1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/time.h> 267 #include <linux/slab.h> 268 #include <linux/errqueue.h> 269 #include <linux/static_key.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/xfrm.h> 275 #include <net/ip.h> 276 #include <net/sock.h> 277 278 #include <linux/uaccess.h> 279 #include <asm/ioctls.h> 280 #include <net/busy_poll.h> 281 282 struct percpu_counter tcp_orphan_count; 283 EXPORT_SYMBOL_GPL(tcp_orphan_count); 284 285 long sysctl_tcp_mem[3] __read_mostly; 286 EXPORT_SYMBOL(sysctl_tcp_mem); 287 288 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 289 EXPORT_SYMBOL(tcp_memory_allocated); 290 291 #if IS_ENABLED(CONFIG_SMC) 292 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 293 EXPORT_SYMBOL(tcp_have_smc); 294 #endif 295 296 /* 297 * Current number of TCP sockets. 298 */ 299 struct percpu_counter tcp_sockets_allocated; 300 EXPORT_SYMBOL(tcp_sockets_allocated); 301 302 /* 303 * TCP splice context 304 */ 305 struct tcp_splice_state { 306 struct pipe_inode_info *pipe; 307 size_t len; 308 unsigned int flags; 309 }; 310 311 /* 312 * Pressure flag: try to collapse. 313 * Technical note: it is used by multiple contexts non atomically. 314 * All the __sk_mem_schedule() is of this nature: accounting 315 * is strict, actions are advisory and have some latency. 316 */ 317 unsigned long tcp_memory_pressure __read_mostly; 318 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 319 320 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 321 EXPORT_SYMBOL(tcp_rx_skb_cache_key); 322 323 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 324 tcp_enter_memory_pressure(struct sock * sk)325 void tcp_enter_memory_pressure(struct sock *sk) 326 { 327 unsigned long val; 328 329 if (READ_ONCE(tcp_memory_pressure)) 330 return; 331 val = jiffies; 332 333 if (!val) 334 val--; 335 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 336 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 337 } 338 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 339 tcp_leave_memory_pressure(struct sock * sk)340 void tcp_leave_memory_pressure(struct sock *sk) 341 { 342 unsigned long val; 343 344 if (!READ_ONCE(tcp_memory_pressure)) 345 return; 346 val = xchg(&tcp_memory_pressure, 0); 347 if (val) 348 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 349 jiffies_to_msecs(jiffies - val)); 350 } 351 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 352 353 /* Convert seconds to retransmits based on initial and max timeout */ secs_to_retrans(int seconds,int timeout,int rto_max)354 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 355 { 356 u8 res = 0; 357 358 if (seconds > 0) { 359 int period = timeout; 360 361 res = 1; 362 while (seconds > period && res < 255) { 363 res++; 364 timeout <<= 1; 365 if (timeout > rto_max) 366 timeout = rto_max; 367 period += timeout; 368 } 369 } 370 return res; 371 } 372 373 /* Convert retransmits to seconds based on initial and max timeout */ retrans_to_secs(u8 retrans,int timeout,int rto_max)374 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 375 { 376 int period = 0; 377 378 if (retrans > 0) { 379 period = timeout; 380 while (--retrans) { 381 timeout <<= 1; 382 if (timeout > rto_max) 383 timeout = rto_max; 384 period += timeout; 385 } 386 } 387 return period; 388 } 389 tcp_compute_delivery_rate(const struct tcp_sock * tp)390 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 391 { 392 u32 rate = READ_ONCE(tp->rate_delivered); 393 u32 intv = READ_ONCE(tp->rate_interval_us); 394 u64 rate64 = 0; 395 396 if (rate && intv) { 397 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 398 do_div(rate64, intv); 399 } 400 return rate64; 401 } 402 403 /* Address-family independent initialization for a tcp_sock. 404 * 405 * NOTE: A lot of things set to zero explicitly by call to 406 * sk_alloc() so need not be done here. 407 */ tcp_init_sock(struct sock * sk)408 void tcp_init_sock(struct sock *sk) 409 { 410 struct inet_connection_sock *icsk = inet_csk(sk); 411 struct tcp_sock *tp = tcp_sk(sk); 412 413 tp->out_of_order_queue = RB_ROOT; 414 sk->tcp_rtx_queue = RB_ROOT; 415 tcp_init_xmit_timers(sk); 416 INIT_LIST_HEAD(&tp->tsq_node); 417 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 418 419 icsk->icsk_rto = TCP_TIMEOUT_INIT; 420 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 421 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 422 423 /* So many TCP implementations out there (incorrectly) count the 424 * initial SYN frame in their delayed-ACK and congestion control 425 * algorithms that we must have the following bandaid to talk 426 * efficiently to them. -DaveM 427 */ 428 tp->snd_cwnd = TCP_INIT_CWND; 429 430 /* There's a bubble in the pipe until at least the first ACK. */ 431 tp->app_limited = ~0U; 432 433 /* See draft-stevens-tcpca-spec-01 for discussion of the 434 * initialization of these values. 435 */ 436 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 437 tp->snd_cwnd_clamp = ~0; 438 tp->mss_cache = TCP_MSS_DEFAULT; 439 440 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 441 tcp_assign_congestion_control(sk); 442 443 tp->tsoffset = 0; 444 tp->rack.reo_wnd_steps = 1; 445 446 sk->sk_state = TCP_CLOSE; 447 448 sk->sk_write_space = sk_stream_write_space; 449 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 450 451 icsk->icsk_sync_mss = tcp_sync_mss; 452 453 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 454 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 455 456 sk_sockets_allocated_inc(sk); 457 sk->sk_route_forced_caps = NETIF_F_GSO; 458 } 459 EXPORT_SYMBOL(tcp_init_sock); 460 tcp_tx_timestamp(struct sock * sk,u16 tsflags)461 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 462 { 463 struct sk_buff *skb = tcp_write_queue_tail(sk); 464 465 if (tsflags && skb) { 466 struct skb_shared_info *shinfo = skb_shinfo(skb); 467 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 468 469 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 470 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 471 tcb->txstamp_ack = 1; 472 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 473 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 474 } 475 } 476 tcp_stream_is_readable(const struct tcp_sock * tp,int target,struct sock * sk)477 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 478 int target, struct sock *sk) 479 { 480 return (READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq) >= target) || 481 (sk->sk_prot->stream_memory_read ? 482 sk->sk_prot->stream_memory_read(sk) : false); 483 } 484 485 /* 486 * Wait for a TCP event. 487 * 488 * Note that we don't need to lock the socket, as the upper poll layers 489 * take care of normal races (between the test and the event) and we don't 490 * go look at any of the socket buffers directly. 491 */ tcp_poll(struct file * file,struct socket * sock,poll_table * wait)492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 493 { 494 __poll_t mask; 495 struct sock *sk = sock->sk; 496 const struct tcp_sock *tp = tcp_sk(sk); 497 int state; 498 499 sock_poll_wait(file, sock, wait); 500 501 state = inet_sk_state_load(sk); 502 if (state == TCP_LISTEN) 503 return inet_csk_listen_poll(sk); 504 505 /* Socket is not locked. We are protected from async events 506 * by poll logic and correct handling of state changes 507 * made by other threads is impossible in any case. 508 */ 509 510 mask = 0; 511 512 /* 513 * EPOLLHUP is certainly not done right. But poll() doesn't 514 * have a notion of HUP in just one direction, and for a 515 * socket the read side is more interesting. 516 * 517 * Some poll() documentation says that EPOLLHUP is incompatible 518 * with the EPOLLOUT/POLLWR flags, so somebody should check this 519 * all. But careful, it tends to be safer to return too many 520 * bits than too few, and you can easily break real applications 521 * if you don't tell them that something has hung up! 522 * 523 * Check-me. 524 * 525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 526 * our fs/select.c). It means that after we received EOF, 527 * poll always returns immediately, making impossible poll() on write() 528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 529 * if and only if shutdown has been made in both directions. 530 * Actually, it is interesting to look how Solaris and DUX 531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 532 * then we could set it on SND_SHUTDOWN. BTW examples given 533 * in Stevens' books assume exactly this behaviour, it explains 534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 535 * 536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 537 * blocking on fresh not-connected or disconnected socket. --ANK 538 */ 539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 540 mask |= EPOLLHUP; 541 if (sk->sk_shutdown & RCV_SHUTDOWN) 542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 543 544 /* Connected or passive Fast Open socket? */ 545 if (state != TCP_SYN_SENT && 546 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 547 int target = sock_rcvlowat(sk, 0, INT_MAX); 548 549 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 550 !sock_flag(sk, SOCK_URGINLINE) && 551 tp->urg_data) 552 target++; 553 554 if (tcp_stream_is_readable(tp, target, sk)) 555 mask |= EPOLLIN | EPOLLRDNORM; 556 557 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 558 if (sk_stream_is_writeable(sk)) { 559 mask |= EPOLLOUT | EPOLLWRNORM; 560 } else { /* send SIGIO later */ 561 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 562 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 563 564 /* Race breaker. If space is freed after 565 * wspace test but before the flags are set, 566 * IO signal will be lost. Memory barrier 567 * pairs with the input side. 568 */ 569 smp_mb__after_atomic(); 570 if (sk_stream_is_writeable(sk)) 571 mask |= EPOLLOUT | EPOLLWRNORM; 572 } 573 } else 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 576 if (tp->urg_data & TCP_URG_VALID) 577 mask |= EPOLLPRI; 578 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 579 /* Active TCP fastopen socket with defer_connect 580 * Return EPOLLOUT so application can call write() 581 * in order for kernel to generate SYN+data 582 */ 583 mask |= EPOLLOUT | EPOLLWRNORM; 584 } 585 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 586 smp_rmb(); 587 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 588 mask |= EPOLLERR; 589 590 return mask; 591 } 592 EXPORT_SYMBOL(tcp_poll); 593 tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)594 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 595 { 596 struct tcp_sock *tp = tcp_sk(sk); 597 int answ; 598 bool slow; 599 600 switch (cmd) { 601 case SIOCINQ: 602 if (sk->sk_state == TCP_LISTEN) 603 return -EINVAL; 604 605 slow = lock_sock_fast(sk); 606 answ = tcp_inq(sk); 607 unlock_sock_fast(sk, slow); 608 break; 609 case SIOCATMARK: 610 answ = tp->urg_data && 611 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 612 break; 613 case SIOCOUTQ: 614 if (sk->sk_state == TCP_LISTEN) 615 return -EINVAL; 616 617 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 618 answ = 0; 619 else 620 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 621 break; 622 case SIOCOUTQNSD: 623 if (sk->sk_state == TCP_LISTEN) 624 return -EINVAL; 625 626 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 627 answ = 0; 628 else 629 answ = READ_ONCE(tp->write_seq) - 630 READ_ONCE(tp->snd_nxt); 631 break; 632 default: 633 return -ENOIOCTLCMD; 634 } 635 636 return put_user(answ, (int __user *)arg); 637 } 638 EXPORT_SYMBOL(tcp_ioctl); 639 tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)640 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 641 { 642 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 643 tp->pushed_seq = tp->write_seq; 644 } 645 forced_push(const struct tcp_sock * tp)646 static inline bool forced_push(const struct tcp_sock *tp) 647 { 648 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 649 } 650 skb_entail(struct sock * sk,struct sk_buff * skb)651 static void skb_entail(struct sock *sk, struct sk_buff *skb) 652 { 653 struct tcp_sock *tp = tcp_sk(sk); 654 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 655 656 skb->csum = 0; 657 tcb->seq = tcb->end_seq = tp->write_seq; 658 tcb->tcp_flags = TCPHDR_ACK; 659 tcb->sacked = 0; 660 __skb_header_release(skb); 661 tcp_add_write_queue_tail(sk, skb); 662 sk_wmem_queued_add(sk, skb->truesize); 663 sk_mem_charge(sk, skb->truesize); 664 if (tp->nonagle & TCP_NAGLE_PUSH) 665 tp->nonagle &= ~TCP_NAGLE_PUSH; 666 667 tcp_slow_start_after_idle_check(sk); 668 } 669 tcp_mark_urg(struct tcp_sock * tp,int flags)670 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 671 { 672 if (flags & MSG_OOB) 673 tp->snd_up = tp->write_seq; 674 } 675 676 /* If a not yet filled skb is pushed, do not send it if 677 * we have data packets in Qdisc or NIC queues : 678 * Because TX completion will happen shortly, it gives a chance 679 * to coalesce future sendmsg() payload into this skb, without 680 * need for a timer, and with no latency trade off. 681 * As packets containing data payload have a bigger truesize 682 * than pure acks (dataless) packets, the last checks prevent 683 * autocorking if we only have an ACK in Qdisc/NIC queues, 684 * or if TX completion was delayed after we processed ACK packet. 685 */ tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)686 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 687 int size_goal) 688 { 689 return skb->len < size_goal && 690 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 691 !tcp_rtx_queue_empty(sk) && 692 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 693 } 694 tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)695 static void tcp_push(struct sock *sk, int flags, int mss_now, 696 int nonagle, int size_goal) 697 { 698 struct tcp_sock *tp = tcp_sk(sk); 699 struct sk_buff *skb; 700 701 skb = tcp_write_queue_tail(sk); 702 if (!skb) 703 return; 704 if (!