1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/blk-crypto.h>
21
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25
26 /*
27 * Test patch to inline a certain number of bi_io_vec's inside the bio
28 * itself, to shrink a bio data allocation from two mempool calls to one
29 */
30 #define BIO_INLINE_VECS 4
31
32 /*
33 * if you change this list, also change bvec_alloc or things will
34 * break badly! cannot be bigger than what you can fit into an
35 * unsigned short
36 */
37 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
38 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
39 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
40 };
41 #undef BV
42
43 /*
44 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
45 * IO code that does not need private memory pools.
46 */
47 struct bio_set fs_bio_set;
48 EXPORT_SYMBOL(fs_bio_set);
49
50 /*
51 * Our slab pool management
52 */
53 struct bio_slab {
54 struct kmem_cache *slab;
55 unsigned int slab_ref;
56 unsigned int slab_size;
57 char name[8];
58 };
59 static DEFINE_MUTEX(bio_slab_lock);
60 static struct bio_slab *bio_slabs;
61 static unsigned int bio_slab_nr, bio_slab_max;
62
bio_find_or_create_slab(unsigned int extra_size)63 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
64 {
65 unsigned int sz = sizeof(struct bio) + extra_size;
66 struct kmem_cache *slab = NULL;
67 struct bio_slab *bslab, *new_bio_slabs;
68 unsigned int new_bio_slab_max;
69 unsigned int i, entry = -1;
70
71 mutex_lock(&bio_slab_lock);
72
73 i = 0;
74 while (i < bio_slab_nr) {
75 bslab = &bio_slabs[i];
76
77 if (!bslab->slab && entry == -1)
78 entry = i;
79 else if (bslab->slab_size == sz) {
80 slab = bslab->slab;
81 bslab->slab_ref++;
82 break;
83 }
84 i++;
85 }
86
87 if (slab)
88 goto out_unlock;
89
90 if (bio_slab_nr == bio_slab_max && entry == -1) {
91 new_bio_slab_max = bio_slab_max << 1;
92 new_bio_slabs = krealloc(bio_slabs,
93 new_bio_slab_max * sizeof(struct bio_slab),
94 GFP_KERNEL);
95 if (!new_bio_slabs)
96 goto out_unlock;
97 bio_slab_max = new_bio_slab_max;
98 bio_slabs = new_bio_slabs;
99 }
100 if (entry == -1)
101 entry = bio_slab_nr++;
102
103 bslab = &bio_slabs[entry];
104
105 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
106 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
107 SLAB_HWCACHE_ALIGN, NULL);
108 if (!slab)
109 goto out_unlock;
110
111 bslab->slab = slab;
112 bslab->slab_ref = 1;
113 bslab->slab_size = sz;
114 out_unlock:
115 mutex_unlock(&bio_slab_lock);
116 return slab;
117 }
118
bio_put_slab(struct bio_set * bs)119 static void bio_put_slab(struct bio_set *bs)
120 {
121 struct bio_slab *bslab = NULL;
122 unsigned int i;
123
124 mutex_lock(&bio_slab_lock);
125
126 for (i = 0; i < bio_slab_nr; i++) {
127 if (bs->bio_slab == bio_slabs[i].slab) {
128 bslab = &bio_slabs[i];
129 break;
130 }
131 }
132
133 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
134 goto out;
135
136 WARN_ON(!bslab->slab_ref);
137
138 if (--bslab->slab_ref)
139 goto out;
140
141 kmem_cache_destroy(bslab->slab);
142 bslab->slab = NULL;
143
144 out:
145 mutex_unlock(&bio_slab_lock);
146 }
147
bvec_nr_vecs(unsigned short idx)148 unsigned int bvec_nr_vecs(unsigned short idx)
149 {
150 return bvec_slabs[--idx].nr_vecs;
151 }
152
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned int idx)153 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
154 {
155 if (!idx)
156 return;
157 idx--;
158
159 BIO_BUG_ON(idx >= BVEC_POOL_NR);
160
161 if (idx == BVEC_POOL_MAX) {
162 mempool_free(bv, pool);
163 } else {
164 struct biovec_slab *bvs = bvec_slabs + idx;
165
166 kmem_cache_free(bvs->slab, bv);
167 }
168 }
169
bvec_alloc(gfp_t gfp_mask,int nr,unsigned long * idx,mempool_t * pool)170 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
171 mempool_t *pool)
172 {
173 struct bio_vec *bvl;
174
175 /*
176 * see comment near bvec_array define!
177 */
178 switch (nr) {
179 case 1:
180 *idx = 0;
181 break;
182 case 2 ... 4:
183 *idx = 1;
184 break;
185 case 5 ... 16:
186 *idx = 2;
187 break;
188 case 17 ... 64:
189 *idx = 3;
190 break;
191 case 65 ... 128:
192 *idx = 4;
193 break;
194 case 129 ... BIO_MAX_PAGES:
195 *idx = 5;
196 break;
197 default:
198 return NULL;
199 }
200
201 /*
202 * idx now points to the pool we want to allocate from. only the
203 * 1-vec entry pool is mempool backed.
204 */
205 if (*idx == BVEC_POOL_MAX) {
206 fallback:
207 bvl = mempool_alloc(pool, gfp_mask);
208 } else {
209 struct biovec_slab *bvs = bvec_slabs + *idx;
210 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
211
212 /*
213 * Make this allocation restricted and don't dump info on
214 * allocation failures, since we'll fallback to the mempool
215 * in case of failure.
216 */
217 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
218
219 /*
220 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
221 * is set, retry with the 1-entry mempool
222 */
223 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
225 *idx = BVEC_POOL_MAX;
226 goto fallback;
227 }
228 }
229
230 (*idx)++;
231 return bvl;
232 }
233
bio_uninit(struct bio * bio)234 void bio_uninit(struct bio *bio)
235 {
236 bio_disassociate_blkg(bio);
237
238 bio_crypt_free_ctx(bio);
239
240 if (bio_integrity(bio))
241 bio_integrity_free(bio);
242 }
243 EXPORT_SYMBOL(bio_uninit);
244
bio_free(struct bio * bio)245 static void bio_free(struct bio *bio)
246 {
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 bio_uninit(bio);
251
252 if (bs) {
253 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
254
255 /*
256 * If we have front padding, adjust the bio pointer before freeing
257 */
258 p = bio;
259 p -= bs->front_pad;
260
261 mempool_free(p, &bs->bio_pool);
262 } else {
263 /* Bio was allocated by bio_kmalloc() */
264 kfree(bio);
265 }
266 }
267
268 /*
269 * Users of this function have their own bio allocation. Subsequently,
270 * they must remember to pair any call to bio_init() with bio_uninit()
271 * when IO has completed, or when the bio is released.
272 */
bio_init(struct bio * bio,struct bio_vec * table,unsigned short max_vecs)273 void bio_init(struct bio *bio, struct bio_vec *table,
274 unsigned short max_vecs)
275 {
276 memset(bio, 0, sizeof(*bio));
277 atomic_set(&bio->__bi_remaining, 1);
278 atomic_set(&bio->__bi_cnt, 1);
279
280 bio->bi_io_vec = table;
281 bio->bi_max_vecs = max_vecs;
282 }
283 EXPORT_SYMBOL(bio_init);
284
285 /**
286 * bio_reset - reinitialize a bio
287 * @bio: bio to reset
288 *
289 * Description:
290 * After calling bio_reset(), @bio will be in the same state as a freshly
291 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
292 * preserved are the ones that are initialized by bio_alloc_bioset(). See
293 * comment in struct bio.
294 */
bio_reset(struct bio * bio)295 void bio_reset(struct bio *bio)
296 {
297 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
298
299 bio_uninit(bio);
300
301 memset(bio, 0, BIO_RESET_BYTES);
302 bio->bi_flags = flags;
303 atomic_set(&bio->__bi_remaining, 1);
304 }
305 EXPORT_SYMBOL(bio_reset);
306
__bio_chain_endio(struct bio * bio)307 static struct bio *__bio_chain_endio(struct bio *bio)
308 {
309 struct bio *parent = bio->bi_private;
310
311 if (!parent->bi_status)
312 parent->bi_status = bio->bi_status;
313 bio_put(bio);
314 return parent;
315 }
316
bio_chain_endio(struct bio * bio)317 static void bio_chain_endio(struct bio *bio)
318 {
319 bio_endio(__bio_chain_endio(bio));
320 }
321
322 /**
323 * bio_chain - chain bio completions
324 * @bio: the target bio
325 * @parent: the @bio's parent bio
326 *
327 * The caller won't have a bi_end_io called when @bio completes - instead,
328 * @parent's bi_end_io won't be called until both @parent and @bio have
329 * completed; the chained bio will also be freed when it completes.
