1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * No idle tick implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
10 */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/module.h>
24 #include <linux/irq_work.h>
25 #include <linux/posix-timers.h>
26 #include <linux/context_tracking.h>
27 #include <linux/mm.h>
28
29 #include <asm/irq_regs.h>
30
31 #include "tick-internal.h"
32
33 #include <trace/events/timer.h>
34
35 /*
36 * Per-CPU nohz control structure
37 */
38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
39
tick_get_tick_sched(int cpu)40 struct tick_sched *tick_get_tick_sched(int cpu)
41 {
42 return &per_cpu(tick_cpu_sched, cpu);
43 }
44
45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46 /*
47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
48 */
49 static ktime_t last_jiffies_update;
50
51 /*
52 * Must be called with interrupts disabled !
53 */
tick_do_update_jiffies64(ktime_t now)54 static void tick_do_update_jiffies64(ktime_t now)
55 {
56 unsigned long ticks = 0;
57 ktime_t delta;
58
59 /*
60 * Do a quick check without holding jiffies_lock:
61 * The READ_ONCE() pairs with two updates done later in this function.
62 */
63 delta = ktime_sub(now, READ_ONCE(last_jiffies_update));
64 if (delta < tick_period)
65 return;
66
67 /* Reevaluate with jiffies_lock held */
68 write_seqlock(&jiffies_lock);
69
70 delta = ktime_sub(now, last_jiffies_update);
71 if (delta >= tick_period) {
72
73 delta = ktime_sub(delta, tick_period);
74 /* Pairs with the lockless read in this function. */
75 WRITE_ONCE(last_jiffies_update,
76 ktime_add(last_jiffies_update, tick_period));
77
78 /* Slow path for long timeouts */
79 if (unlikely(delta >= tick_period)) {
80 s64 incr = ktime_to_ns(tick_period);
81
82 ticks = ktime_divns(delta, incr);
83
84 /* Pairs with the lockless read in this function. */
85 WRITE_ONCE(last_jiffies_update,
86 ktime_add_ns(last_jiffies_update,
87 incr * ticks));
88 }
89 do_timer(++ticks);
90
91 /* Keep the tick_next_period variable up to date */
92 tick_next_period = ktime_add(last_jiffies_update, tick_period);
93 } else {
94 write_sequnlock(&jiffies_lock);
95 return;
96 }
97 write_sequnlock(&jiffies_lock);
98 update_wall_time();
99 }
100
101 /*
102 * Initialize and return retrieve the jiffies update.
103 */
tick_init_jiffy_update(void)104 static ktime_t tick_init_jiffy_update(void)
105 {
106 ktime_t period;
107
108 write_seqlock(&jiffies_lock);
109 /* Did we start the jiffies update yet ? */
110 if (last_jiffies_update == 0)
111 last_jiffies_update = tick_next_period;
112 period = last_jiffies_update;
113 write_sequnlock(&jiffies_lock);
114 return period;
115 }
116
tick_sched_do_timer(struct tick_sched * ts,ktime_t now)117 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
118 {
119 int cpu = smp_processor_id();
120
121 #ifdef CONFIG_NO_HZ_COMMON
122 /*
123 * Check if the do_timer duty was dropped. We don't care about
124 * concurrency: This happens only when the CPU in charge went
125 * into a long sleep. If two CPUs happen to assign themselves to
126 * this duty, then the jiffies update is still serialized by
127 * jiffies_lock.
128 *
129 * If nohz_full is enabled, this should not happen because the
130 * tick_do_timer_cpu never relinquishes.
131 */
132 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
133 #ifdef CONFIG_NO_HZ_FULL
134 WARN_ON(tick_nohz_full_running);
135 #endif
136 tick_do_timer_cpu = cpu;
137 }
138 #endif
139
140 /* Check, if the jiffies need an update */
141 if (tick_do_timer_cpu == cpu)
142 tick_do_update_jiffies64(now);
143
144 if (ts->inidle)
145 ts->got_idle_tick = 1;
146 }
147
tick_sched_handle(struct tick_sched * ts,struct pt_regs * regs)148 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
149 {
150 #ifdef CONFIG_NO_HZ_COMMON
151 /*
152 * When we are idle and the tick is stopped, we have to touch
153 * the watchdog as we might not schedule for a really long
154 * time. This happens on complete idle SMP systems while
155 * waiting on the login prompt. We also increment the "start of
156 * idle" jiffy stamp so the idle accounting adjustment we do
157 * when we go busy again does not account too much ticks.
158 */
159 if (ts->tick_stopped) {
160 touch_softlockup_watchdog_sched();
161 if (is_idle_task(current))
162 ts->idle_jiffies++;
163 /*
164 * In case the current tick fired too early past its expected
165 * expiration, make sure we don't bypass the next clock reprogramming
166 * to the same deadline.
