• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26 
27 #include <linux/fscrypt.h>
28 #include <linux/fsverity.h>
29 
30 #ifdef CONFIG_F2FS_CHECK_FS
31 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
32 #else
33 #define f2fs_bug_on(sbi, condition)					\
34 	do {								\
35 		if (unlikely(condition)) {				\
36 			WARN_ON(1);					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 		}							\
39 	} while (0)
40 #endif
41 
42 enum {
43 	FAULT_KMALLOC,
44 	FAULT_KVMALLOC,
45 	FAULT_PAGE_ALLOC,
46 	FAULT_PAGE_GET,
47 	FAULT_ALLOC_BIO,
48 	FAULT_ALLOC_NID,
49 	FAULT_ORPHAN,
50 	FAULT_BLOCK,
51 	FAULT_DIR_DEPTH,
52 	FAULT_EVICT_INODE,
53 	FAULT_TRUNCATE,
54 	FAULT_READ_IO,
55 	FAULT_CHECKPOINT,
56 	FAULT_DISCARD,
57 	FAULT_WRITE_IO,
58 	FAULT_MAX,
59 };
60 
61 #ifdef CONFIG_F2FS_FAULT_INJECTION
62 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
63 
64 struct f2fs_fault_info {
65 	atomic_t inject_ops;
66 	unsigned int inject_rate;
67 	unsigned int inject_type;
68 };
69 
70 extern const char *f2fs_fault_name[FAULT_MAX];
71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
72 #endif
73 
74 /*
75  * For mount options
76  */
77 #define F2FS_MOUNT_BG_GC		0x00000001
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79 #define F2FS_MOUNT_DISCARD		0x00000004
80 #define F2FS_MOUNT_NOHEAP		0x00000008
81 #define F2FS_MOUNT_XATTR_USER		0x00000010
82 #define F2FS_MOUNT_POSIX_ACL		0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85 #define F2FS_MOUNT_INLINE_DATA		0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88 #define F2FS_MOUNT_NOBARRIER		0x00000800
89 #define F2FS_MOUNT_FASTBOOT		0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
92 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
93 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
94 #define F2FS_MOUNT_ADAPTIVE		0x00020000
95 #define F2FS_MOUNT_LFS			0x00040000
96 #define F2FS_MOUNT_USRQUOTA		0x00080000
97 #define F2FS_MOUNT_GRPQUOTA		0x00100000
98 #define F2FS_MOUNT_PRJQUOTA		0x00200000
99 #define F2FS_MOUNT_QUOTA		0x00400000
100 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
101 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
102 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
103 
104 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
105 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108 
109 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
110 		typecheck(unsigned long long, b) &&			\
111 		((long long)((a) - (b)) > 0))
112 
113 typedef u32 block_t;	/*
114 			 * should not change u32, since it is the on-disk block
115 			 * address format, __le32.
116 			 */
117 typedef u32 nid_t;
118 
119 struct f2fs_mount_info {
120 	unsigned int opt;
121 	int write_io_size_bits;		/* Write IO size bits */
122 	block_t root_reserved_blocks;	/* root reserved blocks */
123 	kuid_t s_resuid;		/* reserved blocks for uid */
124 	kgid_t s_resgid;		/* reserved blocks for gid */
125 	int active_logs;		/* # of active logs */
126 	int inline_xattr_size;		/* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 	struct f2fs_fault_info fault_info;	/* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 	/* Names of quota files with journalled quota */
132 	char *s_qf_names[MAXQUOTAS];
133 	int s_jquota_fmt;			/* Format of quota to use */
134 #endif
135 	/* For which write hints are passed down to block layer */
136 	int whint_mode;
137 	int alloc_mode;			/* segment allocation policy */
138 	int fsync_mode;			/* fsync policy */
139 	bool test_dummy_encryption;	/* test dummy encryption */
140 #ifdef CONFIG_FS_ENCRYPTION
141 	bool inlinecrypt;		/* inline encryption enabled */
142 #endif
143 	block_t unusable_cap;		/* Amount of space allowed to be
144 					 * unusable when disabling checkpoint
145 					 */
146 };
147 
148 #define F2FS_FEATURE_ENCRYPT		0x0001
149 #define F2FS_FEATURE_BLKZONED		0x0002
150 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
151 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
152 #define F2FS_FEATURE_PRJQUOTA		0x0010
153 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
154 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
155 #define F2FS_FEATURE_QUOTA_INO		0x0080
156 #define F2FS_FEATURE_INODE_CRTIME	0x0100
157 #define F2FS_FEATURE_LOST_FOUND		0x0200
158 #define F2FS_FEATURE_VERITY		0x0400
159 #define F2FS_FEATURE_SB_CHKSUM		0x0800
160 #define F2FS_FEATURE_CASEFOLD		0x1000
161 
162 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
163 	((raw_super->feature & cpu_to_le32(mask)) != 0)
164 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
165 #define F2FS_SET_FEATURE(sbi, mask)					\
166 	(sbi->raw_super->feature |= cpu_to_le32(mask))
167 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
168 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
169 
170 /*
171  * Default values for user and/or group using reserved blocks
172  */
173 #define	F2FS_DEF_RESUID		0
174 #define	F2FS_DEF_RESGID		0
175 
176 /*
177  * For checkpoint manager
178  */
179 enum {
180 	NAT_BITMAP,
181 	SIT_BITMAP
182 };
183 
184 #define	CP_UMOUNT	0x00000001
185 #define	CP_FASTBOOT	0x00000002
186 #define	CP_SYNC		0x00000004
187 #define	CP_RECOVERY	0x00000008
188 #define	CP_DISCARD	0x00000010
189 #define CP_TRIMMED	0x00000020
190 #define CP_PAUSE	0x00000040
191 
192 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
193 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
194 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
195 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
196 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
197 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
198 #define DEF_CP_INTERVAL			60	/* 60 secs */
199 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
200 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
201 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
202 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
203 
204 struct cp_control {
205 	int reason;
206 	__u64 trim_start;
207 	__u64 trim_end;
208 	__u64 trim_minlen;
209 };
210 
211 /*
212  * indicate meta/data type
213  */
214 enum {
215 	META_CP,
216 	META_NAT,
217 	META_SIT,
218 	META_SSA,
219 	META_MAX,
220 	META_POR,
221 	DATA_GENERIC,		/* check range only */
222 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
223 	DATA_GENERIC_ENHANCE_READ,	/*
224 					 * strong check on range and segment
225 					 * bitmap but no warning due to race
226 					 * condition of read on truncated area
227 					 * by extent_cache
228 					 */
229 	META_GENERIC,
230 };
231 
232 /* for the list of ino */
233 enum {
234 	ORPHAN_INO,		/* for orphan ino list */
235 	APPEND_INO,		/* for append ino list */
236 	UPDATE_INO,		/* for update ino list */
237 	TRANS_DIR_INO,		/* for trasactions dir ino list */
238 	FLUSH_INO,		/* for multiple device flushing */
239 	MAX_INO_ENTRY,		/* max. list */
240 };
241 
242 struct ino_entry {
243 	struct list_head list;		/* list head */
244 	nid_t ino;			/* inode number */
245 	unsigned int dirty_device;	/* dirty device bitmap */
246 };
247 
248 /* for the list of inodes to be GCed */
249 struct inode_entry {
250 	struct list_head list;	/* list head */
251 	struct inode *inode;	/* vfs inode pointer */
252 };
253 
254 struct fsync_node_entry {
255 	struct list_head list;	/* list head */
256 	struct page *page;	/* warm node page pointer */
257 	unsigned int seq_id;	/* sequence id */
258 };
259 
260 /* for the bitmap indicate blocks to be discarded */
261 struct discard_entry {
262 	struct list_head list;	/* list head */
263 	block_t start_blkaddr;	/* start blockaddr of current segment */
264 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
265 };
266 
267 /* default discard granularity of inner discard thread, unit: block count */
268 #define DEFAULT_DISCARD_GRANULARITY		16
269 
270 /* max discard pend list number */
271 #define MAX_PLIST_NUM		512
272 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
273 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
274 
275 enum {
276 	D_PREP,			/* initial */
277 	D_PARTIAL,		/* partially submitted */
278 	D_SUBMIT,		/* all submitted */
279 	D_DONE,			/* finished */
280 };
281 
282 struct discard_info {
283 	block_t lstart;			/* logical start address */
284 	block_t len;			/* length */
285 	block_t start;			/* actual start address in dev */
286 };
287 
288 struct discard_cmd {
289 	struct rb_node rb_node;		/* rb node located in rb-tree */
290 	union {
291 		struct {
292 			block_t lstart;	/* logical start address */
293 			block_t len;	/* length */
294 			block_t start;	/* actual start address in dev */
295 		};
296 		struct discard_info di;	/* discard info */
297 
298 	};
299 	struct list_head list;		/* command list */
300 	struct completion wait;		/* compleation */
301 	struct block_device *bdev;	/* bdev */
302 	unsigned short ref;		/* reference count */
303 	unsigned char state;		/* state */
304 	unsigned char queued;		/* queued discard */
305 	int error;			/* bio error */
306 	spinlock_t lock;		/* for state/bio_ref updating */
307 	unsigned short bio_ref;		/* bio reference count */
308 };
309 
310 enum {
311 	DPOLICY_BG,
312 	DPOLICY_FORCE,
313 	DPOLICY_FSTRIM,
314 	DPOLICY_UMOUNT,
315 	MAX_DPOLICY,
316 };
317 
318 struct discard_policy {
319 	int type;			/* type of discard */
320 	unsigned int min_interval;	/* used for candidates exist */
321 	unsigned int mid_interval;	/* used for device busy */
322 	unsigned int max_interval;	/* used for candidates not exist */
323 	unsigned int max_requests;	/* # of discards issued per round */
324 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
325 	bool io_aware;			/* issue discard in idle time */
326 	bool sync;			/* submit discard with REQ_SYNC flag */
327 	bool ordered;			/* issue discard by lba order */
328 	unsigned int granularity;	/* discard granularity */
329 	int timeout;			/* discard timeout for put_super */
330 };
331 
332 struct discard_cmd_control {
333 	struct task_struct *f2fs_issue_discard;	/* discard thread */
334 	struct list_head entry_list;		/* 4KB discard entry list */
