• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/module.h>
24 #include <linux/irq_work.h>
25 #include <linux/posix-timers.h>
26 #include <linux/context_tracking.h>
27 #include <linux/mm.h>
28 
29 #include <asm/irq_regs.h>
30 
31 #include "tick-internal.h"
32 
33 #include <trace/events/timer.h>
34 
35 /*
36  * Per-CPU nohz control structure
37  */
38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
39 
tick_get_tick_sched(int cpu)40 struct tick_sched *tick_get_tick_sched(int cpu)
41 {
42 	return &per_cpu(tick_cpu_sched, cpu);
43 }
44 
45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46 /*
47  * The time, when the last jiffy update happened. Protected by jiffies_lock.
48  */
49 static ktime_t last_jiffies_update;
50 
51 /*
52  * Must be called with interrupts disabled !
53  */
tick_do_update_jiffies64(ktime_t now)54 static void tick_do_update_jiffies64(ktime_t now)
55 {
56 	unsigned long ticks = 0;
57 	ktime_t delta;
58 
59 	/*
60 	 * Do a quick check without holding jiffies_lock:
61 	 * The READ_ONCE() pairs with two updates done later in this function.
62 	 */
63 	delta = ktime_sub(now, READ_ONCE(last_jiffies_update));
64 	if (delta < tick_period)
65 		return;
66 
67 	/* Reevaluate with jiffies_lock held */
68 	write_seqlock(&jiffies_lock);
69 
70 	delta = ktime_sub(now, last_jiffies_update);
71 	if (delta >= tick_period) {
72 
73 		delta = ktime_sub(delta, tick_period);
74 		/* Pairs with the lockless read in this function. */
75 		WRITE_ONCE(last_jiffies_update,
76 			   ktime_add(last_jiffies_update, tick_period));
77 
78 		/* Slow path for long timeouts */
79 		if (unlikely(delta >= tick_period)) {
80 			s64 incr = ktime_to_ns(tick_period);
81 
82 			ticks = ktime_divns(delta, incr);
83 
84 			/* Pairs with the lockless read in this function. */
85 			WRITE_ONCE(last_jiffies_update,
86 				   ktime_add_ns(last_jiffies_update,
87 						incr * ticks));
88 		}
89 		do_timer(++ticks);
90 
91 		/* Keep the tick_next_period variable up to date */
92 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
93 	} else {
94 		write_sequnlock(&jiffies_lock);
95 		return;
96 	}
97 	write_sequnlock(&jiffies_lock);
98 	update_wall_time();
99 }
100 
101 /*
102  * Initialize and return retrieve the jiffies update.
103  */
tick_init_jiffy_update(void)104 static ktime_t tick_init_jiffy_update(void)
105 {
106 	ktime_t period;
107 
108 	write_seqlock(&jiffies_lock);
109 	/* Did we start the jiffies update yet ? */
110 	if (last_jiffies_update == 0)
111 		last_jiffies_update = tick_next_period;
112 	period = last_jiffies_update;
113 	write_sequnlock(&jiffies_lock);
114 	return period;
115 }
116 
tick_sched_do_timer(struct tick_sched * ts,ktime_t now)117 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
118 {
119 	int cpu = smp_processor_id();
120 
121 #ifdef CONFIG_NO_HZ_COMMON
122 	/*
123 	 * Check if the do_timer duty was dropped. We don't care about
124 	 * concurrency: This happens only when the CPU in charge went
125 	 * into a long sleep. If two CPUs happen to assign themselves to
126 	 * this duty, then the jiffies update is still serialized by
127 	 * jiffies_lock.
128 	 *
129 	 * If nohz_full is enabled, this should not happen because the
130 	 * tick_do_timer_cpu never relinquishes.
131 	 */
132 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
133 #ifdef CONFIG_NO_HZ_FULL
134 		WARN_ON(tick_nohz_full_running);
135 #endif
136 		tick_do_timer_cpu = cpu;
137 	}
138 #endif
139 
140 	/* Check, if the jiffies need an update */
141 	if (tick_do_timer_cpu == cpu)
142 		tick_do_update_jiffies64(now);
143 
144 	if (ts->inidle)
145 		ts->got_idle_tick = 1;
146 }
147 
tick_sched_handle(struct tick_sched * ts,struct pt_regs * regs)148 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
149 {
150 #ifdef CONFIG_NO_HZ_COMMON
151 	/*
152 	 * When we are idle and the tick is stopped, we have to touch
153 	 * the watchdog as we might not schedule for a really long
154 	 * time. This happens on complete idle SMP systems while
155 	 * waiting on the login prompt. We also increment the "start of
156 	 * idle" jiffy stamp so the idle accounting adjustment we do
157 	 * when we go busy again does not account too much ticks.
158 	 */
159 	if (ts->tick_stopped) {
160 		touch_softlockup_watchdog_sched();
161 		if (is_idle_task(current))
162 			ts->idle_jiffies++;
163 		/*
164 		 * In case the current tick fired too early past its expected
165 		 * expiration, make sure we don't bypass the next clock reprogramming
166 		 * to the same deadline.
