• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/blk-crypto.h>
21 
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25 
26 /*
27  * Test patch to inline a certain number of bi_io_vec's inside the bio
28  * itself, to shrink a bio data allocation from two mempool calls to one
29  */
30 #define BIO_INLINE_VECS		4
31 
32 /*
33  * if you change this list, also change bvec_alloc or things will
34  * break badly! cannot be bigger than what you can fit into an
35  * unsigned short
36  */
37 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
38 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
39 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
40 };
41 #undef BV
42 
43 /*
44  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
45  * IO code that does not need private memory pools.
46  */
47 struct bio_set fs_bio_set;
48 EXPORT_SYMBOL(fs_bio_set);
49 
50 /*
51  * Our slab pool management
52  */
53 struct bio_slab {
54 	struct kmem_cache *slab;
55 	unsigned int slab_ref;
56 	unsigned int slab_size;
57 	char name[8];
58 };
59 static DEFINE_MUTEX(bio_slab_lock);
60 static struct bio_slab *bio_slabs;
61 static unsigned int bio_slab_nr, bio_slab_max;
62 
bio_find_or_create_slab(unsigned int extra_size)63 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
64 {
65 	unsigned int sz = sizeof(struct bio) + extra_size;
66 	struct kmem_cache *slab = NULL;
67 	struct bio_slab *bslab, *new_bio_slabs;
68 	unsigned int new_bio_slab_max;
69 	unsigned int i, entry = -1;
70 
71 	mutex_lock(&bio_slab_lock);
72 
73 	i = 0;
74 	while (i < bio_slab_nr) {
75 		bslab = &bio_slabs[i];
76 
77 		if (!bslab->slab && entry == -1)
78 			entry = i;
79 		else if (bslab->slab_size == sz) {
80 			slab = bslab->slab;
81 			bslab->slab_ref++;
82 			break;
83 		}
84 		i++;
85 	}
86 
87 	if (slab)
88 		goto out_unlock;
89 
90 	if (bio_slab_nr == bio_slab_max && entry == -1) {
91 		new_bio_slab_max = bio_slab_max << 1;
92 		new_bio_slabs = krealloc(bio_slabs,
93 					 new_bio_slab_max * sizeof(struct bio_slab),
94 					 GFP_KERNEL);
95 		if (!new_bio_slabs)
96 			goto out_unlock;
97 		bio_slab_max = new_bio_slab_max;
98 		bio_slabs = new_bio_slabs;
99 	}
100 	if (entry == -1)
101 		entry = bio_slab_nr++;
102 
103 	bslab = &bio_slabs[entry];
104 
105 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
106 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
107 				 SLAB_HWCACHE_ALIGN, NULL);
108 	if (!slab)
109 		goto out_unlock;
110 
111 	bslab->slab = slab;
112 	bslab->slab_ref = 1;
113 	bslab->slab_size = sz;
114 out_unlock:
115 	mutex_unlock(&bio_slab_lock);
116 	return slab;
117 }
118 
bio_put_slab(struct bio_set * bs)119 static void bio_put_slab(struct bio_set *bs)
120 {
121 	struct bio_slab *bslab = NULL;
122 	unsigned int i;
123 
124 	mutex_lock(&bio_slab_lock);
125 
126 	for (i = 0; i < bio_slab_nr; i++) {
127 		if (bs->bio_slab == bio_slabs[i].slab) {
128 			bslab = &bio_slabs[i];
129 			break;
130 		}
131 	}
132 
133 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
134 		goto out;
135 
136 	WARN_ON(!bslab->slab_ref);
137 
138 	if (--bslab->slab_ref)
139 		goto out;
140 
141 	kmem_cache_destroy(bslab->slab);
142 	bslab->slab = NULL;
143 
144 out:
145 	mutex_unlock(&bio_slab_lock);
146 }
147 
bvec_nr_vecs(unsigned short idx)148 unsigned int bvec_nr_vecs(unsigned short idx)
149 {
150 	return bvec_slabs[--idx].nr_vecs;
151 }
152 
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned int idx)153 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
154 {
155 	if (!idx)
156 		return;
157 	idx--;
158 
159 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
160 
161 	if (idx == BVEC_POOL_MAX) {
162 		mempool_free(bv, pool);
163 	} else {
164 		struct biovec_slab *bvs = bvec_slabs + idx;
165 
166 		kmem_cache_free(bvs->slab, bv);
167 	}
168 }
169 
bvec_alloc(gfp_t gfp_mask,int nr,unsigned long * idx,mempool_t * pool)170 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
171 			   mempool_t *pool)
172 {
173 	struct bio_vec *bvl;
174 
175 	/*
176 	 * see comment near bvec_array define!
177 	 */
178 	switch (nr) {
179 	case 1:
180 		*idx = 0;
181 		break;
182 	case 2 ... 4:
183 		*idx = 1;
184 		break;
185 	case 5 ... 16:
186 		*idx = 2;
187 		break;
188 	case 17 ... 64:
189 		*idx = 3;
190 		break;
191 	case 65 ... 128:
192 		*idx = 4;
193 		break;
194 	case 129 ... BIO_MAX_PAGES:
195 		*idx = 5;
196 		break;
197 	default:
198 		return NULL;
199 	}
200 
201 	/*
202 	 * idx now points to the pool we want to allocate from. only the
203 	 * 1-vec entry pool is mempool backed.
204 	 */
205 	if (*idx == BVEC_POOL_MAX) {
206 fallback:
207 		bvl = mempool_alloc(pool, gfp_mask);
208 	} else {
209 		struct biovec_slab *bvs = bvec_slabs + *idx;
210 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
211 
212 		/*
213 		 * Make this allocation restricted and don't dump info on
214 		 * allocation failures, since we'll fallback to the mempool
215 		 * in case of failure.
216 		 */
217 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
218 
219 		/*
220 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
221 		 * is set, retry with the 1-entry mempool
222 		 */
223 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
225 			*idx = BVEC_POOL_MAX;
226 			goto fallback;
227 		}
228 	}
229 
230 	(*idx)++;
231 	return bvl;
232 }
233 
bio_uninit(struct bio * bio)234 void bio_uninit(struct bio *bio)
235 {
236 	bio_disassociate_blkg(bio);
237 
238 	bio_crypt_free_ctx(bio);
239 
240 	if (bio_integrity(bio))
241 		bio_integrity_free(bio);
242 }
243 EXPORT_SYMBOL(bio_uninit);
244 
bio_free(struct bio * bio)245 static void bio_free(struct bio *bio)
246 {
247 	struct bio_set *bs = bio->bi_pool;
248 	void *p;
249 
250 	bio_uninit(bio);
251 
252 	if (bs) {
253 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
254 
255 		/*
256 		 * If we have front padding, adjust the bio pointer before freeing
257 		 */
258 		p = bio;
259 		p -= bs->front_pad;
260 
261 		mempool_free(p, &bs->bio_pool);
262 	} else {
263 		/* Bio was allocated by bio_kmalloc() */
264 		kfree(bio);
265 	}
266 }
267 
268 /*
269  * Users of this function have their own bio allocation. Subsequently,
270  * they must remember to pair any call to bio_init() with bio_uninit()
271  * when IO has completed, or when the bio is released.
272  */
bio_init(struct bio * bio,struct bio_vec * table,unsigned short max_vecs)273 void bio_init(struct bio *bio, struct bio_vec *table,
274 	      unsigned short max_vecs)
275 {
276 	memset(bio, 0, sizeof(*bio));
277 	atomic_set(&bio->__bi_remaining, 1);
278 	atomic_set(&bio->__bi_cnt, 1);
279 
280 	bio->bi_io_vec = table;
281 	bio->bi_max_vecs = max_vecs;
282 }
283 EXPORT_SYMBOL(bio_init);
284 
285 /**
286  * bio_reset - reinitialize a bio
287  * @bio:	bio to reset
288  *
289  * Description:
290  *   After calling bio_reset(), @bio will be in the same state as a freshly
291  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
292  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
293  *   comment in struct bio.
294  */
bio_reset(struct bio * bio)295 void bio_reset(struct bio *bio)
296 {
297 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
298 
299 	bio_uninit(bio);
300 
301 	memset(bio, 0, BIO_RESET_BYTES);
302 	bio->bi_flags = flags;
303 	atomic_set(&bio->__bi_remaining, 1);
304 }
305 EXPORT_SYMBOL(bio_reset);
306 
__bio_chain_endio(struct bio * bio)307 static struct bio *__bio_chain_endio(struct bio *bio)
308 {
309 	struct bio *parent = bio->bi_private;
310 
311 	if (!parent->bi_status)
312 		parent->bi_status = bio->bi_status;
313 	bio_put(bio);
314 	return parent;
315 }
316 
bio_chain_endio(struct bio * bio)317 static void bio_chain_endio(struct bio *bio)
318 {
319 	bio_endio(__bio_chain_endio(bio));
320 }
321 
322 /**
323  * bio_chain - chain bio completions
324  * @bio: the target bio
325  * @parent: the @bio's parent bio
326  *
327  * The caller won't have a bi_end_io called when @bio completes - instead,
328  * @parent's bi_end_io won't be called until both @parent and @bio have
329  * completed; the chained bio will also be freed when it completes.