(flags & MSG_MORE) || forced_push(tp)) 705 tcp_mark_push(tp, skb); 706 707 tcp_mark_urg(tp, flags); 708 709 if (tcp_should_autocork(sk, skb, size_goal)) { 710 711 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 712 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 713 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 714 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 715 } 716 /* It is possible TX completion already happened 717 * before we set TSQ_THROTTLED. 718 */ 719 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 720 return; 721 } 722 723 if (flags & MSG_MORE) 724 nonagle = TCP_NAGLE_CORK; 725 726 __tcp_push_pending_frames(sk, mss_now, nonagle); 727 } 728 tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)729 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 730 unsigned int offset, size_t len) 731 { 732 struct tcp_splice_state *tss = rd_desc->arg.data; 733 int ret; 734 735 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 736 min(rd_desc->count, len), tss->flags); 737 if (ret > 0) 738 rd_desc->count -= ret; 739 return ret; 740 } 741 __tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)742 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 743 { 744 /* Store TCP splice context information in read_descriptor_t. */ 745 read_descriptor_t rd_desc = { 746 .arg.data = tss, 747 .count = tss->len, 748 }; 749 750 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 751 } 752 753 /** 754 * tcp_splice_read - splice data from TCP socket to a pipe 755 * @sock: socket to splice from 756 * @ppos: position (not valid) 757 * @pipe: pipe to splice to 758 * @len: number of bytes to splice 759 * @flags: splice modifier flags 760 * 761 * Description: 762 * Will read pages from given socket and fill them into a pipe. 763 * 764 **/ tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)765 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 766 struct pipe_inode_info *pipe, size_t len, 767 unsigned int flags) 768 { 769 struct sock *sk = sock->sk; 770 struct tcp_splice_state tss = { 771 .pipe = pipe, 772 .len = len, 773 .flags = flags, 774 }; 775 long timeo; 776 ssize_t spliced; 777 int ret; 778 779 sock_rps_record_flow(sk); 780 /* 781 * We can't seek on a socket input 782 */ 783 if (unlikely(*ppos)) 784 return -ESPIPE; 785 786 ret = spliced = 0; 787 788 lock_sock(sk); 789 790 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 791 while (tss.len) { 792 ret = __tcp_splice_read(sk, &tss); 793 if (ret < 0) 794 break; 795 else if (!ret) { 796 if (spliced) 797 break; 798 if (sock_flag(sk, SOCK_DONE)) 799 break; 800 if (sk->sk_err) { 801 ret = sock_error(sk); 802 break; 803 } 804 if (sk->sk_shutdown & RCV_SHUTDOWN) 805 break; 806 if (sk->sk_state == TCP_CLOSE) { 807 /* 808 * This occurs when user tries to read 809 * from never connected socket. 810 */ 811 ret = -ENOTCONN; 812 break; 813 } 814 if (!timeo) { 815 ret = -EAGAIN; 816 break; 817 } 818 /* if __tcp_splice_read() got nothing while we have 819 * an skb in receive queue, we do not want to loop. 820 * This might happen with URG data. 821 */ 822 if (!skb_queue_empty(&sk->sk_receive_queue)) 823 break; 824 sk_wait_data(sk, &timeo, NULL); 825 if (signal_pending(current)) { 826 ret = sock_intr_errno(timeo); 827 break; 828 } 829 continue; 830 } 831 tss.len -= ret; 832 spliced += ret; 833 834 if (!timeo) 835 break; 836 release_sock(sk); 837 lock_sock(sk); 838 839 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 840 (sk->sk_shutdown & RCV_SHUTDOWN) || 841 signal_pending(current)) 842 break; 843 } 844 845 release_sock(sk); 846 847 if (spliced) 848 return spliced; 849 850 return ret; 851 } 852 EXPORT_SYMBOL(tcp_splice_read); 853 sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)854 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 855 bool force_schedule) 856 { 857 struct sk_buff *skb; 858 859 if (likely(!size)) { 860 skb = sk->sk_tx_skb_cache; 861 if (skb) { 862 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 863 sk->sk_tx_skb_cache = NULL; 864 pskb_trim(skb, 0); 865 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 866 skb_shinfo(skb)->tx_flags = 0; 867 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); 868 return skb; 869 } 870 } 871 /* The TCP header must be at least 32-bit aligned. */ 872 size = ALIGN(size, 4); 873 874 if (unlikely(tcp_under_memory_pressure(sk))) 875 sk_mem_reclaim_partial(sk); 876 877 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 878 if (likely(skb)) { 879 bool mem_scheduled; 880 881 if (force_schedule) { 882 mem_scheduled = true; 883 sk_forced_mem_schedule(sk, skb->truesize); 884 } else { 885 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 886 } 887 if (likely(mem_scheduled)) { 888 skb_reserve(skb, sk->sk_prot->max_header); 889 /* 890 * Make sure that we have exactly size bytes 891 * available to the caller, no more, no less. 892 */ 893 skb->reserved_tailroom = skb->end - skb->tail - size; 894 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 895 return skb; 896 } 897 __kfree_skb(skb); 898 } else { 899 sk->sk_prot->enter_memory_pressure(sk); 900 sk_stream_moderate_sndbuf(sk); 901 } 902 return NULL; 903 } 904 tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)905 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 906 int large_allowed) 907 { 908 struct tcp_sock *tp = tcp_sk(sk); 909 u32 new_size_goal, size_goal; 910 911 if (!large_allowed) 912 return mss_now; 913 914 /* Note : tcp_tso_autosize() will eventually split this later */ 915 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 916 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 917 918 /* We try hard to avoid divides here */ 919 size_goal = tp->gso_segs * mss_now; 920 if (unlikely(new_size_goal < size_goal || 921 new_size_goal >= size_goal + mss_now)) { 922 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 923 sk->sk_gso_max_segs); 924 size_goal = tp->gso_segs * mss_now; 925 } 926 927 return max(size_goal, mss_now); 928 } 929 tcp_send_mss(struct sock * sk,int * size_goal,int flags)930 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 931 { 932 int mss_now; 933 934 mss_now = tcp_current_mss(sk); 935 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 936 937 return mss_now; 938 } 939 940 /* In some cases, both sendpage() and sendmsg() could have added 941 * an skb to the write queue, but failed adding payload on it. 942 * We need to remove it to consume less memory, but more 943 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 944 * users. 945 */ tcp_remove_empty_skb(struct sock * sk,struct sk_buff * skb)946 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb) 947 { 948 if (skb && !skb->len) { 949 tcp_unlink_write_queue(skb, sk); 950 if (tcp_write_queue_empty(sk)) 951 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 952 sk_wmem_free_skb(sk, skb); 953 } 954 } 955 do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)956 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 957 size_t size, int flags) 958 { 959 struct tcp_sock *tp = tcp_sk(sk); 960 int mss_now, size_goal; 961 int err; 962 ssize_t copied; 963 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 964 965 if (IS_ENABLED(CONFIG_DEBUG_VM) && 966 WARN_ONCE(PageSlab(page), "page must not be a Slab one")) 967 return -EINVAL; 968 969 /* Wait for a connection to finish. One exception is TCP Fast Open 970 * (passive side) where data is allowed to be sent before a connection 971 * is fully established. 972 */ 973 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 974 !tcp_passive_fastopen(sk)) { 975 err = sk_stream_wait_connect(sk, &timeo); 976 if (err != 0) 977 goto out_err; 978 } 979 980 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 981 982 mss_now = tcp_send_mss(sk, &size_goal, flags); 983 copied = 0; 984 985 err = -EPIPE; 986 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 987 goto out_err; 988 989 while (size > 0) { 990 struct sk_buff *skb = tcp_write_queue_tail(sk); 991 int copy, i; 992 bool can_coalesce; 993 994 if (!skb || (copy = size_goal - skb->len) <= 0 || 995 !tcp_skb_can_collapse_to(skb)) { 996 new_segment: 997 if (!sk_stream_memory_free(sk)) 998 goto wait_for_sndbuf; 999 1000 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1001 tcp_rtx_and_write_queues_empty(sk)); 1002 if (!skb) 1003 goto wait_for_memory; 1004 1005 #ifdef CONFIG_TLS_DEVICE 1006 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1007 #endif 1008 skb_entail(sk, skb); 1009 copy = size_goal; 1010 } 1011 1012 if (copy > size) 1013 copy = size; 1014 1015 i = skb_shinfo(skb)->nr_frags; 1016 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1017 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1018 tcp_mark_push(tp, skb); 1019 goto new_segment; 1020 } 1021 if (!sk_wmem_schedule(sk, copy)) 1022 goto wait_for_memory; 1023 1024 if (can_coalesce) { 1025 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1026 } else { 1027 get_page(page); 1028 skb_fill_page_desc(skb, i, page, offset, copy); 1029 } 1030 1031 if (!(flags & MSG_NO_SHARED_FRAGS)) 1032 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1033 1034 skb->len += copy; 1035 skb->data_len += copy; 1036 skb->truesize += copy; 1037 sk_wmem_queued_add(sk, copy); 1038 sk_mem_charge(sk, copy); 1039 skb->ip_summed = CHECKSUM_PARTIAL; 1040 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1041 TCP_SKB_CB(skb)->end_seq += copy; 1042 tcp_skb_pcount_set(skb, 0); 1043 1044 if (!copied) 1045 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1046 1047 copied += copy; 1048 offset += copy; 1049 size -= copy; 1050 if (!size) 1051 goto out; 1052 1053 if (skb->len < size_goal || (flags & MSG_OOB)) 1054 continue; 1055 1056 if (forced_push(tp)) { 1057 tcp_mark_push(tp, skb); 1058 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1059 } else if (skb == tcp_send_head(sk)) 1060 tcp_push_one(sk, mss_now); 1061 continue; 1062 1063 wait_for_sndbuf: 1064 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1065 wait_for_memory: 1066 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1067 TCP_NAGLE_PUSH, size_goal); 1068 1069 err = sk_stream_wait_memory(sk, &timeo); 1070 if (err != 0) 1071 goto do_error; 1072 1073 mss_now = tcp_send_mss(sk, &size_goal, flags); 1074 } 1075 1076 out: 1077 if (copied) { 1078 tcp_tx_timestamp(sk, sk->sk_tsflags); 1079 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1080 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1081 } 1082 return copied; 1083 1084 do_error: 1085 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk)); 1086 if (copied) 1087 goto out; 1088 out_err: 1089 /* make sure we wake any epoll edge trigger waiter */ 1090 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1091 sk->sk_write_space(sk); 1092 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1093 } 1094 return sk_stream_error(sk, flags, err); 1095 } 1096 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1097 tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1098 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1099 size_t size, int flags) 1100 { 1101 if (!(sk->sk_route_caps & NETIF_F_SG)) 1102 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1103 1104 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1105 1106 return do_tcp_sendpages(sk, page, offset, size, flags); 1107 } 1108 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1109 tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1110 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1111 size_t size, int flags) 1112 { 1113 int ret; 1114 1115 lock_sock(sk); 1116 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1117 release_sock(sk); 1118 1119 return ret; 1120 } 1121 EXPORT_SYMBOL(tcp_sendpage); 1122 tcp_free_fastopen_req(struct tcp_sock * tp)1123 void tcp_free_fastopen_req(struct tcp_sock *tp) 1124 { 1125 if (tp->fastopen_req) { 1126 kfree(tp->fastopen_req); 1127 tp->fastopen_req = NULL; 1128 } 1129 } 1130 tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1131 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1132 int *copied, size_t size, 1133 struct ubuf_info *uarg) 1134 { 1135 struct tcp_sock *tp = tcp_sk(sk); 1136 struct inet_sock *inet = inet_sk(sk); 1137 struct sockaddr *uaddr = msg->msg_name; 1138 int err, flags; 1139 1140 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1141 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1142 uaddr->sa_family == AF_UNSPEC)) 1143 return -EOPNOTSUPP; 1144 if (tp->fastopen_req) 1145 return -EALREADY; /* Another Fast Open is in progress */ 1146 1147 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1148 sk->sk_allocation); 1149 if (unlikely(!tp->fastopen_req)) 1150 return -ENOBUFS; 1151 tp->fastopen_req->data = msg; 1152 tp->fastopen_req->size = size; 1153 tp->fastopen_req->uarg = uarg; 1154 1155 if (inet->defer_connect) { 1156 err = tcp_connect(sk); 1157 /* Same failure procedure as in tcp_v4/6_connect */ 1158 if (err) { 1159 tcp_set_state(sk, TCP_CLOSE); 1160 inet->inet_dport = 0; 1161 sk->sk_route_caps = 0; 1162 } 1163 } 1164 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1165 err = __inet_stream_connect(sk->sk_socket, uaddr, 1166 msg->msg_namelen, flags, 1); 1167 /* fastopen_req could already be freed in __inet_stream_connect 1168 * if the connection times out or gets rst 1169 */ 1170 if (tp->fastopen_req) { 1171 *copied = tp->fastopen_req->copied; 1172 tcp_free_fastopen_req(tp); 1173 inet->defer_connect = 0; 1174 } 1175 return err; 1176 } 1177 tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1178 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1179 { 1180 struct tcp_sock *tp = tcp_sk(sk); 1181 struct ubuf_info *uarg = NULL; 1182 struct sk_buff *skb; 1183 struct sockcm_cookie sockc; 1184 int flags, err, copied = 0; 1185 int mss_now = 0, size_goal, copied_syn = 0; 1186 int process_backlog = 0; 1187 bool zc = false; 1188 long timeo; 1189 1190 flags = msg->msg_flags; 1191 1192 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1193 skb = tcp_write_queue_tail(sk); 1194 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1195 if (!uarg) { 1196 err = -ENOBUFS; 1197 goto out_err; 1198 } 1199 1200 zc = sk->sk_route_caps & NETIF_F_SG; 1201 if (!zc) 1202 uarg->zerocopy = 0; 1203 } 1204 1205 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1206 !tp->repair) { 1207 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1208 if (err == -EINPROGRESS && copied_syn > 0) 1209 goto out; 1210 else if (err) 1211 goto out_err; 1212 } 1213 1214 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1215 1216 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1217 1218 /* Wait for a connection to finish. One exception is TCP Fast Open 1219 * (passive side) where data is allowed to be sent before a connection 1220 * is fully established. 