330 *
331 * The caller must not set bi_private or bi_end_io in @bio.
332 */
bio_chain(struct bio * bio,struct bio * parent)333 void bio_chain(struct bio *bio, struct bio *parent)
334 {
335 BUG_ON(bio->bi_private || bio->bi_end_io);
336
337 bio->bi_private = parent;
338 bio->bi_end_io = bio_chain_endio;
339 bio_inc_remaining(parent);
340 }
341 EXPORT_SYMBOL(bio_chain);
342
bio_alloc_rescue(struct work_struct * work)343 static void bio_alloc_rescue(struct work_struct *work)
344 {
345 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
346 struct bio *bio;
347
348 while (1) {
349 spin_lock(&bs->rescue_lock);
350 bio = bio_list_pop(&bs->rescue_list);
351 spin_unlock(&bs->rescue_lock);
352
353 if (!bio)
354 break;
355
356 generic_make_request(bio);
357 }
358 }
359
punt_bios_to_rescuer(struct bio_set * bs)360 static void punt_bios_to_rescuer(struct bio_set *bs)
361 {
362 struct bio_list punt, nopunt;
363 struct bio *bio;
364
365 if (WARN_ON_ONCE(!bs->rescue_workqueue))
366 return;
367 /*
368 * In order to guarantee forward progress we must punt only bios that
369 * were allocated from this bio_set; otherwise, if there was a bio on
370 * there for a stacking driver higher up in the stack, processing it
371 * could require allocating bios from this bio_set, and doing that from
372 * our own rescuer would be bad.
373 *
374 * Since bio lists are singly linked, pop them all instead of trying to
375 * remove from the middle of the list:
376 */
377
378 bio_list_init(&punt);
379 bio_list_init(&nopunt);
380
381 while ((bio = bio_list_pop(¤t->bio_list[0])))
382 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
383 current->bio_list[0] = nopunt;
384
385 bio_list_init(&nopunt);
386 while ((bio = bio_list_pop(¤t->bio_list[1])))
387 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
388 current->bio_list[1] = nopunt;
389
390 spin_lock(&bs->rescue_lock);
391 bio_list_merge(&bs->rescue_list, &punt);
392 spin_unlock(&bs->rescue_lock);
393
394 queue_work(bs->rescue_workqueue, &bs->rescue_work);
395 }
396
397 /**
398 * bio_alloc_bioset - allocate a bio for I/O
399 * @gfp_mask: the GFP_* mask given to the slab allocator
400 * @nr_iovecs: number of iovecs to pre-allocate
401 * @bs: the bio_set to allocate from.
402 *
403 * Description:
404 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
405 * backed by the @bs's mempool.
406 *
407 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
408 * always be able to allocate a bio. This is due to the mempool guarantees.
409 * To make this work, callers must never allocate more than 1 bio at a time
410 * from this pool. Callers that need to allocate more than 1 bio must always
411 * submit the previously allocated bio for IO before attempting to allocate
412 * a new one. Failure to do so can cause deadlocks under memory pressure.
413 *
414 * Note that when running under generic_make_request() (i.e. any block
415 * driver), bios are not submitted until after you return - see the code in
416 * generic_make_request() that converts recursion into iteration, to prevent
417 * stack overflows.
418 *
419 * This would normally mean allocating multiple bios under
420 * generic_make_request() would be susceptible to deadlocks, but we have
421 * deadlock avoidance code that resubmits any blocked bios from a rescuer
422 * thread.
423 *
424 * However, we do not guarantee forward progress for allocations from other
425 * mempools. Doing multiple allocations from the same mempool under
426 * generic_make_request() should be avoided - instead, use bio_set's front_pad
427 * for per bio allocations.
428 *
429 * RETURNS:
430 * Pointer to new bio on success, NULL on failure.
431 */
bio_alloc_bioset(gfp_t gfp_mask,unsigned int nr_iovecs,struct bio_set * bs)432 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
433 struct bio_set *bs)
434 {
435 gfp_t saved_gfp = gfp_mask;
436 unsigned front_pad;
437 unsigned inline_vecs;
438 struct bio_vec *bvl = NULL;
439 struct bio *bio;
440 void *p;
441
442 if (!bs) {
443 if (nr_iovecs > UIO_MAXIOV)
444 return NULL;
445
446 p = kmalloc(sizeof(struct bio) +
447 nr_iovecs * sizeof(struct bio_vec),
448 gfp_mask);
449 front_pad = 0;
450 inline_vecs = nr_iovecs;
451 } else {
452 /* should not use nobvec bioset for nr_iovecs > 0 */
453 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
454 nr_iovecs > 0))
455 return NULL;
456 /*
457 * generic_make_request() converts recursion to iteration; this
458 * means if we're running beneath it, any bios we allocate and
459 * submit will not be submitted (and thus freed) until after we
460 * return.
461 *
462 * This exposes us to a potential deadlock if we allocate
463 * multiple bios from the same bio_set() while running
464 * underneath generic_make_request(). If we were to allocate
465 * multiple bios (say a stacking block driver that was splitting
466 * bios), we would deadlock if we exhausted the mempool's
467 * reserve.
468 *
469 * We solve this, and guarantee forward progress, with a rescuer
470 * workqueue per bio_set. If we go to allocate and there are
471 * bios on current->bio_list, we first try the allocation
472 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
473 * bios we would be blocking to the rescuer workqueue before
474 * we retry with the original gfp_flags.
475 */
476
477 if (current->bio_list &&
478 (!bio_list_empty(¤t->bio_list[0]) ||
479 !bio_list_empty(¤t->bio_list[1])) &&
480 bs->rescue_workqueue)
481 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
482
483 p = mempool_alloc(&bs->bio_pool, gfp_mask);
484 if (!p && gfp_mask != saved_gfp) {
485 punt_bios_to_rescuer(bs);
486 gfp_mask = saved_gfp;
487 p = mempool_alloc(&bs->bio_pool, gfp_mask);
488 }
489
490 front_pad = bs->front_pad;
491 inline_vecs = BIO_INLINE_VECS;
492 }
493
494 if (unlikely(!p))
495 return NULL;
496
497 bio = p + front_pad;
498 bio_init(bio, NULL, 0);
499
500 if (nr_iovecs > inline_vecs) {
501 unsigned long idx = 0;
502
503 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
504 if (!bvl && gfp_mask != saved_gfp) {
505 punt_bios_to_rescuer(bs);
506 gfp_mask = saved_gfp;
507 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
508 }
509
510 if (unlikely(!bvl))
511 goto err_free;
512
513 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
514 } else if (nr_iovecs) {
515 bvl = bio->bi_inline_vecs;
516 }
517
518 bio->bi_pool = bs;
519 bio->bi_max_vecs = nr_iovecs;
520 bio->bi_io_vec = bvl;
521 return bio;
522
523 err_free:
524 mempool_free(p, &bs->bio_pool);
525 return NULL;
526 }
527 EXPORT_SYMBOL(bio_alloc_bioset);
528
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)529 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
530 {
531 unsigned long flags;
532 struct bio_vec bv;
533 struct bvec_iter iter;
534
535 __bio_for_each_segment(bv, bio, iter, start) {
536 char *data = bvec_kmap_irq(&bv, &flags);
537 memset(data, 0, bv.bv_len);
538 flush_dcache_page(bv.bv_page);
539 bvec_kunmap_irq(data, &flags);
540 }
541 }
542 EXPORT_SYMBOL(zero_fill_bio_iter);
543
544 /**
545 * bio_truncate - truncate the bio to small size of @new_size
546 * @bio: the bio to be truncated
547 * @new_size: new size for truncating the bio
548 *
549 * Description:
550 * Truncate the bio to new size of @new_size. If bio_op(bio) is
551 * REQ_OP_READ, zero the truncated part. This function should only
552 * be used for handling corner cases, such as bio eod.
553 */
bio_truncate(struct bio * bio,unsigned new_size)554 void bio_truncate(struct bio *bio, unsigned new_size)
555 {
556 struct bio_vec bv;
557 struct bvec_iter iter;
558 unsigned int done = 0;
559 bool truncated = false;
560
561 if (new_size >= bio->bi_iter.bi_size)
562 return;
563
564 if (bio_op(bio) != REQ_OP_READ)
565 goto exit;
566
567 bio_for_each_segment(bv, bio, iter) {
568 if (done + bv.bv_len > new_size) {
569 unsigned offset;
570
571 if (!truncated)
572 offset = new_size - done;
573 else
574 offset = 0;
575 zero_user(bv.bv_page, offset, bv.bv_len - offset);
576 truncated = true;
577 }
578 done += bv.bv_len;
579 }
580
581 exit:
582 /*
583 * Don't touch bvec table here and make it really immutable, since
584 * fs bio user has to retrieve all pages via bio_for_each_segment_all
585 * in its .end_bio() callback.