167 		 */
168 		ts->next_tick = 0;
169 	}
170 #endif
171 	update_process_times(user_mode(regs));
172 	profile_tick(CPU_PROFILING);
173 }
174 #endif
175 
176 #ifdef CONFIG_NO_HZ_FULL
177 cpumask_var_t tick_nohz_full_mask;
178 bool tick_nohz_full_running;
179 static atomic_t tick_dep_mask;
180 
check_tick_dependency(atomic_t * dep)181 static bool check_tick_dependency(atomic_t *dep)
182 {
183 	int val = atomic_read(dep);
184 
185 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
186 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
187 		return true;
188 	}
189 
190 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
191 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
192 		return true;
193 	}
194 
195 	if (val & TICK_DEP_MASK_SCHED) {
196 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
197 		return true;
198 	}
199 
200 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
201 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
202 		return true;
203 	}
204 
205 	return false;
206 }
207 
can_stop_full_tick(int cpu,struct tick_sched * ts)208 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
209 {
210 	lockdep_assert_irqs_disabled();
211 
212 	if (unlikely(!cpu_online(cpu)))
213 		return false;
214 
215 	if (check_tick_dependency(&tick_dep_mask))
216 		return false;
217 
218 	if (check_tick_dependency(&ts->tick_dep_mask))
219 		return false;
220 
221 	if (check_tick_dependency(&current->tick_dep_mask))
222 		return false;
223 
224 	if (check_tick_dependency(&current->signal->tick_dep_mask))
225 		return false;
226 
227 	return true;
228 }
229 
nohz_full_kick_func(struct irq_work * work)230 static void nohz_full_kick_func(struct irq_work *work)
231 {
232 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
233 }
234 
235 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
236 	.func = nohz_full_kick_func,
237 };
238 
239 /*
240  * Kick this CPU if it's full dynticks in order to force it to
241  * re-evaluate its dependency on the tick and restart it if necessary.
242  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
243  * is NMI safe.
244  */
tick_nohz_full_kick(void)245 static void tick_nohz_full_kick(void)
246 {
247 	if (!tick_nohz_full_cpu(smp_processor_id()))
248 		return;
249 
250 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
251 }
252 
253 /*
254  * Kick the CPU if it's full dynticks in order to force it to
255  * re-evaluate its dependency on the tick and restart it if necessary.
256  */
tick_nohz_full_kick_cpu(int cpu)257 void tick_nohz_full_kick_cpu(int cpu)
258 {
259 	if (!tick_nohz_full_cpu(cpu))
260 		return;
261 
262 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
263 }
264 
265 /*
266  * Kick all full dynticks CPUs in order to force these to re-evaluate
267  * their dependency on the tick and restart it if necessary.
268  */
tick_nohz_full_kick_all(void)269 static void tick_nohz_full_kick_all(void)
270 {
271 	int cpu;
272 
273 	if (!tick_nohz_full_running)
274 		return;
275 
276 	preempt_disable();
277 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
278 		tick_nohz_full_kick_cpu(cpu);
279 	preempt_enable();
280 }
281 
tick_nohz_dep_set_all(atomic_t * dep,enum tick_dep_bits bit)282 static void tick_nohz_dep_set_all(atomic_t *dep,
283 				  enum tick_dep_bits bit)
284 {
285 	int prev;
286 
287 	prev = atomic_fetch_or(BIT(bit), dep);
288 	if (!prev)
289 		tick_nohz_full_kick_all();
290 }
291 
292 /*
293  * Set a global tick dependency. Used by perf events that rely on freq and
294  * by unstable clock.
295  */
tick_nohz_dep_set(enum tick_dep_bits bit)296 void tick_nohz_dep_set(enum tick_dep_bits bit)
297 {
298 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
299 }
300 
tick_nohz_dep_clear(enum tick_dep_bits bit)301 void tick_nohz_dep_clear(enum tick_dep_bits bit)
302 {
303 	atomic_andnot(BIT(bit), &tick_dep_mask);
304 }
305 
306 /*
307  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
308  * manage events throttling.
309  */
tick_nohz_dep_set_cpu(int cpu,enum tick_dep_bits bit)310 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
311 {
312 	int prev;
313 	struct tick_sched *ts;
314 
315 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
316 
317 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
318 	if (!prev) {
319 		preempt_disable();
320 		/* Perf needs local kick that is NMI safe */
321 		if (cpu == smp_processor_id()) {
322 			tick_nohz_full_kick();
323 		} else {
324 			/* Remote irq work not NMI-safe */
325 			if (!WARN_ON_ONCE(in_nmi()))
326 				tick_nohz_full_kick_cpu(cpu);
327 		}
328 		preempt_enable();
329 	}
330 }
331 
tick_nohz_dep_clear_cpu(int cpu,enum tick_dep_bits bit)332 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
333 {
334 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
335 
336 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
337 }
338 
339 /*
340  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
341  * per task timers.
342  */
tick_nohz_dep_set_task(struct task_struct * tsk,enum tick_dep_bits bit)343 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
344 {
345 	/*
346 	 * We could optimize this with just kicking the target running the task
347 	 * if that noise matters for nohz full users.
348 	 */
349 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
350 }
351 
tick_nohz_dep_clear_task(struct task_struct * tsk,enum tick_dep_bits bit)352 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
353 {
354 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
355 }
356 
357 /*
358  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
359  * per process timers.
360  */
tick_nohz_dep_set_signal(struct signal_struct * sig,enum tick_dep_bits bit)361 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
362 {
363 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
364 }
365 
tick_nohz_dep_clear_signal(struct signal_struct * sig,enum tick_dep_bits bit)366 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
367 {
368 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
369 }
370 
371 /*
372  * Re-evaluate the need for the tick as we switch the current task.
373  * It might need the tick due to per task/process properties:
374  * perf events, posix CPU timers, ...