1221 */ 1222 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1223 !tcp_passive_fastopen(sk)) { 1224 err = sk_stream_wait_connect(sk, &timeo); 1225 if (err != 0) 1226 goto do_error; 1227 } 1228 1229 if (unlikely(tp->repair)) { 1230 if (tp->repair_queue == TCP_RECV_QUEUE) { 1231 copied = tcp_send_rcvq(sk, msg, size); 1232 goto out_nopush; 1233 } 1234 1235 err = -EINVAL; 1236 if (tp->repair_queue == TCP_NO_QUEUE) 1237 goto out_err; 1238 1239 /* 'common' sending to sendq */ 1240 } 1241 1242 sockcm_init(&sockc, sk); 1243 if (msg->msg_controllen) { 1244 err = sock_cmsg_send(sk, msg, &sockc); 1245 if (unlikely(err)) { 1246 err = -EINVAL; 1247 goto out_err; 1248 } 1249 } 1250 1251 /* This should be in poll */ 1252 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1253 1254 /* Ok commence sending. */ 1255 copied = 0; 1256 1257 restart: 1258 mss_now = tcp_send_mss(sk, &size_goal, flags); 1259 1260 err = -EPIPE; 1261 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1262 goto do_error; 1263 1264 while (msg_data_left(msg)) { 1265 int copy = 0; 1266 1267 skb = tcp_write_queue_tail(sk); 1268 if (skb) 1269 copy = size_goal - skb->len; 1270 1271 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1272 bool first_skb; 1273 1274 new_segment: 1275 if (!sk_stream_memory_free(sk)) 1276 goto wait_for_sndbuf; 1277 1278 if (unlikely(process_backlog >= 16)) { 1279 process_backlog = 0; 1280 if (sk_flush_backlog(sk)) 1281 goto restart; 1282 } 1283 first_skb = tcp_rtx_and_write_queues_empty(sk); 1284 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1285 first_skb); 1286 if (!skb) 1287 goto wait_for_memory; 1288 1289 process_backlog++; 1290 skb->ip_summed = CHECKSUM_PARTIAL; 1291 1292 skb_entail(sk, skb); 1293 copy = size_goal; 1294 1295 /* All packets are restored as if they have 1296 * already been sent. skb_mstamp_ns isn't set to 1297 * avoid wrong rtt estimation. 1298 */ 1299 if (tp->repair) 1300 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1301 } 1302 1303 /* Try to append data to the end of skb. */ 1304 if (copy > msg_data_left(msg)) 1305 copy = msg_data_left(msg); 1306 1307 /* Where to copy to? */ 1308 if (skb_availroom(skb) > 0 && !zc) { 1309 /* We have some space in skb head. Superb! */ 1310 copy = min_t(int, copy, skb_availroom(skb)); 1311 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1312 if (err) 1313 goto do_fault; 1314 } else if (!zc) { 1315 bool merge = true; 1316 int i = skb_shinfo(skb)->nr_frags; 1317 struct page_frag *pfrag = sk_page_frag(sk); 1318 1319 if (!sk_page_frag_refill(sk, pfrag)) 1320 goto wait_for_memory; 1321 1322 if (!skb_can_coalesce(skb, i, pfrag->page, 1323 pfrag->offset)) { 1324 if (i >= sysctl_max_skb_frags) { 1325 tcp_mark_push(tp, skb); 1326 goto new_segment; 1327 } 1328 merge = false; 1329 } 1330 1331 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1332 1333 if (!sk_wmem_schedule(sk, copy)) 1334 goto wait_for_memory; 1335 1336 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1337 pfrag->page, 1338 pfrag->offset, 1339 copy); 1340 if (err) 1341 goto do_error; 1342 1343 /* Update the skb. */ 1344 if (merge) { 1345 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1346 } else { 1347 skb_fill_page_desc(skb, i, pfrag->page, 1348 pfrag->offset, copy); 1349 page_ref_inc(pfrag->page); 1350 } 1351 pfrag->offset += copy; 1352 } else { 1353 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1354 if (err == -EMSGSIZE || err == -EEXIST) { 1355 tcp_mark_push(tp, skb); 1356 goto new_segment; 1357 } 1358 if (err < 0) 1359 goto do_error; 1360 copy = err; 1361 } 1362 1363 if (!copied) 1364 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1365 1366 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1367 TCP_SKB_CB(skb)->end_seq += copy; 1368 tcp_skb_pcount_set(skb, 0); 1369 1370 copied += copy; 1371 if (!msg_data_left(msg)) { 1372 if (unlikely(flags & MSG_EOR)) 1373 TCP_SKB_CB(skb)->eor = 1; 1374 goto out; 1375 } 1376 1377 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1378 continue; 1379 1380 if (forced_push(tp)) { 1381 tcp_mark_push(tp, skb); 1382 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1383 } else if (skb == tcp_send_head(sk)) 1384 tcp_push_one(sk, mss_now); 1385 continue; 1386 1387 wait_for_sndbuf: 1388 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1389 wait_for_memory: 1390 if (copied) 1391 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1392 TCP_NAGLE_PUSH, size_goal); 1393 1394 err = sk_stream_wait_memory(sk, &timeo); 1395 if (err != 0) 1396 goto do_error; 1397 1398 mss_now = tcp_send_mss(sk, &size_goal, flags); 1399 } 1400 1401 out: 1402 if (copied) { 1403 tcp_tx_timestamp(sk, sockc.tsflags); 1404 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1405 } 1406 out_nopush: 1407 sock_zerocopy_put(uarg); 1408 return copied + copied_syn; 1409 1410 do_error: 1411 skb = tcp_write_queue_tail(sk); 1412 do_fault: 1413 tcp_remove_empty_skb(sk, skb); 1414 1415 if (copied + copied_syn) 1416 goto out; 1417 out_err: 1418 sock_zerocopy_put_abort(uarg, true); 1419 err = sk_stream_error(sk, flags, err); 1420 /* make sure we wake any epoll edge trigger waiter */ 1421 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1422 sk->sk_write_space(sk); 1423 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1424 } 1425 return err; 1426 } 1427 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1428 tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1429 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1430 { 1431 int ret; 1432 1433 lock_sock(sk); 1434 ret = tcp_sendmsg_locked(sk, msg, size); 1435 release_sock(sk); 1436 1437 return ret; 1438 } 1439 EXPORT_SYMBOL(tcp_sendmsg); 1440 1441 /* 1442 * Handle reading urgent data. BSD has very simple semantics for 1443 * this, no blocking and very strange errors 8) 1444 */ 1445 tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1446 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1447 { 1448 struct tcp_sock *tp = tcp_sk(sk); 1449 1450 /* No URG data to read. */ 1451 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1452 tp->urg_data == TCP_URG_READ) 1453 return -EINVAL; /* Yes this is right ! */ 1454 1455 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1456 return -ENOTCONN; 1457 1458 if (tp->urg_data & TCP_URG_VALID) { 1459 int err = 0; 1460 char c = tp->urg_data; 1461 1462 if (!(flags & MSG_PEEK)) 1463 tp->urg_data = TCP_URG_READ; 1464 1465 /* Read urgent data. */ 1466 msg->msg_flags |= MSG_OOB; 1467 1468 if (len > 0) { 1469 if (!(flags & MSG_TRUNC)) 1470 err = memcpy_to_msg(msg, &c, 1); 1471 len = 1; 1472 } else 1473 msg->msg_flags |= MSG_TRUNC; 1474 1475 return err ? -EFAULT : len; 1476 } 1477 1478 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1479 return 0; 1480 1481 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1482 * the available implementations agree in this case: 1483 * this call should never block, independent of the 1484 * blocking state of the socket. 1485 * Mike <pall@rz.uni-karlsruhe.de> 1486 */ 1487 return -EAGAIN; 1488 } 1489 tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1490 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1491 { 1492 struct sk_buff *skb; 1493 int copied = 0, err = 0; 1494 1495 /* XXX -- need to support SO_PEEK_OFF */ 1496 1497 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1498 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1499 if (err) 1500 return err; 1501 copied += skb->len; 1502 } 1503 1504 skb_queue_walk(&sk->sk_write_queue, skb) { 1505 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1506 if (err) 1507 break; 1508 1509 copied += skb->len; 1510 } 1511 1512 return err ?: copied; 1513 } 1514 1515 /* Clean up the receive buffer for full frames taken by the user, 1516 * then send an ACK if necessary. COPIED is the number of bytes 1517 * tcp_recvmsg has given to the user so far, it speeds up the 1518 * calculation of whether or not we must ACK for the sake of 1519 * a window update. 1520 */ tcp_cleanup_rbuf(struct sock * sk,int copied)1521 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1522 { 1523 struct tcp_sock *tp = tcp_sk(sk); 1524 bool time_to_ack = false; 1525 1526 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1527 1528 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1529 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1530 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1531 1532 if (inet_csk_ack_scheduled(sk)) { 1533 const struct inet_connection_sock *icsk = inet_csk(sk); 1534 /* Delayed ACKs frequently hit locked sockets during bulk 1535 * receive. */ 1536 if (icsk->icsk_ack.blocked || 1537 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1538 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1539 /* 1540 * If this read emptied read buffer, we send ACK, if 1541 * connection is not bidirectional, user drained 1542 * receive buffer and there was a small segment 1543 * in queue. 1544 */ 1545 (copied > 0 && 1546 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1547 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1548 !inet_csk_in_pingpong_mode(sk))) && 1549 !atomic_read(&sk->sk_rmem_alloc))) 1550 time_to_ack = true; 1551 } 1552 1553 /* We send an ACK if we can now advertise a non-zero window 1554 * which has been raised "significantly". 1555 * 1556 * Even if window raised up to infinity, do not send window open ACK 1557 * in states, where we will not receive more. It is useless. 1558 */ 1559 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1560 __u32 rcv_window_now = tcp_receive_window(tp); 1561 1562 /* Optimize, __tcp_select_window() is not cheap. */ 1563 if (2*rcv_window_now <= tp->window_clamp) { 1564 __u32 new_window = __tcp_select_window(sk); 1565 1566 /* Send ACK now, if this read freed lots of space 1567 * in our buffer. Certainly, new_window is new window. 1568 * We can advertise it now, if it is not less than current one. 1569 * "Lots" means "at least twice" here. 1570 */ 1571 if (new_window && new_window >= 2 * rcv_window_now) 1572 time_to_ack = true; 1573 } 1574 } 1575 if (time_to_ack) 1576 tcp_send_ack(sk); 1577 } 1578 tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1579 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1580 { 1581 struct sk_buff *skb; 1582 u32 offset; 1583 1584 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1585 offset = seq - TCP_SKB_CB(skb)->seq; 1586 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1587 pr_err_once("%s: found a SYN, please report !\n", __func__); 1588 offset--; 1589 } 1590 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1591 *off = offset; 1592 return skb; 1593 } 1594 /* This looks weird, but this can happen if TCP collapsing 1595 * splitted a fat GRO packet, while we released socket lock 1596 * in skb_splice_bits() 1597 */ 1598 sk_eat_skb(sk, skb); 1599 } 1600 return NULL; 1601 } 1602 1603 /* 1604 * This routine provides an alternative to tcp_recvmsg() for routines 1605 * that would like to handle copying from skbuffs directly in 'sendfile' 1606 * fashion. 1607 * Note: 1608 * - It is assumed that the socket was locked by the caller. 1609 * - The routine does not block. 1610 * - At present, there is no support for reading OOB data 1611 * or for 'peeking' the socket using this routine 1612 * (although both would be easy to implement). 1613 */ tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1614 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1615 sk_read_actor_t recv_actor) 1616 { 1617 struct sk_buff *skb; 1618 struct tcp_sock *tp = tcp_sk(sk); 1619 u32 seq = tp->copied_seq; 1620 u32 offset; 1621 int copied = 0; 1622 1623 if (sk->sk_state == TCP_LISTEN) 1624 return -ENOTCONN; 1625 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1626 if (offset < skb->len) { 1627 int used; 1628 size_t len; 1629 1630 len = skb->len - offset; 1631 /* Stop reading if we hit a patch of urgent data */ 1632 if (tp->urg_data) { 1633 u32 urg_offset = tp->urg_seq - seq; 1634 if (urg_offset < len) 1635 len = urg_offset; 1636 if (!len) 1637 break; 1638 } 1639 used = recv_actor(desc, skb, offset, len); 1640 if (used <= 0) { 1641 if (!copied) 1642 copied = used; 1643 break; 1644 } else if (used <= len) { 1645 seq += used; 1646 copied += used; 1647 offset += used; 1648 } 1649 /* If recv_actor drops the lock (e.g. TCP splice 1650 * receive) the skb pointer might be invalid when 1651 * getting here: tcp_collapse might have deleted it 1652 * while aggregating skbs from the socket queue. 