1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include "sched.h"
24
25 #include <trace/events/sched.h>
26
27 /*
28 * Targeted preemption latency for CPU-bound tasks:
29 *
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
34 *
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39 */
40 unsigned int sysctl_sched_latency = 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
42
43 /*
44 * The initial- and re-scaling of tunables is configurable
45 *
46 * Options are:
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53 */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55
56 /*
57 * Minimal preemption granularity for CPU-bound tasks:
58 *
59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60 */
61 unsigned int sysctl_sched_min_granularity = 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
63
64 /*
65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66 */
67 static unsigned int sched_nr_latency = 8;
68
69 /*
70 * After fork, child runs first. If set to 0 (default) then
71 * parent will (try to) run first.
72 */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74
75 /*
76 * SCHED_OTHER wake-up granularity.
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 */
84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
86
87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
88
89 #ifdef CONFIG_SMP
90 /*
91 * For asym packing, by default the lower numbered CPU has higher priority.
92 */
arch_asym_cpu_priority(int cpu)93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 return -cpu;
96 }
97
98 /*
99 * The margin used when comparing utilization with CPU capacity.
100 *
101 * (default: ~20%)
102 */
103 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
104
105 #endif
106
107 #ifdef CONFIG_CFS_BANDWIDTH
108 /*
109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110 * each time a cfs_rq requests quota.
111 *
112 * Note: in the case that the slice exceeds the runtime remaining (either due
113 * to consumption or the quota being specified to be smaller than the slice)
114 * we will always only issue the remaining available time.
115 *
116 * (default: 5 msec, units: microseconds)
117 */
118 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
119 #endif
120
update_load_add(struct load_weight * lw,unsigned long inc)121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 lw->weight += inc;
124 lw->inv_weight = 0;
125 }
126
update_load_sub(struct load_weight * lw,unsigned long dec)127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 lw->weight -= dec;
130 lw->inv_weight = 0;
131 }
132
update_load_set(struct load_weight * lw,unsigned long w)133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 lw->weight = w;
136 lw->inv_weight = 0;
137 }
138
139 /*
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
145 *
146 * This idea comes from the SD scheduler of Con Kolivas:
147 */
get_update_sysctl_factor(void)148 static unsigned int get_update_sysctl_factor(void)
149 {
150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 unsigned int factor;
152
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
164 }
165
166 return factor;
167 }
168
update_sysctl(void)169 static void update_sysctl(void)
170 {
171 unsigned int factor = get_update_sysctl_factor();
172
173 #define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180
sched_init_granularity(void)181 void sched_init_granularity(void)
182 {
183 update_sysctl();
184 }
185
186 #define WMULT_CONST (~0U)
187 #define WMULT_SHIFT 32
188
__update_inv_weight(struct load_weight * lw)189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 unsigned long w;
192
193 if (likely(lw->inv_weight))
194 return;
195
196 w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204 }
205
206 /*
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210 *
211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214 *
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
217 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
222
223 __update_inv_weight(lw);
224
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
229 }
230 }
231
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
234
235 while (fact >> 32) {
236 fact >>= 1;
237 shift--;
238 }
239
240 return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242
243
244 const struct sched_class fair_sched_class;
245
246 /**************************************************************
247 * CFS operations on generic schedulable entities:
248 */
249
250 #ifdef CONFIG_FAIR_GROUP_SCHED
task_of(struct sched_entity * se)251 static inline struct task_struct *task_of(struct sched_entity *se)
252 {
253 SCHED_WARN_ON(!entity_is_task(se));
254 return container_of(se, struct task_struct, se);
255 }
256
257 /* Walk up scheduling entities hierarchy */
258 #define for_each_sched_entity(se) \
259 for (; se; se = se->parent)
260
task_cfs_rq(struct task_struct * p)261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262 {
263 return p->se.cfs_rq;
264 }
265
266 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(struct sched_entity * se)267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268 {
269 return se->cfs_rq;
270 }
271
272 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)273 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274 {
275 return grp->my_q;
276 }
277
cfs_rq_tg_path(struct cfs_rq * cfs_rq,char * path,int len)278 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
279 {
280 if (!path)
281 return;
282
283 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
284 autogroup_path(cfs_rq->tg, path, len);
285 else if (cfs_rq && cfs_rq->tg->css.cgroup)
286 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
287 else
288 strlcpy(path, "(null)", len);
289 }
290
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)291 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
292 {
293 struct rq *rq = rq_of(cfs_rq);
294 int cpu = cpu_of(rq);
295
296 if (cfs_rq->on_list)
297 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
298
299 cfs_rq->on_list = 1;
300
301 /*
302 * Ensure we either appear before our parent (if already
303 * enqueued) or force our parent to appear after us when it is
304 * enqueued. The fact that we always enqueue bottom-up
305 * reduces this to two cases and a special case for the root
306 * cfs_rq. Furthermore, it also means that we will always reset
307 * tmp_alone_branch either when the branch is connected
308 * to a tree or when we reach the top of the tree
309 */
310 if (cfs_rq->tg->parent &&
311 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
312 /*
313 * If parent is already on the list, we add the child
314 * just before. Thanks to circular linked property of
315 * the list, this means to put the child at the tail
316 * of the list that starts by parent.
317 */
318 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
319 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
320 /*
321 * The branch is now connected to its tree so we can
322 * reset tmp_alone_branch to the beginning of the
323 * list.
324 */
325 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
326 return true;
327 }
328
329 if (!cfs_rq->tg->parent) {
330 /*
331 * cfs rq without parent should be put
332 * at the tail of the list.
333 */
334 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
335 &rq->leaf_cfs_rq_list);
336 /*
337 * We have reach the top of a tree so we can reset
338 * tmp_alone_branch to the beginning of the list.
339 */
340 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
341 return true;
342 }
343
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the begin of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
351 /*
352 * update tmp_alone_branch to points to the new begin
353 * of the branch
354 */
355 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
356 return false;
357 }
358
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)359 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
360 {
361 if (cfs_rq->on_list) {
362 struct rq *rq = rq_of(cfs_rq);
363
364 /*
365 * With cfs_rq being unthrottled/throttled during an enqueue,
366 * it can happen the tmp_alone_branch points the a leaf that
367 * we finally want to del. In this case, tmp_alone_branch moves
368 * to the prev element but it will point to rq->leaf_cfs_rq_list
369 * at the end of the enqueue.
370 */
371 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
372 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
373
374 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
375 cfs_rq->on_list = 0;
376 }
377 }
378
assert_list_leaf_cfs_rq(struct rq * rq)379 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
380 {
381 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
382 }
383
384 /* Iterate thr' all leaf cfs_rq's on a runqueue */
385 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
386 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
387 leaf_cfs_rq_list)
388
389 /* Do the two (enqueued) entities belong to the same group ? */
390 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)391 is_same_group(struct sched_entity *se, struct sched_entity *pse)
392 {
393 if (se->cfs_rq == pse->cfs_rq)
394 return se->cfs_rq;
395
396 return NULL;
397 }
398
parent_entity(struct sched_entity * se)399 static inline struct sched_entity *parent_entity(struct sched_entity *se)
400 {
401 return se->parent;
402 }
403
404 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)405 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
406 {
407 int se_depth, pse_depth;
408
409 /*
410 * preemption test can be made between sibling entities who are in the
411 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
412 * both tasks until we find their ancestors who are siblings of common
413 * parent.
414 */
415
416 /* First walk up until both entities are at same depth */
417 se_depth = (*se)->depth;
418 pse_depth = (*pse)->depth;
419
420 while (se_depth > pse_depth) {
421 se_depth--;
422 *se = parent_entity(*se);
423 }
424
425 while (pse_depth > se_depth) {
426 pse_depth--;
427 *pse = parent_entity(*pse);
428 }
429
430 while (!is_same_group(*se, *pse)) {
431 *se = parent_entity(*se);
432 *pse = parent_entity(*pse);
433 }
434 }
435
436 #else /* !CONFIG_FAIR_GROUP_SCHED */
437
task_of(struct sched_entity * se)438 static inline struct task_struct *task_of(struct sched_entity *se)
439 {
440 return container_of(se, struct task_struct, se);
441 }
442
443 #define for_each_sched_entity(se) \
444 for (; se; se = NULL)
445
task_cfs_rq(struct task_struct * p)446 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
447 {
448 return &task_rq(p)->cfs;
449 }
450
cfs_rq_of(struct sched_entity * se)451 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
452 {
453 struct task_struct *p = task_of(se);
454 struct rq *rq = task_rq(p);
455
456 return &rq->cfs;
457 }
458
459 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)460 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
461 {
462 return NULL;
463 }
464
cfs_rq_tg_path(struct cfs_rq * cfs_rq,char * path,int len)465 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
466 {
467 if (path)
468 strlcpy(path, "(null)", len);
469 }
470
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)471 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
472 {
473 return true;
474 }
475
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)476 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477 {
478 }
479
assert_list_leaf_cfs_rq(struct rq * rq)480 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
481 {
482 }
483
484 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
485 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
486
parent_entity(struct sched_entity * se)487 static inline struct sched_entity *parent_entity(struct sched_entity *se)
488 {
489 return NULL;
490 }
491
492 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)493 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
494 {
495 }
496
497 #endif /* CONFIG_FAIR_GROUP_SCHED */
498
499 static __always_inline
500 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
501
502 /**************************************************************
503 * Scheduling class tree data structure manipulation methods:
504 */
505
max_vruntime(u64 max_vruntime,u64 vruntime)506 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
507 {
508 s64 delta = (s64)(vruntime - max_vruntime);
509 if (delta > 0)
510 max_vruntime = vruntime;
511
512 return max_vruntime;
513 }
514
min_vruntime(u64 min_vruntime,u64 vruntime)515 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
516 {
517 s64 delta = (s64)(vruntime - min_vruntime);
518 if (delta < 0)
519 min_vruntime = vruntime;
520
521 return min_vruntime;
522 }
523
entity_before(struct sched_entity * a,struct sched_entity * b)524 static inline int entity_before(struct sched_entity *a,
525 struct sched_entity *b)
526 {
527 return (s64)(a->vruntime - b->vruntime) < 0;
528 }
529
update_min_vruntime(struct cfs_rq * cfs_rq)530 static void update_min_vruntime(struct cfs_rq *cfs_rq)
531 {
532 struct sched_entity *curr = cfs_rq->curr;
533 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
534
535 u64 vruntime = cfs_rq->min_vruntime;
536
537 if (curr) {
538 if (curr->on_rq)
539 vruntime = curr->vruntime;
540 else
541 curr = NULL;
542 }
543
544 if (leftmost) { /* non-empty tree */
545 struct sched_entity *se;
546 se = rb_entry(leftmost, struct sched_entity, run_node);
547
548 if (!curr)
549 vruntime = se->vruntime;
550 else
551 vruntime = min_vruntime(vruntime, se->vruntime);
552 }
553
554 /* ensure we never gain time by being placed backwards. */
555 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
556 #ifndef CONFIG_64BIT
557 smp_wmb();
558 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
559 #endif
560 }
561
562 /*
563 * Enqueue an entity into the rb-tree:
564 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)565 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
566 {
567 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
568 struct rb_node *parent = NULL;
569 struct sched_entity *entry;
570 bool leftmost = true;
571
572 /*
573 * Find the right place in the rbtree:
574 */
575 while (*link) {
576 parent = *link;
577 entry = rb_entry(parent, struct sched_entity, run_node);
578 /*
579 * We dont care about collisions. Nodes with
580 * the same key stay together.
581 */
582 if (entity_before(se, entry)) {
583 link = &parent->rb_left;
584 } else {
585 link = &parent->rb_right;
586 leftmost = false;
587 }
588 }
589
590 rb_link_node(&se->run_node, parent, link);
591 rb_insert_color_cached(&se->run_node,
592 &cfs_rq->tasks_timeline, leftmost);
593 }
594
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)595 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
596 {
597 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
598 }
599
__pick_first_entity(struct cfs_rq * cfs_rq)600 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
601 {
602 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
603
604 if (!left)
605 return NULL;
606
607 return rb_entry(left, struct sched_entity, run_node);
608 }
609
__pick_next_entity(struct sched_entity * se)610 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
611 {
612 struct rb_node *next = rb_next(&se->run_node);
613
614 if (!next)
615 return NULL;
616
617 return rb_entry(next, struct sched_entity, run_node);
618 }
619
620 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)621 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
622 {
623 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
624
625 if (!last)
626 return NULL;
627
628 return rb_entry(last, struct sched_entity, run_node);
629 }
630
631 /**************************************************************
632 * Scheduling class statistics methods:
633 */
634
sched_proc_update_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)635 int sched_proc_update_handler(struct ctl_table *table, int write,
636 void __user *buffer, size_t *lenp,
637 loff_t *ppos)
638 {
639 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
640 unsigned int factor = get_update_sysctl_factor();
641
642 if (ret || !write)
643 return ret;
644
645 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
646 sysctl_sched_min_granularity);
647
648 #define WRT_SYSCTL(name) \
649 (normalized_sysctl_##name = sysctl_##name / (factor))
650 WRT_SYSCTL(sched_min_granularity);
651 WRT_SYSCTL(sched_latency);
652 WRT_SYSCTL(sched_wakeup_granularity);
653 #undef WRT_SYSCTL
654
655 return 0;
656 }
657 #endif
658
659 /*
660 * delta /= w
661 */
calc_delta_fair(u64 delta,struct sched_entity * se)662 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
663 {
664 if (unlikely(se->load.weight != NICE_0_LOAD))
665 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
666
667 return delta;
668 }
669
670 /*
671 * The idea is to set a period in which each task runs once.
672 *
673 * When there are too many tasks (sched_nr_latency) we have to stretch
674 * this period because otherwise the slices get too small.
675 *
676 * p = (nr <= nl) ? l : l*nr/nl
677 */
__sched_period(unsigned long nr_running)678 static u64 __sched_period(unsigned long nr_running)
679 {
680 if (unlikely(nr_running > sched_nr_latency))
681 return nr_running * sysctl_sched_min_granularity;
682 else
683 return sysctl_sched_latency;
684 }
685
686 /*
687 * We calculate the wall-time slice from the period by taking a part
688 * proportional to the weight.
689 *
690 * s = p*P[w/rw]
691 */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)692 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
693 {
694 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
695
696 for_each_sched_entity(se) {
697 struct load_weight *load;
698 struct load_weight lw;
699
700 cfs_rq = cfs_rq_of(se);
701 load = &cfs_rq->load;
702
703 if (unlikely(!se->on_rq)) {
704 lw = cfs_rq->load;
705
706 update_load_add(&lw, se->load.weight);
707 load = &lw;
708 }
709 slice = __calc_delta(slice, se->load.weight, load);
710 }
711 return slice;
712 }
713
714 /*
715 * We calculate the vruntime slice of a to-be-inserted task.
716 *
717 * vs = s/w
718 */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)719 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
720 {
721 return calc_delta_fair(sched_slice(cfs_rq, se), se);
722 }
723
724 #include "pelt.h"
725 #ifdef CONFIG_SMP
726
727 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
728 static unsigned long task_h_load(struct task_struct *p);
729 static unsigned long capacity_of(int cpu);
730
731 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)732 void init_entity_runnable_average(struct sched_entity *se)
733 {
734 struct sched_avg *sa = &se->avg;
735
736 memset(sa, 0, sizeof(*sa));
737
738 /*
739 * Tasks are initialized with full load to be seen as heavy tasks until
740 * they get a chance to stabilize to their real load level.
741 * Group entities are initialized with zero load to reflect the fact that
742 * nothing has been attached to the task group yet.
743 */
744 if (entity_is_task(se))
745 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
746
747 se->runnable_weight = se->load.weight;
748
749 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
750 }
751
752 static void attach_entity_cfs_rq(struct sched_entity *se);
753
754 /*
755 * With new tasks being created, their initial util_avgs are extrapolated
756 * based on the cfs_rq's current util_avg:
757 *
758 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
759 *
760 * However, in many cases, the above util_avg does not give a desired
761 * value. Moreover, the sum of the util_avgs may be divergent, such
762 * as when the series is a harmonic series.
763 *
764 * To solve this problem, we also cap the util_avg of successive tasks to
765 * only 1/2 of the left utilization budget:
766 *
767 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
768 *
769 * where n denotes the nth task and cpu_scale the CPU capacity.
770 *
771 * For example, for a CPU with 1024 of capacity, a simplest series from
772 * the beginning would be like:
773 *
774 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
775 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
776 *
777 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
778 * if util_avg > util_avg_cap.
779 */
post_init_entity_util_avg(struct task_struct * p)780 void post_init_entity_util_avg(struct task_struct *p)
781 {
782 struct sched_entity *se = &p->se;
783 struct cfs_rq *cfs_rq = cfs_rq_of(se);
784 struct sched_avg *sa = &se->avg;
785 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
786 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
787
788 if (cap > 0) {
789 if (cfs_rq->avg.util_avg != 0) {
790 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
791 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
792
793 if (sa->util_avg > cap)
794 sa->util_avg = cap;
795 } else {
796 sa->util_avg = cap;
797 }
798 }
799
800 if (p->sched_class != &fair_sched_class) {
801 /*
802 * For !fair tasks do:
803 *
804 update_cfs_rq_load_avg(now, cfs_rq);
805 attach_entity_load_avg(cfs_rq, se, 0);
806 switched_from_fair(rq, p);
807 *
808 * such that the next switched_to_fair() has the
809 * expected state.
810 */
811 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
812 return;
813 }
814
815 attach_entity_cfs_rq(se);
816 }
817
818 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)819 void init_entity_runnable_average(struct sched_entity *se)
820 {
821 }
post_init_entity_util_avg(struct task_struct * p)822 void post_init_entity_util_avg(struct task_struct *p)
823 {
824 }
update_tg_load_avg(struct cfs_rq * cfs_rq,int force)825 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
826 {
827 }
828 #endif /* CONFIG_SMP */
829
830 /*
831 * Update the current task's runtime statistics.
832 */
update_curr(struct cfs_rq * cfs_rq)833 static void update_curr(struct cfs_rq *cfs_rq)
834 {
835 struct sched_entity *curr = cfs_rq->curr;
836 u64 now = rq_clock_task(rq_of(cfs_rq));
837 u64 delta_exec;
838
839 if (unlikely(!curr))
840 return;
841
842 delta_exec = now - curr->exec_start;
843 if (unlikely((s64)delta_exec <= 0))
844 return;
845
846 curr->exec_start = now;
847
848 schedstat_set(curr->statistics.exec_max,
849 max(delta_exec, curr->statistics.exec_max));
850
851 curr->sum_exec_runtime += delta_exec;
852 schedstat_add(cfs_rq->exec_clock, delta_exec);
853
854 curr->vruntime += calc_delta_fair(delta_exec, curr);
855 update_min_vruntime(cfs_rq);
856
857 if (entity_is_task(curr)) {
858 struct task_struct *curtask = task_of(curr);
859
860 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
861 cgroup_account_cputime(curtask, delta_exec);
862 account_group_exec_runtime(curtask, delta_exec);
863 }
864
865 account_cfs_rq_runtime(cfs_rq, delta_exec);
866 }
867
update_curr_fair(struct rq * rq)868 static void update_curr_fair(struct rq *rq)
869 {
870 update_curr(cfs_rq_of(&rq->curr->se));
871 }
872
873 static inline void
update_stats_wait_start(struct cfs_rq * cfs_rq,struct sched_entity * se)874 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
875 {
876 u64 wait_start, prev_wait_start;
877
878 if (!schedstat_enabled())
879 return;
880
881 wait_start = rq_clock(rq_of(cfs_rq));
882 prev_wait_start = schedstat_val(se->statistics.wait_start);
883
884 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
885 likely(wait_start > prev_wait_start))
886 wait_start -= prev_wait_start;
887
888 __schedstat_set(se->statistics.wait_start, wait_start);
889 }
890
891 static inline void
update_stats_wait_end(struct cfs_rq * cfs_rq,struct sched_entity * se)892 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
893 {
894 struct task_struct *p;
895 u64 delta;
896
897 if (!schedstat_enabled())
898 return;
899
900 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
901
902 if (entity_is_task(se)) {
903 p = task_of(se);
904 if (task_on_rq_migrating(p)) {
905 /*
906 * Preserve migrating task's wait time so wait_start
907 * time stamp can be adjusted to accumulate wait time
908 * prior to migration.
909 */
910 __schedstat_set(se->statistics.wait_start, delta);
911 return;
912 }
913 trace_sched_stat_wait(p, delta);
914 }
915
916 __schedstat_set(se->statistics.wait_max,
917 max(schedstat_val(se->statistics.wait_max), delta));
918 __schedstat_inc(se->statistics.wait_count);
919 __schedstat_add(se->statistics.wait_sum, delta);
920 __schedstat_set(se->statistics.wait_start, 0);
921 }
922
923 static inline void
update_stats_enqueue_sleeper(struct cfs_rq * cfs_rq,struct sched_entity * se)924 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
925 {
926 struct task_struct *tsk = NULL;
927 u64 sleep_start, block_start;
928
929 if (!schedstat_enabled())
930 return;
931
932 sleep_start = schedstat_val(se->statistics.sleep_start);
933 block_start = schedstat_val(se->statistics.block_start);
934
935 if (entity_is_task(se))
936 tsk = task_of(se);
937
938 if (sleep_start) {
939 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
940
941 if ((s64)delta < 0)
942 delta = 0;
943
944 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
945 __schedstat_set(se->statistics.sleep_max, delta);
946
947 __schedstat_set(se->statistics.sleep_start, 0);
948 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
949
950 if (tsk) {
951 account_scheduler_latency(tsk, delta >> 10, 1);
952 trace_sched_stat_sleep(tsk, delta);
953 }
954 }
955 if (block_start) {
956 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
957
958 if ((s64)delta < 0)
959 delta = 0;
960
961 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
962 __schedstat_set(se->statistics.block_max, delta);
963
964 __schedstat_set(se->statistics.block_start, 0);
965 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
966
967 if (tsk) {
968 if (tsk->in_iowait) {
969 __schedstat_add(se->statistics.iowait_sum, delta);
970 __schedstat_inc(se->statistics.iowait_count);
971 trace_sched_stat_iowait(tsk, delta);
972 }
973
974 trace_sched_stat_blocked(tsk, delta);
975
976 /*
977 * Blocking time is in units of nanosecs, so shift by
978 * 20 to get a milliseconds-range estimation of the
979 * amount of time that the task spent sleeping:
980 */
981 if (unlikely(prof_on == SLEEP_PROFILING)) {
982 profile_hits(SLEEP_PROFILING,
983 (void *)get_wchan(tsk),
984 delta >> 20);
985 }
986 account_scheduler_latency(tsk, delta >> 10, 0);
987 }
988 }
989 }
990
991 /*
992 * Task is being enqueued - update stats:
993 */
994 static inline void
update_stats_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)995 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
996 {
997 if (!schedstat_enabled())
998 return;
999
1000 /*
1001 * Are we enqueueing a waiting task? (for current tasks
1002 * a dequeue/enqueue event is a NOP)
1003 */
1004 if (se != cfs_rq->curr)
1005 update_stats_wait_start(cfs_rq, se);
1006
1007 if (flags & ENQUEUE_WAKEUP)
1008 update_stats_enqueue_sleeper(cfs_rq, se);
1009 }
1010
1011 static inline void
update_stats_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1012 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1013 {
1014
1015 if (!schedstat_enabled())
1016 return;
1017
1018 /*
1019 * Mark the end of the wait period if dequeueing a
1020 * waiting task:
1021 */
1022 if (se != cfs_rq->curr)
1023 update_stats_wait_end(cfs_rq, se);
1024
1025 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1026 struct task_struct *tsk = task_of(se);
1027
1028 if (tsk->state & TASK_INTERRUPTIBLE)
1029 __schedstat_set(se->statistics.sleep_start,
1030 rq_clock(rq_of(cfs_rq)));
1031 if (tsk->state & TASK_UNINTERRUPTIBLE)
1032 __schedstat_set(se->statistics.block_start,
1033 rq_clock(rq_of(cfs_rq)));
1034 }
1035 }
1036
1037 /*
1038 * We are picking a new current task - update its stats:
1039 */
1040 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1041 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1042 {
1043 /*
1044 * We are starting a new run period:
1045 */
1046 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1047 }
1048
1049 /**************************************************
1050 * Scheduling class queueing methods:
1051 */
1052
1053 #ifdef CONFIG_NUMA_BALANCING
1054 /*
1055 * Approximate time to scan a full NUMA task in ms. The task scan period is
1056 * calculated based on the tasks virtual memory size and
1057 * numa_balancing_scan_size.
1058 */
1059 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1060 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1061
1062 /* Portion of address space to scan in MB */
1063 unsigned int sysctl_numa_balancing_scan_size = 256;
1064
1065 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1066 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1067
1068 struct numa_group {
1069 refcount_t refcount;
1070
1071 spinlock_t lock; /* nr_tasks, tasks */
1072 int nr_tasks;
1073 pid_t gid;
1074 int active_nodes;
1075
1076 struct rcu_head rcu;
1077 unsigned long total_faults;
1078 unsigned long max_faults_cpu;
1079 /*
1080 * Faults_cpu is used to decide whether memory should move
1081 * towards the CPU. As a consequence, these stats are weighted
1082 * more by CPU use than by memory faults.
1083 */
1084 unsigned long *faults_cpu;
1085 unsigned long faults[0];
1086 };
1087
1088 /*
1089 * For functions that can be called in multiple contexts that permit reading
1090 * ->numa_group (see struct task_struct for locking rules).
1091 */
deref_task_numa_group(struct task_struct * p)1092 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1093 {
1094 return rcu_dereference_check(p->numa_group, p == current ||
1095 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1096 }
1097
deref_curr_numa_group(struct task_struct * p)1098 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1099 {
1100 return rcu_dereference_protected(p->numa_group, p == current);
1101 }
1102
1103 static inline unsigned long group_faults_priv(struct numa_group *ng);
1104 static inline unsigned long group_faults_shared(struct numa_group *ng);
1105
task_nr_scan_windows(struct task_struct * p)1106 static unsigned int task_nr_scan_windows(struct task_struct *p)
1107 {
1108 unsigned long rss = 0;
1109 unsigned long nr_scan_pages;
1110
1111 /*
1112 * Calculations based on RSS as non-present and empty pages are skipped
1113 * by the PTE scanner and NUMA hinting faults should be trapped based
1114 * on resident pages
1115 */
1116 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1117 rss = get_mm_rss(p->mm);
1118 if (!rss)
1119 rss = nr_scan_pages;
1120
1121 rss = round_up(rss, nr_scan_pages);
1122 return rss / nr_scan_pages;
1123 }
1124
1125 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1126 #define MAX_SCAN_WINDOW 2560
1127
task_scan_min(struct task_struct * p)1128 static unsigned int task_scan_min(struct task_struct *p)
1129 {
1130 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1131 unsigned int scan, floor;
1132 unsigned int windows = 1;
1133
1134 if (scan_size < MAX_SCAN_WINDOW)
1135 windows = MAX_SCAN_WINDOW / scan_size;
1136 floor = 1000 / windows;
1137
1138 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1139 return max_t(unsigned int, floor, scan);
1140 }
1141
task_scan_start(struct task_struct * p)1142 static unsigned int task_scan_start(struct task_struct *p)
1143 {
1144 unsigned long smin = task_scan_min(p);
1145 unsigned long period = smin;
1146 struct numa_group *ng;
1147
1148 /* Scale the maximum scan period with the amount of shared memory. */
1149 rcu_read_lock();
1150 ng = rcu_dereference(p->numa_group);
1151 if (ng) {
1152 unsigned long shared = group_faults_shared(ng);
1153 unsigned long private = group_faults_priv(ng);
1154
1155 period *= refcount_read(&ng->refcount);
1156 period *= shared + 1;
1157 period /= private + shared + 1;
1158 }
1159 rcu_read_unlock();
1160
1161 return max(smin, period);
1162 }
1163
task_scan_max(struct task_struct * p)1164 static unsigned int task_scan_max(struct task_struct *p)
1165 {
1166 unsigned long smin = task_scan_min(p);
1167 unsigned long smax;
1168 struct numa_group *ng;
1169
1170 /* Watch for min being lower than max due to floor calculations */
1171 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1172
1173 /* Scale the maximum scan period with the amount of shared memory. */
1174 ng = deref_curr_numa_group(p);
1175 if (ng) {
1176 unsigned long shared = group_faults_shared(ng);
1177 unsigned long private = group_faults_priv(ng);
1178 unsigned long period = smax;
1179
1180 period *= refcount_read(&ng->refcount);
1181 period *= shared + 1;
1182 period /= private + shared + 1;
1183
1184 smax = max(smax, period);
1185 }
1186
1187 return max(smin, smax);
1188 }
1189
account_numa_enqueue(struct rq * rq,struct task_struct * p)1190 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1191 {
1192 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1193 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1194 }
1195
account_numa_dequeue(struct rq * rq,struct task_struct * p)1196 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1197 {
1198 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1199 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1200 }
1201
1202 /* Shared or private faults. */
1203 #define NR_NUMA_HINT_FAULT_TYPES 2
1204
1205 /* Memory and CPU locality */
1206 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1207
1208 /* Averaged statistics, and temporary buffers. */
1209 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1210
task_numa_group_id(struct task_struct * p)1211 pid_t task_numa_group_id(struct task_struct *p)
1212 {
1213 struct numa_group *ng;
1214 pid_t gid = 0;
1215
1216 rcu_read_lock();
1217 ng = rcu_dereference(p->numa_group);
1218 if (ng)
1219 gid = ng->gid;
1220 rcu_read_unlock();
1221
1222 return gid;
1223 }
1224
1225 /*
1226 * The averaged statistics, shared & private, memory & CPU,
1227 * occupy the first half of the array. The second half of the
1228 * array is for current counters, which are averaged into the
1229 * first set by task_numa_placement.
1230 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1231 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1232 {
1233 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1234 }
1235
task_faults(struct task_struct * p,int nid)1236 static inline unsigned long task_faults(struct task_struct *p, int nid)
1237 {
1238 if (!p->numa_faults)
1239 return 0;
1240
1241 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1242 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1243 }
1244
group_faults(struct task_struct * p,int nid)1245 static inline unsigned long group_faults(struct task_struct *p, int nid)
1246 {
1247 struct numa_group *ng = deref_task_numa_group(p);
1248
1249 if (!ng)
1250 return 0;
1251
1252 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1253 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1254 }
1255
group_faults_cpu(struct numa_group * group,int nid)1256 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1257 {
1258 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1259 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1260 }
1261
group_faults_priv(struct numa_group * ng)1262 static inline unsigned long group_faults_priv(struct numa_group *ng)
1263 {
1264 unsigned long faults = 0;
1265 int node;
1266
1267 for_each_online_node(node) {
1268 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1269 }
1270
1271 return faults;
1272 }
1273
group_faults_shared(struct numa_group * ng)1274 static inline unsigned long group_faults_shared(struct numa_group *ng)
1275 {
1276 unsigned long faults = 0;
1277 int node;
1278
1279 for_each_online_node(node) {
1280 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1281 }
1282
1283 return faults;
1284 }
1285
1286 /*
1287 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1288 * considered part of a numa group's pseudo-interleaving set. Migrations
1289 * between these nodes are slowed down, to allow things to settle down.
1290 */
1291 #define ACTIVE_NODE_FRACTION 3
1292
numa_is_active_node(int nid,struct numa_group * ng)1293 static bool numa_is_active_node(int nid, struct numa_group *ng)
1294 {
1295 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1296 }
1297
1298 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int maxdist,bool task)1299 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1300 int maxdist, bool task)
1301 {
1302 unsigned long score = 0;
1303 int node;
1304
1305 /*
1306 * All nodes are directly connected, and the same distance
1307 * from each other. No need for fancy placement algorithms.
1308 */
1309 if (sched_numa_topology_type == NUMA_DIRECT)
1310 return 0;
1311
1312 /*
1313 * This code is called for each node, introducing N^2 complexity,
1314 * which should be ok given the number of nodes rarely exceeds 8.
1315 */
1316 for_each_online_node(node) {
1317 unsigned long faults;
1318 int dist = node_distance(nid, node);
1319
1320 /*
1321 * The furthest away nodes in the system are not interesting
1322 * for placement; nid was already counted.
1323 */
1324 if (dist == sched_max_numa_distance || node == nid)
1325 continue;
1326
1327 /*
1328 * On systems with a backplane NUMA topology, compare groups
1329 * of nodes, and move tasks towards the group with the most
1330 * memory accesses. When comparing two nodes at distance
1331 * "hoplimit", only nodes closer by than "hoplimit" are part
1332 * of each group. Skip other nodes.
1333 */
1334 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1335 dist >= maxdist)
1336 continue;
1337
1338 /* Add up the faults from nearby nodes. */
1339 if (task)
1340 faults = task_faults(p, node);
1341 else
1342 faults = group_faults(p, node);
1343
1344 /*
1345 * On systems with a glueless mesh NUMA topology, there are
1346 * no fixed "groups of nodes". Instead, nodes that are not
1347 * directly connected bounce traffic through intermediate
1348 * nodes; a numa_group can occupy any set of nodes.
1349 * The further away a node is, the less the faults count.
1350 * This seems to result in good task placement.
1351 */
1352 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1353 faults *= (sched_max_numa_distance - dist);
1354 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1355 }
1356
1357 score += faults;
1358 }
1359
1360 return score;
1361 }
1362
1363 /*
1364 * These return the fraction of accesses done by a particular task, or
1365 * task group, on a particular numa node. The group weight is given a
1366 * larger multiplier, in order to group tasks together that are almost
1367 * evenly spread out between numa nodes.
1368 */
task_weight(struct task_struct * p,int nid,int dist)1369 static inline unsigned long task_weight(struct task_struct *p, int nid,
1370 int dist)
1371 {
1372 unsigned long faults, total_faults;
1373
1374 if (!p->numa_faults)
1375 return 0;
1376
1377 total_faults = p->total_numa_faults;
1378
1379 if (!total_faults)
1380 return 0;
1381
1382 faults = task_faults(p, nid);
1383 faults += score_nearby_nodes(p, nid, dist, true);
1384
1385 return 1000 * faults / total_faults;
1386 }
1387
group_weight(struct task_struct * p,int nid,int dist)1388 static inline unsigned long group_weight(struct task_struct *p, int nid,
1389 int dist)
1390 {
1391 struct numa_group *ng = deref_task_numa_group(p);
1392 unsigned long faults, total_faults;
1393
1394 if (!ng)
1395 return 0;
1396
1397 total_faults = ng->total_faults;
1398
1399 if (!total_faults)
1400 return 0;
1401
1402 faults = group_faults(p, nid);
1403 faults += score_nearby_nodes(p, nid, dist, false);
1404
1405 return 1000 * faults / total_faults;
1406 }
1407
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1408 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1409 int src_nid, int dst_cpu)
1410 {
1411 struct numa_group *ng = deref_curr_numa_group(p);
1412 int dst_nid = cpu_to_node(dst_cpu);
1413 int last_cpupid, this_cpupid;
1414
1415 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1416 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1417
1418 /*
1419 * Allow first faults or private faults to migrate immediately early in
1420 * the lifetime of a task. The magic number 4 is based on waiting for
1421 * two full passes of the "multi-stage node selection" test that is
1422 * executed below.
1423 */
1424 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1425 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1426 return true;
1427
1428 /*
1429 * Multi-stage node selection is used in conjunction with a periodic
1430 * migration fault to build a temporal task<->page relation. By using
1431 * a two-stage filter we remove short/unlikely relations.
1432 *
1433 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1434 * a task's usage of a particular page (n_p) per total usage of this
1435 * page (n_t) (in a given time-span) to a probability.
1436 *
1437 * Our periodic faults will sample this probability and getting the
1438 * same result twice in a row, given these samples are fully
1439 * independent, is then given by P(n)^2, provided our sample period
1440 * is sufficiently short compared to the usage pattern.
1441 *
1442 * This quadric squishes small probabilities, making it less likely we
1443 * act on an unlikely task<->page relation.
1444 */
1445 if (!cpupid_pid_unset(last_cpupid) &&
1446 cpupid_to_nid(last_cpupid) != dst_nid)
1447 return false;
1448
1449 /* Always allow migrate on private faults */
1450 if (cpupid_match_pid(p, last_cpupid))
1451 return true;
1452
1453 /* A shared fault, but p->numa_group has not been set up yet. */
1454 if (!ng)
1455 return true;
1456
1457 /*
1458 * Destination node is much more heavily used than the source
1459 * node? Allow migration.
1460 */
1461 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1462 ACTIVE_NODE_FRACTION)
1463 return true;
1464
1465 /*
1466 * Distribute memory according to CPU & memory use on each node,
1467 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1468 *
1469 * faults_cpu(dst) 3 faults_cpu(src)
1470 * --------------- * - > ---------------
1471 * faults_mem(dst) 4 faults_mem(src)
1472 */
1473 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1474 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1475 }
1476
1477 static unsigned long cpu_runnable_load(struct rq *rq);
1478
1479 /* Cached statistics for all CPUs within a node */
1480 struct numa_stats {
1481 unsigned long load;
1482
1483 /* Total compute capacity of CPUs on a node */
1484 unsigned long compute_capacity;
1485 };
1486
1487 /*
1488 * XXX borrowed from update_sg_lb_stats
1489 */
update_numa_stats(struct numa_stats * ns,int nid)1490 static void update_numa_stats(struct numa_stats *ns, int nid)
1491 {
1492 int cpu;
1493
1494 memset(ns, 0, sizeof(*ns));
1495 for_each_cpu(cpu, cpumask_of_node(nid)) {
1496 struct rq *rq = cpu_rq(cpu);
1497
1498 ns->load += cpu_runnable_load(rq);
1499 ns->compute_capacity += capacity_of(cpu);
1500 }
1501
1502 }
1503
1504 struct task_numa_env {
1505 struct task_struct *p;
1506
1507 int src_cpu, src_nid;
1508 int dst_cpu, dst_nid;
1509
1510 struct numa_stats src_stats, dst_stats;
1511
1512 int imbalance_pct;
1513 int dist;
1514
1515 struct task_struct *best_task;
1516 long best_imp;
1517 int best_cpu;
1518 };
1519
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)1520 static void task_numa_assign(struct task_numa_env *env,
1521 struct task_struct *p, long imp)
1522 {
1523 struct rq *rq = cpu_rq(env->dst_cpu);
1524
1525 /* Bail out if run-queue part of active NUMA balance. */
1526 if (xchg(&rq->numa_migrate_on, 1))
1527 return;
1528
1529 /*
1530 * Clear previous best_cpu/rq numa-migrate flag, since task now
1531 * found a better CPU to move/swap.
1532 */
1533 if (env->best_cpu != -1) {
1534 rq = cpu_rq(env->best_cpu);
1535 WRITE_ONCE(rq->numa_migrate_on, 0);
1536 }
1537
1538 if (env->best_task)
1539 put_task_struct(env->best_task);
1540 if (p)
1541 get_task_struct(p);
1542
1543 env->best_task = p;
1544 env->best_imp = imp;
1545 env->best_cpu = env->dst_cpu;
1546 }
1547
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)1548 static bool load_too_imbalanced(long src_load, long dst_load,
1549 struct task_numa_env *env)
1550 {
1551 long imb, old_imb;
1552 long orig_src_load, orig_dst_load;
1553 long src_capacity, dst_capacity;
1554
1555 /*
1556 * The load is corrected for the CPU capacity available on each node.
1557 *
1558 * src_load dst_load
1559 * ------------ vs ---------
1560 * src_capacity dst_capacity
1561 */
1562 src_capacity = env->src_stats.compute_capacity;
1563 dst_capacity = env->dst_stats.compute_capacity;
1564
1565 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1566
1567 orig_src_load = env->src_stats.load;
1568 orig_dst_load = env->dst_stats.load;
1569
1570 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1571
1572 /* Would this change make things worse? */
1573 return (imb > old_imb);
1574 }
1575
1576 /*
1577 * Maximum NUMA importance can be 1998 (2*999);
1578 * SMALLIMP @ 30 would be close to 1998/64.
1579 * Used to deter task migration.