375  */
__tick_nohz_task_switch(void)376 void __tick_nohz_task_switch(void)
377 {
378 	unsigned long flags;
379 	struct tick_sched *ts;
380 
381 	local_irq_save(flags);
382 
383 	if (!tick_nohz_full_cpu(smp_processor_id()))
384 		goto out;
385 
386 	ts = this_cpu_ptr(&tick_cpu_sched);
387 
388 	if (ts->tick_stopped) {
389 		if (atomic_read(&current->tick_dep_mask) ||
390 		    atomic_read(&current->signal->tick_dep_mask))
391 			tick_nohz_full_kick();
392 	}
393 out:
394 	local_irq_restore(flags);
395 }
396 
397 /* Get the boot-time nohz CPU list from the kernel parameters. */
tick_nohz_full_setup(cpumask_var_t cpumask)398 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
399 {
400 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
401 	cpumask_copy(tick_nohz_full_mask, cpumask);
402 	tick_nohz_full_running = true;
403 }
404 
tick_nohz_cpu_down(unsigned int cpu)405 static int tick_nohz_cpu_down(unsigned int cpu)
406 {
407 	/*
408 	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
409 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
410 	 * CPUs. It must remain online when nohz full is enabled.
411 	 */
412 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
413 		return -EBUSY;
414 	return 0;
415 }
416 
tick_nohz_init(void)417 void __init tick_nohz_init(void)
418 {
419 	int cpu, ret;
420 
421 	if (!tick_nohz_full_running)
422 		return;
423 
424 	/*
425 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
426 	 * locking contexts. But then we need irq work to raise its own
427 	 * interrupts to avoid circular dependency on the tick
428 	 */
429 	if (!arch_irq_work_has_interrupt()) {
430 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
431 		cpumask_clear(tick_nohz_full_mask);
432 		tick_nohz_full_running = false;
433 		return;
434 	}
435 
436 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
437 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
438 		cpu = smp_processor_id();
439 
440 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
441 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
442 				"for timekeeping\n", cpu);
443 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
444 		}
445 	}
446 
447 	for_each_cpu(cpu, tick_nohz_full_mask)
448 		context_tracking_cpu_set(cpu);
449 
450 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
451 					"kernel/nohz:predown", NULL,
452 					tick_nohz_cpu_down);
453 	WARN_ON(ret < 0);
454 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
455 		cpumask_pr_args(tick_nohz_full_mask));
456 }
457 #endif
458 
459 /*
460  * NOHZ - aka dynamic tick functionality
461  */
462 #ifdef CONFIG_NO_HZ_COMMON
463 /*
464  * NO HZ enabled ?
465  */
466 bool tick_nohz_enabled __read_mostly  = true;
467 unsigned long tick_nohz_active  __read_mostly;
468 /*
469  * Enable / Disable tickless mode
470  */
setup_tick_nohz(char * str)471 static int __init setup_tick_nohz(char *str)
472 {
473 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
474 }
475 
476 __setup("nohz=", setup_tick_nohz);
477 
tick_nohz_tick_stopped(void)478 bool tick_nohz_tick_stopped(void)
479 {
480 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
481 
482 	return ts->tick_stopped;
483 }
484 
tick_nohz_tick_stopped_cpu(int cpu)485 bool tick_nohz_tick_stopped_cpu(int cpu)
486 {
487 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
488 
489 	return ts->tick_stopped;
490 }
491 
492 /**
493  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
494  *
495  * Called from interrupt entry when the CPU was idle
496  *
497  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
498  * must be updated. Otherwise an interrupt handler could use a stale jiffy
499  * value. We do this unconditionally on any CPU, as we don't know whether the
500  * CPU, which has the update task assigned is in a long sleep.
501  */
tick_nohz_update_jiffies(ktime_t now)502 static void tick_nohz_update_jiffies(ktime_t now)
503 {
504 	unsigned long flags;
505 
506 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
507 
508 	local_irq_save(flags);
509 	tick_do_update_jiffies64(now);
510 	local_irq_restore(flags);
511 
512 	touch_softlockup_watchdog_sched();
513 }
514 
515 /*
516  * Updates the per-CPU time idle statistics counters
517  */
518 static void
update_ts_time_stats(int cpu,struct tick_sched * ts,ktime_t now,u64 * last_update_time)519 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
520 {
521 	ktime_t delta;
522 
523 	if (ts->idle_active) {
524 		delta = ktime_sub(now, ts->idle_entrytime);
525 		if (nr_iowait_cpu(cpu) > 0)
526 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
527 		else
528 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
529 		ts->idle_entrytime = now;
530 	}
531 
532 	if (last_update_time)
533 		*last_update_time = ktime_to_us(now);
534 
535 }
536 
tick_nohz_stop_idle(struct tick_sched * ts,ktime_t now)537 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
538 {
539 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
540 	ts->idle_active = 0;
541 
542 	sched_clock_idle_wakeup_event();
543 }
544 
tick_nohz_start_idle(struct tick_sched * ts)545 static void tick_nohz_start_idle(struct tick_sched *ts)
546 {
547 	ts->idle_entrytime = ktime_get();
548 	ts->idle_active = 1;
549 	sched_clock_idle_sleep_event();
550 }
551 
552 /**
553  * get_cpu_idle_time_us - get the total idle time of a CPU
554  * @cpu: CPU number to query
555  * @last_update_time: variable to store update time in. Do not update
556  * counters if NULL.
557  *
558  * Return the cumulative idle time (since boot) for a given
559  * CPU, in microseconds.