1653 */ 1654 skb = tcp_recv_skb(sk, seq - 1, &offset); 1655 if (!skb) 1656 break; 1657 /* TCP coalescing might have appended data to the skb. 1658 * Try to splice more frags 1659 */ 1660 if (offset + 1 != skb->len) 1661 continue; 1662 } 1663 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1664 sk_eat_skb(sk, skb); 1665 ++seq; 1666 break; 1667 } 1668 sk_eat_skb(sk, skb); 1669 if (!desc->count) 1670 break; 1671 WRITE_ONCE(tp->copied_seq, seq); 1672 } 1673 WRITE_ONCE(tp->copied_seq, seq); 1674 1675 tcp_rcv_space_adjust(sk); 1676 1677 /* Clean up data we have read: This will do ACK frames. */ 1678 if (copied > 0) { 1679 tcp_recv_skb(sk, seq, &offset); 1680 tcp_cleanup_rbuf(sk, copied); 1681 } 1682 return copied; 1683 } 1684 EXPORT_SYMBOL(tcp_read_sock); 1685 tcp_peek_len(struct socket * sock)1686 int tcp_peek_len(struct socket *sock) 1687 { 1688 return tcp_inq(sock->sk); 1689 } 1690 EXPORT_SYMBOL(tcp_peek_len); 1691 1692 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ tcp_set_rcvlowat(struct sock * sk,int val)1693 int tcp_set_rcvlowat(struct sock *sk, int val) 1694 { 1695 int cap; 1696 1697 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1698 cap = sk->sk_rcvbuf >> 1; 1699 else 1700 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1701 val = min(val, cap); 1702 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1703 1704 /* Check if we need to signal EPOLLIN right now */ 1705 tcp_data_ready(sk); 1706 1707 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1708 return 0; 1709 1710 val <<= 1; 1711 if (val > sk->sk_rcvbuf) { 1712 WRITE_ONCE(sk->sk_rcvbuf, val); 1713 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1714 } 1715 return 0; 1716 } 1717 EXPORT_SYMBOL(tcp_set_rcvlowat); 1718 1719 #ifdef CONFIG_MMU 1720 static const struct vm_operations_struct tcp_vm_ops = { 1721 }; 1722 tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1723 int tcp_mmap(struct file *file, struct socket *sock, 1724 struct vm_area_struct *vma) 1725 { 1726 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1727 return -EPERM; 1728 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1729 1730 /* Instruct vm_insert_page() to not down_read(mmap_sem) */ 1731 vma->vm_flags |= VM_MIXEDMAP; 1732 1733 vma->vm_ops = &tcp_vm_ops; 1734 return 0; 1735 } 1736 EXPORT_SYMBOL(tcp_mmap); 1737 tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc)1738 static int tcp_zerocopy_receive(struct sock *sk, 1739 struct tcp_zerocopy_receive *zc) 1740 { 1741 unsigned long address = (unsigned long)zc->address; 1742 const skb_frag_t *frags = NULL; 1743 u32 length = 0, seq, offset; 1744 struct vm_area_struct *vma; 1745 struct sk_buff *skb = NULL; 1746 struct tcp_sock *tp; 1747 int inq; 1748 int ret; 1749 1750 if (address & (PAGE_SIZE - 1) || address != zc->address) 1751 return -EINVAL; 1752 1753 if (sk->sk_state == TCP_LISTEN) 1754 return -ENOTCONN; 1755 1756 sock_rps_record_flow(sk); 1757 1758 down_read(¤t->mm->mmap_sem); 1759 1760 ret = -EINVAL; 1761 vma = find_vma(current->mm, address); 1762 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) 1763 goto out; 1764 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address); 1765 1766 tp = tcp_sk(sk); 1767 seq = tp->copied_seq; 1768 inq = tcp_inq(sk); 1769 zc->length = min_t(u32, zc->length, inq); 1770 zc->length &= ~(PAGE_SIZE - 1); 1771 if (zc->length) { 1772 zap_page_range(vma, address, zc->length); 1773 zc->recv_skip_hint = 0; 1774 } else { 1775 zc->recv_skip_hint = inq; 1776 } 1777 ret = 0; 1778 while (length + PAGE_SIZE <= zc->length) { 1779 if (zc->recv_skip_hint < PAGE_SIZE) { 1780 if (skb) { 1781 skb = skb->next; 1782 offset = seq - TCP_SKB_CB(skb)->seq; 1783 } else { 1784 skb = tcp_recv_skb(sk, seq, &offset); 1785 } 1786 1787 zc->recv_skip_hint = skb->len - offset; 1788 offset -= skb_headlen(skb); 1789 if ((int)offset < 0 || skb_has_frag_list(skb)) 1790 break; 1791 frags = skb_shinfo(skb)->frags; 1792 while (offset) { 1793 if (skb_frag_size(frags) > offset) 1794 goto out; 1795 offset -= skb_frag_size(frags); 1796 frags++; 1797 } 1798 } 1799 if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) { 1800 int remaining = zc->recv_skip_hint; 1801 1802 while (remaining && (skb_frag_size(frags) != PAGE_SIZE || 1803 skb_frag_off(frags))) { 1804 remaining -= skb_frag_size(frags); 1805 frags++; 1806 } 1807 zc->recv_skip_hint -= remaining; 1808 break; 1809 } 1810 ret = vm_insert_page(vma, address + length, 1811 skb_frag_page(frags)); 1812 if (ret) 1813 break; 1814 length += PAGE_SIZE; 1815 seq += PAGE_SIZE; 1816 zc->recv_skip_hint -= PAGE_SIZE; 1817 frags++; 1818 } 1819 out: 1820 up_read(¤t->mm->mmap_sem); 1821 if (length) { 1822 WRITE_ONCE(tp->copied_seq, seq); 1823 tcp_rcv_space_adjust(sk); 1824 1825 /* Clean up data we have read: This will do ACK frames. */ 1826 tcp_recv_skb(sk, seq, &offset); 1827 tcp_cleanup_rbuf(sk, length); 1828 ret = 0; 1829 if (length == zc->length) 1830 zc->recv_skip_hint = 0; 1831 } else { 1832 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 1833 ret = -EIO; 1834 } 1835 zc->length = length; 1836 return ret; 1837 } 1838 #endif 1839 tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1840 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1841 struct scm_timestamping_internal *tss) 1842 { 1843 if (skb->tstamp) 1844 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1845 else 1846 tss->ts[0] = (struct timespec64) {0}; 1847 1848 if (skb_hwtstamps(skb)->hwtstamp) 1849 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1850 else 1851 tss->ts[2] = (struct timespec64) {0}; 1852 } 1853 1854 /* Similar to __sock_recv_timestamp, but does not require an skb */ tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)1855 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1856 struct scm_timestamping_internal *tss) 1857 { 1858 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 1859 bool has_timestamping = false; 1860 1861 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1862 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1863 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1864 if (new_tstamp) { 1865 struct __kernel_timespec kts = {tss->ts[0].tv_sec, tss->ts[0].tv_nsec}; 1866 1867 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 1868 sizeof(kts), &kts); 1869 } else { 1870 struct timespec ts_old = timespec64_to_timespec(tss->ts[0]); 1871 1872 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 1873 sizeof(ts_old), &ts_old); 1874 } 1875 } else { 1876 if (new_tstamp) { 1877 struct __kernel_sock_timeval stv; 1878 1879 stv.tv_sec = tss->ts[0].tv_sec; 1880 stv.tv_usec = tss->ts[0].tv_nsec / 1000; 1881 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 1882 sizeof(stv), &stv); 1883 } else { 1884 struct __kernel_old_timeval tv; 1885 1886 tv.tv_sec = tss->ts[0].tv_sec; 1887 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1888 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 1889 sizeof(tv), &tv); 1890 } 1891 } 1892 } 1893 1894 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1895 has_timestamping = true; 1896 else 1897 tss->ts[0] = (struct timespec64) {0}; 1898 } 1899 1900 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1901 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1902 has_timestamping = true; 1903 else 1904 tss->ts[2] = (struct timespec64) {0}; 1905 } 1906 1907 if (has_timestamping) { 1908 tss->ts[1] = (struct timespec64) {0}; 1909 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 1910 put_cmsg_scm_timestamping64(msg, tss); 1911 else 1912 put_cmsg_scm_timestamping(msg, tss); 1913 } 1914 } 1915 tcp_inq_hint(struct sock * sk)1916 static int tcp_inq_hint(struct sock *sk) 1917 { 1918 const struct tcp_sock *tp = tcp_sk(sk); 1919 u32 copied_seq = READ_ONCE(tp->copied_seq); 1920 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 1921 int inq; 1922 1923 inq = rcv_nxt - copied_seq; 1924 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 1925 lock_sock(sk); 1926 inq = tp->rcv_nxt - tp->copied_seq; 1927 release_sock(sk); 1928 } 1929 /* After receiving a FIN, tell the user-space to continue reading 1930 * by returning a non-zero inq. 1931 */ 1932 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 1933 inq = 1; 1934 return inq; 1935 } 1936 1937 /* 1938 * This routine copies from a sock struct into the user buffer. 1939 * 1940 * Technical note: in 2.3 we work on _locked_ socket, so that 1941 * tricks with *seq access order and skb->users are not required. 1942 * Probably, code can be easily improved even more. 1943 */ 1944 tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1945 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1946 int flags, int *addr_len) 1947 { 1948 struct tcp_sock *tp = tcp_sk(sk); 1949 int copied = 0; 1950 u32 peek_seq; 1951 u32 *seq; 1952 unsigned long used; 1953 int err, inq; 1954 int target; /* Read at least this many bytes */ 1955 long timeo; 1956 struct sk_buff *skb, *last; 1957 u32 urg_hole = 0; 1958 struct scm_timestamping_internal tss; 1959 int cmsg_flags; 1960 1961 if (unlikely(flags & MSG_ERRQUEUE)) 1962 return inet_recv_error(sk, msg, len, addr_len); 1963 1964 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) && 1965 (sk->sk_state == TCP_ESTABLISHED)) 1966 sk_busy_loop(sk, nonblock); 1967 1968 lock_sock(sk); 1969 1970 err = -ENOTCONN; 1971 if (sk->sk_state == TCP_LISTEN) 1972 goto out; 1973 1974 cmsg_flags = tp->recvmsg_inq ? 1 : 0; 1975 timeo = sock_rcvtimeo(sk, nonblock); 1976 1977 /* Urgent data needs to be handled specially. */ 1978 if (flags & MSG_OOB) 1979 goto recv_urg; 1980 1981 if (unlikely(tp->repair)) { 1982 err = -EPERM; 1983 if (!(flags & MSG_PEEK)) 1984 goto out; 1985 1986 if (tp->repair_queue == TCP_SEND_QUEUE) 1987 goto recv_sndq; 1988 1989 err = -EINVAL; 1990 if (tp->repair_queue == TCP_NO_QUEUE) 1991 goto out; 1992 1993 /* 'common' recv queue MSG_PEEK-ing */ 1994 } 1995 1996 seq = &tp->copied_seq; 1997 if (flags & MSG_PEEK) { 1998 peek_seq = tp->copied_seq; 1999 seq = &peek_seq; 2000 } 2001 2002 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2003 2004 do { 2005 u32 offset; 2006 2007 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2008 if (tp->urg_data && tp->urg_seq == *seq) { 2009 if (copied) 2010 break; 2011 if (signal_pending(current)) { 2012 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2013 break; 2014 } 2015 } 2016 2017 /* Next get a buffer. */ 2018 2019 last = skb_peek_tail(&sk->sk_receive_queue); 2020 skb_queue_walk(&sk->sk_receive_queue, skb) { 2021 last = skb; 2022 /* Now that we have two receive queues this 2023 * shouldn't happen. 2024 */ 2025 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2026 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2027 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2028 flags)) 2029 break; 2030 2031 offset = *seq - TCP_SKB_CB(skb)->seq; 2032 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2033 pr_err_once("%s: found a SYN, please report !\n", __func__); 2034 offset--; 2035 } 2036 if (offset < skb->len) 2037 goto found_ok_skb; 2038 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2039 goto found_fin_ok; 2040 WARN(!(flags & MSG_PEEK), 2041 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2042 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2043 } 2044 2045 /* Well, if we have backlog, try to process it now yet. */ 2046 2047 if (copied >= target && !sk->sk_backlog.tail) 2048 break; 2049 2050 if (copied) { 2051 if (sk->sk_err || 2052 sk->sk_state == TCP_CLOSE || 2053 (sk->sk_shutdown & RCV_SHUTDOWN) || 2054 !timeo || 2055 signal_pending(current)) 2056 break; 2057 } else { 2058 if (sock_flag(sk, SOCK_DONE)) 2059 break; 2060 2061 if (sk->sk_err) { 2062 copied = sock_error(sk); 2063 break; 2064 } 2065 2066 if (sk->sk_shutdown & RCV_SHUTDOWN) 2067 break; 2068 2069 if (sk->sk_state == TCP_CLOSE) { 2070 /* This occurs when user tries to read 2071 * from never connected socket. 2072 */ 2073 copied = -ENOTCONN; 2074 break; 2075 } 2076 2077 if (!timeo) { 2078 copied = -EAGAIN; 2079 break; 2080 } 2081 2082 if (signal_pending(current)) { 2083 copied = sock_intr_errno(timeo); 2084 break; 2085 } 2086 } 2087 2088 tcp_cleanup_rbuf(sk, copied); 2089 2090 if (copied >= target) { 2091 /* Do not sleep, just process backlog. */ 2092 release_sock(sk); 2093 lock_sock(sk); 2094 } else { 2095 sk_wait_data(sk, &timeo, last); 2096 } 2097 2098 if ((flags & MSG_PEEK) && 2099 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2100 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2101 current->comm, 2102 task_pid_nr(current)); 2103 peek_seq = tp->copied_seq; 2104 } 2105 continue; 2106 2107 found_ok_skb: 2108 /* Ok so how much can we use? */ 2109 used = skb->len - offset; 2110 if (len < used) 2111 used = len; 2112 2113 /* Do we have urgent data here? */ 2114 if (tp->urg_data) { 2115 u32 urg_offset = tp->urg_seq - *seq; 2116 if (urg_offset < used) { 2117 if (!urg_offset) { 2118 if (!sock_flag(sk, SOCK_URGINLINE)) { 2119 WRITE_ONCE(*seq, *seq + 1); 2120 urg_hole++; 2121 offset++; 2122 used--; 2123 if (!used) 2124 goto skip_copy; 2125 } 2126 } else 2127 used = urg_offset; 2128 } 2129 } 2130 2131 if (!(flags & MSG_TRUNC)) { 2132 err = skb_copy_datagram_msg(skb, offset, msg, used); 2133 if (err) { 2134 /* Exception. Bailout! */ 2135 if (!copied) 2136 copied = -EFAULT; 2137 break; 2138 } 2139 } 2140 2141 WRITE_ONCE(*seq, *seq + used); 2142 copied += used; 2143 len -= used; 2144 2145 tcp_rcv_space_adjust(sk); 2146 2147 skip_copy: 2148 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2149 tp->urg_data = 0; 2150 tcp_fast_path_check(sk); 2151 } 2152 if (used + offset < skb->len) 2153 continue; 2154 2155 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2156 tcp_update_recv_tstamps(skb, &tss); 2157 cmsg_flags |= 2; 2158 } 2159 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2160 goto found_fin_ok; 2161 if (!(flags & MSG_PEEK)) 2162 sk_eat_skb(sk, skb); 2163 continue; 2164 2165 found_fin_ok: 2166 /* Process the FIN. */ 2167 WRITE_ONCE(*seq, *seq + 1); 2168 if (!