330  *
331  * The caller must not set bi_private or bi_end_io in @bio.
332  */
bio_chain(struct bio * bio,struct bio * parent)333 void bio_chain(struct bio *bio, struct bio *parent)
334 {
335 	BUG_ON(bio->bi_private || bio->bi_end_io);
336 
337 	bio->bi_private = parent;
338 	bio->bi_end_io	= bio_chain_endio;
339 	bio_inc_remaining(parent);
340 }
341 EXPORT_SYMBOL(bio_chain);
342 
bio_alloc_rescue(struct work_struct * work)343 static void bio_alloc_rescue(struct work_struct *work)
344 {
345 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
346 	struct bio *bio;
347 
348 	while (1) {
349 		spin_lock(&bs->rescue_lock);
350 		bio = bio_list_pop(&bs->rescue_list);
351 		spin_unlock(&bs->rescue_lock);
352 
353 		if (!bio)
354 			break;
355 
356 		generic_make_request(bio);
357 	}
358 }
359 
punt_bios_to_rescuer(struct bio_set * bs)360 static void punt_bios_to_rescuer(struct bio_set *bs)
361 {
362 	struct bio_list punt, nopunt;
363 	struct bio *bio;
364 
365 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
366 		return;
367 	/*
368 	 * In order to guarantee forward progress we must punt only bios that
369 	 * were allocated from this bio_set; otherwise, if there was a bio on
370 	 * there for a stacking driver higher up in the stack, processing it
371 	 * could require allocating bios from this bio_set, and doing that from
372 	 * our own rescuer would be bad.
373 	 *
374 	 * Since bio lists are singly linked, pop them all instead of trying to
375 	 * remove from the middle of the list:
376 	 */
377 
378 	bio_list_init(&punt);
379 	bio_list_init(&nopunt);
380 
381 	while ((bio = bio_list_pop(&current->bio_list[0])))
382 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
383 	current->bio_list[0] = nopunt;
384 
385 	bio_list_init(&nopunt);
386 	while ((bio = bio_list_pop(&current->bio_list[1])))
387 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
388 	current->bio_list[1] = nopunt;
389 
390 	spin_lock(&bs->rescue_lock);
391 	bio_list_merge(&bs->rescue_list, &punt);
392 	spin_unlock(&bs->rescue_lock);
393 
394 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
395 }
396 
397 /**
398  * bio_alloc_bioset - allocate a bio for I/O
399  * @gfp_mask:   the GFP_* mask given to the slab allocator
400  * @nr_iovecs:	number of iovecs to pre-allocate
401  * @bs:		the bio_set to allocate from.
402  *
403  * Description:
404  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
405  *   backed by the @bs's mempool.
406  *
407  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
408  *   always be able to allocate a bio. This is due to the mempool guarantees.
409  *   To make this work, callers must never allocate more than 1 bio at a time
410  *   from this pool. Callers that need to allocate more than 1 bio must always
411  *   submit the previously allocated bio for IO before attempting to allocate
412  *   a new one. Failure to do so can cause deadlocks under memory pressure.
413  *
414  *   Note that when running under generic_make_request() (i.e. any block
415  *   driver), bios are not submitted until after you return - see the code in
416  *   generic_make_request() that converts recursion into iteration, to prevent
417  *   stack overflows.
418  *
419  *   This would normally mean allocating multiple bios under
420  *   generic_make_request() would be susceptible to deadlocks, but we have
421  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
422  *   thread.
423  *
424  *   However, we do not guarantee forward progress for allocations from other
425  *   mempools. Doing multiple allocations from the same mempool under
426  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
427  *   for per bio allocations.
428  *
429  *   RETURNS:
430  *   Pointer to new bio on success, NULL on failure.
431  */
bio_alloc_bioset(gfp_t gfp_mask,unsigned int nr_iovecs,struct bio_set * bs)432 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
433 			     struct bio_set *bs)
434 {
435 	gfp_t saved_gfp = gfp_mask;
436 	unsigned front_pad;
437 	unsigned inline_vecs;
438 	struct bio_vec *bvl = NULL;
439 	struct bio *bio;
440 	void *p;
441 
442 	if (!bs) {
443 		if (nr_iovecs > UIO_MAXIOV)
444 			return NULL;
445 
446 		p = kmalloc(sizeof(struct bio) +
447 			    nr_iovecs * sizeof(struct bio_vec),
448 			    gfp_mask);
449 		front_pad = 0;
450 		inline_vecs = nr_iovecs;
451 	} else {
452 		/* should not use nobvec bioset for nr_iovecs > 0 */
453 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
454 				 nr_iovecs > 0))
455 			return NULL;
456 		/*
457 		 * generic_make_request() converts recursion to iteration; this
458 		 * means if we're running beneath it, any bios we allocate and
459 		 * submit will not be submitted (and thus freed) until after we
460 		 * return.
461 		 *
462 		 * This exposes us to a potential deadlock if we allocate
463 		 * multiple bios from the same bio_set() while running
464 		 * underneath generic_make_request(). If we were to allocate
465 		 * multiple bios (say a stacking block driver that was splitting
466 		 * bios), we would deadlock if we exhausted the mempool's
467 		 * reserve.
468 		 *
469 		 * We solve this, and guarantee forward progress, with a rescuer
470 		 * workqueue per bio_set. If we go to allocate and there are
471 		 * bios on current->bio_list, we first try the allocation
472 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
473 		 * bios we would be blocking to the rescuer workqueue before
474 		 * we retry with the original gfp_flags.
475 		 */
476 
477 		if (current->bio_list &&
478 		    (!bio_list_empty(&current->bio_list[0]) ||
479 		     !bio_list_empty(&current->bio_list[1])) &&
480 		    bs->rescue_workqueue)
481 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
482 
483 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
484 		if (!p && gfp_mask != saved_gfp) {
485 			punt_bios_to_rescuer(bs);
486 			gfp_mask = saved_gfp;
487 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
488 		}
489 
490 		front_pad = bs->front_pad;
491 		inline_vecs = BIO_INLINE_VECS;
492 	}
493 
494 	if (unlikely(!p))
495 		return NULL;
496 
497 	bio = p + front_pad;
498 	bio_init(bio, NULL, 0);
499 
500 	if (nr_iovecs > inline_vecs) {
501 		unsigned long idx = 0;
502 
503 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
504 		if (!bvl && gfp_mask != saved_gfp) {
505 			punt_bios_to_rescuer(bs);
506 			gfp_mask = saved_gfp;
507 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
508 		}
509 
510 		if (unlikely(!bvl))
511 			goto err_free;
512 
513 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
514 	} else if (nr_iovecs) {
515 		bvl = bio->bi_inline_vecs;
516 	}
517 
518 	bio->bi_pool = bs;
519 	bio->bi_max_vecs = nr_iovecs;
520 	bio->bi_io_vec = bvl;
521 	return bio;
522 
523 err_free:
524 	mempool_free(p, &bs->bio_pool);
525 	return NULL;
526 }
527 EXPORT_SYMBOL(bio_alloc_bioset);
528 
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)529 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
530 {
531 	unsigned long flags;
532 	struct bio_vec bv;
533 	struct bvec_iter iter;
534 
535 	__bio_for_each_segment(bv, bio, iter, start) {
536 		char *data = bvec_kmap_irq(&bv, &flags);
537 		memset(data, 0, bv.bv_len);
538 		flush_dcache_page(bv.bv_page);
539 		bvec_kunmap_irq(data, &flags);
540 	}
541 }
542 EXPORT_SYMBOL(zero_fill_bio_iter);
543 
544 /**
545  * bio_truncate - truncate the bio to small size of @new_size
546  * @bio:	the bio to be truncated
547  * @new_size:	new size for truncating the bio
548  *
549  * Description:
550  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
551  *   REQ_OP_READ, zero the truncated part. This function should only
552  *   be used for handling corner cases, such as bio eod.
553  */
bio_truncate(struct bio * bio,unsigned new_size)554 void bio_truncate(struct bio *bio, unsigned new_size)
555 {
556 	struct bio_vec bv;
557 	struct bvec_iter iter;
558 	unsigned int done = 0;
559 	bool truncated = false;
560 
561 	if (new_size >= bio->bi_iter.bi_size)
562 		return;
563 
564 	if (bio_op(bio) != REQ_OP_READ)
565 		goto exit;
566 
567 	bio_for_each_segment(bv, bio, iter) {
568 		if (done + bv.bv_len > new_size) {
569 			unsigned offset;
570 
571 			if (!truncated)
572 				offset = new_size - done;
573 			else
574 				offset = 0;
575 			zero_user(bv.bv_page, offset, bv.bv_len - offset);
576 			truncated = true;
577 		}
578 		done += bv.bv_len;
579 	}
580 
581  exit:
582 	/*
583 	 * Don't touch bvec table here and make it really immutable, since
584 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
585 	 * in its .end_bio() callback.