335 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
336 	struct list_head wait_list;		/* store on-flushing entries */
337 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
338 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
339 	unsigned int discard_wake;		/* to wake up discard thread */
340 	struct mutex cmd_lock;
341 	unsigned int nr_discards;		/* # of discards in the list */
342 	unsigned int max_discards;		/* max. discards to be issued */
343 	unsigned int discard_granularity;	/* discard granularity */
344 	unsigned int undiscard_blks;		/* # of undiscard blocks */
345 	unsigned int next_pos;			/* next discard position */
346 	atomic_t issued_discard;		/* # of issued discard */
347 	atomic_t queued_discard;		/* # of queued discard */
348 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
349 	struct rb_root_cached root;		/* root of discard rb-tree */
350 	bool rbtree_check;			/* config for consistence check */
351 };
352 
353 /* for the list of fsync inodes, used only during recovery */
354 struct fsync_inode_entry {
355 	struct list_head list;	/* list head */
356 	struct inode *inode;	/* vfs inode pointer */
357 	block_t blkaddr;	/* block address locating the last fsync */
358 	block_t last_dentry;	/* block address locating the last dentry */
359 };
360 
361 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
362 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
363 
364 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
365 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
366 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
367 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
368 
369 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
370 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
371 
update_nats_in_cursum(struct f2fs_journal * journal,int i)372 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
373 {
374 	int before = nats_in_cursum(journal);
375 
376 	journal->n_nats = cpu_to_le16(before + i);
377 	return before;
378 }
379 
update_sits_in_cursum(struct f2fs_journal * journal,int i)380 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
381 {
382 	int before = sits_in_cursum(journal);
383 
384 	journal->n_sits = cpu_to_le16(before + i);
385 	return before;
386 }
387 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)388 static inline bool __has_cursum_space(struct f2fs_journal *journal,
389 							int size, int type)
390 {
391 	if (type == NAT_JOURNAL)
392 		return size <= MAX_NAT_JENTRIES(journal);
393 	return size <= MAX_SIT_JENTRIES(journal);
394 }
395 
396 /*
397  * ioctl commands
398  */
399 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
400 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
401 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
402 
403 #define F2FS_IOCTL_MAGIC		0xf5
404 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
405 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
406 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
407 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
408 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
409 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
410 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
411 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
412 						struct f2fs_defragment)
413 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
414 						struct f2fs_move_range)
415 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
416 						struct f2fs_flush_device)
417 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
418 						struct f2fs_gc_range)
419 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
420 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
421 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
422 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
423 #define F2FS_IOC_RESIZE_FS		_IOW(F2FS_IOCTL_MAGIC, 16, __u64)
424 
425 #define F2FS_IOC_GET_VOLUME_NAME	FS_IOC_GETFSLABEL
426 #define F2FS_IOC_SET_VOLUME_NAME	FS_IOC_SETFSLABEL
427 
428 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
429 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
430 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
431 
432 /*
433  * should be same as XFS_IOC_GOINGDOWN.
434  * Flags for going down operation used by FS_IOC_GOINGDOWN
435  */
436 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
437 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
438 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
439 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
440 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
441 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
442 
443 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
444 /*
445  * ioctl commands in 32 bit emulation
446  */
447 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
448 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
449 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
450 #endif
451 
452 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
453 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
454 
455 struct f2fs_gc_range {
456 	u32 sync;
457 	u64 start;
458 	u64 len;
459 };
460 
461 struct f2fs_defragment {
462 	u64 start;
463 	u64 len;
464 };
465 
466 struct f2fs_move_range {
467 	u32 dst_fd;		/* destination fd */
468 	u64 pos_in;		/* start position in src_fd */
469 	u64 pos_out;		/* start position in dst_fd */
470 	u64 len;		/* size to move */
471 };
472 
473 struct f2fs_flush_device {
474 	u32 dev_num;		/* device number to flush */
475 	u32 segments;		/* # of segments to flush */
476 };
477 
478 /* for inline stuff */
479 #define DEF_INLINE_RESERVED_SIZE	1
480 static inline int get_extra_isize(struct inode *inode);
481 static inline int get_inline_xattr_addrs(struct inode *inode);
482 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
483 				(CUR_ADDRS_PER_INODE(inode) -		\
484 				get_inline_xattr_addrs(inode) -	\
485 				DEF_INLINE_RESERVED_SIZE))
486 
487 /* for inline dir */
488 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
489 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
490 				BITS_PER_BYTE + 1))
491 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
492 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
493 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
494 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
495 				NR_INLINE_DENTRY(inode) + \
496 				INLINE_DENTRY_BITMAP_SIZE(inode)))
497 
498 /*
499  * For INODE and NODE manager
500  */
501 /* for directory operations */
502 struct f2fs_dentry_ptr {
503 	struct inode *inode;
504 	void *bitmap;
505 	struct f2fs_dir_entry *dentry;
506 	__u8 (*filename)[F2FS_SLOT_LEN];
507 	int max;
508 	int nr_bitmap;
509 };
510 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)511 static inline void make_dentry_ptr_block(struct inode *inode,
512 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
513 {
514 	d->inode = inode;
515 	d->max = NR_DENTRY_IN_BLOCK;
516 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
517 	d->bitmap = t->dentry_bitmap;
518 	d->dentry = t->dentry;
519 	d->filename = t->filename;
520 }
521 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)522 static inline void make_dentry_ptr_inline(struct inode *inode,
523 					struct f2fs_dentry_ptr *d, void *t)
524 {
525 	int entry_cnt = NR_INLINE_DENTRY(inode);
526 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
527 	int reserved_size = INLINE_RESERVED_SIZE(inode);
528 
529 	d->inode = inode;
530 	d->max = entry_cnt;
531 	d->nr_bitmap = bitmap_size;
532 	d->bitmap = t;
533 	d->dentry = t + bitmap_size + reserved_size;
534 	d->filename = t + bitmap_size + reserved_size +
535 					SIZE_OF_DIR_ENTRY * entry_cnt;
536 }
537 
538 /*
539  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
540  * as its node offset to distinguish from index node blocks.
541  * But some bits are used to mark the node block.
542  */
543 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
544 				>> OFFSET_BIT_SHIFT)
545 enum {
546 	ALLOC_NODE,			/* allocate a new node page if needed */
547 	LOOKUP_NODE,			/* look up a node without readahead */
548 	LOOKUP_NODE_RA,			/*
549 					 * look up a node with readahead called
550 					 * by get_data_block.
551 					 */
552 };
553 
554 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
555 
556 /* maximum retry quota flush count */
557 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
558 
559 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
560 
561 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
562 
563 /* for in-memory extent cache entry */
564 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
565 
566 /* number of extent info in extent cache we try to shrink */
567 #define EXTENT_CACHE_SHRINK_NUMBER	128
568 
569 struct rb_entry {
570 	struct rb_node rb_node;		/* rb node located in rb-tree */
571 	unsigned int ofs;		/* start offset of the entry */
572 	unsigned int len;		/* length of the entry */
573 };
574 
575 struct extent_info {
576 	unsigned int fofs;		/* start offset in a file */
577 	unsigned int len;		/* length of the extent */
578 	u32 blk;			/* start block address of the extent */
579 };
580 
581 struct extent_node {
582 	struct rb_node rb_node;		/* rb node located in rb-tree */
583 	struct extent_info ei;		/* extent info */
584 	struct list_head list;		/* node in global extent list of sbi */
585 	struct extent_tree *et;		/* extent tree pointer */
586 };
587 
588 struct extent_tree {
589 	nid_t ino;			/* inode number */
590 	struct rb_root_cached root;	/* root of extent info rb-tree */
591 	struct extent_node *cached_en;	/* recently accessed extent node */
592 	struct extent_info largest;	/* largested extent info */
593 	struct list_head list;		/* to be used by sbi->zombie_list */
594 	rwlock_t lock;			/* protect extent info rb-tree */
595 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
596 	bool largest_updated;		/* largest extent updated */
597 };
598 
599 /*
600  * This structure is taken from ext4_map_blocks.