167 */
168 ts->next_tick = 0;
169 }
170 #endif
171 update_process_times(user_mode(regs));
172 profile_tick(CPU_PROFILING);
173 }
174 #endif
175
176 #ifdef CONFIG_NO_HZ_FULL
177 cpumask_var_t tick_nohz_full_mask;
178 bool tick_nohz_full_running;
179 static atomic_t tick_dep_mask;
180
check_tick_dependency(atomic_t * dep)181 static bool check_tick_dependency(atomic_t *dep)
182 {
183 int val = atomic_read(dep);
184
185 if (val & TICK_DEP_MASK_POSIX_TIMER) {
186 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
187 return true;
188 }
189
190 if (val & TICK_DEP_MASK_PERF_EVENTS) {
191 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
192 return true;
193 }
194
195 if (val & TICK_DEP_MASK_SCHED) {
196 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
197 return true;
198 }
199
200 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
201 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
202 return true;
203 }
204
205 return false;
206 }
207
can_stop_full_tick(int cpu,struct tick_sched * ts)208 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
209 {
210 lockdep_assert_irqs_disabled();
211
212 if (unlikely(!cpu_online(cpu)))
213 return false;
214
215 if (check_tick_dependency(&tick_dep_mask))
216 return false;
217
218 if (check_tick_dependency(&ts->tick_dep_mask))
219 return false;
220
221 if (check_tick_dependency(¤t->tick_dep_mask))
222 return false;
223
224 if (check_tick_dependency(¤t->signal->tick_dep_mask))
225 return false;
226
227 return true;
228 }
229
nohz_full_kick_func(struct irq_work * work)230 static void nohz_full_kick_func(struct irq_work *work)
231 {
232 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
233 }
234
235 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
236 .func = nohz_full_kick_func,
237 };
238
239 /*
240 * Kick this CPU if it's full dynticks in order to force it to
241 * re-evaluate its dependency on the tick and restart it if necessary.
242 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
243 * is NMI safe.
244 */
tick_nohz_full_kick(void)245 static void tick_nohz_full_kick(void)
246 {
247 if (!tick_nohz_full_cpu(smp_processor_id()))
248 return;
249
250 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
251 }
252
253 /*
254 * Kick the CPU if it's full dynticks in order to force it to
255 * re-evaluate its dependency on the tick and restart it if necessary.
256 */
tick_nohz_full_kick_cpu(int cpu)257 void tick_nohz_full_kick_cpu(int cpu)
258 {
259 if (!tick_nohz_full_cpu(cpu))
260 return;
261
262 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
263 }
264
265 /*
266 * Kick all full dynticks CPUs in order to force these to re-evaluate
267 * their dependency on the tick and restart it if necessary.
268 */
tick_nohz_full_kick_all(void)269 static void tick_nohz_full_kick_all(void)
270 {
271 int cpu;
272
273 if (!tick_nohz_full_running)
274 return;
275
276 preempt_disable();
277 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
278 tick_nohz_full_kick_cpu(cpu);
279 preempt_enable();
280 }
281
tick_nohz_dep_set_all(atomic_t * dep,enum tick_dep_bits bit)282 static void tick_nohz_dep_set_all(atomic_t *dep,
283 enum tick_dep_bits bit)
284 {
285 int prev;
286
287 prev = atomic_fetch_or(BIT(bit), dep);
288 if (!prev)
289 tick_nohz_full_kick_all();
290 }
291
292 /*
293 * Set a global tick dependency. Used by perf events that rely on freq and
294 * by unstable clock.
295 */
tick_nohz_dep_set(enum tick_dep_bits bit)296 void tick_nohz_dep_set(enum tick_dep_bits bit)
297 {
298 tick_nohz_dep_set_all(&tick_dep_mask, bit);
299 }
300
tick_nohz_dep_clear(enum tick_dep_bits bit)301 void tick_nohz_dep_clear(enum tick_dep_bits bit)
302 {
303 atomic_andnot(BIT(bit), &tick_dep_mask);
304 }
305
306 /*
307 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
308 * manage events throttling.
309 */
tick_nohz_dep_set_cpu(int cpu,enum tick_dep_bits bit)310 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
311 {
312 int prev;
313 struct tick_sched *ts;
314
315 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
316
317 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
318 if (!prev) {
319 preempt_disable();
320 /* Perf needs local kick that is NMI safe */
321 if (cpu == smp_processor_id()) {
322 tick_nohz_full_kick();
323 } else {
324 /* Remote irq work not NMI-safe */
325 if (!WARN_ON_ONCE(in_nmi()))
326 tick_nohz_full_kick_cpu(cpu);
327 }
328 preempt_enable();
329 }
330 }
331
tick_nohz_dep_clear_cpu(int cpu,enum tick_dep_bits bit)332 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
333 {
334 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
335
336 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
337 }
338
339 /*
340 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
341 * per task timers.
342 */
tick_nohz_dep_set_task(struct task_struct * tsk,enum tick_dep_bits bit)343 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
344 {
345 /*
346 * We could optimize this with just kicking the target running the task
347 * if that noise matters for nohz full users.
348 */
349 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
350 }
351
tick_nohz_dep_clear_task(struct task_struct * tsk,enum tick_dep_bits bit)352 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
353 {
354 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
355 }
356
357 /*
358 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
359 * per process timers.
360 */
tick_nohz_dep_set_signal(struct signal_struct * sig,enum tick_dep_bits bit)361 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
362 {
363 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
364 }
365
tick_nohz_dep_clear_signal(struct signal_struct * sig,enum tick_dep_bits bit)366 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
367 {
368 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
369 }
370
371 /*
372 * Re-evaluate the need for the tick as we switch the current task.
373 * It might need the tick due to per task/process properties:
374 * perf events, posix CPU timers, ...