(flags & MSG_PEEK)) 2169 sk_eat_skb(sk, skb); 2170 break; 2171 } while (len > 0); 2172 2173 /* According to UNIX98, msg_name/msg_namelen are ignored 2174 * on connected socket. I was just happy when found this 8) --ANK 2175 */ 2176 2177 /* Clean up data we have read: This will do ACK frames. */ 2178 tcp_cleanup_rbuf(sk, copied); 2179 2180 release_sock(sk); 2181 2182 if (cmsg_flags) { 2183 if (cmsg_flags & 2) 2184 tcp_recv_timestamp(msg, sk, &tss); 2185 if (cmsg_flags & 1) { 2186 inq = tcp_inq_hint(sk); 2187 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2188 } 2189 } 2190 2191 return copied; 2192 2193 out: 2194 release_sock(sk); 2195 return err; 2196 2197 recv_urg: 2198 err = tcp_recv_urg(sk, msg, len, flags); 2199 goto out; 2200 2201 recv_sndq: 2202 err = tcp_peek_sndq(sk, msg, len); 2203 goto out; 2204 } 2205 EXPORT_SYMBOL(tcp_recvmsg); 2206 tcp_set_state(struct sock * sk,int state)2207 void tcp_set_state(struct sock *sk, int state) 2208 { 2209 int oldstate = sk->sk_state; 2210 2211 /* We defined a new enum for TCP states that are exported in BPF 2212 * so as not force the internal TCP states to be frozen. The 2213 * following checks will detect if an internal state value ever 2214 * differs from the BPF value. If this ever happens, then we will 2215 * need to remap the internal value to the BPF value before calling 2216 * tcp_call_bpf_2arg. 2217 */ 2218 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2219 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2220 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2221 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2222 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2223 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2224 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2225 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2226 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2227 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2228 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2229 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2230 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2231 2232 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2233 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2234 2235 switch (state) { 2236 case TCP_ESTABLISHED: 2237 if (oldstate != TCP_ESTABLISHED) 2238 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2239 break; 2240 2241 case TCP_CLOSE: 2242 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2243 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2244 2245 sk->sk_prot->unhash(sk); 2246 if (inet_csk(sk)->icsk_bind_hash && 2247 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2248 inet_put_port(sk); 2249 /* fall through */ 2250 default: 2251 if (oldstate == TCP_ESTABLISHED) 2252 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2253 } 2254 2255 /* Change state AFTER socket is unhashed to avoid closed 2256 * socket sitting in hash tables. 2257 */ 2258 inet_sk_state_store(sk, state); 2259 } 2260 EXPORT_SYMBOL_GPL(tcp_set_state); 2261 2262 /* 2263 * State processing on a close. This implements the state shift for 2264 * sending our FIN frame. Note that we only send a FIN for some 2265 * states. A shutdown() may have already sent the FIN, or we may be 2266 * closed. 2267 */ 2268 2269 static const unsigned char new_state[16] = { 2270 /* current state: new state: action: */ 2271 [0 /* (Invalid) */] = TCP_CLOSE, 2272 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2273 [TCP_SYN_SENT] = TCP_CLOSE, 2274 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2275 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2276 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2277 [TCP_TIME_WAIT] = TCP_CLOSE, 2278 [TCP_CLOSE] = TCP_CLOSE, 2279 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2280 [TCP_LAST_ACK] = TCP_LAST_ACK, 2281 [TCP_LISTEN] = TCP_CLOSE, 2282 [TCP_CLOSING] = TCP_CLOSING, 2283 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2284 }; 2285 tcp_close_state(struct sock * sk)2286 static int tcp_close_state(struct sock *sk) 2287 { 2288 int next = (int)new_state[sk->sk_state]; 2289 int ns = next & TCP_STATE_MASK; 2290 2291 tcp_set_state(sk, ns); 2292 2293 return next & TCP_ACTION_FIN; 2294 } 2295 2296 /* 2297 * Shutdown the sending side of a connection. Much like close except 2298 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2299 */ 2300 tcp_shutdown(struct sock * sk,int how)2301 void tcp_shutdown(struct sock *sk, int how) 2302 { 2303 /* We need to grab some memory, and put together a FIN, 2304 * and then put it into the queue to be sent. 2305 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2306 */ 2307 if (!(how & SEND_SHUTDOWN)) 2308 return; 2309 2310 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2311 if ((1 << sk->sk_state) & 2312 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2313 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2314 /* Clear out any half completed packets. FIN if needed. */ 2315 if (tcp_close_state(sk)) 2316 tcp_send_fin(sk); 2317 } 2318 } 2319 EXPORT_SYMBOL(tcp_shutdown); 2320 tcp_check_oom(struct sock * sk,int shift)2321 bool tcp_check_oom(struct sock *sk, int shift) 2322 { 2323 bool too_many_orphans, out_of_socket_memory; 2324 2325 too_many_orphans = tcp_too_many_orphans(sk, shift); 2326 out_of_socket_memory = tcp_out_of_memory(sk); 2327 2328 if (too_many_orphans) 2329 net_info_ratelimited("too many orphaned sockets\n"); 2330 if (out_of_socket_memory) 2331 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2332 return too_many_orphans || out_of_socket_memory; 2333 } 2334 tcp_close(struct sock * sk,long timeout)2335 void tcp_close(struct sock *sk, long timeout) 2336 { 2337 struct sk_buff *skb; 2338 int data_was_unread = 0; 2339 int state; 2340 2341 lock_sock(sk); 2342 sk->sk_shutdown = SHUTDOWN_MASK; 2343 2344 if (sk->sk_state == TCP_LISTEN) { 2345 tcp_set_state(sk, TCP_CLOSE); 2346 2347 /* Special case. */ 2348 inet_csk_listen_stop(sk); 2349 2350 goto adjudge_to_death; 2351 } 2352 2353 /* We need to flush the recv. buffs. We do this only on the 2354 * descriptor close, not protocol-sourced closes, because the 2355 * reader process may not have drained the data yet! 2356 */ 2357 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2358 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2359 2360 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2361 len--; 2362 data_was_unread += len; 2363 __kfree_skb(skb); 2364 } 2365 2366 sk_mem_reclaim(sk); 2367 2368 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2369 if (sk->sk_state == TCP_CLOSE) 2370 goto adjudge_to_death; 2371 2372 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2373 * data was lost. To witness the awful effects of the old behavior of 2374 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2375 * GET in an FTP client, suspend the process, wait for the client to 2376 * advertise a zero window, then kill -9 the FTP client, wheee... 2377 * Note: timeout is always zero in such a case. 2378 */ 2379 if (unlikely(tcp_sk(sk)->repair)) { 2380 sk->sk_prot->disconnect(sk, 0); 2381 } else if (data_was_unread) { 2382 /* Unread data was tossed, zap the connection. */ 2383 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2384 tcp_set_state(sk, TCP_CLOSE); 2385 tcp_send_active_reset(sk, sk->sk_allocation); 2386 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2387 /* Check zero linger _after_ checking for unread data. */ 2388 sk->sk_prot->disconnect(sk, 0); 2389 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2390 } else if (tcp_close_state(sk)) { 2391 /* We FIN if the application ate all the data before 2392 * zapping the connection. 2393 */ 2394 2395 /* RED-PEN. Formally speaking, we have broken TCP state 2396 * machine. State transitions: 2397 * 2398 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2399 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2400 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2401 * 2402 * are legal only when FIN has been sent (i.e. in window), 2403 * rather than queued out of window. Purists blame. 2404 * 2405 * F.e. "RFC state" is ESTABLISHED, 2406 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2407 * 2408 * The visible declinations are that sometimes 2409 * we enter time-wait state, when it is not required really 2410 * (harmless), do not send active resets, when they are 2411 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2412 * they look as CLOSING or LAST_ACK for Linux) 2413 * Probably, I missed some more holelets. 2414 * --ANK 2415 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2416 * in a single packet! (May consider it later but will 2417 * probably need API support or TCP_CORK SYN-ACK until 2418 * data is written and socket is closed.) 2419 */ 2420 tcp_send_fin(sk); 2421 } 2422 2423 sk_stream_wait_close(sk, timeout); 2424 2425 adjudge_to_death: 2426 state = sk->sk_state; 2427 sock_hold(sk); 2428 sock_orphan(sk); 2429 2430 local_bh_disable(); 2431 bh_lock_sock(sk); 2432 /* remove backlog if any, without releasing ownership. */ 2433 __release_sock(sk); 2434 2435 percpu_counter_inc(sk->sk_prot->orphan_count); 2436 2437 /* Have we already been destroyed by a softirq or backlog? */ 2438 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2439 goto out; 2440 2441 /* This is a (useful) BSD violating of the RFC. There is a 2442 * problem with TCP as specified in that the other end could 2443 * keep a socket open forever with no application left this end. 2444 * We use a 1 minute timeout (about the same as BSD) then kill 2445 * our end. If they send after that then tough - BUT: long enough 2446 * that we won't make the old 4*rto = almost no time - whoops 2447 * reset mistake. 2448 * 2449 * Nope, it was not mistake. It is really desired behaviour 2450 * f.e. on http servers, when such sockets are useless, but 2451 * consume significant resources. Let's do it with special 2452 * linger2 option. --ANK 2453 */ 2454 2455 if (sk->sk_state == TCP_FIN_WAIT2) { 2456 struct tcp_sock *tp = tcp_sk(sk); 2457 if (tp->linger2 < 0) { 2458 tcp_set_state(sk, TCP_CLOSE); 2459 tcp_send_active_reset(sk, GFP_ATOMIC); 2460 __NET_INC_STATS(sock_net(sk), 2461 LINUX_MIB_TCPABORTONLINGER); 2462 } else { 2463 const int tmo = tcp_fin_time(sk); 2464 2465 if (tmo > TCP_TIMEWAIT_LEN) { 2466 inet_csk_reset_keepalive_timer(sk, 2467 tmo - TCP_TIMEWAIT_LEN); 2468 } else { 2469 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2470 goto out; 2471 } 2472 } 2473 } 2474 if (sk->sk_state != TCP_CLOSE) { 2475 sk_mem_reclaim(sk); 2476 if (tcp_check_oom(sk, 0)) { 2477 tcp_set_state(sk, TCP_CLOSE); 2478 tcp_send_active_reset(sk, GFP_ATOMIC); 2479 __NET_INC_STATS(sock_net(sk), 2480 LINUX_MIB_TCPABORTONMEMORY); 2481 } else if (!check_net(sock_net(sk))) { 2482 /* Not possible to send reset; just close */ 2483 tcp_set_state(sk, TCP_CLOSE); 2484 } 2485 } 2486 2487 if (sk->sk_state == TCP_CLOSE) { 2488 struct request_sock *req; 2489 2490 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2491 lockdep_sock_is_held(sk)); 2492 /* We could get here with a non-NULL req if the socket is 2493 * aborted (e.g., closed with unread data) before 3WHS 2494 * finishes. 2495 */ 2496 if (req) 2497 reqsk_fastopen_remove(sk, req, false); 2498 inet_csk_destroy_sock(sk); 2499 } 2500 /* Otherwise, socket is reprieved until protocol close. */ 2501 2502 out: 2503 bh_unlock_sock(sk); 2504 local_bh_enable(); 2505 release_sock(sk); 2506 sock_put(sk); 2507 } 2508 EXPORT_SYMBOL(tcp_close); 2509 2510 /* These states need RST on ABORT according to RFC793 */ 2511 tcp_need_reset(int state)2512 static inline bool tcp_need_reset(int state) 2513 { 2514 return (1 << state) & 2515 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2516 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2517 } 2518 tcp_rtx_queue_purge(struct sock * sk)2519 static void tcp_rtx_queue_purge(struct sock *sk) 2520 { 2521 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2522 2523 tcp_sk(sk)->highest_sack = NULL; 2524 while (p) { 2525 struct sk_buff *skb = rb_to_skb(p); 2526 2527 p = rb_next(p); 2528 /* Since we are deleting whole queue, no need to 2529 * list_del(&skb->tcp_tsorted_anchor) 2530 */ 2531 tcp_rtx_queue_unlink(skb, sk); 2532 sk_wmem_free_skb(sk, skb); 2533 } 2534 } 2535 tcp_write_queue_purge(struct sock * sk)2536 void tcp_write_queue_purge(struct sock *sk) 2537 { 2538 struct sk_buff *skb; 2539 2540 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2541 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2542 tcp_skb_tsorted_anchor_cleanup(skb); 2543 sk_wmem_free_skb(sk, skb); 2544 } 2545 tcp_rtx_queue_purge(sk); 2546 skb = sk->sk_tx_skb_cache; 2547 if (skb) { 2548 __kfree_skb(skb); 2549 sk->sk_tx_skb_cache = NULL; 2550 } 2551 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2552 sk_mem_reclaim(sk); 2553 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2554 tcp_sk(sk)->packets_out = 0; 2555 inet_csk(sk)->icsk_backoff = 0; 2556 } 2557 tcp_disconnect(struct sock * sk,int flags)2558 int tcp_disconnect(struct sock *sk, int flags) 2559 { 2560 struct inet_sock *inet = inet_sk(sk); 2561 struct inet_connection_sock *icsk = inet_csk(sk); 2562 struct tcp_sock *tp = tcp_sk(sk); 2563 int old_state = sk->sk_state; 2564 u32 seq; 2565 2566 if (old_state != TCP_CLOSE) 2567 tcp_set_state(sk, TCP_CLOSE); 2568 2569 /* ABORT function of RFC793 */ 2570 if (old_state == TCP_LISTEN) { 2571 inet_csk_listen_stop(sk); 2572 } else if (unlikely(tp->repair)) { 2573 sk->sk_err = ECONNABORTED; 2574 } else if (tcp_need_reset(old_state) || 2575 (tp->snd_nxt != tp->write_seq && 2576 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2577 /* The last check adjusts for discrepancy of Linux wrt. RFC 2578 * states 2579 */ 2580 tcp_send_active_reset(sk, gfp_any()); 2581 sk->sk_err = ECONNRESET; 2582 } else if (old_state == TCP_SYN_SENT) 2583 sk->sk_err = ECONNRESET; 2584 2585 tcp_clear_xmit_timers(sk); 2586 __skb_queue_purge(&sk->sk_receive_queue); 2587 if (sk->sk_rx_skb_cache) { 2588 __kfree_skb(sk->sk_rx_skb_cache); 2589 sk->sk_rx_skb_cache = NULL; 2590 } 2591 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2592 tp->urg_data = 0; 2593 