586 	 *
587 	 * It is enough to truncate bio by updating .bi_size since we can make
588 	 * correct bvec with the updated .bi_size for drivers.
589 	 */
590 	bio->bi_iter.bi_size = new_size;
591 }
592 
593 /**
594  * bio_put - release a reference to a bio
595  * @bio:   bio to release reference to
596  *
597  * Description:
598  *   Put a reference to a &struct bio, either one you have gotten with
599  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
600  **/
bio_put(struct bio * bio)601 void bio_put(struct bio *bio)
602 {
603 	if (!bio_flagged(bio, BIO_REFFED))
604 		bio_free(bio);
605 	else {
606 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
607 
608 		/*
609 		 * last put frees it
610 		 */
611 		if (atomic_dec_and_test(&bio->__bi_cnt))
612 			bio_free(bio);
613 	}
614 }
615 EXPORT_SYMBOL(bio_put);
616 
617 /**
618  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
619  * 	@bio: destination bio
620  * 	@bio_src: bio to clone
621  *
622  *	Clone a &bio. Caller will own the returned bio, but not
623  *	the actual data it points to. Reference count of returned
624  * 	bio will be one.
625  *
626  * 	Caller must ensure that @bio_src is not freed before @bio.
627  */
__bio_clone_fast(struct bio * bio,struct bio * bio_src)628 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
629 {
630 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
631 
632 	/*
633 	 * most users will be overriding ->bi_disk with a new target,
634 	 * so we don't set nor calculate new physical/hw segment counts here
635 	 */
636 	bio->bi_disk = bio_src->bi_disk;
637 	bio->bi_partno = bio_src->bi_partno;
638 	bio_set_flag(bio, BIO_CLONED);
639 	if (bio_flagged(bio_src, BIO_THROTTLED))
640 		bio_set_flag(bio, BIO_THROTTLED);
641 	bio->bi_opf = bio_src->bi_opf;
642 	bio->bi_ioprio = bio_src->bi_ioprio;
643 	bio->bi_write_hint = bio_src->bi_write_hint;
644 	bio->bi_iter = bio_src->bi_iter;
645 	bio->bi_io_vec = bio_src->bi_io_vec;
646 
647 	bio_clone_blkg_association(bio, bio_src);
648 	blkcg_bio_issue_init(bio);
649 }
650 EXPORT_SYMBOL(__bio_clone_fast);
651 
652 /**
653  *	bio_clone_fast - clone a bio that shares the original bio's biovec
654  *	@bio: bio to clone
655  *	@gfp_mask: allocation priority
656  *	@bs: bio_set to allocate from
657  *
658  * 	Like __bio_clone_fast, only also allocates the returned bio
659  */
bio_clone_fast(struct bio * bio,gfp_t gfp_mask,struct bio_set * bs)660 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
661 {
662 	struct bio *b;
663 
664 	b = bio_alloc_bioset(gfp_mask, 0, bs);
665 	if (!b)
666 		return NULL;
667 
668 	__bio_clone_fast(b, bio);
669 
670 	bio_crypt_clone(b, bio, gfp_mask);
671 
672 	if (bio_integrity(bio) &&
673 	    bio_integrity_clone(b, bio, gfp_mask) < 0) {
674 		bio_put(b);
675 		return NULL;
676 	}
677 
678 	return b;
679 }
680 EXPORT_SYMBOL(bio_clone_fast);
681 
page_is_mergeable(const struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off,bool * same_page)682 static inline bool page_is_mergeable(const struct bio_vec *bv,
683 		struct page *page, unsigned int len, unsigned int off,
684 		bool *same_page)
685 {
686 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
687 		bv->bv_offset + bv->bv_len - 1;
688 	phys_addr_t page_addr = page_to_phys(page);
689 
690 	if (vec_end_addr + 1 != page_addr + off)
691 		return false;
692 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
693 		return false;
694 
695 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
696 	if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
697 		return false;
698 	return true;
699 }
700 
bio_try_merge_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned len,unsigned offset,bool * same_page)701 static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
702 		struct page *page, unsigned len, unsigned offset,
703 		bool *same_page)
704 {
705 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
706 	unsigned long mask = queue_segment_boundary(q);
707 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
708 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
709 
710 	if ((addr1 | mask) != (addr2 | mask))
711 		return false;
712 	if (bv->bv_len + len > queue_max_segment_size(q))
713 		return false;
714 	return __bio_try_merge_page(bio, page, len, offset, same_page);
715 }
716 
717 /**
718  *	__bio_add_pc_page	- attempt to add page to passthrough bio
719  *	@q: the target queue
720  *	@bio: destination bio
721  *	@page: page to add
722  *	@len: vec entry length
723  *	@offset: vec entry offset
724  *	@same_page: return if the merge happen inside the same page
725  *
726  *	Attempt to add a page to the bio_vec maplist. This can fail for a
727  *	number of reasons, such as the bio being full or target block device
728  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
729  *	so it is always possible to add a single page to an empty bio.
730  *
731  *	This should only be used by passthrough bios.
732  */
__bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset,bool * same_page)733 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
734 		struct page *page, unsigned int len, unsigned int offset,
735 		bool *same_page)
736 {
737 	struct bio_vec *bvec;
738 
739 	/*
740 	 * cloned bio must not modify vec list
741 	 */
742 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
743 		return 0;
744 
745 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
746 		return 0;
747 
748 	if (bio->bi_vcnt > 0) {
749 		if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
750 			return len;
751 
752 		/*
753 		 * If the queue doesn't support SG gaps and adding this segment
754 		 * would create a gap, disallow it.
755 		 */
756 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
757 		if (bvec_gap_to_prev(q, bvec, offset))
758 			return 0;
759 	}
760 
761 	if (bio_full(bio, len))
762 		return 0;
763 
764 	if (bio->bi_vcnt >= queue_max_segments(q))
765 		return 0;
766 
767 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
768 	bvec->bv_page = page;
769 	bvec->bv_len = len;
770 	bvec->bv_offset = offset;
771 	bio->bi_vcnt++;
772 	bio->bi_iter.bi_size += len;
773 	return len;
774 }
775 
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)776 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
777 		struct page *page, unsigned int len, unsigned int offset)
778 {
779 	bool same_page = false;
780 	return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
781 }
782 EXPORT_SYMBOL(bio_add_pc_page);
783 
784 /**
785  * __bio_try_merge_page - try appending data to an existing bvec.
786  * @bio: destination bio
787  * @page: start page to add
788  * @len: length of the data to add
789  * @off: offset of the data relative to @page
790  * @same_page: return if the segment has been merged inside the same page
791  *
792  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
793  * a useful optimisation for file systems with a block size smaller than the
794  * page size.
795  *
796  * Warn if (@len, @off) crosses pages in case that @same_page is true.
797  *
798  * Return %true on success or %false on failure.
799  */
__bio_try_merge_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off,bool * same_page)800 bool __bio_try_merge_page(struct bio *bio, struct page *page,
801 		unsigned int len, unsigned int off, bool *same_page)
802 {
803 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
804 		return false;
805 
806 	if (bio->bi_vcnt > 0) {
807 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
808 
809 		if (page_is_mergeable(bv, page, len, off, same_page)) {
810 			if (bio->bi_iter.bi_size > UINT_MAX - len)
811 				return false;
812 			bv->bv_len += len;
813 			bio->bi_iter.bi_size += len;
814 			return true;
815 		}
816 	}
817 	return false;
818 }
819 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
820 
821 /**
822  * __bio_add_page - add page(s) to a bio in a new segment
823  * @bio: destination bio
824  * @page: start page to add
825  * @len: length of the data to add, may cross pages
826  * @off: offset of the data relative to @page, may cross pages
827  *
828  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
829  * that @bio has space for another bvec.