375 */
__tick_nohz_task_switch(void)376 void __tick_nohz_task_switch(void)
377 {
378 unsigned long flags;
379 struct tick_sched *ts;
380
381 local_irq_save(flags);
382
383 if (!tick_nohz_full_cpu(smp_processor_id()))
384 goto out;
385
386 ts = this_cpu_ptr(&tick_cpu_sched);
387
388 if (ts->tick_stopped) {
389 if (atomic_read(¤t->tick_dep_mask) ||
390 atomic_read(¤t->signal->tick_dep_mask))
391 tick_nohz_full_kick();
392 }
393 out:
394 local_irq_restore(flags);
395 }
396
397 /* Get the boot-time nohz CPU list from the kernel parameters. */
tick_nohz_full_setup(cpumask_var_t cpumask)398 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
399 {
400 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
401 cpumask_copy(tick_nohz_full_mask, cpumask);
402 tick_nohz_full_running = true;
403 }
404
tick_nohz_cpu_down(unsigned int cpu)405 static int tick_nohz_cpu_down(unsigned int cpu)
406 {
407 /*
408 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
409 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
410 * CPUs. It must remain online when nohz full is enabled.
411 */
412 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
413 return -EBUSY;
414 return 0;
415 }
416
tick_nohz_init(void)417 void __init tick_nohz_init(void)
418 {
419 int cpu, ret;
420
421 if (!tick_nohz_full_running)
422 return;
423
424 /*
425 * Full dynticks uses irq work to drive the tick rescheduling on safe
426 * locking contexts. But then we need irq work to raise its own
427 * interrupts to avoid circular dependency on the tick
428 */
429 if (!arch_irq_work_has_interrupt()) {
430 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
431 cpumask_clear(tick_nohz_full_mask);
432 tick_nohz_full_running = false;
433 return;
434 }
435
436 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
437 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
438 cpu = smp_processor_id();
439
440 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
441 pr_warn("NO_HZ: Clearing %d from nohz_full range "
442 "for timekeeping\n", cpu);
443 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
444 }
445 }
446
447 for_each_cpu(cpu, tick_nohz_full_mask)
448 context_tracking_cpu_set(cpu);
449
450 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
451 "kernel/nohz:predown", NULL,
452 tick_nohz_cpu_down);
453 WARN_ON(ret < 0);
454 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
455 cpumask_pr_args(tick_nohz_full_mask));
456 }
457 #endif
458
459 /*
460 * NOHZ - aka dynamic tick functionality
461 */
462 #ifdef CONFIG_NO_HZ_COMMON
463 /*
464 * NO HZ enabled ?
465 */
466 bool tick_nohz_enabled __read_mostly = true;
467 unsigned long tick_nohz_active __read_mostly;
468 /*
469 * Enable / Disable tickless mode
470 */
setup_tick_nohz(char * str)471 static int __init setup_tick_nohz(char *str)
472 {
473 return (kstrtobool(str, &tick_nohz_enabled) == 0);
474 }
475
476 __setup("nohz=", setup_tick_nohz);
477
tick_nohz_tick_stopped(void)478 bool tick_nohz_tick_stopped(void)
479 {
480 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
481
482 return ts->tick_stopped;
483 }
484
tick_nohz_tick_stopped_cpu(int cpu)485 bool tick_nohz_tick_stopped_cpu(int cpu)
486 {
487 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
488
489 return ts->tick_stopped;
490 }
491
492 /**
493 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
494 *
495 * Called from interrupt entry when the CPU was idle
496 *
497 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
498 * must be updated. Otherwise an interrupt handler could use a stale jiffy
499 * value. We do this unconditionally on any CPU, as we don't know whether the
500 * CPU, which has the update task assigned is in a long sleep.
501 */
tick_nohz_update_jiffies(ktime_t now)502 static void tick_nohz_update_jiffies(ktime_t now)
503 {
504 unsigned long flags;
505
506 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
507
508 local_irq_save(flags);
509 tick_do_update_jiffies64(now);
510 local_irq_restore(flags);
511
512 touch_softlockup_watchdog_sched();
513 }
514
515 /*
516 * Updates the per-CPU time idle statistics counters
517 */
518 static void
update_ts_time_stats(int cpu,struct tick_sched * ts,ktime_t now,u64 * last_update_time)519 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
520 {
521 ktime_t delta;
522
523 if (ts->idle_active) {
524 delta = ktime_sub(now, ts->idle_entrytime);
525 if (nr_iowait_cpu(cpu) > 0)
526 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
527 else
528 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
529 ts->idle_entrytime = now;
530 }
531
532 if (last_update_time)
533 *last_update_time = ktime_to_us(now);
534
535 }
536
tick_nohz_stop_idle(struct tick_sched * ts,ktime_t now)537 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
538 {
539 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
540 ts->idle_active = 0;
541
542 sched_clock_idle_wakeup_event();
543 }
544
tick_nohz_start_idle(struct tick_sched * ts)545 static void tick_nohz_start_idle(struct tick_sched *ts)
546 {
547 ts->idle_entrytime = ktime_get();
548 ts->idle_active = 1;
549 sched_clock_idle_sleep_event();
550 }
551
552 /**
553 * get_cpu_idle_time_us - get the total idle time of a CPU
554 * @cpu: CPU number to query
555 * @last_update_time: variable to store update time in. Do not update
556 * counters if NULL.