1580 */
1581 #define SMALLIMP 30
1582
1583 /*
1584 * This checks if the overall compute and NUMA accesses of the system would
1585 * be improved if the source tasks was migrated to the target dst_cpu taking
1586 * into account that it might be best if task running on the dst_cpu should
1587 * be exchanged with the source task
1588 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)1589 static void task_numa_compare(struct task_numa_env *env,
1590 long taskimp, long groupimp, bool maymove)
1591 {
1592 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1593 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1594 long imp = p_ng ? groupimp : taskimp;
1595 struct task_struct *cur;
1596 long src_load, dst_load;
1597 int dist = env->dist;
1598 long moveimp = imp;
1599 long load;
1600
1601 if (READ_ONCE(dst_rq->numa_migrate_on))
1602 return;
1603
1604 rcu_read_lock();
1605 cur = rcu_dereference(dst_rq->curr);
1606 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1607 cur = NULL;
1608
1609 /*
1610 * Because we have preemption enabled we can get migrated around and
1611 * end try selecting ourselves (current == env->p) as a swap candidate.
1612 */
1613 if (cur == env->p)
1614 goto unlock;
1615
1616 if (!cur) {
1617 if (maymove && moveimp >= env->best_imp)
1618 goto assign;
1619 else
1620 goto unlock;
1621 }
1622
1623 /*
1624 * "imp" is the fault differential for the source task between the
1625 * source and destination node. Calculate the total differential for
1626 * the source task and potential destination task. The more negative
1627 * the value is, the more remote accesses that would be expected to
1628 * be incurred if the tasks were swapped.
1629 */
1630 /* Skip this swap candidate if cannot move to the source cpu */
1631 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1632 goto unlock;
1633
1634 /*
1635 * If dst and source tasks are in the same NUMA group, or not
1636 * in any group then look only at task weights.
1637 */
1638 cur_ng = rcu_dereference(cur->numa_group);
1639 if (cur_ng == p_ng) {
1640 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1641 task_weight(cur, env->dst_nid, dist);
1642 /*
1643 * Add some hysteresis to prevent swapping the
1644 * tasks within a group over tiny differences.
1645 */
1646 if (cur_ng)
1647 imp -= imp / 16;
1648 } else {
1649 /*
1650 * Compare the group weights. If a task is all by itself
1651 * (not part of a group), use the task weight instead.
1652 */
1653 if (cur_ng && p_ng)
1654 imp += group_weight(cur, env->src_nid, dist) -
1655 group_weight(cur, env->dst_nid, dist);
1656 else
1657 imp += task_weight(cur, env->src_nid, dist) -
1658 task_weight(cur, env->dst_nid, dist);
1659 }
1660
1661 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1662 imp = moveimp;
1663 cur = NULL;
1664 goto assign;
1665 }
1666
1667 /*
1668 * If the NUMA importance is less than SMALLIMP,
1669 * task migration might only result in ping pong
1670 * of tasks and also hurt performance due to cache
1671 * misses.
1672 */
1673 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1674 goto unlock;
1675
1676 /*
1677 * In the overloaded case, try and keep the load balanced.
1678 */
1679 load = task_h_load(env->p) - task_h_load(cur);
1680 if (!load)
1681 goto assign;
1682
1683 dst_load = env->dst_stats.load + load;
1684 src_load = env->src_stats.load - load;
1685
1686 if (load_too_imbalanced(src_load, dst_load, env))
1687 goto unlock;
1688
1689 assign:
1690 /*
1691 * One idle CPU per node is evaluated for a task numa move.
1692 * Call select_idle_sibling to maybe find a better one.
1693 */
1694 if (!cur) {
1695 /*
1696 * select_idle_siblings() uses an per-CPU cpumask that
1697 * can be used from IRQ context.
1698 */
1699 local_irq_disable();
1700 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1701 env->dst_cpu);
1702 local_irq_enable();
1703 }
1704
1705 task_numa_assign(env, cur, imp);
1706 unlock:
1707 rcu_read_unlock();
1708 }
1709
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)1710 static void task_numa_find_cpu(struct task_numa_env *env,
1711 long taskimp, long groupimp)
1712 {
1713 long src_load, dst_load, load;
1714 bool maymove = false;
1715 int cpu;
1716
1717 load = task_h_load(env->p);
1718 dst_load = env->dst_stats.load + load;
1719 src_load = env->src_stats.load - load;
1720
1721 /*
1722 * If the improvement from just moving env->p direction is better
1723 * than swapping tasks around, check if a move is possible.
1724 */
1725 maymove = !load_too_imbalanced(src_load, dst_load, env);
1726
1727 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1728 /* Skip this CPU if the source task cannot migrate */
1729 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1730 continue;
1731
1732 env->dst_cpu = cpu;
1733 task_numa_compare(env, taskimp, groupimp, maymove);
1734 }
1735 }
1736
task_numa_migrate(struct task_struct * p)1737 static int task_numa_migrate(struct task_struct *p)
1738 {
1739 struct task_numa_env env = {
1740 .p = p,
1741
1742 .src_cpu = task_cpu(p),
1743 .src_nid = task_node(p),
1744
1745 .imbalance_pct = 112,
1746
1747 .best_task = NULL,
1748 .best_imp = 0,
1749 .best_cpu = -1,
1750 };
1751 unsigned long taskweight, groupweight;
1752 struct sched_domain *sd;
1753 long taskimp, groupimp;
1754 struct numa_group *ng;
1755 struct rq *best_rq;
1756 int nid, ret, dist;
1757
1758 /*
1759 * Pick the lowest SD_NUMA domain, as that would have the smallest
1760 * imbalance and would be the first to start moving tasks about.
1761 *
1762 * And we want to avoid any moving of tasks about, as that would create
1763 * random movement of tasks -- counter the numa conditions we're trying
1764 * to satisfy here.
1765 */
1766 rcu_read_lock();
1767 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1768 if (sd)
1769 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1770 rcu_read_unlock();
1771
1772 /*
1773 * Cpusets can break the scheduler domain tree into smaller
1774 * balance domains, some of which do not cross NUMA boundaries.
1775 * Tasks that are "trapped" in such domains cannot be migrated
1776 * elsewhere, so there is no point in (re)trying.
1777 */
1778 if (unlikely(!sd)) {
1779 sched_setnuma(p, task_node(p));
1780 return -EINVAL;
1781 }
1782
1783 env.dst_nid = p->numa_preferred_nid;
1784 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1785 taskweight = task_weight(p, env.src_nid, dist);
1786 groupweight = group_weight(p, env.src_nid, dist);
1787 update_numa_stats(&env.src_stats, env.src_nid);
1788 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1789 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1790 update_numa_stats(&env.dst_stats, env.dst_nid);
1791
1792 /* Try to find a spot on the preferred nid. */
1793 task_numa_find_cpu(&env, taskimp, groupimp);
1794
1795 /*
1796 * Look at other nodes in these cases:
1797 * - there is no space available on the preferred_nid
1798 * - the task is part of a numa_group that is interleaved across
1799 * multiple NUMA nodes; in order to better consolidate the group,
1800 * we need to check other locations.
1801 */
1802 ng = deref_curr_numa_group(p);
1803 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
1804 for_each_online_node(nid) {
1805 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1806 continue;
1807
1808 dist = node_distance(env.src_nid, env.dst_nid);
1809 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1810 dist != env.dist) {
1811 taskweight = task_weight(p, env.src_nid, dist);
1812 groupweight = group_weight(p, env.src_nid, dist);
1813 }
1814
1815 /* Only consider nodes where both task and groups benefit */
1816 taskimp = task_weight(p, nid, dist) - taskweight;
1817 groupimp = group_weight(p, nid, dist) - groupweight;
1818 if (taskimp < 0 && groupimp < 0)
1819 continue;
1820
1821 env.dist = dist;
1822 env.dst_nid = nid;
1823 update_numa_stats(&env.dst_stats, env.dst_nid);
1824 task_numa_find_cpu(&env, taskimp, groupimp);
1825 }
1826 }
1827
1828 /*
1829 * If the task is part of a workload that spans multiple NUMA nodes,
1830 * and is migrating into one of the workload's active nodes, remember
1831 * this node as the task's preferred numa node, so the workload can
1832 * settle down.
1833 * A task that migrated to a second choice node will be better off
1834 * trying for a better one later. Do not set the preferred node here.
1835 */
1836 if (ng) {
1837 if (env.best_cpu == -1)
1838 nid = env.src_nid;
1839 else
1840 nid = cpu_to_node(env.best_cpu);
1841
1842 if (nid != p->numa_preferred_nid)
1843 sched_setnuma(p, nid);
1844 }
1845
1846 /* No better CPU than the current one was found. */
1847 if (env.best_cpu == -1)
1848 return -EAGAIN;
1849
1850 best_rq = cpu_rq(env.best_cpu);
1851 if (env.best_task == NULL) {
1852 ret = migrate_task_to(p, env.best_cpu);
1853 WRITE_ONCE(best_rq->numa_migrate_on, 0);
1854 if (ret != 0)
1855 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1856 return ret;
1857 }
1858
1859 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1860 WRITE_ONCE(best_rq->numa_migrate_on, 0);
1861
1862 if (ret != 0)
1863 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1864 put_task_struct(env.best_task);
1865 return ret;
1866 }
1867
1868 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)1869 static void numa_migrate_preferred(struct task_struct *p)
1870 {
1871 unsigned long interval = HZ;
1872
1873 /* This task has no NUMA fault statistics yet */
1874 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
1875 return;
1876
1877 /* Periodically retry migrating the task to the preferred node */
1878 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1879 p->numa_migrate_retry = jiffies + interval;
1880
1881 /* Success if task is already running on preferred CPU */
1882 if (task_node(p) == p->numa_preferred_nid)
1883 return;
1884
1885 /* Otherwise, try migrate to a CPU on the preferred node */
1886 task_numa_migrate(p);
1887 }
1888
1889 /*
1890 * Find out how many nodes on the workload is actively running on. Do this by
1891 * tracking the nodes from which NUMA hinting faults are triggered. This can
1892 * be different from the set of nodes where the workload's memory is currently
1893 * located.
1894 */
numa_group_count_active_nodes(struct numa_group * numa_group)1895 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1896 {
1897 unsigned long faults, max_faults = 0;
1898 int nid, active_nodes = 0;
1899
1900 for_each_online_node(nid) {
1901 faults = group_faults_cpu(numa_group, nid);
1902 if (faults > max_faults)
1903 max_faults = faults;
1904 }
1905
1906 for_each_online_node(nid) {
1907 faults = group_faults_cpu(numa_group, nid);
1908 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1909 active_nodes++;
1910 }
1911
1912 numa_group->max_faults_cpu = max_faults;
1913 numa_group->active_nodes = active_nodes;
1914 }
1915
1916 /*
1917 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1918 * increments. The more local the fault statistics are, the higher the scan
1919 * period will be for the next scan window. If local/(local+remote) ratio is
1920 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1921 * the scan period will decrease. Aim for 70% local accesses.
1922 */
1923 #define NUMA_PERIOD_SLOTS 10
1924 #define NUMA_PERIOD_THRESHOLD 7
1925
1926 /*
1927 * Increase the scan period (slow down scanning) if the majority of
1928 * our memory is already on our local node, or if the majority of
1929 * the page accesses are shared with other processes.
1930 * Otherwise, decrease the scan period.
1931 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)1932 static void update_task_scan_period(struct task_struct *p,
1933 unsigned long shared, unsigned long private)
1934 {
1935 unsigned int period_slot;
1936 int lr_ratio, ps_ratio;
1937 int diff;
1938
1939 unsigned long remote = p->numa_faults_locality[0];
1940 unsigned long local = p->numa_faults_locality[1];
1941
1942 /*
1943 * If there were no record hinting faults then either the task is
1944 * completely idle or all activity is areas that are not of interest
1945 * to automatic numa balancing. Related to that, if there were failed
1946 * migration then it implies we are migrating too quickly or the local
1947 * node is overloaded. In either case, scan slower
1948 */
1949 if (local + shared == 0 || p->numa_faults_locality[2]) {
1950 p->numa_scan_period = min(p->numa_scan_period_max,
1951 p->numa_scan_period << 1);
1952
1953 p->mm->numa_next_scan = jiffies +
1954 msecs_to_jiffies(p->numa_scan_period);
1955
1956 return;
1957 }
1958
1959 /*
1960 * Prepare to scale scan period relative to the current period.
1961 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1962 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1963 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1964 */
1965 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1966 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1967 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1968
1969 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1970 /*
1971 * Most memory accesses are local. There is no need to
1972 * do fast NUMA scanning, since memory is already local.
1973 */
1974 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1975 if (!slot)
1976 slot = 1;
1977 diff = slot * period_slot;
1978 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1979 /*
1980 * Most memory accesses are shared with other tasks.
1981 * There is no point in continuing fast NUMA scanning,
1982 * since other tasks may just move the memory elsewhere.
1983 */
1984 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1985 if (!slot)
1986 slot = 1;
1987 diff = slot * period_slot;
1988 } else {
1989 /*
1990 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1991 * yet they are not on the local NUMA node. Speed up
1992 * NUMA scanning to get the memory moved over.
1993 */
1994 int ratio = max(lr_ratio, ps_ratio);
1995 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1996 }
1997
1998 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1999 task_scan_min(p), task_scan_max(p));
2000 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2001 }
2002
2003 /*
2004 * Get the fraction of time the task has been running since the last
2005 * NUMA placement cycle. The scheduler keeps similar statistics, but
2006 * decays those on a 32ms period, which is orders of magnitude off
2007 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2008 * stats only if the task is so new there are no NUMA statistics yet.
2009 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2010 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2011 {
2012 u64 runtime, delta, now;
2013 /* Use the start of this time slice to avoid calculations. */
2014 now = p->se.exec_start;
2015 runtime = p->se.sum_exec_runtime;
2016
2017 if (p->last_task_numa_placement) {
2018 delta = runtime - p->last_sum_exec_runtime;
2019 *period = now - p->last_task_numa_placement;
2020
2021 /* Avoid time going backwards, prevent potential divide error: */
2022 if (unlikely((s64)*period < 0))
2023 *period = 0;
2024 } else {
2025 delta = p->se.avg.load_sum;
2026 *period = LOAD_AVG_MAX;
2027 }
2028
2029 p->last_sum_exec_runtime = runtime;
2030 p->last_task_numa_placement = now;
2031
2032 return delta;
2033 }
2034
2035 /*
2036 * Determine the preferred nid for a task in a numa_group. This needs to
2037 * be done in a way that produces consistent results with group_weight,
2038 * otherwise workloads might not converge.
2039 */
preferred_group_nid(struct task_struct * p,int nid)2040 static int preferred_group_nid(struct task_struct *p, int nid)
2041 {
2042 nodemask_t nodes;
2043 int dist;
2044
2045 /* Direct connections between all NUMA nodes. */
2046 if (sched_numa_topology_type == NUMA_DIRECT)
2047 return nid;
2048
2049 /*
2050 * On a system with glueless mesh NUMA topology, group_weight
2051 * scores nodes according to the number of NUMA hinting faults on
2052 * both the node itself, and on nearby nodes.
2053 */
2054 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2055 unsigned long score, max_score = 0;
2056 int node, max_node = nid;
2057
2058 dist = sched_max_numa_distance;
2059
2060 for_each_online_node(node) {
2061 score = group_weight(p, node, dist);
2062 if (score > max_score) {
2063 max_score = score;
2064 max_node = node;
2065 }
2066 }
2067 return max_node;
2068 }
2069
2070 /*
2071 * Finding the preferred nid in a system with NUMA backplane
2072 * interconnect topology is more involved. The goal is to locate
2073 * tasks from numa_groups near each other in the system, and
2074 * untangle workloads from different sides of the system. This requires
2075 * searching down the hierarchy of node groups, recursively searching
2076 * inside the highest scoring group of nodes. The nodemask tricks
2077 * keep the complexity of the search down.
2078 */
2079 nodes = node_online_map;
2080 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2081 unsigned long max_faults = 0;
2082 nodemask_t max_group = NODE_MASK_NONE;
2083 int a, b;
2084
2085 /* Are there nodes at this distance from each other? */
2086 if (!find_numa_distance(dist))
2087 continue;
2088
2089 for_each_node_mask(a, nodes) {
2090 unsigned long faults = 0;
2091 nodemask_t this_group;
2092 nodes_clear(this_group);
2093
2094 /* Sum group's NUMA faults; includes a==b case. */
2095 for_each_node_mask(b, nodes) {
2096 if (node_distance(a, b) < dist) {
2097 faults += group_faults(p, b);
2098 node_set(b, this_group);
2099 node_clear(b, nodes);
2100 }
2101 }
2102
2103 /* Remember the top group. */
2104 if (faults > max_faults) {
2105 max_faults = faults;
2106 max_group = this_group;
2107 /*
2108 * subtle: at the smallest distance there is
2109 * just one node left in each "group", the
2110 * winner is the preferred nid.
2111 */
2112 nid = a;
2113 }
2114 }
2115 /* Next round, evaluate the nodes within max_group. */
2116 if (!max_faults)
2117 break;
2118 nodes = max_group;
2119 }
2120 return nid;
2121 }
2122
task_numa_placement(struct task_struct * p)2123 static void task_numa_placement(struct task_struct *p)
2124 {
2125 int seq, nid, max_nid = NUMA_NO_NODE;
2126 unsigned long max_faults = 0;
2127 unsigned long fault_types[2] = { 0, 0 };
2128 unsigned long total_faults;
2129 u64 runtime, period;
2130 spinlock_t *group_lock = NULL;
2131 struct numa_group *ng;
2132
2133 /*
2134 * The p->mm->numa_scan_seq field gets updated without
2135 * exclusive access. Use READ_ONCE() here to ensure
2136 * that the field is read in a single access:
2137 */
2138 seq = READ_ONCE(p->mm->numa_scan_seq);
2139 if (p->numa_scan_seq == seq)
2140 return;
2141 p->numa_scan_seq = seq;
2142 p->numa_scan_period_max = task_scan_max(p);
2143
2144 total_faults = p->numa_faults_locality[0] +
2145 p->numa_faults_locality[1];
2146 runtime = numa_get_avg_runtime(p, &period);
2147
2148 /* If the task is part of a group prevent parallel updates to group stats */
2149 ng = deref_curr_numa_group(p);
2150 if (ng) {
2151 group_lock = &ng->lock;
2152 spin_lock_irq(group_lock);
2153 }
2154
2155 /* Find the node with the highest number of faults */
2156 for_each_online_node(nid) {
2157 /* Keep track of the offsets in numa_faults array */
2158 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2159 unsigned long faults = 0, group_faults = 0;
2160 int priv;
2161
2162 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2163 long diff, f_diff, f_weight;
2164
2165 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2166 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2167 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2168 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2169
2170 /* Decay existing window, copy faults since last scan */
2171 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2172 fault_types[priv] += p->numa_faults[membuf_idx];
2173 p->numa_faults[membuf_idx] = 0;
2174
2175 /*
2176 * Normalize the faults_from, so all tasks in a group
2177 * count according to CPU use, instead of by the raw
2178 * number of faults. Tasks with little runtime have
2179 * little over-all impact on throughput, and thus their
2180 * faults are less important.
2181 */
2182 f_weight = div64_u64(runtime << 16, period + 1);
2183 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2184 (total_faults + 1);
2185 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2186 p->numa_faults[cpubuf_idx] = 0;
2187
2188 p->numa_faults[mem_idx] += diff;
2189 p->numa_faults[cpu_idx] += f_diff;
2190 faults += p->numa_faults[mem_idx];
2191 p->total_numa_faults += diff;
2192 if (ng) {
2193 /*
2194 * safe because we can only change our own group
2195 *
2196 * mem_idx represents the offset for a given
2197 * nid and priv in a specific region because it
2198 * is at the beginning of the numa_faults array.
2199 */
2200 ng->faults[mem_idx] += diff;
2201 ng->faults_cpu[mem_idx] += f_diff;
2202 ng->total_faults += diff;
2203 group_faults += ng->faults[mem_idx];
2204 }
2205 }
2206
2207 if (!ng) {
2208 if (faults > max_faults) {
2209 max_faults = faults;
2210 max_nid = nid;
2211 }
2212 } else if (group_faults > max_faults) {
2213 max_faults = group_faults;
2214 max_nid = nid;
2215 }
2216 }
2217
2218 if (ng) {
2219 numa_group_count_active_nodes(ng);
2220 spin_unlock_irq(group_lock);
2221 max_nid = preferred_group_nid(p, max_nid);
2222 }
2223
2224 if (max_faults) {
2225 /* Set the new preferred node */
2226 if (max_nid != p->numa_preferred_nid)
2227 sched_setnuma(p, max_nid);
2228 }
2229
2230 update_task_scan_period(p, fault_types[0], fault_types[1]);
2231 }
2232
get_numa_group(struct numa_group * grp)2233 static inline int get_numa_group(struct numa_group *grp)
2234 {
2235 return refcount_inc_not_zero(&grp->refcount);
2236 }
2237
put_numa_group(struct numa_group * grp)2238 static inline void put_numa_group(struct numa_group *grp)
2239 {
2240 if (refcount_dec_and_test(&grp->refcount))
2241 kfree_rcu(grp, rcu);
2242 }
2243
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2244 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2245 int *priv)
2246 {
2247 struct numa_group *grp, *my_grp;
2248 struct task_struct *tsk;
2249 bool join = false;
2250 int cpu = cpupid_to_cpu(cpupid);
2251 int i;
2252
2253 if (unlikely(!deref_curr_numa_group(p))) {
2254 unsigned int size = sizeof(struct numa_group) +
2255 4*nr_node_ids*sizeof(unsigned long);
2256
2257 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2258 if (!grp)
2259 return;
2260
2261 refcount_set(&grp->refcount, 1);
2262 grp->active_nodes = 1;
2263 grp->max_faults_cpu = 0;
2264 spin_lock_init(&grp->lock);
2265 grp->gid = p->pid;
2266 /* Second half of the array tracks nids where faults happen */
2267 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2268 nr_node_ids;
2269
2270 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2271 grp->faults[i] = p->numa_faults[i];
2272
2273 grp->total_faults = p->total_numa_faults;
2274
2275 grp->nr_tasks++;
2276 rcu_assign_pointer(p->numa_group, grp);
2277 }
2278
2279 rcu_read_lock();
2280 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2281
2282 if (!cpupid_match_pid(tsk, cpupid))
2283 goto no_join;
2284
2285 grp = rcu_dereference(tsk->numa_group);
2286 if (!grp)
2287 goto no_join;
2288
2289 my_grp = deref_curr_numa_group(p);
2290 if (grp == my_grp)
2291 goto no_join;
2292
2293 /*
2294 * Only join the other group if its bigger; if we're the bigger group,
2295 * the other task will join us.
2296 */
2297 if (my_grp->nr_tasks > grp->nr_tasks)
2298 goto no_join;
2299
2300 /*
2301 * Tie-break on the grp address.
2302 */
2303 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2304 goto no_join;
2305
2306 /* Always join threads in the same process. */
2307 if (tsk->mm == current->mm)
2308 join = true;
2309
2310 /* Simple filter to avoid false positives due to PID collisions */
2311 if (flags & TNF_SHARED)
2312 join = true;
2313
2314 /* Update priv based on whether false sharing was detected */
2315 *priv = !join;
2316
2317 if (join && !get_numa_group(grp))
2318 goto no_join;
2319
2320 rcu_read_unlock();
2321
2322 if (!join)
2323 return;
2324
2325 BUG_ON(irqs_disabled());
2326 double_lock_irq(&my_grp->lock, &grp->lock);
2327
2328 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2329 my_grp->faults[i] -= p->numa_faults[i];
2330 grp->faults[i] += p->numa_faults[i];
2331 }
2332 my_grp->total_faults -= p->total_numa_faults;
2333 grp->total_faults += p->total_numa_faults;
2334
2335 my_grp->nr_tasks--;
2336 grp->nr_tasks++;
2337
2338 spin_unlock(&my_grp->lock);
2339 spin_unlock_irq(&grp->lock);
2340
2341 rcu_assign_pointer(p->numa_group, grp);
2342
2343 put_numa_group(my_grp);
2344 return;
2345
2346 no_join:
2347 rcu_read_unlock();
2348 return;
2349 }
2350
2351 /*
2352 * Get rid of NUMA staticstics associated with a task (either current or dead).
2353 * If @final is set, the task is dead and has reached refcount zero, so we can
2354 * safely free all relevant data structures. Otherwise, there might be
2355 * concurrent reads from places like load balancing and procfs, and we should
2356 * reset the data back to default state without freeing ->numa_faults.
2357 */
task_numa_free(struct task_struct * p,bool final)2358 void task_numa_free(struct task_struct *p, bool final)
2359 {
2360 /* safe: p either is current or is being freed by current */
2361 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2362 unsigned long *numa_faults = p->numa_faults;
2363 unsigned long flags;
2364 int i;
2365
2366 if (!numa_faults)
2367 return;
2368
2369 if (grp) {
2370 spin_lock_irqsave(&grp->lock, flags);
2371 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2372 grp->faults[i] -= p->numa_faults[i];
2373 grp->total_faults -= p->total_numa_faults;
2374
2375 grp->nr_tasks--;
2376 spin_unlock_irqrestore(&grp->lock, flags);
2377 RCU_INIT_POINTER(p->numa_group, NULL);
2378 put_numa_group(grp);
2379 }
2380
2381 if (final) {
2382 p->numa_faults = NULL;
2383 kfree(numa_faults);
2384 } else {
2385 p->total_numa_faults = 0;
2386 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2387 numa_faults[i] = 0;
2388 }
2389 }
2390
2391 /*
2392 * Got a PROT_NONE fault for a page on @node.
2393 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)2394 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2395 {
2396 struct task_struct *p = current;
2397 bool migrated = flags & TNF_MIGRATED;
2398 int cpu_node = task_node(current);
2399 int local = !!(flags & TNF_FAULT_LOCAL);
2400 struct numa_group *ng;
2401 int priv;
2402
2403 if (!static_branch_likely(&sched_numa_balancing))
2404 return;
2405
2406 /* for example, ksmd faulting in a user's mm */
2407 if (!p->mm)
2408 return;
2409
2410 /* Allocate buffer to track faults on a per-node basis */
2411 if (unlikely(!p->numa_faults)) {
2412 int size = sizeof(*p->numa_faults) *
2413 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2414
2415 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2416 if (!p->numa_faults)
2417 return;
2418
2419 p->total_numa_faults = 0;
2420 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2421 }
2422
2423 /*
2424 * First accesses are treated as private, otherwise consider accesses
2425 * to be private if the accessing pid has not changed
2426 */
2427 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2428 priv = 1;
2429 } else {
2430 priv = cpupid_match_pid(p, last_cpupid);
2431 if (!priv && !(flags & TNF_NO_GROUP))
2432 task_numa_group(p, last_cpupid, flags, &priv);
2433 }
2434
2435 /*
2436 * If a workload spans multiple NUMA nodes, a shared fault that
2437 * occurs wholly within the set of nodes that the workload is
2438 * actively using should be counted as local. This allows the
2439 * scan rate to slow down when a workload has settled down.
2440 */
2441 ng = deref_curr_numa_group(p);
2442 if (!priv && !local && ng && ng->active_nodes > 1 &&
2443 numa_is_active_node(cpu_node, ng) &&
2444 numa_is_active_node(mem_node, ng))
2445 local = 1;
2446
2447 /*
2448 * Retry to migrate task to preferred node periodically, in case it
2449 * previously failed, or the scheduler moved us.
2450 */
2451 if (time_after(jiffies, p->numa_migrate_retry)) {
2452 task_numa_placement(p);
2453 numa_migrate_preferred(p);
2454 }
2455
2456 if (migrated)
2457 p->numa_pages_migrated += pages;
2458 if (flags & TNF_MIGRATE_FAIL)
2459 p->numa_faults_locality[2] += pages;
2460
2461 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2462 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2463 p->numa_faults_locality[local] += pages;
2464 }
2465
reset_ptenuma_scan(struct task_struct * p)2466 static void reset_ptenuma_scan(struct task_struct *p)
2467 {
2468 /*
2469 * We only did a read acquisition of the mmap sem, so
2470 * p->mm->numa_scan_seq is written to without exclusive access
2471 * and the update is not guaranteed to be atomic. That's not
2472 * much of an issue though, since this is just used for
2473 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2474 * expensive, to avoid any form of compiler optimizations:
2475 */
2476 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2477 p->mm->numa_scan_offset = 0;
2478 }
2479
2480 /*
2481 * The expensive part of numa migration is done from task_work context.
2482 * Triggered from task_tick_numa().
2483 */
task_numa_work(struct callback_head * work)2484 static void task_numa_work(struct callback_head *work)
2485 {
2486 unsigned long migrate, next_scan, now = jiffies;
2487 struct task_struct *p = current;
2488 struct mm_struct *mm = p->mm;
2489 u64 runtime = p->se.sum_exec_runtime;
2490 struct vm_area_struct *vma;
2491 unsigned long start, end;
2492 unsigned long nr_pte_updates = 0;
2493 long pages, virtpages;
2494
2495 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2496
2497 work->next = work;
2498 /*
2499 * Who cares about NUMA placement when they're dying.
2500 *
2501 * NOTE: make sure not to dereference p->mm before this check,
2502 * exit_task_work() happens _after_ exit_mm() so we could be called
2503 * without p->mm even though we still had it when we enqueued this
2504 * work.
2505 */
2506 if (p->flags & PF_EXITING)
2507 return;
2508
2509 if (!mm->numa_next_scan) {
2510 mm->numa_next_scan = now +
2511 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2512 }
2513
2514 /*
2515 * Enforce maximal scan/migration frequency..
2516 */
2517 migrate = mm->numa_next_scan;
2518 if (time_before(now, migrate))
2519 return;
2520
2521 if (p->numa_scan_period == 0) {
2522 p->numa_scan_period_max = task_scan_max(p);
2523 p->numa_scan_period = task_scan_start(p);
2524 }
2525
2526 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2527 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2528 return;
2529
2530 /*
2531 * Delay this task enough that another task of this mm will likely win
2532 * the next time around.
2533 */
2534 p->node_stamp += 2 * TICK_NSEC;
2535
2536 start = mm->numa_scan_offset;
2537 pages = sysctl_numa_balancing_scan_size;
2538 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2539 virtpages = pages * 8; /* Scan up to this much virtual space */
2540 if (!pages)
2541 return;
2542
2543
2544 if (!down_read_trylock(&mm->mmap_sem))
2545 return;
2546 vma = find_vma(mm, start);
2547 if (!vma) {
2548 reset_ptenuma_scan(p);
2549 start = 0;
2550 vma = mm->mmap;
2551 }
2552 for (; vma; vma = vma->vm_next) {
2553 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2554 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2555 continue;
2556 }
2557
2558 /*
2559 * Shared library pages mapped by multiple processes are not
2560 * migrated as it is expected they are cache replicated. Avoid
2561 * hinting faults in read-only file-backed mappings or the vdso
2562 * as migrating the pages will be of marginal benefit.
2563 */
2564 if (!vma->vm_mm ||
2565 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2566 continue;
2567
2568 /*
2569 * Skip inaccessible VMAs to avoid any confusion between
2570 * PROT_NONE and NUMA hinting ptes
2571 */
2572 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2573 continue;
2574
2575 do {
2576 start = max(start, vma->vm_start);
2577 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2578 end = min(end, vma->vm_end);
2579 nr_pte_updates = change_prot_numa(vma, start, end);
2580
2581 /*
2582 * Try to scan sysctl_numa_balancing_size worth of
2583 * hpages that have at least one present PTE that
2584 * is not already pte-numa. If the VMA contains
2585 * areas that are unused or already full of prot_numa
2586 * PTEs, scan up to virtpages, to skip through those
2587 * areas faster.
2588 */
2589 if (nr_pte_updates)
2590 pages -= (end - start) >> PAGE_SHIFT;
2591 virtpages -= (end - start) >> PAGE_SHIFT;
2592
2593 start = end;
2594 if (pages <= 0 || virtpages <= 0)
2595 goto out;
2596
2597 cond_resched();
2598 } while (end != vma->vm_end);
2599 }
2600
2601 out:
2602 /*
2603 * It is possible to reach the end of the VMA list but the last few
2604 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2605 * would find the !migratable VMA on the next scan but not reset the
2606 * scanner to the start so check it now.
2607 */
2608 if (vma)
2609 mm->numa_scan_offset = start;
2610 else
2611 reset_ptenuma_scan(p);
2612 up_read(&mm->mmap_sem);
2613
2614 /*
2615 * Make sure tasks use at least 32x as much time to run other code
2616 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2617 * Usually update_task_scan_period slows down scanning enough; on an
2618 * overloaded system we need to limit overhead on a per task basis.
2619 */
2620 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2621 u64 diff = p->se.sum_exec_runtime - runtime;
2622 p->node_stamp += 32 * diff;
2623 }
2624 }
2625
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)2626 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2627 {
2628 int mm_users = 0;
2629 struct mm_struct *mm = p->mm;
2630
2631 if (mm) {
2632 mm_users = atomic_read(&mm->mm_users);
2633 if (mm_users == 1) {
2634 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2635 mm->numa_scan_seq = 0;
2636 }
2637 }
2638 p->node_stamp = 0;
2639 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2640 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2641 /* Protect against double add, see task_tick_numa and task_numa_work */
2642 p->numa_work.next = &p->numa_work;
2643 p->numa_faults = NULL;
2644 RCU_INIT_POINTER(p->numa_group, NULL);
2645 p->last_task_numa_placement = 0;
2646 p->last_sum_exec_runtime = 0;
2647
2648 init_task_work(&p->numa_work, task_numa_work);
2649
2650 /* New address space, reset the preferred nid */
2651 if (!(clone_flags & CLONE_VM)) {
2652 p->numa_preferred_nid = NUMA_NO_NODE;
2653 return;
2654 }
2655
2656 /*
2657 * New thread, keep existing numa_preferred_nid which should be copied
2658 * already by arch_dup_task_struct but stagger when scans start.
2659 */
2660 if (mm) {
2661 unsigned int delay;
2662
2663 delay = min_t(unsigned int, task_scan_max(current),
2664 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2665 delay += 2 * TICK_NSEC;
2666 p->node_stamp = delay;
2667 }
2668 }
2669
2670 /*
2671 * Drive the periodic memory faults..
2672 */
task_tick_numa(struct rq * rq,struct task_struct * curr)2673 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2674 {
2675 struct callback_head *work = &curr->numa_work;
2676 u64 period, now;
2677
2678 /*
2679 * We don't care about NUMA placement if we don't have memory.
2680 */
2681 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2682 return;
2683
2684 /*
2685 * Using runtime rather than walltime has the dual advantage that
2686 * we (mostly) drive the selection from busy threads and that the
2687 * task needs to have done some actual work before we bother with
2688 * NUMA placement.
2689 */
2690 now = curr->se.sum_exec_runtime;
2691 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2692
2693 if (now > curr->node_stamp + period) {
2694 if (!curr->node_stamp)
2695 curr->numa_scan_period = task_scan_start(curr);
2696 curr->node_stamp += period;
2697
2698 if (!time_before(jiffies, curr->mm->numa_next_scan))
2699 task_work_add(curr, work, true);
2700 }
2701 }
2702
update_scan_period(struct task_struct * p,int new_cpu)2703 static void update_scan_period(struct task_struct *p, int new_cpu)
2704 {
2705 int src_nid = cpu_to_node(task_cpu(p));
2706 int dst_nid = cpu_to_node(new_cpu);
2707
2708 if (!static_branch_likely(&sched_numa_balancing))
2709 return;
2710
2711 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2712 return;
2713
2714 if (src_nid == dst_nid)
2715 return;
2716
2717 /*
2718 * Allow resets if faults have been trapped before one scan
2719 * has completed. This is most likely due to a new task that
2720 * is pulled cross-node due to wakeups or load balancing.
2721 */
2722 if (p->numa_scan_seq) {
2723 /*
2724 * Avoid scan adjustments if moving to the preferred
2725 * node or if the task was not previously running on
2726 * the preferred node.
2727 */
2728 if (dst_nid == p->numa_preferred_nid ||
2729 (p->numa_preferred_nid != NUMA_NO_NODE &&
2730 src_nid != p->numa_preferred_nid))
2731 return;
2732 }
2733
2734 p->numa_scan_period = task_scan_start(p);
2735 }
2736
2737 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)2738 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2739 {
2740 }
2741
account_numa_enqueue(struct rq * rq,struct task_struct * p)2742 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2743 {
2744 }
2745
account_numa_dequeue(struct rq * rq,struct task_struct * p)2746 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2747 {
2748 }
2749
update_scan_period(struct task_struct * p,int new_cpu)2750 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2751 {
2752 }
2753
2754 #endif /* CONFIG_NUMA_BALANCING */
2755
2756 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)2757 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2758 {
2759 update_load_add(&cfs_rq->load, se->load.weight);
2760 #ifdef CONFIG_SMP
2761 if (entity_is_task(se)) {
2762 struct rq *rq = rq_of(cfs_rq);
2763
2764 account_numa_enqueue(rq, task_of(se));
2765 list_add(&se->group_node, &rq->cfs_tasks);
2766 }
2767 #endif
2768 cfs_rq->nr_running++;
2769 }
2770
2771 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)2772 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2773 {
2774 update_load_sub(&cfs_rq->load, se->load.weight);
2775 #ifdef CONFIG_SMP
2776 if (entity_is_task(se)) {
2777 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2778 list_del_init(&se->group_node);
2779 }
2780 #endif
2781 cfs_rq->nr_running--;
2782 }
2783
2784 /*
2785 * Signed add and clamp on underflow.
2786 *
2787 * Explicitly do a load-store to ensure the intermediate value never hits
2788 * memory. This allows lockless observations without ever seeing the negative
2789 * values.
2790 */
2791 #define add_positive(_ptr, _val) do { \
2792 typeof(_ptr) ptr = (_ptr); \
2793 typeof(_val) val = (_val); \
2794 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2795 \
2796 res = var + val; \
2797 \
2798 if (val < 0 && res > var) \
2799 res = 0; \
2800 \
2801 WRITE_ONCE(*ptr, res); \
2802 } while (0)
2803
2804 /*
2805 * Unsigned subtract and clamp on underflow.
2806 *
2807 * Explicitly do a load-store to ensure the intermediate value never hits
2808 * memory. This allows lockless observations without ever seeing the negative
2809 * values.
2810 */
2811 #define sub_positive(_ptr, _val) do { \
2812 typeof(_ptr) ptr = (_ptr); \
2813 typeof(*ptr) val = (_val); \
2814 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2815 res = var - val; \
2816 if (res > var) \
2817 res = 0; \
2818 WRITE_ONCE(*ptr, res); \
2819 } while (0)
2820
2821 /*
2822 * Remove and clamp on negative, from a local variable.
2823 *
2824 * A variant of sub_positive(), which does not use explicit load-store
2825 * and is thus optimized for local variable updates.