601  *
602  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
603  */
604 #define F2FS_MAP_NEW		(1 << BH_New)
605 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
606 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
607 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
608 				F2FS_MAP_UNWRITTEN)
609 
610 struct f2fs_map_blocks {
611 	block_t m_pblk;
612 	block_t m_lblk;
613 	unsigned int m_len;
614 	unsigned int m_flags;
615 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
616 	pgoff_t *m_next_extent;		/* point to next possible extent */
617 	int m_seg_type;
618 	bool m_may_create;		/* indicate it is from write path */
619 };
620 
621 /* for flag in get_data_block */
622 enum {
623 	F2FS_GET_BLOCK_DEFAULT,
624 	F2FS_GET_BLOCK_FIEMAP,
625 	F2FS_GET_BLOCK_BMAP,
626 	F2FS_GET_BLOCK_DIO,
627 	F2FS_GET_BLOCK_PRE_DIO,
628 	F2FS_GET_BLOCK_PRE_AIO,
629 	F2FS_GET_BLOCK_PRECACHE,
630 };
631 
632 /*
633  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
634  */
635 #define FADVISE_COLD_BIT	0x01
636 #define FADVISE_LOST_PINO_BIT	0x02
637 #define FADVISE_ENCRYPT_BIT	0x04
638 #define FADVISE_ENC_NAME_BIT	0x08
639 #define FADVISE_KEEP_SIZE_BIT	0x10
640 #define FADVISE_HOT_BIT		0x20
641 #define FADVISE_VERITY_BIT	0x40
642 
643 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
644 
645 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
646 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
647 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
648 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
649 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
650 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
651 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
652 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
653 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
654 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
655 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
656 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
657 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
658 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
659 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
660 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
661 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
662 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
663 
664 #define DEF_DIR_LEVEL		0
665 
666 enum {
667 	GC_FAILURE_PIN,
668 	GC_FAILURE_ATOMIC,
669 	MAX_GC_FAILURE
670 };
671 
672 struct f2fs_inode_info {
673 	struct inode vfs_inode;		/* serve a vfs inode */
674 	unsigned long i_flags;		/* keep an inode flags for ioctl */
675 	unsigned char i_advise;		/* use to give file attribute hints */
676 	unsigned char i_dir_level;	/* use for dentry level for large dir */
677 	unsigned int i_current_depth;	/* only for directory depth */
678 	/* for gc failure statistic */
679 	unsigned int i_gc_failures[MAX_GC_FAILURE];
680 	unsigned int i_pino;		/* parent inode number */
681 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
682 
683 	/* Use below internally in f2fs*/
684 	unsigned long flags;		/* use to pass per-file flags */
685 	struct rw_semaphore i_sem;	/* protect fi info */
686 	atomic_t dirty_pages;		/* # of dirty pages */
687 	f2fs_hash_t chash;		/* hash value of given file name */
688 	unsigned int clevel;		/* maximum level of given file name */
689 	struct task_struct *task;	/* lookup and create consistency */
690 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
691 	nid_t i_xattr_nid;		/* node id that contains xattrs */
692 	loff_t	last_disk_size;		/* lastly written file size */
693 
694 #ifdef CONFIG_QUOTA
695 	struct dquot *i_dquot[MAXQUOTAS];
696 
697 	/* quota space reservation, managed internally by quota code */
698 	qsize_t i_reserved_quota;
699 #endif
700 	struct list_head dirty_list;	/* dirty list for dirs and files */
701 	struct list_head gdirty_list;	/* linked in global dirty list */
702 	struct list_head inmem_ilist;	/* list for inmem inodes */
703 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
704 	struct task_struct *inmem_task;	/* store inmemory task */
705 	struct mutex inmem_lock;	/* lock for inmemory pages */
706 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
707 
708 	/* avoid racing between foreground op and gc */
709 	struct rw_semaphore i_gc_rwsem[2];
710 	struct rw_semaphore i_mmap_sem;
711 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
712 
713 	int i_extra_isize;		/* size of extra space located in i_addr */
714 	kprojid_t i_projid;		/* id for project quota */
715 	int i_inline_xattr_size;	/* inline xattr size */
716 	struct timespec64 i_crtime;	/* inode creation time */
717 	struct timespec64 i_disk_time[4];/* inode disk times */
718 };
719 
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)720 static inline void get_extent_info(struct extent_info *ext,
721 					struct f2fs_extent *i_ext)
722 {
723 	ext->fofs = le32_to_cpu(i_ext->fofs);
724 	ext->blk = le32_to_cpu(i_ext->blk);
725 	ext->len = le32_to_cpu(i_ext->len);
726 }
727 
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)728 static inline void set_raw_extent(struct extent_info *ext,
729 					struct f2fs_extent *i_ext)
730 {
731 	i_ext->fofs = cpu_to_le32(ext->fofs);
732 	i_ext->blk = cpu_to_le32(ext->blk);
733 	i_ext->len = cpu_to_le32(ext->len);
734 }
735 
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)736 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
737 						u32 blk, unsigned int len)
738 {
739 	ei->fofs = fofs;
740 	ei->blk = blk;
741 	ei->len = len;
742 }
743 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)744 static inline bool __is_discard_mergeable(struct discard_info *back,
745 			struct discard_info *front, unsigned int max_len)
746 {
747 	return (back->lstart + back->len == front->lstart) &&
748 		(back->len + front->len <= max_len);
749 }
750 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)751 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
752 			struct discard_info *back, unsigned int max_len)
753 {
754 	return __is_discard_mergeable(back, cur, max_len);
755 }
756 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)757 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
758 			struct discard_info *front, unsigned int max_len)
759 {
760 	return __is_discard_mergeable(cur, front, max_len);
761 }
762 
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)763 static inline bool __is_extent_mergeable(struct extent_info *back,
764 						struct extent_info *front)
765 {
766 	return (back->fofs + back->len == front->fofs &&
767 			back->blk + back->len == front->blk);
768 }
769 
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)770 static inline bool __is_back_mergeable(struct extent_info *cur,
771 						struct extent_info *back)
772 {
773 	return __is_extent_mergeable(back, cur);
774 }
775 
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)776 static inline bool __is_front_mergeable(struct extent_info *cur,
777 						struct extent_info *front)
778 {
779 	return __is_extent_mergeable(cur, front);
780 }
781 
782 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)783 static inline void __try_update_largest_extent(struct extent_tree *et,
784 						struct extent_node *en)
785 {
786 	if (en->ei.len > et->largest.len) {
787 		et->largest = en->ei;
788 		et->largest_updated = true;
789 	}
790 }
791 
792 /*
793  * For free nid management
794  */
795 enum nid_state {
796 	FREE_NID,		/* newly added to free nid list */
797 	PREALLOC_NID,		/* it is preallocated */
798 	MAX_NID_STATE,
799 };
800 
801 struct f2fs_nm_info {
802 	block_t nat_blkaddr;		/* base disk address of NAT */
803 	nid_t max_nid;			/* maximum possible node ids */
804 	nid_t available_nids;		/* # of available node ids */
805 	nid_t next_scan_nid;		/* the next nid to be scanned */
806 	unsigned int ram_thresh;	/* control the memory footprint */
807 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
808 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
809 
810 	/* NAT cache management */
811 	struct radix_tree_root nat_root;/* root of the nat entry cache */
812 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
813 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
814 	struct list_head nat_entries;	/* cached nat entry list (clean) */
815 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
816 	unsigned int nat_cnt;		/* the # of cached nat entries */
817 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
818 	unsigned int nat_blocks;	/* # of nat blocks */
819 
820 	/* free node ids management */
821 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
822 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
823 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
824 	spinlock_t nid_list_lock;	/* protect nid lists ops */
825 	struct mutex build_lock;	/* lock for build free nids */
826 	unsigned char **free_nid_bitmap;
827 	unsigned char *nat_block_bitmap;
828 	unsigned short *free_nid_count;	/* free nid count of NAT block */
829 
830 	/* for checkpoint */
831 	char *nat_bitmap;		/* NAT bitmap pointer */
832 
833 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
834 	unsigned char *nat_bits;	/* NAT bits blocks */
835 	unsigned char *full_nat_bits;	/* full NAT pages */
836 	unsigned char *empty_nat_bits;	/* empty NAT pages */
837 #ifdef CONFIG_F2FS_CHECK_FS
838 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
839 #endif
840 	int bitmap_size;		/* bitmap size */
841 };
842 
843 /*
844  * this structure is used as one of function parameters.
845  * all the information are dedicated to a given direct node block determined
846  * by the data offset in a file.
847  */
848 struct dnode_of_data {
849 	struct inode *inode;		/* vfs inode pointer */
850 	struct page *inode_page;	/* its inode page, NULL is possible */
851 	struct page *node_page;		/* cached direct node page */
852 	nid_t nid;			/* node id of the direct node block */
853 	unsigned int ofs_in_node;	/* data offset in the node page */
854 	bool inode_page_locked;		/* inode page is locked or not */
855 	bool node_changed;		/* is node block changed */
856 	char cur_level;			/* level of hole node page */
857 	char max_level;			/* level of current page located */
858 	block_t	data_blkaddr;		/* block address of the node block */
859 };
860 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)861 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
862 		struct page *ipage, struct page *npage, nid_t nid)
863 {
864 	memset(dn, 0, sizeof(*dn));
865 	dn->inode = inode;
866 	dn->inode_page = ipage;
867 	dn->node_page = npage;
868 	dn->nid = nid;
869 }
870 
871 /*
872  * For SIT manager
873  *
874  * By default, there are 6 active log areas across the whole main area.