560  *
561  * This time is measured via accounting rather than sampling,
562  * and is as accurate as ktime_get() is.
563  *
564  * This function returns -1 if NOHZ is not enabled.
565  */
get_cpu_idle_time_us(int cpu,u64 * last_update_time)566 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
567 {
568 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
569 	ktime_t now, idle;
570 
571 	if (!tick_nohz_active)
572 		return -1;
573 
574 	now = ktime_get();
575 	if (last_update_time) {
576 		update_ts_time_stats(cpu, ts, now, last_update_time);
577 		idle = ts->idle_sleeptime;
578 	} else {
579 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
580 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
581 
582 			idle = ktime_add(ts->idle_sleeptime, delta);
583 		} else {
584 			idle = ts->idle_sleeptime;
585 		}
586 	}
587 
588 	return ktime_to_us(idle);
589 
590 }
591 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
592 
593 /**
594  * get_cpu_iowait_time_us - get the total iowait time of a CPU
595  * @cpu: CPU number to query
596  * @last_update_time: variable to store update time in. Do not update
597  * counters if NULL.
598  *
599  * Return the cumulative iowait time (since boot) for a given
600  * CPU, in microseconds.
601  *
602  * This time is measured via accounting rather than sampling,
603  * and is as accurate as ktime_get() is.
604  *
605  * This function returns -1 if NOHZ is not enabled.
606  */
get_cpu_iowait_time_us(int cpu,u64 * last_update_time)607 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
608 {
609 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
610 	ktime_t now, iowait;
611 
612 	if (!tick_nohz_active)
613 		return -1;
614 
615 	now = ktime_get();
616 	if (last_update_time) {
617 		update_ts_time_stats(cpu, ts, now, last_update_time);
618 		iowait = ts->iowait_sleeptime;
619 	} else {
620 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
621 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
622 
623 			iowait = ktime_add(ts->iowait_sleeptime, delta);
624 		} else {
625 			iowait = ts->iowait_sleeptime;
626 		}
627 	}
628 
629 	return ktime_to_us(iowait);
630 }
631 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
632 
tick_nohz_restart(struct tick_sched * ts,ktime_t now)633 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
634 {
635 	hrtimer_cancel(&ts->sched_timer);
636 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
637 
638 	/* Forward the time to expire in the future */
639 	hrtimer_forward(&ts->sched_timer, now, tick_period);
640 
641 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
642 		hrtimer_start_expires(&ts->sched_timer,
643 				      HRTIMER_MODE_ABS_PINNED_HARD);
644 	} else {
645 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
646 	}
647 
648 	/*
649 	 * Reset to make sure next tick stop doesn't get fooled by past
650 	 * cached clock deadline.
651 	 */
652 	ts->next_tick = 0;
653 }
654 
local_timer_softirq_pending(void)655 static inline bool local_timer_softirq_pending(void)
656 {
657 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
658 }
659 
tick_nohz_next_event(struct tick_sched * ts,int cpu)660 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
661 {
662 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
663 	unsigned long basejiff;
664 	unsigned int seq;
665 
666 	/* Read jiffies and the time when jiffies were updated last */
667 	do {
668 		seq = read_seqbegin(&jiffies_lock);
669 		basemono = last_jiffies_update;
670 		basejiff = jiffies;
671 	} while (read_seqretry(&jiffies_lock, seq));
672 	ts->last_jiffies = basejiff;
673 	ts->timer_expires_base = basemono;
674 
675 	/*
676 	 * Keep the periodic tick, when RCU, architecture or irq_work
677 	 * requests it.
678 	 * Aside of that check whether the local timer softirq is
679 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
680 	 * because there is an already expired timer, so it will request
681 	 * immeditate expiry, which rearms the hardware timer with a
682 	 * minimal delta which brings us back to this place
683 	 * immediately. Lather, rinse and repeat...
684 	 */
685 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
686 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
687 		next_tick = basemono + TICK_NSEC;
688 	} else {
689 		/*
690 		 * Get the next pending timer. If high resolution
691 		 * timers are enabled this only takes the timer wheel
692 		 * timers into account. If high resolution timers are
693 		 * disabled this also looks at the next expiring
694 		 * hrtimer.
695 		 */
696 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
697 		ts->next_timer = next_tmr;
698 		/* Take the next rcu event into account */
699 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
700 	}
701 
702 	/*
703 	 * If the tick is due in the next period, keep it ticking or
704 	 * force prod the timer.
705 	 */
706 	delta = next_tick - basemono;
707 	if (delta <= (u64)TICK_NSEC) {
708 		/*
709 		 * Tell the timer code that the base is not idle, i.e. undo
710 		 * the effect of get_next_timer_interrupt():
711 		 */
712 		timer_clear_idle();
713 		/*
714 		 * We've not stopped the tick yet, and there's a timer in the
715 		 * next period, so no point in stopping it either, bail.
716 		 */
717 		if (!ts->tick_stopped) {
718 			ts->timer_expires = 0;
719 			goto out;
720 		}
721 	}
722 
723 	/*
724 	 * If this CPU is the one which had the do_timer() duty last, we limit
725 	 * the sleep time to the timekeeping max_deferment value.
726 	 * Otherwise we can sleep as long as we want.