2826 */
2827 #define lsub_positive(_ptr, _val) do { \
2828 typeof(_ptr) ptr = (_ptr); \
2829 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
2830 } while (0)
2831
2832 #ifdef CONFIG_SMP
2833 static inline void
enqueue_runnable_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2834 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2835 {
2836 cfs_rq->runnable_weight += se->runnable_weight;
2837
2838 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2839 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2840 }
2841
2842 static inline void
dequeue_runnable_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2843 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2844 {
2845 cfs_rq->runnable_weight -= se->runnable_weight;
2846
2847 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2848 sub_positive(&cfs_rq->avg.runnable_load_sum,
2849 se_runnable(se) * se->avg.runnable_load_sum);
2850 }
2851
2852 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2853 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2854 {
2855 cfs_rq->avg.load_avg += se->avg.load_avg;
2856 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2857 }
2858
2859 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2860 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2861 {
2862 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2863 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2864 }
2865 #else
2866 static inline void
enqueue_runnable_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2867 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2868 static inline void
dequeue_runnable_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2869 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2870 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2871 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2872 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2873 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2874 #endif
2875
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight,unsigned long runnable)2876 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2877 unsigned long weight, unsigned long runnable)
2878 {
2879 if (se->on_rq) {
2880 /* commit outstanding execution time */
2881 if (cfs_rq->curr == se)
2882 update_curr(cfs_rq);
2883 account_entity_dequeue(cfs_rq, se);
2884 dequeue_runnable_load_avg(cfs_rq, se);
2885 }
2886 dequeue_load_avg(cfs_rq, se);
2887
2888 se->runnable_weight = runnable;
2889 update_load_set(&se->load, weight);
2890
2891 #ifdef CONFIG_SMP
2892 do {
2893 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2894
2895 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2896 se->avg.runnable_load_avg =
2897 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2898 } while (0);
2899 #endif
2900
2901 enqueue_load_avg(cfs_rq, se);
2902 if (se->on_rq) {
2903 account_entity_enqueue(cfs_rq, se);
2904 enqueue_runnable_load_avg(cfs_rq, se);
2905 }
2906 }
2907
reweight_task(struct task_struct * p,int prio)2908 void reweight_task(struct task_struct *p, int prio)
2909 {
2910 struct sched_entity *se = &p->se;
2911 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2912 struct load_weight *load = &se->load;
2913 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2914
2915 reweight_entity(cfs_rq, se, weight, weight);
2916 load->inv_weight = sched_prio_to_wmult[prio];
2917 }
2918
2919 #ifdef CONFIG_FAIR_GROUP_SCHED
2920 #ifdef CONFIG_SMP
2921 /*
2922 * All this does is approximate the hierarchical proportion which includes that
2923 * global sum we all love to hate.
2924 *
2925 * That is, the weight of a group entity, is the proportional share of the
2926 * group weight based on the group runqueue weights. That is:
2927 *
2928 * tg->weight * grq->load.weight
2929 * ge->load.weight = ----------------------------- (1)
2930 * \Sum grq->load.weight
2931 *
2932 * Now, because computing that sum is prohibitively expensive to compute (been
2933 * there, done that) we approximate it with this average stuff. The average
2934 * moves slower and therefore the approximation is cheaper and more stable.
2935 *
2936 * So instead of the above, we substitute:
2937 *
2938 * grq->load.weight -> grq->avg.load_avg (2)
2939 *
2940 * which yields the following:
2941 *
2942 * tg->weight * grq->avg.load_avg
2943 * ge->load.weight = ------------------------------ (3)
2944 * tg->load_avg
2945 *
2946 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2947 *
2948 * That is shares_avg, and it is right (given the approximation (2)).
2949 *
2950 * The problem with it is that because the average is slow -- it was designed
2951 * to be exactly that of course -- this leads to transients in boundary
2952 * conditions. In specific, the case where the group was idle and we start the
2953 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2954 * yielding bad latency etc..
2955 *
2956 * Now, in that special case (1) reduces to:
2957 *
2958 * tg->weight * grq->load.weight
2959 * ge->load.weight = ----------------------------- = tg->weight (4)
2960 * grp->load.weight
2961 *
2962 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2963 *
2964 * So what we do is modify our approximation (3) to approach (4) in the (near)
2965 * UP case, like:
2966 *
2967 * ge->load.weight =
2968 *
2969 * tg->weight * grq->load.weight
2970 * --------------------------------------------------- (5)
2971 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2972 *
2973 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2974 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2975 *
2976 *
2977 * tg->weight * grq->load.weight
2978 * ge->load.weight = ----------------------------- (6)
2979 * tg_load_avg'
2980 *
2981 * Where:
2982 *
2983 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2984 * max(grq->load.weight, grq->avg.load_avg)
2985 *
2986 * And that is shares_weight and is icky. In the (near) UP case it approaches
2987 * (4) while in the normal case it approaches (3). It consistently
2988 * overestimates the ge->load.weight and therefore:
2989 *
2990 * \Sum ge->load.weight >= tg->weight
2991 *
2992 * hence icky!
2993 */
calc_group_shares(struct cfs_rq * cfs_rq)2994 static long calc_group_shares(struct cfs_rq *cfs_rq)
2995 {
2996 long tg_weight, tg_shares, load, shares;
2997 struct task_group *tg = cfs_rq->tg;
2998
2999 tg_shares = READ_ONCE(tg->shares);
3000
3001 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3002
3003 tg_weight = atomic_long_read(&tg->load_avg);
3004
3005 /* Ensure tg_weight >= load */
3006 tg_weight -= cfs_rq->tg_load_avg_contrib;
3007 tg_weight += load;
3008
3009 shares = (tg_shares * load);
3010 if (tg_weight)
3011 shares /= tg_weight;
3012
3013 /*
3014 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3015 * of a group with small tg->shares value. It is a floor value which is
3016 * assigned as a minimum load.weight to the sched_entity representing
3017 * the group on a CPU.
3018 *
3019 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3020 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3021 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3022 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3023 * instead of 0.
3024 */
3025 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3026 }
3027
3028 /*
3029 * This calculates the effective runnable weight for a group entity based on
3030 * the group entity weight calculated above.
3031 *
3032 * Because of the above approximation (2), our group entity weight is
3033 * an load_avg based ratio (3). This means that it includes blocked load and
3034 * does not represent the runnable weight.
3035 *
3036 * Approximate the group entity's runnable weight per ratio from the group
3037 * runqueue:
3038 *
3039 * grq->avg.runnable_load_avg
3040 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
3041 * grq->avg.load_avg
3042 *
3043 * However, analogous to above, since the avg numbers are slow, this leads to
3044 * transients in the from-idle case. Instead we use:
3045 *
3046 * ge->runnable_weight = ge->load.weight *
3047 *
3048 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
3049 * ----------------------------------------------------- (8)
3050 * max(grq->avg.load_avg, grq->load.weight)
3051 *
3052 * Where these max() serve both to use the 'instant' values to fix the slow
3053 * from-idle and avoid the /0 on to-idle, similar to (6).
3054 */
calc_group_runnable(struct cfs_rq * cfs_rq,long shares)3055 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
3056 {
3057 long runnable, load_avg;
3058
3059 load_avg = max(cfs_rq->avg.load_avg,
3060 scale_load_down(cfs_rq->load.weight));
3061
3062 runnable = max(cfs_rq->avg.runnable_load_avg,
3063 scale_load_down(cfs_rq->runnable_weight));
3064
3065 runnable *= shares;
3066 if (load_avg)
3067 runnable /= load_avg;
3068
3069 return clamp_t(long, runnable, MIN_SHARES, shares);
3070 }
3071 #endif /* CONFIG_SMP */
3072
3073 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3074
3075 /*
3076 * Recomputes the group entity based on the current state of its group
3077 * runqueue.
3078 */
update_cfs_group(struct sched_entity * se)3079 static void update_cfs_group(struct sched_entity *se)
3080 {
3081 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3082 long shares, runnable;
3083
3084 if (!gcfs_rq)
3085 return;
3086
3087 if (throttled_hierarchy(gcfs_rq))
3088 return;
3089
3090 #ifndef CONFIG_SMP
3091 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3092
3093 if (likely(se->load.weight == shares))
3094 return;
3095 #else
3096 shares = calc_group_shares(gcfs_rq);
3097 runnable = calc_group_runnable(gcfs_rq, shares);
3098 #endif
3099
3100 reweight_entity(cfs_rq_of(se), se, shares, runnable);
3101 }
3102
3103 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3104 static inline void update_cfs_group(struct sched_entity *se)
3105 {
3106 }
3107 #endif /* CONFIG_FAIR_GROUP_SCHED */
3108
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3109 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3110 {
3111 struct rq *rq = rq_of(cfs_rq);
3112
3113 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3114 /*
3115 * There are a few boundary cases this might miss but it should
3116 * get called often enough that that should (hopefully) not be
3117 * a real problem.
3118 *
3119 * It will not get called when we go idle, because the idle
3120 * thread is a different class (!fair), nor will the utilization
3121 * number include things like RT tasks.
3122 *
3123 * As is, the util number is not freq-invariant (we'd have to
3124 * implement arch_scale_freq_capacity() for that).
3125 *
3126 * See cpu_util().
3127 */
3128 cpufreq_update_util(rq, flags);
3129 }
3130 }
3131
3132 #ifdef CONFIG_SMP
3133 #ifdef CONFIG_FAIR_GROUP_SCHED
3134 /**
3135 * update_tg_load_avg - update the tg's load avg
3136 * @cfs_rq: the cfs_rq whose avg changed
3137 * @force: update regardless of how small the difference
3138 *
3139 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3140 * However, because tg->load_avg is a global value there are performance
3141 * considerations.
3142 *
3143 * In order to avoid having to look at the other cfs_rq's, we use a
3144 * differential update where we store the last value we propagated. This in
3145 * turn allows skipping updates if the differential is 'small'.
3146 *
3147 * Updating tg's load_avg is necessary before update_cfs_share().
3148 */
update_tg_load_avg(struct cfs_rq * cfs_rq,int force)3149 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3150 {
3151 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3152
3153 /*
3154 * No need to update load_avg for root_task_group as it is not used.
3155 */
3156 if (cfs_rq->tg == &root_task_group)
3157 return;
3158
3159 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3160 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3161 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3162 }
3163 }
3164
3165 /*
3166 * Called within set_task_rq() right before setting a task's CPU. The
3167 * caller only guarantees p->pi_lock is held; no other assumptions,
3168 * including the state of rq->lock, should be made.
3169 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)3170 void set_task_rq_fair(struct sched_entity *se,
3171 struct cfs_rq *prev, struct cfs_rq *next)
3172 {
3173 u64 p_last_update_time;
3174 u64 n_last_update_time;
3175
3176 if (!sched_feat(ATTACH_AGE_LOAD))
3177 return;
3178
3179 /*
3180 * We are supposed to update the task to "current" time, then its up to
3181 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3182 * getting what current time is, so simply throw away the out-of-date
3183 * time. This will result in the wakee task is less decayed, but giving
3184 * the wakee more load sounds not bad.
3185 */
3186 if (!(se->avg.last_update_time && prev))
3187 return;
3188
3189 #ifndef CONFIG_64BIT
3190 {
3191 u64 p_last_update_time_copy;
3192 u64 n_last_update_time_copy;
3193
3194 do {
3195 p_last_update_time_copy = prev->load_last_update_time_copy;
3196 n_last_update_time_copy = next->load_last_update_time_copy;
3197
3198 smp_rmb();
3199
3200 p_last_update_time = prev->avg.last_update_time;
3201 n_last_update_time = next->avg.last_update_time;
3202
3203 } while (p_last_update_time != p_last_update_time_copy ||
3204 n_last_update_time != n_last_update_time_copy);
3205 }
3206 #else
3207 p_last_update_time = prev->avg.last_update_time;
3208 n_last_update_time = next->avg.last_update_time;
3209 #endif
3210 __update_load_avg_blocked_se(p_last_update_time, se);
3211 se->avg.last_update_time = n_last_update_time;
3212 }
3213
3214
3215 /*
3216 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3217 * propagate its contribution. The key to this propagation is the invariant
3218 * that for each group:
3219 *
3220 * ge->avg == grq->avg (1)
3221 *
3222 * _IFF_ we look at the pure running and runnable sums. Because they
3223 * represent the very same entity, just at different points in the hierarchy.
3224 *
3225 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3226 * sum over (but still wrong, because the group entity and group rq do not have
3227 * their PELT windows aligned).
3228 *
3229 * However, update_tg_cfs_runnable() is more complex. So we have:
3230 *
3231 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3232 *
3233 * And since, like util, the runnable part should be directly transferable,
3234 * the following would _appear_ to be the straight forward approach:
3235 *
3236 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3237 *
3238 * And per (1) we have:
3239 *
3240 * ge->avg.runnable_avg == grq->avg.runnable_avg
3241 *
3242 * Which gives:
3243 *
3244 * ge->load.weight * grq->avg.load_avg
3245 * ge->avg.load_avg = ----------------------------------- (4)
3246 * grq->load.weight
3247 *
3248 * Except that is wrong!
3249 *
3250 * Because while for entities historical weight is not important and we
3251 * really only care about our future and therefore can consider a pure
3252 * runnable sum, runqueues can NOT do this.
3253 *
3254 * We specifically want runqueues to have a load_avg that includes
3255 * historical weights. Those represent the blocked load, the load we expect
3256 * to (shortly) return to us. This only works by keeping the weights as
3257 * integral part of the sum. We therefore cannot decompose as per (3).
3258 *
3259 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3260 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3261 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3262 * runnable section of these tasks overlap (or not). If they were to perfectly
3263 * align the rq as a whole would be runnable 2/3 of the time. If however we
3264 * always have at least 1 runnable task, the rq as a whole is always runnable.
3265 *
3266 * So we'll have to approximate.. :/
3267 *
3268 * Given the constraint:
3269 *
3270 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3271 *
3272 * We can construct a rule that adds runnable to a rq by assuming minimal
3273 * overlap.
3274 *
3275 * On removal, we'll assume each task is equally runnable; which yields:
3276 *
3277 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3278 *
3279 * XXX: only do this for the part of runnable > running ?
3280 *
3281 */
3282
3283 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3284 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3285 {
3286 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3287
3288 /* Nothing to update */
3289 if (!delta)
3290 return;
3291
3292 /*
3293 * The relation between sum and avg is:
3294 *
3295 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3296 *
3297 * however, the PELT windows are not aligned between grq and gse.
3298 */
3299
3300 /* Set new sched_entity's utilization */
3301 se->avg.util_avg = gcfs_rq->avg.util_avg;
3302 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3303
3304 /* Update parent cfs_rq utilization */
3305 add_positive(&cfs_rq->avg.util_avg, delta);
3306 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3307 }
3308
3309 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3310 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3311 {
3312 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3313 unsigned long runnable_load_avg, load_avg;
3314 u64 runnable_load_sum, load_sum = 0;
3315 s64 delta_sum;
3316
3317 if (!runnable_sum)
3318 return;
3319
3320 gcfs_rq->prop_runnable_sum = 0;
3321
3322 if (runnable_sum >= 0) {
3323 /*
3324 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3325 * the CPU is saturated running == runnable.
3326 */
3327 runnable_sum += se->avg.load_sum;
3328 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3329 } else {
3330 /*
3331 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3332 * assuming all tasks are equally runnable.
3333 */
3334 if (scale_load_down(gcfs_rq->load.weight)) {
3335 load_sum = div_s64(gcfs_rq->avg.load_sum,
3336 scale_load_down(gcfs_rq->load.weight));
3337 }
3338
3339 /* But make sure to not inflate se's runnable */
3340 runnable_sum = min(se->avg.load_sum, load_sum);
3341 }
3342
3343 /*
3344 * runnable_sum can't be lower than running_sum
3345 * Rescale running sum to be in the same range as runnable sum
3346 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3347 * runnable_sum is in [0 : LOAD_AVG_MAX]
3348 */
3349 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3350 runnable_sum = max(runnable_sum, running_sum);
3351
3352 load_sum = (s64)se_weight(se) * runnable_sum;
3353 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3354
3355 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3356 delta_avg = load_avg - se->avg.load_avg;
3357
3358 se->avg.load_sum = runnable_sum;
3359 se->avg.load_avg = load_avg;
3360 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3361 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3362
3363 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3364 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3365 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3366 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3367
3368 se->avg.runnable_load_sum = runnable_sum;
3369 se->avg.runnable_load_avg = runnable_load_avg;
3370
3371 if (se->on_rq) {
3372 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3373 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3374 }
3375 }
3376
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3377 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3378 {
3379 cfs_rq->propagate = 1;
3380 cfs_rq->prop_runnable_sum += runnable_sum;
3381 }
3382
3383 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)3384 static inline int propagate_entity_load_avg(struct sched_entity *se)
3385 {
3386 struct cfs_rq *cfs_rq, *gcfs_rq;
3387
3388 if (entity_is_task(se))
3389 return 0;
3390
3391 gcfs_rq = group_cfs_rq(se);
3392 if (!gcfs_rq->propagate)
3393 return 0;
3394
3395 gcfs_rq->propagate = 0;
3396
3397 cfs_rq = cfs_rq_of(se);
3398
3399 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3400
3401 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3402 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3403
3404 trace_pelt_cfs_tp(cfs_rq);
3405 trace_pelt_se_tp(se);
3406
3407 return 1;
3408 }
3409
3410 /*
3411 * Check if we need to update the load and the utilization of a blocked
3412 * group_entity:
3413 */
skip_blocked_update(struct sched_entity * se)3414 static inline bool skip_blocked_update(struct sched_entity *se)
3415 {
3416 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3417
3418 /*
3419 * If sched_entity still have not zero load or utilization, we have to
3420 * decay it:
3421 */
3422 if (se->avg.load_avg || se->avg.util_avg)
3423 return false;
3424
3425 /*
3426 * If there is a pending propagation, we have to update the load and
3427 * the utilization of the sched_entity:
3428 */
3429 if (gcfs_rq->propagate)
3430 return false;
3431
3432 /*
3433 * Otherwise, the load and the utilization of the sched_entity is
3434 * already zero and there is no pending propagation, so it will be a
3435 * waste of time to try to decay it:
3436 */
3437 return true;
3438 }
3439
3440 #else /* CONFIG_FAIR_GROUP_SCHED */
3441
update_tg_load_avg(struct cfs_rq * cfs_rq,int force)3442 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3443
propagate_entity_load_avg(struct sched_entity * se)3444 static inline int propagate_entity_load_avg(struct sched_entity *se)
3445 {
3446 return 0;
3447 }
3448
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3449 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3450
3451 #endif /* CONFIG_FAIR_GROUP_SCHED */
3452
3453 /**
3454 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3455 * @now: current time, as per cfs_rq_clock_pelt()
3456 * @cfs_rq: cfs_rq to update
3457 *
3458 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3459 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3460 * post_init_entity_util_avg().
3461 *
3462 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3463 *
3464 * Returns true if the load decayed or we removed load.
3465 *
3466 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3467 * call update_tg_load_avg() when this function returns true.
3468 */
3469 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)3470 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3471 {
3472 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3473 struct sched_avg *sa = &cfs_rq->avg;
3474 int decayed = 0;
3475
3476 if (cfs_rq->removed.nr) {
3477 unsigned long r;
3478 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3479
3480 raw_spin_lock(&cfs_rq->removed.lock);
3481 swap(cfs_rq->removed.util_avg, removed_util);
3482 swap(cfs_rq->removed.load_avg, removed_load);
3483 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3484 cfs_rq->removed.nr = 0;
3485 raw_spin_unlock(&cfs_rq->removed.lock);
3486
3487 r = removed_load;
3488 sub_positive(&sa->load_avg, r);
3489 sub_positive(&sa->load_sum, r * divider);
3490
3491 r = removed_util;
3492 sub_positive(&sa->util_avg, r);
3493 sub_positive(&sa->util_sum, r * divider);
3494
3495 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3496
3497 decayed = 1;
3498 }
3499
3500 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3501
3502 #ifndef CONFIG_64BIT
3503 smp_wmb();
3504 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3505 #endif
3506
3507 return decayed;
3508 }
3509
3510 /**
3511 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3512 * @cfs_rq: cfs_rq to attach to
3513 * @se: sched_entity to attach
3514 * @flags: migration hints
3515 *
3516 * Must call update_cfs_rq_load_avg() before this, since we rely on
3517 * cfs_rq->avg.last_update_time being current.
3518 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3519 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3520 {
3521 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3522
3523 /*
3524 * When we attach the @se to the @cfs_rq, we must align the decay
3525 * window because without that, really weird and wonderful things can
3526 * happen.
3527 *
3528 * XXX illustrate
3529 */
3530 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3531 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3532
3533 /*
3534 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3535 * period_contrib. This isn't strictly correct, but since we're
3536 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3537 * _sum a little.
3538 */
3539 se->avg.util_sum = se->avg.util_avg * divider;
3540
3541 se->avg.load_sum = divider;
3542 if (se_weight(se)) {
3543 se->avg.load_sum =
3544 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3545 }
3546
3547 se->avg.runnable_load_sum = se->avg.load_sum;
3548
3549 enqueue_load_avg(cfs_rq, se);
3550 cfs_rq->avg.util_avg += se->avg.util_avg;
3551 cfs_rq->avg.util_sum += se->avg.util_sum;
3552
3553 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3554
3555 cfs_rq_util_change(cfs_rq, flags);
3556
3557 trace_pelt_cfs_tp(cfs_rq);
3558 }
3559
3560 /**
3561 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3562 * @cfs_rq: cfs_rq to detach from
3563 * @se: sched_entity to detach
3564 *
3565 * Must call update_cfs_rq_load_avg() before this, since we rely on
3566 * cfs_rq->avg.last_update_time being current.
3567 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3568 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3569 {
3570 dequeue_load_avg(cfs_rq, se);
3571 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3572 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3573
3574 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3575
3576 cfs_rq_util_change(cfs_rq, 0);
3577
3578 trace_pelt_cfs_tp(cfs_rq);
3579 }
3580
3581 /*
3582 * Optional action to be done while updating the load average
3583 */
3584 #define UPDATE_TG 0x1
3585 #define SKIP_AGE_LOAD 0x2
3586 #define DO_ATTACH 0x4
3587
3588 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3589 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3590 {
3591 u64 now = cfs_rq_clock_pelt(cfs_rq);
3592 int decayed;
3593
3594 /*
3595 * Track task load average for carrying it to new CPU after migrated, and
3596 * track group sched_entity load average for task_h_load calc in migration
3597 */
3598 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3599 __update_load_avg_se(now, cfs_rq, se);
3600
3601 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3602 decayed |= propagate_entity_load_avg(se);
3603
3604 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3605
3606 /*
3607 * DO_ATTACH means we're here from enqueue_entity().
3608 * !last_update_time means we've passed through
3609 * migrate_task_rq_fair() indicating we migrated.
3610 *
3611 * IOW we're enqueueing a task on a new CPU.
3612 */
3613 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3614 update_tg_load_avg(cfs_rq, 0);
3615
3616 } else if (decayed) {
3617 cfs_rq_util_change(cfs_rq, 0);
3618
3619 if (flags & UPDATE_TG)
3620 update_tg_load_avg(cfs_rq, 0);
3621 }
3622 }
3623
3624 #ifndef CONFIG_64BIT
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3625 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3626 {
3627 u64 last_update_time_copy;
3628 u64 last_update_time;
3629
3630 do {
3631 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3632 smp_rmb();
3633 last_update_time = cfs_rq->avg.last_update_time;
3634 } while (last_update_time != last_update_time_copy);
3635
3636 return last_update_time;
3637 }
3638 #else
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3639 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3640 {
3641 return cfs_rq->avg.last_update_time;
3642 }
3643 #endif
3644
3645 /*
3646 * Synchronize entity load avg of dequeued entity without locking
3647 * the previous rq.
3648 */
sync_entity_load_avg(struct sched_entity * se)3649 static void sync_entity_load_avg(struct sched_entity *se)
3650 {
3651 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3652 u64 last_update_time;
3653
3654 last_update_time = cfs_rq_last_update_time(cfs_rq);
3655 __update_load_avg_blocked_se(last_update_time, se);
3656 }
3657
3658 /*
3659 * Task first catches up with cfs_rq, and then subtract
3660 * itself from the cfs_rq (task must be off the queue now).
3661 */
remove_entity_load_avg(struct sched_entity * se)3662 static void remove_entity_load_avg(struct sched_entity *se)
3663 {
3664 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3665 unsigned long flags;
3666
3667 /*
3668 * tasks cannot exit without having gone through wake_up_new_task() ->
3669 * post_init_entity_util_avg() which will have added things to the
3670 * cfs_rq, so we can remove unconditionally.
3671 */
3672
3673 sync_entity_load_avg(se);
3674
3675 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3676 ++cfs_rq->removed.nr;
3677 cfs_rq->removed.util_avg += se->avg.util_avg;
3678 cfs_rq->removed.load_avg += se->avg.load_avg;
3679 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
3680 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3681 }
3682
cfs_rq_runnable_load_avg(struct cfs_rq * cfs_rq)3683 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3684 {
3685 return cfs_rq->avg.runnable_load_avg;
3686 }
3687
cfs_rq_load_avg(struct cfs_rq * cfs_rq)3688 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3689 {
3690 return cfs_rq->avg.load_avg;
3691 }
3692
task_util(struct task_struct * p)3693 static inline unsigned long task_util(struct task_struct *p)
3694 {
3695 return READ_ONCE(p->se.avg.util_avg);
3696 }
3697
_task_util_est(struct task_struct * p)3698 static inline unsigned long _task_util_est(struct task_struct *p)
3699 {
3700 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3701
3702 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3703 }
3704
task_util_est(struct task_struct * p)3705 static inline unsigned long task_util_est(struct task_struct *p)
3706 {
3707 return max(task_util(p), _task_util_est(p));
3708 }
3709
3710 #ifdef CONFIG_UCLAMP_TASK
uclamp_task_util(struct task_struct * p)3711 static inline unsigned long uclamp_task_util(struct task_struct *p)
3712 {
3713 return clamp(task_util_est(p),
3714 uclamp_eff_value(p, UCLAMP_MIN),
3715 uclamp_eff_value(p, UCLAMP_MAX));
3716 }
3717 #else
uclamp_task_util(struct task_struct * p)3718 static inline unsigned long uclamp_task_util(struct task_struct *p)
3719 {
3720 return task_util_est(p);
3721 }
3722 #endif
3723
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)3724 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3725 struct task_struct *p)
3726 {
3727 unsigned int enqueued;
3728
3729 if (!sched_feat(UTIL_EST))
3730 return;
3731
3732 /* Update root cfs_rq's estimated utilization */
3733 enqueued = cfs_rq->avg.util_est.enqueued;
3734 enqueued += _task_util_est(p);
3735 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3736 }
3737
3738 /*
3739 * Check if a (signed) value is within a specified (unsigned) margin,
3740 * based on the observation that:
3741 *
3742 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3743 *
3744 * NOTE: this only works when value + maring < INT_MAX.
3745 */
within_margin(int value,int margin)3746 static inline bool within_margin(int value, int margin)
3747 {
3748 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3749 }
3750
3751 static void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)3752 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3753 {
3754 long last_ewma_diff;
3755 struct util_est ue;
3756 int cpu;
3757
3758 if (!sched_feat(UTIL_EST))
3759 return;
3760
3761 /* Update root cfs_rq's estimated utilization */
3762 ue.enqueued = cfs_rq->avg.util_est.enqueued;
3763 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3764 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3765
3766 /*
3767 * Skip update of task's estimated utilization when the task has not
3768 * yet completed an activation, e.g. being migrated.
3769 */
3770 if (!task_sleep)
3771 return;
3772
3773 /*
3774 * If the PELT values haven't changed since enqueue time,
3775 * skip the util_est update.
3776 */
3777 ue = p->se.avg.util_est;
3778 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3779 return;
3780
3781 /*
3782 * Skip update of task's estimated utilization when its EWMA is
3783 * already ~1% close to its last activation value.
3784 */
3785 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3786 last_ewma_diff = ue.enqueued - ue.ewma;
3787 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3788 return;
3789
3790 /*
3791 * To avoid overestimation of actual task utilization, skip updates if
3792 * we cannot grant there is idle time in this CPU.
3793 */
3794 cpu = cpu_of(rq_of(cfs_rq));
3795 if (task_util(p) > capacity_orig_of(cpu))
3796 return;
3797
3798 /*
3799 * Update Task's estimated utilization
3800 *
3801 * When *p completes an activation we can consolidate another sample
3802 * of the task size. This is done by storing the current PELT value
3803 * as ue.enqueued and by using this value to update the Exponential
3804 * Weighted Moving Average (EWMA):
3805 *
3806 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3807 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3808 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3809 * = w * ( last_ewma_diff ) + ewma(t-1)
3810 * = w * (last_ewma_diff + ewma(t-1) / w)
3811 *
3812 * Where 'w' is the weight of new samples, which is configured to be
3813 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3814 */
3815 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3816 ue.ewma += last_ewma_diff;
3817 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3818 WRITE_ONCE(p->se.avg.util_est, ue);
3819 }
3820
task_fits_capacity(struct task_struct * p,long capacity)3821 static inline int task_fits_capacity(struct task_struct *p, long capacity)
3822 {
3823 return fits_capacity(uclamp_task_util(p), capacity);
3824 }
3825
update_misfit_status(struct task_struct * p,struct rq * rq)3826 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3827 {
3828 if (!static_branch_unlikely(&sched_asym_cpucapacity))
3829 return;
3830
3831 if (!p) {
3832 rq->misfit_task_load = 0;
3833 return;
3834 }
3835
3836 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3837 rq->misfit_task_load = 0;
3838 return;
3839 }
3840
3841 rq->misfit_task_load = task_h_load(p);
3842 }
3843
3844 #else /* CONFIG_SMP */
3845
3846 #define UPDATE_TG 0x0
3847 #define SKIP_AGE_LOAD 0x0
3848 #define DO_ATTACH 0x0
3849
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)3850 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3851 {
3852 cfs_rq_util_change(cfs_rq, 0);
3853 }
3854
remove_entity_load_avg(struct sched_entity * se)3855 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3856
3857 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3858 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3859 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3860 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3861
idle_balance(struct rq * rq,struct rq_flags * rf)3862 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3863 {
3864 return 0;
3865 }
3866
3867 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)3868 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3869
3870 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)3871 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3872 bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)3873 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3874
3875 #endif /* CONFIG_SMP */
3876
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)3877 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3878 {
3879 #ifdef CONFIG_SCHED_DEBUG
3880 s64 d = se->vruntime - cfs_rq->min_vruntime;
3881
3882 if (d < 0)
3883 d = -d;
3884
3885 if (d > 3*sysctl_sched_latency)
3886 schedstat_inc(cfs_rq->nr_spread_over);
3887 #endif
3888 }
3889
3890 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)3891 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3892 {
3893 u64 vruntime = cfs_rq->min_vruntime;
3894
3895 /*
3896 * The 'current' period is already promised to the current tasks,
3897 * however the extra weight of the new task will slow them down a
3898 * little, place the new task so that it fits in the slot that
3899 * stays open at the end.
3900 */
3901 if (initial && sched_feat(START_DEBIT))
3902 vruntime += sched_vslice(cfs_rq, se);
3903
3904 /* sleeps up to a single latency don't count. */
3905 if (!initial) {
3906 unsigned long thresh = sysctl_sched_latency;
3907
3908 /*
3909 * Halve their sleep time's effect, to allow
3910 * for a gentler effect of sleepers:
3911 */
3912 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3913 thresh >>= 1;
3914
3915 vruntime -= thresh;
3916 }
3917
3918 /* ensure we never gain time by being placed backwards. */
3919 se->vruntime = max_vruntime(se->vruntime, vruntime);
3920 }
3921
3922 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3923
check_schedstat_required(void)3924 static inline void check_schedstat_required(void)
3925 {
3926 #ifdef CONFIG_SCHEDSTATS
3927 if (schedstat_enabled())
3928 return;
3929
3930 /* Force schedstat enabled if a dependent tracepoint is active */
3931 if (trace_sched_stat_wait_enabled() ||
3932 trace_sched_stat_sleep_enabled() ||
3933 trace_sched_stat_iowait_enabled() ||
3934 trace_sched_stat_blocked_enabled() ||
3935 trace_sched_stat_runtime_enabled()) {
3936 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3937 "stat_blocked and stat_runtime require the "
3938 "kernel parameter schedstats=enable or "
3939 "kernel.sched_schedstats=1\n");
3940 }
3941 #endif
3942 }
3943
3944
3945 /*
3946 * MIGRATION
3947 *
3948 * dequeue
3949 * update_curr()
3950 * update_min_vruntime()
3951 * vruntime -= min_vruntime
3952 *
3953 * enqueue
3954 * update_curr()
3955 * update_min_vruntime()
3956 * vruntime += min_vruntime
3957 *
3958 * this way the vruntime transition between RQs is done when both
3959 * min_vruntime are up-to-date.
3960 *
3961 * WAKEUP (remote)
3962 *
3963 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3964 * vruntime -= min_vruntime
3965 *
3966 * enqueue
3967 * update_curr()
3968 * update_min_vruntime()
3969 * vruntime += min_vruntime
3970 *
3971 * this way we don't have the most up-to-date min_vruntime on the originating
3972 * CPU and an up-to-date min_vruntime on the destination CPU.
3973 */
3974
3975 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3976 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3977 {
3978 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3979 bool curr = cfs_rq->curr == se;
3980
3981 /*
3982 * If we're the current task, we must renormalise before calling
3983 * update_curr().
3984 */
3985 if (renorm && curr)
3986 se->vruntime += cfs_rq->min_vruntime;
3987
3988 update_curr(cfs_rq);
3989
3990 /*
3991 * Otherwise, renormalise after, such that we're placed at the current
3992 * moment in time, instead of some random moment in the past. Being
3993 * placed in the past could significantly boost this task to the
3994 * fairness detriment of existing tasks.
3995 */
3996 if (renorm && !curr)
3997 se->vruntime += cfs_rq->min_vruntime;
3998
3999 /*
4000 * When enqueuing a sched_entity, we must:
4001 * - Update loads to have both entity and cfs_rq synced with now.
4002 * - Add its load to cfs_rq->runnable_avg
4003 * - For group_entity, update its weight to reflect the new share of
4004 * its group cfs_rq
4005 * - Add its new weight to cfs_rq->load.weight
4006 */
4007 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4008 update_cfs_group(se);
4009 enqueue_runnable_load_avg(cfs_rq, se);
4010 account_entity_enqueue(cfs_rq, se);
4011
4012 if (flags & ENQUEUE_WAKEUP)
4013 place_entity(cfs_rq, se, 0);
4014
4015 check_schedstat_required();
4016 update_stats_enqueue(cfs_rq, se, flags);
4017 check_spread(cfs_rq, se);
4018 if (!curr)
4019 __enqueue_entity(cfs_rq, se);
4020 se->on_rq = 1;
4021
4022 if (cfs_rq->nr_running == 1) {
4023 list_add_leaf_cfs_rq(cfs_rq);
4024 check_enqueue_throttle(cfs_rq);
4025 }
4026 }
4027
__clear_buddies_last(struct sched_entity * se)4028 static void __clear_buddies_last(struct sched_entity *se)
4029 {
4030 for_each_sched_entity(se) {
4031 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4032 if (cfs_rq->last != se)
4033 break;
4034
4035 cfs_rq->last = NULL;
4036 }
4037 }
4038
__clear_buddies_next(struct sched_entity * se)4039 static void __clear_buddies_next(struct sched_entity *se)
4040 {
4041 for_each_sched_entity(se) {
4042 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4043 if (cfs_rq->next != se)
4044 break;
4045
4046 cfs_rq->next = NULL;
4047 }
4048 }
4049
__clear_buddies_skip(struct sched_entity * se)4050 static void __clear_buddies_skip(struct sched_entity *se)
4051 {
4052 for_each_sched_entity(se) {
4053 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4054 if (cfs_rq->skip != se)
4055 break;
4056
4057 cfs_rq->skip = NULL;
4058 }
4059 }
4060
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)4061 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4062 {
4063 if (cfs_rq->last == se)
4064 __clear_buddies_last(se);
4065
4066 if (cfs_rq->next == se)
4067 __clear_buddies_next(se);
4068
4069 if (cfs_rq->skip == se)
4070 __clear_buddies_skip(se);
4071 }
4072
4073 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4074
4075 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4076 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4077 {
4078 /*
4079 * Update run-time statistics of the 'current'.
4080 */
4081 update_curr(cfs_rq);
4082
4083 /*
4084 * When dequeuing a sched_entity, we must:
4085 * - Update loads to have both entity and cfs_rq synced with now.
4086 * - Subtract its load from the cfs_rq->runnable_avg.
4087 * - Subtract its previous weight from cfs_rq->load.weight.
4088 * - For group entity, update its weight to reflect the new share
4089 * of its group cfs_rq.
4090 */
4091 update_load_avg(cfs_rq, se, UPDATE_TG);
4092 dequeue_runnable_load_avg(cfs_rq, se);
4093
4094 update_stats_dequeue(cfs_rq, se, flags);
4095
4096 clear_buddies(cfs_rq, se);
4097
4098 if (se != cfs_rq->curr)
4099 __dequeue_entity(cfs_rq, se);
4100 se->on_rq = 0;
4101 account_entity_dequeue(cfs_rq, se);
4102
4103 /*
4104 * Normalize after update_curr(); which will also have moved
4105 * min_vruntime if @se is the one holding it back. But before doing
4106 * update_min_vruntime() again, which will discount @se's position and
4107 * can move min_vruntime forward still more.
4108 */
4109 if (!(flags & DEQUEUE_SLEEP))
4110 se->vruntime -= cfs_rq->min_vruntime;
4111
4112 /* return excess runtime on last dequeue */
4113 return_cfs_rq_runtime(cfs_rq);
4114
4115 update_cfs_group(se);
4116
4117 /*
4118 * Now advance min_vruntime if @se was the entity holding it back,
4119 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4120 * put back on, and if we advance min_vruntime, we'll be placed back
4121 * further than we started -- ie. we'll be penalized.
4122 */
4123 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4124 update_min_vruntime(cfs_rq);
4125 }
4126
4127 /*
4128 * Preempt the current task with a newly woken task if needed:
4129 */
4130 static void
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)4131 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4132 {
4133 unsigned long ideal_runtime, delta_exec;
4134 struct sched_entity *se;
4135 s64 delta;
4136
4137 ideal_runtime = sched_slice(cfs_rq, curr);
4138 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4139 if (delta_exec > ideal_runtime) {
4140 resched_curr(rq_of(cfs_rq));
4141 /*
4142 * The current task ran long enough, ensure it doesn't get
4143 * re-elected due to buddy favours.
4144 */
4145 clear_buddies(cfs_rq, curr);
4146 return;
4147 }
4148
4149 /*
4150 * Ensure that a task that missed wakeup preemption by a
4151 * narrow margin doesn't have to wait for a full slice.
4152 * This also mitigates buddy induced latencies under load.
4153 */
4154 if (delta_exec < sysctl_sched_min_granularity)
4155 return;
4156
4157 se = __pick_first_entity(cfs_rq);
4158 delta = curr->vruntime - se->vruntime;
4159
4160 if (delta < 0)
4161 return;
4162
4163 if (delta > ideal_runtime)
4164 resched_curr(rq_of(cfs_rq));
4165 }
4166
4167 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)4168 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4169 {
4170 /* 'current' is not kept within the tree. */
4171 if (se->on_rq) {
4172 /*
4173 * Any task has to be enqueued before it get to execute on
4174 * a CPU. So account for the time it spent waiting on the
4175 * runqueue.
4176 */
4177 update_stats_wait_end(cfs_rq, se);
4178 __dequeue_entity(cfs_rq, se);
4179 update_load_avg(cfs_rq, se, UPDATE_TG);
4180 }
4181
4182 update_stats_curr_start(cfs_rq, se);
4183 cfs_rq->curr = se;
4184
4185 /*
4186 * Track our maximum slice length, if the CPU's load is at
4187 * least twice that of our own weight (i.e. dont track it
4188 * when there are only lesser-weight tasks around):
4189 */
4190 if (schedstat_enabled() &&
4191 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4192 schedstat_set(se->statistics.slice_max,
4193 max((u64)schedstat_val(se->statistics.slice_max),
4194 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4195 }
4196
4197 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4198 }
4199
4200 static int
4201 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4202
4203 /*
4204 * Pick the next process, keeping these things in mind, in this order:
4205 * 1) keep things fair between processes/task groups
4206 * 2) pick the "next" process, since someone really wants that to run
4207 * 3) pick the "last" process, for cache locality
4208 * 4) do not run the "skip" process, if something else is available
4209 */
4210 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)4211 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4212 {
4213 struct sched_entity *left = __pick_first_entity(cfs_rq);
4214 struct sched_entity *se;
4215
4216 /*
4217 * If curr is set we have to see if its left of the leftmost entity
4218 * still in the tree, provided there was anything in the tree at all.
4219 */
4220 if (!left || (curr && entity_before(curr, left)))
4221 left = curr;
4222
4223 se = left; /* ideally we run the leftmost entity */
4224
4225 /*
4226 * Avoid running the skip buddy, if running something else can
4227 * be done without getting too unfair.