875  * When considering hot and cold data separation to reduce cleaning overhead,
876  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
877  * respectively.
878  * In the current design, you should not change the numbers intentionally.
879  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
880  * logs individually according to the underlying devices. (default: 6)
881  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
882  * data and 8 for node logs.
883  */
884 #define	NR_CURSEG_DATA_TYPE	(3)
885 #define NR_CURSEG_NODE_TYPE	(3)
886 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
887 
888 enum {
889 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
890 	CURSEG_WARM_DATA,	/* data blocks */
891 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
892 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
893 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
894 	CURSEG_COLD_NODE,	/* indirect node blocks */
895 	NO_CHECK_TYPE,
896 	CURSEG_COLD_DATA_PINNED,/* cold data for pinned file */
897 };
898 
899 struct flush_cmd {
900 	struct completion wait;
901 	struct llist_node llnode;
902 	nid_t ino;
903 	int ret;
904 };
905 
906 struct flush_cmd_control {
907 	struct task_struct *f2fs_issue_flush;	/* flush thread */
908 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
909 	atomic_t issued_flush;			/* # of issued flushes */
910 	atomic_t queued_flush;			/* # of queued flushes */
911 	struct llist_head issue_list;		/* list for command issue */
912 	struct llist_node *dispatch_list;	/* list for command dispatch */
913 };
914 
915 struct f2fs_sm_info {
916 	struct sit_info *sit_info;		/* whole segment information */
917 	struct free_segmap_info *free_info;	/* free segment information */
918 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
919 	struct curseg_info *curseg_array;	/* active segment information */
920 
921 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
922 
923 	block_t seg0_blkaddr;		/* block address of 0'th segment */
924 	block_t main_blkaddr;		/* start block address of main area */
925 	block_t ssa_blkaddr;		/* start block address of SSA area */
926 
927 	unsigned int segment_count;	/* total # of segments */
928 	unsigned int main_segments;	/* # of segments in main area */
929 	unsigned int reserved_segments;	/* # of reserved segments */
930 	unsigned int ovp_segments;	/* # of overprovision segments */
931 
932 	/* a threshold to reclaim prefree segments */
933 	unsigned int rec_prefree_segments;
934 
935 	/* for batched trimming */
936 	unsigned int trim_sections;		/* # of sections to trim */
937 
938 	struct list_head sit_entry_set;	/* sit entry set list */
939 
940 	unsigned int ipu_policy;	/* in-place-update policy */
941 	unsigned int min_ipu_util;	/* in-place-update threshold */
942 	unsigned int min_fsync_blocks;	/* threshold for fsync */
943 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
944 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
945 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
946 
947 	/* for flush command control */
948 	struct flush_cmd_control *fcc_info;
949 
950 	/* for discard command control */
951 	struct discard_cmd_control *dcc_info;
952 };
953 
954 /*
955  * For superblock
956  */
957 /*
958  * COUNT_TYPE for monitoring
959  *
960  * f2fs monitors the number of several block types such as on-writeback,
961  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
962  */
963 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
964 enum count_type {
965 	F2FS_DIRTY_DENTS,
966 	F2FS_DIRTY_DATA,
967 	F2FS_DIRTY_QDATA,
968 	F2FS_DIRTY_NODES,
969 	F2FS_DIRTY_META,
970 	F2FS_INMEM_PAGES,
971 	F2FS_DIRTY_IMETA,
972 	F2FS_WB_CP_DATA,
973 	F2FS_WB_DATA,
974 	F2FS_RD_DATA,
975 	F2FS_RD_NODE,
976 	F2FS_RD_META,
977 	F2FS_DIO_WRITE,
978 	F2FS_DIO_READ,
979 	NR_COUNT_TYPE,
980 };
981 
982 /*
983  * The below are the page types of bios used in submit_bio().
984  * The available types are:
985  * DATA			User data pages. It operates as async mode.
986  * NODE			Node pages. It operates as async mode.
987  * META			FS metadata pages such as SIT, NAT, CP.
988  * NR_PAGE_TYPE		The number of page types.
989  * META_FLUSH		Make sure the previous pages are written
990  *			with waiting the bio's completion
991  * ...			Only can be used with META.
992  */
993 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
994 enum page_type {
995 	DATA,
996 	NODE,
997 	META,
998 	NR_PAGE_TYPE,
999 	META_FLUSH,
1000 	INMEM,		/* the below types are used by tracepoints only. */
1001 	INMEM_DROP,
1002 	INMEM_INVALIDATE,
1003 	INMEM_REVOKE,
1004 	IPU,
1005 	OPU,
1006 };
1007 
1008 enum temp_type {
1009 	HOT = 0,	/* must be zero for meta bio */
1010 	WARM,
1011 	COLD,
1012 	NR_TEMP_TYPE,
1013 };
1014 
1015 enum need_lock_type {
1016 	LOCK_REQ = 0,
1017 	LOCK_DONE,
1018 	LOCK_RETRY,
1019 };
1020 
1021 enum cp_reason_type {
1022 	CP_NO_NEEDED,
1023 	CP_NON_REGULAR,
1024 	CP_HARDLINK,
1025 	CP_SB_NEED_CP,
1026 	CP_WRONG_PINO,
1027 	CP_NO_SPC_ROLL,
1028 	CP_NODE_NEED_CP,
1029 	CP_FASTBOOT_MODE,
1030 	CP_SPEC_LOG_NUM,
1031 	CP_RECOVER_DIR,
1032 };
1033 
1034 enum iostat_type {
1035 	APP_DIRECT_IO,			/* app direct IOs */
1036 	APP_BUFFERED_IO,		/* app buffered IOs */
1037 	APP_WRITE_IO,			/* app write IOs */
1038 	APP_MAPPED_IO,			/* app mapped IOs */
1039 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1040 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1041 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1042 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1043 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1044 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1045 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1046 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1047 	FS_DISCARD,			/* discard */
1048 	NR_IO_TYPE,
1049 };
1050 
1051 struct f2fs_io_info {
1052 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1053 	nid_t ino;		/* inode number */
1054 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1055 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1056 	int op;			/* contains REQ_OP_ */
1057 	int op_flags;		/* req_flag_bits */
1058 	block_t new_blkaddr;	/* new block address to be written */
1059 	block_t old_blkaddr;	/* old block address before Cow */
1060 	struct page *page;	/* page to be written */
1061 	struct page *encrypted_page;	/* encrypted page */
1062 	struct list_head list;		/* serialize IOs */
1063 	bool submitted;		/* indicate IO submission */
1064 	int need_lock;		/* indicate we need to lock cp_rwsem */
1065 	bool in_list;		/* indicate fio is in io_list */
1066 	bool is_por;		/* indicate IO is from recovery or not */
1067 	bool retry;		/* need to reallocate block address */
1068 	enum iostat_type io_type;	/* io type */
1069 	struct writeback_control *io_wbc; /* writeback control */
1070 	struct bio **bio;		/* bio for ipu */
1071 	sector_t *last_block;		/* last block number in bio */
1072 	unsigned char version;		/* version of the node */
1073 };
1074 
1075 struct bio_entry {
1076 	struct bio *bio;
1077 	struct list_head list;
1078 };
1079 
1080 #define is_read_io(rw) ((rw) == READ)
1081 struct f2fs_bio_info {
1082 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1083 	struct bio *bio;		/* bios to merge */
1084 	sector_t last_block_in_bio;	/* last block number */
1085 	struct f2fs_io_info fio;	/* store buffered io info. */
1086 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1087 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1088 	struct list_head io_list;	/* track fios */
1089 	struct list_head bio_list;	/* bio entry list head */
1090 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1091 };
1092 
1093 #define FDEV(i)				(sbi->devs[i])
1094 #define RDEV(i)				(raw_super->devs[i])
1095 struct f2fs_dev_info {
1096 	struct block_device *bdev;
1097 	char path[MAX_PATH_LEN];
1098 	unsigned int total_segments;
1099 	block_t start_blk;
1100 	block_t end_blk;
1101 #ifdef CONFIG_BLK_DEV_ZONED
1102 	unsigned int nr_blkz;		/* Total number of zones */
1103 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1104 #endif
1105 };
1106 
1107 enum inode_type {
1108 	DIR_INODE,			/* for dirty dir inode */
1109 	FILE_INODE,			/* for dirty regular/symlink inode */
1110 	DIRTY_META,			/* for all dirtied inode metadata */
1111 	ATOMIC_FILE,			/* for all atomic files */
1112 	NR_INODE_TYPE,
1113 };
1114 
1115 /* for inner inode cache management */
1116 struct inode_management {
1117 	struct radix_tree_root ino_root;	/* ino entry array */
1118 	spinlock_t ino_lock;			/* for ino entry lock */
1119 	struct list_head ino_list;		/* inode list head */
1120 	unsigned long ino_num;			/* number of entries */
1121 };
1122 
1123 /* For s_flag in struct f2fs_sb_info */
1124 enum {
1125 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1126 	SBI_IS_CLOSE,				/* specify unmounting */
1127 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1128 	SBI_POR_DOING,				/* recovery is doing or not */
1129 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1130 	SBI_NEED_CP,				/* need to checkpoint */
1131 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1132 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1133 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1134 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1135 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1136 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1137 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1138 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1139 };
1140 
1141 enum {
1142 	CP_TIME,
1143 	REQ_TIME,
1144 	DISCARD_TIME,
1145 	GC_TIME,
1146 	DISABLE_TIME,
1147 	UMOUNT_DISCARD_TIMEOUT,
1148 	MAX_TIME,
1149 };
1150 
1151 enum {
1152 	GC_NORMAL,
1153 	GC_IDLE_CB,
1154 	GC_IDLE_GREEDY,
1155 	GC_URGENT,
1156 };
1157 
1158 enum {
1159 	WHINT_MODE_OFF,		/* not pass down write hints */
1160 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1161 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1162 };
1163 
1164 enum {