586 *
587 * It is enough to truncate bio by updating .bi_size since we can make
588 * correct bvec with the updated .bi_size for drivers.
589 */
590 bio->bi_iter.bi_size = new_size;
591 }
592
593 /**
594 * bio_put - release a reference to a bio
595 * @bio: bio to release reference to
596 *
597 * Description:
598 * Put a reference to a &struct bio, either one you have gotten with
599 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
600 **/
bio_put(struct bio * bio)601 void bio_put(struct bio *bio)
602 {
603 if (!bio_flagged(bio, BIO_REFFED))
604 bio_free(bio);
605 else {
606 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
607
608 /*
609 * last put frees it
610 */
611 if (atomic_dec_and_test(&bio->__bi_cnt))
612 bio_free(bio);
613 }
614 }
615 EXPORT_SYMBOL(bio_put);
616
617 /**
618 * __bio_clone_fast - clone a bio that shares the original bio's biovec
619 * @bio: destination bio
620 * @bio_src: bio to clone
621 *
622 * Clone a &bio. Caller will own the returned bio, but not
623 * the actual data it points to. Reference count of returned
624 * bio will be one.
625 *
626 * Caller must ensure that @bio_src is not freed before @bio.
627 */
__bio_clone_fast(struct bio * bio,struct bio * bio_src)628 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
629 {
630 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
631
632 /*
633 * most users will be overriding ->bi_disk with a new target,
634 * so we don't set nor calculate new physical/hw segment counts here
635 */
636 bio->bi_disk = bio_src->bi_disk;
637 bio->bi_partno = bio_src->bi_partno;
638 bio_set_flag(bio, BIO_CLONED);
639 if (bio_flagged(bio_src, BIO_THROTTLED))
640 bio_set_flag(bio, BIO_THROTTLED);
641 bio->bi_opf = bio_src->bi_opf;
642 bio->bi_ioprio = bio_src->bi_ioprio;
643 bio->bi_write_hint = bio_src->bi_write_hint;
644 bio->bi_iter = bio_src->bi_iter;
645 bio->bi_io_vec = bio_src->bi_io_vec;
646
647 bio_clone_blkg_association(bio, bio_src);
648 blkcg_bio_issue_init(bio);
649 }
650 EXPORT_SYMBOL(__bio_clone_fast);
651
652 /**
653 * bio_clone_fast - clone a bio that shares the original bio's biovec
654 * @bio: bio to clone
655 * @gfp_mask: allocation priority
656 * @bs: bio_set to allocate from
657 *
658 * Like __bio_clone_fast, only also allocates the returned bio
659 */
bio_clone_fast(struct bio * bio,gfp_t gfp_mask,struct bio_set * bs)660 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
661 {
662 struct bio *b;
663
664 b = bio_alloc_bioset(gfp_mask, 0, bs);
665 if (!b)
666 return NULL;
667
668 __bio_clone_fast(b, bio);
669
670 bio_crypt_clone(b, bio, gfp_mask);
671
672 if (bio_integrity(bio) &&
673 bio_integrity_clone(b, bio, gfp_mask) < 0) {
674 bio_put(b);
675 return NULL;
676 }
677
678 return b;
679 }
680 EXPORT_SYMBOL(bio_clone_fast);
681
page_is_mergeable(const struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off,bool * same_page)682 static inline bool page_is_mergeable(const struct bio_vec *bv,
683 struct page *page, unsigned int len, unsigned int off,
684 bool *same_page)
685 {
686 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
687 bv->bv_offset + bv->bv_len - 1;
688 phys_addr_t page_addr = page_to_phys(page);
689
690 if (vec_end_addr + 1 != page_addr + off)
691 return false;
692 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
693 return false;
694
695 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
696 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
697 return false;
698 return true;
699 }
700
bio_try_merge_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned len,unsigned offset,bool * same_page)701 static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
702 struct page *page, unsigned len, unsigned offset,
703 bool *same_page)
704 {
705 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
706 unsigned long mask = queue_segment_boundary(q);
707 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
708 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
709
710 if ((addr1 | mask) != (addr2 | mask))
711 return false;
712 if (bv->bv_len + len > queue_max_segment_size(q))
713 return false;
714 return __bio_try_merge_page(bio, page, len, offset, same_page);
715 }
716
717 /**
718 * __bio_add_pc_page - attempt to add page to passthrough bio
719 * @q: the target queue
720 * @bio: destination bio
721 * @page: page to add
722 * @len: vec entry length
723 * @offset: vec entry offset
724 * @same_page: return if the merge happen inside the same page
725 *
726 * Attempt to add a page to the bio_vec maplist. This can fail for a
727 * number of reasons, such as the bio being full or target block device
728 * limitations. The target block device must allow bio's up to PAGE_SIZE,
729 * so it is always possible to add a single page to an empty bio.
730 *
731 * This should only be used by passthrough bios.
732 */
__bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset,bool * same_page)733 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
734 struct page *page, unsigned int len, unsigned int offset,
735 bool *same_page)
736 {
737 struct bio_vec *bvec;
738
739 /*
740 * cloned bio must not modify vec list
741 */
742 if (unlikely(bio_flagged(bio, BIO_CLONED)))
743 return 0;
744
745 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
746 return 0;
747
748 if (bio->bi_vcnt > 0) {
749 if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
750 return len;
751
752 /*
753 * If the queue doesn't support SG gaps and adding this segment
754 * would create a gap, disallow it.
755 */
756 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
757 if (bvec_gap_to_prev(q, bvec, offset))
758 return 0;
759 }
760
761 if (bio_full(bio, len))
762 return 0;
763
764 if (bio->bi_vcnt >= queue_max_segments(q))
765 return 0;
766
767 bvec = &bio->bi_io_vec[bio->bi_vcnt];
768 bvec->bv_page = page;
769 bvec->bv_len = len;
770 bvec->bv_offset = offset;
771 bio->bi_vcnt++;
772 bio->bi_iter.bi_size += len;
773 return len;
774 }
775
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)776 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
777 struct page *page, unsigned int len, unsigned int offset)
778 {
779 bool same_page = false;
780 return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
781 }
782 EXPORT_SYMBOL(bio_add_pc_page);
783
784 /**
785 * __bio_try_merge_page - try appending data to an existing bvec.
786 * @bio: destination bio
787 * @page: start page to add
788 * @len: length of the data to add
789 * @off: offset of the data relative to @page
790 * @same_page: return if the segment has been merged inside the same page
791 *
792 * Try to add the data at @page + @off to the last bvec of @bio. This is a
793 * a useful optimisation for file systems with a block size smaller than the
794 * page size.
795 *
796 * Warn if (@len, @off) crosses pages in case that @same_page is true.
797 *
798 * Return %true on success or %false on failure.
799 */
__bio_try_merge_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off,bool * same_page)800 bool __bio_try_merge_page(struct bio *bio, struct page *page,
801 unsigned int len, unsigned int off, bool *same_page)
802 {
803 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
804 return false;
805
806 if (bio->bi_vcnt > 0) {
807 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
808
809 if (page_is_mergeable(bv, page, len, off, same_page)) {
810 if (bio->bi_iter.bi_size > UINT_MAX - len)
811 return false;
812 bv->bv_len += len;
813 bio->bi_iter.bi_size += len;
814 return true;
815 }
816 }
817 return false;
818 }
819 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
820
821 /**
822 * __bio_add_page - add page(s) to a bio in a new segment
823 * @bio: destination bio
824 * @page: start page to add
825 * @len: length of the data to add, may cross pages
826 * @off: offset of the data relative to @page, may cross pages
827 *
828 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
829 * that @bio has space for another bvec.