830  */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)831 void __bio_add_page(struct bio *bio, struct page *page,
832 		unsigned int len, unsigned int off)
833 {
834 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
835 
836 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
837 	WARN_ON_ONCE(bio_full(bio, len));
838 
839 	bv->bv_page = page;
840 	bv->bv_offset = off;
841 	bv->bv_len = len;
842 
843 	bio->bi_iter.bi_size += len;
844 	bio->bi_vcnt++;
845 
846 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
847 		bio_set_flag(bio, BIO_WORKINGSET);
848 }
849 EXPORT_SYMBOL_GPL(__bio_add_page);
850 
851 /**
852  *	bio_add_page	-	attempt to add page(s) to bio
853  *	@bio: destination bio
854  *	@page: start page to add
855  *	@len: vec entry length, may cross pages
856  *	@offset: vec entry offset relative to @page, may cross pages
857  *
858  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
859  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
860  */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)861 int bio_add_page(struct bio *bio, struct page *page,
862 		 unsigned int len, unsigned int offset)
863 {
864 	bool same_page = false;
865 
866 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
867 		if (bio_full(bio, len))
868 			return 0;
869 		__bio_add_page(bio, page, len, offset);
870 	}
871 	return len;
872 }
873 EXPORT_SYMBOL(bio_add_page);
874 
bio_release_pages(struct bio * bio,bool mark_dirty)875 void bio_release_pages(struct bio *bio, bool mark_dirty)
876 {
877 	struct bvec_iter_all iter_all;
878 	struct bio_vec *bvec;
879 
880 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
881 		return;
882 
883 	bio_for_each_segment_all(bvec, bio, iter_all) {
884 		if (mark_dirty && !PageCompound(bvec->bv_page))
885 			set_page_dirty_lock(bvec->bv_page);
886 		put_page(bvec->bv_page);
887 	}
888 }
889 
__bio_iov_bvec_add_pages(struct bio * bio,struct iov_iter * iter)890 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
891 {
892 	const struct bio_vec *bv = iter->bvec;
893 	unsigned int len;
894 	size_t size;
895 
896 	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
897 		return -EINVAL;
898 
899 	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
900 	size = bio_add_page(bio, bv->bv_page, len,
901 				bv->bv_offset + iter->iov_offset);
902 	if (unlikely(size != len))
903 		return -EINVAL;
904 	iov_iter_advance(iter, size);
905 	return 0;
906 }
907 
908 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
909 
910 /**
911  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
912  * @bio: bio to add pages to
913  * @iter: iov iterator describing the region to be mapped
914  *
915  * Pins pages from *iter and appends them to @bio's bvec array. The
916  * pages will have to be released using put_page() when done.
917  * For multi-segment *iter, this function only adds pages from the
918  * the next non-empty segment of the iov iterator.
919  */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)920 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
921 {
922 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
923 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
924 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
925 	struct page **pages = (struct page **)bv;
926 	bool same_page = false;
927 	ssize_t size, left;
928 	unsigned len, i;
929 	size_t offset;
930 
931 	/*
932 	 * Move page array up in the allocated memory for the bio vecs as far as
933 	 * possible so that we can start filling biovecs from the beginning
934 	 * without overwriting the temporary page array.
935 	*/
936 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
937 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
938 
939 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
940 	if (unlikely(size <= 0))
941 		return size ? size : -EFAULT;
942 
943 	for (left = size, i = 0; left > 0; left -= len, i++) {
944 		struct page *page = pages[i];
945 
946 		len = min_t(size_t, PAGE_SIZE - offset, left);
947 
948 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
949 			if (same_page)
950 				put_page(page);
951 		} else {
952 			if (WARN_ON_ONCE(bio_full(bio, len)))
953                                 return -EINVAL;
954 			__bio_add_page(bio, page, len, offset);
955 		}
956 		offset = 0;
957 	}
958 
959 	iov_iter_advance(iter, size);
960 	return 0;
961 }
962 
963 /**
964  * bio_iov_iter_get_pages - add user or kernel pages to a bio
965  * @bio: bio to add pages to
966  * @iter: iov iterator describing the region to be added
967  *
968  * This takes either an iterator pointing to user memory, or one pointing to
969  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
970  * map them into the kernel. On IO completion, the caller should put those
971  * pages. If we're adding kernel pages, and the caller told us it's safe to
972  * do so, we just have to add the pages to the bio directly. We don't grab an
973  * extra reference to those pages (the user should already have that), and we
974  * don't put the page on IO completion. The caller needs to check if the bio is
975  * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
976  * released.
977  *
978  * The function tries, but does not guarantee, to pin as many pages as
979  * fit into the bio, or are requested in *iter, whatever is smaller. If
980  * MM encounters an error pinning the requested pages, it stops. Error
981  * is returned only if 0 pages could be pinned.
982  */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)983 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
984 {
985 	const bool is_bvec = iov_iter_is_bvec(iter);
986 	int ret;
987 
988 	if (WARN_ON_ONCE(bio->bi_vcnt))
989 		return -EINVAL;
990 
991 	do {
992 		if (is_bvec)
993 			ret = __bio_iov_bvec_add_pages(bio, iter);
994 		else
995 			ret = __bio_iov_iter_get_pages(bio, iter);
996 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
997 
998 	if (is_bvec)
999 		bio_set_flag(bio, BIO_NO_PAGE_REF);
1000 	return bio->bi_vcnt ? 0 : ret;
1001 }
1002 
submit_bio_wait_endio(struct bio * bio)1003 static void submit_bio_wait_endio(struct bio *bio)
1004 {
1005 	complete(bio->bi_private);
1006 }
1007 
1008 /**
1009  * submit_bio_wait - submit a bio, and wait until it completes
1010  * @bio: The &struct bio which describes the I/O
1011  *
1012  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1013  * bio_endio() on failure.
1014  *
1015  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1016  * result in bio reference to be consumed. The caller must drop the reference
1017  * on his own.
1018  */
submit_bio_wait(struct bio * bio)1019 int submit_bio_wait(struct bio *bio)
1020 {
1021 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1022 
1023 	bio->bi_private = &done;
1024 	bio->bi_end_io = submit_bio_wait_endio;
1025 	bio->bi_opf |= REQ_SYNC;
1026 	submit_bio(bio);
1027 	wait_for_completion_io(&done);
1028 
1029 	return blk_status_to_errno(bio->bi_status);
1030 }
1031 EXPORT_SYMBOL(submit_bio_wait);
1032 
1033 /**
1034  * bio_advance - increment/complete a bio by some number of bytes
1035  * @bio:	bio to advance
1036  * @bytes:	number of bytes to complete
1037  *
1038  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1039  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1040  * be updated on the last bvec as well.
1041  *
1042  * @bio will then represent the remaining, uncompleted portion of the io.
1043  */
bio_advance(struct bio * bio,unsigned bytes)1044 void bio_advance(struct bio *bio, unsigned bytes)
1045 {
1046 	if (bio_integrity(bio))
1047 		bio_integrity_advance(bio, bytes);
1048 
1049 	bio_crypt_advance(bio, bytes);
1050 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1051 }
1052 EXPORT_SYMBOL(bio_advance);
1053 
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1054 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1055 			struct bio *src, struct bvec_iter *src_iter)
1056 {
1057 	struct bio_vec src_bv, dst_bv;
1058 	void *src_p, *dst_p;
1059 	unsigned bytes;
1060 
1061 	while (src_iter->bi_size && dst_iter->bi_size) {
1062 		src_bv = bio_iter_iovec(src, *src_iter);
1063 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1064 
1065 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1066 
1067 		src_p = kmap_atomic(src_bv.bv_page);
1068 		dst_p = kmap_atomic(dst_bv.bv_page);
1069 
1070 		memcpy(dst_p + dst_bv.bv_offset,
1071 		       src_p + src_bv.bv_offset,
1072 		       bytes);
1073 
1074 		kunmap_atomic(dst_p);
1075 		kunmap_atomic(src_p);
1076 
1077 		flush_dcache_page(dst_bv.bv_page);
1078 
1079 		bio_advance_iter(src, src_iter, bytes);
1080 		bio_advance_iter(dst, dst_iter, bytes);
1081 	}
1082 }
1083 EXPORT_SYMBOL(bio_copy_data_iter);
1084 
1085 /**
1086  * bio_copy_data - copy contents of data buffers from one bio to another
1087  * @src: source bio
1088  * @dst: destination bio
1089  *
1090  * Stops when it reaches the end of either @src or @dst - that is, copies
1091  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1092  */
bio_copy_data(struct bio * dst,struct bio * src)1093 void bio_copy_data(struct bio *dst, struct bio *src)
1094 {
1095 	struct bvec_iter src_iter = src->bi_iter;
1096 	struct bvec_iter dst_iter = dst->bi_iter;
1097 
1098 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1099 }
1100 EXPORT_SYMBOL(bio_copy_data);
1101 
1102 /**
1103  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1104  * another
1105  * @src: source bio list
1106  * @dst: destination bio list
1107  *
1108  * Stops when it reaches the end of either the @src list or @dst list - that is,
1109  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1110  * bios).
1111  */
bio_list_copy_data(struct bio * dst,struct bio * src)1112 void bio_list_copy_data(struct bio *dst, struct bio *src)
1113 {
1114 	struct bvec_iter src_iter = src->bi_iter;
1115 	struct bvec_iter dst_iter = dst->bi_iter;
1116 
1117 	while (1) {
1118 		if (!src_iter.bi_size) {
1119 			src = src->bi_next;
1120 			if (!src)
1121 				break;
1122 
1123 			src_iter = src->bi_iter;
1124 		}
1125 
1126 		if (!dst_iter.bi_size) {
1127 			dst = dst->bi_next;
1128 			if (!dst)
1129 				break;
1130 
1131 			dst_iter = dst->bi_iter;
1132 		}
1133 
1134 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1135 	}
1136 }
1137 EXPORT_SYMBOL(bio_list_copy_data);
1138 
1139 struct bio_map_data {
1140 	int is_our_pages;
1141 	struct iov_iter iter;
1142 	struct iovec iov[];
1143 };
1144 
bio_alloc_map_data(struct iov_iter * data,gfp_t gfp_mask)1145 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1146 					       gfp_t gfp_mask)
1147 {
1148 	struct bio_map_data *bmd;
1149 	if (data->nr_segs > UIO_MAXIOV)
1150 		return NULL;
1151 
1152 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1153 	if (!bmd)
1154 		return NULL;
1155 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1156 	bmd->iter = *data;
1157 	bmd->iter.iov = bmd->iov;
1158 	return bmd;
1159 }
1160 
1161 /**
1162  * bio_copy_from_iter - copy all pages from iov_iter to bio
1163  * @bio: The &struct bio which describes the I/O as destination
1164  * @iter: iov_iter as source
1165  *
1166  * Copy all pages from iov_iter to bio.