4228 */
4229 if (cfs_rq->skip == se) {
4230 struct sched_entity *second;
4231
4232 if (se == curr) {
4233 second = __pick_first_entity(cfs_rq);
4234 } else {
4235 second = __pick_next_entity(se);
4236 if (!second || (curr && entity_before(curr, second)))
4237 second = curr;
4238 }
4239
4240 if (second && wakeup_preempt_entity(second, left) < 1)
4241 se = second;
4242 }
4243
4244 /*
4245 * Prefer last buddy, try to return the CPU to a preempted task.
4246 */
4247 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4248 se = cfs_rq->last;
4249
4250 /*
4251 * Someone really wants this to run. If it's not unfair, run it.
4252 */
4253 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4254 se = cfs_rq->next;
4255
4256 clear_buddies(cfs_rq, se);
4257
4258 return se;
4259 }
4260
4261 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4262
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)4263 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4264 {
4265 /*
4266 * If still on the runqueue then deactivate_task()
4267 * was not called and update_curr() has to be done:
4268 */
4269 if (prev->on_rq)
4270 update_curr(cfs_rq);
4271
4272 /* throttle cfs_rqs exceeding runtime */
4273 check_cfs_rq_runtime(cfs_rq);
4274
4275 check_spread(cfs_rq, prev);
4276
4277 if (prev->on_rq) {
4278 update_stats_wait_start(cfs_rq, prev);
4279 /* Put 'current' back into the tree. */
4280 __enqueue_entity(cfs_rq, prev);
4281 /* in !on_rq case, update occurred at dequeue */
4282 update_load_avg(cfs_rq, prev, 0);
4283 }
4284 cfs_rq->curr = NULL;
4285 }
4286
4287 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)4288 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4289 {
4290 /*
4291 * Update run-time statistics of the 'current'.
4292 */
4293 update_curr(cfs_rq);
4294
4295 /*
4296 * Ensure that runnable average is periodically updated.
4297 */
4298 update_load_avg(cfs_rq, curr, UPDATE_TG);
4299 update_cfs_group(curr);
4300
4301 #ifdef CONFIG_SCHED_HRTICK
4302 /*
4303 * queued ticks are scheduled to match the slice, so don't bother
4304 * validating it and just reschedule.
4305 */
4306 if (queued) {
4307 resched_curr(rq_of(cfs_rq));
4308 return;
4309 }
4310 /*
4311 * don't let the period tick interfere with the hrtick preemption
4312 */
4313 if (!sched_feat(DOUBLE_TICK) &&
4314 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4315 return;
4316 #endif
4317
4318 if (cfs_rq->nr_running > 1)
4319 check_preempt_tick(cfs_rq, curr);
4320 }
4321
4322
4323 /**************************************************
4324 * CFS bandwidth control machinery
4325 */
4326
4327 #ifdef CONFIG_CFS_BANDWIDTH
4328
4329 #ifdef CONFIG_JUMP_LABEL
4330 static struct static_key __cfs_bandwidth_used;
4331
cfs_bandwidth_used(void)4332 static inline bool cfs_bandwidth_used(void)
4333 {
4334 return static_key_false(&__cfs_bandwidth_used);
4335 }
4336
cfs_bandwidth_usage_inc(void)4337 void cfs_bandwidth_usage_inc(void)
4338 {
4339 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4340 }
4341
cfs_bandwidth_usage_dec(void)4342 void cfs_bandwidth_usage_dec(void)
4343 {
4344 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4345 }
4346 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)4347 static bool cfs_bandwidth_used(void)
4348 {
4349 return true;
4350 }
4351
cfs_bandwidth_usage_inc(void)4352 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)4353 void cfs_bandwidth_usage_dec(void) {}
4354 #endif /* CONFIG_JUMP_LABEL */
4355
4356 /*
4357 * default period for cfs group bandwidth.
4358 * default: 0.1s, units: nanoseconds
4359 */
default_cfs_period(void)4360 static inline u64 default_cfs_period(void)
4361 {
4362 return 100000000ULL;
4363 }
4364
sched_cfs_bandwidth_slice(void)4365 static inline u64 sched_cfs_bandwidth_slice(void)
4366 {
4367 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4368 }
4369
4370 /*
4371 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4372 * directly instead of rq->clock to avoid adding additional synchronization
4373 * around rq->lock.
4374 *
4375 * requires cfs_b->lock
4376 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)4377 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4378 {
4379 if (cfs_b->quota != RUNTIME_INF)
4380 cfs_b->runtime = cfs_b->quota;
4381 }
4382
tg_cfs_bandwidth(struct task_group * tg)4383 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4384 {
4385 return &tg->cfs_bandwidth;
4386 }
4387
4388 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)4389 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4390 {
4391 struct task_group *tg = cfs_rq->tg;
4392 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4393 u64 amount = 0, min_amount;
4394
4395 /* note: this is a positive sum as runtime_remaining <= 0 */
4396 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4397
4398 raw_spin_lock(&cfs_b->lock);
4399 if (cfs_b->quota == RUNTIME_INF)
4400 amount = min_amount;
4401 else {
4402 start_cfs_bandwidth(cfs_b);
4403
4404 if (cfs_b->runtime > 0) {
4405 amount = min(cfs_b->runtime, min_amount);
4406 cfs_b->runtime -= amount;
4407 cfs_b->idle = 0;
4408 }
4409 }
4410 raw_spin_unlock(&cfs_b->lock);
4411
4412 cfs_rq->runtime_remaining += amount;
4413
4414 return cfs_rq->runtime_remaining > 0;
4415 }
4416
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4417 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4418 {
4419 /* dock delta_exec before expiring quota (as it could span periods) */
4420 cfs_rq->runtime_remaining -= delta_exec;
4421
4422 if (likely(cfs_rq->runtime_remaining > 0))
4423 return;
4424
4425 if (cfs_rq->throttled)
4426 return;
4427 /*
4428 * if we're unable to extend our runtime we resched so that the active
4429 * hierarchy can be throttled
4430 */
4431 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4432 resched_curr(rq_of(cfs_rq));
4433 }
4434
4435 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4436 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4437 {
4438 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4439 return;
4440
4441 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4442 }
4443
cfs_rq_throttled(struct cfs_rq * cfs_rq)4444 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4445 {
4446 return cfs_bandwidth_used() && cfs_rq->throttled;
4447 }
4448
4449 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)4450 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4451 {
4452 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4453 }
4454
4455 /*
4456 * Ensure that neither of the group entities corresponding to src_cpu or
4457 * dest_cpu are members of a throttled hierarchy when performing group
4458 * load-balance operations.
4459 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)4460 static inline int throttled_lb_pair(struct task_group *tg,
4461 int src_cpu, int dest_cpu)
4462 {
4463 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4464
4465 src_cfs_rq = tg->cfs_rq[src_cpu];
4466 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4467
4468 return throttled_hierarchy(src_cfs_rq) ||
4469 throttled_hierarchy(dest_cfs_rq);
4470 }
4471
tg_unthrottle_up(struct task_group * tg,void * data)4472 static int tg_unthrottle_up(struct task_group *tg, void *data)
4473 {
4474 struct rq *rq = data;
4475 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4476
4477 cfs_rq->throttle_count--;
4478 if (!cfs_rq->throttle_count) {
4479 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4480 cfs_rq->throttled_clock_task;
4481
4482 /* Add cfs_rq with already running entity in the list */
4483 if (cfs_rq->nr_running >= 1)
4484 list_add_leaf_cfs_rq(cfs_rq);
4485 }
4486
4487 return 0;
4488 }
4489
tg_throttle_down(struct task_group * tg,void * data)4490 static int tg_throttle_down(struct task_group *tg, void *data)
4491 {
4492 struct rq *rq = data;
4493 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4494
4495 /* group is entering throttled state, stop time */
4496 if (!cfs_rq->throttle_count) {
4497 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4498 list_del_leaf_cfs_rq(cfs_rq);
4499 }
4500 cfs_rq->throttle_count++;
4501
4502 return 0;
4503 }
4504
throttle_cfs_rq(struct cfs_rq * cfs_rq)4505 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4506 {
4507 struct rq *rq = rq_of(cfs_rq);
4508 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4509 struct sched_entity *se;
4510 long task_delta, idle_task_delta, dequeue = 1;
4511 bool empty;
4512
4513 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4514
4515 /* freeze hierarchy runnable averages while throttled */
4516 rcu_read_lock();
4517 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4518 rcu_read_unlock();
4519
4520 task_delta = cfs_rq->h_nr_running;
4521 idle_task_delta = cfs_rq->idle_h_nr_running;
4522 for_each_sched_entity(se) {
4523 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4524 /* throttled entity or throttle-on-deactivate */
4525 if (!se->on_rq)
4526 break;
4527
4528 if (dequeue)
4529 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4530 qcfs_rq->h_nr_running -= task_delta;
4531 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4532
4533 if (qcfs_rq->load.weight)
4534 dequeue = 0;
4535 }
4536
4537 if (!se)
4538 sub_nr_running(rq, task_delta);
4539
4540 cfs_rq->throttled = 1;
4541 cfs_rq->throttled_clock = rq_clock(rq);
4542 raw_spin_lock(&cfs_b->lock);
4543 empty = list_empty(&cfs_b->throttled_cfs_rq);
4544
4545 /*
4546 * Add to the _head_ of the list, so that an already-started
4547 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4548 * not running add to the tail so that later runqueues don't get starved.
4549 */
4550 if (cfs_b->distribute_running)
4551 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4552 else
4553 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4554
4555 /*
4556 * If we're the first throttled task, make sure the bandwidth
4557 * timer is running.
4558 */
4559 if (empty)
4560 start_cfs_bandwidth(cfs_b);
4561
4562 raw_spin_unlock(&cfs_b->lock);
4563 }
4564
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)4565 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4566 {
4567 struct rq *rq = rq_of(cfs_rq);
4568 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4569 struct sched_entity *se;
4570 int enqueue = 1;
4571 long task_delta, idle_task_delta;
4572
4573 se = cfs_rq->tg->se[cpu_of(rq)];
4574
4575 cfs_rq->throttled = 0;
4576
4577 update_rq_clock(rq);
4578
4579 raw_spin_lock(&cfs_b->lock);
4580 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4581 list_del_rcu(&cfs_rq->throttled_list);
4582 raw_spin_unlock(&cfs_b->lock);
4583
4584 /* update hierarchical throttle state */
4585 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4586
4587 if (!cfs_rq->load.weight)
4588 return;
4589
4590 task_delta = cfs_rq->h_nr_running;
4591 idle_task_delta = cfs_rq->idle_h_nr_running;
4592 for_each_sched_entity(se) {
4593 if (se->on_rq)
4594 enqueue = 0;
4595
4596 cfs_rq = cfs_rq_of(se);
4597 if (enqueue)
4598 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4599 cfs_rq->h_nr_running += task_delta;
4600 cfs_rq->idle_h_nr_running += idle_task_delta;
4601
4602 if (cfs_rq_throttled(cfs_rq))
4603 break;
4604 }
4605
4606 assert_list_leaf_cfs_rq(rq);
4607
4608 if (!se)
4609 add_nr_running(rq, task_delta);
4610
4611 /* Determine whether we need to wake up potentially idle CPU: */
4612 if (rq->curr == rq->idle && rq->cfs.nr_running)
4613 resched_curr(rq);
4614 }
4615
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b,u64 remaining)4616 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining)
4617 {
4618 struct cfs_rq *cfs_rq;
4619 u64 runtime;
4620 u64 starting_runtime = remaining;
4621
4622 rcu_read_lock();
4623 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4624 throttled_list) {
4625 struct rq *rq = rq_of(cfs_rq);
4626 struct rq_flags rf;
4627
4628 rq_lock_irqsave(rq, &rf);
4629 if (!cfs_rq_throttled(cfs_rq))
4630 goto next;
4631
4632 /* By the above check, this should never be true */
4633 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4634
4635 runtime = -cfs_rq->runtime_remaining + 1;
4636 if (runtime > remaining)
4637 runtime = remaining;
4638 remaining -= runtime;
4639
4640 cfs_rq->runtime_remaining += runtime;
4641
4642 /* we check whether we're throttled above */
4643 if (cfs_rq->runtime_remaining > 0)
4644 unthrottle_cfs_rq(cfs_rq);
4645
4646 next:
4647 rq_unlock_irqrestore(rq, &rf);
4648
4649 if (!remaining)
4650 break;
4651 }
4652 rcu_read_unlock();
4653
4654 return starting_runtime - remaining;
4655 }
4656
4657 /*
4658 * Responsible for refilling a task_group's bandwidth and unthrottling its
4659 * cfs_rqs as appropriate. If there has been no activity within the last
4660 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4661 * used to track this state.
4662 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)4663 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4664 {
4665 u64 runtime;
4666 int throttled;
4667
4668 /* no need to continue the timer with no bandwidth constraint */
4669 if (cfs_b->quota == RUNTIME_INF)
4670 goto out_deactivate;
4671
4672 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4673 cfs_b->nr_periods += overrun;
4674
4675 /*
4676 * idle depends on !throttled (for the case of a large deficit), and if
4677 * we're going inactive then everything else can be deferred
4678 */
4679 if (cfs_b->idle && !throttled)
4680 goto out_deactivate;
4681
4682 __refill_cfs_bandwidth_runtime(cfs_b);
4683
4684 if (!throttled) {
4685 /* mark as potentially idle for the upcoming period */
4686 cfs_b->idle = 1;
4687 return 0;
4688 }
4689
4690 /* account preceding periods in which throttling occurred */
4691 cfs_b->nr_throttled += overrun;
4692
4693 /*
4694 * This check is repeated as we are holding onto the new bandwidth while
4695 * we unthrottle. This can potentially race with an unthrottled group
4696 * trying to acquire new bandwidth from the global pool. This can result
4697 * in us over-using our runtime if it is all used during this loop, but
4698 * only by limited amounts in that extreme case.
4699 */
4700 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4701 runtime = cfs_b->runtime;
4702 cfs_b->distribute_running = 1;
4703 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4704 /* we can't nest cfs_b->lock while distributing bandwidth */
4705 runtime = distribute_cfs_runtime(cfs_b, runtime);
4706 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4707
4708 cfs_b->distribute_running = 0;
4709 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4710
4711 lsub_positive(&cfs_b->runtime, runtime);
4712 }
4713
4714 /*
4715 * While we are ensured activity in the period following an
4716 * unthrottle, this also covers the case in which the new bandwidth is
4717 * insufficient to cover the existing bandwidth deficit. (Forcing the
4718 * timer to remain active while there are any throttled entities.)
4719 */
4720 cfs_b->idle = 0;
4721
4722 return 0;
4723
4724 out_deactivate:
4725 return 1;
4726 }
4727
4728 /* a cfs_rq won't donate quota below this amount */
4729 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4730 /* minimum remaining period time to redistribute slack quota */
4731 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4732 /* how long we wait to gather additional slack before distributing */
4733 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4734
4735 /*
4736 * Are we near the end of the current quota period?
4737 *
4738 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4739 * hrtimer base being cleared by hrtimer_start. In the case of
4740 * migrate_hrtimers, base is never cleared, so we are fine.
4741 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)4742 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4743 {
4744 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4745 u64 remaining;
4746
4747 /* if the call-back is running a quota refresh is already occurring */
4748 if (hrtimer_callback_running(refresh_timer))
4749 return 1;
4750
4751 /* is a quota refresh about to occur? */
4752 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4753 if (remaining < min_expire)
4754 return 1;
4755
4756 return 0;
4757 }
4758
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)4759 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4760 {
4761 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4762
4763 /* if there's a quota refresh soon don't bother with slack */
4764 if (runtime_refresh_within(cfs_b, min_left))
4765 return;
4766
4767 /* don't push forwards an existing deferred unthrottle */
4768 if (cfs_b->slack_started)
4769 return;
4770 cfs_b->slack_started = true;
4771
4772 hrtimer_start(&cfs_b->slack_timer,
4773 ns_to_ktime(cfs_bandwidth_slack_period),
4774 HRTIMER_MODE_REL);
4775 }
4776
4777 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)4778 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4779 {
4780 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4781 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4782
4783 if (slack_runtime <= 0)
4784 return;
4785
4786 raw_spin_lock(&cfs_b->lock);
4787 if (cfs_b->quota != RUNTIME_INF) {
4788 cfs_b->runtime += slack_runtime;
4789
4790 /* we are under rq->lock, defer unthrottling using a timer */
4791 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4792 !list_empty(&cfs_b->throttled_cfs_rq))
4793 start_cfs_slack_bandwidth(cfs_b);
4794 }
4795 raw_spin_unlock(&cfs_b->lock);
4796
4797 /* even if it's not valid for return we don't want to try again */
4798 cfs_rq->runtime_remaining -= slack_runtime;
4799 }
4800
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)4801 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4802 {
4803 if (!cfs_bandwidth_used())
4804 return;
4805
4806 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4807 return;
4808
4809 __return_cfs_rq_runtime(cfs_rq);
4810 }
4811
4812 /*
4813 * This is done with a timer (instead of inline with bandwidth return) since
4814 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4815 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)4816 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4817 {
4818 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4819 unsigned long flags;
4820
4821 /* confirm we're still not at a refresh boundary */
4822 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4823 cfs_b->slack_started = false;
4824 if (cfs_b->distribute_running) {
4825 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4826 return;
4827 }
4828
4829 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4830 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4831 return;
4832 }
4833
4834 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4835 runtime = cfs_b->runtime;
4836
4837 if (runtime)
4838 cfs_b->distribute_running = 1;
4839
4840 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4841
4842 if (!runtime)
4843 return;
4844
4845 runtime = distribute_cfs_runtime(cfs_b, runtime);
4846
4847 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4848 lsub_positive(&cfs_b->runtime, runtime);
4849 cfs_b->distribute_running = 0;
4850 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4851 }
4852
4853 /*
4854 * When a group wakes up we want to make sure that its quota is not already
4855 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4856 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4857 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)4858 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4859 {
4860 if (!cfs_bandwidth_used())
4861 return;
4862
4863 /* an active group must be handled by the update_curr()->put() path */
4864 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4865 return;
4866
4867 /* ensure the group is not already throttled */
4868 if (cfs_rq_throttled(cfs_rq))
4869 return;
4870
4871 /* update runtime allocation */
4872 account_cfs_rq_runtime(cfs_rq, 0);
4873 if (cfs_rq->runtime_remaining <= 0)
4874 throttle_cfs_rq(cfs_rq);
4875 }
4876
sync_throttle(struct task_group * tg,int cpu)4877 static void sync_throttle(struct task_group *tg, int cpu)
4878 {
4879 struct cfs_rq *pcfs_rq, *cfs_rq;
4880
4881 if (!cfs_bandwidth_used())
4882 return;
4883
4884 if (!tg->parent)
4885 return;
4886
4887 cfs_rq = tg->cfs_rq[cpu];
4888 pcfs_rq = tg->parent->cfs_rq[cpu];
4889
4890 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4891 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4892 }
4893
4894 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)4895 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4896 {
4897 if (!cfs_bandwidth_used())
4898 return false;
4899
4900 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4901 return false;
4902
4903 /*
4904 * it's possible for a throttled entity to be forced into a running
4905 * state (e.g. set_curr_task), in this case we're finished.
4906 */
4907 if (cfs_rq_throttled(cfs_rq))
4908 return true;
4909
4910 throttle_cfs_rq(cfs_rq);
4911 return true;
4912 }
4913
sched_cfs_slack_timer(struct hrtimer * timer)4914 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4915 {
4916 struct cfs_bandwidth *cfs_b =
4917 container_of(timer, struct cfs_bandwidth, slack_timer);
4918
4919 do_sched_cfs_slack_timer(cfs_b);
4920
4921 return HRTIMER_NORESTART;
4922 }
4923
4924 extern const u64 max_cfs_quota_period;
4925
sched_cfs_period_timer(struct hrtimer * timer)4926 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4927 {
4928 struct cfs_bandwidth *cfs_b =
4929 container_of(timer, struct cfs_bandwidth, period_timer);
4930 unsigned long flags;
4931 int overrun;
4932 int idle = 0;
4933 int count = 0;
4934
4935 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4936 for (;;) {
4937 overrun = hrtimer_forward_now(timer, cfs_b->period);
4938 if (!overrun)
4939 break;
4940
4941 if (++count > 3) {
4942 u64 new, old = ktime_to_ns(cfs_b->period);
4943
4944 /*
4945 * Grow period by a factor of 2 to avoid losing precision.
4946 * Precision loss in the quota/period ratio can cause __cfs_schedulable
4947 * to fail.
4948 */
4949 new = old * 2;
4950 if (new < max_cfs_quota_period) {
4951 cfs_b->period = ns_to_ktime(new);
4952 cfs_b->quota *= 2;
4953
4954 pr_warn_ratelimited(
4955 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4956 smp_processor_id(),
4957 div_u64(new, NSEC_PER_USEC),
4958 div_u64(cfs_b->quota, NSEC_PER_USEC));
4959 } else {
4960 pr_warn_ratelimited(
4961 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4962 smp_processor_id(),
4963 div_u64(old, NSEC_PER_USEC),
4964 div_u64(cfs_b->quota, NSEC_PER_USEC));
4965 }
4966
4967 /* reset count so we don't come right back in here */
4968 count = 0;
4969 }
4970
4971 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
4972 }
4973 if (idle)
4974 cfs_b->period_active = 0;
4975 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4976
4977 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4978 }
4979
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)4980 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4981 {
4982 raw_spin_lock_init(&cfs_b->lock);
4983 cfs_b->runtime = 0;
4984 cfs_b->quota = RUNTIME_INF;
4985 cfs_b->period = ns_to_ktime(default_cfs_period());
4986
4987 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4988 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4989 cfs_b->period_timer.function = sched_cfs_period_timer;
4990 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4991 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4992 cfs_b->distribute_running = 0;
4993 cfs_b->slack_started = false;
4994 }
4995
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)4996 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4997 {
4998 cfs_rq->runtime_enabled = 0;
4999 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5000 }
5001
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5002 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5003 {
5004 lockdep_assert_held(&cfs_b->lock);
5005
5006 if (cfs_b->period_active)
5007 return;
5008
5009 cfs_b->period_active = 1;
5010 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5011 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5012 }
5013
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5014 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5015 {
5016 /* init_cfs_bandwidth() was not called */
5017 if (!cfs_b->throttled_cfs_rq.next)
5018 return;
5019
5020 hrtimer_cancel(&cfs_b->period_timer);
5021 hrtimer_cancel(&cfs_b->slack_timer);
5022 }
5023
5024 /*
5025 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5026 *
5027 * The race is harmless, since modifying bandwidth settings of unhooked group
5028 * bits doesn't do much.
5029 */
5030
5031 /* cpu online calback */
update_runtime_enabled(struct rq * rq)5032 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5033 {
5034 struct task_group *tg;
5035
5036 lockdep_assert_held(&rq->lock);
5037
5038 rcu_read_lock();
5039 list_for_each_entry_rcu(tg, &task_groups, list) {
5040 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5041 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5042
5043 raw_spin_lock(&cfs_b->lock);
5044 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5045 raw_spin_unlock(&cfs_b->lock);
5046 }
5047 rcu_read_unlock();
5048 }
5049
5050 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)5051 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5052 {
5053 struct task_group *tg;
5054
5055 lockdep_assert_held(&rq->lock);
5056
5057 rcu_read_lock();
5058 list_for_each_entry_rcu(tg, &task_groups, list) {
5059 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5060
5061 if (!cfs_rq->runtime_enabled)
5062 continue;
5063
5064 /*
5065 * clock_task is not advancing so we just need to make sure
5066 * there's some valid quota amount
5067 */
5068 cfs_rq->runtime_remaining = 1;
5069 /*
5070 * Offline rq is schedulable till CPU is completely disabled
5071 * in take_cpu_down(), so we prevent new cfs throttling here.
5072 */
5073 cfs_rq->runtime_enabled = 0;
5074
5075 if (cfs_rq_throttled(cfs_rq))
5076 unthrottle_cfs_rq(cfs_rq);
5077 }
5078 rcu_read_unlock();
5079 }
5080
5081 #else /* CONFIG_CFS_BANDWIDTH */
5082
cfs_bandwidth_used(void)5083 static inline bool cfs_bandwidth_used(void)
5084 {
5085 return false;
5086 }
5087
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5088 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5089 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)5090 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)5091 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5092 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5093
cfs_rq_throttled(struct cfs_rq * cfs_rq)5094 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5095 {
5096 return 0;
5097 }
5098
throttled_hierarchy(struct cfs_rq * cfs_rq)5099 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5100 {
5101 return 0;
5102 }
5103
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5104 static inline int throttled_lb_pair(struct task_group *tg,
5105 int src_cpu, int dest_cpu)
5106 {
5107 return 0;
5108 }
5109
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5110 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5111
5112 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5113 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5114 #endif
5115
tg_cfs_bandwidth(struct task_group * tg)5116 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5117 {
5118 return NULL;
5119 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5120 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)5121 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)5122 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5123
5124 #endif /* CONFIG_CFS_BANDWIDTH */
5125
5126 /**************************************************
5127 * CFS operations on tasks:
5128 */
5129
5130 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)5131 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5132 {
5133 struct sched_entity *se = &p->se;
5134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5135
5136 SCHED_WARN_ON(task_rq(p) != rq);
5137
5138 if (rq->cfs.h_nr_running > 1) {
5139 u64 slice = sched_slice(cfs_rq, se);
5140 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5141 s64 delta = slice - ran;
5142
5143 if (delta < 0) {
5144 if (rq->curr == p)
5145 resched_curr(rq);
5146 return;
5147 }
5148 hrtick_start(rq, delta);
5149 }
5150 }
5151
5152 /*
5153 * called from enqueue/dequeue and updates the hrtick when the
5154 * current task is from our class and nr_running is low enough
5155 * to matter.
5156 */
hrtick_update(struct rq * rq)5157 static void hrtick_update(struct rq *rq)
5158 {
5159 struct task_struct *curr = rq->curr;
5160
5161 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5162 return;
5163
5164 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5165 hrtick_start_fair(rq, curr);
5166 }
5167 #else /* !CONFIG_SCHED_HRTICK */
5168 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)5169 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5170 {
5171 }
5172
hrtick_update(struct rq * rq)5173 static inline void hrtick_update(struct rq *rq)
5174 {
5175 }
5176 #endif
5177
5178 #ifdef CONFIG_SMP
5179 static inline unsigned long cpu_util(int cpu);
5180
cpu_overutilized(int cpu)5181 static inline bool cpu_overutilized(int cpu)
5182 {
5183 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5184 }
5185
update_overutilized_status(struct rq * rq)5186 static inline void update_overutilized_status(struct rq *rq)
5187 {
5188 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5189 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5190 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5191 }
5192 }
5193 #else
update_overutilized_status(struct rq * rq)5194 static inline void update_overutilized_status(struct rq *rq) { }
5195 #endif
5196
5197 /*
5198 * The enqueue_task method is called before nr_running is
5199 * increased. Here we update the fair scheduling stats and
5200 * then put the task into the rbtree:
5201 */
5202 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)5203 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5204 {
5205 struct cfs_rq *cfs_rq;
5206 struct sched_entity *se = &p->se;
5207 int idle_h_nr_running = task_has_idle_policy(p);
5208
5209 /*
5210 * The code below (indirectly) updates schedutil which looks at
5211 * the cfs_rq utilization to select a frequency.
5212 * Let's add the task's estimated utilization to the cfs_rq's
5213 * estimated utilization, before we update schedutil.
5214 */
5215 util_est_enqueue(&rq->cfs, p);
5216
5217 /*
5218 * If in_iowait is set, the code below may not trigger any cpufreq
5219 * utilization updates, so do it here explicitly with the IOWAIT flag
5220 * passed.
5221 */
5222 if (p->in_iowait)
5223 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5224
5225 for_each_sched_entity(se) {
5226 if (se->on_rq)
5227 break;
5228 cfs_rq = cfs_rq_of(se);
5229 enqueue_entity(cfs_rq, se, flags);
5230
5231 /*
5232 * end evaluation on encountering a throttled cfs_rq
5233 *
5234 * note: in the case of encountering a throttled cfs_rq we will
5235 * post the final h_nr_running increment below.
5236 */
5237 if (cfs_rq_throttled(cfs_rq))
5238 break;
5239 cfs_rq->h_nr_running++;
5240 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5241
5242 flags = ENQUEUE_WAKEUP;
5243 }
5244
5245 for_each_sched_entity(se) {
5246 cfs_rq = cfs_rq_of(se);
5247 cfs_rq->h_nr_running++;
5248 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5249
5250 if (cfs_rq_throttled(cfs_rq))
5251 break;
5252
5253 update_load_avg(cfs_rq, se, UPDATE_TG);
5254 update_cfs_group(se);
5255 }
5256
5257 if (!se) {
5258 add_nr_running(rq, 1);
5259 /*
5260 * Since new tasks are assigned an initial util_avg equal to
5261 * half of the spare capacity of their CPU, tiny tasks have the
5262 * ability to cross the overutilized threshold, which will
5263 * result in the load balancer ruining all the task placement
5264 * done by EAS. As a way to mitigate that effect, do not account
5265 * for the first enqueue operation of new tasks during the
5266 * overutilized flag detection.
5267 *
5268 * A better way of solving this problem would be to wait for
5269 * the PELT signals of tasks to converge before taking them
5270 * into account, but that is not straightforward to implement,
5271 * and the following generally works well enough in practice.
5272 */
5273 if (flags & ENQUEUE_WAKEUP)
5274 update_overutilized_status(rq);
5275
5276 }
5277
5278 if (cfs_bandwidth_used()) {
5279 /*
5280 * When bandwidth control is enabled; the cfs_rq_throttled()
5281 * breaks in the above iteration can result in incomplete
5282 * leaf list maintenance, resulting in triggering the assertion
5283 * below.
5284 */
5285 for_each_sched_entity(se) {
5286 cfs_rq = cfs_rq_of(se);
5287
5288 if (list_add_leaf_cfs_rq(cfs_rq))
5289 break;
5290 }
5291 }
5292
5293 assert_list_leaf_cfs_rq(rq);
5294
5295 hrtick_update(rq);
5296 }
5297
5298 static void set_next_buddy(struct sched_entity *se);
5299
5300 /*
5301 * The dequeue_task method is called before nr_running is
5302 * decreased. We remove the task from the rbtree and
5303 * update the fair scheduling stats:
5304 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)5305 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5306 {
5307 struct cfs_rq *cfs_rq;
5308 struct sched_entity *se = &p->se;
5309 int task_sleep = flags & DEQUEUE_SLEEP;
5310 int idle_h_nr_running = task_has_idle_policy(p);
5311
5312 for_each_sched_entity(se) {
5313 cfs_rq = cfs_rq_of(se);
5314 dequeue_entity(cfs_rq, se, flags);
5315
5316 /*
5317 * end evaluation on encountering a throttled cfs_rq
5318 *
5319 * note: in the case of encountering a throttled cfs_rq we will
5320 * post the final h_nr_running decrement below.
5321 */
5322 if (cfs_rq_throttled(cfs_rq))
5323 break;
5324 cfs_rq->h_nr_running--;
5325 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5326
5327 /* Don't dequeue parent if it has other entities besides us */
5328 if (cfs_rq->load.weight) {
5329 /* Avoid re-evaluating load for this entity: */
5330 se = parent_entity(se);
5331 /*
5332 * Bias pick_next to pick a task from this cfs_rq, as
5333 * p is sleeping when it is within its sched_slice.
5334 */
5335 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5336 set_next_buddy(se);
5337 break;
5338 }
5339 flags |= DEQUEUE_SLEEP;
5340 }
5341
5342 for_each_sched_entity(se) {
5343 cfs_rq = cfs_rq_of(se);
5344 cfs_rq->h_nr_running--;
5345 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5346
5347 if (cfs_rq_throttled(cfs_rq))
5348 break;
5349
5350 update_load_avg(cfs_rq, se, UPDATE_TG);
5351 update_cfs_group(se);
5352 }
5353
5354 if (!se)
5355 sub_nr_running(rq, 1);
5356
5357 util_est_dequeue(&rq->cfs, p, task_sleep);
5358 hrtick_update(rq);
5359 }
5360
5361 #ifdef CONFIG_SMP
5362
5363 /* Working cpumask for: load_balance, load_balance_newidle. */
5364 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5365 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5366
5367 #ifdef CONFIG_NO_HZ_COMMON
5368
5369 static struct {
5370 cpumask_var_t idle_cpus_mask;
5371 atomic_t nr_cpus;
5372 int has_blocked; /* Idle CPUS has blocked load */
5373 unsigned long next_balance; /* in jiffy units */
5374 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5375 } nohz ____cacheline_aligned;
5376
5377 #endif /* CONFIG_NO_HZ_COMMON */
5378
5379 /* CPU only has SCHED_IDLE tasks enqueued */
sched_idle_cpu(int cpu)5380 static int sched_idle_cpu(int cpu)
5381 {
5382 struct rq *rq = cpu_rq(cpu);
5383
5384 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5385 rq->nr_running);
5386 }
5387
cpu_runnable_load(struct rq * rq)5388 static unsigned long cpu_runnable_load(struct rq *rq)
5389 {
5390 return cfs_rq_runnable_load_avg(&rq->cfs);
5391 }
5392
capacity_of(int cpu)5393 static unsigned long capacity_of(int cpu)
5394 {
5395 return cpu_rq(cpu)->cpu_capacity;
5396 }
5397
cpu_avg_load_per_task(int cpu)5398 static unsigned long cpu_avg_load_per_task(int cpu)
5399 {
5400 struct rq *rq = cpu_rq(cpu);
5401 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5402 unsigned long load_avg = cpu_runnable_load(rq);
5403
5404 if (nr_running)
5405 return load_avg / nr_running;
5406
5407 return 0;
5408 }
5409
record_wakee(struct task_struct * p)5410 static void record_wakee(struct task_struct *p)
5411 {
5412 /*
5413 * Only decay a single time; tasks that have less then 1 wakeup per
5414 * jiffy will not have built up many flips.
5415 */
5416 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5417 current->wakee_flips >>= 1;
5418 current->wakee_flip_decay_ts = jiffies;
5419 }
5420
5421 if (current->last_wakee != p) {
5422 current->last_wakee = p;
5423 current->wakee_flips++;
5424 }
5425 }
5426
5427 /*
5428 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5429 *
5430 * A waker of many should wake a different task than the one last awakened
5431 * at a frequency roughly N times higher than one of its wakees.
5432 *
5433 * In order to determine whether we should let the load spread vs consolidating
5434 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5435 * partner, and a factor of lls_size higher frequency in the other.
5436 *
5437 * With both conditions met, we can be relatively sure that the relationship is
5438 * non-monogamous, with partner count exceeding socket size.
5439 *
5440 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5441 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5442 * socket size.
5443 */
wake_wide(struct task_struct * p)5444 static int wake_wide(struct task_struct *p)
5445 {
5446 unsigned int master = current->wakee_flips;
5447 unsigned int slave = p->wakee_flips;
5448 int factor = this_cpu_read(sd_llc_size);
5449
5450 if (master < slave)
5451 swap(master, slave);
5452 if (slave < factor || master < slave * factor)
5453 return 0;
5454 return 1;
5455 }
5456
5457 /*
5458 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5459 * soonest. For the purpose of speed we only consider the waking and previous
5460 * CPU.
5461 *
5462 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5463 * cache-affine and is (or will be) idle.
5464 *
5465 * wake_affine_weight() - considers the weight to reflect the average
5466 * scheduling latency of the CPUs. This seems to work
5467 * for the overloaded case.
5468 */
5469 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)5470 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5471 {
5472 /*
5473 * If this_cpu is idle, it implies the wakeup is from interrupt
5474 * context. Only allow the move if cache is shared. Otherwise an
5475 * interrupt intensive workload could force all tasks onto one
5476 * node depending on the IO topology or IRQ affinity settings.
5477 *
5478 * If the prev_cpu is idle and cache affine then avoid a migration.
5479 * There is no guarantee that the cache hot data from an interrupt
5480 * is more important than cache hot data on the prev_cpu and from
5481 * a cpufreq perspective, it's better to have higher utilisation
5482 * on one CPU.
5483 */
5484 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5485 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5486
5487 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5488 return this_cpu;
5489
5490 return nr_cpumask_bits;
5491 }
5492
5493 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)5494 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5495 int this_cpu, int prev_cpu, int sync)
5496 {
5497 s64 this_eff_load, prev_eff_load;
5498 unsigned long task_load;
5499
5500 this_eff_load = cpu_runnable_load(cpu_rq(this_cpu));
5501
5502 if (sync) {
5503 unsigned long current_load = task_h_load(current);
5504
5505 if (current_load > this_eff_load)
5506 return this_cpu;
5507
5508 this_eff_load -= current_load;
5509 }
5510
5511 task_load = task_h_load(p);
5512
5513 this_eff_load += task_load;
5514 if (sched_feat(WA_BIAS))
5515 this_eff_load *= 100;
5516 this_eff_load *= capacity_of(prev_cpu);
5517
5518 prev_eff_load = cpu_runnable_load(cpu_rq(prev_cpu));
5519 prev_eff_load -= task_load;
5520 if (sched_feat(WA_BIAS))
5521 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5522 prev_eff_load *= capacity_of(this_cpu);
5523
5524 /*
5525 * If sync, adjust the weight of prev_eff_load such that if
5526 * prev_eff == this_eff that select_idle_sibling() will consider
5527 * stacking the wakee on top of the waker if no other CPU is
5528 * idle.
5529 */
5530 if (sync)
5531 prev_eff_load += 1;
5532
5533 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5534 }
5535
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)5536 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5537 int this_cpu, int prev_cpu, int sync)
5538 {
5539 int target = nr_cpumask_bits;
5540
5541 if (sched_feat(WA_IDLE))
5542 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5543
5544 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5545 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5546
5547 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5548 if (target == nr_cpumask_bits)
5549 return prev_cpu;
5550
5551 schedstat_inc(sd->ttwu_move_affine);
5552 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5553 return target;
5554 }
5555
5556 static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5557
capacity_spare_without(int cpu,struct task_struct * p)5558 static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5559 {
5560 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5561 }
5562
5563 /*
5564 * find_idlest_group finds and returns the least busy CPU group within the
5565 * domain.
5566 *
5567 * Assumes p is allowed on at least one CPU in sd.
5568 */
5569 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu,int sd_flag)5570 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5571 int this_cpu, int sd_flag)
5572 {
5573 struct sched_group *idlest = NULL, *group = sd->groups;
5574 struct sched_group *most_spare_sg = NULL;
5575 unsigned long min_runnable_load = ULONG_MAX;
5576 unsigned long this_runnable_load = ULONG_MAX;
5577 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5578 unsigned long most_spare = 0, this_spare = 0;
5579 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5580 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5581 (sd->imbalance_pct-100) / 100;
5582
5583 do {
5584 unsigned long load, avg_load, runnable_load;
5585 unsigned long spare_cap, max_spare_cap;
5586 int local_group;
5587 int i;
5588
5589 /* Skip over this group if it has no CPUs allowed */
5590 if (!cpumask_intersects(sched_group_span(group),
5591 p->cpus_ptr))
5592 continue;
5593
5594 local_group = cpumask_test_cpu(this_cpu,
5595 sched_group_span(group));
5596
5597 /*
5598 * Tally up the load of all CPUs in the group and find
5599 * the group containing the CPU with most spare capacity.