1165 	ALLOC_MODE_DEFAULT,	/* stay default */
1166 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1167 };
1168 
1169 enum fsync_mode {
1170 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1171 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1172 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1173 };
1174 
1175 #ifdef CONFIG_FS_ENCRYPTION
1176 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1177 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1178 #else
1179 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1180 #endif
1181 
1182 struct f2fs_sb_info {
1183 	struct super_block *sb;			/* pointer to VFS super block */
1184 	struct proc_dir_entry *s_proc;		/* proc entry */
1185 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1186 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1187 	int valid_super_block;			/* valid super block no */
1188 	unsigned long s_flag;				/* flags for sbi */
1189 	struct mutex writepages;		/* mutex for writepages() */
1190 #ifdef CONFIG_UNICODE
1191 	struct unicode_map *s_encoding;
1192 	__u16 s_encoding_flags;
1193 #endif
1194 
1195 #ifdef CONFIG_BLK_DEV_ZONED
1196 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1197 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1198 #endif
1199 
1200 	/* for node-related operations */
1201 	struct f2fs_nm_info *nm_info;		/* node manager */
1202 	struct inode *node_inode;		/* cache node blocks */
1203 
1204 	/* for segment-related operations */
1205 	struct f2fs_sm_info *sm_info;		/* segment manager */
1206 
1207 	/* for bio operations */
1208 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1209 	/* keep migration IO order for LFS mode */
1210 	struct rw_semaphore io_order_lock;
1211 	mempool_t *write_io_dummy;		/* Dummy pages */
1212 
1213 	/* for checkpoint */
1214 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1215 	int cur_cp_pack;			/* remain current cp pack */
1216 	spinlock_t cp_lock;			/* for flag in ckpt */
1217 	struct inode *meta_inode;		/* cache meta blocks */
1218 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1219 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1220 	struct rw_semaphore node_write;		/* locking node writes */
1221 	struct rw_semaphore node_change;	/* locking node change */
1222 	wait_queue_head_t cp_wait;
1223 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1224 	long interval_time[MAX_TIME];		/* to store thresholds */
1225 
1226 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1227 
1228 	spinlock_t fsync_node_lock;		/* for node entry lock */
1229 	struct list_head fsync_node_list;	/* node list head */
1230 	unsigned int fsync_seg_id;		/* sequence id */
1231 	unsigned int fsync_node_num;		/* number of node entries */
1232 
1233 	/* for orphan inode, use 0'th array */
1234 	unsigned int max_orphans;		/* max orphan inodes */
1235 
1236 	/* for inode management */
1237 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1238 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1239 	struct mutex flush_lock;		/* for flush exclusion */
1240 
1241 	/* for extent tree cache */
1242 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1243 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1244 	struct list_head extent_list;		/* lru list for shrinker */
1245 	spinlock_t extent_lock;			/* locking extent lru list */
1246 	atomic_t total_ext_tree;		/* extent tree count */
1247 	struct list_head zombie_list;		/* extent zombie tree list */
1248 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1249 	atomic_t total_ext_node;		/* extent info count */
1250 
1251 	/* basic filesystem units */
1252 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1253 	unsigned int log_blocksize;		/* log2 block size */
1254 	unsigned int blocksize;			/* block size */
1255 	unsigned int root_ino_num;		/* root inode number*/
1256 	unsigned int node_ino_num;		/* node inode number*/
1257 	unsigned int meta_ino_num;		/* meta inode number*/
1258 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1259 	unsigned int blocks_per_seg;		/* blocks per segment */
1260 	unsigned int segs_per_sec;		/* segments per section */
1261 	unsigned int secs_per_zone;		/* sections per zone */
1262 	unsigned int total_sections;		/* total section count */
1263 	struct mutex resize_mutex;		/* for resize exclusion */
1264 	unsigned int total_node_count;		/* total node block count */
1265 	unsigned int total_valid_node_count;	/* valid node block count */
1266 	loff_t max_file_blocks;			/* max block index of file */
1267 	int dir_level;				/* directory level */
1268 	int readdir_ra;				/* readahead inode in readdir */
1269 
1270 	block_t user_block_count;		/* # of user blocks */
1271 	block_t total_valid_block_count;	/* # of valid blocks */
1272 	block_t discard_blks;			/* discard command candidats */
1273 	block_t last_valid_block_count;		/* for recovery */
1274 	block_t reserved_blocks;		/* configurable reserved blocks */
1275 	block_t current_reserved_blocks;	/* current reserved blocks */
1276 
1277 	/* Additional tracking for no checkpoint mode */
1278 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1279 
1280 	unsigned int nquota_files;		/* # of quota sysfile */
1281 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1282 
1283 	/* # of pages, see count_type */
1284 	atomic_t nr_pages[NR_COUNT_TYPE];
1285 	/* # of allocated blocks */
1286 	struct percpu_counter alloc_valid_block_count;
1287 
1288 	/* writeback control */
1289 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1290 
1291 	/* valid inode count */
1292 	struct percpu_counter total_valid_inode_count;
1293 
1294 	struct f2fs_mount_info mount_opt;	/* mount options */
1295 
1296 	/* for cleaning operations */
1297 	struct mutex gc_mutex;			/* mutex for GC */
1298 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1299 	unsigned int cur_victim_sec;		/* current victim section num */
1300 	unsigned int gc_mode;			/* current GC state */
1301 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1302 	/* for skip statistic */
1303 	unsigned int atomic_files;              /* # of opened atomic file */
1304 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1305 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1306 
1307 	/* threshold for gc trials on pinned files */
1308 	u64 gc_pin_file_threshold;
1309 	struct rw_semaphore pin_sem;
1310 
1311 	/* maximum # of trials to find a victim segment for SSR and GC */
1312 	unsigned int max_victim_search;
1313 	/* migration granularity of garbage collection, unit: segment */
1314 	unsigned int migration_granularity;
1315 
1316 	/*
1317 	 * for stat information.
1318 	 * one is for the LFS mode, and the other is for the SSR mode.
1319 	 */
1320 #ifdef CONFIG_F2FS_STAT_FS
1321 	struct f2fs_stat_info *stat_info;	/* FS status information */
1322 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1323 	unsigned int segment_count[2];		/* # of allocated segments */
1324 	unsigned int block_count[2];		/* # of allocated blocks */
1325 	atomic_t inplace_count;		/* # of inplace update */
1326 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1327 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1328 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1329 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1330 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1331 	atomic_t inline_inode;			/* # of inline_data inodes */
1332 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1333 	atomic_t aw_cnt;			/* # of atomic writes */
1334 	atomic_t vw_cnt;			/* # of volatile writes */
1335 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1336 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1337 	int bg_gc;				/* background gc calls */
1338 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1339 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1340 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1341 #endif
1342 	spinlock_t stat_lock;			/* lock for stat operations */
1343 
1344 	/* For app/fs IO statistics */
1345 	spinlock_t iostat_lock;
1346 	unsigned long long write_iostat[NR_IO_TYPE];
1347 	bool iostat_enable;
1348 
1349 	/* For sysfs suppport */
1350 	struct kobject s_kobj;
1351 	struct completion s_kobj_unregister;
1352 
1353 	/* For shrinker support */
1354 	struct list_head s_list;
1355 	int s_ndevs;				/* number of devices */
1356 	struct f2fs_dev_info *devs;		/* for device list */
1357 	unsigned int dirty_device;		/* for checkpoint data flush */
1358 	spinlock_t dev_lock;			/* protect dirty_device */
1359 	struct mutex umount_mutex;
1360 	unsigned int shrinker_run_no;
1361 
1362 	/* For write statistics */
1363 	u64 sectors_written_start;
1364 	u64 kbytes_written;
1365 
1366 	/* Reference to checksum algorithm driver via cryptoapi */
1367 	struct crypto_shash *s_chksum_driver;
1368 
1369 	/* Precomputed FS UUID checksum for seeding other checksums */
1370 	__u32 s_chksum_seed;
1371 };
1372 
1373 struct f2fs_private_dio {
1374 	struct inode *inode;
1375 	void *orig_private;
1376 	bio_end_io_t *orig_end_io;
1377 	bool write;
1378 };
1379 
1380 #ifdef CONFIG_F2FS_FAULT_INJECTION
1381 #define f2fs_show_injection_info(sbi, type)					\
1382 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1383 		KERN_INFO, sbi->sb->s_id,				\
1384 		f2fs_fault_name[type],					\
1385 		__func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1386 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1387 {
1388 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1389 
1390 	if (!ffi->inject_rate)
1391 		return false;
1392 
1393 	if (!IS_FAULT_SET(ffi, type))
1394 		return false;
1395 
1396 	atomic_inc(&ffi->inject_ops);
1397 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1398 		atomic_set(&ffi->inject_ops, 0);
1399 		return true;
1400 	}
1401 	return false;
1402 }
1403 #else
1404 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1405 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1406 {
1407 	return false;
1408 }
1409 #endif
1410 
1411 /*
1412  * Test if the mounted volume is a multi-device volume.