1167  * Returns 0 on success, or error on failure.
1168  */
bio_copy_from_iter(struct bio * bio,struct iov_iter * iter)1169 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1170 {
1171 	struct bio_vec *bvec;
1172 	struct bvec_iter_all iter_all;
1173 
1174 	bio_for_each_segment_all(bvec, bio, iter_all) {
1175 		ssize_t ret;
1176 
1177 		ret = copy_page_from_iter(bvec->bv_page,
1178 					  bvec->bv_offset,
1179 					  bvec->bv_len,
1180 					  iter);
1181 
1182 		if (!iov_iter_count(iter))
1183 			break;
1184 
1185 		if (ret < bvec->bv_len)
1186 			return -EFAULT;
1187 	}
1188 
1189 	return 0;
1190 }
1191 
1192 /**
1193  * bio_copy_to_iter - copy all pages from bio to iov_iter
1194  * @bio: The &struct bio which describes the I/O as source
1195  * @iter: iov_iter as destination
1196  *
1197  * Copy all pages from bio to iov_iter.
1198  * Returns 0 on success, or error on failure.
1199  */
bio_copy_to_iter(struct bio * bio,struct iov_iter iter)1200 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1201 {
1202 	struct bio_vec *bvec;
1203 	struct bvec_iter_all iter_all;
1204 
1205 	bio_for_each_segment_all(bvec, bio, iter_all) {
1206 		ssize_t ret;
1207 
1208 		ret = copy_page_to_iter(bvec->bv_page,
1209 					bvec->bv_offset,
1210 					bvec->bv_len,
1211 					&iter);
1212 
1213 		if (!iov_iter_count(&iter))
1214 			break;
1215 
1216 		if (ret < bvec->bv_len)
1217 			return -EFAULT;
1218 	}
1219 
1220 	return 0;
1221 }
1222 
bio_free_pages(struct bio * bio)1223 void bio_free_pages(struct bio *bio)
1224 {
1225 	struct bio_vec *bvec;
1226 	struct bvec_iter_all iter_all;
1227 
1228 	bio_for_each_segment_all(bvec, bio, iter_all)
1229 		__free_page(bvec->bv_page);
1230 }
1231 EXPORT_SYMBOL(bio_free_pages);
1232 
1233 /**
1234  *	bio_uncopy_user	-	finish previously mapped bio
1235  *	@bio: bio being terminated
1236  *
1237  *	Free pages allocated from bio_copy_user_iov() and write back data
1238  *	to user space in case of a read.
1239  */
bio_uncopy_user(struct bio * bio)1240 int bio_uncopy_user(struct bio *bio)
1241 {
1242 	struct bio_map_data *bmd = bio->bi_private;
1243 	int ret = 0;
1244 
1245 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1246 		/*
1247 		 * if we're in a workqueue, the request is orphaned, so
1248 		 * don't copy into a random user address space, just free
1249 		 * and return -EINTR so user space doesn't expect any data.
1250 		 */
1251 		if (!current->mm)
1252 			ret = -EINTR;
1253 		else if (bio_data_dir(bio) == READ)
1254 			ret = bio_copy_to_iter(bio, bmd->iter);
1255 		if (bmd->is_our_pages)
1256 			bio_free_pages(bio);
1257 	}
1258 	kfree(bmd);
1259 	bio_put(bio);
1260 	return ret;
1261 }
1262 
1263 /**
1264  *	bio_copy_user_iov	-	copy user data to bio
1265  *	@q:		destination block queue
1266  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1267  *	@iter:		iovec iterator
1268  *	@gfp_mask:	memory allocation flags
1269  *
1270  *	Prepares and returns a bio for indirect user io, bouncing data
1271  *	to/from kernel pages as necessary. Must be paired with
1272  *	call bio_uncopy_user() on io completion.
1273  */
bio_copy_user_iov(struct request_queue * q,struct rq_map_data * map_data,struct iov_iter * iter,gfp_t gfp_mask)1274 struct bio *bio_copy_user_iov(struct request_queue *q,
1275 			      struct rq_map_data *map_data,
1276 			      struct iov_iter *iter,
1277 			      gfp_t gfp_mask)
1278 {
1279 	struct bio_map_data *bmd;
1280 	struct page *page;
1281 	struct bio *bio;
1282 	int i = 0, ret;
1283 	int nr_pages;
1284 	unsigned int len = iter->count;
1285 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1286 
1287 	bmd = bio_alloc_map_data(iter, gfp_mask);
1288 	if (!bmd)
1289 		return ERR_PTR(-ENOMEM);
1290 
1291 	/*
1292 	 * We need to do a deep copy of the iov_iter including the iovecs.
1293 	 * The caller provided iov might point to an on-stack or otherwise
1294 	 * shortlived one.
1295 	 */
1296 	bmd->is_our_pages = map_data ? 0 : 1;
1297 
1298 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1299 	if (nr_pages > BIO_MAX_PAGES)
1300 		nr_pages = BIO_MAX_PAGES;
1301 
1302 	ret = -ENOMEM;
1303 	bio = bio_kmalloc(gfp_mask, nr_pages);
1304 	if (!bio)
1305 		goto out_bmd;
1306 
1307 	ret = 0;
1308 
1309 	if (map_data) {
1310 		nr_pages = 1 << map_data->page_order;
1311 		i = map_data->offset / PAGE_SIZE;
1312 	}
1313 	while (len) {
1314 		unsigned int bytes = PAGE_SIZE;
1315 
1316 		bytes -= offset;
1317 
1318 		if (bytes > len)
1319 			bytes = len;
1320 
1321 		if (map_data) {
1322 			if (i == map_data->nr_entries * nr_pages) {
1323 				ret = -ENOMEM;
1324 				break;
1325 			}
1326 
1327 			page = map_data->pages[i / nr_pages];
1328 			page += (i % nr_pages);
1329 
1330 			i++;
1331 		} else {
1332 			page = alloc_page(q->bounce_gfp | gfp_mask);
1333 			if (!page) {
1334 				ret = -ENOMEM;
1335 				break;
1336 			}
1337 		}
1338 
1339 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1340 			if (!map_data)
1341 				__free_page(page);
1342 			break;
1343 		}
1344 
1345 		len -= bytes;
1346 		offset = 0;
1347 	}
1348 
1349 	if (ret)
1350 		goto cleanup;
1351 
1352 	if (map_data)
1353 		map_data->offset += bio->bi_iter.bi_size;
1354 
1355 	/*
1356 	 * success
1357 	 */
1358 	if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1359 	    (map_data && map_data->from_user)) {
1360 		ret = bio_copy_from_iter(bio, iter);
1361 		if (ret)
1362 			goto cleanup;
1363 	} else {
1364 		if (bmd->is_our_pages)
1365 			zero_fill_bio(bio);
1366 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1367 	}
1368 
1369 	bio->bi_private = bmd;
1370 	if (map_data && map_data->null_mapped)
1371 		bio_set_flag(bio, BIO_NULL_MAPPED);
1372 	return bio;
1373 cleanup:
1374 	if (!map_data)
1375 		bio_free_pages(bio);
1376 	bio_put(bio);
1377 out_bmd:
1378 	kfree(bmd);
1379 	return ERR_PTR(ret);
1380 }
1381 
1382 /**
1383  *	bio_map_user_iov - map user iovec into bio
1384  *	@q:		the struct request_queue for the bio
1385  *	@iter:		iovec iterator
1386  *	@gfp_mask:	memory allocation flags
1387  *
1388  *	Map the user space address into a bio suitable for io to a block
1389  *	device. Returns an error pointer in case of error.