830 */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)831 void __bio_add_page(struct bio *bio, struct page *page,
832 unsigned int len, unsigned int off)
833 {
834 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
835
836 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
837 WARN_ON_ONCE(bio_full(bio, len));
838
839 bv->bv_page = page;
840 bv->bv_offset = off;
841 bv->bv_len = len;
842
843 bio->bi_iter.bi_size += len;
844 bio->bi_vcnt++;
845
846 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
847 bio_set_flag(bio, BIO_WORKINGSET);
848 }
849 EXPORT_SYMBOL_GPL(__bio_add_page);
850
851 /**
852 * bio_add_page - attempt to add page(s) to bio
853 * @bio: destination bio
854 * @page: start page to add
855 * @len: vec entry length, may cross pages
856 * @offset: vec entry offset relative to @page, may cross pages
857 *
858 * Attempt to add page(s) to the bio_vec maplist. This will only fail
859 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
860 */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)861 int bio_add_page(struct bio *bio, struct page *page,
862 unsigned int len, unsigned int offset)
863 {
864 bool same_page = false;
865
866 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
867 if (bio_full(bio, len))
868 return 0;
869 __bio_add_page(bio, page, len, offset);
870 }
871 return len;
872 }
873 EXPORT_SYMBOL(bio_add_page);
874
bio_release_pages(struct bio * bio,bool mark_dirty)875 void bio_release_pages(struct bio *bio, bool mark_dirty)
876 {
877 struct bvec_iter_all iter_all;
878 struct bio_vec *bvec;
879
880 if (bio_flagged(bio, BIO_NO_PAGE_REF))
881 return;
882
883 bio_for_each_segment_all(bvec, bio, iter_all) {
884 if (mark_dirty && !PageCompound(bvec->bv_page))
885 set_page_dirty_lock(bvec->bv_page);
886 put_page(bvec->bv_page);
887 }
888 }
889
__bio_iov_bvec_add_pages(struct bio * bio,struct iov_iter * iter)890 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
891 {
892 const struct bio_vec *bv = iter->bvec;
893 unsigned int len;
894 size_t size;
895
896 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
897 return -EINVAL;
898
899 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
900 size = bio_add_page(bio, bv->bv_page, len,
901 bv->bv_offset + iter->iov_offset);
902 if (unlikely(size != len))
903 return -EINVAL;
904 iov_iter_advance(iter, size);
905 return 0;
906 }
907
908 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
909
910 /**
911 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
912 * @bio: bio to add pages to
913 * @iter: iov iterator describing the region to be mapped
914 *
915 * Pins pages from *iter and appends them to @bio's bvec array. The
916 * pages will have to be released using put_page() when done.
917 * For multi-segment *iter, this function only adds pages from the
918 * the next non-empty segment of the iov iterator.
919 */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)920 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
921 {
922 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
923 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
924 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
925 struct page **pages = (struct page **)bv;
926 bool same_page = false;
927 ssize_t size, left;
928 unsigned len, i;
929 size_t offset;
930
931 /*
932 * Move page array up in the allocated memory for the bio vecs as far as
933 * possible so that we can start filling biovecs from the beginning
934 * without overwriting the temporary page array.
935 */
936 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
937 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
938
939 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
940 if (unlikely(size <= 0))
941 return size ? size : -EFAULT;
942
943 for (left = size, i = 0; left > 0; left -= len, i++) {
944 struct page *page = pages[i];
945
946 len = min_t(size_t, PAGE_SIZE - offset, left);
947
948 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
949 if (same_page)
950 put_page(page);
951 } else {
952 if (WARN_ON_ONCE(bio_full(bio, len)))
953 return -EINVAL;
954 __bio_add_page(bio, page, len, offset);
955 }
956 offset = 0;
957 }
958
959 iov_iter_advance(iter, size);
960 return 0;
961 }
962
963 /**
964 * bio_iov_iter_get_pages - add user or kernel pages to a bio
965 * @bio: bio to add pages to
966 * @iter: iov iterator describing the region to be added
967 *
968 * This takes either an iterator pointing to user memory, or one pointing to
969 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
970 * map them into the kernel. On IO completion, the caller should put those
971 * pages. If we're adding kernel pages, and the caller told us it's safe to
972 * do so, we just have to add the pages to the bio directly. We don't grab an
973 * extra reference to those pages (the user should already have that), and we
974 * don't put the page on IO completion. The caller needs to check if the bio is
975 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
976 * released.
977 *
978 * The function tries, but does not guarantee, to pin as many pages as
979 * fit into the bio, or are requested in *iter, whatever is smaller. If
980 * MM encounters an error pinning the requested pages, it stops. Error
981 * is returned only if 0 pages could be pinned.
982 */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)983 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
984 {
985 const bool is_bvec = iov_iter_is_bvec(iter);
986 int ret;
987
988 if (WARN_ON_ONCE(bio->bi_vcnt))
989 return -EINVAL;
990
991 do {
992 if (is_bvec)
993 ret = __bio_iov_bvec_add_pages(bio, iter);
994 else
995 ret = __bio_iov_iter_get_pages(bio, iter);
996 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
997
998 if (is_bvec)
999 bio_set_flag(bio, BIO_NO_PAGE_REF);
1000 return bio->bi_vcnt ? 0 : ret;
1001 }
1002
submit_bio_wait_endio(struct bio * bio)1003 static void submit_bio_wait_endio(struct bio *bio)
1004 {
1005 complete(bio->bi_private);
1006 }
1007
1008 /**
1009 * submit_bio_wait - submit a bio, and wait until it completes
1010 * @bio: The &struct bio which describes the I/O
1011 *
1012 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1013 * bio_endio() on failure.
1014 *
1015 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1016 * result in bio reference to be consumed. The caller must drop the reference
1017 * on his own.
1018 */
submit_bio_wait(struct bio * bio)1019 int submit_bio_wait(struct bio *bio)
1020 {
1021 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1022
1023 bio->bi_private = &done;
1024 bio->bi_end_io = submit_bio_wait_endio;
1025 bio->bi_opf |= REQ_SYNC;
1026 submit_bio(bio);
1027 wait_for_completion_io(&done);
1028
1029 return blk_status_to_errno(bio->bi_status);
1030 }
1031 EXPORT_SYMBOL(submit_bio_wait);
1032
1033 /**
1034 * bio_advance - increment/complete a bio by some number of bytes
1035 * @bio: bio to advance
1036 * @bytes: number of bytes to complete
1037 *
1038 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1039 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1040 * be updated on the last bvec as well.
1041 *
1042 * @bio will then represent the remaining, uncompleted portion of the io.
1043 */
bio_advance(struct bio * bio,unsigned bytes)1044 void bio_advance(struct bio *bio, unsigned bytes)
1045 {
1046 if (bio_integrity(bio))
1047 bio_integrity_advance(bio, bytes);
1048
1049 bio_crypt_advance(bio, bytes);
1050 bio_advance_iter(bio, &bio->bi_iter, bytes);
1051 }
1052 EXPORT_SYMBOL(bio_advance);
1053
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1054 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1055 struct bio *src, struct bvec_iter *src_iter)
1056 {
1057 struct bio_vec src_bv, dst_bv;
1058 void *src_p, *dst_p;
1059 unsigned bytes;
1060
1061 while (src_iter->bi_size && dst_iter->bi_size) {
1062 src_bv = bio_iter_iovec(src, *src_iter);
1063 dst_bv = bio_iter_iovec(dst, *dst_iter);
1064
1065 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1066
1067 src_p = kmap_atomic(src_bv.bv_page);
1068 dst_p = kmap_atomic(dst_bv.bv_page);
1069
1070 memcpy(dst_p + dst_bv.bv_offset,
1071 src_p + src_bv.bv_offset,
1072 bytes);
1073
1074 kunmap_atomic(dst_p);
1075 kunmap_atomic(src_p);
1076
1077 flush_dcache_page(dst_bv.bv_page);
1078
1079 bio_advance_iter(src, src_iter, bytes);
1080 bio_advance_iter(dst, dst_iter, bytes);
1081 }
1082 }
1083 EXPORT_SYMBOL(bio_copy_data_iter);
1084
1085 /**
1086 * bio_copy_data - copy contents of data buffers from one bio to another
1087 * @src: source bio
1088 * @dst: destination bio
1089 *
1090 * Stops when it reaches the end of either @src or @dst - that is, copies
1091 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1092 */
bio_copy_data(struct bio * dst,struct bio * src)1093 void bio_copy_data(struct bio *dst, struct bio *src)
1094 {
1095 struct bvec_iter src_iter = src->bi_iter;
1096 struct bvec_iter dst_iter = dst->bi_iter;
1097
1098 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1099 }
1100 EXPORT_SYMBOL(bio_copy_data);
1101
1102 /**
1103 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1104 * another
1105 * @src: source bio list
1106 * @dst: destination bio list
1107 *
1108 * Stops when it reaches the end of either the @src list or @dst list - that is,
1109 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1110 * bios).