557 *
558 * Return the cumulative idle time (since boot) for a given
559 * CPU, in microseconds.
560 *
561 * This time is measured via accounting rather than sampling,
562 * and is as accurate as ktime_get() is.
563 *
564 * This function returns -1 if NOHZ is not enabled.
565 */
get_cpu_idle_time_us(int cpu,u64 * last_update_time)566 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
567 {
568 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
569 ktime_t now, idle;
570
571 if (!tick_nohz_active)
572 return -1;
573
574 now = ktime_get();
575 if (last_update_time) {
576 update_ts_time_stats(cpu, ts, now, last_update_time);
577 idle = ts->idle_sleeptime;
578 } else {
579 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
580 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
581
582 idle = ktime_add(ts->idle_sleeptime, delta);
583 } else {
584 idle = ts->idle_sleeptime;
585 }
586 }
587
588 return ktime_to_us(idle);
589
590 }
591 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
592
593 /**
594 * get_cpu_iowait_time_us - get the total iowait time of a CPU
595 * @cpu: CPU number to query
596 * @last_update_time: variable to store update time in. Do not update
597 * counters if NULL.
598 *
599 * Return the cumulative iowait time (since boot) for a given
600 * CPU, in microseconds.
601 *
602 * This time is measured via accounting rather than sampling,
603 * and is as accurate as ktime_get() is.
604 *
605 * This function returns -1 if NOHZ is not enabled.
606 */
get_cpu_iowait_time_us(int cpu,u64 * last_update_time)607 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
608 {
609 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
610 ktime_t now, iowait;
611
612 if (!tick_nohz_active)
613 return -1;
614
615 now = ktime_get();
616 if (last_update_time) {
617 update_ts_time_stats(cpu, ts, now, last_update_time);
618 iowait = ts->iowait_sleeptime;
619 } else {
620 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
621 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
622
623 iowait = ktime_add(ts->iowait_sleeptime, delta);
624 } else {
625 iowait = ts->iowait_sleeptime;
626 }
627 }
628
629 return ktime_to_us(iowait);
630 }
631 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
632
tick_nohz_restart(struct tick_sched * ts,ktime_t now)633 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
634 {
635 hrtimer_cancel(&ts->sched_timer);
636 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
637
638 /* Forward the time to expire in the future */
639 hrtimer_forward(&ts->sched_timer, now, tick_period);
640
641 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
642 hrtimer_start_expires(&ts->sched_timer,
643 HRTIMER_MODE_ABS_PINNED_HARD);
644 } else {
645 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
646 }
647
648 /*
649 * Reset to make sure next tick stop doesn't get fooled by past
650 * cached clock deadline.
651 */
652 ts->next_tick = 0;
653 }
654
local_timer_softirq_pending(void)655 static inline bool local_timer_softirq_pending(void)
656 {
657 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
658 }
659
tick_nohz_next_event(struct tick_sched * ts,int cpu)660 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
661 {
662 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
663 unsigned long basejiff;
664 unsigned int seq;
665
666 /* Read jiffies and the time when jiffies were updated last */
667 do {
668 seq = read_seqbegin(&jiffies_lock);
669 basemono = last_jiffies_update;
670 basejiff = jiffies;
671 } while (read_seqretry(&jiffies_lock, seq));
672 ts->last_jiffies = basejiff;
673 ts->timer_expires_base = basemono;
674
675 /*
676 * Keep the periodic tick, when RCU, architecture or irq_work
677 * requests it.
678 * Aside of that check whether the local timer softirq is
679 * pending. If so its a bad idea to call get_next_timer_interrupt()
680 * because there is an already expired timer, so it will request
681 * immeditate expiry, which rearms the hardware timer with a
682 * minimal delta which brings us back to this place
683 * immediately. Lather, rinse and repeat...
684 */
685 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
686 irq_work_needs_cpu() || local_timer_softirq_pending()) {
687 next_tick = basemono + TICK_NSEC;
688 } else {
689 /*
690 * Get the next pending timer. If high resolution
691 * timers are enabled this only takes the timer wheel
692 * timers into account. If high resolution timers are
693 * disabled this also looks at the next expiring
694 * hrtimer.
695 */
696 next_tmr = get_next_timer_interrupt(basejiff, basemono);
697 ts->next_timer = next_tmr;
698 /* Take the next rcu event into account */
699 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
700 }
701
702 /*
703 * If the tick is due in the next period, keep it ticking or
704 * force prod the timer.
705 */
706 delta = next_tick - basemono;
707 if (delta <= (u64)TICK_NSEC) {
708 /*
709 * Tell the timer code that the base is not idle, i.e. undo
710 * the effect of get_next_timer_interrupt():
711 */
712 timer_clear_idle();
713 /*
714 * We've not stopped the tick yet, and there's a timer in the
715 * next period, so no point in stopping it either, bail.
716 */
717 if (!ts->tick_stopped) {
718 ts->timer_expires = 0;
719 goto out;
720 }
721 }
722
723 /*
724 * If this CPU is the one which had the do_timer() duty last, we limit
725 * the sleep time to the timekeeping max_deferment value.
726 * Otherwise we can sleep as long as we want.