1390  */
bio_map_user_iov(struct request_queue * q,struct iov_iter * iter,gfp_t gfp_mask)1391 struct bio *bio_map_user_iov(struct request_queue *q,
1392 			     struct iov_iter *iter,
1393 			     gfp_t gfp_mask)
1394 {
1395 	int j;
1396 	struct bio *bio;
1397 	int ret;
1398 
1399 	if (!iov_iter_count(iter))
1400 		return ERR_PTR(-EINVAL);
1401 
1402 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1403 	if (!bio)
1404 		return ERR_PTR(-ENOMEM);
1405 
1406 	while (iov_iter_count(iter)) {
1407 		struct page **pages;
1408 		ssize_t bytes;
1409 		size_t offs, added = 0;
1410 		int npages;
1411 
1412 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1413 		if (unlikely(bytes <= 0)) {
1414 			ret = bytes ? bytes : -EFAULT;
1415 			goto out_unmap;
1416 		}
1417 
1418 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1419 
1420 		if (unlikely(offs & queue_dma_alignment(q))) {
1421 			ret = -EINVAL;
1422 			j = 0;
1423 		} else {
1424 			for (j = 0; j < npages; j++) {
1425 				struct page *page = pages[j];
1426 				unsigned int n = PAGE_SIZE - offs;
1427 				bool same_page = false;
1428 
1429 				if (n > bytes)
1430 					n = bytes;
1431 
1432 				if (!__bio_add_pc_page(q, bio, page, n, offs,
1433 						&same_page)) {
1434 					if (same_page)
1435 						put_page(page);
1436 					break;
1437 				}
1438 
1439 				added += n;
1440 				bytes -= n;
1441 				offs = 0;
1442 			}
1443 			iov_iter_advance(iter, added);
1444 		}
1445 		/*
1446 		 * release the pages we didn't map into the bio, if any
1447 		 */
1448 		while (j < npages)
1449 			put_page(pages[j++]);
1450 		kvfree(pages);
1451 		/* couldn't stuff something into bio? */
1452 		if (bytes)
1453 			break;
1454 	}
1455 
1456 	bio_set_flag(bio, BIO_USER_MAPPED);
1457 
1458 	/*
1459 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1460 	 * it would normally disappear when its bi_end_io is run.
1461 	 * however, we need it for the unmap, so grab an extra
1462 	 * reference to it
1463 	 */
1464 	bio_get(bio);
1465 	return bio;
1466 
1467  out_unmap:
1468 	bio_release_pages(bio, false);
1469 	bio_put(bio);
1470 	return ERR_PTR(ret);
1471 }
1472 
1473 /**
1474  *	bio_unmap_user	-	unmap a bio
1475  *	@bio:		the bio being unmapped
1476  *
1477  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1478  *	process context.
1479  *
1480  *	bio_unmap_user() may sleep.
1481  */
bio_unmap_user(struct bio * bio)1482 void bio_unmap_user(struct bio *bio)
1483 {
1484 	bio_release_pages(bio, bio_data_dir(bio) == READ);
1485 	bio_put(bio);
1486 	bio_put(bio);
1487 }
1488 
bio_invalidate_vmalloc_pages(struct bio * bio)1489 static void bio_invalidate_vmalloc_pages(struct bio *bio)
1490 {
1491 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1492 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
1493 		unsigned long i, len = 0;
1494 
1495 		for (i = 0; i < bio->bi_vcnt; i++)
1496 			len += bio->bi_io_vec[i].bv_len;
1497 		invalidate_kernel_vmap_range(bio->bi_private, len);
1498 	}
1499 #endif
1500 }
1501 
bio_map_kern_endio(struct bio * bio)1502 static void bio_map_kern_endio(struct bio *bio)
1503 {
1504 	bio_invalidate_vmalloc_pages(bio);
1505 	bio_put(bio);
1506 }
1507 
1508 /**
1509  *	bio_map_kern	-	map kernel address into bio
1510  *	@q: the struct request_queue for the bio
1511  *	@data: pointer to buffer to map
1512  *	@len: length in bytes
1513  *	@gfp_mask: allocation flags for bio allocation
1514  *
1515  *	Map the kernel address into a bio suitable for io to a block
1516  *	device. Returns an error pointer in case of error.
1517  */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1518 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1519 			 gfp_t gfp_mask)
1520 {
1521 	unsigned long kaddr = (unsigned long)data;
1522 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1523 	unsigned long start = kaddr >> PAGE_SHIFT;
1524 	const int nr_pages = end - start;
1525 	bool is_vmalloc = is_vmalloc_addr(data);
1526 	struct page *page;
1527 	int offset, i;
1528 	struct bio *bio;
1529 
1530 	bio = bio_kmalloc(gfp_mask, nr_pages);
1531 	if (!bio)
1532 		return ERR_PTR(-ENOMEM);
1533 
1534 	if (is_vmalloc) {
1535 		flush_kernel_vmap_range(data, len);
1536 		bio->bi_private = data;
1537 	}
1538 
1539 	offset = offset_in_page(kaddr);
1540 	for (i = 0; i < nr_pages; i++) {
1541 		unsigned int bytes = PAGE_SIZE - offset;
1542 
1543 		if (len <= 0)
1544 			break;
1545 
1546 		if (bytes > len)
1547 			bytes = len;
1548 
1549 		if (!is_vmalloc)
1550 			page = virt_to_page(data);
1551 		else
1552 			page = vmalloc_to_page(data);
1553 		if (bio_add_pc_page(q, bio, page, bytes,
1554 				    offset) < bytes) {
1555 			/* we don't support partial mappings */
1556 			bio_put(bio);
1557 			return ERR_PTR(-EINVAL);
1558 		}
1559 
1560 		data += bytes;
1561 		len -= bytes;
1562 		offset = 0;
1563 	}
1564 
1565 	bio->bi_end_io = bio_map_kern_endio;
1566 	return bio;
1567 }
1568 
bio_copy_kern_endio(struct bio * bio)1569 static void bio_copy_kern_endio(struct bio *bio)
1570 {
1571 	bio_free_pages(bio);
1572 	bio_put(bio);
1573 }
1574 
bio_copy_kern_endio_read(struct bio * bio)1575 static void bio_copy_kern_endio_read(struct bio *bio)
1576 {
1577 	char *p = bio->bi_private;
1578 	struct bio_vec *bvec;
1579 	struct bvec_iter_all iter_all;
1580 
1581 	bio_for_each_segment_all(bvec, bio, iter_all) {
1582 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1583 		p += bvec->bv_len;
1584 	}
1585 
1586 	bio_copy_kern_endio(bio);
1587 }
1588 
1589 /**
1590  *	bio_copy_kern	-	copy kernel address into bio
1591  *	@q: the struct request_queue for the bio
1592  *	@data: pointer to buffer to copy
1593  *	@len: length in bytes
1594  *	@gfp_mask: allocation flags for bio and page allocation
1595  *	@reading: data direction is READ
1596  *
1597  *	copy the kernel address into a bio suitable for io to a block
1598  *	device. Returns an error pointer in case of error.
1599  */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)1600 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1601 			  gfp_t gfp_mask, int reading)
1602 {
1603 	unsigned long kaddr = (unsigned long)data;
1604 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1605 	unsigned long start = kaddr >> PAGE_SHIFT;
1606 	struct bio *bio;
1607 	void *p = data;
1608 	int nr_pages = 0;
1609 
1610 	/*
1611 	 * Overflow, abort
1612 	 */
1613 	if (end < start)
1614 		return ERR_PTR(-EINVAL);
1615 
1616 	nr_pages = end - start;
1617 	bio = bio_kmalloc(gfp_mask, nr_pages);
1618 	if (!bio)
1619 		return ERR_PTR(-ENOMEM);
1620 
1621 	while (len) {
1622 		struct page *page;
1623 		unsigned int bytes = PAGE_SIZE;
1624 
1625 		if (bytes > len)
1626 			bytes = len;
1627 
1628 		page = alloc_page(q->bounce_gfp | gfp_mask);
1629 		if (!page)
1630 			goto cleanup;
1631 
1632 		if (!reading)
1633 			memcpy(page_address(page), p, bytes);
1634 
1635 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1636 			break;
1637 
1638 		len -= bytes;
1639 		p += bytes;
1640 	}
1641 
1642 	if (reading) {
1643 		bio->bi_end_io = bio_copy_kern_endio_read;
1644 		bio->bi_private = data;
1645 	} else {
1646 		bio->bi_end_io = bio_copy_kern_endio;
1647 	}
1648 
1649 	return bio;
1650 
1651 cleanup:
1652 	bio_free_pages(bio);
1653 	bio_put(bio);
1654 	return ERR_PTR(-ENOMEM);
1655 }
1656 
1657 /*
1658  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1659  * for performing direct-IO in BIOs.
1660  *
1661  * The problem is that we cannot run set_page_dirty() from interrupt context
1662  * because the required locks are not interrupt-safe.  So what we can do is to
1663  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1664  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1665  * in process context.
1666  *
1667  * We special-case compound pages here: normally this means reads into hugetlb
1668  * pages.  The logic in here doesn't really work right for compound pages
1669  * because the VM does not uniformly chase down the head page in all cases.
1670  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1671  * handle them at all.  So we skip compound pages here at an early stage.
1672  *
1673  * Note that this code is very hard to test under normal circumstances because
1674  * direct-io pins the pages with get_user_pages().  This makes
1675  * is_page_cache_freeable return false, and the VM will not clean the pages.
1676  * But other code (eg, flusher threads) could clean the pages if they are mapped
1677  * pagecache.
1678  *
1679  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1680  * deferred bio dirtying paths.