tcp_write_queue_purge(sk); 2594 tcp_fastopen_active_disable_ofo_check(sk); 2595 skb_rbtree_purge(&tp->out_of_order_queue); 2596 2597 inet->inet_dport = 0; 2598 2599 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2600 inet_reset_saddr(sk); 2601 2602 sk->sk_shutdown = 0; 2603 sock_reset_flag(sk, SOCK_DONE); 2604 tp->srtt_us = 0; 2605 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2606 tp->rcv_rtt_last_tsecr = 0; 2607 2608 seq = tp->write_seq + tp->max_window + 2; 2609 if (!seq) 2610 seq = 1; 2611 WRITE_ONCE(tp->write_seq, seq); 2612 2613 icsk->icsk_backoff = 0; 2614 tp->snd_cwnd = 2; 2615 icsk->icsk_probes_out = 0; 2616 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2617 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2618 tp->snd_cwnd = TCP_INIT_CWND; 2619 tp->snd_cwnd_cnt = 0; 2620 tp->window_clamp = 0; 2621 tp->delivered_ce = 0; 2622 tcp_set_ca_state(sk, TCP_CA_Open); 2623 tp->is_sack_reneg = 0; 2624 tcp_clear_retrans(tp); 2625 inet_csk_delack_init(sk); 2626 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2627 * issue in __tcp_select_window() 2628 */ 2629 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2630 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2631 __sk_dst_reset(sk); 2632 dst_release(sk->sk_rx_dst); 2633 sk->sk_rx_dst = NULL; 2634 tcp_saved_syn_free(tp); 2635 tp->compressed_ack = 0; 2636 tp->bytes_sent = 0; 2637 tp->bytes_acked = 0; 2638 tp->bytes_received = 0; 2639 tp->bytes_retrans = 0; 2640 tp->duplicate_sack[0].start_seq = 0; 2641 tp->duplicate_sack[0].end_seq = 0; 2642 tp->dsack_dups = 0; 2643 tp->reord_seen = 0; 2644 tp->retrans_out = 0; 2645 tp->sacked_out = 0; 2646 tp->tlp_high_seq = 0; 2647 tp->last_oow_ack_time = 0; 2648 /* There's a bubble in the pipe until at least the first ACK. */ 2649 tp->app_limited = ~0U; 2650 tp->rack.mstamp = 0; 2651 tp->rack.advanced = 0; 2652 tp->rack.reo_wnd_steps = 1; 2653 tp->rack.last_delivered = 0; 2654 tp->rack.reo_wnd_persist = 0; 2655 tp->rack.dsack_seen = 0; 2656 tp->syn_data_acked = 0; 2657 tp->rx_opt.saw_tstamp = 0; 2658 tp->rx_opt.dsack = 0; 2659 tp->rx_opt.num_sacks = 0; 2660 tp->rcv_ooopack = 0; 2661 2662 2663 /* Clean up fastopen related fields */ 2664 tcp_free_fastopen_req(tp); 2665 inet->defer_connect = 0; 2666 2667 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2668 2669 if (sk->sk_frag.page) { 2670 put_page(sk->sk_frag.page); 2671 sk->sk_frag.page = NULL; 2672 sk->sk_frag.offset = 0; 2673 } 2674 2675 sk->sk_error_report(sk); 2676 return 0; 2677 } 2678 EXPORT_SYMBOL(tcp_disconnect); 2679 tcp_can_repair_sock(const struct sock * sk)2680 static inline bool tcp_can_repair_sock(const struct sock *sk) 2681 { 2682 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2683 (sk->sk_state != TCP_LISTEN); 2684 } 2685 tcp_repair_set_window(struct tcp_sock * tp,char __user * optbuf,int len)2686 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2687 { 2688 struct tcp_repair_window opt; 2689 2690 if (!tp->repair) 2691 return -EPERM; 2692 2693 if (len != sizeof(opt)) 2694 return -EINVAL; 2695 2696 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2697 return -EFAULT; 2698 2699 if (opt.max_window < opt.snd_wnd) 2700 return -EINVAL; 2701 2702 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2703 return -EINVAL; 2704 2705 if (after(opt.rcv_wup, tp->rcv_nxt)) 2706 return -EINVAL; 2707 2708 tp->snd_wl1 = opt.snd_wl1; 2709 tp->snd_wnd = opt.snd_wnd; 2710 tp->max_window = opt.max_window; 2711 2712 tp->rcv_wnd = opt.rcv_wnd; 2713 tp->rcv_wup = opt.rcv_wup; 2714 2715 return 0; 2716 } 2717 tcp_repair_options_est(struct sock * sk,struct tcp_repair_opt __user * optbuf,unsigned int len)2718 static int tcp_repair_options_est(struct sock *sk, 2719 struct tcp_repair_opt __user *optbuf, unsigned int len) 2720 { 2721 struct tcp_sock *tp = tcp_sk(sk); 2722 struct tcp_repair_opt opt; 2723 2724 while (len >= sizeof(opt)) { 2725 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2726 return -EFAULT; 2727 2728 optbuf++; 2729 len -= sizeof(opt); 2730 2731 switch (opt.opt_code) { 2732 case TCPOPT_MSS: 2733 tp->rx_opt.mss_clamp = opt.opt_val; 2734 tcp_mtup_init(sk); 2735 break; 2736 case TCPOPT_WINDOW: 2737 { 2738 u16 snd_wscale = opt.opt_val & 0xFFFF; 2739 u16 rcv_wscale = opt.opt_val >> 16; 2740 2741 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2742 return -EFBIG; 2743 2744 tp->rx_opt.snd_wscale = snd_wscale; 2745 tp->rx_opt.rcv_wscale = rcv_wscale; 2746 tp->rx_opt.wscale_ok = 1; 2747 } 2748 break; 2749 case TCPOPT_SACK_PERM: 2750 if (opt.opt_val != 0) 2751 return -EINVAL; 2752 2753 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2754 break; 2755 case TCPOPT_TIMESTAMP: 2756 if (opt.opt_val != 0) 2757 return -EINVAL; 2758 2759 tp->rx_opt.tstamp_ok = 1; 2760 break; 2761 } 2762 } 2763 2764 return 0; 2765 } 2766 2767 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2768 EXPORT_SYMBOL(tcp_tx_delay_enabled); 2769 tcp_enable_tx_delay(void)2770 static void tcp_enable_tx_delay(void) 2771 { 2772 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 2773 static int __tcp_tx_delay_enabled = 0; 2774 2775 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 2776 static_branch_enable(&tcp_tx_delay_enabled); 2777 pr_info("TCP_TX_DELAY enabled\n"); 2778 } 2779 } 2780 } 2781 2782 /* 2783 * Socket option code for TCP. 2784 */ do_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2785 static int do_tcp_setsockopt(struct sock *sk, int level, 2786 int optname, char __user *optval, unsigned int optlen) 2787 { 2788 struct tcp_sock *tp = tcp_sk(sk); 2789 struct inet_connection_sock *icsk = inet_csk(sk); 2790 struct net *net = sock_net(sk); 2791 int val; 2792 int err = 0; 2793 2794 /* These are data/string values, all the others are ints */ 2795 switch (optname) { 2796 case TCP_CONGESTION: { 2797 char name[TCP_CA_NAME_MAX]; 2798 2799 if (optlen < 1) 2800 return -EINVAL; 2801 2802 val = strncpy_from_user(name, optval, 2803 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2804 if (val < 0) 2805 return -EFAULT; 2806 name[val] = 0; 2807 2808 lock_sock(sk); 2809 err = tcp_set_congestion_control(sk, name, true, true, 2810 ns_capable(sock_net(sk)->user_ns, 2811 CAP_NET_ADMIN)); 2812 release_sock(sk); 2813 return err; 2814 } 2815 case TCP_ULP: { 2816 char name[TCP_ULP_NAME_MAX]; 2817 2818 if (optlen < 1) 2819 return -EINVAL; 2820 2821 val = strncpy_from_user(name, optval, 2822 min_t(long, TCP_ULP_NAME_MAX - 1, 2823 optlen)); 2824 if (val < 0) 2825 return -EFAULT; 2826 name[val] = 0; 2827 2828 lock_sock(sk); 2829 err = tcp_set_ulp(sk, name); 2830 release_sock(sk); 2831 return err; 2832 } 2833 case TCP_FASTOPEN_KEY: { 2834 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 2835 __u8 *backup_key = NULL; 2836 2837 /* Allow a backup key as well to facilitate key rotation 2838 * First key is the active one. 2839 */ 2840 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 2841 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 2842 return -EINVAL; 2843 2844 if (copy_from_user(key, optval, optlen)) 2845 return -EFAULT; 2846 2847 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 2848 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 2849 2850 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 2851 } 2852 default: 2853 /* fallthru */ 2854 break; 2855 } 2856 2857 if (optlen < sizeof(int)) 2858 return -EINVAL; 2859 2860 if (get_user(val, (int __user *)optval)) 2861 return -EFAULT; 2862 2863 lock_sock(sk); 2864 2865 switch (optname) { 2866 case TCP_MAXSEG: 2867 /* Values greater than interface MTU won't take effect. However 2868 * at the point when this call is done we typically don't yet 2869 * know which interface is going to be used 2870 */ 2871 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2872 err = -EINVAL; 2873 break; 2874 } 2875 tp->rx_opt.user_mss = val; 2876 break; 2877 2878 case TCP_NODELAY: 2879 if (val) { 2880 /* TCP_NODELAY is weaker than TCP_CORK, so that 2881 * this option on corked socket is remembered, but 2882 * it is not activated until cork is cleared. 2883 * 2884 * However, when TCP_NODELAY is set we make 2885 * an explicit push, which overrides even TCP_CORK 2886 * for currently queued segments. 2887 */ 2888 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2889 tcp_push_pending_frames(sk); 2890 } else { 2891 tp->nonagle &= ~TCP_NAGLE_OFF; 2892 } 2893 break; 2894 2895 case TCP_THIN_LINEAR_TIMEOUTS: 2896 if (val < 0 || val > 1) 2897 err = -EINVAL; 2898 else 2899 tp->thin_lto = val; 2900 break; 2901 2902 case TCP_THIN_DUPACK: 2903 if (val < 0 || val > 1) 2904 err = -EINVAL; 2905 break; 2906 2907 case TCP_REPAIR: 2908 if (!tcp_can_repair_sock(sk)) 2909 err = -EPERM; 2910 else if (val == TCP_REPAIR_ON) { 2911 tp->repair = 1; 2912 sk->sk_reuse = SK_FORCE_REUSE; 2913 tp->repair_queue = TCP_NO_QUEUE; 2914 } else if (val == TCP_REPAIR_OFF) { 2915 tp->repair = 0; 2916 sk->sk_reuse = SK_NO_REUSE; 2917 tcp_send_window_probe(sk); 2918 } else if (val == TCP_REPAIR_OFF_NO_WP) { 2919 tp->repair = 0; 2920 sk->sk_reuse = SK_NO_REUSE; 2921 } else 2922 err = -EINVAL; 2923 2924 break; 2925 2926 case TCP_REPAIR_QUEUE: 2927 if (!tp->repair) 2928 err = -EPERM; 2929 else if ((unsigned int)val < TCP_QUEUES_NR) 2930 tp->repair_queue = val; 2931 else 2932 err = -EINVAL; 2933 break; 2934 2935 case TCP_QUEUE_SEQ: 2936 if (sk->sk_state != TCP_CLOSE) 2937 err = -EPERM; 2938 else if (tp->repair_queue == TCP_SEND_QUEUE) 2939 WRITE_ONCE(tp->write_seq, val); 2940 else if (tp->repair_queue == TCP_RECV_QUEUE) 2941 WRITE_ONCE(tp->rcv_nxt, val); 2942 else 2943 err = -EINVAL; 2944 break; 2945 2946 case TCP_REPAIR_OPTIONS: 2947 if (!tp->repair) 2948 err = -EINVAL; 2949 else if (sk->sk_state == TCP_ESTABLISHED) 2950 err = tcp_repair_options_est(sk, 2951 (struct tcp_repair_opt __user *)optval, 2952 optlen); 2953 else 2954 err = -EPERM; 2955 break; 2956 2957 case TCP_CORK: 2958 /* When set indicates to always queue non-full frames. 2959 * Later the user clears this option and we transmit 2960 * any pending partial frames in the queue. This is 2961 * meant to be used alongside sendfile() to get properly 2962 * filled frames when the user (for example) must write 2963 * out headers with a write() call first and then use 2964 * sendfile to send out the data parts. 2965 * 2966 * TCP_CORK can be set together with TCP_NODELAY and it is 2967 * stronger than TCP_NODELAY. 2968 */ 2969 if (val) { 2970 tp->nonagle |= TCP_NAGLE_CORK; 2971 } else { 2972 tp->nonagle &= ~TCP_NAGLE_CORK; 2973 if (tp->nonagle&TCP_NAGLE_OFF) 2974 tp->nonagle |= TCP_NAGLE_PUSH; 2975 tcp_push_pending_frames(sk); 2976 } 2977 break; 2978 2979 case TCP_KEEPIDLE: 2980 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2981 err = -EINVAL; 2982 else { 2983 tp->keepalive_time = val * HZ; 2984 if (sock_flag(sk, SOCK_KEEPOPEN) && 2985 !((1 << sk->sk_state) & 2986 (TCPF_CLOSE | TCPF_LISTEN))) { 2987 u32 elapsed = keepalive_time_elapsed(tp); 2988 if (tp->keepalive_time > elapsed) 2989 elapsed = tp->keepalive_time - elapsed; 2990 else 2991 elapsed = 0; 2992 inet_csk_reset_keepalive_timer(sk, elapsed); 2993 } 2994 } 2995 break; 2996 case TCP_KEEPINTVL: 2997 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2998 err = -EINVAL; 2999 else 3000 tp->keepalive_intvl = val * HZ; 3001 break; 3002 case TCP_KEEPCNT: 3003 if (val < 1 || val > MAX_TCP_KEEPCNT) 3004 err = -EINVAL; 3005 else 3006 tp->keepalive_probes = val; 3007 break; 3008 case TCP_SYNCNT: 3009 if (val < 1 || val > MAX_TCP_SYNCNT) 3010 err = -EINVAL; 3011 else 3012 icsk->icsk_syn_retries = val; 3013 break; 3014 3015 case TCP_SAVE_SYN: 3016 if (val < 0 || val > 1) 3017 err = -EINVAL; 3018 else 3019 tp->save_syn = val; 3020 break; 3021 3022 case TCP_LINGER2: 3023 if (val < 0) 3024 tp->linger2 = -1; 3025 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 3026 tp->linger2 = 0; 3027 else 3028 tp->linger2 = val * HZ; 3029 break; 3030 3031 case TCP_DEFER_ACCEPT: 3032 /* Translate value in seconds to number of retransmits */ 3033 icsk->icsk_accept_queue.rskq_defer_accept = 3034 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3035 TCP_RTO_MAX / HZ); 3036 break; 3037 3038 case TCP_WINDOW_CLAMP: 3039 if (!val) { 3040 if (sk->sk_state != TCP_CLOSE) { 3041 err = -EINVAL; 3042 break; 3043 } 3044 tp->window_clamp = 0; 3045 } else 3046 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3047 SOCK_MIN_RCVBUF / 2 : val; 3048 break; 3049 3050 case TCP_QUICKACK: 3051 if (!val) { 3052 inet_csk_enter_pingpong_mode(sk); 3053 } else { 3054 inet_csk_exit_pingpong_mode(sk); 3055 if ((1 << sk->sk_state) & 3056 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3057 inet_csk_ack_scheduled(sk)) { 3058 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 3059 tcp_cleanup_rbuf(sk, 1); 3060 if (!(val & 1)) 3061 inet_csk_enter_pingpong_mode(sk); 3062 } 3063 } 3064 break; 3065 3066 #ifdef CONFIG_TCP_MD5SIG 3067 case TCP_MD5SIG: 3068 case TCP_MD5SIG_EXT: 3069 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) 3070 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3071 else 3072 err = -EINVAL; 3073 break; 3074 #endif 3075 case TCP_USER_TIMEOUT: 3076 /* Cap the max time in ms TCP will retry or probe the window 3077 * before giving up and aborting (ETIMEDOUT) a connection. 