inline void dst_negative_advice(struct sock *sk)
1890 {
1891 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1892 
1893 	sk_rethink_txhash(sk);
1894 
1895 	if (dst && dst->ops->negative_advice) {
1896 		ndst = dst->ops->negative_advice(dst);
1897 
1898 		if (ndst != dst) {
1899 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1900 			sk_tx_queue_clear(sk);
1901 			sk->sk_dst_pending_confirm = 0;
1902 		}
1903 	}
1904 }
1905 
1906 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)1907 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1908 {
1909 	struct dst_entry *old_dst;
1910 
1911 	sk_tx_queue_clear(sk);
1912 	sk->sk_dst_pending_confirm = 0;
1913 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1914 					    lockdep_sock_is_held(sk));
1915 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1916 	dst_release(old_dst);
1917 }
1918 
1919 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)1920 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1921 {
1922 	struct dst_entry *old_dst;
1923 
1924 	sk_tx_queue_clear(sk);
1925 	sk->sk_dst_pending_confirm = 0;
1926 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1927 	dst_release(old_dst);
1928 }
1929 
1930 static inline void
__sk_dst_reset(struct sock * sk)1931 __sk_dst_reset(struct sock *sk)
1932 {
1933 	__sk_dst_set(sk, NULL);
1934 }
1935 
1936 static inline void
sk_dst_reset(struct sock * sk)1937 sk_dst_reset(struct sock *sk)
1938 {
1939 	sk_dst_set(sk, NULL);
1940 }
1941 
1942 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1943 
1944 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1945 
sk_dst_confirm(struct sock * sk)1946 static inline void sk_dst_confirm(struct sock *sk)
1947 {
1948 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
1949 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
1950 }
1951 
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)1952 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1953 {
1954 	if (skb_get_dst_pending_confirm(skb)) {
1955 		struct sock *sk = skb->sk;
1956 		unsigned long now = jiffies;
1957 
1958 		/* avoid dirtying neighbour */
1959 		if (READ_ONCE(n->confirmed) != now)
1960 			WRITE_ONCE(n->confirmed, now);
1961 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
1962 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
1963 	}
1964 }
1965 
1966 bool sk_mc_loop(struct sock *sk);
1967 
sk_can_gso(const struct sock * sk)1968 static inline bool sk_can_gso(const struct sock *sk)
1969 {
1970 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1971 }
1972 
1973 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1974 
sk_nocaps_add(struct sock * sk,netdev_features_t flags)1975 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1976 {
1977 	sk->sk_route_nocaps |= flags;
1978 	sk->sk_route_caps &= ~flags;
1979 }
1980 
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)1981 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1982 					   struct iov_iter *from, char *to,
1983 					   int copy, int offset)
1984 {
1985 	if (skb->ip_summed == CHECKSUM_NONE) {
1986 		__wsum csum = 0;
1987 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1988 			return -EFAULT;
1989 		skb->csum = csum_block_add(skb->csum, csum, offset);
1990 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1991 		if (!copy_from_iter_full_nocache(to, copy, from))
1992 			return -EFAULT;
1993 	} else if (!copy_from_iter_full(to, copy, from))
1994 		return -EFAULT;
1995 
1996 	return 0;
1997 }
1998 
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)1999 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2000 				       struct iov_iter *from, int copy)
2001 {
2002 	int err, offset = skb->len;
2003 
2004 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2005 				       copy, offset);
2006 	if (err)
2007 		__skb_trim(skb, offset);
2008 
2009 	return err;
2010 }
2011 
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2012 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2013 					   struct sk_buff *skb,
2014 					   struct page *page,
2015 					   int off, int copy)
2016 {
2017 	int err;
2018 
2019 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2020 				       copy, skb->len);
2021 	if (err)
2022 		return err;
2023 
2024 	skb->len	     += copy;
2025 	skb->data_len	     += copy;
2026 	skb->truesize	     += copy;
2027 	sk_wmem_queued_add(sk, copy);
2028 	sk_mem_charge(sk, copy);
2029 	return 0;
2030 }
2031 
2032 /**
2033  * sk_wmem_alloc_get - returns write allocations
2034  * @sk: socket
2035  *
2036  * Returns sk_wmem_alloc minus initial offset of one
2037  */
sk_wmem_alloc_get(const struct sock * sk)2038 static inline int sk_wmem_alloc_get(const struct sock *sk)
2039 {
2040 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2041 }
2042 
2043 /**
2044  * sk_rmem_alloc_get - returns read allocations
2045  * @sk: socket
2046  *
2047  * Returns sk_rmem_alloc
2048  */
sk_rmem_alloc_get(const struct sock * sk)2049 static inline int sk_rmem_alloc_get(const struct sock *sk)
2050 {
2051 	return atomic_read(&sk->sk_rmem_alloc);
2052 }
2053 
2054 /**
2055  * sk_has_allocations - check if allocations are outstanding
2056  * @sk: socket
2057  *
2058  * Returns true if socket has write or read allocations
2059  */
sk_has_allocations(const struct sock * sk)2060 static inline bool sk_has_allocations(const struct sock *sk)
2061 {
2062 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2063 }
2064 
2065 /**
2066  * skwq_has_sleeper - check if there are any waiting processes
2067  * @wq: struct socket_wq
2068  *
2069  * Returns true if socket_wq has waiting processes
2070  *
2071  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2072  * barrier call. They were added due to the race found within the tcp code.