727 */
728 delta = timekeeping_max_deferment();
729 if (cpu != tick_do_timer_cpu &&
730 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
731 delta = KTIME_MAX;
732
733 /* Calculate the next expiry time */
734 if (delta < (KTIME_MAX - basemono))
735 expires = basemono + delta;
736 else
737 expires = KTIME_MAX;
738
739 ts->timer_expires = min_t(u64, expires, next_tick);
740
741 out:
742 return ts->timer_expires;
743 }
744
tick_nohz_stop_tick(struct tick_sched * ts,int cpu)745 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
746 {
747 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
748 u64 basemono = ts->timer_expires_base;
749 u64 expires = ts->timer_expires;
750 ktime_t tick = expires;
751
752 /* Make sure we won't be trying to stop it twice in a row. */
753 ts->timer_expires_base = 0;
754
755 /*
756 * If this CPU is the one which updates jiffies, then give up
757 * the assignment and let it be taken by the CPU which runs
758 * the tick timer next, which might be this CPU as well. If we
759 * don't drop this here the jiffies might be stale and
760 * do_timer() never invoked. Keep track of the fact that it
761 * was the one which had the do_timer() duty last.
762 */
763 if (cpu == tick_do_timer_cpu) {
764 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
765 ts->do_timer_last = 1;
766 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
767 ts->do_timer_last = 0;
768 }
769
770 /* Skip reprogram of event if its not changed */
771 if (ts->tick_stopped && (expires == ts->next_tick)) {
772 /* Sanity check: make sure clockevent is actually programmed */
773 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
774 return;
775
776 WARN_ON_ONCE(1);
777 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
778 basemono, ts->next_tick, dev->next_event,
779 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
780 }
781
782 /*
783 * nohz_stop_sched_tick can be called several times before
784 * the nohz_restart_sched_tick is called. This happens when
785 * interrupts arrive which do not cause a reschedule. In the
786 * first call we save the current tick time, so we can restart
787 * the scheduler tick in nohz_restart_sched_tick.
788 */
789 if (!ts->tick_stopped) {
790 calc_load_nohz_start();
791 quiet_vmstat();
792
793 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
794 ts->tick_stopped = 1;
795 trace_tick_stop(1, TICK_DEP_MASK_NONE);
796 }
797
798 ts->next_tick = tick;
799
800 /*
801 * If the expiration time == KTIME_MAX, then we simply stop
802 * the tick timer.
803 */
804 if (unlikely(expires == KTIME_MAX)) {
805 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
806 hrtimer_cancel(&ts->sched_timer);
807 return;
808 }
809
810 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
811 hrtimer_start(&ts->sched_timer, tick,
812 HRTIMER_MODE_ABS_PINNED_HARD);
813 } else {
814 hrtimer_set_expires(&ts->sched_timer, tick);
815 tick_program_event(tick, 1);
816 }
817 }
818
tick_nohz_retain_tick(struct tick_sched * ts)819 static void tick_nohz_retain_tick(struct tick_sched *ts)
820 {
821 ts->timer_expires_base = 0;
822 }
823
824 #ifdef CONFIG_NO_HZ_FULL
tick_nohz_stop_sched_tick(struct tick_sched * ts,int cpu)825 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
826 {
827 if (tick_nohz_next_event(ts, cpu))
828 tick_nohz_stop_tick(ts, cpu);
829 else
830 tick_nohz_retain_tick(ts);
831 }
832 #endif /* CONFIG_NO_HZ_FULL */
833
tick_nohz_restart_sched_tick(struct tick_sched * ts,ktime_t now)834 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
835 {
836 /* Update jiffies first */
837 tick_do_update_jiffies64(now);
838
839 /*
840 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
841 * the clock forward checks in the enqueue path:
842 */
843 timer_clear_idle();
844
845 calc_load_nohz_stop();
846 touch_softlockup_watchdog_sched();
847 /*
848 * Cancel the scheduled timer and restore the tick
849 */
850 ts->tick_stopped = 0;
851 ts->idle_exittime = now;
852
853 tick_nohz_restart(ts, now);
854 }
855
tick_nohz_full_update_tick(struct tick_sched * ts)856 static void tick_nohz_full_update_tick(struct tick_sched *ts)
857 {
858 #ifdef CONFIG_NO_HZ_FULL
859 int cpu = smp_processor_id();
860
861 if (!tick_nohz_full_cpu(cpu))
862 return;
863
864 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
865 return;
866
867 if (can_stop_full_tick(cpu, ts))
868 tick_nohz_stop_sched_tick(ts, cpu);
869 else if (ts->tick_stopped)
870 tick_nohz_restart_sched_tick(ts, ktime_get());
871 #endif
872 }
873
can_stop_idle_tick(int cpu,struct tick_sched * ts)874 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
875 {
876 /*
877 * If this CPU is offline and it is the one which updates
878 * jiffies, then give up the assignment and let it be taken by
879 * the CPU which runs the tick timer next. If we don't drop
880 * this here the jiffies might be stale and do_timer() never
881 * invoked.
882 */
883 if (unlikely(!cpu_online(cpu))) {
884 if (cpu == tick_do_timer_cpu)
885 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
886 /*
887 * Make sure the CPU doesn't get fooled by obsolete tick
888 * deadline if it comes back online later.