5600 */
5601 avg_load = 0;
5602 runnable_load = 0;
5603 max_spare_cap = 0;
5604
5605 for_each_cpu(i, sched_group_span(group)) {
5606 load = cpu_runnable_load(cpu_rq(i));
5607 runnable_load += load;
5608
5609 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5610
5611 spare_cap = capacity_spare_without(i, p);
5612
5613 if (spare_cap > max_spare_cap)
5614 max_spare_cap = spare_cap;
5615 }
5616
5617 /* Adjust by relative CPU capacity of the group */
5618 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5619 group->sgc->capacity;
5620 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5621 group->sgc->capacity;
5622
5623 if (local_group) {
5624 this_runnable_load = runnable_load;
5625 this_avg_load = avg_load;
5626 this_spare = max_spare_cap;
5627 } else {
5628 if (min_runnable_load > (runnable_load + imbalance)) {
5629 /*
5630 * The runnable load is significantly smaller
5631 * so we can pick this new CPU:
5632 */
5633 min_runnable_load = runnable_load;
5634 min_avg_load = avg_load;
5635 idlest = group;
5636 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5637 (100*min_avg_load > imbalance_scale*avg_load)) {
5638 /*
5639 * The runnable loads are close so take the
5640 * blocked load into account through avg_load:
5641 */
5642 min_avg_load = avg_load;
5643 idlest = group;
5644 }
5645
5646 if (most_spare < max_spare_cap) {
5647 most_spare = max_spare_cap;
5648 most_spare_sg = group;
5649 }
5650 }
5651 } while (group = group->next, group != sd->groups);
5652
5653 /*
5654 * The cross-over point between using spare capacity or least load
5655 * is too conservative for high utilization tasks on partially
5656 * utilized systems if we require spare_capacity > task_util(p),
5657 * so we allow for some task stuffing by using
5658 * spare_capacity > task_util(p)/2.
5659 *
5660 * Spare capacity can't be used for fork because the utilization has
5661 * not been set yet, we must first select a rq to compute the initial
5662 * utilization.
5663 */
5664 if (sd_flag & SD_BALANCE_FORK)
5665 goto skip_spare;
5666
5667 if (this_spare > task_util(p) / 2 &&
5668 imbalance_scale*this_spare > 100*most_spare)
5669 return NULL;
5670
5671 if (most_spare > task_util(p) / 2)
5672 return most_spare_sg;
5673
5674 skip_spare:
5675 if (!idlest)
5676 return NULL;
5677
5678 /*
5679 * When comparing groups across NUMA domains, it's possible for the
5680 * local domain to be very lightly loaded relative to the remote
5681 * domains but "imbalance" skews the comparison making remote CPUs
5682 * look much more favourable. When considering cross-domain, add
5683 * imbalance to the runnable load on the remote node and consider
5684 * staying local.
5685 */
5686 if ((sd->flags & SD_NUMA) &&
5687 min_runnable_load + imbalance >= this_runnable_load)
5688 return NULL;
5689
5690 if (min_runnable_load > (this_runnable_load + imbalance))
5691 return NULL;
5692
5693 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5694 (100*this_avg_load < imbalance_scale*min_avg_load))
5695 return NULL;
5696
5697 return idlest;
5698 }
5699
5700 /*
5701 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5702 */
5703 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)5704 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5705 {
5706 unsigned long load, min_load = ULONG_MAX;
5707 unsigned int min_exit_latency = UINT_MAX;
5708 u64 latest_idle_timestamp = 0;
5709 int least_loaded_cpu = this_cpu;
5710 int shallowest_idle_cpu = -1, si_cpu = -1;
5711 int i;
5712
5713 /* Check if we have any choice: */
5714 if (group->group_weight == 1)
5715 return cpumask_first(sched_group_span(group));
5716
5717 /* Traverse only the allowed CPUs */
5718 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5719 if (available_idle_cpu(i)) {
5720 struct rq *rq = cpu_rq(i);
5721 struct cpuidle_state *idle = idle_get_state(rq);
5722 if (idle && idle->exit_latency < min_exit_latency) {
5723 /*
5724 * We give priority to a CPU whose idle state
5725 * has the smallest exit latency irrespective
5726 * of any idle timestamp.
5727 */
5728 min_exit_latency = idle->exit_latency;
5729 latest_idle_timestamp = rq->idle_stamp;
5730 shallowest_idle_cpu = i;
5731 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5732 rq->idle_stamp > latest_idle_timestamp) {
5733 /*
5734 * If equal or no active idle state, then
5735 * the most recently idled CPU might have
5736 * a warmer cache.
5737 */
5738 latest_idle_timestamp = rq->idle_stamp;
5739 shallowest_idle_cpu = i;
5740 }
5741 } else if (shallowest_idle_cpu == -1 && si_cpu == -1) {
5742 if (sched_idle_cpu(i)) {
5743 si_cpu = i;
5744 continue;
5745 }
5746
5747 load = cpu_runnable_load(cpu_rq(i));
5748 if (load < min_load) {
5749 min_load = load;
5750 least_loaded_cpu = i;
5751 }
5752 }
5753 }
5754
5755 if (shallowest_idle_cpu != -1)
5756 return shallowest_idle_cpu;
5757 if (si_cpu != -1)
5758 return si_cpu;
5759 return least_loaded_cpu;
5760 }
5761
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)5762 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5763 int cpu, int prev_cpu, int sd_flag)
5764 {
5765 int new_cpu = cpu;
5766
5767 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5768 return prev_cpu;
5769
5770 /*
5771 * We need task's util for capacity_spare_without, sync it up to
5772 * prev_cpu's last_update_time.
5773 */
5774 if (!(sd_flag & SD_BALANCE_FORK))
5775 sync_entity_load_avg(&p->se);
5776
5777 while (sd) {
5778 struct sched_group *group;
5779 struct sched_domain *tmp;
5780 int weight;
5781
5782 if (!(sd->flags & sd_flag)) {
5783 sd = sd->child;
5784 continue;
5785 }
5786
5787 group = find_idlest_group(sd, p, cpu, sd_flag);
5788 if (!group) {
5789 sd = sd->child;
5790 continue;
5791 }
5792
5793 new_cpu = find_idlest_group_cpu(group, p, cpu);
5794 if (new_cpu == cpu) {
5795 /* Now try balancing at a lower domain level of 'cpu': */
5796 sd = sd->child;
5797 continue;
5798 }
5799
5800 /* Now try balancing at a lower domain level of 'new_cpu': */
5801 cpu = new_cpu;
5802 weight = sd->span_weight;
5803 sd = NULL;
5804 for_each_domain(cpu, tmp) {
5805 if (weight <= tmp->span_weight)
5806 break;
5807 if (tmp->flags & sd_flag)
5808 sd = tmp;
5809 }
5810 }
5811
5812 return new_cpu;
5813 }
5814
5815 #ifdef CONFIG_SCHED_SMT
5816 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5817 EXPORT_SYMBOL_GPL(sched_smt_present);
5818
set_idle_cores(int cpu,int val)5819 static inline void set_idle_cores(int cpu, int val)
5820 {
5821 struct sched_domain_shared *sds;
5822
5823 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5824 if (sds)
5825 WRITE_ONCE(sds->has_idle_cores, val);
5826 }
5827
test_idle_cores(int cpu,bool def)5828 static inline bool test_idle_cores(int cpu, bool def)
5829 {
5830 struct sched_domain_shared *sds;
5831
5832 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5833 if (sds)
5834 return READ_ONCE(sds->has_idle_cores);
5835
5836 return def;
5837 }
5838
5839 /*
5840 * Scans the local SMT mask to see if the entire core is idle, and records this
5841 * information in sd_llc_shared->has_idle_cores.
5842 *
5843 * Since SMT siblings share all cache levels, inspecting this limited remote
5844 * state should be fairly cheap.
5845 */
__update_idle_core(struct rq * rq)5846 void __update_idle_core(struct rq *rq)
5847 {
5848 int core = cpu_of(rq);
5849 int cpu;
5850
5851 rcu_read_lock();
5852 if (test_idle_cores(core, true))
5853 goto unlock;
5854
5855 for_each_cpu(cpu, cpu_smt_mask(core)) {
5856 if (cpu == core)
5857 continue;
5858
5859 if (!available_idle_cpu(cpu))
5860 goto unlock;
5861 }
5862
5863 set_idle_cores(core, 1);
5864 unlock:
5865 rcu_read_unlock();
5866 }
5867
5868 /*
5869 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5870 * there are no idle cores left in the system; tracked through
5871 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5872 */
select_idle_core(struct task_struct * p,struct sched_domain * sd,int target)5873 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5874 {
5875 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5876 int core, cpu;
5877
5878 if (!static_branch_likely(&sched_smt_present))
5879 return -1;
5880
5881 if (!test_idle_cores(target, false))
5882 return -1;
5883
5884 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
5885
5886 for_each_cpu_wrap(core, cpus, target) {
5887 bool idle = true;
5888
5889 for_each_cpu(cpu, cpu_smt_mask(core)) {
5890 __cpumask_clear_cpu(cpu, cpus);
5891 if (!available_idle_cpu(cpu))
5892 idle = false;
5893 }
5894
5895 if (idle)
5896 return core;
5897 }
5898
5899 /*
5900 * Failed to find an idle core; stop looking for one.
5901 */
5902 set_idle_cores(target, 0);
5903
5904 return -1;
5905 }
5906
5907 /*
5908 * Scan the local SMT mask for idle CPUs.
5909 */
select_idle_smt(struct task_struct * p,int target)5910 static int select_idle_smt(struct task_struct *p, int target)
5911 {
5912 int cpu, si_cpu = -1;
5913
5914 if (!static_branch_likely(&sched_smt_present))
5915 return -1;
5916
5917 for_each_cpu(cpu, cpu_smt_mask(target)) {
5918 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
5919 continue;
5920 if (available_idle_cpu(cpu))
5921 return cpu;
5922 if (si_cpu == -1 && sched_idle_cpu(cpu))
5923 si_cpu = cpu;
5924 }
5925
5926 return si_cpu;
5927 }
5928
5929 #else /* CONFIG_SCHED_SMT */
5930
select_idle_core(struct task_struct * p,struct sched_domain * sd,int target)5931 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5932 {
5933 return -1;
5934 }
5935
select_idle_smt(struct task_struct * p,int target)5936 static inline int select_idle_smt(struct task_struct *p, int target)
5937 {
5938 return -1;
5939 }
5940
5941 #endif /* CONFIG_SCHED_SMT */
5942
5943 /*
5944 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5945 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5946 * average idle time for this rq (as found in rq->avg_idle).
5947 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,int target)5948 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5949 {
5950 struct sched_domain *this_sd;
5951 u64 avg_cost, avg_idle;
5952 u64 time, cost;
5953 s64 delta;
5954 int this = smp_processor_id();
5955 int cpu, nr = INT_MAX, si_cpu = -1;
5956
5957 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5958 if (!this_sd)
5959 return -1;
5960
5961 /*
5962 * Due to large variance we need a large fuzz factor; hackbench in
5963 * particularly is sensitive here.
5964 */
5965 avg_idle = this_rq()->avg_idle / 512;
5966 avg_cost = this_sd->avg_scan_cost + 1;
5967
5968 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5969 return -1;
5970
5971 if (sched_feat(SIS_PROP)) {
5972 u64 span_avg = sd->span_weight * avg_idle;
5973 if (span_avg > 4*avg_cost)
5974 nr = div_u64(span_avg, avg_cost);
5975 else
5976 nr = 4;
5977 }
5978
5979 time = cpu_clock(this);
5980
5981 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
5982 if (!--nr)
5983 return si_cpu;
5984 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
5985 continue;
5986 if (available_idle_cpu(cpu))
5987 break;
5988 if (si_cpu == -1 && sched_idle_cpu(cpu))
5989 si_cpu = cpu;
5990 }
5991
5992 time = cpu_clock(this) - time;
5993 cost = this_sd->avg_scan_cost;
5994 delta = (s64)(time - cost) / 8;
5995 this_sd->avg_scan_cost += delta;
5996
5997 return cpu;
5998 }
5999
6000 /*
6001 * Try and locate an idle core/thread in the LLC cache domain.
6002 */
select_idle_sibling(struct task_struct * p,int prev,int target)6003 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6004 {
6005 struct sched_domain *sd;
6006 int i, recent_used_cpu;
6007
6008 if (available_idle_cpu(target) || sched_idle_cpu(target))
6009 return target;
6010
6011 /*
6012 * If the previous CPU is cache affine and idle, don't be stupid:
6013 */
6014 if (prev != target && cpus_share_cache(prev, target) &&
6015 (available_idle_cpu(prev) || sched_idle_cpu(prev)))
6016 return prev;
6017
6018 /* Check a recently used CPU as a potential idle candidate: */
6019 recent_used_cpu = p->recent_used_cpu;
6020 if (recent_used_cpu != prev &&
6021 recent_used_cpu != target &&
6022 cpus_share_cache(recent_used_cpu, target) &&
6023 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6024 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
6025 /*
6026 * Replace recent_used_cpu with prev as it is a potential
6027 * candidate for the next wake:
6028 */
6029 p->recent_used_cpu = prev;
6030 return recent_used_cpu;
6031 }
6032
6033 sd = rcu_dereference(per_cpu(sd_llc, target));
6034 if (!sd)
6035 return target;
6036
6037 i = select_idle_core(p, sd, target);
6038 if ((unsigned)i < nr_cpumask_bits)
6039 return i;
6040
6041 i = select_idle_cpu(p, sd, target);
6042 if ((unsigned)i < nr_cpumask_bits)
6043 return i;
6044
6045 i = select_idle_smt(p, target);
6046 if ((unsigned)i < nr_cpumask_bits)
6047 return i;
6048
6049 return target;
6050 }
6051
6052 /**
6053 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6054 * @cpu: the CPU to get the utilization of
6055 *
6056 * The unit of the return value must be the one of capacity so we can compare
6057 * the utilization with the capacity of the CPU that is available for CFS task
6058 * (ie cpu_capacity).
6059 *
6060 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6061 * recent utilization of currently non-runnable tasks on a CPU. It represents
6062 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6063 * capacity_orig is the cpu_capacity available at the highest frequency
6064 * (arch_scale_freq_capacity()).
6065 * The utilization of a CPU converges towards a sum equal to or less than the
6066 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6067 * the running time on this CPU scaled by capacity_curr.
6068 *
6069 * The estimated utilization of a CPU is defined to be the maximum between its
6070 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6071 * currently RUNNABLE on that CPU.
6072 * This allows to properly represent the expected utilization of a CPU which
6073 * has just got a big task running since a long sleep period. At the same time
6074 * however it preserves the benefits of the "blocked utilization" in
6075 * describing the potential for other tasks waking up on the same CPU.
6076 *
6077 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6078 * higher than capacity_orig because of unfortunate rounding in
6079 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6080 * the average stabilizes with the new running time. We need to check that the
6081 * utilization stays within the range of [0..capacity_orig] and cap it if
6082 * necessary. Without utilization capping, a group could be seen as overloaded
6083 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6084 * available capacity. We allow utilization to overshoot capacity_curr (but not
6085 * capacity_orig) as it useful for predicting the capacity required after task
6086 * migrations (scheduler-driven DVFS).
6087 *
6088 * Return: the (estimated) utilization for the specified CPU
6089 */
cpu_util(int cpu)6090 static inline unsigned long cpu_util(int cpu)
6091 {
6092 struct cfs_rq *cfs_rq;
6093 unsigned int util;
6094
6095 cfs_rq = &cpu_rq(cpu)->cfs;
6096 util = READ_ONCE(cfs_rq->avg.util_avg);
6097
6098 if (sched_feat(UTIL_EST))
6099 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6100
6101 return min_t(unsigned long, util, capacity_orig_of(cpu));
6102 }
6103
6104 /*
6105 * cpu_util_without: compute cpu utilization without any contributions from *p
6106 * @cpu: the CPU which utilization is requested
6107 * @p: the task which utilization should be discounted
6108 *
6109 * The utilization of a CPU is defined by the utilization of tasks currently
6110 * enqueued on that CPU as well as tasks which are currently sleeping after an
6111 * execution on that CPU.
6112 *
6113 * This method returns the utilization of the specified CPU by discounting the
6114 * utilization of the specified task, whenever the task is currently
6115 * contributing to the CPU utilization.
6116 */
cpu_util_without(int cpu,struct task_struct * p)6117 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6118 {
6119 struct cfs_rq *cfs_rq;
6120 unsigned int util;
6121
6122 /* Task has no contribution or is new */
6123 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6124 return cpu_util(cpu);
6125
6126 cfs_rq = &cpu_rq(cpu)->cfs;
6127 util = READ_ONCE(cfs_rq->avg.util_avg);
6128
6129 /* Discount task's util from CPU's util */
6130 lsub_positive(&util, task_util(p));
6131
6132 /*
6133 * Covered cases:
6134 *
6135 * a) if *p is the only task sleeping on this CPU, then:
6136 * cpu_util (== task_util) > util_est (== 0)
6137 * and thus we return:
6138 * cpu_util_without = (cpu_util - task_util) = 0
6139 *
6140 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6141 * IDLE, then:
6142 * cpu_util >= task_util
6143 * cpu_util > util_est (== 0)
6144 * and thus we discount *p's blocked utilization to return:
6145 * cpu_util_without = (cpu_util - task_util) >= 0
6146 *
6147 * c) if other tasks are RUNNABLE on that CPU and
6148 * util_est > cpu_util
6149 * then we use util_est since it returns a more restrictive
6150 * estimation of the spare capacity on that CPU, by just
6151 * considering the expected utilization of tasks already
6152 * runnable on that CPU.
6153 *
6154 * Cases a) and b) are covered by the above code, while case c) is
6155 * covered by the following code when estimated utilization is
6156 * enabled.
6157 */
6158 if (sched_feat(UTIL_EST)) {
6159 unsigned int estimated =
6160 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6161
6162 /*
6163 * Despite the following checks we still have a small window
6164 * for a possible race, when an execl's select_task_rq_fair()
6165 * races with LB's detach_task():
6166 *
6167 * detach_task()
6168 * p->on_rq = TASK_ON_RQ_MIGRATING;
6169 * ---------------------------------- A
6170 * deactivate_task() \
6171 * dequeue_task() + RaceTime
6172 * util_est_dequeue() /
6173 * ---------------------------------- B
6174 *
6175 * The additional check on "current == p" it's required to
6176 * properly fix the execl regression and it helps in further
6177 * reducing the chances for the above race.
6178 */
6179 if (unlikely(task_on_rq_queued(p) || current == p))
6180 lsub_positive(&estimated, _task_util_est(p));
6181
6182 util = max(util, estimated);
6183 }
6184
6185 /*
6186 * Utilization (estimated) can exceed the CPU capacity, thus let's
6187 * clamp to the maximum CPU capacity to ensure consistency with
6188 * the cpu_util call.
6189 */
6190 return min_t(unsigned long, util, capacity_orig_of(cpu));
6191 }
6192
6193 /*
6194 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6195 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6196 *
6197 * In that case WAKE_AFFINE doesn't make sense and we'll let
6198 * BALANCE_WAKE sort things out.
6199 */
wake_cap(struct task_struct * p,int cpu,int prev_cpu)6200 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6201 {
6202 long min_cap, max_cap;
6203
6204 if (!static_branch_unlikely(&sched_asym_cpucapacity))
6205 return 0;
6206
6207 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6208 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity.val;
6209
6210 /* Minimum capacity is close to max, no need to abort wake_affine */
6211 if (max_cap - min_cap < max_cap >> 3)
6212 return 0;
6213
6214 /* Bring task utilization in sync with prev_cpu */
6215 sync_entity_load_avg(&p->se);
6216
6217 return !task_fits_capacity(p, min_cap);
6218 }
6219
6220 /*
6221 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6222 * to @dst_cpu.
6223 */
cpu_util_next(int cpu,struct task_struct * p,int dst_cpu)6224 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6225 {
6226 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6227 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6228
6229 /*
6230 * If @p migrates from @cpu to another, remove its contribution. Or,
6231 * if @p migrates from another CPU to @cpu, add its contribution. In
6232 * the other cases, @cpu is not impacted by the migration, so the
6233 * util_avg should already be correct.
6234 */
6235 if (task_cpu(p) == cpu && dst_cpu != cpu)
6236 sub_positive(&util, task_util(p));
6237 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6238 util += task_util(p);
6239
6240 if (sched_feat(UTIL_EST)) {
6241 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6242
6243 /*
6244 * During wake-up, the task isn't enqueued yet and doesn't
6245 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6246 * so just add it (if needed) to "simulate" what will be
6247 * cpu_util() after the task has been enqueued.
6248 */
6249 if (dst_cpu == cpu)
6250 util_est += _task_util_est(p);
6251
6252 util = max(util, util_est);
6253 }
6254
6255 return min(util, capacity_orig_of(cpu));
6256 }
6257
6258 /*
6259 * compute_energy(): Estimates the energy that @pd would consume if @p was
6260 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6261 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6262 * to compute what would be the energy if we decided to actually migrate that
6263 * task.
6264 */
6265 static long
compute_energy(struct task_struct * p,int dst_cpu,struct perf_domain * pd)6266 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6267 {
6268 struct cpumask *pd_mask = perf_domain_span(pd);
6269 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6270 unsigned long max_util = 0, sum_util = 0;
6271 int cpu;
6272
6273 /*
6274 * The capacity state of CPUs of the current rd can be driven by CPUs
6275 * of another rd if they belong to the same pd. So, account for the
6276 * utilization of these CPUs too by masking pd with cpu_online_mask
6277 * instead of the rd span.
6278 *
6279 * If an entire pd is outside of the current rd, it will not appear in
6280 * its pd list and will not be accounted by compute_energy().
6281 */
6282 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6283 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6284 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6285
6286 /*
6287 * Busy time computation: utilization clamping is not
6288 * required since the ratio (sum_util / cpu_capacity)
6289 * is already enough to scale the EM reported power
6290 * consumption at the (eventually clamped) cpu_capacity.
6291 */
6292 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6293 ENERGY_UTIL, NULL);
6294
6295 /*
6296 * Performance domain frequency: utilization clamping
6297 * must be considered since it affects the selection
6298 * of the performance domain frequency.
6299 * NOTE: in case RT tasks are running, by default the
6300 * FREQUENCY_UTIL's utilization can be max OPP.
6301 */
6302 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6303 FREQUENCY_UTIL, tsk);
6304 max_util = max(max_util, cpu_util);
6305 }
6306
6307 return em_pd_energy(pd->em_pd, max_util, sum_util);
6308 }
6309
6310 /*
6311 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6312 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6313 * spare capacity in each performance domain and uses it as a potential
6314 * candidate to execute the task. Then, it uses the Energy Model to figure
6315 * out which of the CPU candidates is the most energy-efficient.
6316 *
6317 * The rationale for this heuristic is as follows. In a performance domain,
6318 * all the most energy efficient CPU candidates (according to the Energy
6319 * Model) are those for which we'll request a low frequency. When there are
6320 * several CPUs for which the frequency request will be the same, we don't
6321 * have enough data to break the tie between them, because the Energy Model
6322 * only includes active power costs. With this model, if we assume that
6323 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6324 * the maximum spare capacity in a performance domain is guaranteed to be among
6325 * the best candidates of the performance domain.
6326 *
6327 * In practice, it could be preferable from an energy standpoint to pack
6328 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6329 * but that could also hurt our chances to go cluster idle, and we have no
6330 * ways to tell with the current Energy Model if this is actually a good
6331 * idea or not. So, find_energy_efficient_cpu() basically favors
6332 * cluster-packing, and spreading inside a cluster. That should at least be
6333 * a good thing for latency, and this is consistent with the idea that most
6334 * of the energy savings of EAS come from the asymmetry of the system, and
6335 * not so much from breaking the tie between identical CPUs. That's also the
6336 * reason why EAS is enabled in the topology code only for systems where
6337 * SD_ASYM_CPUCAPACITY is set.
6338 *
6339 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6340 * they don't have any useful utilization data yet and it's not possible to
6341 * forecast their impact on energy consumption. Consequently, they will be
6342 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6343 * to be energy-inefficient in some use-cases. The alternative would be to
6344 * bias new tasks towards specific types of CPUs first, or to try to infer
6345 * their util_avg from the parent task, but those heuristics could hurt
6346 * other use-cases too. So, until someone finds a better way to solve this,
6347 * let's keep things simple by re-using the existing slow path.
6348 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu,int sync)6349 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu, int sync)
6350 {
6351 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6352 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6353 int max_spare_cap_cpu_ls = prev_cpu, best_idle_cpu = -1;
6354 unsigned long max_spare_cap_ls = 0, target_cap;
6355 unsigned long cpu_cap, util, base_energy = 0;
6356 bool boosted, latency_sensitive = false;
6357 unsigned int min_exit_lat = UINT_MAX;
6358 int cpu, best_energy_cpu = prev_cpu;
6359 struct cpuidle_state *idle;
6360 struct sched_domain *sd;
6361 struct perf_domain *pd;
6362
6363 rcu_read_lock();
6364 pd = rcu_dereference(rd->pd);
6365 if (!pd || READ_ONCE(rd->overutilized))
6366 goto fail;
6367
6368 cpu = smp_processor_id();
6369 if (sync && cpu_rq(cpu)->nr_running == 1 &&
6370 cpumask_test_cpu(cpu, p->cpus_ptr)) {
6371 rcu_read_unlock();
6372 return cpu;
6373 }
6374
6375 /*
6376 * Energy-aware wake-up happens on the lowest sched_domain starting
6377 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6378 */
6379 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6380 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6381 sd = sd->parent;
6382 if (!sd)
6383 goto fail;
6384
6385 sync_entity_load_avg(&p->se);
6386 if (!task_util_est(p))
6387 goto unlock;
6388
6389 latency_sensitive = uclamp_latency_sensitive(p);
6390 boosted = uclamp_boosted(p);
6391 target_cap = boosted ? 0 : ULONG_MAX;
6392
6393 for (; pd; pd = pd->next) {
6394 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6395 unsigned long base_energy_pd;
6396 int max_spare_cap_cpu = -1;
6397
6398 /* Compute the 'base' energy of the pd, without @p */
6399 base_energy_pd = compute_energy(p, -1, pd);
6400 base_energy += base_energy_pd;
6401
6402 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6403 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6404 continue;
6405
6406 util = cpu_util_next(cpu, p, cpu);
6407 cpu_cap = capacity_of(cpu);
6408 spare_cap = cpu_cap - util;
6409
6410 /*
6411 * Skip CPUs that cannot satisfy the capacity request.
6412 * IOW, placing the task there would make the CPU
6413 * overutilized. Take uclamp into account to see how
6414 * much capacity we can get out of the CPU; this is
6415 * aligned with schedutil_cpu_util().
6416 */
6417 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6418 if (!fits_capacity(util, cpu_cap))
6419 continue;
6420
6421 /* Always use prev_cpu as a candidate. */
6422 if (!latency_sensitive && cpu == prev_cpu) {
6423 prev_delta = compute_energy(p, prev_cpu, pd);
6424 prev_delta -= base_energy_pd;
6425 best_delta = min(best_delta, prev_delta);
6426 }
6427
6428 /*
6429 * Find the CPU with the maximum spare capacity in
6430 * the performance domain
6431 */
6432 if (spare_cap > max_spare_cap) {
6433 max_spare_cap = spare_cap;
6434 max_spare_cap_cpu = cpu;
6435 }
6436
6437 if (!latency_sensitive)
6438 continue;
6439
6440 if (idle_cpu(cpu)) {
6441 cpu_cap = capacity_orig_of(cpu);
6442 if (boosted && cpu_cap < target_cap)
6443 continue;
6444 if (!boosted && cpu_cap > target_cap)
6445 continue;
6446 idle = idle_get_state(cpu_rq(cpu));
6447 if (idle && idle->exit_latency > min_exit_lat &&
6448 cpu_cap == target_cap)
6449 continue;
6450
6451 if (idle)
6452 min_exit_lat = idle->exit_latency;
6453 target_cap = cpu_cap;
6454 best_idle_cpu = cpu;
6455 } else if (spare_cap > max_spare_cap_ls) {
6456 max_spare_cap_ls = spare_cap;
6457 max_spare_cap_cpu_ls = cpu;
6458 }
6459 }
6460
6461 /* Evaluate the energy impact of using this CPU. */
6462 if (!latency_sensitive && max_spare_cap_cpu >= 0 &&
6463 max_spare_cap_cpu != prev_cpu) {
6464 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6465 cur_delta -= base_energy_pd;
6466 if (cur_delta < best_delta) {
6467 best_delta = cur_delta;
6468 best_energy_cpu = max_spare_cap_cpu;
6469 }
6470 }
6471 }
6472 unlock:
6473 rcu_read_unlock();
6474
6475 if (latency_sensitive)
6476 return best_idle_cpu >= 0 ? best_idle_cpu : max_spare_cap_cpu_ls;
6477
6478 /*
6479 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6480 * least 6% of the energy used by prev_cpu.
6481 */
6482 if (prev_delta == ULONG_MAX)
6483 return best_energy_cpu;
6484
6485 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6486 return best_energy_cpu;
6487
6488 return prev_cpu;
6489
6490 fail:
6491 rcu_read_unlock();
6492
6493 return -1;
6494 }
6495
6496 /*
6497 * select_task_rq_fair: Select target runqueue for the waking task in domains
6498 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6499 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6500 *
6501 * Balances load by selecting the idlest CPU in the idlest group, or under
6502 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6503 *
6504 * Returns the target CPU number.
6505 *
6506 * preempt must be disabled.
6507 */
6508 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int sd_flag,int wake_flags)6509 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6510 {
6511 struct sched_domain *tmp, *sd = NULL;
6512 int cpu = smp_processor_id();
6513 int new_cpu = prev_cpu;
6514 int want_affine = 0;
6515 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6516
6517 if (sd_flag & SD_BALANCE_WAKE) {
6518 record_wakee(p);
6519
6520 if (sched_energy_enabled()) {
6521 new_cpu = find_energy_efficient_cpu(p, prev_cpu, sync);
6522 if (new_cpu >= 0)
6523 return new_cpu;
6524 new_cpu = prev_cpu;
6525 }
6526
6527 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6528 cpumask_test_cpu(cpu, p->cpus_ptr);
6529 }
6530
6531 rcu_read_lock();
6532 for_each_domain(cpu, tmp) {
6533 if (!(tmp->flags & SD_LOAD_BALANCE))
6534 break;
6535
6536 /*
6537 * If both 'cpu' and 'prev_cpu' are part of this domain,
6538 * cpu is a valid SD_WAKE_AFFINE target.
6539 */
6540 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6541 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6542 if (cpu != prev_cpu)
6543 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6544
6545 sd = NULL; /* Prefer wake_affine over balance flags */
6546 break;
6547 }
6548
6549 if (tmp->flags & sd_flag)
6550 sd = tmp;
6551 else if (!want_affine)
6552 break;
6553 }
6554
6555 if (unlikely(sd)) {
6556 /* Slow path */
6557 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6558 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6559 /* Fast path */
6560
6561 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6562
6563 if (want_affine)
6564 current->recent_used_cpu = cpu;
6565 }
6566 rcu_read_unlock();
6567
6568 return new_cpu;
6569 }
6570
6571 static void detach_entity_cfs_rq(struct sched_entity *se);
6572
6573 /*
6574 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6575 * cfs_rq_of(p) references at time of call are still valid and identify the
6576 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6577 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)6578 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6579 {
6580 /*
6581 * As blocked tasks retain absolute vruntime the migration needs to
6582 * deal with this by subtracting the old and adding the new
6583 * min_vruntime -- the latter is done by enqueue_entity() when placing
6584 * the task on the new runqueue.
6585 */
6586 if (p->state == TASK_WAKING) {
6587 struct sched_entity *se = &p->se;
6588 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6589 u64 min_vruntime;
6590
6591 #ifndef CONFIG_64BIT
6592 u64 min_vruntime_copy;
6593
6594 do {
6595 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6596 smp_rmb();
6597 min_vruntime = cfs_rq->min_vruntime;
6598 } while (min_vruntime != min_vruntime_copy);
6599 #else
6600 min_vruntime = cfs_rq->min_vruntime;
6601 #endif
6602
6603 se->vruntime -= min_vruntime;
6604 }
6605
6606 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6607 /*
6608 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6609 * rq->lock and can modify state directly.
6610 */
6611 lockdep_assert_held(&task_rq(p)->lock);
6612 detach_entity_cfs_rq(&p->se);
6613
6614 } else {
6615 /*
6616 * We are supposed to update the task to "current" time, then
6617 * its up to date and ready to go to new CPU/cfs_rq. But we
6618 * have difficulty in getting what current time is, so simply
6619 * throw away the out-of-date time. This will result in the
6620 * wakee task is less decayed, but giving the wakee more load
6621 * sounds not bad.
6622 */
6623 remove_entity_load_avg(&p->se);
6624 }
6625
6626 /* Tell new CPU we are migrated */
6627 p->se.avg.last_update_time = 0;
6628
6629 /* We have migrated, no longer consider this task hot */
6630 p->se.exec_start = 0;
6631
6632 update_scan_period(p, new_cpu);
6633 }
6634
task_dead_fair(struct task_struct * p)6635 static void task_dead_fair(struct task_struct *p)
6636 {
6637 remove_entity_load_avg(&p->se);
6638 }
6639
6640 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6641 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6642 {
6643 if (rq->nr_running)
6644 return 1;
6645
6646 return newidle_balance(rq, rf) != 0;
6647 }
6648 #endif /* CONFIG_SMP */
6649
wakeup_gran(struct sched_entity * se)6650 static unsigned long wakeup_gran(struct sched_entity *se)
6651 {
6652 unsigned long gran = sysctl_sched_wakeup_granularity;
6653
6654 /*
6655 * Since its curr running now, convert the gran from real-time
6656 * to virtual-time in his units.
6657 *
6658 * By using 'se' instead of 'curr' we penalize light tasks, so
6659 * they get preempted easier. That is, if 'se' < 'curr' then
6660 * the resulting gran will be larger, therefore penalizing the
6661 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6662 * be smaller, again penalizing the lighter task.
6663 *
6664 * This is especially important for buddies when the leftmost
6665 * task is higher priority than the buddy.
6666 */
6667 return calc_delta_fair(gran, se);
6668 }
6669
6670 /*
6671 * Should 'se' preempt 'curr'.
6672 *
6673 * |s1
6674 * |s2
6675 * |s3
6676 * g
6677 * |<--->|c
6678 *
6679 * w(c, s1) = -1
6680 * w(c, s2) = 0
6681 * w(c, s3) = 1
6682 *
6683 */
6684 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)6685 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6686 {
6687 s64 gran, vdiff = curr->vruntime - se->vruntime;
6688
6689 if (vdiff <= 0)
6690 return -1;
6691
6692 gran = wakeup_gran(se);
6693 if (vdiff > gran)
6694 return 1;
6695
6696 return 0;
6697 }
6698
set_last_buddy(struct sched_entity * se)6699 static void set_last_buddy(struct sched_entity *se)
6700 {
6701 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6702 return;
6703
6704 for_each_sched_entity(se) {
6705 if (SCHED_WARN_ON(!se->on_rq))
6706 return;
6707 cfs_rq_of(se)->last = se;
6708 }
6709 }
6710
set_next_buddy(struct sched_entity * se)6711 static void set_next_buddy(struct sched_entity *se)
6712 {
6713 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6714 return;
6715
6716 for_each_sched_entity(se) {
6717 if (SCHED_WARN_ON(!se->on_rq))
6718 return;
6719 cfs_rq_of(se)->next = se;
6720 }
6721 }
6722
set_skip_buddy(struct sched_entity * se)6723 static void set_skip_buddy(struct sched_entity *se)
6724 {
6725 for_each_sched_entity(se)
6726 cfs_rq_of(se)->skip = se;
6727 }
6728
6729 /*
6730 * Preempt the current task with a newly woken task if needed:
6731 */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)6732 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6733 {
6734 struct task_struct *curr = rq->curr;
6735 struct sched_entity *se = &curr->se, *pse = &p->se;
6736 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6737 int scale = cfs_rq->nr_running >= sched_nr_latency;
6738 int next_buddy_marked = 0;
6739
6740 if (unlikely(se == pse))
6741 return;
6742
6743 /*
6744 * This is possible from callers such as attach_tasks(), in which we
6745 * unconditionally check_prempt_curr() after an enqueue (which may have
6746 * lead to a throttle). This both saves work and prevents false
6747 * next-buddy nomination below.
6748 */
6749 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6750 return;
6751
6752 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6753 set_next_buddy(pse);
6754 next_buddy_marked = 1;
6755 }
6756
6757 /*
6758 * We can come here with TIF_NEED_RESCHED already set from new task
6759 * wake up path.
6760 *
6761 * Note: this also catches the edge-case of curr being in a throttled
6762 * group (e.g. via set_curr_task), since update_curr() (in the
6763 * enqueue of curr) will have resulted in resched being set. This
6764 * prevents us from potentially nominating it as a false LAST_BUDDY
6765 * below.
6766 */
6767 if (test_tsk_need_resched(curr))
6768 return;
6769
6770 /* Idle tasks are by definition preempted by non-idle tasks. */
6771 if (unlikely(task_has_idle_policy(curr)) &&
6772 likely(!task_has_idle_policy(p)))
6773 goto preempt;
6774
6775 /*
6776 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6777 * is driven by the tick):
6778 */
6779 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6780 return;
6781
6782 find_matching_se(&se, &pse);
6783 update_curr(cfs_rq_of(se));
6784 BUG_ON(!pse);
6785 if (wakeup_preempt_entity(se, pse) == 1) {
6786 /*
6787 * Bias pick_next to pick the sched entity that is
6788 * triggering this preemption.
6789 */
6790 if (!next_buddy_marked)
6791 set_next_buddy(pse);
6792 goto preempt;
6793 }
6794
6795 return;
6796
6797 preempt:
6798 resched_curr(rq);
6799 /*
6800 * Only set the backward buddy when the current task is still
6801 * on the rq. This can happen when a wakeup gets interleaved
6802 * with schedule on the ->pre_schedule() or idle_balance()
6803 * point, either of which can * drop the rq lock.
6804 *
6805 * Also, during early boot the idle thread is in the fair class,
6806 * for obvious reasons its a bad idea to schedule back to it.
6807 */
6808 if (unlikely(!se->on_rq || curr == rq->idle))
6809 return;
6810
6811 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6812 set_last_buddy(se);
6813 }
6814
6815 static struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6816 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6817 {
6818 struct cfs_rq *cfs_rq = &rq->cfs;
6819 struct sched_entity *se;
6820 struct task_struct *p;
6821 int new_tasks;
6822
6823 again:
6824 if (!sched_fair_runnable(rq))
6825 goto idle;
6826
6827 #ifdef CONFIG_FAIR_GROUP_SCHED
6828 if (!prev || prev->sched_class != &fair_sched_class)
6829 goto simple;
6830
6831 /*
6832 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6833 * likely that a next task is from the same cgroup as the current.
6834 *
6835 * Therefore attempt to avoid putting and setting the entire cgroup
6836 * hierarchy, only change the part that actually changes.
6837 */
6838
6839 do {
6840 struct sched_entity *curr = cfs_rq->curr;
6841
6842 /*
6843 * Since we got here without doing put_prev_entity() we also
6844 * have to consider cfs_rq->curr. If it is still a runnable
6845 * entity, update_curr() will update its vruntime, otherwise
6846 * forget we've ever seen it.
6847 */
6848 if (curr) {
6849 if (curr->on_rq)
6850 update_curr(cfs_rq);
6851 else
6852 curr = NULL;
6853
6854 /*
6855 * This call to check_cfs_rq_runtime() will do the
6856 * throttle and dequeue its entity in the parent(s).
6857 * Therefore the nr_running test will indeed
6858 * be correct.
6859 */
6860 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6861 cfs_rq = &rq->cfs;
6862
6863 if (!cfs_rq->nr_running)
6864 goto idle;
6865
6866 goto simple;
6867 }
6868 }
6869
6870 se = pick_next_entity(cfs_rq, curr);
6871 cfs_rq = group_cfs_rq(se);
6872 } while (cfs_rq);
6873
6874 p = task_of(se);
6875
6876 /*
6877 * Since we haven't yet done put_prev_entity and if the selected task
6878 * is a different task than we started out with, try and touch the
6879 * least amount of cfs_rqs.
6880 */
6881 if (prev != p) {
6882 struct sched_entity *pse = &prev->se;
6883
6884 while (!(cfs_rq = is_same_group(se, pse))) {
6885 int se_depth = se->depth;
6886 int pse_depth = pse->depth;
6887
6888 if (se_depth <= pse_depth) {
6889 put_prev_entity(cfs_rq_of(pse), pse);
6890 pse = parent_entity(pse);
6891 }
6892 if (se_depth >= pse_depth) {
6893 set_next_entity(cfs_rq_of(se), se);
6894 se = parent_entity(se);
6895 }
6896 }
6897
6898 put_prev_entity(cfs_rq, pse);
6899 set_next_entity(cfs_rq, se);
6900 }
6901
6902 goto done;
6903 simple:
6904 #endif
6905 if (prev)
6906 put_prev_task(rq, prev);
6907
6908 do {
6909 se = pick_next_entity(cfs_rq, NULL);
6910 set_next_entity(cfs_rq, se);
6911 cfs_rq = group_cfs_rq(se);
6912 } while (cfs_rq);
6913
6914 p = task_of(se);
6915
6916 done: __maybe_unused;
6917 #ifdef CONFIG_SMP
6918 /*
6919 * Move the next running task to the front of
6920 * the list, so our cfs_tasks list becomes MRU
6921 * one.