2073  *
2074  * Consider following tcp code paths::
2075  *
2076  *   CPU1                CPU2
2077  *   sys_select          receive packet
2078  *   ...                 ...
2079  *   __add_wait_queue    update tp->rcv_nxt
2080  *   ...                 ...
2081  *   tp->rcv_nxt check   sock_def_readable
2082  *   ...                 {
2083  *   schedule               rcu_read_lock();
2084  *                          wq = rcu_dereference(sk->sk_wq);
2085  *                          if (wq && waitqueue_active(&wq->wait))
2086  *                              wake_up_interruptible(&wq->wait)
2087  *                          ...
2088  *                       }
2089  *
2090  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2091  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2092  * could then endup calling schedule and sleep forever if there are no more
2093  * data on the socket.
2094  *
2095  */
skwq_has_sleeper(struct socket_wq * wq)2096 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2097 {
2098 	return wq && wq_has_sleeper(&wq->wait);
2099 }
2100 
2101 /**
2102  * sock_poll_wait - place memory barrier behind the poll_wait call.
2103  * @filp:           file
2104  * @sock:           socket to wait on
2105  * @p:              poll_table
2106  *
2107  * See the comments in the wq_has_sleeper function.
2108  */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2109 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2110 				  poll_table *p)
2111 {
2112 	if (!poll_does_not_wait(p)) {
2113 		poll_wait(filp, &sock->wq.wait, p);
2114 		/* We need to be sure we are in sync with the
2115 		 * socket flags modification.
2116 		 *
2117 		 * This memory barrier is paired in the wq_has_sleeper.
2118 		 */
2119 		smp_mb();
2120 	}
2121 }
2122 
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2123 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2124 {
2125 	if (sk->sk_txhash) {
2126 		skb->l4_hash = 1;
2127 		skb->hash = sk->sk_txhash;
2128 	}
2129 }
2130 
2131 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2132 
2133 /*
2134  *	Queue a received datagram if it will fit. Stream and sequenced
2135  *	protocols can't normally use this as they need to fit buffers in
2136  *	and play with them.
2137  *
2138  *	Inlined as it's very short and called for pretty much every
2139  *	packet ever received.
2140  */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2141 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2142 {
2143 	skb_orphan(skb);
2144 	skb->sk = sk;
2145 	skb->destructor = sock_rfree;
2146 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2147 	sk_mem_charge(sk, skb->truesize);
2148 }
2149 
2150 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2151 		    unsigned long expires);
2152 
2153 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2154 
2155 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2156 			struct sk_buff *skb, unsigned int flags,
2157 			void (*destructor)(struct sock *sk,
2158 					   struct sk_buff *skb));
2159 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2160 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2161 
2162 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2163 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2164 
2165 /*
2166  *	Recover an error report and clear atomically
2167  */
2168 
sock_error(struct sock * sk)2169 static inline int sock_error(struct sock *sk)
2170 {
2171 	int err;
2172 	if (likely(!sk->sk_err))
2173 		return 0;
2174 	err = xchg(&sk->sk_err, 0);
2175 	return -err;
2176 }
2177 
sock_wspace(struct sock * sk)2178 static inline unsigned long sock_wspace(struct sock *sk)
2179 {
2180 	int amt = 0;
2181 
2182 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2183 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2184 		if (amt < 0)
2185 			amt = 0;
2186 	}
2187 	return amt;
2188 }
2189 
2190 /* Note:
2191  *  We use sk->sk_wq_raw, from contexts knowing this
2192  *  pointer is not NULL and cannot disappear/change.