889 */
890 ts->next_tick = 0;
891 return false;
892 }
893
894 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
895 return false;
896
897 if (need_resched())
898 return false;
899
900 if (unlikely(local_softirq_pending())) {
901 static int ratelimit;
902
903 if (ratelimit < 10 &&
904 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
905 pr_warn("NOHZ: local_softirq_pending %02x\n",
906 (unsigned int) local_softirq_pending());
907 ratelimit++;
908 }
909 return false;
910 }
911
912 if (tick_nohz_full_enabled()) {
913 /*
914 * Keep the tick alive to guarantee timekeeping progression
915 * if there are full dynticks CPUs around
916 */
917 if (tick_do_timer_cpu == cpu)
918 return false;
919 /*
920 * Boot safety: make sure the timekeeping duty has been
921 * assigned before entering dyntick-idle mode,
922 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
923 */
924 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
925 return false;
926
927 /* Should not happen for nohz-full */
928 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
929 return false;
930 }
931
932 return true;
933 }
934
__tick_nohz_idle_stop_tick(struct tick_sched * ts)935 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
936 {
937 ktime_t expires;
938 int cpu = smp_processor_id();
939
940 /*
941 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
942 * tick timer expiration time is known already.
943 */
944 if (ts->timer_expires_base)
945 expires = ts->timer_expires;
946 else if (can_stop_idle_tick(cpu, ts))
947 expires = tick_nohz_next_event(ts, cpu);
948 else
949 return;
950
951 ts->idle_calls++;
952
953 if (expires > 0LL) {
954 int was_stopped = ts->tick_stopped;
955
956 tick_nohz_stop_tick(ts, cpu);
957
958 ts->idle_sleeps++;
959 ts->idle_expires = expires;
960
961 if (!was_stopped && ts->tick_stopped) {
962 ts->idle_jiffies = ts->last_jiffies;
963 nohz_balance_enter_idle(cpu);
964 }
965 } else {
966 tick_nohz_retain_tick(ts);
967 }
968 }
969
970 /**
971 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
972 *
973 * When the next event is more than a tick into the future, stop the idle tick
974 */
tick_nohz_idle_stop_tick(void)975 void tick_nohz_idle_stop_tick(void)
976 {
977 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
978 }
979
tick_nohz_idle_retain_tick(void)980 void tick_nohz_idle_retain_tick(void)
981 {
982 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
983 /*
984 * Undo the effect of get_next_timer_interrupt() called from
985 * tick_nohz_next_event().
986 */
987 timer_clear_idle();
988 }
989
990 /**
991 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
992 *
993 * Called when we start the idle loop.
994 */
tick_nohz_idle_enter(void)995 void tick_nohz_idle_enter(void)
996 {
997 struct tick_sched *ts;
998
999 lockdep_assert_irqs_enabled();
1000
1001 local_irq_disable();
1002
1003 ts = this_cpu_ptr(&tick_cpu_sched);
1004
1005 WARN_ON_ONCE(ts->timer_expires_base);
1006
1007 ts->inidle = 1;
1008 tick_nohz_start_idle(ts);
1009
1010 local_irq_enable();
1011 }
1012
1013 /**
1014 * tick_nohz_irq_exit - update next tick event from interrupt exit
1015 *
1016 * When an interrupt fires while we are idle and it doesn't cause
1017 * a reschedule, it may still add, modify or delete a timer, enqueue
1018 * an RCU callback, etc...
1019 * So we need to re-calculate and reprogram the next tick event.
1020 */
tick_nohz_irq_exit(void)1021 void tick_nohz_irq_exit(void)
1022 {
1023 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1024
1025 if (ts->inidle)
1026 tick_nohz_start_idle(ts);
1027 else
1028 tick_nohz_full_update_tick(ts);
1029 }
1030
1031 /**
1032 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1033 */
tick_nohz_idle_got_tick(void)1034 bool tick_nohz_idle_got_tick(void)
1035 {
1036 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1037
1038 if (ts->got_idle_tick) {
1039 ts->got_idle_tick = 0;
1040 return true;
1041 }
1042 return false;
1043 }
1044
1045 /**
1046 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1047 * or the tick, whatever that expires first. Note that, if the tick has been
1048 * stopped, it returns the next hrtimer.
1049 *
1050 * Called from power state control code with interrupts disabled
1051 */
tick_nohz_get_next_hrtimer(void)1052 ktime_t tick_nohz_get_next_hrtimer(void)
1053 {
1054 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1055 }
1056
1057 /**
1058 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1059 * @delta_next: duration until the next event if the tick cannot be stopped
1060 *
1061 * Called from power state control code with interrupts disabled
1062 */
tick_nohz_get_sleep_length(ktime_t * delta_next)1063 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1064 {
1065 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1066 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1067 int cpu = smp_processor_id();
1068 /*
1069 * The idle entry time is expected to be a sufficient approximation of
1070 * the current time at this point.
1071 */
1072 ktime_t now = ts->idle_entrytime;
1073 ktime_t next_event;
1074
1075 WARN_ON_ONCE(!ts->inidle);
1076
1077 *delta_next = ktime_sub(dev->next_event, now);
1078
1079 if (!can_stop_idle_tick(cpu, ts))
1080 return *delta_next;
1081
1082 next_event = tick_nohz_next_event(ts, cpu);
1083 if (!next_event)
1084 return *delta_next;
1085
1086 /*
1087 * If the next highres timer to expire is earlier than next_event, the
1088 * idle governor needs to know that.