1111 */
bio_list_copy_data(struct bio * dst,struct bio * src)1112 void bio_list_copy_data(struct bio *dst, struct bio *src)
1113 {
1114 struct bvec_iter src_iter = src->bi_iter;
1115 struct bvec_iter dst_iter = dst->bi_iter;
1116
1117 while (1) {
1118 if (!src_iter.bi_size) {
1119 src = src->bi_next;
1120 if (!src)
1121 break;
1122
1123 src_iter = src->bi_iter;
1124 }
1125
1126 if (!dst_iter.bi_size) {
1127 dst = dst->bi_next;
1128 if (!dst)
1129 break;
1130
1131 dst_iter = dst->bi_iter;
1132 }
1133
1134 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1135 }
1136 }
1137 EXPORT_SYMBOL(bio_list_copy_data);
1138
1139 struct bio_map_data {
1140 int is_our_pages;
1141 struct iov_iter iter;
1142 struct iovec iov[];
1143 };
1144
bio_alloc_map_data(struct iov_iter * data,gfp_t gfp_mask)1145 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1146 gfp_t gfp_mask)
1147 {
1148 struct bio_map_data *bmd;
1149 if (data->nr_segs > UIO_MAXIOV)
1150 return NULL;
1151
1152 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1153 if (!bmd)
1154 return NULL;
1155 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1156 bmd->iter = *data;
1157 bmd->iter.iov = bmd->iov;
1158 return bmd;
1159 }
1160
1161 /**
1162 * bio_copy_from_iter - copy all pages from iov_iter to bio
1163 * @bio: The &struct bio which describes the I/O as destination
1164 * @iter: iov_iter as source
1165 *
1166 * Copy all pages from iov_iter to bio.
1167 * Returns 0 on success, or error on failure.
1168 */
bio_copy_from_iter(struct bio * bio,struct iov_iter * iter)1169 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1170 {
1171 struct bio_vec *bvec;
1172 struct bvec_iter_all iter_all;
1173
1174 bio_for_each_segment_all(bvec, bio, iter_all) {
1175 ssize_t ret;
1176
1177 ret = copy_page_from_iter(bvec->bv_page,
1178 bvec->bv_offset,
1179 bvec->bv_len,
1180 iter);
1181
1182 if (!iov_iter_count(iter))
1183 break;
1184
1185 if (ret < bvec->bv_len)
1186 return -EFAULT;
1187 }
1188
1189 return 0;
1190 }
1191
1192 /**
1193 * bio_copy_to_iter - copy all pages from bio to iov_iter
1194 * @bio: The &struct bio which describes the I/O as source
1195 * @iter: iov_iter as destination
1196 *
1197 * Copy all pages from bio to iov_iter.
1198 * Returns 0 on success, or error on failure.
1199 */
bio_copy_to_iter(struct bio * bio,struct iov_iter iter)1200 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1201 {
1202 struct bio_vec *bvec;
1203 struct bvec_iter_all iter_all;
1204
1205 bio_for_each_segment_all(bvec, bio, iter_all) {
1206 ssize_t ret;
1207
1208 ret = copy_page_to_iter(bvec->bv_page,
1209 bvec->bv_offset,
1210 bvec->bv_len,
1211 &iter);
1212
1213 if (!iov_iter_count(&iter))
1214 break;
1215
1216 if (ret < bvec->bv_len)
1217 return -EFAULT;
1218 }
1219
1220 return 0;
1221 }
1222
bio_free_pages(struct bio * bio)1223 void bio_free_pages(struct bio *bio)
1224 {
1225 struct bio_vec *bvec;
1226 struct bvec_iter_all iter_all;
1227
1228 bio_for_each_segment_all(bvec, bio, iter_all)
1229 __free_page(bvec->bv_page);
1230 }
1231 EXPORT_SYMBOL(bio_free_pages);
1232
1233 /**
1234 * bio_uncopy_user - finish previously mapped bio
1235 * @bio: bio being terminated
1236 *
1237 * Free pages allocated from bio_copy_user_iov() and write back data
1238 * to user space in case of a read.
1239 */
bio_uncopy_user(struct bio * bio)1240 int bio_uncopy_user(struct bio *bio)
1241 {
1242 struct bio_map_data *bmd = bio->bi_private;
1243 int ret = 0;
1244
1245 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1246 /*
1247 * if we're in a workqueue, the request is orphaned, so
1248 * don't copy into a random user address space, just free
1249 * and return -EINTR so user space doesn't expect any data.
1250 */
1251 if (!current->mm)
1252 ret = -EINTR;
1253 else if (bio_data_dir(bio) == READ)
1254 ret = bio_copy_to_iter(bio, bmd->iter);
1255 if (bmd->is_our_pages)
1256 bio_free_pages(bio);
1257 }
1258 kfree(bmd);
1259 bio_put(bio);
1260 return ret;
1261 }
1262
1263 /**
1264 * bio_copy_user_iov - copy user data to bio
1265 * @q: destination block queue
1266 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1267 * @iter: iovec iterator
1268 * @gfp_mask: memory allocation flags
1269 *
1270 * Prepares and returns a bio for indirect user io, bouncing data
1271 * to/from kernel pages as necessary. Must be paired with
1272 * call bio_uncopy_user() on io completion.
1273 */
bio_copy_user_iov(struct request_queue * q,struct rq_map_data * map_data,struct iov_iter * iter,gfp_t gfp_mask)1274 struct bio *bio_copy_user_iov(struct request_queue *q,
1275 struct rq_map_data *map_data,
1276 struct iov_iter *iter,
1277 gfp_t gfp_mask)
1278 {
1279 struct bio_map_data *bmd;
1280 struct page *page;
1281 struct bio *bio;
1282 int i = 0, ret;
1283 int nr_pages;
1284 unsigned int len = iter->count;
1285 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1286
1287 bmd = bio_alloc_map_data(iter, gfp_mask);
1288 if (!bmd)
1289 return ERR_PTR(-ENOMEM);
1290
1291 /*
1292 * We need to do a deep copy of the iov_iter including the iovecs.
1293 * The caller provided iov might point to an on-stack or otherwise
1294 * shortlived one.
1295 */
1296 bmd->is_our_pages = map_data ? 0 : 1;
1297
1298 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1299 if (nr_pages > BIO_MAX_PAGES)
1300 nr_pages = BIO_MAX_PAGES;
1301
1302 ret = -ENOMEM;
1303 bio = bio_kmalloc(gfp_mask, nr_pages);
1304 if (!bio)
1305 goto out_bmd;
1306
1307 ret = 0;
1308
1309 if (map_data) {
1310 nr_pages = 1 << map_data->page_order;
1311 i = map_data->offset / PAGE_SIZE;
1312 }
1313 while (len) {
1314 unsigned int bytes = PAGE_SIZE;
1315
1316 bytes -= offset;
1317
1318 if (bytes > len)
1319 bytes = len;
1320
1321 if (map_data) {
1322 if (i == map_data->nr_entries * nr_pages) {
1323 ret = -ENOMEM;
1324 break;
1325 }
1326
1327 page = map_data->pages[i / nr_pages];
1328 page += (i % nr_pages);
1329
1330 i++;
1331 } else {
1332 page = alloc_page(q->bounce_gfp | gfp_mask);
1333 if (!page) {
1334 ret = -ENOMEM;
1335 break;
1336 }
1337 }
1338
1339 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1340 if (!map_data)
1341 __free_page(page);
1342 break;
1343 }
1344
1345 len -= bytes;
1346 offset = 0;
1347 }
1348
1349 if (ret)
1350 goto cleanup;
1351
1352 if (map_data)
1353 map_data->offset += bio->bi_iter.bi_size;
1354
1355 /*
1356 * success
1357 */
1358 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1359 (map_data && map_data->from_user)) {
1360 ret = bio_copy_from_iter(bio, iter);
1361 if (ret)
1362 goto cleanup;
1363 } else {
1364 if (bmd->is_our_pages)
1365 zero_fill_bio(bio);
1366 iov_iter_advance(iter, bio->bi_iter.bi_size);
1367 }
1368
1369 bio->bi_private = bmd;
1370 if (map_data && map_data->null_mapped)
1371 bio_set_flag(bio, BIO_NULL_MAPPED);
1372 return bio;
1373 cleanup:
1374 if (!map_data)
1375 bio_free_pages(bio);
1376 bio_put(bio);
1377 out_bmd:
1378 kfree(bmd);
1379 return ERR_PTR(ret);
1380 }
1381
1382 /**
1383 * bio_map_user_iov - map user iovec into bio
1384 * @q: the struct request_queue for the bio
1385 * @iter: iovec iterator
1386 * @gfp_mask: memory allocation flags
1387 *
1388 * Map the user space address into a bio suitable for io to a block
1389 * device. Returns an error pointer in case of error.