1681  */
1682 
1683 /*
1684  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1685  */
bio_set_pages_dirty(struct bio * bio)1686 void bio_set_pages_dirty(struct bio *bio)
1687 {
1688 	struct bio_vec *bvec;
1689 	struct bvec_iter_all iter_all;
1690 
1691 	bio_for_each_segment_all(bvec, bio, iter_all) {
1692 		if (!PageCompound(bvec->bv_page))
1693 			set_page_dirty_lock(bvec->bv_page);
1694 	}
1695 }
1696 
1697 /*
1698  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1699  * If they are, then fine.  If, however, some pages are clean then they must
1700  * have been written out during the direct-IO read.  So we take another ref on
1701  * the BIO and re-dirty the pages in process context.
1702  *
1703  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1704  * here on.  It will run one put_page() against each page and will run one
1705  * bio_put() against the BIO.
1706  */
1707 
1708 static void bio_dirty_fn(struct work_struct *work);
1709 
1710 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1711 static DEFINE_SPINLOCK(bio_dirty_lock);
1712 static struct bio *bio_dirty_list;
1713 
1714 /*
1715  * This runs in process context
1716  */
bio_dirty_fn(struct work_struct * work)1717 static void bio_dirty_fn(struct work_struct *work)
1718 {
1719 	struct bio *bio, *next;
1720 
1721 	spin_lock_irq(&bio_dirty_lock);
1722 	next = bio_dirty_list;
1723 	bio_dirty_list = NULL;
1724 	spin_unlock_irq(&bio_dirty_lock);
1725 
1726 	while ((bio = next) != NULL) {
1727 		next = bio->bi_private;
1728 
1729 		bio_release_pages(bio, true);
1730 		bio_put(bio);
1731 	}
1732 }
1733 
bio_check_pages_dirty(struct bio * bio)1734 void bio_check_pages_dirty(struct bio *bio)
1735 {
1736 	struct bio_vec *bvec;
1737 	unsigned long flags;
1738 	struct bvec_iter_all iter_all;
1739 
1740 	bio_for_each_segment_all(bvec, bio, iter_all) {
1741 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1742 			goto defer;
1743 	}
1744 
1745 	bio_release_pages(bio, false);
1746 	bio_put(bio);
1747 	return;
1748 defer:
1749 	spin_lock_irqsave(&bio_dirty_lock, flags);
1750 	bio->bi_private = bio_dirty_list;
1751 	bio_dirty_list = bio;
1752 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1753 	schedule_work(&bio_dirty_work);
1754 }
1755 
update_io_ticks(struct hd_struct * part,unsigned long now)1756 void update_io_ticks(struct hd_struct *part, unsigned long now)
1757 {
1758 	unsigned long stamp;
1759 again:
1760 	stamp = READ_ONCE(part->stamp);
1761 	if (unlikely(stamp != now)) {
1762 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1763 			__part_stat_add(part, io_ticks, 1);
1764 		}
1765 	}
1766 	if (part->partno) {
1767 		part = &part_to_disk(part)->part0;
1768 		goto again;
1769 	}
1770 }
1771 
generic_start_io_acct(struct request_queue * q,int op,unsigned long sectors,struct hd_struct * part)1772 void generic_start_io_acct(struct request_queue *q, int op,
1773 			   unsigned long sectors, struct hd_struct *part)
1774 {
1775 	const int sgrp = op_stat_group(op);
1776 
1777 	part_stat_lock();
1778 
1779 	update_io_ticks(part, jiffies);
1780 	part_stat_inc(part, ios[sgrp]);
1781 	part_stat_add(part, sectors[sgrp], sectors);
1782 	part_inc_in_flight(q, part, op_is_write(op));
1783 
1784 	part_stat_unlock();
1785 }
1786 EXPORT_SYMBOL(generic_start_io_acct);
1787 
generic_end_io_acct(struct request_queue * q,int req_op,struct hd_struct * part,unsigned long start_time)1788 void generic_end_io_acct(struct request_queue *q, int req_op,
1789 			 struct hd_struct *part, unsigned long start_time)
1790 {
1791 	unsigned long now = jiffies;
1792 	unsigned long duration = now - start_time;
1793 	const int sgrp = op_stat_group(req_op);
1794 
1795 	part_stat_lock();
1796 
1797 	update_io_ticks(part, now);
1798 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1799 	part_stat_add(part, time_in_queue, duration);
1800 	part_dec_in_flight(q, part, op_is_write(req_op));
1801 
1802 	part_stat_unlock();
1803 }
1804 EXPORT_SYMBOL(generic_end_io_acct);
1805 
bio_remaining_done(struct bio * bio)1806 static inline bool bio_remaining_done(struct bio *bio)
1807 {
1808 	/*
1809 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1810 	 * we always end io on the first invocation.
1811 	 */
1812 	if (!bio_flagged(bio, BIO_CHAIN))
1813 		return true;
1814 
1815 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1816 
1817 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1818 		bio_clear_flag(bio, BIO_CHAIN);
1819 		return true;
1820 	}
1821 
1822 	return false;
1823 }
1824 
1825 /**
1826  * bio_endio - end I/O on a bio
1827  * @bio:	bio
1828  *
1829  * Description:
1830  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1831  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1832  *   bio unless they own it and thus know that it has an end_io function.
1833  *
1834  *   bio_endio() can be called several times on a bio that has been chained
1835  *   using bio_chain().  The ->bi_end_io() function will only be called the
1836  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1837  *   generated if BIO_TRACE_COMPLETION is set.
1838  **/
bio_endio(struct bio * bio)1839 void bio_endio(struct bio *bio)
1840 {
1841 again:
1842 	if (!bio_remaining_done(bio))
1843 		return;
1844 
1845 	if (!blk_crypto_endio(bio))
1846 		return;
1847 
1848 	if (!bio_integrity_endio(bio))
1849 		return;
1850 
1851 	if (bio->bi_disk)
1852 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1853 
1854 	/*
1855 	 * Need to have a real endio function for chained bios, otherwise
1856 	 * various corner cases will break (like stacking block devices that
1857 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1858 	 * recursion and blowing the stack. Tail call optimization would
1859 	 * handle this, but compiling with frame pointers also disables
1860 	 * gcc's sibling call optimization.
1861 	 */
1862 	if (bio->bi_end_io == bio_chain_endio) {
1863 		bio = __bio_chain_endio(bio);
1864 		goto again;
1865 	}
1866 
1867 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1868 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1869 					 blk_status_to_errno(bio->bi_status));
1870 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1871 	}
1872 
1873 	blk_throtl_bio_endio(bio);
1874 	/* release cgroup info */
1875 	bio_uninit(bio);
1876 	if (bio->bi_end_io)
1877 		bio->bi_end_io(bio);
1878 }
1879 EXPORT_SYMBOL(bio_endio);
1880 
1881 /**
1882  * bio_split - split a bio
1883  * @bio:	bio to split
1884  * @sectors:	number of sectors to split from the front of @bio
1885  * @gfp:	gfp mask
1886  * @bs:		bio set to allocate from
1887  *
1888  * Allocates and returns a new bio which represents @sectors from the start of
1889  * @bio, and updates @bio to represent the remaining sectors.
1890  *
1891  * Unless this is a discard request the newly allocated bio will point
1892  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1893  * neither @bio nor @bs are freed before the split bio.
1894  */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1895 struct bio *bio_split(struct bio *bio, int sectors,
1896 		      gfp_t gfp, struct bio_set *bs)
1897 {
1898 	struct bio *split;
1899 
1900 	BUG_ON(sectors <= 0);
1901 	BUG_ON(sectors >= bio_sectors(bio));
1902 
1903 	split = bio_clone_fast(bio, gfp, bs);
1904 	if (!split)
1905 		return NULL;
1906 
1907 	split->bi_iter.bi_size = sectors << 9;
1908 
1909 	if (bio_integrity(split))
1910 		bio_integrity_trim(split);
1911 
1912 	bio_advance(bio, split->bi_iter.bi_size);
1913 
1914 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1915 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1916 
1917 	return split;
1918 }
1919 EXPORT_SYMBOL(bio_split);
1920 
1921 /**
1922  * bio_trim - trim a bio
1923  * @bio:	bio to trim
1924  * @offset:	number of sectors to trim from the front of @bio
1925  * @size:	size we want to trim @bio to, in sectors
1926  */
bio_trim(struct bio * bio,int offset,int size)1927 void bio_trim(struct bio *bio, int offset, int size)
1928 {
1929 	/* 'bio' is a cloned bio which we need to trim to match
1930 	 * the given offset and size.
1931 	 */
1932 
1933 	size <<= 9;
1934 	if (offset == 0 && size == bio->bi_iter.bi_size)
1935 		return;
1936 
1937 	bio_advance(bio, offset << 9);
1938 	bio->bi_iter.bi_size = size;
1939 
1940 	if (bio_integrity(bio))
1941 		bio_integrity_trim(bio);
1942 
1943 }
1944 EXPORT_SYMBOL_GPL(bio_trim);
1945 
1946 /*
1947  * create memory pools for biovec's in a bio_set.
1948  * use the global biovec slabs created for general use.