1089 */
1090 next_event = min_t(u64, next_event,
1091 hrtimer_next_event_without(&ts->sched_timer));
1092
1093 return ktime_sub(next_event, now);
1094 }
1095
1096 /**
1097 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1098 * for a particular CPU.
1099 *
1100 * Called from the schedutil frequency scaling governor in scheduler context.
1101 */
tick_nohz_get_idle_calls_cpu(int cpu)1102 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1103 {
1104 struct tick_sched *ts = tick_get_tick_sched(cpu);
1105
1106 return ts->idle_calls;
1107 }
1108
1109 /**
1110 * tick_nohz_get_idle_calls - return the current idle calls counter value
1111 *
1112 * Called from the schedutil frequency scaling governor in scheduler context.
1113 */
tick_nohz_get_idle_calls(void)1114 unsigned long tick_nohz_get_idle_calls(void)
1115 {
1116 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1117
1118 return ts->idle_calls;
1119 }
1120
tick_nohz_account_idle_ticks(struct tick_sched * ts)1121 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1122 {
1123 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1124 unsigned long ticks;
1125
1126 if (vtime_accounting_cpu_enabled())
1127 return;
1128 /*
1129 * We stopped the tick in idle. Update process times would miss the
1130 * time we slept as update_process_times does only a 1 tick
1131 * accounting. Enforce that this is accounted to idle !
1132 */
1133 ticks = jiffies - ts->idle_jiffies;
1134 /*
1135 * We might be one off. Do not randomly account a huge number of ticks!
1136 */
1137 if (ticks && ticks < LONG_MAX)
1138 account_idle_ticks(ticks);
1139 #endif
1140 }
1141
__tick_nohz_idle_restart_tick(struct tick_sched * ts,ktime_t now)1142 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1143 {
1144 tick_nohz_restart_sched_tick(ts, now);
1145 tick_nohz_account_idle_ticks(ts);
1146 }
1147
tick_nohz_idle_restart_tick(void)1148 void tick_nohz_idle_restart_tick(void)
1149 {
1150 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1151
1152 if (ts->tick_stopped)
1153 __tick_nohz_idle_restart_tick(ts, ktime_get());
1154 }
1155
1156 /**
1157 * tick_nohz_idle_exit - restart the idle tick from the idle task
1158 *
1159 * Restart the idle tick when the CPU is woken up from idle
1160 * This also exit the RCU extended quiescent state. The CPU
1161 * can use RCU again after this function is called.
1162 */
tick_nohz_idle_exit(void)1163 void tick_nohz_idle_exit(void)
1164 {
1165 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1166 bool idle_active, tick_stopped;
1167 ktime_t now;
1168
1169 local_irq_disable();
1170
1171 WARN_ON_ONCE(!ts->inidle);
1172 WARN_ON_ONCE(ts->timer_expires_base);
1173
1174 ts->inidle = 0;
1175 idle_active = ts->idle_active;
1176 tick_stopped = ts->tick_stopped;
1177
1178 if (idle_active || tick_stopped)
1179 now = ktime_get();
1180
1181 if (idle_active)
1182 tick_nohz_stop_idle(ts, now);
1183
1184 if (tick_stopped)
1185 __tick_nohz_idle_restart_tick(ts, now);
1186
1187 local_irq_enable();
1188 }
1189
1190 /*
1191 * The nohz low res interrupt handler
1192 */
tick_nohz_handler(struct clock_event_device * dev)1193 static void tick_nohz_handler(struct clock_event_device *dev)
1194 {
1195 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1196 struct pt_regs *regs = get_irq_regs();
1197 ktime_t now = ktime_get();
1198
1199 dev->next_event = KTIME_MAX;
1200
1201 tick_sched_do_timer(ts, now);
1202 tick_sched_handle(ts, regs);
1203
1204 /* No need to reprogram if we are running tickless */
1205 if (unlikely(ts->tick_stopped))
1206 return;
1207
1208 hrtimer_forward(&ts->sched_timer, now, tick_period);
1209 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1210 }
1211
tick_nohz_activate(struct tick_sched * ts,int mode)1212 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1213 {
1214 if (!tick_nohz_enabled)
1215 return;
1216 ts->nohz_mode = mode;
1217 /* One update is enough */
1218 if (!test_and_set_bit(0, &tick_nohz_active))
1219 timers_update_nohz();
1220 }
1221
1222 /**
1223 * tick_nohz_switch_to_nohz - switch to nohz mode
1224 */
tick_nohz_switch_to_nohz(void)1225 static void tick_nohz_switch_to_nohz(void)
1226 {
1227 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1228 ktime_t next;
1229
1230 if (!tick_nohz_enabled)
1231 return;
1232
1233 if (tick_switch_to_oneshot(tick_nohz_handler))
1234 return;
1235
1236 /*
1237 * Recycle the hrtimer in ts, so we can share the
1238 * hrtimer_forward with the highres code.