3078 */ 3079 if (val < 0) 3080 err = -EINVAL; 3081 else 3082 icsk->icsk_user_timeout = val; 3083 break; 3084 3085 case TCP_FASTOPEN: 3086 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3087 TCPF_LISTEN))) { 3088 tcp_fastopen_init_key_once(net); 3089 3090 fastopen_queue_tune(sk, val); 3091 } else { 3092 err = -EINVAL; 3093 } 3094 break; 3095 case TCP_FASTOPEN_CONNECT: 3096 if (val > 1 || val < 0) { 3097 err = -EINVAL; 3098 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3099 if (sk->sk_state == TCP_CLOSE) 3100 tp->fastopen_connect = val; 3101 else 3102 err = -EINVAL; 3103 } else { 3104 err = -EOPNOTSUPP; 3105 } 3106 break; 3107 case TCP_FASTOPEN_NO_COOKIE: 3108 if (val > 1 || val < 0) 3109 err = -EINVAL; 3110 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3111 err = -EINVAL; 3112 else 3113 tp->fastopen_no_cookie = val; 3114 break; 3115 case TCP_TIMESTAMP: 3116 if (!tp->repair) 3117 err = -EPERM; 3118 else 3119 tp->tsoffset = val - tcp_time_stamp_raw(); 3120 break; 3121 case TCP_REPAIR_WINDOW: 3122 err = tcp_repair_set_window(tp, optval, optlen); 3123 break; 3124 case TCP_NOTSENT_LOWAT: 3125 tp->notsent_lowat = val; 3126 sk->sk_write_space(sk); 3127 break; 3128 case TCP_INQ: 3129 if (val > 1 || val < 0) 3130 err = -EINVAL; 3131 else 3132 tp->recvmsg_inq = val; 3133 break; 3134 case TCP_TX_DELAY: 3135 if (val) 3136 tcp_enable_tx_delay(); 3137 tp->tcp_tx_delay = val; 3138 break; 3139 default: 3140 err = -ENOPROTOOPT; 3141 break; 3142 } 3143 3144 release_sock(sk); 3145 return err; 3146 } 3147 tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)3148 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 3149 unsigned int optlen) 3150 { 3151 const struct inet_connection_sock *icsk = inet_csk(sk); 3152 3153 if (level != SOL_TCP) 3154 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3155 optval, optlen); 3156 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3157 } 3158 EXPORT_SYMBOL(tcp_setsockopt); 3159 3160 #ifdef CONFIG_COMPAT compat_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)3161 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 3162 char __user *optval, unsigned int optlen) 3163 { 3164 if (level != SOL_TCP) 3165 return inet_csk_compat_setsockopt(sk, level, optname, 3166 optval, optlen); 3167 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3168 } 3169 EXPORT_SYMBOL(compat_tcp_setsockopt); 3170 #endif 3171 tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3172 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3173 struct tcp_info *info) 3174 { 3175 u64 stats[__TCP_CHRONO_MAX], total = 0; 3176 enum tcp_chrono i; 3177 3178 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3179 stats[i] = tp->chrono_stat[i - 1]; 3180 if (i == tp->chrono_type) 3181 stats[i] += tcp_jiffies32 - tp->chrono_start; 3182 stats[i] *= USEC_PER_SEC / HZ; 3183 total += stats[i]; 3184 } 3185 3186 info->tcpi_busy_time = total; 3187 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3188 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3189 } 3190 3191 /* Return information about state of tcp endpoint in API format. */ tcp_get_info(struct sock * sk,struct tcp_info * info)3192 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3193 { 3194 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3195 const struct inet_connection_sock *icsk = inet_csk(sk); 3196 unsigned long rate; 3197 u32 now; 3198 u64 rate64; 3199 bool slow; 3200 3201 memset(info, 0, sizeof(*info)); 3202 if (sk->sk_type != SOCK_STREAM) 3203 return; 3204 3205 info->tcpi_state = inet_sk_state_load(sk); 3206 3207 /* Report meaningful fields for all TCP states, including listeners */ 3208 rate = READ_ONCE(sk->sk_pacing_rate); 3209 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3210 info->tcpi_pacing_rate = rate64; 3211 3212 rate = READ_ONCE(sk->sk_max_pacing_rate); 3213 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3214 info->tcpi_max_pacing_rate = rate64; 3215 3216 info->tcpi_reordering = tp->reordering; 3217 info->tcpi_snd_cwnd = tp->snd_cwnd; 3218 3219 if (info->tcpi_state == TCP_LISTEN) { 3220 /* listeners aliased fields : 3221 * tcpi_unacked -> Number of children ready for accept() 3222 * tcpi_sacked -> max backlog 3223 */ 3224 info->tcpi_unacked = sk->sk_ack_backlog; 3225 info->tcpi_sacked = sk->sk_max_ack_backlog; 3226 return; 3227 } 3228 3229 slow = lock_sock_fast(sk); 3230 3231 info->tcpi_ca_state = icsk->icsk_ca_state; 3232 info->tcpi_retransmits = icsk->icsk_retransmits; 3233 info->tcpi_probes = icsk->icsk_probes_out; 3234 info->tcpi_backoff = icsk->icsk_backoff; 3235 3236 if (tp->rx_opt.tstamp_ok) 3237 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3238 if (tcp_is_sack(tp)) 3239 info->tcpi_options |= TCPI_OPT_SACK; 3240 if (tp->rx_opt.wscale_ok) { 3241 info->tcpi_options |= TCPI_OPT_WSCALE; 3242 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3243 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3244 } 3245 3246 if (tp->ecn_flags & TCP_ECN_OK) 3247 info->tcpi_options |= TCPI_OPT_ECN; 3248 if (tp->ecn_flags & TCP_ECN_SEEN) 3249 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3250 if (tp->syn_data_acked) 3251 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3252 3253 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3254 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3255 info->tcpi_snd_mss = tp->mss_cache; 3256 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3257 3258 info->tcpi_unacked = tp->packets_out; 3259 info->tcpi_sacked = tp->sacked_out; 3260 3261 info->tcpi_lost = tp->lost_out; 3262 info->tcpi_retrans = tp->retrans_out; 3263 3264 now = tcp_jiffies32; 3265 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3266 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3267 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3268 3269 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3270 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3271 info->tcpi_rtt = tp->srtt_us >> 3; 3272 info->tcpi_rttvar = tp->mdev_us >> 2; 3273 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3274 info->tcpi_advmss = tp->advmss; 3275 3276 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3277 info->tcpi_rcv_space = tp->rcvq_space.space; 3278 3279 info->tcpi_total_retrans = tp->total_retrans; 3280 3281 info->tcpi_bytes_acked = tp->bytes_acked; 3282 info->tcpi_bytes_received = tp->bytes_received; 3283 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3284 tcp_get_info_chrono_stats(tp, info); 3285 3286 info->tcpi_segs_out = tp->segs_out; 3287 info->tcpi_segs_in = tp->segs_in; 3288 3289 info->tcpi_min_rtt = tcp_min_rtt(tp); 3290 info->tcpi_data_segs_in = tp->data_segs_in; 3291 info->tcpi_data_segs_out = tp->data_segs_out; 3292 3293 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3294 rate64 = tcp_compute_delivery_rate(tp); 3295 if (rate64) 3296 info->tcpi_delivery_rate = rate64; 3297 info->tcpi_delivered = tp->delivered; 3298 info->tcpi_delivered_ce = tp->delivered_ce; 3299 info->tcpi_bytes_sent = tp->bytes_sent; 3300 info->tcpi_bytes_retrans = tp->bytes_retrans; 3301 info->tcpi_dsack_dups = tp->dsack_dups; 3302 info->tcpi_reord_seen = tp->reord_seen; 3303 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3304 info->tcpi_snd_wnd = tp->snd_wnd; 3305 unlock_sock_fast(sk, slow); 3306 } 3307 EXPORT_SYMBOL_GPL(tcp_get_info); 3308 tcp_opt_stats_get_size(void)3309 static size_t tcp_opt_stats_get_size(void) 3310 { 3311 return 3312 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3313 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3314 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3315 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3316 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3317 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3318 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3319 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3320 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3321 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3322 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3323 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3324 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3325 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3326 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3327 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3328 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3329 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3330 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3331 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3332 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3333 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3334 0; 3335 } 3336 tcp_get_timestamping_opt_stats(const struct sock * sk)3337 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3338 { 3339 const struct tcp_sock *tp = tcp_sk(sk); 3340 struct sk_buff *stats; 3341 struct tcp_info info; 3342 unsigned long rate; 3343 u64 rate64; 3344 3345 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3346 if (!stats) 3347 return NULL; 3348 3349 tcp_get_info_chrono_stats(tp, &info); 3350 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3351 info.tcpi_busy_time, TCP_NLA_PAD); 3352 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3353 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3354 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3355 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3356 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3357 tp->data_segs_out, TCP_NLA_PAD); 3358 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3359 tp->total_retrans, TCP_NLA_PAD); 3360 3361 rate = READ_ONCE(sk->sk_pacing_rate); 3362 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3363 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3364 3365 rate64 = tcp_compute_delivery_rate(tp); 3366 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3367 3368 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3369 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3370 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3371 3372 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3373 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3374 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3375 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3376 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3377 3378 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3379 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3380 3381 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3382 TCP_NLA_PAD); 3383 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3384 TCP_NLA_PAD); 3385 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3386 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3387 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3388 3389 return stats; 3390 } 3391 do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3392 static int do_tcp_getsockopt(struct sock *sk, int level, 3393 int optname, char __user *optval, int __user *optlen) 3394 { 3395 struct inet_connection_sock *icsk = inet_csk(sk); 3396 struct tcp_sock *tp = tcp_sk(sk); 3397 struct net *net = sock_net(sk); 3398 int val, len; 3399 3400 if (get_user(len, optlen)) 3401 return -EFAULT; 3402 3403 len = min_t(unsigned int, len, sizeof(int)); 3404 3405 if (len < 0) 3406 return -EINVAL; 3407 3408 switch (optname) { 3409 case TCP_MAXSEG: 3410 val = tp->mss_cache; 3411 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3412 val = tp->rx_opt.user_mss; 3413 if (tp->repair) 3414 val = tp->rx_opt.mss_clamp; 3415 break; 3416 case TCP_NODELAY: 3417 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3418 break; 3419 case TCP_CORK: 3420 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3421 break; 3422 case TCP_KEEPIDLE: 3423 val = keepalive_time_when(tp) / HZ; 3424 break; 3425 case TCP_KEEPINTVL: 3426 val = keepalive_intvl_when(tp) / HZ; 3427 break; 3428 case TCP_KEEPCNT: 3429 val = keepalive_probes(tp); 3430 break; 3431 case TCP_SYNCNT: 3432 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3433 break; 3434 case TCP_LINGER2: 3435 val = tp->linger2; 3436 if (val >= 0) 3437 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3438 break; 3439 case TCP_DEFER_ACCEPT: 3440 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3441 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3442 break; 3443 case TCP_WINDOW_CLAMP: 3444 val = tp->window_clamp; 3445 break; 3446 case TCP_INFO: { 3447 struct tcp_info info; 3448 3449 if (get_user(len, optlen)) 3450 return -EFAULT; 3451 3452 tcp_get_info(sk, &info); 3453 3454 len = min_t(unsigned int, len, sizeof(info)); 3455 if (put_user(len, optlen)) 3456 return -EFAULT; 3457 if (copy_to_user(optval, &info, len)) 3458 return -EFAULT; 3459 return 0; 3460 } 3461 case TCP_CC_INFO: { 3462 const struct tcp_congestion_ops *ca_ops; 3463 union tcp_cc_info info; 3464 size_t sz = 0; 3465 int attr; 3466 3467 if (get_user(len, optlen)) 3468 return -EFAULT; 3469 3470 ca_ops = icsk->icsk_ca_ops; 3471 if (ca_ops && ca_ops->get_info) 3472 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3473 3474 len = min_t(unsigned int, len, sz); 3475 if (put_user(len, optlen)) 3476 return -EFAULT; 3477 if (copy_to_user(optval, &info, len)) 3478 return -EFAULT; 3479 return 0; 3480 } 3481 case TCP_QUICKACK: 3482 val = !inet_csk_in_pingpong_mode(sk); 3483 break; 3484 3485 case TCP_CONGESTION: 3486 if (get_user(len, optlen)) 3487 return -EFAULT; 3488 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3489 if (put_user(len, optlen)) 3490 return -EFAULT; 3491 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3492 return -EFAULT; 3493 return 0; 3494 3495 case TCP_ULP: 3496 if (get_user(len, optlen)) 3497 return -EFAULT; 3498 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3499 if (!icsk->icsk_ulp_ops) { 3500 if (put_user(0, optlen)) 3501 return -EFAULT; 3502 return 0; 3503 } 3504 if (put_user(len, optlen)) 3505 return -EFAULT; 3506 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3507 return -EFAULT; 3508 return 0; 3509 3510 case TCP_FASTOPEN_KEY: { 3511 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3512 struct tcp_fastopen_context *ctx; 3513 unsigned int key_len = 0; 3514 3515 if (get_user(len, optlen)) 3516 return -EFAULT; 3517 3518 rcu_read_lock(); 3519 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3520 if (ctx) { 3521 key_len = tcp_fastopen_context_len(ctx) * 3522 TCP_FASTOPEN_KEY_LENGTH; 3523 memcpy(&key[0], &ctx->key[0], key_len); 3524 } 