1949  */
biovec_init_pool(mempool_t * pool,int pool_entries)1950 int biovec_init_pool(mempool_t *pool, int pool_entries)
1951 {
1952 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1953 
1954 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1955 }
1956 
1957 /*
1958  * bioset_exit - exit a bioset initialized with bioset_init()
1959  *
1960  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1961  * kzalloc()).
1962  */
bioset_exit(struct bio_set * bs)1963 void bioset_exit(struct bio_set *bs)
1964 {
1965 	if (bs->rescue_workqueue)
1966 		destroy_workqueue(bs->rescue_workqueue);
1967 	bs->rescue_workqueue = NULL;
1968 
1969 	mempool_exit(&bs->bio_pool);
1970 	mempool_exit(&bs->bvec_pool);
1971 
1972 	bioset_integrity_free(bs);
1973 	if (bs->bio_slab)
1974 		bio_put_slab(bs);
1975 	bs->bio_slab = NULL;
1976 }
1977 EXPORT_SYMBOL(bioset_exit);
1978 
1979 /**
1980  * bioset_init - Initialize a bio_set
1981  * @bs:		pool to initialize
1982  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1983  * @front_pad:	Number of bytes to allocate in front of the returned bio
1984  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1985  *              and %BIOSET_NEED_RESCUER
1986  *
1987  * Description:
1988  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1989  *    to ask for a number of bytes to be allocated in front of the bio.
1990  *    Front pad allocation is useful for embedding the bio inside
1991  *    another structure, to avoid allocating extra data to go with the bio.
1992  *    Note that the bio must be embedded at the END of that structure always,
1993  *    or things will break badly.
1994  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1995  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1996  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1997  *    dispatch queued requests when the mempool runs out of space.
1998  *
1999  */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)2000 int bioset_init(struct bio_set *bs,
2001 		unsigned int pool_size,
2002 		unsigned int front_pad,
2003 		int flags)
2004 {
2005 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
2006 
2007 	bs->front_pad = front_pad;
2008 
2009 	spin_lock_init(&bs->rescue_lock);
2010 	bio_list_init(&bs->rescue_list);
2011 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2012 
2013 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2014 	if (!bs->bio_slab)
2015 		return -ENOMEM;
2016 
2017 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2018 		goto bad;
2019 
2020 	if ((flags & BIOSET_NEED_BVECS) &&
2021 	    biovec_init_pool(&bs->bvec_pool, pool_size))
2022 		goto bad;
2023 
2024 	if (!(flags & BIOSET_NEED_RESCUER))
2025 		return 0;
2026 
2027 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2028 	if (!bs->rescue_workqueue)
2029 		goto bad;
2030 
2031 	return 0;
2032 bad:
2033 	bioset_exit(bs);
2034 	return -ENOMEM;
2035 }
2036 EXPORT_SYMBOL(bioset_init);
2037 
2038 /*
2039  * Initialize and setup a new bio_set, based on the settings from
2040  * another bio_set.
2041  */
bioset_init_from_src(struct bio_set * bs,struct bio_set * src)2042 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2043 {
2044 	int flags;
2045 
2046 	flags = 0;
2047 	if (src->bvec_pool.min_nr)
2048 		flags |= BIOSET_NEED_BVECS;
2049 	if (src->rescue_workqueue)
2050 		flags |= BIOSET_NEED_RESCUER;
2051 
2052 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2053 }
2054 EXPORT_SYMBOL(bioset_init_from_src);
2055 
2056 #ifdef CONFIG_BLK_CGROUP
2057 
2058 /**
2059  * bio_disassociate_blkg - puts back the blkg reference if associated
2060  * @bio: target bio
2061  *
2062  * Helper to disassociate the blkg from @bio if a blkg is associated.
2063  */
bio_disassociate_blkg(struct bio * bio)2064 void bio_disassociate_blkg(struct bio *bio)
2065 {
2066 	if (bio->bi_blkg) {
2067 		blkg_put(bio->bi_blkg);
2068 		bio->bi_blkg = NULL;
2069 	}
2070 }
2071 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2072 
2073 /**
2074  * __bio_associate_blkg - associate a bio with the a blkg
2075  * @bio: target bio
2076  * @blkg: the blkg to associate
2077  *
2078  * This tries to associate @bio with the specified @blkg.  Association failure
2079  * is handled by walking up the blkg tree.  Therefore, the blkg associated can
2080  * be anything between @blkg and the root_blkg.  This situation only happens
2081  * when a cgroup is dying and then the remaining bios will spill to the closest
2082  * alive blkg.
2083  *
2084  * A reference will be taken on the @blkg and will be released when @bio is
2085  * freed.
2086  */
__bio_associate_blkg(struct bio * bio,struct blkcg_gq * blkg)2087 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2088 {
2089 	bio_disassociate_blkg(bio);
2090 
2091 	bio->bi_blkg = blkg_tryget_closest(blkg);
2092 }
2093 
2094 /**
2095  * bio_associate_blkg_from_css - associate a bio with a specified css
2096  * @bio: target bio
2097  * @css: target css
2098  *
2099  * Associate @bio with the blkg found by combining the css's blkg and the
2100  * request_queue of the @bio.  This falls back to the queue's root_blkg if
2101  * the association fails with the css.
2102  */
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)2103 void bio_associate_blkg_from_css(struct bio *bio,
2104 				 struct cgroup_subsys_state *css)
2105 {
2106 	struct request_queue *q = bio->bi_disk->queue;
2107 	struct blkcg_gq *blkg;
2108 
2109 	rcu_read_lock();
2110 
2111 	if (!css || !css->parent)
2112 		blkg = q->root_blkg;
2113 	else
2114 		blkg = blkg_lookup_create(css_to_blkcg(css), q);
2115 
2116 	__bio_associate_blkg(bio, blkg);
2117 
2118 	rcu_read_unlock();
2119 }
2120 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2121 
2122 #ifdef CONFIG_MEMCG
2123 /**
2124  * bio_associate_blkg_from_page - associate a bio with the page's blkg
2125  * @bio: target bio
2126  * @page: the page to lookup the blkcg from
2127  *
2128  * Associate @bio with the blkg from @page's owning memcg and the respective
2129  * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
2130  * root_blkg.
2131  */
bio_associate_blkg_from_page(struct bio * bio,struct page * page)2132 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2133 {
2134 	struct cgroup_subsys_state *css;
2135 
2136 	if (!page->mem_cgroup)
2137 		return;
2138 
2139 	rcu_read_lock();
2140 
2141 	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2142 	bio_associate_blkg_from_css(bio, css);
2143 
2144 	rcu_read_unlock();
2145 }
2146 #endif /* CONFIG_MEMCG */
2147 
2148 /**
2149  * bio_associate_blkg - associate a bio with a blkg
2150  * @bio: target bio
2151  *
2152  * Associate @bio with the blkg found from the bio's css and request_queue.
2153  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2154  * already associated, the css is reused and association redone as the
2155  * request_queue may have changed.
2156  */
bio_associate_blkg(struct bio * bio)2157 void bio_associate_blkg(struct bio *bio)
2158 {
2159 	struct cgroup_subsys_state *css;
2160 
2161 	rcu_read_lock();
2162 
2163 	if (bio->bi_blkg)
2164 		css = &bio_blkcg(bio)->css;
2165 	else
2166 		css = blkcg_css();
2167 
2168 	bio_associate_blkg_from_css(bio, css);
2169 
2170 	rcu_read_unlock();
2171 }
2172 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2173 
2174 /**
2175  * bio_clone_blkg_association - clone blkg association from src to dst bio
2176  * @dst: destination bio
2177  * @src: source bio
2178  */
bio_clone_blkg_association(struct bio * dst,struct bio * src)2179 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2180 {
2181 	rcu_read_lock();
2182 
2183 	if (src->bi_blkg)
2184 		__bio_associate_blkg(dst, src->bi_blkg);
2185 
2186 	rcu_read_unlock();
2187 }
2188 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2189 #endif /* CONFIG_BLK_CGROUP */
2190 
biovec_init_slabs(void)2191 static void __init biovec_init_slabs(void)
2192 {
2193 	int i;
2194 
2195 	for (i = 0; i < BVEC_POOL_NR; i++) {
2196 		int size;
2197 		struct biovec_slab *bvs = bvec_slabs + i;
2198 
2199 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2200 			bvs->slab = NULL;
2201 			continue;
2202 		}
2203 
2204 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2205 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2206                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2207 	}
2208 }
2209 
init_bio(void)2210 static int __init init_bio(void)
2211 {
2212 	bio_slab_max = 2;
2213 	bio_slab_nr = 0;
2214 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2215 			    GFP_KERNEL);
2216 
2217 	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2218 
2219 	if (!bio_slabs)
2220 		panic("bio: can't allocate bios\n");
2221 
2222 	bio_integrity_init();
2223 	biovec_init_slabs();
2224 
2225 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2226 		panic("bio: can't allocate bios\n");
2227 
2228 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2229 		panic("bio: can't create integrity pool\n");
2230 
2231 	return 0;
2232 }
2233 subsys_initcall(init_bio);
2234