727 	 */
728 	delta = timekeeping_max_deferment();
729 	if (cpu != tick_do_timer_cpu &&
730 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
731 		delta = KTIME_MAX;
732 
733 	/* Calculate the next expiry time */
734 	if (delta < (KTIME_MAX - basemono))
735 		expires = basemono + delta;
736 	else
737 		expires = KTIME_MAX;
738 
739 	ts->timer_expires = min_t(u64, expires, next_tick);
740 
741 out:
742 	return ts->timer_expires;
743 }
744 
tick_nohz_stop_tick(struct tick_sched * ts,int cpu)745 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
746 {
747 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
748 	u64 basemono = ts->timer_expires_base;
749 	u64 expires = ts->timer_expires;
750 	ktime_t tick = expires;
751 
752 	/* Make sure we won't be trying to stop it twice in a row. */
753 	ts->timer_expires_base = 0;
754 
755 	/*
756 	 * If this CPU is the one which updates jiffies, then give up
757 	 * the assignment and let it be taken by the CPU which runs
758 	 * the tick timer next, which might be this CPU as well. If we
759 	 * don't drop this here the jiffies might be stale and
760 	 * do_timer() never invoked. Keep track of the fact that it
761 	 * was the one which had the do_timer() duty last.
762 	 */
763 	if (cpu == tick_do_timer_cpu) {
764 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
765 		ts->do_timer_last = 1;
766 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
767 		ts->do_timer_last = 0;
768 	}
769 
770 	/* Skip reprogram of event if its not changed */
771 	if (ts->tick_stopped && (expires == ts->next_tick)) {
772 		/* Sanity check: make sure clockevent is actually programmed */
773 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
774 			return;
775 
776 		WARN_ON_ONCE(1);
777 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
778 			    basemono, ts->next_tick, dev->next_event,
779 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
780 	}
781 
782 	/*
783 	 * nohz_stop_sched_tick can be called several times before
784 	 * the nohz_restart_sched_tick is called. This happens when
785 	 * interrupts arrive which do not cause a reschedule. In the
786 	 * first call we save the current tick time, so we can restart
787 	 * the scheduler tick in nohz_restart_sched_tick.
788 	 */
789 	if (!ts->tick_stopped) {
790 		calc_load_nohz_start();
791 		quiet_vmstat();
792 
793 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
794 		ts->tick_stopped = 1;
795 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
796 	}
797 
798 	ts->next_tick = tick;
799 
800 	/*
801 	 * If the expiration time == KTIME_MAX, then we simply stop
802 	 * the tick timer.
803 	 */
804 	if (unlikely(expires == KTIME_MAX)) {
805 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
806 			hrtimer_cancel(&ts->sched_timer);
807 		return;
808 	}
809 
810 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
811 		hrtimer_start(&ts->sched_timer, tick,
812 			      HRTIMER_MODE_ABS_PINNED_HARD);
813 	} else {
814 		hrtimer_set_expires(&ts->sched_timer, tick);
815 		tick_program_event(tick, 1);
816 	}
817 }
818 
tick_nohz_retain_tick(struct tick_sched * ts)819 static void tick_nohz_retain_tick(struct tick_sched *ts)
820 {
821 	ts->timer_expires_base = 0;
822 }
823 
824 #ifdef CONFIG_NO_HZ_FULL
tick_nohz_stop_sched_tick(struct tick_sched * ts,int cpu)825 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
826 {
827 	if (tick_nohz_next_event(ts, cpu))
828 		tick_nohz_stop_tick(ts, cpu);
829 	else
830 		tick_nohz_retain_tick(ts);
831 }
832 #endif /* CONFIG_NO_HZ_FULL */
833 
tick_nohz_restart_sched_tick(struct tick_sched * ts,ktime_t now)834 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
835 {
836 	/* Update jiffies first */
837 	tick_do_update_jiffies64(now);
838 
839 	/*
840 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
841 	 * the clock forward checks in the enqueue path:
842 	 */
843 	timer_clear_idle();
844 
845 	calc_load_nohz_stop();
846 	touch_softlockup_watchdog_sched();
847 	/*
848 	 * Cancel the scheduled timer and restore the tick
849 	 */
850 	ts->tick_stopped  = 0;
851 	ts->idle_exittime = now;
852 
853 	tick_nohz_restart(ts, now);
854 }
855 
tick_nohz_full_update_tick(struct tick_sched * ts)856 static void tick_nohz_full_update_tick(struct tick_sched *ts)
857 {
858 #ifdef CONFIG_NO_HZ_FULL
859 	int cpu = smp_processor_id();
860 
861 	if (!tick_nohz_full_cpu(cpu))
862 		return;
863 
864 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
865 		return;
866 
867 	if (can_stop_full_tick(cpu, ts))
868 		tick_nohz_stop_sched_tick(ts, cpu);
869 	else if (ts->tick_stopped)
870 		tick_nohz_restart_sched_tick(ts, ktime_get());
871 #endif
872 }
873 
can_stop_idle_tick(int cpu,struct tick_sched * ts)874 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
875 {
876 	/*
877 	 * If this CPU is offline and it is the one which updates
878 	 * jiffies, then give up the assignment and let it be taken by
879 	 * the CPU which runs the tick timer next. If we don't drop
880 	 * this here the jiffies might be stale and do_timer() never
881 	 * invoked.
882 	 */
883 	if (unlikely(!cpu_online(cpu))) {
884 		if (cpu == tick_do_timer_cpu)
885 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
886 		/*
887 		 * Make sure the CPU doesn't get fooled by obsolete tick
888 		 * deadline if it comes back online later.