1239 */
1240 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1241 /* Get the next period */
1242 next = tick_init_jiffy_update();
1243
1244 hrtimer_set_expires(&ts->sched_timer, next);
1245 hrtimer_forward_now(&ts->sched_timer, tick_period);
1246 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1247 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1248 }
1249
tick_nohz_irq_enter(void)1250 static inline void tick_nohz_irq_enter(void)
1251 {
1252 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1253 ktime_t now;
1254
1255 if (!ts->idle_active && !ts->tick_stopped)
1256 return;
1257 now = ktime_get();
1258 if (ts->idle_active)
1259 tick_nohz_stop_idle(ts, now);
1260 if (ts->tick_stopped)
1261 tick_nohz_update_jiffies(now);
1262 }
1263
1264 #else
1265
tick_nohz_switch_to_nohz(void)1266 static inline void tick_nohz_switch_to_nohz(void) { }
tick_nohz_irq_enter(void)1267 static inline void tick_nohz_irq_enter(void) { }
tick_nohz_activate(struct tick_sched * ts,int mode)1268 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1269
1270 #endif /* CONFIG_NO_HZ_COMMON */
1271
1272 /*
1273 * Called from irq_enter to notify about the possible interruption of idle()
1274 */
tick_irq_enter(void)1275 void tick_irq_enter(void)
1276 {
1277 tick_check_oneshot_broadcast_this_cpu();
1278 tick_nohz_irq_enter();
1279 }
1280
1281 /*
1282 * High resolution timer specific code
1283 */
1284 #ifdef CONFIG_HIGH_RES_TIMERS
1285 /*
1286 * We rearm the timer until we get disabled by the idle code.
1287 * Called with interrupts disabled.
1288 */
tick_sched_timer(struct hrtimer * timer)1289 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1290 {
1291 struct tick_sched *ts =
1292 container_of(timer, struct tick_sched, sched_timer);
1293 struct pt_regs *regs = get_irq_regs();
1294 ktime_t now = ktime_get();
1295
1296 tick_sched_do_timer(ts, now);
1297
1298 /*
1299 * Do not call, when we are not in irq context and have
1300 * no valid regs pointer
1301 */
1302 if (regs)
1303 tick_sched_handle(ts, regs);
1304 else
1305 ts->next_tick = 0;
1306
1307 /* No need to reprogram if we are in idle or full dynticks mode */
1308 if (unlikely(ts->tick_stopped))
1309 return HRTIMER_NORESTART;
1310
1311 hrtimer_forward(timer, now, tick_period);
1312
1313 return HRTIMER_RESTART;
1314 }
1315
1316 static int sched_skew_tick;
1317
skew_tick(char * str)1318 static int __init skew_tick(char *str)
1319 {
1320 get_option(&str, &sched_skew_tick);
1321
1322 return 0;
1323 }
1324 early_param("skew_tick", skew_tick);
1325
1326 /**
1327 * tick_setup_sched_timer - setup the tick emulation timer
1328 */
tick_setup_sched_timer(void)1329 void tick_setup_sched_timer(void)
1330 {
1331 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1332 ktime_t now = ktime_get();
1333
1334 /*
1335 * Emulate tick processing via per-CPU hrtimers:
1336 */
1337 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1338 ts->sched_timer.function = tick_sched_timer;
1339
1340 /* Get the next period (per-CPU) */
1341 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1342
1343 /* Offset the tick to avert jiffies_lock contention. */
1344 if (sched_skew_tick) {
1345 u64 offset = ktime_to_ns(tick_period) >> 1;
1346 do_div(offset, num_possible_cpus());
1347 offset *= smp_processor_id();
1348 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1349 }
1350
1351 hrtimer_forward(&ts->sched_timer, now, tick_period);
1352 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1353 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1354 }
1355 #endif /* HIGH_RES_TIMERS */
1356
1357 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
tick_cancel_sched_timer(int cpu)1358 void tick_cancel_sched_timer(int cpu)
1359 {
1360 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1361
1362 # ifdef CONFIG_HIGH_RES_TIMERS
1363 if (ts->sched_timer.base)
1364 hrtimer_cancel(&ts->sched_timer);
1365 # endif
1366
1367 memset(ts, 0, sizeof(*ts));
1368 }
1369 #endif
1370
1371 /**
1372 * Async notification about clocksource changes
1373 */
tick_clock_notify(void)1374 void tick_clock_notify(void)
1375 {
1376 int cpu;
1377
1378 for_each_possible_cpu(cpu)
1379 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1380 }
1381
1382 /*
1383 * Async notification about clock event changes
1384 */
tick_oneshot_notify(void)1385 void tick_oneshot_notify(void)
1386 {
1387 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1388
1389 set_bit(0, &ts->check_clocks);
1390 }
1391
1392 /**
1393 * Check, if a change happened, which makes oneshot possible.
1394 *
1395 * Called cyclic from the hrtimer softirq (driven by the timer
1396 * softirq) allow_nohz signals, that we can switch into low-res nohz
1397 * mode, because high resolution timers are disabled (either compile
1398 * or runtime). Called with interrupts disabled.
1399 */
tick_check_oneshot_change(int allow_nohz)1400 int tick_check_oneshot_change(int allow_nohz)
1401 {
1402 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1403
1404 if (!test_and_clear_bit(0, &ts->check_clocks))
1405 return 0;
1406
1407 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1408 return 0;
1409
1410 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1411 return 0;
1412
1413 if (!allow_nohz)
1414 return 1;
1415
1416 tick_nohz_switch_to_nohz();
1417 return 0;
1418 }
1419