6922 */
6923 list_move(&p->se.group_node, &rq->cfs_tasks);
6924 #endif
6925
6926 if (hrtick_enabled(rq))
6927 hrtick_start_fair(rq, p);
6928
6929 update_misfit_status(p, rq);
6930
6931 return p;
6932
6933 idle:
6934 if (!rf)
6935 return NULL;
6936
6937 new_tasks = newidle_balance(rq, rf);
6938
6939 /*
6940 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
6941 * possible for any higher priority task to appear. In that case we
6942 * must re-start the pick_next_entity() loop.
6943 */
6944 if (new_tasks < 0)
6945 return RETRY_TASK;
6946
6947 if (new_tasks > 0)
6948 goto again;
6949
6950 /*
6951 * rq is about to be idle, check if we need to update the
6952 * lost_idle_time of clock_pelt
6953 */
6954 update_idle_rq_clock_pelt(rq);
6955
6956 return NULL;
6957 }
6958
6959 /*
6960 * Account for a descheduled task:
6961 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)6962 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6963 {
6964 struct sched_entity *se = &prev->se;
6965 struct cfs_rq *cfs_rq;
6966
6967 for_each_sched_entity(se) {
6968 cfs_rq = cfs_rq_of(se);
6969 put_prev_entity(cfs_rq, se);
6970 }
6971 }
6972
6973 /*
6974 * sched_yield() is very simple
6975 *
6976 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6977 */
yield_task_fair(struct rq * rq)6978 static void yield_task_fair(struct rq *rq)
6979 {
6980 struct task_struct *curr = rq->curr;
6981 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6982 struct sched_entity *se = &curr->se;
6983
6984 /*
6985 * Are we the only task in the tree?
6986 */
6987 if (unlikely(rq->nr_running == 1))
6988 return;
6989
6990 clear_buddies(cfs_rq, se);
6991
6992 if (curr->policy != SCHED_BATCH) {
6993 update_rq_clock(rq);
6994 /*
6995 * Update run-time statistics of the 'current'.
6996 */
6997 update_curr(cfs_rq);
6998 /*
6999 * Tell update_rq_clock() that we've just updated,
7000 * so we don't do microscopic update in schedule()
7001 * and double the fastpath cost.
7002 */
7003 rq_clock_skip_update(rq);
7004 }
7005
7006 set_skip_buddy(se);
7007 }
7008
yield_to_task_fair(struct rq * rq,struct task_struct * p,bool preempt)7009 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7010 {
7011 struct sched_entity *se = &p->se;
7012
7013 /* throttled hierarchies are not runnable */
7014 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7015 return false;
7016
7017 /* Tell the scheduler that we'd really like pse to run next. */
7018 set_next_buddy(se);
7019
7020 yield_task_fair(rq);
7021
7022 return true;
7023 }
7024
7025 #ifdef CONFIG_SMP
7026 /**************************************************
7027 * Fair scheduling class load-balancing methods.
7028 *
7029 * BASICS
7030 *
7031 * The purpose of load-balancing is to achieve the same basic fairness the
7032 * per-CPU scheduler provides, namely provide a proportional amount of compute
7033 * time to each task. This is expressed in the following equation:
7034 *
7035 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7036 *
7037 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7038 * W_i,0 is defined as:
7039 *
7040 * W_i,0 = \Sum_j w_i,j (2)
7041 *
7042 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7043 * is derived from the nice value as per sched_prio_to_weight[].
7044 *
7045 * The weight average is an exponential decay average of the instantaneous
7046 * weight:
7047 *
7048 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7049 *
7050 * C_i is the compute capacity of CPU i, typically it is the
7051 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7052 * can also include other factors [XXX].
7053 *
7054 * To achieve this balance we define a measure of imbalance which follows
7055 * directly from (1):
7056 *
7057 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7058 *
7059 * We them move tasks around to minimize the imbalance. In the continuous
7060 * function space it is obvious this converges, in the discrete case we get
7061 * a few fun cases generally called infeasible weight scenarios.
7062 *
7063 * [XXX expand on:
7064 * - infeasible weights;
7065 * - local vs global optima in the discrete case. ]
7066 *
7067 *
7068 * SCHED DOMAINS
7069 *
7070 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7071 * for all i,j solution, we create a tree of CPUs that follows the hardware
7072 * topology where each level pairs two lower groups (or better). This results
7073 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7074 * tree to only the first of the previous level and we decrease the frequency
7075 * of load-balance at each level inv. proportional to the number of CPUs in
7076 * the groups.
7077 *
7078 * This yields:
7079 *
7080 * log_2 n 1 n
7081 * \Sum { --- * --- * 2^i } = O(n) (5)
7082 * i = 0 2^i 2^i
7083 * `- size of each group
7084 * | | `- number of CPUs doing load-balance
7085 * | `- freq
7086 * `- sum over all levels
7087 *
7088 * Coupled with a limit on how many tasks we can migrate every balance pass,
7089 * this makes (5) the runtime complexity of the balancer.
7090 *
7091 * An important property here is that each CPU is still (indirectly) connected
7092 * to every other CPU in at most O(log n) steps:
7093 *
7094 * The adjacency matrix of the resulting graph is given by:
7095 *
7096 * log_2 n
7097 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7098 * k = 0
7099 *
7100 * And you'll find that:
7101 *
7102 * A^(log_2 n)_i,j != 0 for all i,j (7)
7103 *
7104 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7105 * The task movement gives a factor of O(m), giving a convergence complexity
7106 * of:
7107 *
7108 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7109 *
7110 *
7111 * WORK CONSERVING
7112 *
7113 * In order to avoid CPUs going idle while there's still work to do, new idle
7114 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7115 * tree itself instead of relying on other CPUs to bring it work.
7116 *
7117 * This adds some complexity to both (5) and (8) but it reduces the total idle
7118 * time.
7119 *
7120 * [XXX more?]
7121 *
7122 *
7123 * CGROUPS
7124 *
7125 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7126 *
7127 * s_k,i
7128 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7129 * S_k
7130 *
7131 * Where
7132 *
7133 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7134 *
7135 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7136 *
7137 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7138 * property.
7139 *
7140 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7141 * rewrite all of this once again.]
7142 */
7143
7144 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7145
7146 enum fbq_type { regular, remote, all };
7147
7148 enum group_type {
7149 group_other = 0,
7150 group_misfit_task,
7151 group_imbalanced,
7152 group_overloaded,
7153 };
7154
7155 #define LBF_ALL_PINNED 0x01
7156 #define LBF_NEED_BREAK 0x02
7157 #define LBF_DST_PINNED 0x04
7158 #define LBF_SOME_PINNED 0x08
7159 #define LBF_NOHZ_STATS 0x10
7160 #define LBF_NOHZ_AGAIN 0x20
7161
7162 struct lb_env {
7163 struct sched_domain *sd;
7164
7165 struct rq *src_rq;
7166 int src_cpu;
7167
7168 int dst_cpu;
7169 struct rq *dst_rq;
7170
7171 struct cpumask *dst_grpmask;
7172 int new_dst_cpu;
7173 enum cpu_idle_type idle;
7174 long imbalance;
7175 unsigned int src_grp_nr_running;
7176 /* The set of CPUs under consideration for load-balancing */
7177 struct cpumask *cpus;
7178
7179 unsigned int flags;
7180
7181 unsigned int loop;
7182 unsigned int loop_break;
7183 unsigned int loop_max;
7184
7185 enum fbq_type fbq_type;
7186 enum group_type src_grp_type;
7187 struct list_head tasks;
7188 };
7189
7190 /*
7191 * Is this task likely cache-hot:
7192 */
task_hot(struct task_struct * p,struct lb_env * env)7193 static int task_hot(struct task_struct *p, struct lb_env *env)
7194 {
7195 s64 delta;
7196
7197 lockdep_assert_held(&env->src_rq->lock);
7198
7199 if (p->sched_class != &fair_sched_class)
7200 return 0;
7201
7202 if (unlikely(task_has_idle_policy(p)))
7203 return 0;
7204
7205 /*
7206 * Buddy candidates are cache hot:
7207 */
7208 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7209 (&p->se == cfs_rq_of(&p->se)->next ||
7210 &p->se == cfs_rq_of(&p->se)->last))
7211 return 1;
7212
7213 if (sysctl_sched_migration_cost == -1)
7214 return 1;
7215 if (sysctl_sched_migration_cost == 0)
7216 return 0;
7217
7218 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7219
7220 return delta < (s64)sysctl_sched_migration_cost;
7221 }
7222
7223 #ifdef CONFIG_NUMA_BALANCING
7224 /*
7225 * Returns 1, if task migration degrades locality
7226 * Returns 0, if task migration improves locality i.e migration preferred.
7227 * Returns -1, if task migration is not affected by locality.
7228 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)7229 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7230 {
7231 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7232 unsigned long src_weight, dst_weight;
7233 int src_nid, dst_nid, dist;
7234
7235 if (!static_branch_likely(&sched_numa_balancing))
7236 return -1;
7237
7238 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7239 return -1;
7240
7241 src_nid = cpu_to_node(env->src_cpu);
7242 dst_nid = cpu_to_node(env->dst_cpu);
7243
7244 if (src_nid == dst_nid)
7245 return -1;
7246
7247 /* Migrating away from the preferred node is always bad. */
7248 if (src_nid == p->numa_preferred_nid) {
7249 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7250 return 1;
7251 else
7252 return -1;
7253 }
7254
7255 /* Encourage migration to the preferred node. */
7256 if (dst_nid == p->numa_preferred_nid)
7257 return 0;
7258
7259 /* Leaving a core idle is often worse than degrading locality. */
7260 if (env->idle == CPU_IDLE)
7261 return -1;
7262
7263 dist = node_distance(src_nid, dst_nid);
7264 if (numa_group) {
7265 src_weight = group_weight(p, src_nid, dist);
7266 dst_weight = group_weight(p, dst_nid, dist);
7267 } else {
7268 src_weight = task_weight(p, src_nid, dist);
7269 dst_weight = task_weight(p, dst_nid, dist);
7270 }
7271
7272 return dst_weight < src_weight;
7273 }
7274
7275 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)7276 static inline int migrate_degrades_locality(struct task_struct *p,
7277 struct lb_env *env)
7278 {
7279 return -1;
7280 }
7281 #endif
7282
7283 /*
7284 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7285 */
7286 static
can_migrate_task(struct task_struct * p,struct lb_env * env)7287 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7288 {
7289 int tsk_cache_hot;
7290
7291 lockdep_assert_held(&env->src_rq->lock);
7292
7293 /*
7294 * We do not migrate tasks that are:
7295 * 1) throttled_lb_pair, or
7296 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7297 * 3) running (obviously), or
7298 * 4) are cache-hot on their current CPU.
7299 */
7300 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7301 return 0;
7302
7303 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7304 int cpu;
7305
7306 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7307
7308 env->flags |= LBF_SOME_PINNED;
7309
7310 /*
7311 * Remember if this task can be migrated to any other CPU in
7312 * our sched_group. We may want to revisit it if we couldn't
7313 * meet load balance goals by pulling other tasks on src_cpu.
7314 *
7315 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7316 * already computed one in current iteration.
7317 */
7318 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7319 return 0;
7320
7321 /* Prevent to re-select dst_cpu via env's CPUs: */
7322 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7323 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7324 env->flags |= LBF_DST_PINNED;
7325 env->new_dst_cpu = cpu;
7326 break;
7327 }
7328 }
7329
7330 return 0;
7331 }
7332
7333 /* Record that we found atleast one task that could run on dst_cpu */
7334 env->flags &= ~LBF_ALL_PINNED;
7335
7336 if (task_running(env->src_rq, p)) {
7337 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7338 return 0;
7339 }
7340
7341 /*
7342 * Aggressive migration if:
7343 * 1) destination numa is preferred
7344 * 2) task is cache cold, or
7345 * 3) too many balance attempts have failed.
7346 */
7347 tsk_cache_hot = migrate_degrades_locality(p, env);
7348 if (tsk_cache_hot == -1)
7349 tsk_cache_hot = task_hot(p, env);
7350
7351 if (tsk_cache_hot <= 0 ||
7352 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7353 if (tsk_cache_hot == 1) {
7354 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7355 schedstat_inc(p->se.statistics.nr_forced_migrations);
7356 }
7357 return 1;
7358 }
7359
7360 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7361 return 0;
7362 }
7363
7364 /*
7365 * detach_task() -- detach the task for the migration specified in env
7366 */
detach_task(struct task_struct * p,struct lb_env * env)7367 static void detach_task(struct task_struct *p, struct lb_env *env)
7368 {
7369 lockdep_assert_held(&env->src_rq->lock);
7370
7371 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7372 set_task_cpu(p, env->dst_cpu);
7373 }
7374
7375 /*
7376 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7377 * part of active balancing operations within "domain".
7378 *
7379 * Returns a task if successful and NULL otherwise.
7380 */
detach_one_task(struct lb_env * env)7381 static struct task_struct *detach_one_task(struct lb_env *env)
7382 {
7383 struct task_struct *p;
7384
7385 lockdep_assert_held(&env->src_rq->lock);
7386
7387 list_for_each_entry_reverse(p,
7388 &env->src_rq->cfs_tasks, se.group_node) {
7389 if (!can_migrate_task(p, env))
7390 continue;
7391
7392 detach_task(p, env);
7393
7394 /*
7395 * Right now, this is only the second place where
7396 * lb_gained[env->idle] is updated (other is detach_tasks)
7397 * so we can safely collect stats here rather than
7398 * inside detach_tasks().
7399 */
7400 schedstat_inc(env->sd->lb_gained[env->idle]);
7401 return p;
7402 }
7403 return NULL;
7404 }
7405
7406 static const unsigned int sched_nr_migrate_break = 32;
7407
7408 /*
7409 * detach_tasks() -- tries to detach up to imbalance runnable load from
7410 * busiest_rq, as part of a balancing operation within domain "sd".
7411 *
7412 * Returns number of detached tasks if successful and 0 otherwise.
7413 */
detach_tasks(struct lb_env * env)7414 static int detach_tasks(struct lb_env *env)
7415 {
7416 struct list_head *tasks = &env->src_rq->cfs_tasks;
7417 struct task_struct *p;
7418 unsigned long load;
7419 int detached = 0;
7420
7421 lockdep_assert_held(&env->src_rq->lock);
7422
7423 if (env->imbalance <= 0)
7424 return 0;
7425
7426 while (!list_empty(tasks)) {
7427 /*
7428 * We don't want to steal all, otherwise we may be treated likewise,
7429 * which could at worst lead to a livelock crash.
7430 */
7431 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7432 break;
7433
7434 p = list_last_entry(tasks, struct task_struct, se.group_node);
7435
7436 env->loop++;
7437 /* We've more or less seen every task there is, call it quits */
7438 if (env->loop > env->loop_max)
7439 break;
7440
7441 /* take a breather every nr_migrate tasks */
7442 if (env->loop > env->loop_break) {
7443 env->loop_break += sched_nr_migrate_break;
7444 env->flags |= LBF_NEED_BREAK;
7445 break;
7446 }
7447
7448 if (!can_migrate_task(p, env))
7449 goto next;
7450
7451 load = task_h_load(p);
7452
7453 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7454 goto next;
7455
7456 if ((load / 2) > env->imbalance)
7457 goto next;
7458
7459 detach_task(p, env);
7460 list_add(&p->se.group_node, &env->tasks);
7461
7462 detached++;
7463 env->imbalance -= load;
7464
7465 #ifdef CONFIG_PREEMPTION
7466 /*
7467 * NEWIDLE balancing is a source of latency, so preemptible
7468 * kernels will stop after the first task is detached to minimize
7469 * the critical section.
7470 */
7471 if (env->idle == CPU_NEWLY_IDLE)
7472 break;
7473 #endif
7474
7475 /*
7476 * We only want to steal up to the prescribed amount of
7477 * runnable load.
7478 */
7479 if (env->imbalance <= 0)
7480 break;
7481
7482 continue;
7483 next:
7484 list_move(&p->se.group_node, tasks);
7485 }
7486
7487 /*
7488 * Right now, this is one of only two places we collect this stat
7489 * so we can safely collect detach_one_task() stats here rather
7490 * than inside detach_one_task().
7491 */
7492 schedstat_add(env->sd->lb_gained[env->idle], detached);
7493
7494 return detached;
7495 }
7496
7497 /*
7498 * attach_task() -- attach the task detached by detach_task() to its new rq.
7499 */
attach_task(struct rq * rq,struct task_struct * p)7500 static void attach_task(struct rq *rq, struct task_struct *p)
7501 {
7502 lockdep_assert_held(&rq->lock);
7503
7504 BUG_ON(task_rq(p) != rq);
7505 activate_task(rq, p, ENQUEUE_NOCLOCK);
7506 check_preempt_curr(rq, p, 0);
7507 }
7508
7509 /*
7510 * attach_one_task() -- attaches the task returned from detach_one_task() to
7511 * its new rq.
7512 */
attach_one_task(struct rq * rq,struct task_struct * p)7513 static void attach_one_task(struct rq *rq, struct task_struct *p)
7514 {
7515 struct rq_flags rf;
7516
7517 rq_lock(rq, &rf);
7518 update_rq_clock(rq);
7519 attach_task(rq, p);
7520 rq_unlock(rq, &rf);
7521 }
7522
7523 /*
7524 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7525 * new rq.
7526 */
attach_tasks(struct lb_env * env)7527 static void attach_tasks(struct lb_env *env)
7528 {
7529 struct list_head *tasks = &env->tasks;
7530 struct task_struct *p;
7531 struct rq_flags rf;
7532
7533 rq_lock(env->dst_rq, &rf);
7534 update_rq_clock(env->dst_rq);
7535
7536 while (!list_empty(tasks)) {
7537 p = list_first_entry(tasks, struct task_struct, se.group_node);
7538 list_del_init(&p->se.group_node);
7539
7540 attach_task(env->dst_rq, p);
7541 }
7542
7543 rq_unlock(env->dst_rq, &rf);
7544 }
7545
7546 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)7547 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7548 {
7549 if (cfs_rq->avg.load_avg)
7550 return true;
7551
7552 if (cfs_rq->avg.util_avg)
7553 return true;
7554
7555 return false;
7556 }
7557
others_have_blocked(struct rq * rq)7558 static inline bool others_have_blocked(struct rq *rq)
7559 {
7560 if (READ_ONCE(rq->avg_rt.util_avg))
7561 return true;
7562
7563 if (READ_ONCE(rq->avg_dl.util_avg))
7564 return true;
7565
7566 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7567 if (READ_ONCE(rq->avg_irq.util_avg))
7568 return true;
7569 #endif
7570
7571 return false;
7572 }
7573
update_blocked_load_status(struct rq * rq,bool has_blocked)7574 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7575 {
7576 rq->last_blocked_load_update_tick = jiffies;
7577
7578 if (!has_blocked)
7579 rq->has_blocked_load = 0;
7580 }
7581 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)7582 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)7583 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_status(struct rq * rq,bool has_blocked)7584 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7585 #endif
7586
__update_blocked_others(struct rq * rq,bool * done)7587 static bool __update_blocked_others(struct rq *rq, bool *done)
7588 {
7589 const struct sched_class *curr_class;
7590 u64 now = rq_clock_pelt(rq);
7591 bool decayed;
7592
7593 /*
7594 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7595 * DL and IRQ signals have been updated before updating CFS.
7596 */
7597 curr_class = rq->curr->sched_class;
7598
7599 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7600 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7601 update_irq_load_avg(rq, 0);
7602
7603 if (others_have_blocked(rq))
7604 *done = false;
7605
7606 return decayed;
7607 }
7608
7609 #ifdef CONFIG_FAIR_GROUP_SCHED
7610
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)7611 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7612 {
7613 if (cfs_rq->load.weight)
7614 return false;
7615
7616 if (cfs_rq->avg.load_sum)
7617 return false;
7618
7619 if (cfs_rq->avg.util_sum)
7620 return false;
7621
7622 if (cfs_rq->avg.runnable_load_sum)
7623 return false;
7624
7625 return true;
7626 }
7627
__update_blocked_fair(struct rq * rq,bool * done)7628 static bool __update_blocked_fair(struct rq *rq, bool *done)
7629 {
7630 struct cfs_rq *cfs_rq, *pos;
7631 bool decayed = false;
7632 int cpu = cpu_of(rq);
7633
7634 /*
7635 * Iterates the task_group tree in a bottom up fashion, see
7636 * list_add_leaf_cfs_rq() for details.
7637 */
7638 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7639 struct sched_entity *se;
7640
7641 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7642 update_tg_load_avg(cfs_rq, 0);
7643
7644 if (cfs_rq == &rq->cfs)
7645 decayed = true;
7646 }
7647
7648 /* Propagate pending load changes to the parent, if any: */
7649 se = cfs_rq->tg->se[cpu];
7650 if (se && !skip_blocked_update(se))
7651 update_load_avg(cfs_rq_of(se), se, 0);
7652
7653 /*
7654 * There can be a lot of idle CPU cgroups. Don't let fully
7655 * decayed cfs_rqs linger on the list.
7656 */
7657 if (cfs_rq_is_decayed(cfs_rq))
7658 list_del_leaf_cfs_rq(cfs_rq);
7659
7660 /* Don't need periodic decay once load/util_avg are null */
7661 if (cfs_rq_has_blocked(cfs_rq))
7662 *done = false;
7663 }
7664
7665 return decayed;
7666 }
7667
7668 /*
7669 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7670 * This needs to be done in a top-down fashion because the load of a child
7671 * group is a fraction of its parents load.
7672 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)7673 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7674 {
7675 struct rq *rq = rq_of(cfs_rq);
7676 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7677 unsigned long now = jiffies;
7678 unsigned long load;
7679
7680 if (cfs_rq->last_h_load_update == now)
7681 return;
7682
7683 WRITE_ONCE(cfs_rq->h_load_next, NULL);
7684 for_each_sched_entity(se) {
7685 cfs_rq = cfs_rq_of(se);
7686 WRITE_ONCE(cfs_rq->h_load_next, se);
7687 if (cfs_rq->last_h_load_update == now)
7688 break;
7689 }
7690
7691 if (!se) {
7692 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7693 cfs_rq->last_h_load_update = now;
7694 }
7695
7696 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7697 load = cfs_rq->h_load;
7698 load = div64_ul(load * se->avg.load_avg,
7699 cfs_rq_load_avg(cfs_rq) + 1);
7700 cfs_rq = group_cfs_rq(se);
7701 cfs_rq->h_load = load;
7702 cfs_rq->last_h_load_update = now;
7703 }
7704 }
7705
task_h_load(struct task_struct * p)7706 static unsigned long task_h_load(struct task_struct *p)
7707 {
7708 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7709
7710 update_cfs_rq_h_load(cfs_rq);
7711 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7712 cfs_rq_load_avg(cfs_rq) + 1);
7713 }
7714 #else
__update_blocked_fair(struct rq * rq,bool * done)7715 static bool __update_blocked_fair(struct rq *rq, bool *done)
7716 {
7717 struct cfs_rq *cfs_rq = &rq->cfs;
7718 bool decayed;
7719
7720 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7721 if (cfs_rq_has_blocked(cfs_rq))
7722 *done = false;
7723
7724 return decayed;
7725 }
7726
task_h_load(struct task_struct * p)7727 static unsigned long task_h_load(struct task_struct *p)
7728 {
7729 return p->se.avg.load_avg;
7730 }
7731 #endif
7732
update_blocked_averages(int cpu)7733 static void update_blocked_averages(int cpu)
7734 {
7735 bool decayed = false, done = true;
7736 struct rq *rq = cpu_rq(cpu);
7737 struct rq_flags rf;
7738
7739 rq_lock_irqsave(rq, &rf);
7740 update_rq_clock(rq);
7741
7742 decayed |= __update_blocked_others(rq, &done);
7743 decayed |= __update_blocked_fair(rq, &done);
7744
7745 update_blocked_load_status(rq, !done);
7746 if (decayed)
7747 cpufreq_update_util(rq, 0);
7748 rq_unlock_irqrestore(rq, &rf);
7749 }
7750
7751 /********** Helpers for find_busiest_group ************************/
7752
7753 /*
7754 * sg_lb_stats - stats of a sched_group required for load_balancing
7755 */
7756 struct sg_lb_stats {
7757 unsigned long avg_load; /*Avg load across the CPUs of the group */
7758 unsigned long group_load; /* Total load over the CPUs of the group */
7759 unsigned long load_per_task;
7760 unsigned long group_capacity;
7761 unsigned long group_util; /* Total utilization of the group */
7762 unsigned int sum_nr_running; /* Nr tasks running in the group */
7763 unsigned int idle_cpus;
7764 unsigned int group_weight;
7765 enum group_type group_type;
7766 int group_no_capacity;
7767 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7768 #ifdef CONFIG_NUMA_BALANCING
7769 unsigned int nr_numa_running;
7770 unsigned int nr_preferred_running;
7771 #endif
7772 };
7773
7774 /*
7775 * sd_lb_stats - Structure to store the statistics of a sched_domain
7776 * during load balancing.
7777 */
7778 struct sd_lb_stats {
7779 struct sched_group *busiest; /* Busiest group in this sd */
7780 struct sched_group *local; /* Local group in this sd */
7781 unsigned long total_running;
7782 unsigned long total_load; /* Total load of all groups in sd */
7783 unsigned long total_capacity; /* Total capacity of all groups in sd */
7784 unsigned long avg_load; /* Average load across all groups in sd */
7785
7786 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7787 struct sg_lb_stats local_stat; /* Statistics of the local group */
7788 };
7789
init_sd_lb_stats(struct sd_lb_stats * sds)7790 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7791 {
7792 /*
7793 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7794 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7795 * We must however clear busiest_stat::avg_load because
7796 * update_sd_pick_busiest() reads this before assignment.
7797 */
7798 *sds = (struct sd_lb_stats){
7799 .busiest = NULL,
7800 .local = NULL,
7801 .total_running = 0UL,
7802 .total_load = 0UL,
7803 .total_capacity = 0UL,
7804 .busiest_stat = {
7805 .avg_load = 0UL,
7806 .sum_nr_running = 0,
7807 .group_type = group_other,
7808 },
7809 };
7810 }
7811
scale_rt_capacity(int cpu,unsigned long max)7812 static unsigned long scale_rt_capacity(int cpu, unsigned long max)
7813 {
7814 struct rq *rq = cpu_rq(cpu);
7815 unsigned long used, free;
7816 unsigned long irq;
7817
7818 irq = cpu_util_irq(rq);
7819
7820 if (unlikely(irq >= max))
7821 return 1;
7822
7823 used = READ_ONCE(rq->avg_rt.util_avg);
7824 used += READ_ONCE(rq->avg_dl.util_avg);
7825
7826 if (unlikely(used >= max))
7827 return 1;
7828
7829 free = max - used;
7830
7831 return scale_irq_capacity(free, irq, max);
7832 }
7833
init_max_cpu_capacity(struct max_cpu_capacity * mcc)7834 void init_max_cpu_capacity(struct max_cpu_capacity *mcc) {
7835 raw_spin_lock_init(&mcc->lock);
7836 mcc->val = 0;
7837 mcc->cpu = -1;
7838 }
7839
update_cpu_capacity(struct sched_domain * sd,int cpu)7840 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7841 {
7842 unsigned long capacity = arch_scale_cpu_capacity(cpu);
7843 struct sched_group *sdg = sd->groups;
7844 struct max_cpu_capacity *mcc;
7845 unsigned long max_capacity;
7846 int max_cap_cpu;
7847 unsigned long flags;
7848
7849 cpu_rq(cpu)->cpu_capacity_orig = capacity;
7850
7851 capacity *= arch_scale_max_freq_capacity(sd, cpu);
7852 capacity >>= SCHED_CAPACITY_SHIFT;
7853
7854 mcc = &cpu_rq(cpu)->rd->max_cpu_capacity;
7855
7856 raw_spin_lock_irqsave(&mcc->lock, flags);
7857 max_capacity = mcc->val;
7858 max_cap_cpu = mcc->cpu;
7859
7860 if ((max_capacity > capacity && max_cap_cpu == cpu) ||
7861 (max_capacity < capacity)) {
7862 mcc->val = capacity;
7863 mcc->cpu = cpu;
7864 #ifdef CONFIG_SCHED_DEBUG
7865 raw_spin_unlock_irqrestore(&mcc->lock, flags);
7866 printk_deferred(KERN_INFO "CPU%d: update max cpu_capacity %lu\n",
7867 cpu, capacity);
7868 goto skip_unlock;
7869 #endif
7870 }
7871 raw_spin_unlock_irqrestore(&mcc->lock, flags);
7872
7873 skip_unlock: __attribute__ ((unused));
7874 capacity = scale_rt_capacity(cpu, capacity);
7875
7876 if (!capacity)
7877 capacity = 1;
7878
7879 cpu_rq(cpu)->cpu_capacity = capacity;
7880 sdg->sgc->capacity = capacity;
7881 sdg->sgc->min_capacity = capacity;
7882 sdg->sgc->max_capacity = capacity;
7883 }
7884
update_group_capacity(struct sched_domain * sd,int cpu)7885 void update_group_capacity(struct sched_domain *sd, int cpu)
7886 {
7887 struct sched_domain *child = sd->child;
7888 struct sched_group *group, *sdg = sd->groups;
7889 unsigned long capacity, min_capacity, max_capacity;
7890 unsigned long interval;
7891
7892 interval = msecs_to_jiffies(sd->balance_interval);
7893 interval = clamp(interval, 1UL, max_load_balance_interval);
7894 sdg->sgc->next_update = jiffies + interval;
7895
7896 if (!child) {
7897 update_cpu_capacity(sd, cpu);
7898 return;
7899 }
7900
7901 capacity = 0;
7902 min_capacity = ULONG_MAX;
7903 max_capacity = 0;
7904
7905 if (child->flags & SD_OVERLAP) {
7906 /*
7907 * SD_OVERLAP domains cannot assume that child groups
7908 * span the current group.
7909 */
7910
7911 for_each_cpu(cpu, sched_group_span(sdg)) {
7912 struct sched_group_capacity *sgc;
7913 struct rq *rq = cpu_rq(cpu);
7914
7915 /*
7916 * build_sched_domains() -> init_sched_groups_capacity()
7917 * gets here before we've attached the domains to the
7918 * runqueues.
7919 *
7920 * Use capacity_of(), which is set irrespective of domains
7921 * in update_cpu_capacity().
7922 *
7923 * This avoids capacity from being 0 and
7924 * causing divide-by-zero issues on boot.
7925 */
7926 if (unlikely(!rq->sd)) {
7927 capacity += capacity_of(cpu);
7928 } else {
7929 sgc = rq->sd->groups->sgc;
7930 capacity += sgc->capacity;
7931 }
7932
7933 min_capacity = min(capacity, min_capacity);
7934 max_capacity = max(capacity, max_capacity);
7935 }
7936 } else {
7937 /*
7938 * !SD_OVERLAP domains can assume that child groups
7939 * span the current group.
7940 */
7941
7942 group = child->groups;
7943 do {
7944 struct sched_group_capacity *sgc = group->sgc;
7945
7946 capacity += sgc->capacity;
7947 min_capacity = min(sgc->min_capacity, min_capacity);
7948 max_capacity = max(sgc->max_capacity, max_capacity);
7949 group = group->next;
7950 } while (group != child->groups);
7951 }
7952
7953 sdg->sgc->capacity = capacity;
7954 sdg->sgc->min_capacity = min_capacity;
7955 sdg->sgc->max_capacity = max_capacity;
7956 }
7957
7958 /*
7959 * Check whether the capacity of the rq has been noticeably reduced by side
7960 * activity. The imbalance_pct is used for the threshold.
7961 * Return true is the capacity is reduced
7962 */
7963 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)7964 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7965 {
7966 return ((rq->cpu_capacity * sd->imbalance_pct) <
7967 (rq->cpu_capacity_orig * 100));
7968 }
7969
7970 /*
7971 * Check whether a rq has a misfit task and if it looks like we can actually
7972 * help that task: we can migrate the task to a CPU of higher capacity, or
7973 * the task's current CPU is heavily pressured.
7974 */
check_misfit_status(struct rq * rq,struct sched_domain * sd)7975 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
7976 {
7977 return rq->misfit_task_load &&
7978 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity.val ||
7979 check_cpu_capacity(rq, sd));
7980 }
7981
7982 /*
7983 * Group imbalance indicates (and tries to solve) the problem where balancing
7984 * groups is inadequate due to ->cpus_ptr constraints.
7985 *
7986 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7987 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7988 * Something like:
7989 *
7990 * { 0 1 2 3 } { 4 5 6 7 }
7991 * * * * *
7992 *
7993 * If we were to balance group-wise we'd place two tasks in the first group and
7994 * two tasks in the second group. Clearly this is undesired as it will overload
7995 * cpu 3 and leave one of the CPUs in the second group unused.
7996 *
7997 * The current solution to this issue is detecting the skew in the first group
7998 * by noticing the lower domain failed to reach balance and had difficulty
7999 * moving tasks due to affinity constraints.
8000 *
8001 * When this is so detected; this group becomes a candidate for busiest; see
8002 * update_sd_pick_busiest(). And calculate_imbalance() and
8003 * find_busiest_group() avoid some of the usual balance conditions to allow it
8004 * to create an effective group imbalance.
8005 *
8006 * This is a somewhat tricky proposition since the next run might not find the
8007 * group imbalance and decide the groups need to be balanced again. A most
8008 * subtle and fragile situation.
8009 */
8010
sg_imbalanced(struct sched_group * group)8011 static inline int sg_imbalanced(struct sched_group *group)
8012 {
8013 return group->sgc->imbalance;
8014 }
8015
8016 /*
8017 * group_has_capacity returns true if the group has spare capacity that could
8018 * be used by some tasks.
8019 * We consider that a group has spare capacity if the * number of task is
8020 * smaller than the number of CPUs or if the utilization is lower than the
8021 * available capacity for CFS tasks.
8022 * For the latter, we use a threshold to stabilize the state, to take into
8023 * account the variance of the tasks' load and to return true if the available
8024 * capacity in meaningful for the load balancer.
8025 * As an example, an available capacity of 1% can appear but it doesn't make
8026 * any benefit for the load balance.
8027 */
8028 static inline bool
group_has_capacity(struct lb_env * env,struct sg_lb_stats * sgs)8029 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
8030 {
8031 if (sgs->sum_nr_running < sgs->group_weight)
8032 return true;
8033
8034 if ((sgs->group_capacity * 100) >
8035 (sgs->group_util * env->sd->imbalance_pct))
8036 return true;
8037
8038 return false;
8039 }
8040
8041 /*
8042 * group_is_overloaded returns true if the group has more tasks than it can
8043 * handle.
8044 * group_is_overloaded is not equals to !group_has_capacity because a group
8045 * with the exact right number of tasks, has no more spare capacity but is not
8046 * overloaded so both group_has_capacity and group_is_overloaded return
8047 * false.
8048 */
8049 static inline bool
group_is_overloaded(struct lb_env * env,struct sg_lb_stats * sgs)8050 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
8051 {
8052 if (sgs->sum_nr_running <= sgs->group_weight)
8053 return false;
8054
8055 if ((sgs->group_capacity * 100) <
8056 (sgs->group_util * env->sd->imbalance_pct))
8057 return true;
8058
8059 return false;
8060 }
8061
8062 /*
8063 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8064 * per-CPU capacity than sched_group ref.
8065 */
8066 static inline bool
group_smaller_min_cpu_capacity(struct sched_group * sg,struct sched_group * ref)8067 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8068 {
8069 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8070 }
8071
8072 /*
8073 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8074 * per-CPU capacity_orig than sched_group ref.
8075 */
8076 static inline bool
group_smaller_max_cpu_capacity(struct sched_group * sg,struct sched_group * ref)8077 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8078 {
8079 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8080 }
8081
8082 static inline enum
group_classify(struct sched_group * group,struct sg_lb_stats * sgs)8083 group_type group_classify(struct sched_group *group,
8084 struct sg_lb_stats *sgs)
8085 {
8086 if (sgs->group_no_capacity)
8087 return group_overloaded;
8088
8089 if (sg_imbalanced(group))
8090 return group_imbalanced;
8091
8092 if (sgs->group_misfit_task_load)
8093 return group_misfit_task;
8094
8095 return group_other;
8096 }
8097
update_nohz_stats(struct rq * rq,bool force)8098 static bool update_nohz_stats(struct rq *rq, bool force)
8099 {
8100 #ifdef CONFIG_NO_HZ_COMMON
8101 unsigned int cpu = rq->cpu;
8102
8103 if (!rq->has_blocked_load)
8104 return false;
8105
8106 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8107 return false;
8108
8109 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8110 return true;
8111
8112 update_blocked_averages(cpu);
8113
8114 return rq->has_blocked_load;
8115 #else
8116 return false;
8117 #endif
8118 }
8119
8120 /**
8121 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8122 * @env: The load balancing environment.
8123 * @group: sched_group whose statistics are to be updated.
8124 * @sgs: variable to hold the statistics for this group.
8125 * @sg_status: Holds flag indicating the status of the sched_group
8126 */
update_sg_lb_stats(struct lb_env * env,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)8127 static inline void update_sg_lb_stats(struct lb_env *env,
8128 struct sched_group *group,
8129 struct sg_lb_stats *sgs,
8130 int *sg_status)
8131 {
8132 int i, nr_running;
8133
8134 memset(sgs, 0, sizeof(*sgs));
8135
8136 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8137 struct rq *rq = cpu_rq(i);
8138
8139 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8140 env->flags |= LBF_NOHZ_AGAIN;
8141
8142 sgs->group_load += cpu_runnable_load(rq);
8143 sgs->group_util += cpu_util(i);
8144 sgs->sum_nr_running += rq->cfs.h_nr_running;
8145
8146 nr_running = rq->nr_running;
8147 if (nr_running > 1)
8148 *sg_status |= SG_OVERLOAD;
8149
8150 if (cpu_overutilized(i))
8151 *sg_status |= SG_OVERUTILIZED;
8152
8153 #ifdef CONFIG_NUMA_BALANCING
8154 sgs->nr_numa_running += rq->nr_numa_running;
8155 sgs->nr_preferred_running += rq->nr_preferred_running;
8156 #endif
8157 /*
8158 * No need to call idle_cpu() if nr_running is not 0
8159 */
8160 if (!nr_running && idle_cpu(i))
8161 sgs->idle_cpus++;
8162
8163 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8164 sgs->group_misfit_task_load < rq->misfit_task_load) {
8165 sgs->group_misfit_task_load = rq->misfit_task_load;
8166 *sg_status |= SG_OVERLOAD;
8167 }
8168 }
8169
8170 /* Adjust by relative CPU capacity of the group */
8171 sgs->group_capacity = group->sgc->capacity;
8172 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8173
8174 if (sgs->sum_nr_running)
8175 sgs->load_per_task = sgs->group_load / sgs->sum_nr_running;
8176
8177 sgs->group_weight = group->group_weight;
8178
8179 sgs->group_no_capacity = group_is_overloaded(env, sgs);
8180 sgs->group_type = group_classify(group, sgs);
8181 }
8182
8183 /**
8184 * update_sd_pick_busiest - return 1 on busiest group
8185 * @env: The load balancing environment.
8186 * @sds: sched_domain statistics
8187 * @sg: sched_group candidate to be checked for being the busiest
8188 * @sgs: sched_group statistics
8189 *
8190 * Determine if @sg is a busier group than the previously selected
8191 * busiest group.
8192 *
8193 * Return: %true if @sg is a busier group than the previously selected
8194 * busiest group. %false otherwise.