889 		 */
890 		ts->next_tick = 0;
891 		return false;
892 	}
893 
894 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
895 		return false;
896 
897 	if (need_resched())
898 		return false;
899 
900 	if (unlikely(local_softirq_pending())) {
901 		static int ratelimit;
902 
903 		if (ratelimit < 10 &&
904 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
905 			pr_warn("NOHZ: local_softirq_pending %02x\n",
906 				(unsigned int) local_softirq_pending());
907 			ratelimit++;
908 		}
909 		return false;
910 	}
911 
912 	if (tick_nohz_full_enabled()) {
913 		/*
914 		 * Keep the tick alive to guarantee timekeeping progression
915 		 * if there are full dynticks CPUs around
916 		 */
917 		if (tick_do_timer_cpu == cpu)
918 			return false;
919 		/*
920 		 * Boot safety: make sure the timekeeping duty has been
921 		 * assigned before entering dyntick-idle mode,
922 		 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
923 		 */
924 		if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
925 			return false;
926 
927 		/* Should not happen for nohz-full */
928 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
929 			return false;
930 	}
931 
932 	return true;
933 }
934 
__tick_nohz_idle_stop_tick(struct tick_sched * ts)935 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
936 {
937 	ktime_t expires;
938 	int cpu = smp_processor_id();
939 
940 	/*
941 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
942 	 * tick timer expiration time is known already.
943 	 */
944 	if (ts->timer_expires_base)
945 		expires = ts->timer_expires;
946 	else if (can_stop_idle_tick(cpu, ts))
947 		expires = tick_nohz_next_event(ts, cpu);
948 	else
949 		return;
950 
951 	ts->idle_calls++;
952 
953 	if (expires > 0LL) {
954 		int was_stopped = ts->tick_stopped;
955 
956 		tick_nohz_stop_tick(ts, cpu);
957 
958 		ts->idle_sleeps++;
959 		ts->idle_expires = expires;
960 
961 		if (!was_stopped && ts->tick_stopped) {
962 			ts->idle_jiffies = ts->last_jiffies;
963 			nohz_balance_enter_idle(cpu);
964 		}
965 	} else {
966 		tick_nohz_retain_tick(ts);
967 	}
968 }
969 
970 /**
971  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
972  *
973  * When the next event is more than a tick into the future, stop the idle tick
974  */
tick_nohz_idle_stop_tick(void)975 void tick_nohz_idle_stop_tick(void)
976 {
977 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
978 }
979 
tick_nohz_idle_retain_tick(void)980 void tick_nohz_idle_retain_tick(void)
981 {
982 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
983 	/*
984 	 * Undo the effect of get_next_timer_interrupt() called from
985 	 * tick_nohz_next_event().
986 	 */
987 	timer_clear_idle();
988 }
989 
990 /**
991  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
992  *
993  * Called when we start the idle loop.
994  */
tick_nohz_idle_enter(void)995 void tick_nohz_idle_enter(void)
996 {
997 	struct tick_sched *ts;
998 
999 	lockdep_assert_irqs_enabled();
1000 
1001 	local_irq_disable();
1002 
1003 	ts = this_cpu_ptr(&tick_cpu_sched);
1004 
1005 	WARN_ON_ONCE(ts->timer_expires_base);
1006 
1007 	ts->inidle = 1;
1008 	tick_nohz_start_idle(ts);
1009 
1010 	local_irq_enable();
1011 }
1012 
1013 /**
1014  * tick_nohz_irq_exit - update next tick event from interrupt exit
1015  *
1016  * When an interrupt fires while we are idle and it doesn't cause
1017  * a reschedule, it may still add, modify or delete a timer, enqueue
1018  * an RCU callback, etc...
1019  * So we need to re-calculate and reprogram the next tick event.
1020  */
tick_nohz_irq_exit(void)1021 void tick_nohz_irq_exit(void)
1022 {
1023 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1024 
1025 	if (ts->inidle)
1026 		tick_nohz_start_idle(ts);
1027 	else
1028 		tick_nohz_full_update_tick(ts);
1029 }
1030 
1031 /**
1032  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1033  */
tick_nohz_idle_got_tick(void)1034 bool tick_nohz_idle_got_tick(void)
1035 {
1036 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1037 
1038 	if (ts->got_idle_tick) {
1039 		ts->got_idle_tick = 0;
1040 		return true;
1041 	}
1042 	return false;
1043 }
1044 
1045 /**
1046  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1047  * or the tick, whatever that expires first. Note that, if the tick has been
1048  * stopped, it returns the next hrtimer.
1049  *
1050  * Called from power state control code with interrupts disabled
1051  */
tick_nohz_get_next_hrtimer(void)1052 ktime_t tick_nohz_get_next_hrtimer(void)
1053 {
1054 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1055 }
1056 
1057 /**
1058  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1059  * @delta_next: duration until the next event if the tick cannot be stopped
1060  *
1061  * Called from power state control code with interrupts disabled
1062  */
tick_nohz_get_sleep_length(ktime_t * delta_next)1063 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1064 {
1065 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1066 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1067 	int cpu = smp_processor_id();
1068 	/*
1069 	 * The idle entry time is expected to be a sufficient approximation of
1070 	 * the current time at this point.
1071 	 */
1072 	ktime_t now = ts->idle_entrytime;
1073 	ktime_t next_event;
1074 
1075 	WARN_ON_ONCE(!ts->inidle);
1076 
1077 	*delta_next = ktime_sub(dev->next_event, now);
1078 
1079 	if (!can_stop_idle_tick(cpu, ts))
1080 		return *delta_next;
1081 
1082 	next_event = tick_nohz_next_event(ts, cpu);
1083 	if (!next_event)
1084 		return *delta_next;
1085 
1086 	/*
1087 	 * If the next highres timer to expire is earlier than next_event, the
1088 	 * idle governor needs to know that.