2193  */
sk_set_bit(int nr,struct sock * sk)2194 static inline void sk_set_bit(int nr, struct sock *sk)
2195 {
2196 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2197 	    !sock_flag(sk, SOCK_FASYNC))
2198 		return;
2199 
2200 	set_bit(nr, &sk->sk_wq_raw->flags);
2201 }
2202 
sk_clear_bit(int nr,struct sock * sk)2203 static inline void sk_clear_bit(int nr, struct sock *sk)
2204 {
2205 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2206 	    !sock_flag(sk, SOCK_FASYNC))
2207 		return;
2208 
2209 	clear_bit(nr, &sk->sk_wq_raw->flags);
2210 }
2211 
sk_wake_async(const struct sock * sk,int how,int band)2212 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2213 {
2214 	if (sock_flag(sk, SOCK_FASYNC)) {
2215 		rcu_read_lock();
2216 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2217 		rcu_read_unlock();
2218 	}
2219 }
2220 
2221 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2222  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2223  * Note: for send buffers, TCP works better if we can build two skbs at
2224  * minimum.
2225  */
2226 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2227 
2228 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2229 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2230 
sk_stream_moderate_sndbuf(struct sock * sk)2231 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2232 {
2233 	u32 val;
2234 
2235 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2236 		return;
2237 
2238 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2239 
2240 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2241 }
2242 
2243 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2244 				    bool force_schedule);
2245 
2246 /**
2247  * sk_page_frag - return an appropriate page_frag
2248  * @sk: socket
2249  *
2250  * Use the per task page_frag instead of the per socket one for
2251  * optimization when we know that we're in the normal context and owns
2252  * everything that's associated with %current.
2253  *
2254  * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2255  * inside other socket operations and end up recursing into sk_page_frag()
2256  * while it's already in use.
2257  */
sk_page_frag(struct sock * sk)2258 static inline struct page_frag *sk_page_frag(struct sock *sk)
2259 {
2260 	if (gfpflags_normal_context(sk->sk_allocation))
2261 		return &current->task_frag;
2262 
2263 	return &sk->sk_frag;
2264 }
2265 
2266 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2267 
2268 /*
2269  *	Default write policy as shown to user space via poll/select/SIGIO
2270  */
sock_writeable(const struct sock * sk)2271 static inline bool sock_writeable(const struct sock *sk)
2272 {
2273 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2274 }
2275 
gfp_any(void)2276 static inline gfp_t gfp_any(void)
2277 {
2278 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2279 }
2280 
sock_rcvtimeo(const struct sock * sk,bool noblock)2281 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2282 {
2283 	return noblock ? 0 : sk->sk_rcvtimeo;
2284 }
2285 
sock_sndtimeo(const struct sock * sk,bool noblock)2286 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2287 {
2288 	return noblock ? 0 : sk->sk_sndtimeo;
2289 }
2290 
sock_rcvlowat(const struct sock * sk,int waitall,int len)2291 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2292 {
2293 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2294 
2295 	return v ?: 1;
2296 }
2297 
2298 /* Alas, with timeout socket operations are not restartable.
2299  * Compare this to poll().
2300  */
sock_intr_errno(long timeo)2301 static inline int sock_intr_errno(long timeo)
2302 {
2303 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2304 }
2305 
2306 struct sock_skb_cb {
2307 	u32 dropcount;
2308 };
2309 
2310 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2311  * using skb->cb[] would keep using it directly and utilize its
2312  * alignement guarantee.