3525 rcu_read_unlock(); 3526 3527 len = min_t(unsigned int, len, key_len); 3528 if (put_user(len, optlen)) 3529 return -EFAULT; 3530 if (copy_to_user(optval, key, len)) 3531 return -EFAULT; 3532 return 0; 3533 } 3534 case TCP_THIN_LINEAR_TIMEOUTS: 3535 val = tp->thin_lto; 3536 break; 3537 3538 case TCP_THIN_DUPACK: 3539 val = 0; 3540 break; 3541 3542 case TCP_REPAIR: 3543 val = tp->repair; 3544 break; 3545 3546 case TCP_REPAIR_QUEUE: 3547 if (tp->repair) 3548 val = tp->repair_queue; 3549 else 3550 return -EINVAL; 3551 break; 3552 3553 case TCP_REPAIR_WINDOW: { 3554 struct tcp_repair_window opt; 3555 3556 if (get_user(len, optlen)) 3557 return -EFAULT; 3558 3559 if (len != sizeof(opt)) 3560 return -EINVAL; 3561 3562 if (!tp->repair) 3563 return -EPERM; 3564 3565 opt.snd_wl1 = tp->snd_wl1; 3566 opt.snd_wnd = tp->snd_wnd; 3567 opt.max_window = tp->max_window; 3568 opt.rcv_wnd = tp->rcv_wnd; 3569 opt.rcv_wup = tp->rcv_wup; 3570 3571 if (copy_to_user(optval, &opt, len)) 3572 return -EFAULT; 3573 return 0; 3574 } 3575 case TCP_QUEUE_SEQ: 3576 if (tp->repair_queue == TCP_SEND_QUEUE) 3577 val = tp->write_seq; 3578 else if (tp->repair_queue == TCP_RECV_QUEUE) 3579 val = tp->rcv_nxt; 3580 else 3581 return -EINVAL; 3582 break; 3583 3584 case TCP_USER_TIMEOUT: 3585 val = icsk->icsk_user_timeout; 3586 break; 3587 3588 case TCP_FASTOPEN: 3589 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3590 break; 3591 3592 case TCP_FASTOPEN_CONNECT: 3593 val = tp->fastopen_connect; 3594 break; 3595 3596 case TCP_FASTOPEN_NO_COOKIE: 3597 val = tp->fastopen_no_cookie; 3598 break; 3599 3600 case TCP_TX_DELAY: 3601 val = tp->tcp_tx_delay; 3602 break; 3603 3604 case TCP_TIMESTAMP: 3605 val = tcp_time_stamp_raw() + tp->tsoffset; 3606 break; 3607 case TCP_NOTSENT_LOWAT: 3608 val = tp->notsent_lowat; 3609 break; 3610 case TCP_INQ: 3611 val = tp->recvmsg_inq; 3612 break; 3613 case TCP_SAVE_SYN: 3614 val = tp->save_syn; 3615 break; 3616 case TCP_SAVED_SYN: { 3617 if (get_user(len, optlen)) 3618 return -EFAULT; 3619 3620 lock_sock(sk); 3621 if (tp->saved_syn) { 3622 if (len < tp->saved_syn[0]) { 3623 if (put_user(tp->saved_syn[0], optlen)) { 3624 release_sock(sk); 3625 return -EFAULT; 3626 } 3627 release_sock(sk); 3628 return -EINVAL; 3629 } 3630 len = tp->saved_syn[0]; 3631 if (put_user(len, optlen)) { 3632 release_sock(sk); 3633 return -EFAULT; 3634 } 3635 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3636 release_sock(sk); 3637 return -EFAULT; 3638 } 3639 tcp_saved_syn_free(tp); 3640 release_sock(sk); 3641 } else { 3642 release_sock(sk); 3643 len = 0; 3644 if (put_user(len, optlen)) 3645 return -EFAULT; 3646 } 3647 return 0; 3648 } 3649 #ifdef CONFIG_MMU 3650 case TCP_ZEROCOPY_RECEIVE: { 3651 struct tcp_zerocopy_receive zc; 3652 int err; 3653 3654 if (get_user(len, optlen)) 3655 return -EFAULT; 3656 if (len != sizeof(zc)) 3657 return -EINVAL; 3658 if (copy_from_user(&zc, optval, len)) 3659 return -EFAULT; 3660 lock_sock(sk); 3661 err = tcp_zerocopy_receive(sk, &zc); 3662 release_sock(sk); 3663 if (!err && copy_to_user(optval, &zc, len)) 3664 err = -EFAULT; 3665 return err; 3666 } 3667 #endif 3668 default: 3669 return -ENOPROTOOPT; 3670 } 3671 3672 if (put_user(len, optlen)) 3673 return -EFAULT; 3674 if (copy_to_user(optval, &val, len)) 3675 return -EFAULT; 3676 return 0; 3677 } 3678 tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3679 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3680 int __user *optlen) 3681 { 3682 struct inet_connection_sock *icsk = inet_csk(sk); 3683 3684 if (level != SOL_TCP) 3685 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3686 optval, optlen); 3687 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3688 } 3689 EXPORT_SYMBOL(tcp_getsockopt); 3690 3691 #ifdef CONFIG_COMPAT compat_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3692 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3693 char __user *optval, int __user *optlen) 3694 { 3695 if (level != SOL_TCP) 3696 return inet_csk_compat_getsockopt(sk, level, optname, 3697 optval, optlen); 3698 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3699 } 3700 EXPORT_SYMBOL(compat_tcp_getsockopt); 3701 #endif 3702 3703 #ifdef CONFIG_TCP_MD5SIG 3704 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3705 static DEFINE_MUTEX(tcp_md5sig_mutex); 3706 static bool tcp_md5sig_pool_populated = false; 3707 __tcp_alloc_md5sig_pool(void)3708 static void __tcp_alloc_md5sig_pool(void) 3709 { 3710 struct crypto_ahash *hash; 3711 int cpu; 3712 3713 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3714 if (IS_ERR(hash)) 3715 return; 3716 3717 for_each_possible_cpu(cpu) { 3718 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3719 struct ahash_request *req; 3720 3721 if (!scratch) { 3722 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3723 sizeof(struct tcphdr), 3724 GFP_KERNEL, 3725 cpu_to_node(cpu)); 3726 if (!scratch) 3727 return; 3728 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3729 } 3730 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3731 continue; 3732 3733 req = ahash_request_alloc(hash, GFP_KERNEL); 3734 if (!req) 3735 return; 3736 3737 ahash_request_set_callback(req, 0, NULL, NULL); 3738 3739 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3740 } 3741 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3742 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3743 */ 3744 smp_wmb(); 3745 tcp_md5sig_pool_populated = true; 3746 } 3747 tcp_alloc_md5sig_pool(void)3748 bool tcp_alloc_md5sig_pool(void) 3749 { 3750 if (unlikely(!tcp_md5sig_pool_populated)) { 3751 mutex_lock(&tcp_md5sig_mutex); 3752 3753 if (!tcp_md5sig_pool_populated) { 3754 __tcp_alloc_md5sig_pool(); 3755 if (tcp_md5sig_pool_populated) 3756 static_branch_inc(&tcp_md5_needed); 3757 } 3758 3759 mutex_unlock(&tcp_md5sig_mutex); 3760 } 3761 return tcp_md5sig_pool_populated; 3762 } 3763 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3764 3765 3766 /** 3767 * tcp_get_md5sig_pool - get md5sig_pool for this user 3768 * 3769 * We use percpu structure, so if we succeed, we exit with preemption 3770 * and BH disabled, to make sure another thread or softirq handling 3771 * wont try to get same context. 3772 */ tcp_get_md5sig_pool(void)3773 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3774 { 3775 local_bh_disable(); 3776 3777 if (tcp_md5sig_pool_populated) { 3778 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3779 smp_rmb(); 3780 return this_cpu_ptr(&tcp_md5sig_pool); 3781 } 3782 local_bh_enable(); 3783 return NULL; 3784 } 3785 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3786 tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)3787 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3788 const struct sk_buff *skb, unsigned int header_len) 3789 { 3790 struct scatterlist sg; 3791 const struct tcphdr *tp = tcp_hdr(skb); 3792 struct ahash_request *req = hp->md5_req; 3793 unsigned int i; 3794 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3795 skb_headlen(skb) - header_len : 0; 3796 const struct skb_shared_info *shi = skb_shinfo(skb); 3797 struct sk_buff *frag_iter; 3798 3799 sg_init_table(&sg, 1); 3800 3801 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3802 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3803 if (crypto_ahash_update(req)) 3804 return 1; 3805 3806 for (i = 0; i < shi->nr_frags; ++i) { 3807 const skb_frag_t *f = &shi->frags[i]; 3808 unsigned int offset = skb_frag_off(f); 3809 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3810 3811 sg_set_page(&sg, page, skb_frag_size(f), 3812 offset_in_page(offset)); 3813 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3814 if (crypto_ahash_update(req)) 3815 return 1; 3816 } 3817 3818 skb_walk_frags(skb, frag_iter) 3819 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3820 return 1; 3821 3822 return 0; 3823 } 3824 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3825 tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)3826 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3827 { 3828 struct scatterlist sg; 3829 3830 sg_init_one(&sg, key->key, key->keylen); 3831 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3832 return crypto_ahash_update(hp->md5_req); 3833 } 3834 EXPORT_SYMBOL(tcp_md5_hash_key); 3835 3836 #endif 3837 tcp_done(struct sock * sk)3838 void tcp_done(struct sock *sk) 3839 { 3840 struct request_sock *req; 3841 3842 /* We might be called with a new socket, after 3843 * inet_csk_prepare_forced_close() has been called 3844 * so we can not use lockdep_sock_is_held(sk) 3845 */ 3846 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 3847 3848 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3849 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3850 3851 tcp_set_state(sk, TCP_CLOSE); 3852 tcp_clear_xmit_timers(sk); 3853 if (req) 3854 reqsk_fastopen_remove(sk, req, false); 3855 3856 sk->sk_shutdown = SHUTDOWN_MASK; 3857 3858 if (!sock_flag(sk, SOCK_DEAD)) 3859 sk->sk_state_change(sk); 3860 else 3861 inet_csk_destroy_sock(sk); 3862 } 3863 EXPORT_SYMBOL_GPL(tcp_done); 3864 tcp_abort(struct sock * sk,int err)3865 int tcp_abort(struct sock *sk, int err) 3866 { 3867 if (!sk_fullsock(sk)) { 3868 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3869 struct request_sock *req = inet_reqsk(sk); 3870 3871 local_bh_disable(); 3872 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 3873 local_bh_enable(); 3874 return 0; 3875 } 3876 return -EOPNOTSUPP; 3877 } 3878 3879 /* Don't race with userspace socket closes such as tcp_close. */ 3880 lock_sock(sk); 3881 3882 if (sk->sk_state == TCP_LISTEN) { 3883 tcp_set_state(sk, TCP_CLOSE); 3884 inet_csk_listen_stop(sk); 3885 } 3886 3887 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3888 local_bh_disable(); 3889 bh_lock_sock(sk); 3890 3891 if (!sock_flag(sk, SOCK_DEAD)) { 3892 sk->sk_err = err; 3893 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3894 smp_wmb(); 3895 sk->sk_error_report(sk); 3896 if (tcp_need_reset(sk->sk_state)) 3897 tcp_send_active_reset(sk, GFP_ATOMIC); 3898 tcp_done(sk); 3899 } 3900 3901 bh_unlock_sock(sk); 3902 local_bh_enable(); 3903 tcp_write_queue_purge(sk); 3904 release_sock(sk); 3905 return 0; 3906 } 3907 EXPORT_SYMBOL_GPL(tcp_abort); 3908 3909 extern struct tcp_congestion_ops tcp_reno; 3910 3911 static __initdata unsigned long thash_entries; set_thash_entries(char * str)3912 static int __init set_thash_entries(char *str) 3913 { 3914 ssize_t ret; 3915 3916 if (!str) 3917 return 0; 3918 3919 ret = kstrtoul(str, 0, &thash_entries); 3920 if (ret) 3921 return 0; 3922 3923 return 1; 3924 } 3925 __setup("thash_entries=", set_thash_entries); 3926 tcp_init_mem(void)3927 static void __init tcp_init_mem(void) 3928 { 3929 unsigned long limit = nr_free_buffer_pages() / 16; 3930 3931 limit = max(limit, 128UL); 3932 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3933 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3934 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3935 } 3936 tcp_init(void)3937 void __init tcp_init(void) 3938 { 3939 int max_rshare, max_wshare, cnt; 3940 unsigned long limit; 3941 unsigned int i; 3942 3943 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 3944 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3945 FIELD_SIZEOF(struct sk_buff, cb)); 3946 3947 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3948 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3949 inet_hashinfo_init(&tcp_hashinfo); 3950 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 3951 thash_entries, 21, /* one slot per 2 MB*/ 3952 0, 64 * 1024); 3953 tcp_hashinfo.bind_bucket_cachep = 3954 kmem_cache_create("tcp_bind_bucket", 3955 sizeof(struct inet_bind_bucket), 0, 3956 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3957 3958 /* Size and allocate the main established and bind bucket 3959 * hash tables. 3960 * 3961 * The methodology is similar to that of the buffer cache. 3962 */ 3963 tcp_hashinfo.ehash = 3964 alloc_large_system_hash("TCP established", 3965 sizeof(struct inet_ehash_bucket), 3966 thash_entries, 3967 17, /* one slot per 128 KB of memory */ 3968 0, 3969 NULL, 3970 &tcp_hashinfo.ehash_mask, 3971 0, 3972 thash_entries ? 0 : 512 * 1024); 3973 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3974 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3975 3976 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3977 panic("TCP: failed to alloc ehash_locks"); 3978 tcp_hashinfo.bhash = 3979 alloc_large_system_hash("TCP bind", 3980 sizeof(struct inet_bind_hashbucket), 3981 tcp_hashinfo.ehash_mask + 1, 3982 17, /* one slot per 128 KB of memory */ 3983 0, 3984 &tcp_hashinfo.bhash_size, 3985 NULL, 3986 0, 3987 64 * 1024); 3988 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3989 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3990 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3991 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3992 } 3993 3994 3995 cnt = tcp_hashinfo.ehash_mask + 1; 3996 sysctl_tcp_max_orphans = cnt / 2; 3997 3998 tcp_init_mem(); 3999 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4000 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4001 max_wshare = min(4UL*1024*1024, limit); 4002 max_rshare = min(6UL*1024*1024, limit); 4003 4004 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4005 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4006 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4007 4008 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4009 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4010 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4011 4012 pr_info("Hash tables configured (established %u bind %u)\n", 4013 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4014 4015 tcp_v4_init(); 4016 tcp_metrics_init(); 4017 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4018 tcp_tasklet_init(); 4019 } 4020