1390 */
bio_map_user_iov(struct request_queue * q,struct iov_iter * iter,gfp_t gfp_mask)1391 struct bio *bio_map_user_iov(struct request_queue *q,
1392 struct iov_iter *iter,
1393 gfp_t gfp_mask)
1394 {
1395 int j;
1396 struct bio *bio;
1397 int ret;
1398
1399 if (!iov_iter_count(iter))
1400 return ERR_PTR(-EINVAL);
1401
1402 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1403 if (!bio)
1404 return ERR_PTR(-ENOMEM);
1405
1406 while (iov_iter_count(iter)) {
1407 struct page **pages;
1408 ssize_t bytes;
1409 size_t offs, added = 0;
1410 int npages;
1411
1412 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1413 if (unlikely(bytes <= 0)) {
1414 ret = bytes ? bytes : -EFAULT;
1415 goto out_unmap;
1416 }
1417
1418 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1419
1420 if (unlikely(offs & queue_dma_alignment(q))) {
1421 ret = -EINVAL;
1422 j = 0;
1423 } else {
1424 for (j = 0; j < npages; j++) {
1425 struct page *page = pages[j];
1426 unsigned int n = PAGE_SIZE - offs;
1427 bool same_page = false;
1428
1429 if (n > bytes)
1430 n = bytes;
1431
1432 if (!__bio_add_pc_page(q, bio, page, n, offs,
1433 &same_page)) {
1434 if (same_page)
1435 put_page(page);
1436 break;
1437 }
1438
1439 added += n;
1440 bytes -= n;
1441 offs = 0;
1442 }
1443 iov_iter_advance(iter, added);
1444 }
1445 /*
1446 * release the pages we didn't map into the bio, if any
1447 */
1448 while (j < npages)
1449 put_page(pages[j++]);
1450 kvfree(pages);
1451 /* couldn't stuff something into bio? */
1452 if (bytes)
1453 break;
1454 }
1455
1456 bio_set_flag(bio, BIO_USER_MAPPED);
1457
1458 /*
1459 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1460 * it would normally disappear when its bi_end_io is run.
1461 * however, we need it for the unmap, so grab an extra
1462 * reference to it
1463 */
1464 bio_get(bio);
1465 return bio;
1466
1467 out_unmap:
1468 bio_release_pages(bio, false);
1469 bio_put(bio);
1470 return ERR_PTR(ret);
1471 }
1472
1473 /**
1474 * bio_unmap_user - unmap a bio
1475 * @bio: the bio being unmapped
1476 *
1477 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1478 * process context.
1479 *
1480 * bio_unmap_user() may sleep.
1481 */
bio_unmap_user(struct bio * bio)1482 void bio_unmap_user(struct bio *bio)
1483 {
1484 bio_release_pages(bio, bio_data_dir(bio) == READ);
1485 bio_put(bio);
1486 bio_put(bio);
1487 }
1488
bio_invalidate_vmalloc_pages(struct bio * bio)1489 static void bio_invalidate_vmalloc_pages(struct bio *bio)
1490 {
1491 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1492 if (bio->bi_private && !op_is_write(bio_op(bio))) {
1493 unsigned long i, len = 0;
1494
1495 for (i = 0; i < bio->bi_vcnt; i++)
1496 len += bio->bi_io_vec[i].bv_len;
1497 invalidate_kernel_vmap_range(bio->bi_private, len);
1498 }
1499 #endif
1500 }
1501
bio_map_kern_endio(struct bio * bio)1502 static void bio_map_kern_endio(struct bio *bio)
1503 {
1504 bio_invalidate_vmalloc_pages(bio);
1505 bio_put(bio);
1506 }
1507
1508 /**
1509 * bio_map_kern - map kernel address into bio
1510 * @q: the struct request_queue for the bio
1511 * @data: pointer to buffer to map
1512 * @len: length in bytes
1513 * @gfp_mask: allocation flags for bio allocation
1514 *
1515 * Map the kernel address into a bio suitable for io to a block
1516 * device. Returns an error pointer in case of error.
1517 */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1518 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1519 gfp_t gfp_mask)
1520 {
1521 unsigned long kaddr = (unsigned long)data;
1522 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1523 unsigned long start = kaddr >> PAGE_SHIFT;
1524 const int nr_pages = end - start;
1525 bool is_vmalloc = is_vmalloc_addr(data);
1526 struct page *page;
1527 int offset, i;
1528 struct bio *bio;
1529
1530 bio = bio_kmalloc(gfp_mask, nr_pages);
1531 if (!bio)
1532 return ERR_PTR(-ENOMEM);
1533
1534 if (is_vmalloc) {
1535 flush_kernel_vmap_range(data, len);
1536 bio->bi_private = data;
1537 }
1538
1539 offset = offset_in_page(kaddr);
1540 for (i = 0; i < nr_pages; i++) {
1541 unsigned int bytes = PAGE_SIZE - offset;
1542
1543 if (len <= 0)
1544 break;
1545
1546 if (bytes > len)
1547 bytes = len;
1548
1549 if (!is_vmalloc)
1550 page = virt_to_page(data);
1551 else
1552 page = vmalloc_to_page(data);
1553 if (bio_add_pc_page(q, bio, page, bytes,
1554 offset) < bytes) {
1555 /* we don't support partial mappings */
1556 bio_put(bio);
1557 return ERR_PTR(-EINVAL);
1558 }
1559
1560 data += bytes;
1561 len -= bytes;
1562 offset = 0;
1563 }
1564
1565 bio->bi_end_io = bio_map_kern_endio;
1566 return bio;
1567 }
1568
bio_copy_kern_endio(struct bio * bio)1569 static void bio_copy_kern_endio(struct bio *bio)
1570 {
1571 bio_free_pages(bio);
1572 bio_put(bio);
1573 }
1574
bio_copy_kern_endio_read(struct bio * bio)1575 static void bio_copy_kern_endio_read(struct bio *bio)
1576 {
1577 char *p = bio->bi_private;
1578 struct bio_vec *bvec;
1579 struct bvec_iter_all iter_all;
1580
1581 bio_for_each_segment_all(bvec, bio, iter_all) {
1582 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1583 p += bvec->bv_len;
1584 }
1585
1586 bio_copy_kern_endio(bio);
1587 }
1588
1589 /**
1590 * bio_copy_kern - copy kernel address into bio
1591 * @q: the struct request_queue for the bio
1592 * @data: pointer to buffer to copy
1593 * @len: length in bytes
1594 * @gfp_mask: allocation flags for bio and page allocation
1595 * @reading: data direction is READ
1596 *
1597 * copy the kernel address into a bio suitable for io to a block
1598 * device. Returns an error pointer in case of error.
1599 */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)1600 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1601 gfp_t gfp_mask, int reading)
1602 {
1603 unsigned long kaddr = (unsigned long)data;
1604 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1605 unsigned long start = kaddr >> PAGE_SHIFT;
1606 struct bio *bio;
1607 void *p = data;
1608 int nr_pages = 0;
1609
1610 /*
1611 * Overflow, abort
1612 */
1613 if (end < start)
1614 return ERR_PTR(-EINVAL);
1615
1616 nr_pages = end - start;
1617 bio = bio_kmalloc(gfp_mask, nr_pages);
1618 if (!bio)
1619 return ERR_PTR(-ENOMEM);
1620
1621 while (len) {
1622 struct page *page;
1623 unsigned int bytes = PAGE_SIZE;
1624
1625 if (bytes > len)
1626 bytes = len;
1627
1628 page = alloc_page(q->bounce_gfp | gfp_mask);
1629 if (!page)
1630 goto cleanup;
1631
1632 if (!reading)
1633 memcpy(page_address(page), p, bytes);
1634
1635 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1636 break;
1637
1638 len -= bytes;
1639 p += bytes;
1640 }
1641
1642 if (reading) {
1643 bio->bi_end_io = bio_copy_kern_endio_read;
1644 bio->bi_private = data;
1645 } else {
1646 bio->bi_end_io = bio_copy_kern_endio;
1647 }
1648
1649 return bio;
1650
1651 cleanup:
1652 bio_free_pages(bio);
1653 bio_put(bio);
1654 return ERR_PTR(-ENOMEM);
1655 }
1656
1657 /*
1658 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1659 * for performing direct-IO in BIOs.
1660 *
1661 * The problem is that we cannot run set_page_dirty() from interrupt context
1662 * because the required locks are not interrupt-safe. So what we can do is to
1663 * mark the pages dirty _before_ performing IO. And in interrupt context,
1664 * check that the pages are still dirty. If so, fine. If not, redirty them
1665 * in process context.
1666 *
1667 * We special-case compound pages here: normally this means reads into hugetlb
1668 * pages. The logic in here doesn't really work right for compound pages
1669 * because the VM does not uniformly chase down the head page in all cases.
1670 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1671 * handle them at all. So we skip compound pages here at an early stage.
1672 *
1673 * Note that this code is very hard to test under normal circumstances because
1674 * direct-io pins the pages with get_user_pages(). This makes
1675 * is_page_cache_freeable return false, and the VM will not clean the pages.
1676 * But other code (eg, flusher threads) could clean the pages if they are mapped
1677 * pagecache.
1678 *
1679 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1680 * deferred bio dirtying paths.