2313  */
2314 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2315 			    sizeof(struct sock_skb_cb)))
2316 
2317 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2318 			    SOCK_SKB_CB_OFFSET))
2319 
2320 #define sock_skb_cb_check_size(size) \
2321 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2322 
2323 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2324 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2325 {
2326 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2327 						atomic_read(&sk->sk_drops) : 0;
2328 }
2329 
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2330 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2331 {
2332 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2333 
2334 	atomic_add(segs, &sk->sk_drops);
2335 }
2336 
sock_read_timestamp(struct sock * sk)2337 static inline ktime_t sock_read_timestamp(struct sock *sk)
2338 {
2339 #if BITS_PER_LONG==32
2340 	unsigned int seq;
2341 	ktime_t kt;
2342 
2343 	do {
2344 		seq = read_seqbegin(&sk->sk_stamp_seq);
2345 		kt = sk->sk_stamp;
2346 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2347 
2348 	return kt;
2349 #else
2350 	return READ_ONCE(sk->sk_stamp);
2351 #endif
2352 }
2353 
sock_write_timestamp(struct sock * sk,ktime_t kt)2354 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2355 {
2356 #if BITS_PER_LONG==32
2357 	write_seqlock(&sk->sk_stamp_seq);
2358 	sk->sk_stamp = kt;
2359 	write_sequnlock(&sk->sk_stamp_seq);
2360 #else
2361 	WRITE_ONCE(sk->sk_stamp, kt);
2362 #endif
2363 }
2364 
2365 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2366 			   struct sk_buff *skb);
2367 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2368 			     struct sk_buff *skb);
2369 
2370 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2371 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2372 {
2373 	ktime_t kt = skb->tstamp;
2374 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2375 
2376 	/*
2377 	 * generate control messages if
2378 	 * - receive time stamping in software requested
2379 	 * - software time stamp available and wanted
2380 	 * - hardware time stamps available and wanted
2381 	 */
2382 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2383 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2384 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2385 	    (hwtstamps->hwtstamp &&
2386 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2387 		__sock_recv_timestamp(msg, sk, skb);
2388 	else
2389 		sock_write_timestamp(sk, kt);
2390 
2391 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2392 		__sock_recv_wifi_status(msg, sk, skb);
2393 }
2394 
2395 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2396 			      struct sk_buff *skb);
2397 
2398 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2399 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2400 					  struct sk_buff *skb)
2401 {
2402 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2403 			   (1UL << SOCK_RCVTSTAMP))
2404 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2405 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2406 
2407 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2408 		__sock_recv_ts_and_drops(msg, sk, skb);
2409 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2410 		sock_write_timestamp(sk, skb->tstamp);
2411 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2412 		sock_write_timestamp(sk, 0);
2413 }
2414 
2415 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2416 
2417 /**
2418  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2419  * @sk:		socket sending this packet
2420  * @tsflags:	timestamping flags to use
2421  * @tx_flags:	completed with instructions for time stamping
2422  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2423  *
2424  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2425  */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2426 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2427 				      __u8 *tx_flags, __u32 *tskey)
2428 {
2429 	if (unlikely(tsflags)) {
2430 		__sock_tx_timestamp(tsflags, tx_flags);
2431 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2432 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2433 			*tskey = sk->sk_tskey++;
2434 	}
2435 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2436 		*tx_flags |= SKBTX_WIFI_STATUS;
2437 }
2438 
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2439 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2440 				     __u8 *tx_flags)
2441 {
2442 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2443 }
2444 
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2445 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2446 {
2447 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2448 			   &skb_shinfo(skb)->tskey);
2449 }
2450 
2451 /**
2452  * sk_eat_skb - Release a skb if it is no longer needed
2453  * @sk: socket to eat this skb from
2454  * @skb: socket buffer to eat
2455  *
2456  * This routine must be called with interrupts disabled or with the socket
2457  * locked so that the sk_buff queue operation is ok.