1089 	 */
1090 	next_event = min_t(u64, next_event,
1091 			   hrtimer_next_event_without(&ts->sched_timer));
1092 
1093 	return ktime_sub(next_event, now);
1094 }
1095 
1096 /**
1097  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1098  * for a particular CPU.
1099  *
1100  * Called from the schedutil frequency scaling governor in scheduler context.
1101  */
tick_nohz_get_idle_calls_cpu(int cpu)1102 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1103 {
1104 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1105 
1106 	return ts->idle_calls;
1107 }
1108 
1109 /**
1110  * tick_nohz_get_idle_calls - return the current idle calls counter value
1111  *
1112  * Called from the schedutil frequency scaling governor in scheduler context.
1113  */
tick_nohz_get_idle_calls(void)1114 unsigned long tick_nohz_get_idle_calls(void)
1115 {
1116 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1117 
1118 	return ts->idle_calls;
1119 }
1120 
tick_nohz_account_idle_ticks(struct tick_sched * ts)1121 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1122 {
1123 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1124 	unsigned long ticks;
1125 
1126 	if (vtime_accounting_cpu_enabled())
1127 		return;
1128 	/*
1129 	 * We stopped the tick in idle. Update process times would miss the
1130 	 * time we slept as update_process_times does only a 1 tick
1131 	 * accounting. Enforce that this is accounted to idle !
1132 	 */
1133 	ticks = jiffies - ts->idle_jiffies;
1134 	/*
1135 	 * We might be one off. Do not randomly account a huge number of ticks!
1136 	 */
1137 	if (ticks && ticks < LONG_MAX)
1138 		account_idle_ticks(ticks);
1139 #endif
1140 }
1141 
__tick_nohz_idle_restart_tick(struct tick_sched * ts,ktime_t now)1142 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1143 {
1144 	tick_nohz_restart_sched_tick(ts, now);
1145 	tick_nohz_account_idle_ticks(ts);
1146 }
1147 
tick_nohz_idle_restart_tick(void)1148 void tick_nohz_idle_restart_tick(void)
1149 {
1150 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1151 
1152 	if (ts->tick_stopped)
1153 		__tick_nohz_idle_restart_tick(ts, ktime_get());
1154 }
1155 
1156 /**
1157  * tick_nohz_idle_exit - restart the idle tick from the idle task
1158  *
1159  * Restart the idle tick when the CPU is woken up from idle
1160  * This also exit the RCU extended quiescent state. The CPU
1161  * can use RCU again after this function is called.
1162  */
tick_nohz_idle_exit(void)1163 void tick_nohz_idle_exit(void)
1164 {
1165 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1166 	bool idle_active, tick_stopped;
1167 	ktime_t now;
1168 
1169 	local_irq_disable();
1170 
1171 	WARN_ON_ONCE(!ts->inidle);
1172 	WARN_ON_ONCE(ts->timer_expires_base);
1173 
1174 	ts->inidle = 0;
1175 	idle_active = ts->idle_active;
1176 	tick_stopped = ts->tick_stopped;
1177 
1178 	if (idle_active || tick_stopped)
1179 		now = ktime_get();
1180 
1181 	if (idle_active)
1182 		tick_nohz_stop_idle(ts, now);
1183 
1184 	if (tick_stopped)
1185 		__tick_nohz_idle_restart_tick(ts, now);
1186 
1187 	local_irq_enable();
1188 }
1189 
1190 /*
1191  * The nohz low res interrupt handler
1192  */
tick_nohz_handler(struct clock_event_device * dev)1193 static void tick_nohz_handler(struct clock_event_device *dev)
1194 {
1195 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1196 	struct pt_regs *regs = get_irq_regs();
1197 	ktime_t now = ktime_get();
1198 
1199 	dev->next_event = KTIME_MAX;
1200 
1201 	tick_sched_do_timer(ts, now);
1202 	tick_sched_handle(ts, regs);
1203 
1204 	/* No need to reprogram if we are running tickless  */
1205 	if (unlikely(ts->tick_stopped))
1206 		return;
1207 
1208 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1209 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1210 }
1211 
tick_nohz_activate(struct tick_sched * ts,int mode)1212 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1213 {
1214 	if (!tick_nohz_enabled)
1215 		return;
1216 	ts->nohz_mode = mode;
1217 	/* One update is enough */
1218 	if (!test_and_set_bit(0, &tick_nohz_active))
1219 		timers_update_nohz();
1220 }
1221 
1222 /**
1223  * tick_nohz_switch_to_nohz - switch to nohz mode
1224  */
tick_nohz_switch_to_nohz(void)1225 static void tick_nohz_switch_to_nohz(void)
1226 {
1227 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1228 	ktime_t next;
1229 
1230 	if (!tick_nohz_enabled)
1231 		return;
1232 
1233 	if (tick_switch_to_oneshot(tick_nohz_handler))
1234 		return;
1235 
1236 	/*
1237 	 * Recycle the hrtimer in ts, so we can share the
1238 	 * hrtimer_forward with the highres code.