1681 */
1682
1683 /*
1684 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1685 */
bio_set_pages_dirty(struct bio * bio)1686 void bio_set_pages_dirty(struct bio *bio)
1687 {
1688 struct bio_vec *bvec;
1689 struct bvec_iter_all iter_all;
1690
1691 bio_for_each_segment_all(bvec, bio, iter_all) {
1692 if (!PageCompound(bvec->bv_page))
1693 set_page_dirty_lock(bvec->bv_page);
1694 }
1695 }
1696
1697 /*
1698 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1699 * If they are, then fine. If, however, some pages are clean then they must
1700 * have been written out during the direct-IO read. So we take another ref on
1701 * the BIO and re-dirty the pages in process context.
1702 *
1703 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1704 * here on. It will run one put_page() against each page and will run one
1705 * bio_put() against the BIO.
1706 */
1707
1708 static void bio_dirty_fn(struct work_struct *work);
1709
1710 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1711 static DEFINE_SPINLOCK(bio_dirty_lock);
1712 static struct bio *bio_dirty_list;
1713
1714 /*
1715 * This runs in process context
1716 */
bio_dirty_fn(struct work_struct * work)1717 static void bio_dirty_fn(struct work_struct *work)
1718 {
1719 struct bio *bio, *next;
1720
1721 spin_lock_irq(&bio_dirty_lock);
1722 next = bio_dirty_list;
1723 bio_dirty_list = NULL;
1724 spin_unlock_irq(&bio_dirty_lock);
1725
1726 while ((bio = next) != NULL) {
1727 next = bio->bi_private;
1728
1729 bio_release_pages(bio, true);
1730 bio_put(bio);
1731 }
1732 }
1733
bio_check_pages_dirty(struct bio * bio)1734 void bio_check_pages_dirty(struct bio *bio)
1735 {
1736 struct bio_vec *bvec;
1737 unsigned long flags;
1738 struct bvec_iter_all iter_all;
1739
1740 bio_for_each_segment_all(bvec, bio, iter_all) {
1741 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1742 goto defer;
1743 }
1744
1745 bio_release_pages(bio, false);
1746 bio_put(bio);
1747 return;
1748 defer:
1749 spin_lock_irqsave(&bio_dirty_lock, flags);
1750 bio->bi_private = bio_dirty_list;
1751 bio_dirty_list = bio;
1752 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1753 schedule_work(&bio_dirty_work);
1754 }
1755
update_io_ticks(struct hd_struct * part,unsigned long now)1756 void update_io_ticks(struct hd_struct *part, unsigned long now)
1757 {
1758 unsigned long stamp;
1759 again:
1760 stamp = READ_ONCE(part->stamp);
1761 if (unlikely(stamp != now)) {
1762 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1763 __part_stat_add(part, io_ticks, 1);
1764 }
1765 }
1766 if (part->partno) {
1767 part = &part_to_disk(part)->part0;
1768 goto again;
1769 }
1770 }
1771
generic_start_io_acct(struct request_queue * q,int op,unsigned long sectors,struct hd_struct * part)1772 void generic_start_io_acct(struct request_queue *q, int op,
1773 unsigned long sectors, struct hd_struct *part)
1774 {
1775 const int sgrp = op_stat_group(op);
1776
1777 part_stat_lock();
1778
1779 update_io_ticks(part, jiffies);
1780 part_stat_inc(part, ios[sgrp]);
1781 part_stat_add(part, sectors[sgrp], sectors);
1782 part_inc_in_flight(q, part, op_is_write(op));
1783
1784 part_stat_unlock();
1785 }
1786 EXPORT_SYMBOL(generic_start_io_acct);
1787
generic_end_io_acct(struct request_queue * q,int req_op,struct hd_struct * part,unsigned long start_time)1788 void generic_end_io_acct(struct request_queue *q, int req_op,
1789 struct hd_struct *part, unsigned long start_time)
1790 {
1791 unsigned long now = jiffies;
1792 unsigned long duration = now - start_time;
1793 const int sgrp = op_stat_group(req_op);
1794
1795 part_stat_lock();
1796
1797 update_io_ticks(part, now);
1798 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1799 part_stat_add(part, time_in_queue, duration);
1800 part_dec_in_flight(q, part, op_is_write(req_op));
1801
1802 part_stat_unlock();
1803 }
1804 EXPORT_SYMBOL(generic_end_io_acct);
1805
bio_remaining_done(struct bio * bio)1806 static inline bool bio_remaining_done(struct bio *bio)
1807 {
1808 /*
1809 * If we're not chaining, then ->__bi_remaining is always 1 and
1810 * we always end io on the first invocation.
1811 */
1812 if (!bio_flagged(bio, BIO_CHAIN))
1813 return true;
1814
1815 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1816
1817 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1818 bio_clear_flag(bio, BIO_CHAIN);
1819 return true;
1820 }
1821
1822 return false;
1823 }
1824
1825 /**
1826 * bio_endio - end I/O on a bio
1827 * @bio: bio
1828 *
1829 * Description:
1830 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1831 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1832 * bio unless they own it and thus know that it has an end_io function.
1833 *
1834 * bio_endio() can be called several times on a bio that has been chained
1835 * using bio_chain(). The ->bi_end_io() function will only be called the
1836 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1837 * generated if BIO_TRACE_COMPLETION is set.
1838 **/
bio_endio(struct bio * bio)1839 void bio_endio(struct bio *bio)
1840 {
1841 again:
1842 if (!bio_remaining_done(bio))
1843 return;
1844
1845 if (!blk_crypto_endio(bio))
1846 return;
1847
1848 if (!bio_integrity_endio(bio))
1849 return;
1850
1851 if (bio->bi_disk)
1852 rq_qos_done_bio(bio->bi_disk->queue, bio);
1853
1854 /*
1855 * Need to have a real endio function for chained bios, otherwise
1856 * various corner cases will break (like stacking block devices that
1857 * save/restore bi_end_io) - however, we want to avoid unbounded
1858 * recursion and blowing the stack. Tail call optimization would
1859 * handle this, but compiling with frame pointers also disables
1860 * gcc's sibling call optimization.
1861 */
1862 if (bio->bi_end_io == bio_chain_endio) {
1863 bio = __bio_chain_endio(bio);
1864 goto again;
1865 }
1866
1867 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1868 trace_block_bio_complete(bio->bi_disk->queue, bio,
1869 blk_status_to_errno(bio->bi_status));
1870 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1871 }
1872
1873 blk_throtl_bio_endio(bio);
1874 /* release cgroup info */
1875 bio_uninit(bio);
1876 if (bio->bi_end_io)
1877 bio->bi_end_io(bio);
1878 }
1879 EXPORT_SYMBOL(bio_endio);
1880
1881 /**
1882 * bio_split - split a bio
1883 * @bio: bio to split
1884 * @sectors: number of sectors to split from the front of @bio
1885 * @gfp: gfp mask
1886 * @bs: bio set to allocate from
1887 *
1888 * Allocates and returns a new bio which represents @sectors from the start of
1889 * @bio, and updates @bio to represent the remaining sectors.
1890 *
1891 * Unless this is a discard request the newly allocated bio will point
1892 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1893 * neither @bio nor @bs are freed before the split bio.
1894 */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1895 struct bio *bio_split(struct bio *bio, int sectors,
1896 gfp_t gfp, struct bio_set *bs)
1897 {
1898 struct bio *split;
1899
1900 BUG_ON(sectors <= 0);
1901 BUG_ON(sectors >= bio_sectors(bio));
1902
1903 split = bio_clone_fast(bio, gfp, bs);
1904 if (!split)
1905 return NULL;
1906
1907 split->bi_iter.bi_size = sectors << 9;
1908
1909 if (bio_integrity(split))
1910 bio_integrity_trim(split);
1911
1912 bio_advance(bio, split->bi_iter.bi_size);
1913
1914 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1915 bio_set_flag(split, BIO_TRACE_COMPLETION);
1916
1917 return split;
1918 }
1919 EXPORT_SYMBOL(bio_split);
1920
1921 /**
1922 * bio_trim - trim a bio
1923 * @bio: bio to trim
1924 * @offset: number of sectors to trim from the front of @bio
1925 * @size: size we want to trim @bio to, in sectors
1926 */
bio_trim(struct bio * bio,int offset,int size)1927 void bio_trim(struct bio *bio, int offset, int size)
1928 {
1929 /* 'bio' is a cloned bio which we need to trim to match
1930 * the given offset and size.
1931 */
1932
1933 size <<= 9;
1934 if (offset == 0 && size == bio->bi_iter.bi_size)
1935 return;
1936
1937 bio_advance(bio, offset << 9);
1938 bio->bi_iter.bi_size = size;
1939
1940 if (bio_integrity(bio))
1941 bio_integrity_trim(bio);
1942
1943 }
1944 EXPORT_SYMBOL_GPL(bio_trim);
1945
1946 /*
1947 * create memory pools for biovec's in a bio_set.