1413  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1414  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1415  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1416  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1417 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1418 {
1419 	return sbi->s_ndevs > 1;
1420 }
1421 
1422 /* For write statistics. Suppose sector size is 512 bytes,
1423  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1424  */
1425 #define BD_PART_WRITTEN(s)						 \
1426 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1427 		(s)->sectors_written_start) >> 1)
1428 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1429 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1430 {
1431 	unsigned long now = jiffies;
1432 
1433 	sbi->last_time[type] = now;
1434 
1435 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1436 	if (type == REQ_TIME) {
1437 		sbi->last_time[DISCARD_TIME] = now;
1438 		sbi->last_time[GC_TIME] = now;
1439 	}
1440 }
1441 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1442 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1443 {
1444 	unsigned long interval = sbi->interval_time[type] * HZ;
1445 
1446 	return time_after(jiffies, sbi->last_time[type] + interval);
1447 }
1448 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1449 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1450 						int type)
1451 {
1452 	unsigned long interval = sbi->interval_time[type] * HZ;
1453 	unsigned int wait_ms = 0;
1454 	long delta;
1455 
1456 	delta = (sbi->last_time[type] + interval) - jiffies;
1457 	if (delta > 0)
1458 		wait_ms = jiffies_to_msecs(delta);
1459 
1460 	return wait_ms;
1461 }
1462 
1463 /*
1464  * Inline functions
1465  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1466 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1467 			      const void *address, unsigned int length)
1468 {
1469 	struct {
1470 		struct shash_desc shash;
1471 		char ctx[4];
1472 	} desc;
1473 	int err;
1474 
1475 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1476 
1477 	desc.shash.tfm = sbi->s_chksum_driver;
1478 	*(u32 *)desc.ctx = crc;
1479 
1480 	err = crypto_shash_update(&desc.shash, address, length);
1481 	BUG_ON(err);
1482 
1483 	return *(u32 *)desc.ctx;
1484 }
1485 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1486 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1487 			   unsigned int length)
1488 {
1489 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1490 }
1491 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1492 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1493 				  void *buf, size_t buf_size)
1494 {
1495 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1496 }
1497 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1498 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1499 			      const void *address, unsigned int length)
1500 {
1501 	return __f2fs_crc32(sbi, crc, address, length);
1502 }
1503 
F2FS_I(struct inode * inode)1504 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1505 {
1506 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1507 }
1508 
F2FS_SB(struct super_block * sb)1509 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1510 {
1511 	return sb->s_fs_info;
1512 }
1513 
F2FS_I_SB(struct inode * inode)1514 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1515 {
1516 	return F2FS_SB(inode->i_sb);
1517 }
1518 
F2FS_M_SB(struct address_space * mapping)1519 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1520 {
1521 	return F2FS_I_SB(mapping->host);
1522 }
1523 
F2FS_P_SB(struct page * page)1524 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1525 {
1526 	return F2FS_M_SB(page_file_mapping(page));
1527 }
1528 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1529 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1530 {
1531 	return (struct f2fs_super_block *)(sbi->raw_super);
1532 }
1533 
F2FS_CKPT(struct f2fs_sb_info * sbi)1534 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1535 {
1536 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1537 }
1538 
F2FS_NODE(struct page * page)1539 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1540 {
1541 	return (struct f2fs_node *)page_address(page);
1542 }
1543 
F2FS_INODE(struct page * page)1544 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1545 {
1546 	return &((struct f2fs_node *)page_address(page))->i;
1547 }
1548 
NM_I(struct f2fs_sb_info * sbi)1549 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1550 {
1551 	return (struct f2fs_nm_info *)(sbi->nm_info);
1552 }
1553 
SM_I(struct f2fs_sb_info * sbi)1554 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1555 {
1556 	return (struct f2fs_sm_info *)(sbi->sm_info);
1557 }
1558 
SIT_I(struct f2fs_sb_info * sbi)1559 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1560 {
1561 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1562 }
1563 
FREE_I(struct f2fs_sb_info * sbi)1564 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1565 {
1566 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1567 }
1568 
DIRTY_I(struct f2fs_sb_info * sbi)1569 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1570 {
1571 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1572 }
1573 
META_MAPPING(struct f2fs_sb_info * sbi)1574 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1575 {
1576 	return sbi->meta_inode->i_mapping;
1577 }
1578 
NODE_MAPPING(struct f2fs_sb_info * sbi)1579 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1580 {
1581 	return sbi->node_inode->i_mapping;
1582 }
1583 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1584 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1585 {
1586 	return test_bit(type, &sbi->s_flag);
1587 }
1588 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1589 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1590 {
1591 	set_bit(type, &sbi->s_flag);
1592 }
1593 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1594 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1595 {
1596 	clear_bit(type, &sbi->s_flag);
1597 }
1598 
cur_cp_version(struct f2fs_checkpoint * cp)1599 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1600 {
1601 	return le64_to_cpu(cp->checkpoint_ver);
1602 }
1603 
f2fs_qf_ino(struct super_block * sb,int type)1604 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1605 {
1606 	if (type < F2FS_MAX_QUOTAS)
1607 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1608 	return 0;
1609 }
1610 
cur_cp_crc(struct f2fs_checkpoint * cp)1611 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1612 {
1613 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1614 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1615 }
1616 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1617 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1618 {
1619 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1620 
1621 	return ckpt_flags & f;
1622 }
1623 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1624 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1625 {
1626 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1627 }
1628 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1629 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1630 {
1631 	unsigned int ckpt_flags;
1632 
1633 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1634 	ckpt_flags |= f;
1635 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1636 }
1637 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1638 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1639 {
1640 	unsigned long flags;
1641 
1642 	spin_lock_irqsave(&sbi->cp_lock, flags);
1643 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1644 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1645 }
1646 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1647 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1648 {
1649 	unsigned int ckpt_flags;
1650 
1651 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1652 	ckpt_flags &= (~f);
1653 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1654 }
1655 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1656 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1657 {
1658 	unsigned long flags;
1659 
1660 	spin_lock_irqsave(&sbi->cp_lock, flags);
1661 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1662 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1663 }
1664 
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1665 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1666 {
1667 	unsigned long flags;
1668 	unsigned char *nat_bits;
1669 
1670 	/*
1671 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1672 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1673 	 * so let's rely on regular fsck or unclean shutdown.