8195 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)8196 static bool update_sd_pick_busiest(struct lb_env *env,
8197 struct sd_lb_stats *sds,
8198 struct sched_group *sg,
8199 struct sg_lb_stats *sgs)
8200 {
8201 struct sg_lb_stats *busiest = &sds->busiest_stat;
8202
8203 /*
8204 * Don't try to pull misfit tasks we can't help.
8205 * We can use max_capacity here as reduction in capacity on some
8206 * CPUs in the group should either be possible to resolve
8207 * internally or be covered by avg_load imbalance (eventually).
8208 */
8209 if (sgs->group_type == group_misfit_task &&
8210 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8211 !group_has_capacity(env, &sds->local_stat)))
8212 return false;
8213
8214 if (sgs->group_type > busiest->group_type)
8215 return true;
8216
8217 if (sgs->group_type < busiest->group_type)
8218 return false;
8219
8220 if (sgs->avg_load <= busiest->avg_load)
8221 return false;
8222
8223 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8224 goto asym_packing;
8225
8226 /*
8227 * Candidate sg has no more than one task per CPU and
8228 * has higher per-CPU capacity. Migrating tasks to less
8229 * capable CPUs may harm throughput. Maximize throughput,
8230 * power/energy consequences are not considered.
8231 */
8232 if (sgs->sum_nr_running <= sgs->group_weight &&
8233 group_smaller_min_cpu_capacity(sds->local, sg))
8234 return false;
8235
8236 /*
8237 * If we have more than one misfit sg go with the biggest misfit.
8238 */
8239 if (sgs->group_type == group_misfit_task &&
8240 sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8241 return false;
8242
8243 asym_packing:
8244 /* This is the busiest node in its class. */
8245 if (!(env->sd->flags & SD_ASYM_PACKING))
8246 return true;
8247
8248 /* No ASYM_PACKING if target CPU is already busy */
8249 if (env->idle == CPU_NOT_IDLE)
8250 return true;
8251 /*
8252 * ASYM_PACKING needs to move all the work to the highest
8253 * prority CPUs in the group, therefore mark all groups
8254 * of lower priority than ourself as busy.
8255 */
8256 if (sgs->sum_nr_running &&
8257 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8258 if (!sds->busiest)
8259 return true;
8260
8261 /* Prefer to move from lowest priority CPU's work */
8262 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8263 sg->asym_prefer_cpu))
8264 return true;
8265 }
8266
8267 return false;
8268 }
8269
8270 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)8271 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8272 {
8273 if (sgs->sum_nr_running > sgs->nr_numa_running)
8274 return regular;
8275 if (sgs->sum_nr_running > sgs->nr_preferred_running)
8276 return remote;
8277 return all;
8278 }
8279
fbq_classify_rq(struct rq * rq)8280 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8281 {
8282 if (rq->nr_running > rq->nr_numa_running)
8283 return regular;
8284 if (rq->nr_running > rq->nr_preferred_running)
8285 return remote;
8286 return all;
8287 }
8288 #else
fbq_classify_group(struct sg_lb_stats * sgs)8289 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8290 {
8291 return all;
8292 }
8293
fbq_classify_rq(struct rq * rq)8294 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8295 {
8296 return regular;
8297 }
8298 #endif /* CONFIG_NUMA_BALANCING */
8299
8300 /**
8301 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8302 * @env: The load balancing environment.
8303 * @sds: variable to hold the statistics for this sched_domain.
8304 */
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)8305 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8306 {
8307 struct sched_domain *child = env->sd->child;
8308 struct sched_group *sg = env->sd->groups;
8309 struct sg_lb_stats *local = &sds->local_stat;
8310 struct sg_lb_stats tmp_sgs;
8311 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8312 int sg_status = 0;
8313
8314 #ifdef CONFIG_NO_HZ_COMMON
8315 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8316 env->flags |= LBF_NOHZ_STATS;
8317 #endif
8318
8319 do {
8320 struct sg_lb_stats *sgs = &tmp_sgs;
8321 int local_group;
8322
8323 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8324 if (local_group) {
8325 sds->local = sg;
8326 sgs = local;
8327
8328 if (env->idle != CPU_NEWLY_IDLE ||
8329 time_after_eq(jiffies, sg->sgc->next_update))
8330 update_group_capacity(env->sd, env->dst_cpu);
8331 }
8332
8333 update_sg_lb_stats(env, sg, sgs, &sg_status);
8334
8335 if (local_group)
8336 goto next_group;
8337
8338 /*
8339 * In case the child domain prefers tasks go to siblings
8340 * first, lower the sg capacity so that we'll try
8341 * and move all the excess tasks away. We lower the capacity
8342 * of a group only if the local group has the capacity to fit
8343 * these excess tasks. The extra check prevents the case where
8344 * you always pull from the heaviest group when it is already
8345 * under-utilized (possible with a large weight task outweighs
8346 * the tasks on the system).
8347 */
8348 if (prefer_sibling && sds->local &&
8349 group_has_capacity(env, local) &&
8350 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8351 sgs->group_no_capacity = 1;
8352 sgs->group_type = group_classify(sg, sgs);
8353 }
8354
8355 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8356 sds->busiest = sg;
8357 sds->busiest_stat = *sgs;
8358 }
8359
8360 next_group:
8361 /* Now, start updating sd_lb_stats */
8362 sds->total_running += sgs->sum_nr_running;
8363 sds->total_load += sgs->group_load;
8364 sds->total_capacity += sgs->group_capacity;
8365
8366 sg = sg->next;
8367 } while (sg != env->sd->groups);
8368
8369 #ifdef CONFIG_NO_HZ_COMMON
8370 if ((env->flags & LBF_NOHZ_AGAIN) &&
8371 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8372
8373 WRITE_ONCE(nohz.next_blocked,
8374 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8375 }
8376 #endif
8377
8378 if (env->sd->flags & SD_NUMA)
8379 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8380
8381 env->src_grp_nr_running = sds->busiest_stat.sum_nr_running;
8382
8383 if (!env->sd->parent) {
8384 struct root_domain *rd = env->dst_rq->rd;
8385
8386 /* update overload indicator if we are at root domain */
8387 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8388
8389 /* Update over-utilization (tipping point, U >= 0) indicator */
8390 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8391 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8392 } else if (sg_status & SG_OVERUTILIZED) {
8393 struct root_domain *rd = env->dst_rq->rd;
8394
8395 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8396 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8397 }
8398 }
8399
8400 /**
8401 * check_asym_packing - Check to see if the group is packed into the
8402 * sched domain.
8403 *
8404 * This is primarily intended to used at the sibling level. Some
8405 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8406 * case of POWER7, it can move to lower SMT modes only when higher
8407 * threads are idle. When in lower SMT modes, the threads will
8408 * perform better since they share less core resources. Hence when we
8409 * have idle threads, we want them to be the higher ones.
8410 *
8411 * This packing function is run on idle threads. It checks to see if
8412 * the busiest CPU in this domain (core in the P7 case) has a higher
8413 * CPU number than the packing function is being run on. Here we are
8414 * assuming lower CPU number will be equivalent to lower a SMT thread
8415 * number.
8416 *
8417 * Return: 1 when packing is required and a task should be moved to
8418 * this CPU. The amount of the imbalance is returned in env->imbalance.
8419 *
8420 * @env: The load balancing environment.
8421 * @sds: Statistics of the sched_domain which is to be packed
8422 */
check_asym_packing(struct lb_env * env,struct sd_lb_stats * sds)8423 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8424 {
8425 int busiest_cpu;
8426
8427 if (!(env->sd->flags & SD_ASYM_PACKING))
8428 return 0;
8429
8430 if (env->idle == CPU_NOT_IDLE)
8431 return 0;
8432
8433 if (!sds->busiest)
8434 return 0;
8435
8436 busiest_cpu = sds->busiest->asym_prefer_cpu;
8437 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8438 return 0;
8439
8440 env->imbalance = sds->busiest_stat.group_load;
8441
8442 return 1;
8443 }
8444
8445 /**
8446 * fix_small_imbalance - Calculate the minor imbalance that exists
8447 * amongst the groups of a sched_domain, during
8448 * load balancing.
8449 * @env: The load balancing environment.
8450 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8451 */
8452 static inline
fix_small_imbalance(struct lb_env * env,struct sd_lb_stats * sds)8453 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8454 {
8455 unsigned long tmp, capa_now = 0, capa_move = 0;
8456 unsigned int imbn = 2;
8457 unsigned long scaled_busy_load_per_task;
8458 struct sg_lb_stats *local, *busiest;
8459
8460 local = &sds->local_stat;
8461 busiest = &sds->busiest_stat;
8462
8463 if (!local->sum_nr_running)
8464 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8465 else if (busiest->load_per_task > local->load_per_task)
8466 imbn = 1;
8467
8468 scaled_busy_load_per_task =
8469 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8470 busiest->group_capacity;
8471
8472 if (busiest->avg_load + scaled_busy_load_per_task >=
8473 local->avg_load + (scaled_busy_load_per_task * imbn)) {
8474 env->imbalance = busiest->load_per_task;
8475 return;
8476 }
8477
8478 /*
8479 * OK, we don't have enough imbalance to justify moving tasks,
8480 * however we may be able to increase total CPU capacity used by
8481 * moving them.
8482 */
8483
8484 capa_now += busiest->group_capacity *
8485 min(busiest->load_per_task, busiest->avg_load);
8486 capa_now += local->group_capacity *
8487 min(local->load_per_task, local->avg_load);
8488 capa_now /= SCHED_CAPACITY_SCALE;
8489
8490 /* Amount of load we'd subtract */
8491 if (busiest->avg_load > scaled_busy_load_per_task) {
8492 capa_move += busiest->group_capacity *
8493 min(busiest->load_per_task,
8494 busiest->avg_load - scaled_busy_load_per_task);
8495 }
8496
8497 /* Amount of load we'd add */
8498 if (busiest->avg_load * busiest->group_capacity <
8499 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8500 tmp = (busiest->avg_load * busiest->group_capacity) /
8501 local->group_capacity;
8502 } else {
8503 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8504 local->group_capacity;
8505 }
8506 capa_move += local->group_capacity *
8507 min(local->load_per_task, local->avg_load + tmp);
8508 capa_move /= SCHED_CAPACITY_SCALE;
8509
8510 /* Move if we gain throughput */
8511 if (capa_move > capa_now) {
8512 env->imbalance = busiest->load_per_task;
8513 return;
8514 }
8515
8516 /* We can't see throughput improvement with the load-based
8517 * method, but it is possible depending upon group size and
8518 * capacity range that there might still be an underutilized
8519 * cpu available in an asymmetric capacity system. Do one last
8520 * check just in case.
8521 */
8522 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8523 busiest->group_type == group_overloaded &&
8524 busiest->sum_nr_running > busiest->group_weight &&
8525 local->sum_nr_running < local->group_weight &&
8526 local->group_capacity < busiest->group_capacity)
8527 env->imbalance = busiest->load_per_task;
8528 }
8529
8530 /**
8531 * calculate_imbalance - Calculate the amount of imbalance present within the
8532 * groups of a given sched_domain during load balance.
8533 * @env: load balance environment
8534 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8535 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)8536 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8537 {
8538 unsigned long max_pull, load_above_capacity = ~0UL;
8539 struct sg_lb_stats *local, *busiest;
8540
8541 local = &sds->local_stat;
8542 busiest = &sds->busiest_stat;
8543
8544 if (busiest->group_type == group_imbalanced) {
8545 /*
8546 * In the group_imb case we cannot rely on group-wide averages
8547 * to ensure CPU-load equilibrium, look at wider averages. XXX
8548 */
8549 busiest->load_per_task =
8550 min(busiest->load_per_task, sds->avg_load);
8551 }
8552
8553 /*
8554 * Avg load of busiest sg can be less and avg load of local sg can
8555 * be greater than avg load across all sgs of sd because avg load
8556 * factors in sg capacity and sgs with smaller group_type are
8557 * skipped when updating the busiest sg:
8558 */
8559 if (busiest->group_type != group_misfit_task &&
8560 (busiest->avg_load <= sds->avg_load ||
8561 local->avg_load >= sds->avg_load)) {
8562 env->imbalance = 0;
8563 return fix_small_imbalance(env, sds);
8564 }
8565
8566 /*
8567 * If there aren't any idle CPUs, avoid creating some.
8568 */
8569 if (busiest->group_type == group_overloaded &&
8570 local->group_type == group_overloaded) {
8571 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8572 if (load_above_capacity > busiest->group_capacity) {
8573 load_above_capacity -= busiest->group_capacity;
8574 load_above_capacity *= scale_load_down(NICE_0_LOAD);
8575 load_above_capacity /= busiest->group_capacity;
8576 } else
8577 load_above_capacity = ~0UL;
8578 }
8579
8580 /*
8581 * We're trying to get all the CPUs to the average_load, so we don't
8582 * want to push ourselves above the average load, nor do we wish to
8583 * reduce the max loaded CPU below the average load. At the same time,
8584 * we also don't want to reduce the group load below the group
8585 * capacity. Thus we look for the minimum possible imbalance.
8586 */
8587 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8588
8589 /* How much load to actually move to equalise the imbalance */
8590 env->imbalance = min(
8591 max_pull * busiest->group_capacity,
8592 (sds->avg_load - local->avg_load) * local->group_capacity
8593 ) / SCHED_CAPACITY_SCALE;
8594
8595 /* Boost imbalance to allow misfit task to be balanced.
8596 * Always do this if we are doing a NEWLY_IDLE balance
8597 * on the assumption that any tasks we have must not be
8598 * long-running (and hence we cannot rely upon load).
8599 * However if we are not idle, we should assume the tasks
8600 * we have are longer running and not override load-based
8601 * calculations above unless we are sure that the local
8602 * group is underutilized.
8603 */
8604 if (busiest->group_type == group_misfit_task &&
8605 (env->idle == CPU_NEWLY_IDLE ||
8606 local->sum_nr_running < local->group_weight)) {
8607 env->imbalance = max_t(long, env->imbalance,
8608 busiest->group_misfit_task_load);
8609 }
8610
8611 /*
8612 * if *imbalance is less than the average load per runnable task
8613 * there is no guarantee that any tasks will be moved so we'll have
8614 * a think about bumping its value to force at least one task to be
8615 * moved
8616 */
8617 if (env->imbalance < busiest->load_per_task)
8618 return fix_small_imbalance(env, sds);
8619 }
8620
8621 /******* find_busiest_group() helpers end here *********************/
8622
8623 /**
8624 * find_busiest_group - Returns the busiest group within the sched_domain
8625 * if there is an imbalance.
8626 *
8627 * Also calculates the amount of runnable load which should be moved
8628 * to restore balance.
8629 *
8630 * @env: The load balancing environment.
8631 *
8632 * Return: - The busiest group if imbalance exists.
8633 */
find_busiest_group(struct lb_env * env)8634 static struct sched_group *find_busiest_group(struct lb_env *env)
8635 {
8636 struct sg_lb_stats *local, *busiest;
8637 struct sd_lb_stats sds;
8638
8639 init_sd_lb_stats(&sds);
8640
8641 /*
8642 * Compute the various statistics relavent for load balancing at
8643 * this level.
8644 */
8645 update_sd_lb_stats(env, &sds);
8646
8647 if (sched_energy_enabled()) {
8648 struct root_domain *rd = env->dst_rq->rd;
8649
8650 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8651 goto out_balanced;
8652 }
8653
8654 local = &sds.local_stat;
8655 busiest = &sds.busiest_stat;
8656
8657 /* ASYM feature bypasses nice load balance check */
8658 if (check_asym_packing(env, &sds))
8659 return sds.busiest;
8660
8661 /* There is no busy sibling group to pull tasks from */
8662 if (!sds.busiest || busiest->sum_nr_running == 0)
8663 goto out_balanced;
8664
8665 /* XXX broken for overlapping NUMA groups */
8666 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8667 / sds.total_capacity;
8668
8669 /*
8670 * If the busiest group is imbalanced the below checks don't
8671 * work because they assume all things are equal, which typically
8672 * isn't true due to cpus_ptr constraints and the like.
8673 */
8674 if (busiest->group_type == group_imbalanced)
8675 goto force_balance;
8676
8677 /*
8678 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8679 * capacities from resulting in underutilization due to avg_load.
8680 */
8681 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8682 busiest->group_no_capacity)
8683 goto force_balance;
8684
8685 /* Misfit tasks should be dealt with regardless of the avg load */
8686 if (busiest->group_type == group_misfit_task)
8687 goto force_balance;
8688
8689 /*
8690 * If the local group is busier than the selected busiest group
8691 * don't try and pull any tasks.
8692 */
8693 if (local->avg_load >= busiest->avg_load)
8694 goto out_balanced;
8695
8696 /*
8697 * Don't pull any tasks if this group is already above the domain
8698 * average load.
8699 */
8700 if (local->avg_load >= sds.avg_load)
8701 goto out_balanced;
8702
8703 if (env->idle == CPU_IDLE) {
8704 /*
8705 * This CPU is idle. If the busiest group is not overloaded
8706 * and there is no imbalance between this and busiest group
8707 * wrt idle CPUs, it is balanced. The imbalance becomes
8708 * significant if the diff is greater than 1 otherwise we
8709 * might end up to just move the imbalance on another group
8710 */
8711 if ((busiest->group_type != group_overloaded) &&
8712 (local->idle_cpus <= (busiest->idle_cpus + 1)))
8713 goto out_balanced;
8714 } else {
8715 /*
8716 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8717 * imbalance_pct to be conservative.
8718 */
8719 if (100 * busiest->avg_load <=
8720 env->sd->imbalance_pct * local->avg_load)
8721 goto out_balanced;
8722 }
8723
8724 force_balance:
8725 /* Looks like there is an imbalance. Compute it */
8726 env->src_grp_type = busiest->group_type;
8727 calculate_imbalance(env, &sds);
8728 return env->imbalance ? sds.busiest : NULL;
8729
8730 out_balanced:
8731 env->imbalance = 0;
8732 return NULL;
8733 }
8734
8735 /*
8736 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8737 */
find_busiest_queue(struct lb_env * env,struct sched_group * group)8738 static struct rq *find_busiest_queue(struct lb_env *env,
8739 struct sched_group *group)
8740 {
8741 struct rq *busiest = NULL, *rq;
8742 unsigned long busiest_load = 0, busiest_capacity = 1;
8743 int i;
8744
8745 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8746 unsigned long capacity, load;
8747 enum fbq_type rt;
8748
8749 rq = cpu_rq(i);
8750 rt = fbq_classify_rq(rq);
8751
8752 /*
8753 * We classify groups/runqueues into three groups:
8754 * - regular: there are !numa tasks
8755 * - remote: there are numa tasks that run on the 'wrong' node
8756 * - all: there is no distinction
8757 *
8758 * In order to avoid migrating ideally placed numa tasks,
8759 * ignore those when there's better options.
8760 *
8761 * If we ignore the actual busiest queue to migrate another
8762 * task, the next balance pass can still reduce the busiest
8763 * queue by moving tasks around inside the node.
8764 *
8765 * If we cannot move enough load due to this classification
8766 * the next pass will adjust the group classification and
8767 * allow migration of more tasks.
8768 *
8769 * Both cases only affect the total convergence complexity.
8770 */
8771 if (rt > env->fbq_type)
8772 continue;
8773
8774 /*
8775 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8776 * seek the "biggest" misfit task.
8777 */
8778 if (env->src_grp_type == group_misfit_task) {
8779 if (rq->misfit_task_load > busiest_load) {
8780 busiest_load = rq->misfit_task_load;
8781 busiest = rq;
8782 }
8783
8784 continue;
8785 }
8786
8787 capacity = capacity_of(i);
8788
8789 /*
8790 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8791 * eventually lead to active_balancing high->low capacity.
8792 * Higher per-CPU capacity is considered better than balancing
8793 * average load.
8794 */
8795 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8796 capacity_of(env->dst_cpu) < capacity &&
8797 rq->nr_running == 1)
8798 continue;
8799
8800 load = cpu_runnable_load(rq);
8801
8802 /*
8803 * When comparing with imbalance, use cpu_runnable_load()
8804 * which is not scaled with the CPU capacity.
8805 */
8806
8807 if (rq->nr_running == 1 && load > env->imbalance &&
8808 !check_cpu_capacity(rq, env->sd))
8809 continue;
8810
8811 /*
8812 * For the load comparisons with the other CPU's, consider
8813 * the cpu_runnable_load() scaled with the CPU capacity, so
8814 * that the load can be moved away from the CPU that is
8815 * potentially running at a lower capacity.
8816 *
8817 * Thus we're looking for max(load_i / capacity_i), crosswise
8818 * multiplication to rid ourselves of the division works out
8819 * to: load_i * capacity_j > load_j * capacity_i; where j is
8820 * our previous maximum.
8821 */
8822 if (load * busiest_capacity > busiest_load * capacity) {
8823 busiest_load = load;
8824 busiest_capacity = capacity;
8825 busiest = rq;
8826 }
8827 }
8828
8829 return busiest;
8830 }
8831
8832 /*
8833 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8834 * so long as it is large enough.
8835 */
8836 #define MAX_PINNED_INTERVAL 512
8837
8838 static inline bool
asym_active_balance(struct lb_env * env)8839 asym_active_balance(struct lb_env *env)
8840 {
8841 /*
8842 * ASYM_PACKING needs to force migrate tasks from busy but
8843 * lower priority CPUs in order to pack all tasks in the
8844 * highest priority CPUs.
8845 */
8846 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8847 sched_asym_prefer(env->dst_cpu, env->src_cpu);
8848 }
8849
8850 static inline bool
voluntary_active_balance(struct lb_env * env)8851 voluntary_active_balance(struct lb_env *env)
8852 {
8853 struct sched_domain *sd = env->sd;
8854
8855 if (asym_active_balance(env))
8856 return 1;
8857
8858 /*
8859 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8860 * It's worth migrating the task if the src_cpu's capacity is reduced
8861 * because of other sched_class or IRQs if more capacity stays
8862 * available on dst_cpu.
8863 */
8864 if ((env->idle != CPU_NOT_IDLE) &&
8865 (env->src_rq->cfs.h_nr_running == 1)) {
8866 if ((check_cpu_capacity(env->src_rq, sd)) &&
8867 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8868 return 1;
8869 }
8870
8871 if (env->src_grp_type == group_misfit_task)
8872 return 1;
8873
8874 return 0;
8875 }
8876
need_active_balance(struct lb_env * env)8877 static int need_active_balance(struct lb_env *env)
8878 {
8879 struct sched_domain *sd = env->sd;
8880
8881 if (voluntary_active_balance(env))
8882 return 1;
8883
8884 if (env->src_grp_type == group_overloaded && env->src_rq->misfit_task_load)
8885 return 1;
8886
8887 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8888 }
8889
8890 static int active_load_balance_cpu_stop(void *data);
8891
should_we_balance(struct lb_env * env)8892 static int should_we_balance(struct lb_env *env)
8893 {
8894 struct sched_group *sg = env->sd->groups;
8895 int cpu, balance_cpu = -1;
8896
8897 /*
8898 * Ensure the balancing environment is consistent; can happen
8899 * when the softirq triggers 'during' hotplug.
8900 */
8901 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8902 return 0;
8903
8904 /*
8905 * In the newly idle case, we will allow all the CPUs
8906 * to do the newly idle load balance.
8907 */
8908 if (env->idle == CPU_NEWLY_IDLE)
8909 return 1;
8910
8911 /* Try to find first idle CPU */
8912 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8913 if (!idle_cpu(cpu))
8914 continue;
8915
8916 balance_cpu = cpu;
8917 break;
8918 }
8919
8920 if (balance_cpu == -1)
8921 balance_cpu = group_balance_cpu(sg);
8922
8923 /*
8924 * First idle CPU or the first CPU(busiest) in this sched group
8925 * is eligible for doing load balancing at this and above domains.
8926 */
8927 return balance_cpu == env->dst_cpu;
8928 }
8929
8930 /*
8931 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8932 * tasks if there is an imbalance.
8933 */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)8934 static int load_balance(int this_cpu, struct rq *this_rq,
8935 struct sched_domain *sd, enum cpu_idle_type idle,
8936 int *continue_balancing)
8937 {
8938 int ld_moved, cur_ld_moved, active_balance = 0;
8939 struct sched_domain *sd_parent = sd->parent;
8940 struct sched_group *group;
8941 struct rq *busiest;
8942 struct rq_flags rf;
8943 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8944
8945 struct lb_env env = {
8946 .sd = sd,
8947 .dst_cpu = this_cpu,
8948 .dst_rq = this_rq,
8949 .dst_grpmask = sched_group_span(sd->groups),
8950 .idle = idle,
8951 .loop_break = sched_nr_migrate_break,
8952 .cpus = cpus,
8953 .fbq_type = all,
8954 .tasks = LIST_HEAD_INIT(env.tasks),
8955 };
8956
8957 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8958
8959 schedstat_inc(sd->lb_count[idle]);
8960
8961 redo:
8962 if (!should_we_balance(&env)) {
8963 *continue_balancing = 0;
8964 goto out_balanced;
8965 }
8966
8967 group = find_busiest_group(&env);
8968 if (!group) {
8969 schedstat_inc(sd->lb_nobusyg[idle]);
8970 goto out_balanced;
8971 }
8972
8973 busiest = find_busiest_queue(&env, group);
8974 if (!busiest) {
8975 schedstat_inc(sd->lb_nobusyq[idle]);
8976 goto out_balanced;
8977 }
8978
8979 BUG_ON(busiest == env.dst_rq);
8980
8981 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8982
8983 env.src_cpu = busiest->cpu;
8984 env.src_rq = busiest;
8985
8986 ld_moved = 0;
8987 if (busiest->nr_running > 1) {
8988 /*
8989 * Attempt to move tasks. If find_busiest_group has found
8990 * an imbalance but busiest->nr_running <= 1, the group is
8991 * still unbalanced. ld_moved simply stays zero, so it is
8992 * correctly treated as an imbalance.
8993 */
8994 env.flags |= LBF_ALL_PINNED;
8995 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8996
8997 more_balance:
8998 rq_lock_irqsave(busiest, &rf);
8999 update_rq_clock(busiest);
9000
9001 /*
9002 * cur_ld_moved - load moved in current iteration
9003 * ld_moved - cumulative load moved across iterations
9004 */
9005 cur_ld_moved = detach_tasks(&env);
9006
9007 /*
9008 * We've detached some tasks from busiest_rq. Every
9009 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9010 * unlock busiest->lock, and we are able to be sure
9011 * that nobody can manipulate the tasks in parallel.
9012 * See task_rq_lock() family for the details.
9013 */
9014
9015 rq_unlock(busiest, &rf);
9016
9017 if (cur_ld_moved) {
9018 attach_tasks(&env);
9019 ld_moved += cur_ld_moved;
9020 }
9021
9022 local_irq_restore(rf.flags);
9023
9024 if (env.flags & LBF_NEED_BREAK) {
9025 env.flags &= ~LBF_NEED_BREAK;
9026 goto more_balance;
9027 }
9028
9029 /*
9030 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9031 * us and move them to an alternate dst_cpu in our sched_group
9032 * where they can run. The upper limit on how many times we
9033 * iterate on same src_cpu is dependent on number of CPUs in our
9034 * sched_group.
9035 *
9036 * This changes load balance semantics a bit on who can move
9037 * load to a given_cpu. In addition to the given_cpu itself
9038 * (or a ilb_cpu acting on its behalf where given_cpu is
9039 * nohz-idle), we now have balance_cpu in a position to move
9040 * load to given_cpu. In rare situations, this may cause
9041 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9042 * _independently_ and at _same_ time to move some load to
9043 * given_cpu) causing exceess load to be moved to given_cpu.
9044 * This however should not happen so much in practice and
9045 * moreover subsequent load balance cycles should correct the
9046 * excess load moved.
9047 */
9048 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9049
9050 /* Prevent to re-select dst_cpu via env's CPUs */
9051 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9052
9053 env.dst_rq = cpu_rq(env.new_dst_cpu);
9054 env.dst_cpu = env.new_dst_cpu;
9055 env.flags &= ~LBF_DST_PINNED;
9056 env.loop = 0;
9057 env.loop_break = sched_nr_migrate_break;
9058
9059 /*
9060 * Go back to "more_balance" rather than "redo" since we
9061 * need to continue with same src_cpu.
9062 */
9063 goto more_balance;
9064 }
9065
9066 /*
9067 * We failed to reach balance because of affinity.
9068 */
9069 if (sd_parent) {
9070 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9071
9072 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9073 *group_imbalance = 1;
9074 }
9075
9076 /* All tasks on this runqueue were pinned by CPU affinity */
9077 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9078 __cpumask_clear_cpu(cpu_of(busiest), cpus);
9079 /*
9080 * Attempting to continue load balancing at the current
9081 * sched_domain level only makes sense if there are
9082 * active CPUs remaining as possible busiest CPUs to
9083 * pull load from which are not contained within the
9084 * destination group that is receiving any migrated
9085 * load.
9086 */
9087 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9088 env.loop = 0;
9089 env.loop_break = sched_nr_migrate_break;
9090 goto redo;
9091 }
9092 goto out_all_pinned;
9093 }
9094 }
9095
9096 if (!ld_moved) {
9097 schedstat_inc(sd->lb_failed[idle]);
9098 /*
9099 * Increment the failure counter only on periodic balance.
9100 * We do not want newidle balance, which can be very
9101 * frequent, pollute the failure counter causing
9102 * excessive cache_hot migrations and active balances.
9103 */
9104 if (idle != CPU_NEWLY_IDLE)
9105 if (env.src_grp_nr_running > 1)
9106 sd->nr_balance_failed++;
9107
9108 if (need_active_balance(&env)) {
9109 unsigned long flags;
9110
9111 raw_spin_lock_irqsave(&busiest->lock, flags);
9112
9113 /*
9114 * Don't kick the active_load_balance_cpu_stop,
9115 * if the curr task on busiest CPU can't be
9116 * moved to this_cpu:
9117 */
9118 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9119 raw_spin_unlock_irqrestore(&busiest->lock,
9120 flags);
9121 env.flags |= LBF_ALL_PINNED;
9122 goto out_one_pinned;
9123 }
9124
9125 /*
9126 * ->active_balance synchronizes accesses to
9127 * ->active_balance_work. Once set, it's cleared
9128 * only after active load balance is finished.
9129 */
9130 if (!busiest->active_balance) {
9131 busiest->active_balance = 1;
9132 busiest->push_cpu = this_cpu;
9133 active_balance = 1;
9134 }
9135 raw_spin_unlock_irqrestore(&busiest->lock, flags);
9136
9137 if (active_balance) {
9138 stop_one_cpu_nowait(cpu_of(busiest),
9139 active_load_balance_cpu_stop, busiest,
9140 &busiest->active_balance_work);
9141 }
9142
9143 /* We've kicked active balancing, force task migration. */
9144 sd->nr_balance_failed = sd->cache_nice_tries+1;
9145 }
9146 } else
9147 sd->nr_balance_failed = 0;
9148
9149 if (likely(!active_balance) || voluntary_active_balance(&env)) {
9150 /* We were unbalanced, so reset the balancing interval */
9151 sd->balance_interval = sd->min_interval;
9152 } else {
9153 /*
9154 * If we've begun active balancing, start to back off. This
9155 * case may not be covered by the all_pinned logic if there
9156 * is only 1 task on the busy runqueue (because we don't call
9157 * detach_tasks).
9158 */
9159 if (sd->balance_interval < sd->max_interval)
9160 sd->balance_interval *= 2;
9161 }
9162
9163 goto out;
9164
9165 out_balanced:
9166 /*
9167 * We reach balance although we may have faced some affinity
9168 * constraints. Clear the imbalance flag only if other tasks got
9169 * a chance to move and fix the imbalance.
9170 */
9171 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9172 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9173
9174 if (*group_imbalance)
9175 *group_imbalance = 0;
9176 }
9177
9178 out_all_pinned:
9179 /*
9180 * We reach balance because all tasks are pinned at this level so
9181 * we can't migrate them. Let the imbalance flag set so parent level
9182 * can try to migrate them.
9183 */
9184 schedstat_inc(sd->lb_balanced[idle]);
9185
9186 sd->nr_balance_failed = 0;
9187
9188 out_one_pinned:
9189 ld_moved = 0;
9190
9191 /*
9192 * newidle_balance() disregards balance intervals, so we could
9193 * repeatedly reach this code, which would lead to balance_interval
9194 * skyrocketting in a short amount of time. Skip the balance_interval
9195 * increase logic to avoid that.
9196 */
9197 if (env.idle == CPU_NEWLY_IDLE)
9198 goto out;
9199
9200 /* tune up the balancing interval */
9201 if ((env.flags & LBF_ALL_PINNED &&
9202 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9203 sd->balance_interval < sd->max_interval)
9204 sd->balance_interval *= 2;
9205 out:
9206 return ld_moved;
9207 }
9208
9209 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)9210 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9211 {
9212 unsigned long interval = sd->balance_interval;
9213
9214 if (cpu_busy)
9215 interval *= sd->busy_factor;
9216
9217 /* scale ms to jiffies */
9218 interval = msecs_to_jiffies(interval);
9219 interval = clamp(interval, 1UL, max_load_balance_interval);
9220
9221 return interval;
9222 }
9223
9224 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)9225 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9226 {
9227 unsigned long interval, next;
9228
9229 /* used by idle balance, so cpu_busy = 0 */
9230 interval = get_sd_balance_interval(sd, 0);
9231 next = sd->last_balance + interval;
9232
9233 if (time_after(*next_balance, next))
9234 *next_balance = next;
9235 }
9236
9237 /*
9238 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9239 * running tasks off the busiest CPU onto idle CPUs. It requires at
9240 * least 1 task to be running on each physical CPU where possible, and
9241 * avoids physical / logical imbalances.
9242 */
active_load_balance_cpu_stop(void * data)9243 static int active_load_balance_cpu_stop(void *data)
9244 {
9245 struct rq *busiest_rq = data;
9246 int busiest_cpu = cpu_of(busiest_rq);
9247 int target_cpu = busiest_rq->push_cpu;
9248 struct rq *target_rq = cpu_rq(target_cpu);
9249 struct sched_domain *sd;
9250 struct task_struct *p = NULL;
9251 struct rq_flags rf;
9252
9253 rq_lock_irq(busiest_rq, &rf);
9254 /*
9255 * Between queueing the stop-work and running it is a hole in which
9256 * CPUs can become inactive. We should not move tasks from or to
9257 * inactive CPUs.
9258 */
9259 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9260 goto out_unlock;
9261
9262 /* Make sure the requested CPU hasn't gone down in the meantime: */
9263 if (unlikely(busiest_cpu != smp_processor_id() ||
9264 !busiest_rq->active_balance))
9265 goto out_unlock;
9266
9267 /* Is there any task to move? */
9268 if (busiest_rq->nr_running <= 1)
9269 goto out_unlock;
9270
9271 /*
9272 * This condition is "impossible", if it occurs
9273 * we need to fix it. Originally reported by
9274 * Bjorn Helgaas on a 128-CPU setup.
9275 */
9276 BUG_ON(busiest_rq == target_rq);
9277
9278 /* Search for an sd spanning us and the target CPU. */
9279 rcu_read_lock();
9280 for_each_domain(target_cpu, sd) {
9281 if ((sd->flags & SD_LOAD_BALANCE) &&
9282 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9283 break;
9284 }
9285
9286 if (likely(sd)) {
9287 struct lb_env env = {
9288 .sd = sd,
9289 .dst_cpu = target_cpu,
9290 .dst_rq = target_rq,
9291 .src_cpu = busiest_rq->cpu,
9292 .src_rq = busiest_rq,
9293 .idle = CPU_IDLE,
9294 /*
9295 * can_migrate_task() doesn't need to compute new_dst_cpu
9296 * for active balancing. Since we have CPU_IDLE, but no
9297 * @dst_grpmask we need to make that test go away with lying
9298 * about DST_PINNED.
9299 */
9300 .flags = LBF_DST_PINNED,
9301 };
9302
9303 schedstat_inc(sd->alb_count);
9304 update_rq_clock(busiest_rq);
9305
9306 p = detach_one_task(&env);
9307 if (p) {
9308 schedstat_inc(sd->alb_pushed);
9309 /* Active balancing done, reset the failure counter. */
9310 sd->nr_balance_failed = 0;
9311 } else {
9312 schedstat_inc(sd->alb_failed);
9313 }
9314 }
9315 rcu_read_unlock();
9316 out_unlock:
9317 busiest_rq->active_balance = 0;
9318 rq_unlock(busiest_rq, &rf);
9319
9320 if (p)
9321 attach_one_task(target_rq, p);
9322
9323 local_irq_enable();
9324
9325 return 0;
9326 }
9327
9328 static DEFINE_SPINLOCK(balancing);
9329
9330 /*
9331 * Scale the max load_balance interval with the number of CPUs in the system.
9332 * This trades load-balance latency on larger machines for less cross talk.
9333 */
update_max_interval(void)9334 void update_max_interval(void)
9335 {
9336 max_load_balance_interval = HZ*num_online_cpus()/10;
9337 }
9338
9339 /*
9340 * It checks each scheduling domain to see if it is due to be balanced,
9341 * and initiates a balancing operation if so.
9342 *
9343 * Balancing parameters are set up in init_sched_domains.
9344 */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)9345 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9346 {
9347 int continue_balancing = 1;
9348 int cpu = rq->cpu;
9349 unsigned long interval;
9350 struct sched_domain *sd;
9351 /* Earliest time when we have to do rebalance again */
9352 unsigned long next_balance = jiffies + 60*HZ;
9353 int update_next_balance = 0;
9354 int need_serialize, need_decay = 0;
9355 u64 max_cost = 0;
9356
9357 rcu_read_lock();
9358 for_each_domain(cpu, sd) {
9359 /*
9360 * Decay the newidle max times here because this is a regular
9361 * visit to all the domains. Decay ~1% per second.
9362 */
9363 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9364 sd->max_newidle_lb_cost =
9365 (sd->max_newidle_lb_cost * 253) / 256;
9366 sd->next_decay_max_lb_cost = jiffies + HZ;
9367 need_decay = 1;
9368 }
9369 max_cost += sd->max_newidle_lb_cost;
9370
9371 if (!(sd->flags & SD_LOAD_BALANCE))
9372 continue;
9373
9374 /*
9375 * Stop the load balance at this level. There is another
9376 * CPU in our sched group which is doing load balancing more
9377 * actively.
9378 */
9379 if (!continue_balancing) {
9380 if (need_decay)
9381 continue;
9382 break;
9383 }
9384
9385 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9386
9387 need_serialize = sd->flags & SD_SERIALIZE;
9388 if (need_serialize) {
9389 if (!spin_trylock(&balancing))
9390 goto out;
9391 }
9392
9393 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9394 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9395 /*
9396 * The LBF_DST_PINNED logic could have changed
9397 * env->dst_cpu, so we can't know our idle
9398 * state even if we migrated tasks. Update it.
9399 */
9400 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9401 }
9402 sd->last_balance = jiffies;
9403 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9404 }
9405 if (need_serialize)
9406 spin_unlock(&balancing);
9407 out:
9408 if (time_after(next_balance, sd->last_balance + interval)) {
9409 next_balance = sd->last_balance + interval;
9410 update_next_balance = 1;
9411 }
9412 }
9413 if (need_decay) {
9414 /*
9415 * Ensure the rq-wide value also decays but keep it at a
9416 * reasonable floor to avoid funnies with rq->avg_idle.
9417 */
9418 rq->max_idle_balance_cost =
9419 max((u64)sysctl_sched_migration_cost, max_cost);
9420 }
9421 rcu_read_unlock();
9422
9423 /*
9424 * next_balance will be updated only when there is a need.
9425 * When the cpu is attached to null domain for ex, it will not be
9426 * updated.
9427 */
9428 if (likely(update_next_balance)) {
9429 rq->next_balance = next_balance;
9430
9431 #ifdef CONFIG_NO_HZ_COMMON
9432 /*
9433 * If this CPU has been elected to perform the nohz idle
9434 * balance. Other idle CPUs have already rebalanced with
9435 * nohz_idle_balance() and nohz.next_balance has been
9436 * updated accordingly. This CPU is now running the idle load
9437 * balance for itself and we need to update the
9438 * nohz.next_balance accordingly.