1948 * use the global biovec slabs created for general use.
1949 */
biovec_init_pool(mempool_t * pool,int pool_entries)1950 int biovec_init_pool(mempool_t *pool, int pool_entries)
1951 {
1952 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1953
1954 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1955 }
1956
1957 /*
1958 * bioset_exit - exit a bioset initialized with bioset_init()
1959 *
1960 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1961 * kzalloc()).
1962 */
bioset_exit(struct bio_set * bs)1963 void bioset_exit(struct bio_set *bs)
1964 {
1965 if (bs->rescue_workqueue)
1966 destroy_workqueue(bs->rescue_workqueue);
1967 bs->rescue_workqueue = NULL;
1968
1969 mempool_exit(&bs->bio_pool);
1970 mempool_exit(&bs->bvec_pool);
1971
1972 bioset_integrity_free(bs);
1973 if (bs->bio_slab)
1974 bio_put_slab(bs);
1975 bs->bio_slab = NULL;
1976 }
1977 EXPORT_SYMBOL(bioset_exit);
1978
1979 /**
1980 * bioset_init - Initialize a bio_set
1981 * @bs: pool to initialize
1982 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1983 * @front_pad: Number of bytes to allocate in front of the returned bio
1984 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1985 * and %BIOSET_NEED_RESCUER
1986 *
1987 * Description:
1988 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1989 * to ask for a number of bytes to be allocated in front of the bio.
1990 * Front pad allocation is useful for embedding the bio inside
1991 * another structure, to avoid allocating extra data to go with the bio.
1992 * Note that the bio must be embedded at the END of that structure always,
1993 * or things will break badly.
1994 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1995 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1996 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1997 * dispatch queued requests when the mempool runs out of space.
1998 *
1999 */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)2000 int bioset_init(struct bio_set *bs,
2001 unsigned int pool_size,
2002 unsigned int front_pad,
2003 int flags)
2004 {
2005 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
2006
2007 bs->front_pad = front_pad;
2008
2009 spin_lock_init(&bs->rescue_lock);
2010 bio_list_init(&bs->rescue_list);
2011 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2012
2013 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2014 if (!bs->bio_slab)
2015 return -ENOMEM;
2016
2017 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2018 goto bad;
2019
2020 if ((flags & BIOSET_NEED_BVECS) &&
2021 biovec_init_pool(&bs->bvec_pool, pool_size))
2022 goto bad;
2023
2024 if (!(flags & BIOSET_NEED_RESCUER))
2025 return 0;
2026
2027 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2028 if (!bs->rescue_workqueue)
2029 goto bad;
2030
2031 return 0;
2032 bad:
2033 bioset_exit(bs);
2034 return -ENOMEM;
2035 }
2036 EXPORT_SYMBOL(bioset_init);
2037
2038 /*
2039 * Initialize and setup a new bio_set, based on the settings from
2040 * another bio_set.
2041 */
bioset_init_from_src(struct bio_set * bs,struct bio_set * src)2042 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2043 {
2044 int flags;
2045
2046 flags = 0;
2047 if (src->bvec_pool.min_nr)
2048 flags |= BIOSET_NEED_BVECS;
2049 if (src->rescue_workqueue)
2050 flags |= BIOSET_NEED_RESCUER;
2051
2052 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2053 }
2054 EXPORT_SYMBOL(bioset_init_from_src);
2055
2056 #ifdef CONFIG_BLK_CGROUP
2057
2058 /**
2059 * bio_disassociate_blkg - puts back the blkg reference if associated
2060 * @bio: target bio
2061 *
2062 * Helper to disassociate the blkg from @bio if a blkg is associated.
2063 */
bio_disassociate_blkg(struct bio * bio)2064 void bio_disassociate_blkg(struct bio *bio)
2065 {
2066 if (bio->bi_blkg) {
2067 blkg_put(bio->bi_blkg);
2068 bio->bi_blkg = NULL;
2069 }
2070 }
2071 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2072
2073 /**
2074 * __bio_associate_blkg - associate a bio with the a blkg
2075 * @bio: target bio
2076 * @blkg: the blkg to associate
2077 *
2078 * This tries to associate @bio with the specified @blkg. Association failure
2079 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2080 * be anything between @blkg and the root_blkg. This situation only happens
2081 * when a cgroup is dying and then the remaining bios will spill to the closest
2082 * alive blkg.
2083 *
2084 * A reference will be taken on the @blkg and will be released when @bio is
2085 * freed.
2086 */
__bio_associate_blkg(struct bio * bio,struct blkcg_gq * blkg)2087 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2088 {
2089 bio_disassociate_blkg(bio);
2090
2091 bio->bi_blkg = blkg_tryget_closest(blkg);
2092 }
2093
2094 /**
2095 * bio_associate_blkg_from_css - associate a bio with a specified css
2096 * @bio: target bio
2097 * @css: target css
2098 *
2099 * Associate @bio with the blkg found by combining the css's blkg and the
2100 * request_queue of the @bio. This falls back to the queue's root_blkg if
2101 * the association fails with the css.
2102 */
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)2103 void bio_associate_blkg_from_css(struct bio *bio,
2104 struct cgroup_subsys_state *css)
2105 {
2106 struct request_queue *q = bio->bi_disk->queue;
2107 struct blkcg_gq *blkg;
2108
2109 rcu_read_lock();
2110
2111 if (!css || !css->parent)
2112 blkg = q->root_blkg;
2113 else
2114 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2115
2116 __bio_associate_blkg(bio, blkg);
2117
2118 rcu_read_unlock();
2119 }
2120 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2121
2122 #ifdef CONFIG_MEMCG
2123 /**
2124 * bio_associate_blkg_from_page - associate a bio with the page's blkg
2125 * @bio: target bio
2126 * @page: the page to lookup the blkcg from
2127 *
2128 * Associate @bio with the blkg from @page's owning memcg and the respective
2129 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2130 * root_blkg.
2131 */
bio_associate_blkg_from_page(struct bio * bio,struct page * page)2132 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2133 {
2134 struct cgroup_subsys_state *css;
2135
2136 if (!page->mem_cgroup)
2137 return;
2138
2139 rcu_read_lock();
2140
2141 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2142 bio_associate_blkg_from_css(bio, css);
2143
2144 rcu_read_unlock();
2145 }
2146 #endif /* CONFIG_MEMCG */
2147
2148 /**
2149 * bio_associate_blkg - associate a bio with a blkg
2150 * @bio: target bio
2151 *
2152 * Associate @bio with the blkg found from the bio's css and request_queue.
2153 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2154 * already associated, the css is reused and association redone as the
2155 * request_queue may have changed.
2156 */
bio_associate_blkg(struct bio * bio)2157 void bio_associate_blkg(struct bio *bio)
2158 {
2159 struct cgroup_subsys_state *css;
2160
2161 rcu_read_lock();
2162
2163 if (bio->bi_blkg)
2164 css = &bio_blkcg(bio)->css;
2165 else
2166 css = blkcg_css();
2167
2168 bio_associate_blkg_from_css(bio, css);
2169
2170 rcu_read_unlock();
2171 }
2172 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2173
2174 /**
2175 * bio_clone_blkg_association - clone blkg association from src to dst bio
2176 * @dst: destination bio
2177 * @src: source bio
2178 */
bio_clone_blkg_association(struct bio * dst,struct bio * src)2179 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2180 {
2181 rcu_read_lock();
2182
2183 if (src->bi_blkg)
2184 __bio_associate_blkg(dst, src->bi_blkg);
2185
2186 rcu_read_unlock();
2187 }
2188 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2189 #endif /* CONFIG_BLK_CGROUP */
2190
biovec_init_slabs(void)2191 static void __init biovec_init_slabs(void)
2192 {
2193 int i;
2194
2195 for (i = 0; i < BVEC_POOL_NR; i++) {
2196 int size;
2197 struct biovec_slab *bvs = bvec_slabs + i;
2198
2199 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2200 bvs->slab = NULL;
2201 continue;
2202 }
2203
2204 size = bvs->nr_vecs * sizeof(struct bio_vec);
2205 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2206 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2207 }
2208 }
2209
init_bio(void)2210 static int __init init_bio(void)
2211 {
2212 bio_slab_max = 2;
2213 bio_slab_nr = 0;
2214 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2215 GFP_KERNEL);
2216
2217 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2218
2219 if (!bio_slabs)
2220 panic("bio: can't allocate bios\n");
2221
2222 bio_integrity_init();
2223 biovec_init_slabs();
2224
2225 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2226 panic("bio: can't allocate bios\n");
2227
2228 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2229 panic("bio: can't create integrity pool\n");
2230
2231 return 0;
2232 }
2233 subsys_initcall(init_bio);
2234