1674 	 */
1675 
1676 	if (lock)
1677 		spin_lock_irqsave(&sbi->cp_lock, flags);
1678 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1679 	nat_bits = NM_I(sbi)->nat_bits;
1680 	NM_I(sbi)->nat_bits = NULL;
1681 	if (lock)
1682 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1683 
1684 	kvfree(nat_bits);
1685 }
1686 
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1687 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1688 					struct cp_control *cpc)
1689 {
1690 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1691 
1692 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1693 }
1694 
f2fs_lock_op(struct f2fs_sb_info * sbi)1695 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1696 {
1697 	down_read(&sbi->cp_rwsem);
1698 }
1699 
f2fs_trylock_op(struct f2fs_sb_info * sbi)1700 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1701 {
1702 	return down_read_trylock(&sbi->cp_rwsem);
1703 }
1704 
f2fs_unlock_op(struct f2fs_sb_info * sbi)1705 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1706 {
1707 	up_read(&sbi->cp_rwsem);
1708 }
1709 
f2fs_lock_all(struct f2fs_sb_info * sbi)1710 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1711 {
1712 	down_write(&sbi->cp_rwsem);
1713 }
1714 
f2fs_unlock_all(struct f2fs_sb_info * sbi)1715 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1716 {
1717 	up_write(&sbi->cp_rwsem);
1718 }
1719 
__get_cp_reason(struct f2fs_sb_info * sbi)1720 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1721 {
1722 	int reason = CP_SYNC;
1723 
1724 	if (test_opt(sbi, FASTBOOT))
1725 		reason = CP_FASTBOOT;
1726 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1727 		reason = CP_UMOUNT;
1728 	return reason;
1729 }
1730 
__remain_node_summaries(int reason)1731 static inline bool __remain_node_summaries(int reason)
1732 {
1733 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1734 }
1735 
__exist_node_summaries(struct f2fs_sb_info * sbi)1736 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1737 {
1738 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1739 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1740 }
1741 
1742 /*
1743  * Check whether the inode has blocks or not
1744  */
F2FS_HAS_BLOCKS(struct inode * inode)1745 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1746 {
1747 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1748 
1749 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1750 }
1751 
f2fs_has_xattr_block(unsigned int ofs)1752 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1753 {
1754 	return ofs == XATTR_NODE_OFFSET;
1755 }
1756 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)1757 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1758 					struct inode *inode, bool cap)
1759 {
1760 	if (!inode)
1761 		return true;
1762 	if (!test_opt(sbi, RESERVE_ROOT))
1763 		return false;
1764 	if (IS_NOQUOTA(inode))
1765 		return true;
1766 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1767 		return true;
1768 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1769 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1770 		return true;
1771 	if (cap && capable(CAP_SYS_RESOURCE))
1772 		return true;
1773 	return false;
1774 }
1775 
1776 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)1777 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1778 				 struct inode *inode, blkcnt_t *count)
1779 {
1780 	blkcnt_t diff = 0, release = 0;
1781 	block_t avail_user_block_count;
1782 	int ret;
1783 
1784 	ret = dquot_reserve_block(inode, *count);
1785 	if (ret)
1786 		return ret;
1787 
1788 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1789 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
1790 		release = *count;
1791 		goto release_quota;
1792 	}
1793 
1794 	/*
1795 	 * let's increase this in prior to actual block count change in order
1796 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1797 	 */
1798 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1799 
1800 	spin_lock(&sbi->stat_lock);
1801 	sbi->total_valid_block_count += (block_t)(*count);
1802 	avail_user_block_count = sbi->user_block_count -
1803 					sbi->current_reserved_blocks;
1804 
1805 	if (!__allow_reserved_blocks(sbi, inode, true))
1806 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1807 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1808 		if (avail_user_block_count > sbi->unusable_block_count)
1809 			avail_user_block_count -= sbi->unusable_block_count;
1810 		else
1811 			avail_user_block_count = 0;
1812 	}
1813 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1814 		diff = sbi->total_valid_block_count - avail_user_block_count;
1815 		if (diff > *count)
1816 			diff = *count;
1817 		*count -= diff;
1818 		release = diff;
1819 		sbi->total_valid_block_count -= diff;
1820 		if (!*count) {
1821 			spin_unlock(&sbi->stat_lock);
1822 			goto enospc;
1823 		}
1824 	}
1825 	spin_unlock(&sbi->stat_lock);
1826 
1827 	if (unlikely(release)) {
1828 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1829 		dquot_release_reservation_block(inode, release);
1830 	}
1831 	f2fs_i_blocks_write(inode, *count, true, true);
1832 	return 0;
1833 
1834 enospc:
1835 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1836 release_quota:
1837 	dquot_release_reservation_block(inode, release);
1838 	return -ENOSPC;
1839 }
1840 
1841 __printf(2, 3)
1842 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
1843 
1844 #define f2fs_err(sbi, fmt, ...)						\
1845 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
1846 #define f2fs_warn(sbi, fmt, ...)					\
1847 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
1848 #define f2fs_notice(sbi, fmt, ...)					\
1849 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
1850 #define f2fs_info(sbi, fmt, ...)					\
1851 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
1852 #define f2fs_debug(sbi, fmt, ...)					\
1853 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
1854 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)1855 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1856 						struct inode *inode,
1857 						block_t count)
1858 {
1859 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1860 
1861 	spin_lock(&sbi->stat_lock);
1862 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1863 	sbi->total_valid_block_count -= (block_t)count;
1864 	if (sbi->reserved_blocks &&
1865 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1866 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1867 					sbi->current_reserved_blocks + count);
1868 	spin_unlock(&sbi->stat_lock);
1869 	if (unlikely(inode->i_blocks < sectors)) {
1870 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
1871 			  inode->i_ino,
1872 			  (unsigned long long)inode->i_blocks,
1873 			  (unsigned long long)sectors);
1874 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1875 		return;
1876 	}
1877 	f2fs_i_blocks_write(inode, count, false, true);
1878 }
1879 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)1880 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1881 {
1882 	atomic_inc(&sbi->nr_pages[count_type]);
1883 
1884 	if (count_type == F2FS_DIRTY_DENTS ||
1885 			count_type == F2FS_DIRTY_NODES ||
1886 			count_type == F2FS_DIRTY_META ||
1887 			count_type == F2FS_DIRTY_QDATA ||
1888 			count_type == F2FS_DIRTY_IMETA)
1889 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1890 }
1891 
inode_inc_dirty_pages(struct inode * inode)1892 static inline void inode_inc_dirty_pages(struct inode *inode)
1893 {
1894 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1895 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1896 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1897 	if (IS_NOQUOTA(inode))
1898 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1899 }
1900 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)1901 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1902 {
1903 	atomic_dec(&sbi->nr_pages[count_type]);
1904 }
1905 
inode_dec_dirty_pages(struct inode * inode)1906 static inline void inode_dec_dirty_pages(struct inode *inode)
1907 {
1908 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1909 			!S_ISLNK(inode->i_mode))
1910 		return;
1911 
1912 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1913 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1914 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1915 	if (IS_NOQUOTA(inode))
1916 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1917 }
1918 
get_pages(struct f2fs_sb_info * sbi,int count_type)1919 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1920 {
1921 	return atomic_read(&sbi->nr_pages[count_type]);
1922 }
1923 
get_dirty_pages(struct inode * inode)1924 static inline int get_dirty_pages(struct inode *inode)
1925 {
1926 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1927 }
1928 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)1929 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1930 {
1931 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1932 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1933 						sbi->log_blocks_per_seg;
1934 
1935 	return segs / sbi->segs_per_sec;
1936 }
1937 
valid_user_blocks(struct f2fs_sb_info * sbi)1938 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1939 {
1940 	return sbi->total_valid_block_count;
1941 }
1942 
discard_blocks(struct f2fs_sb_info * sbi)1943 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1944 {
1945 	return sbi->discard_blks;
1946 }
1947 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)1948 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1949 {
1950 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1951 
1952 	/* return NAT or SIT bitmap */
1953 	if (flag == NAT_BITMAP)
1954 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1955 	else if (flag == SIT_BITMAP)
1956 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1957 
1958 	return 0;
1959 }
1960 
__cp_payload(struct f2fs_sb_info * sbi)1961 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1962 {
1963 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1964 }
1965 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)1966 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1967 {
1968 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1969 	int offset;
1970 
1971 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1972 		offset = (flag == SIT_BITMAP) ?
1973 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1974 		/*
1975 		 * if large_nat_bitmap feature is enabled, leave checksum
1976 		 * protection for all nat/sit bitmaps.
1977 		 */
1978 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
1979 	}
1980 
1981 	if (__cp_payload(sbi) > 0) {
1982 		if (flag == NAT_BITMAP)
1983 			return &ckpt->sit_nat_version_bitmap;
1984 		else
1985 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1986 	} else {
1987 		offset = (flag == NAT_BITMAP) ?