9439 */
9440 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9441 nohz.next_balance = rq->next_balance;
9442 #endif
9443 }
9444 }
9445
on_null_domain(struct rq * rq)9446 static inline int on_null_domain(struct rq *rq)
9447 {
9448 return unlikely(!rcu_dereference_sched(rq->sd));
9449 }
9450
9451 #ifdef CONFIG_NO_HZ_COMMON
9452 /*
9453 * idle load balancing details
9454 * - When one of the busy CPUs notice that there may be an idle rebalancing
9455 * needed, they will kick the idle load balancer, which then does idle
9456 * load balancing for all the idle CPUs.
9457 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9458 * anywhere yet.
9459 */
9460
find_new_ilb(void)9461 static inline int find_new_ilb(void)
9462 {
9463 int ilb;
9464
9465 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9466 housekeeping_cpumask(HK_FLAG_MISC)) {
9467 if (idle_cpu(ilb))
9468 return ilb;
9469 }
9470
9471 return nr_cpu_ids;
9472 }
9473
9474 /*
9475 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9476 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
9477 */
kick_ilb(unsigned int flags)9478 static void kick_ilb(unsigned int flags)
9479 {
9480 int ilb_cpu;
9481
9482 nohz.next_balance++;
9483
9484 ilb_cpu = find_new_ilb();
9485
9486 if (ilb_cpu >= nr_cpu_ids)
9487 return;
9488
9489 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9490 if (flags & NOHZ_KICK_MASK)
9491 return;
9492
9493 /*
9494 * Use smp_send_reschedule() instead of resched_cpu().
9495 * This way we generate a sched IPI on the target CPU which
9496 * is idle. And the softirq performing nohz idle load balance
9497 * will be run before returning from the IPI.
9498 */
9499 smp_send_reschedule(ilb_cpu);
9500 }
9501
9502 /*
9503 * Current decision point for kicking the idle load balancer in the presence
9504 * of idle CPUs in the system.
9505 */
nohz_balancer_kick(struct rq * rq)9506 static void nohz_balancer_kick(struct rq *rq)
9507 {
9508 unsigned long now = jiffies;
9509 struct sched_domain_shared *sds;
9510 struct sched_domain *sd;
9511 int nr_busy, i, cpu = rq->cpu;
9512 unsigned int flags = 0;
9513
9514 if (unlikely(rq->idle_balance))
9515 return;
9516
9517 /*
9518 * We may be recently in ticked or tickless idle mode. At the first
9519 * busy tick after returning from idle, we will update the busy stats.
9520 */
9521 nohz_balance_exit_idle(rq);
9522
9523 /*
9524 * None are in tickless mode and hence no need for NOHZ idle load
9525 * balancing.
9526 */
9527 if (likely(!atomic_read(&nohz.nr_cpus)))
9528 return;
9529
9530 if (READ_ONCE(nohz.has_blocked) &&
9531 time_after(now, READ_ONCE(nohz.next_blocked)))
9532 flags = NOHZ_STATS_KICK;
9533
9534 if (time_before(now, nohz.next_balance))
9535 goto out;
9536
9537 if (rq->nr_running >= 2) {
9538 flags = NOHZ_KICK_MASK;
9539 goto out;
9540 }
9541
9542 rcu_read_lock();
9543
9544 sd = rcu_dereference(rq->sd);
9545 if (sd) {
9546 /*
9547 * If there's a CFS task and the current CPU has reduced
9548 * capacity; kick the ILB to see if there's a better CPU to run
9549 * on.
9550 */
9551 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
9552 flags = NOHZ_KICK_MASK;
9553 goto unlock;
9554 }
9555 }
9556
9557 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
9558 if (sd) {
9559 /*
9560 * When ASYM_PACKING; see if there's a more preferred CPU
9561 * currently idle; in which case, kick the ILB to move tasks
9562 * around.
9563 */
9564 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
9565 if (sched_asym_prefer(i, cpu)) {
9566 flags = NOHZ_KICK_MASK;
9567 goto unlock;
9568 }
9569 }
9570 }
9571
9572 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9573 if (sd) {
9574 /*
9575 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9576 * to run the misfit task on.
9577 */
9578 if (check_misfit_status(rq, sd)) {
9579 flags = NOHZ_KICK_MASK;
9580 goto unlock;
9581 }
9582
9583 /*
9584 * For asymmetric systems, we do not want to nicely balance
9585 * cache use, instead we want to embrace asymmetry and only
9586 * ensure tasks have enough CPU capacity.
9587 *
9588 * Skip the LLC logic because it's not relevant in that case.
9589 */
9590 goto unlock;
9591 }
9592
9593 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9594 if (sds) {
9595 /*
9596 * If there is an imbalance between LLC domains (IOW we could
9597 * increase the overall cache use), we need some less-loaded LLC
9598 * domain to pull some load. Likewise, we may need to spread
9599 * load within the current LLC domain (e.g. packed SMT cores but
9600 * other CPUs are idle). We can't really know from here how busy
9601 * the others are - so just get a nohz balance going if it looks
9602 * like this LLC domain has tasks we could move.
9603 */
9604 nr_busy = atomic_read(&sds->nr_busy_cpus);
9605 if (nr_busy > 1) {
9606 flags = NOHZ_KICK_MASK;
9607 goto unlock;
9608 }
9609 }
9610 unlock:
9611 rcu_read_unlock();
9612 out:
9613 if (flags)
9614 kick_ilb(flags);
9615 }
9616
set_cpu_sd_state_busy(int cpu)9617 static void set_cpu_sd_state_busy(int cpu)
9618 {
9619 struct sched_domain *sd;
9620
9621 rcu_read_lock();
9622 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9623
9624 if (!sd || !sd->nohz_idle)
9625 goto unlock;
9626 sd->nohz_idle = 0;
9627
9628 atomic_inc(&sd->shared->nr_busy_cpus);
9629 unlock:
9630 rcu_read_unlock();
9631 }
9632
nohz_balance_exit_idle(struct rq * rq)9633 void nohz_balance_exit_idle(struct rq *rq)
9634 {
9635 SCHED_WARN_ON(rq != this_rq());
9636
9637 if (likely(!rq->nohz_tick_stopped))
9638 return;
9639
9640 rq->nohz_tick_stopped = 0;
9641 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9642 atomic_dec(&nohz.nr_cpus);
9643
9644 set_cpu_sd_state_busy(rq->cpu);
9645 }
9646
set_cpu_sd_state_idle(int cpu)9647 static void set_cpu_sd_state_idle(int cpu)
9648 {
9649 struct sched_domain *sd;
9650
9651 rcu_read_lock();
9652 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9653
9654 if (!sd || sd->nohz_idle)
9655 goto unlock;
9656 sd->nohz_idle = 1;
9657
9658 atomic_dec(&sd->shared->nr_busy_cpus);
9659 unlock:
9660 rcu_read_unlock();
9661 }
9662
9663 /*
9664 * This routine will record that the CPU is going idle with tick stopped.
9665 * This info will be used in performing idle load balancing in the future.
9666 */
nohz_balance_enter_idle(int cpu)9667 void nohz_balance_enter_idle(int cpu)
9668 {
9669 struct rq *rq = cpu_rq(cpu);
9670
9671 SCHED_WARN_ON(cpu != smp_processor_id());
9672
9673 /* If this CPU is going down, then nothing needs to be done: */
9674 if (!cpu_active(cpu))
9675 return;
9676
9677 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
9678 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9679 return;
9680
9681 /*
9682 * Can be set safely without rq->lock held
9683 * If a clear happens, it will have evaluated last additions because
9684 * rq->lock is held during the check and the clear
9685 */
9686 rq->has_blocked_load = 1;
9687
9688 /*
9689 * The tick is still stopped but load could have been added in the
9690 * meantime. We set the nohz.has_blocked flag to trig a check of the
9691 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9692 * of nohz.has_blocked can only happen after checking the new load
9693 */
9694 if (rq->nohz_tick_stopped)
9695 goto out;
9696
9697 /* If we're a completely isolated CPU, we don't play: */
9698 if (on_null_domain(rq))
9699 return;
9700
9701 rq->nohz_tick_stopped = 1;
9702
9703 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9704 atomic_inc(&nohz.nr_cpus);
9705
9706 /*
9707 * Ensures that if nohz_idle_balance() fails to observe our
9708 * @idle_cpus_mask store, it must observe the @has_blocked
9709 * store.
9710 */
9711 smp_mb__after_atomic();
9712
9713 set_cpu_sd_state_idle(cpu);
9714
9715 out:
9716 /*
9717 * Each time a cpu enter idle, we assume that it has blocked load and
9718 * enable the periodic update of the load of idle cpus
9719 */
9720 WRITE_ONCE(nohz.has_blocked, 1);
9721 }
9722
9723 /*
9724 * Internal function that runs load balance for all idle cpus. The load balance
9725 * can be a simple update of blocked load or a complete load balance with
9726 * tasks movement depending of flags.
9727 * The function returns false if the loop has stopped before running
9728 * through all idle CPUs.
9729 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags,enum cpu_idle_type idle)9730 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9731 enum cpu_idle_type idle)
9732 {
9733 /* Earliest time when we have to do rebalance again */
9734 unsigned long now = jiffies;
9735 unsigned long next_balance = now + 60*HZ;
9736 bool has_blocked_load = false;
9737 int update_next_balance = 0;
9738 int this_cpu = this_rq->cpu;
9739 int balance_cpu;
9740 int ret = false;
9741 struct rq *rq;
9742
9743 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9744
9745 /*
9746 * We assume there will be no idle load after this update and clear
9747 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9748 * set the has_blocked flag and trig another update of idle load.
9749 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9750 * setting the flag, we are sure to not clear the state and not
9751 * check the load of an idle cpu.
9752 */
9753 WRITE_ONCE(nohz.has_blocked, 0);
9754
9755 /*
9756 * Ensures that if we miss the CPU, we must see the has_blocked
9757 * store from nohz_balance_enter_idle().
9758 */
9759 smp_mb();
9760
9761 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9762 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9763 continue;
9764
9765 /*
9766 * If this CPU gets work to do, stop the load balancing
9767 * work being done for other CPUs. Next load
9768 * balancing owner will pick it up.
9769 */
9770 if (need_resched()) {
9771 has_blocked_load = true;
9772 goto abort;
9773 }
9774
9775 rq = cpu_rq(balance_cpu);
9776
9777 has_blocked_load |= update_nohz_stats(rq, true);
9778
9779 /*
9780 * If time for next balance is due,
9781 * do the balance.
9782 */
9783 if (time_after_eq(jiffies, rq->next_balance)) {
9784 struct rq_flags rf;
9785
9786 rq_lock_irqsave(rq, &rf);
9787 update_rq_clock(rq);
9788 rq_unlock_irqrestore(rq, &rf);
9789
9790 if (flags & NOHZ_BALANCE_KICK)
9791 rebalance_domains(rq, CPU_IDLE);
9792 }
9793
9794 if (time_after(next_balance, rq->next_balance)) {
9795 next_balance = rq->next_balance;
9796 update_next_balance = 1;
9797 }
9798 }
9799
9800 /* Newly idle CPU doesn't need an update */
9801 if (idle != CPU_NEWLY_IDLE) {
9802 update_blocked_averages(this_cpu);
9803 has_blocked_load |= this_rq->has_blocked_load;
9804 }
9805
9806 if (flags & NOHZ_BALANCE_KICK)
9807 rebalance_domains(this_rq, CPU_IDLE);
9808
9809 WRITE_ONCE(nohz.next_blocked,
9810 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9811
9812 /* The full idle balance loop has been done */
9813 ret = true;
9814
9815 abort:
9816 /* There is still blocked load, enable periodic update */
9817 if (has_blocked_load)
9818 WRITE_ONCE(nohz.has_blocked, 1);
9819
9820 /*
9821 * next_balance will be updated only when there is a need.
9822 * When the CPU is attached to null domain for ex, it will not be
9823 * updated.
9824 */
9825 if (likely(update_next_balance))
9826 nohz.next_balance = next_balance;
9827
9828 return ret;
9829 }
9830
9831 /*
9832 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9833 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9834 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)9835 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9836 {
9837 int this_cpu = this_rq->cpu;
9838 unsigned int flags;
9839
9840 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9841 return false;
9842
9843 if (idle != CPU_IDLE) {
9844 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9845 return false;
9846 }
9847
9848 /* could be _relaxed() */
9849 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9850 if (!(flags & NOHZ_KICK_MASK))
9851 return false;
9852
9853 _nohz_idle_balance(this_rq, flags, idle);
9854
9855 return true;
9856 }
9857
nohz_newidle_balance(struct rq * this_rq)9858 static void nohz_newidle_balance(struct rq *this_rq)
9859 {
9860 int this_cpu = this_rq->cpu;
9861
9862 /*
9863 * This CPU doesn't want to be disturbed by scheduler
9864 * housekeeping
9865 */
9866 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9867 return;
9868
9869 /* Will wake up very soon. No time for doing anything else*/
9870 if (this_rq->avg_idle < sysctl_sched_migration_cost)
9871 return;
9872
9873 /* Don't need to update blocked load of idle CPUs*/
9874 if (!READ_ONCE(nohz.has_blocked) ||
9875 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9876 return;
9877
9878 raw_spin_unlock(&this_rq->lock);
9879 /*
9880 * This CPU is going to be idle and blocked load of idle CPUs
9881 * need to be updated. Run the ilb locally as it is a good
9882 * candidate for ilb instead of waking up another idle CPU.
9883 * Kick an normal ilb if we failed to do the update.
9884 */
9885 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9886 kick_ilb(NOHZ_STATS_KICK);
9887 raw_spin_lock(&this_rq->lock);
9888 }
9889
9890 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)9891 static inline void nohz_balancer_kick(struct rq *rq) { }
9892
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)9893 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9894 {
9895 return false;
9896 }
9897
nohz_newidle_balance(struct rq * this_rq)9898 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9899 #endif /* CONFIG_NO_HZ_COMMON */
9900
9901 /*
9902 * idle_balance is called by schedule() if this_cpu is about to become
9903 * idle. Attempts to pull tasks from other CPUs.
9904 */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)9905 int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
9906 {
9907 unsigned long next_balance = jiffies + HZ;
9908 int this_cpu = this_rq->cpu;
9909 struct sched_domain *sd;
9910 int pulled_task = 0;
9911 u64 curr_cost = 0;
9912
9913 update_misfit_status(NULL, this_rq);
9914 /*
9915 * We must set idle_stamp _before_ calling idle_balance(), such that we
9916 * measure the duration of idle_balance() as idle time.
9917 */
9918 this_rq->idle_stamp = rq_clock(this_rq);
9919
9920 /*
9921 * Do not pull tasks towards !active CPUs...
9922 */
9923 if (!cpu_active(this_cpu))
9924 return 0;
9925
9926 /*
9927 * This is OK, because current is on_cpu, which avoids it being picked
9928 * for load-balance and preemption/IRQs are still disabled avoiding
9929 * further scheduler activity on it and we're being very careful to
9930 * re-start the picking loop.
9931 */
9932 rq_unpin_lock(this_rq, rf);
9933
9934 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9935 !READ_ONCE(this_rq->rd->overload)) {
9936
9937 rcu_read_lock();
9938 sd = rcu_dereference_check_sched_domain(this_rq->sd);
9939 if (sd)
9940 update_next_balance(sd, &next_balance);
9941 rcu_read_unlock();
9942
9943 nohz_newidle_balance(this_rq);
9944
9945 goto out;
9946 }
9947
9948 raw_spin_unlock(&this_rq->lock);
9949
9950 update_blocked_averages(this_cpu);
9951 rcu_read_lock();
9952 for_each_domain(this_cpu, sd) {
9953 int continue_balancing = 1;
9954 u64 t0, domain_cost;
9955
9956 if (!(sd->flags & SD_LOAD_BALANCE))
9957 continue;
9958
9959 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9960 update_next_balance(sd, &next_balance);
9961 break;
9962 }
9963
9964 if (sd->flags & SD_BALANCE_NEWIDLE) {
9965 t0 = sched_clock_cpu(this_cpu);
9966
9967 pulled_task = load_balance(this_cpu, this_rq,
9968 sd, CPU_NEWLY_IDLE,
9969 &continue_balancing);
9970
9971 domain_cost = sched_clock_cpu(this_cpu) - t0;
9972 if (domain_cost > sd->max_newidle_lb_cost)
9973 sd->max_newidle_lb_cost = domain_cost;
9974
9975 curr_cost += domain_cost;
9976 }
9977
9978 update_next_balance(sd, &next_balance);
9979
9980 /*
9981 * Stop searching for tasks to pull if there are
9982 * now runnable tasks on this rq.
9983 */
9984 if (pulled_task || this_rq->nr_running > 0)
9985 break;
9986 }
9987 rcu_read_unlock();
9988
9989 raw_spin_lock(&this_rq->lock);
9990
9991 if (curr_cost > this_rq->max_idle_balance_cost)
9992 this_rq->max_idle_balance_cost = curr_cost;
9993
9994 out:
9995 /*
9996 * While browsing the domains, we released the rq lock, a task could
9997 * have been enqueued in the meantime. Since we're not going idle,
9998 * pretend we pulled a task.
9999 */
10000 if (this_rq->cfs.h_nr_running && !pulled_task)
10001 pulled_task = 1;
10002
10003 /* Move the next balance forward */
10004 if (time_after(this_rq->next_balance, next_balance))
10005 this_rq->next_balance = next_balance;
10006
10007 /* Is there a task of a high priority class? */
10008 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10009 pulled_task = -1;
10010
10011 if (pulled_task)
10012 this_rq->idle_stamp = 0;
10013
10014 rq_repin_lock(this_rq, rf);
10015
10016 return pulled_task;
10017 }
10018
10019 /*
10020 * run_rebalance_domains is triggered when needed from the scheduler tick.
10021 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10022 */
run_rebalance_domains(struct softirq_action * h)10023 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10024 {
10025 struct rq *this_rq = this_rq();
10026 enum cpu_idle_type idle = this_rq->idle_balance ?
10027 CPU_IDLE : CPU_NOT_IDLE;
10028
10029 /*
10030 * If this CPU has a pending nohz_balance_kick, then do the
10031 * balancing on behalf of the other idle CPUs whose ticks are
10032 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10033 * give the idle CPUs a chance to load balance. Else we may
10034 * load balance only within the local sched_domain hierarchy
10035 * and abort nohz_idle_balance altogether if we pull some load.
10036 */
10037 if (nohz_idle_balance(this_rq, idle))
10038 return;
10039
10040 /* normal load balance */
10041 update_blocked_averages(this_rq->cpu);
10042 rebalance_domains(this_rq, idle);
10043 }
10044
10045 /*
10046 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10047 */
trigger_load_balance(struct rq * rq)10048 void trigger_load_balance(struct rq *rq)
10049 {
10050 /* Don't need to rebalance while attached to NULL domain */
10051 if (unlikely(on_null_domain(rq)))
10052 return;
10053
10054 if (time_after_eq(jiffies, rq->next_balance))
10055 raise_softirq(SCHED_SOFTIRQ);
10056
10057 nohz_balancer_kick(rq);
10058 }
10059
rq_online_fair(struct rq * rq)10060 static void rq_online_fair(struct rq *rq)
10061 {
10062 update_sysctl();
10063
10064 update_runtime_enabled(rq);
10065 }
10066
rq_offline_fair(struct rq * rq)10067 static void rq_offline_fair(struct rq *rq)
10068 {
10069 update_sysctl();
10070
10071 /* Ensure any throttled groups are reachable by pick_next_task */
10072 unthrottle_offline_cfs_rqs(rq);
10073 }
10074
10075 #endif /* CONFIG_SMP */
10076
10077 /*
10078 * scheduler tick hitting a task of our scheduling class.
10079 *
10080 * NOTE: This function can be called remotely by the tick offload that
10081 * goes along full dynticks. Therefore no local assumption can be made
10082 * and everything must be accessed through the @rq and @curr passed in
10083 * parameters.
10084 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)10085 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10086 {
10087 struct cfs_rq *cfs_rq;
10088 struct sched_entity *se = &curr->se;
10089
10090 for_each_sched_entity(se) {
10091 cfs_rq = cfs_rq_of(se);
10092 entity_tick(cfs_rq, se, queued);
10093 }
10094
10095 if (static_branch_unlikely(&sched_numa_balancing))
10096 task_tick_numa(rq, curr);
10097
10098 update_misfit_status(curr, rq);
10099 update_overutilized_status(task_rq(curr));
10100 }
10101
10102 /*
10103 * called on fork with the child task as argument from the parent's context
10104 * - child not yet on the tasklist
10105 * - preemption disabled
10106 */
task_fork_fair(struct task_struct * p)10107 static void task_fork_fair(struct task_struct *p)
10108 {
10109 struct cfs_rq *cfs_rq;
10110 struct sched_entity *se = &p->se, *curr;
10111 struct rq *rq = this_rq();
10112 struct rq_flags rf;
10113
10114 rq_lock(rq, &rf);
10115 update_rq_clock(rq);
10116
10117 cfs_rq = task_cfs_rq(current);
10118 curr = cfs_rq->curr;
10119 if (curr) {
10120 update_curr(cfs_rq);
10121 se->vruntime = curr->vruntime;
10122 }
10123 place_entity(cfs_rq, se, 1);
10124
10125 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10126 /*
10127 * Upon rescheduling, sched_class::put_prev_task() will place
10128 * 'current' within the tree based on its new key value.
10129 */
10130 swap(curr->vruntime, se->vruntime);
10131 resched_curr(rq);
10132 }
10133
10134 se->vruntime -= cfs_rq->min_vruntime;
10135 rq_unlock(rq, &rf);
10136 }
10137
10138 /*
10139 * Priority of the task has changed. Check to see if we preempt
10140 * the current task.
10141 */
10142 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)10143 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10144 {
10145 if (!task_on_rq_queued(p))
10146 return;
10147
10148 /*
10149 * Reschedule if we are currently running on this runqueue and
10150 * our priority decreased, or if we are not currently running on
10151 * this runqueue and our priority is higher than the current's
10152 */
10153 if (rq->curr == p) {
10154 if (p->prio > oldprio)
10155 resched_curr(rq);
10156 } else
10157 check_preempt_curr(rq, p, 0);
10158 }
10159
vruntime_normalized(struct task_struct * p)10160 static inline bool vruntime_normalized(struct task_struct *p)
10161 {
10162 struct sched_entity *se = &p->se;
10163
10164 /*
10165 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10166 * the dequeue_entity(.flags=0) will already have normalized the
10167 * vruntime.
10168 */
10169 if (p->on_rq)
10170 return true;
10171
10172 /*
10173 * When !on_rq, vruntime of the task has usually NOT been normalized.
10174 * But there are some cases where it has already been normalized:
10175 *
10176 * - A forked child which is waiting for being woken up by
10177 * wake_up_new_task().
10178 * - A task which has been woken up by try_to_wake_up() and
10179 * waiting for actually being woken up by sched_ttwu_pending().
10180 */
10181 if (!se->sum_exec_runtime ||
10182 (p->state == TASK_WAKING && p->sched_remote_wakeup))
10183 return true;
10184
10185 return false;
10186 }
10187
10188 #ifdef CONFIG_FAIR_GROUP_SCHED
10189 /*
10190 * Propagate the changes of the sched_entity across the tg tree to make it
10191 * visible to the root
10192 */
propagate_entity_cfs_rq(struct sched_entity * se)10193 static void propagate_entity_cfs_rq(struct sched_entity *se)
10194 {
10195 struct cfs_rq *cfs_rq;
10196
10197 /* Start to propagate at parent */
10198 se = se->parent;
10199
10200 for_each_sched_entity(se) {
10201 cfs_rq = cfs_rq_of(se);
10202
10203 if (cfs_rq_throttled(cfs_rq))
10204 break;
10205
10206 update_load_avg(cfs_rq, se, UPDATE_TG);
10207 }
10208 }
10209 #else
propagate_entity_cfs_rq(struct sched_entity * se)10210 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10211 #endif
10212
detach_entity_cfs_rq(struct sched_entity * se)10213 static void detach_entity_cfs_rq(struct sched_entity *se)
10214 {
10215 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10216
10217 /* Catch up with the cfs_rq and remove our load when we leave */
10218 update_load_avg(cfs_rq, se, 0);
10219 detach_entity_load_avg(cfs_rq, se);
10220 update_tg_load_avg(cfs_rq, false);
10221 propagate_entity_cfs_rq(se);
10222 }
10223
attach_entity_cfs_rq(struct sched_entity * se)10224 static void attach_entity_cfs_rq(struct sched_entity *se)
10225 {
10226 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10227
10228 #ifdef CONFIG_FAIR_GROUP_SCHED
10229 /*
10230 * Since the real-depth could have been changed (only FAIR
10231 * class maintain depth value), reset depth properly.
10232 */
10233 se->depth = se->parent ? se->parent->depth + 1 : 0;
10234 #endif
10235
10236 /* Synchronize entity with its cfs_rq */
10237 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10238 attach_entity_load_avg(cfs_rq, se, 0);
10239 update_tg_load_avg(cfs_rq, false);
10240 propagate_entity_cfs_rq(se);
10241 }
10242
detach_task_cfs_rq(struct task_struct * p)10243 static void detach_task_cfs_rq(struct task_struct *p)
10244 {
10245 struct sched_entity *se = &p->se;
10246 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10247
10248 if (!vruntime_normalized(p)) {
10249 /*
10250 * Fix up our vruntime so that the current sleep doesn't
10251 * cause 'unlimited' sleep bonus.
10252 */
10253 place_entity(cfs_rq, se, 0);
10254 se->vruntime -= cfs_rq->min_vruntime;
10255 }
10256
10257 detach_entity_cfs_rq(se);
10258 }
10259
attach_task_cfs_rq(struct task_struct * p)10260 static void attach_task_cfs_rq(struct task_struct *p)
10261 {
10262 struct sched_entity *se = &p->se;
10263 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10264
10265 attach_entity_cfs_rq(se);
10266
10267 if (!vruntime_normalized(p))
10268 se->vruntime += cfs_rq->min_vruntime;
10269 }
10270
switched_from_fair(struct rq * rq,struct task_struct * p)10271 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10272 {
10273 detach_task_cfs_rq(p);
10274 }
10275
switched_to_fair(struct rq * rq,struct task_struct * p)10276 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10277 {
10278 attach_task_cfs_rq(p);
10279
10280 if (task_on_rq_queued(p)) {
10281 /*
10282 * We were most likely switched from sched_rt, so
10283 * kick off the schedule if running, otherwise just see
10284 * if we can still preempt the current task.
10285 */
10286 if (rq->curr == p)
10287 resched_curr(rq);
10288 else
10289 check_preempt_curr(rq, p, 0);
10290 }
10291 }
10292
10293 /* Account for a task changing its policy or group.
10294 *
10295 * This routine is mostly called to set cfs_rq->curr field when a task
10296 * migrates between groups/classes.
10297 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)10298 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10299 {
10300 struct sched_entity *se = &p->se;
10301
10302 #ifdef CONFIG_SMP
10303 if (task_on_rq_queued(p)) {
10304 /*
10305 * Move the next running task to the front of the list, so our
10306 * cfs_tasks list becomes MRU one.
10307 */
10308 list_move(&se->group_node, &rq->cfs_tasks);
10309 }
10310 #endif
10311
10312 for_each_sched_entity(se) {
10313 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10314
10315 set_next_entity(cfs_rq, se);
10316 /* ensure bandwidth has been allocated on our new cfs_rq */
10317 account_cfs_rq_runtime(cfs_rq, 0);
10318 }
10319 }
10320
init_cfs_rq(struct cfs_rq * cfs_rq)10321 void init_cfs_rq(struct cfs_rq *cfs_rq)
10322 {
10323 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10324 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10325 #ifndef CONFIG_64BIT
10326 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10327 #endif
10328 #ifdef CONFIG_SMP
10329 raw_spin_lock_init(&cfs_rq->removed.lock);
10330 #endif
10331 }
10332
10333 #ifdef CONFIG_FAIR_GROUP_SCHED
task_set_group_fair(struct task_struct * p)10334 static void task_set_group_fair(struct task_struct *p)
10335 {
10336 struct sched_entity *se = &p->se;
10337
10338 set_task_rq(p, task_cpu(p));
10339 se->depth = se->parent ? se->parent->depth + 1 : 0;
10340 }
10341
task_move_group_fair(struct task_struct * p)10342 static void task_move_group_fair(struct task_struct *p)
10343 {
10344 detach_task_cfs_rq(p);
10345 set_task_rq(p, task_cpu(p));
10346
10347 #ifdef CONFIG_SMP
10348 /* Tell se's cfs_rq has been changed -- migrated */
10349 p->se.avg.last_update_time = 0;
10350 #endif
10351 attach_task_cfs_rq(p);
10352 }
10353
task_change_group_fair(struct task_struct * p,int type)10354 static void task_change_group_fair(struct task_struct *p, int type)
10355 {
10356 switch (type) {
10357 case TASK_SET_GROUP:
10358 task_set_group_fair(p);
10359 break;
10360
10361 case TASK_MOVE_GROUP:
10362 task_move_group_fair(p);
10363 break;
10364 }
10365 }
10366
free_fair_sched_group(struct task_group * tg)10367 void free_fair_sched_group(struct task_group *tg)
10368 {
10369 int i;
10370
10371 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10372
10373 for_each_possible_cpu(i) {
10374 if (tg->cfs_rq)
10375 kfree(tg->cfs_rq[i]);
10376 if (tg->se)
10377 kfree(tg->se[i]);
10378 }
10379
10380 kfree(tg->cfs_rq);
10381 kfree(tg->se);
10382 }
10383
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)10384 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10385 {
10386 struct sched_entity *se;
10387 struct cfs_rq *cfs_rq;
10388 int i;
10389
10390 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10391 if (!tg->cfs_rq)
10392 goto err;
10393 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10394 if (!tg->se)
10395 goto err;
10396
10397 tg->shares = NICE_0_LOAD;
10398
10399 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10400
10401 for_each_possible_cpu(i) {
10402 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10403 GFP_KERNEL, cpu_to_node(i));
10404 if (!cfs_rq)
10405 goto err;
10406
10407 se = kzalloc_node(sizeof(struct sched_entity),
10408 GFP_KERNEL, cpu_to_node(i));
10409 if (!se)
10410 goto err_free_rq;
10411
10412 init_cfs_rq(cfs_rq);
10413 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10414 init_entity_runnable_average(se);
10415 }
10416
10417 return 1;
10418
10419 err_free_rq:
10420 kfree(cfs_rq);
10421 err:
10422 return 0;
10423 }
10424
online_fair_sched_group(struct task_group * tg)10425 void online_fair_sched_group(struct task_group *tg)
10426 {
10427 struct sched_entity *se;
10428 struct rq_flags rf;
10429 struct rq *rq;
10430 int i;
10431
10432 for_each_possible_cpu(i) {
10433 rq = cpu_rq(i);
10434 se = tg->se[i];
10435 rq_lock_irq(rq, &rf);
10436 update_rq_clock(rq);
10437 attach_entity_cfs_rq(se);
10438 sync_throttle(tg, i);
10439 rq_unlock_irq(rq, &rf);
10440 }
10441 }
10442
unregister_fair_sched_group(struct task_group * tg)10443 void unregister_fair_sched_group(struct task_group *tg)
10444 {
10445 unsigned long flags;
10446 struct rq *rq;
10447 int cpu;
10448
10449 for_each_possible_cpu(cpu) {
10450 if (tg->se[cpu])
10451 remove_entity_load_avg(tg->se[cpu]);
10452
10453 /*
10454 * Only empty task groups can be destroyed; so we can speculatively
10455 * check on_list without danger of it being re-added.
10456 */
10457 if (!tg->cfs_rq[cpu]->on_list)
10458 continue;
10459
10460 rq = cpu_rq(cpu);
10461
10462 raw_spin_lock_irqsave(&rq->lock, flags);
10463 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10464 raw_spin_unlock_irqrestore(&rq->lock, flags);
10465 }
10466 }
10467
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)10468 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10469 struct sched_entity *se, int cpu,
10470 struct sched_entity *parent)
10471 {
10472 struct rq *rq = cpu_rq(cpu);
10473
10474 cfs_rq->tg = tg;
10475 cfs_rq->rq = rq;
10476 init_cfs_rq_runtime(cfs_rq);
10477
10478 tg->cfs_rq[cpu] = cfs_rq;
10479 tg->se[cpu] = se;
10480
10481 /* se could be NULL for root_task_group */
10482 if (!se)
10483 return;
10484
10485 if (!parent) {
10486 se->cfs_rq = &rq->cfs;
10487 se->depth = 0;
10488 } else {
10489 se->cfs_rq = parent->my_q;
10490 se->depth = parent->depth + 1;
10491 }
10492
10493 se->my_q = cfs_rq;
10494 /* guarantee group entities always have weight */
10495 update_load_set(&se->load, NICE_0_LOAD);
10496 se->parent = parent;
10497 }
10498
10499 static DEFINE_MUTEX(shares_mutex);
10500
sched_group_set_shares(struct task_group * tg,unsigned long shares)10501 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10502 {
10503 int i;
10504
10505 /*
10506 * We can't change the weight of the root cgroup.
10507 */
10508 if (!tg->se[0])
10509 return -EINVAL;
10510
10511 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10512
10513 mutex_lock(&shares_mutex);
10514 if (tg->shares == shares)
10515 goto done;
10516
10517 tg->shares = shares;
10518 for_each_possible_cpu(i) {
10519 struct rq *rq = cpu_rq(i);
10520 struct sched_entity *se = tg->se[i];
10521 struct rq_flags rf;
10522
10523 /* Propagate contribution to hierarchy */
10524 rq_lock_irqsave(rq, &rf);
10525 update_rq_clock(rq);
10526 for_each_sched_entity(se) {
10527 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10528 update_cfs_group(se);
10529 }
10530 rq_unlock_irqrestore(rq, &rf);
10531 }
10532
10533 done:
10534 mutex_unlock(&shares_mutex);
10535 return 0;
10536 }
10537 #else /* CONFIG_FAIR_GROUP_SCHED */
10538
free_fair_sched_group(struct task_group * tg)10539 void free_fair_sched_group(struct task_group *tg) { }
10540
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)10541 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10542 {
10543 return 1;
10544 }
10545
online_fair_sched_group(struct task_group * tg)10546 void online_fair_sched_group(struct task_group *tg) { }
10547
unregister_fair_sched_group(struct task_group * tg)10548 void unregister_fair_sched_group(struct task_group *tg) { }
10549
10550 #endif /* CONFIG_FAIR_GROUP_SCHED */
10551
10552
get_rr_interval_fair(struct rq * rq,struct task_struct * task)10553 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10554 {
10555 struct sched_entity *se = &task->se;
10556 unsigned int rr_interval = 0;
10557
10558 /*
10559 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10560 * idle runqueue:
10561 */
10562 if (rq->cfs.load.weight)
10563 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10564
10565 return rr_interval;
10566 }
10567
10568 /*
10569 * All the scheduling class methods:
10570 */
10571 const struct sched_class fair_sched_class = {
10572 .next = &idle_sched_class,
10573 .enqueue_task = enqueue_task_fair,
10574 .dequeue_task = dequeue_task_fair,
10575 .yield_task = yield_task_fair,
10576 .yield_to_task = yield_to_task_fair,
10577
10578 .check_preempt_curr = check_preempt_wakeup,
10579
10580 .pick_next_task = pick_next_task_fair,
10581 .put_prev_task = put_prev_task_fair,
10582 .set_next_task = set_next_task_fair,
10583
10584 #ifdef CONFIG_SMP
10585 .balance = balance_fair,
10586 .select_task_rq = select_task_rq_fair,
10587 .migrate_task_rq = migrate_task_rq_fair,
10588
10589 .rq_online = rq_online_fair,
10590 .rq_offline = rq_offline_fair,
10591
10592 .task_dead = task_dead_fair,
10593 .set_cpus_allowed = set_cpus_allowed_common,
10594 #endif
10595
10596 .task_tick = task_tick_fair,
10597 .task_fork = task_fork_fair,
10598
10599 .prio_changed = prio_changed_fair,
10600 .switched_from = switched_from_fair,
10601 .switched_to = switched_to_fair,
10602
10603 .get_rr_interval = get_rr_interval_fair,
10604
10605 .update_curr = update_curr_fair,
10606
10607 #ifdef CONFIG_FAIR_GROUP_SCHED
10608 .task_change_group = task_change_group_fair,
10609 #endif
10610
10611 #ifdef CONFIG_UCLAMP_TASK
10612 .uclamp_enabled = 1,
10613 #endif
10614 };
10615
10616 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)10617 void print_cfs_stats(struct seq_file *m, int cpu)
10618 {
10619 struct cfs_rq *cfs_rq, *pos;
10620
10621 rcu_read_lock();
10622 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10623 print_cfs_rq(m, cpu, cfs_rq);
10624 rcu_read_unlock();
10625 }
10626
10627 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)10628 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10629 {
10630 int node;
10631 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10632 struct numa_group *ng;
10633
10634 rcu_read_lock();
10635 ng = rcu_dereference(p->numa_group);
10636 for_each_online_node(node) {
10637 if (p->numa_faults) {
10638 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10639 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10640 }
10641 if (ng) {
10642 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
10643 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
10644 }
10645 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10646 }
10647 rcu_read_unlock();
10648 }
10649 #endif /* CONFIG_NUMA_BALANCING */
10650 #endif /* CONFIG_SCHED_DEBUG */
10651
init_sched_fair_class(void)10652 __init void init_sched_fair_class(void)
10653 {
10654 #ifdef CONFIG_SMP
10655 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10656
10657 #ifdef CONFIG_NO_HZ_COMMON
10658 nohz.next_balance = jiffies;
10659 nohz.next_blocked = jiffies;
10660 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10661 #endif
10662 #endif /* SMP */
10663
10664 }
10665
10666 /*
10667 * Helper functions to facilitate extracting info from tracepoints.
10668 */
10669
sched_trace_cfs_rq_avg(struct cfs_rq * cfs_rq)10670 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
10671 {
10672 #ifdef CONFIG_SMP
10673 return cfs_rq ? &cfs_rq->avg : NULL;
10674 #else
10675 return NULL;
10676 #endif
10677 }
10678 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
10679
sched_trace_cfs_rq_path(struct cfs_rq * cfs_rq,char * str,int len)10680 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
10681 {
10682 if (!cfs_rq) {
10683 if (str)
10684 strlcpy(str, "(null)", len);
10685 else
10686 return NULL;
10687 }
10688
10689 cfs_rq_tg_path(cfs_rq, str, len);
10690 return str;
10691 }
10692 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
10693
sched_trace_cfs_rq_cpu(struct cfs_rq * cfs_rq)10694 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
10695 {
10696 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
10697 }
10698 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
10699
sched_trace_rq_avg_rt(struct rq * rq)10700 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
10701 {
10702 #ifdef CONFIG_SMP
10703 return rq ? &rq->avg_rt : NULL;
10704 #else
10705 return NULL;
10706 #endif
10707 }
10708 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
10709
sched_trace_rq_avg_dl(struct rq * rq)10710 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
10711 {
10712 #ifdef CONFIG_SMP
10713 return rq ? &rq->avg_dl : NULL;
10714 #else
10715 return NULL;
10716 #endif
10717 }
10718 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
10719
sched_trace_rq_avg_irq(struct rq * rq)10720 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
10721 {
10722 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
10723 return rq ? &rq->avg_irq : NULL;
10724 #else
10725 return NULL;
10726 #endif
10727 }
10728 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
10729
sched_trace_rq_cpu(struct rq * rq)10730 int sched_trace_rq_cpu(struct rq *rq)
10731 {
10732 return rq ? cpu_of(rq) : -1;
10733 }
10734 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
10735
sched_trace_rd_span(struct root_domain * rd)10736 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
10737 {
10738 #ifdef CONFIG_SMP
10739 return rd ? rd->span : NULL;
10740 #else
10741 return NULL;
10742 #endif
10743 }
10744 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
10745