1239 	 */
1240 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1241 	/* Get the next period */
1242 	next = tick_init_jiffy_update();
1243 
1244 	hrtimer_set_expires(&ts->sched_timer, next);
1245 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1246 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1247 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1248 }
1249 
tick_nohz_irq_enter(void)1250 static inline void tick_nohz_irq_enter(void)
1251 {
1252 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1253 	ktime_t now;
1254 
1255 	if (!ts->idle_active && !ts->tick_stopped)
1256 		return;
1257 	now = ktime_get();
1258 	if (ts->idle_active)
1259 		tick_nohz_stop_idle(ts, now);
1260 	if (ts->tick_stopped)
1261 		tick_nohz_update_jiffies(now);
1262 }
1263 
1264 #else
1265 
tick_nohz_switch_to_nohz(void)1266 static inline void tick_nohz_switch_to_nohz(void) { }
tick_nohz_irq_enter(void)1267 static inline void tick_nohz_irq_enter(void) { }
tick_nohz_activate(struct tick_sched * ts,int mode)1268 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1269 
1270 #endif /* CONFIG_NO_HZ_COMMON */
1271 
1272 /*
1273  * Called from irq_enter to notify about the possible interruption of idle()
1274  */
tick_irq_enter(void)1275 void tick_irq_enter(void)
1276 {
1277 	tick_check_oneshot_broadcast_this_cpu();
1278 	tick_nohz_irq_enter();
1279 }
1280 
1281 /*
1282  * High resolution timer specific code
1283  */
1284 #ifdef CONFIG_HIGH_RES_TIMERS
1285 /*
1286  * We rearm the timer until we get disabled by the idle code.
1287  * Called with interrupts disabled.
1288  */
tick_sched_timer(struct hrtimer * timer)1289 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1290 {
1291 	struct tick_sched *ts =
1292 		container_of(timer, struct tick_sched, sched_timer);
1293 	struct pt_regs *regs = get_irq_regs();
1294 	ktime_t now = ktime_get();
1295 
1296 	tick_sched_do_timer(ts, now);
1297 
1298 	/*
1299 	 * Do not call, when we are not in irq context and have
1300 	 * no valid regs pointer
1301 	 */
1302 	if (regs)
1303 		tick_sched_handle(ts, regs);
1304 	else
1305 		ts->next_tick = 0;
1306 
1307 	/* No need to reprogram if we are in idle or full dynticks mode */
1308 	if (unlikely(ts->tick_stopped))
1309 		return HRTIMER_NORESTART;
1310 
1311 	hrtimer_forward(timer, now, tick_period);
1312 
1313 	return HRTIMER_RESTART;
1314 }
1315 
1316 static int sched_skew_tick;
1317 
skew_tick(char * str)1318 static int __init skew_tick(char *str)
1319 {
1320 	get_option(&str, &sched_skew_tick);
1321 
1322 	return 0;
1323 }
1324 early_param("skew_tick", skew_tick);
1325 
1326 /**
1327  * tick_setup_sched_timer - setup the tick emulation timer
1328  */
tick_setup_sched_timer(void)1329 void tick_setup_sched_timer(void)
1330 {
1331 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1332 	ktime_t now = ktime_get();
1333 
1334 	/*
1335 	 * Emulate tick processing via per-CPU hrtimers:
1336 	 */
1337 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1338 	ts->sched_timer.function = tick_sched_timer;
1339 
1340 	/* Get the next period (per-CPU) */
1341 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1342 
1343 	/* Offset the tick to avert jiffies_lock contention. */
1344 	if (sched_skew_tick) {
1345 		u64 offset = ktime_to_ns(tick_period) >> 1;
1346 		do_div(offset, num_possible_cpus());
1347 		offset *= smp_processor_id();
1348 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1349 	}
1350 
1351 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1352 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1353 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1354 }
1355 #endif /* HIGH_RES_TIMERS */
1356 
1357 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
tick_cancel_sched_timer(int cpu)1358 void tick_cancel_sched_timer(int cpu)
1359 {
1360 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1361 
1362 # ifdef CONFIG_HIGH_RES_TIMERS
1363 	if (ts->sched_timer.base)
1364 		hrtimer_cancel(&ts->sched_timer);
1365 # endif
1366 
1367 	memset(ts, 0, sizeof(*ts));
1368 }
1369 #endif
1370 
1371 /**
1372  * Async notification about clocksource changes
1373  */
tick_clock_notify(void)1374 void tick_clock_notify(void)
1375 {
1376 	int cpu;
1377 
1378 	for_each_possible_cpu(cpu)
1379 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1380 }
1381 
1382 /*
1383  * Async notification about clock event changes
1384  */
tick_oneshot_notify(void)1385 void tick_oneshot_notify(void)
1386 {
1387 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1388 
1389 	set_bit(0, &ts->check_clocks);
1390 }
1391 
1392 /**
1393  * Check, if a change happened, which makes oneshot possible.
1394  *
1395  * Called cyclic from the hrtimer softirq (driven by the timer
1396  * softirq) allow_nohz signals, that we can switch into low-res nohz
1397  * mode, because high resolution timers are disabled (either compile
1398  * or runtime). Called with interrupts disabled.
1399  */
tick_check_oneshot_change(int allow_nohz)1400 int tick_check_oneshot_change(int allow_nohz)
1401 {
1402 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1403 
1404 	if (!test_and_clear_bit(0, &ts->check_clocks))
1405 		return 0;
1406 
1407 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1408 		return 0;
1409 
1410 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1411 		return 0;
1412 
1413 	if (!allow_nohz)
1414 		return 1;
1415 
1416 	tick_nohz_switch_to_nohz();
1417 	return 0;
1418 }
1419