2458 */
2459 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2460 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2461 {
2462 	__skb_unlink(skb, &sk->sk_receive_queue);
2463 	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2464 	    !sk->sk_rx_skb_cache) {
2465 		sk->sk_rx_skb_cache = skb;
2466 		skb_orphan(skb);
2467 		return;
2468 	}
2469 	__kfree_skb(skb);
2470 }
2471 
2472 static inline
sock_net(const struct sock * sk)2473 struct net *sock_net(const struct sock *sk)
2474 {
2475 	return read_pnet(&sk->sk_net);
2476 }
2477 
2478 static inline
sock_net_set(struct sock * sk,struct net * net)2479 void sock_net_set(struct sock *sk, struct net *net)
2480 {
2481 	write_pnet(&sk->sk_net, net);
2482 }
2483 
skb_steal_sock(struct sk_buff * skb)2484 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2485 {
2486 	if (skb->sk) {
2487 		struct sock *sk = skb->sk;
2488 
2489 		skb->destructor = NULL;
2490 		skb->sk = NULL;
2491 		return sk;
2492 	}
2493 	return NULL;
2494 }
2495 
2496 /* This helper checks if a socket is a full socket,
2497  * ie _not_ a timewait or request socket.
2498  */
sk_fullsock(const struct sock * sk)2499 static inline bool sk_fullsock(const struct sock *sk)
2500 {
2501 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2502 }
2503 
2504 /* Checks if this SKB belongs to an HW offloaded socket
2505  * and whether any SW fallbacks are required based on dev.
2506  * Check decrypted mark in case skb_orphan() cleared socket.
2507  */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2508 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2509 						   struct net_device *dev)
2510 {
2511 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2512 	struct sock *sk = skb->sk;
2513 
2514 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2515 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2516 #ifdef CONFIG_TLS_DEVICE
2517 	} else if (unlikely(skb->decrypted)) {
2518 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2519 		kfree_skb(skb);
2520 		skb = NULL;
2521 #endif
2522 	}
2523 #endif
2524 
2525 	return skb;
2526 }
2527 
2528 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2529  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2530  */
sk_listener(const struct sock * sk)2531 static inline bool sk_listener(const struct sock *sk)
2532 {
2533 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2534 }
2535 
2536 void sock_enable_timestamp(struct sock *sk, int flag);
2537 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2538 		       int type);
2539 
2540 bool sk_ns_capable(const struct sock *sk,
2541 		   struct user_namespace *user_ns, int cap);
2542 bool sk_capable(const struct sock *sk, int cap);
2543 bool sk_net_capable(const struct sock *sk, int cap);
2544 
2545 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2546 
2547 /* Take into consideration the size of the struct sk_buff overhead in the
2548  * determination of these values, since that is non-constant across
2549  * platforms.  This makes socket queueing behavior and performance
2550  * not depend upon such differences.
2551  */
2552 #define _SK_MEM_PACKETS		256
2553 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2554 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2555 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2556 
2557 extern __u32 sysctl_wmem_max;
2558 extern __u32 sysctl_rmem_max;
2559 
2560 extern int sysctl_tstamp_allow_data;
2561 extern int sysctl_optmem_max;
2562 
2563 extern __u32 sysctl_wmem_default;
2564 extern __u32 sysctl_rmem_default;
2565 
2566 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2567 
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2568 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2569 {
2570 	/* Does this proto have per netns sysctl_wmem ? */
2571 	if (proto->sysctl_wmem_offset)
2572 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2573 
2574 	return *proto->sysctl_wmem;
2575 }
2576 
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2577 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2578 {
2579 	/* Does this proto have per netns sysctl_rmem ? */
2580 	if (proto->sysctl_rmem_offset)
2581 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2582 
2583 	return *proto->sysctl_rmem;
2584 }
2585 
2586 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2587  * Some wifi drivers need to tweak it to get more chunks.
2588  * They can use this helper from their ndo_start_xmit()
2589  */
sk_pacing_shift_update(struct sock * sk,int val)2590 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2591 {
2592 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2593 		return;
2594 	WRITE_ONCE(sk->sk_pacing_shift, val);
2595 }
2596 
2597 /* if a socket is bound to a device, check that the given device
2598  * index is either the same or that the socket is bound to an L3
2599  * master device and the given device index is also enslaved to
2600  * that L3 master
2601  */
sk_dev_equal_l3scope(struct sock * sk,int dif)2602 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2603 {
2604 	int mdif;
2605 
2606 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2607 		return true;
2608 
2609 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2610 	if (mdif && mdif == sk->sk_bound_dev_if)
2611 		return true;
2612 
2613 	return false;
2614 }
2615 
2616 #endif	/* _SOCK_H */
2617