1988 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1989 		return &ckpt->sit_nat_version_bitmap + offset;
1990 	}
1991 }
1992 
__start_cp_addr(struct f2fs_sb_info * sbi)1993 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1994 {
1995 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1996 
1997 	if (sbi->cur_cp_pack == 2)
1998 		start_addr += sbi->blocks_per_seg;
1999 	return start_addr;
2000 }
2001 
__start_cp_next_addr(struct f2fs_sb_info * sbi)2002 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2003 {
2004 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2005 
2006 	if (sbi->cur_cp_pack == 1)
2007 		start_addr += sbi->blocks_per_seg;
2008 	return start_addr;
2009 }
2010 
__set_cp_next_pack(struct f2fs_sb_info * sbi)2011 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2012 {
2013 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2014 }
2015 
__start_sum_addr(struct f2fs_sb_info * sbi)2016 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2017 {
2018 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2019 }
2020 
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2021 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2022 					struct inode *inode, bool is_inode)
2023 {
2024 	block_t	valid_block_count;
2025 	unsigned int valid_node_count, user_block_count;
2026 	int err;
2027 
2028 	if (is_inode) {
2029 		if (inode) {
2030 			err = dquot_alloc_inode(inode);
2031 			if (err)
2032 				return err;
2033 		}
2034 	} else {
2035 		err = dquot_reserve_block(inode, 1);
2036 		if (err)
2037 			return err;
2038 	}
2039 
2040 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2041 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2042 		goto enospc;
2043 	}
2044 
2045 	spin_lock(&sbi->stat_lock);
2046 
2047 	valid_block_count = sbi->total_valid_block_count +
2048 					sbi->current_reserved_blocks + 1;
2049 
2050 	if (!__allow_reserved_blocks(sbi, inode, false))
2051 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2052 	user_block_count = sbi->user_block_count;
2053 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2054 		user_block_count -= sbi->unusable_block_count;
2055 
2056 	if (unlikely(valid_block_count > user_block_count)) {
2057 		spin_unlock(&sbi->stat_lock);
2058 		goto enospc;
2059 	}
2060 
2061 	valid_node_count = sbi->total_valid_node_count + 1;
2062 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2063 		spin_unlock(&sbi->stat_lock);
2064 		goto enospc;
2065 	}
2066 
2067 	sbi->total_valid_node_count++;
2068 	sbi->total_valid_block_count++;
2069 	spin_unlock(&sbi->stat_lock);
2070 
2071 	if (inode) {
2072 		if (is_inode)
2073 			f2fs_mark_inode_dirty_sync(inode, true);
2074 		else
2075 			f2fs_i_blocks_write(inode, 1, true, true);
2076 	}
2077 
2078 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2079 	return 0;
2080 
2081 enospc:
2082 	if (is_inode) {
2083 		if (inode)
2084 			dquot_free_inode(inode);
2085 	} else {
2086 		dquot_release_reservation_block(inode, 1);
2087 	}
2088 	return -ENOSPC;
2089 }
2090 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2091 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2092 					struct inode *inode, bool is_inode)
2093 {
2094 	spin_lock(&sbi->stat_lock);
2095 
2096 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2097 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2098 
2099 	sbi->total_valid_node_count--;
2100 	sbi->total_valid_block_count--;
2101 	if (sbi->reserved_blocks &&
2102 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2103 		sbi->current_reserved_blocks++;
2104 
2105 	spin_unlock(&sbi->stat_lock);
2106 
2107 	if (is_inode) {
2108 		dquot_free_inode(inode);
2109 	} else {
2110 		if (unlikely(inode->i_blocks == 0)) {
2111 			f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
2112 				  inode->i_ino,
2113 				  (unsigned long long)inode->i_blocks);
2114 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2115 			return;
2116 		}
2117 		f2fs_i_blocks_write(inode, 1, false, true);
2118 	}
2119 }
2120 
valid_node_count(struct f2fs_sb_info * sbi)2121 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2122 {
2123 	return sbi->total_valid_node_count;
2124 }
2125 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2126 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2127 {
2128 	percpu_counter_inc(&sbi->total_valid_inode_count);
2129 }
2130 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2131 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2132 {
2133 	percpu_counter_dec(&sbi->total_valid_inode_count);
2134 }
2135 
valid_inode_count(struct f2fs_sb_info * sbi)2136 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2137 {
2138 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2139 }
2140 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2141 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2142 						pgoff_t index, bool for_write)
2143 {
2144 	struct page *page;
2145 
2146 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2147 		if (!for_write)
2148 			page = find_get_page_flags(mapping, index,
2149 							FGP_LOCK | FGP_ACCESSED);
2150 		else
2151 			page = find_lock_page(mapping, index);
2152 		if (page)
2153 			return page;
2154 
2155 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2156 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2157 							FAULT_PAGE_ALLOC);
2158 			return NULL;
2159 		}
2160 	}
2161 
2162 	if (!for_write)
2163 		return grab_cache_page(mapping, index);
2164 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2165 }
2166 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2167 static inline struct page *f2fs_pagecache_get_page(
2168 				struct address_space *mapping, pgoff_t index,
2169 				int fgp_flags, gfp_t gfp_mask)
2170 {
2171 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2172 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2173 		return NULL;
2174 	}
2175 
2176 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2177 }
2178 
f2fs_copy_page(struct page * src,struct page * dst)2179 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2180 {
2181 	char *src_kaddr = kmap(src);
2182 	char *dst_kaddr = kmap(dst);
2183 
2184 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2185 	kunmap(dst);
2186 	kunmap(src);
2187 }
2188 
f2fs_put_page(struct page * page,int unlock)2189 static inline void f2fs_put_page(struct page *page, int unlock)
2190 {
2191 	if (!page)
2192 		return;
2193 
2194 	if (unlock) {
2195 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2196 		unlock_page(page);
2197 	}
2198 	put_page(page);
2199 }
2200 
f2fs_put_dnode(struct dnode_of_data * dn)2201 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2202 {
2203 	if (dn->node_page)
2204 		f2fs_put_page(dn->node_page, 1);
2205 	if (dn->inode_page && dn->node_page != dn->inode_page)
2206 		f2fs_put_page(dn->inode_page, 0);
2207 	dn->node_page = NULL;
2208 	dn->inode_page = NULL;
2209 }
2210 
f2fs_kmem_cache_create(const char * name,size_t size)2211 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2212 					size_t size)
2213 {
2214 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2215 }
2216 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2217 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2218 						gfp_t flags)
2219 {
2220 	void *entry;
2221 
2222 	entry = kmem_cache_alloc(cachep, flags);
2223 	if (!entry)
2224 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2225 	return entry;
2226 }
2227 
f2fs_bio_alloc(struct f2fs_sb_info * sbi,int npages,bool no_fail)2228 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2229 						int npages, bool no_fail)
2230 {
2231 	struct bio *bio;
2232 
2233 	if (no_fail) {
2234 		/* No failure on bio allocation */
2235 		bio = bio_alloc(GFP_NOIO, npages);
2236 		if (!bio)
2237 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2238 		return bio;
2239 	}
2240 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2241 		f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
2242 		return NULL;
2243 	}
2244 
2245 	return bio_alloc(GFP_KERNEL, npages);
2246 }
2247 
is_idle(struct f2fs_sb_info * sbi,int type)2248 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2249 {
2250 	if (sbi->gc_mode == GC_URGENT)
2251 		return true;
2252 
2253 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2254 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2255 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2256 		get_pages(sbi, F2FS_DIO_READ) ||
2257 		get_pages(sbi, F2FS_DIO_WRITE))
2258 		return false;
2259 
2260 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2261 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2262 		return false;
2263 
2264 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2265 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2266 		return false;
2267 
2268 	return f2fs_time_over(sbi, type);
2269 }
2270 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2271 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2272 				unsigned long index, void *item)
2273 {
2274 	while (radix_tree_insert(root, index, item))
2275 		cond_resched();
2276 }
2277 
2278 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2279 
IS_INODE(struct page * page)2280 static inline bool IS_INODE(struct page *page)
2281 {
2282 	struct f2fs_node *p = F2FS_NODE(page);
2283 
2284 	return RAW_IS_INODE(p);
2285 }
2286 
offset_in_addr(struct f2fs_inode * i)2287 static inline int offset_in_addr(struct f2fs_inode *i)
2288 {
2289 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2290 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2291 }
2292 
blkaddr_in_node(struct f2fs_node * node)2293 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2294 {
2295 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2296 }
2297 
2298 static inline int f2fs_has_extra_attr(struct inode *inode);
datablock_addr(struct inode * inode,struct page * node_page,unsigned int offset)2299 static inline block_t datablock_addr(struct inode *inode,
2300 			struct page *node_page, unsigned int offset)
2301 {
2302 	struct f2fs_node *raw_node;
2303 	__le32 *addr_array;
2304 	int base = 0;
2305 	bool is_inode = IS_INODE(node_page);
2306 
2307 	raw_node = F2FS_NODE(node_page);
2308 
2309 	/* from GC path only */
2310 	if (is_inode) {
2311 		if (!inode)
2312 			base = offset_in_addr(&raw_node->i);
2313 		else if (f2fs_has_extra_attr(inode))
2314 			base = get_extra_isize(inode);
2315 	}
2316 
2317 	addr_array = blkaddr_in_node(raw_node);
2318 	return le32_to_cpu(addr_array[base + offset]);
2319 }
2320 
f2fs_test_bit(unsigned int nr,char * addr)2321 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2322 {
2323 	int mask;
2324 
2325 	addr += (nr >> 3);
2326 	mask = 1 << (7 - (nr & 0x07));
2327 	return mask & *addr;
2328 }
2329 
f2fs_set_bit(unsigned int nr,char * addr)2330 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2331 {
2332 	int mask;
2333 
2334 	addr += (nr >> 3);
2335 	mask = 1 << (7 - (nr & 0x07));
2336 	*addr |= mask;
2337 }
2338 
f2fs_clear_bit(unsigned int nr,char * addr)2339 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2340 {
2341 	int mask;
2342 
2343 	addr += (nr >> 3);
2344 	mask = 1 << (7 - (nr & 0x07));
2345 	*addr &= ~mask;
2346 }
2347 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2348 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2349 {
2350 	int mask;
2351 	int ret;
2352 
2353 	addr += (nr >> 3);
2354 	mask = 1 << (7 - (nr & 0x07));
2355 	ret = mask & *addr;
2356 	*addr |= mask;
2357 	return ret;
2358 }
2359 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2360 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2361 {
2362 	int mask;
2363 	int ret;
2364 
2365 	addr += (nr >> 3);
2366 	mask = 1 << (7 - (nr & 0x07));
2367 	ret = mask & *addr;
2368 	*addr &= ~mask;
2369 	return ret;
2370 }
2371 
f2fs_change_bit(unsigned int nr,char * addr)2372 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2373 {
2374 	int mask;
2375 
2376 	addr += (nr >> 3);
2377 	mask = 1 << (7 - (nr & 0x07));
2378 	*addr ^= mask;
2379 }
2380 
2381 /*
2382  * On-disk inode flags (f2fs_inode::i_flags)
2383  */
2384 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2385 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2386 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2387 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2388 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2389 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2390 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2391 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2392 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2393 
2394 /* Flags that should be inherited by new inodes from their parent. */
2395 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2396 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2397 			   F2FS_CASEFOLD_FL)
2398 
2399 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2400 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2401 				F2FS_CASEFOLD_FL))
2402 
2403 /* Flags that are appropriate for non-directories/regular files. */
2404 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2405 
f2fs_mask_flags(umode_t mode,__u32 flags)2406 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2407 {
2408 	if (S_ISDIR(mode))
2409 		return flags;
2410 	else if (S_ISREG(mode))
2411 		return flags & F2FS_REG_FLMASK;
2412 	else
2413 		return flags & F2FS_OTHER_FLMASK;
2414 }
2415 
2416 /* used for f2fs_inode_info->flags */
2417 enum {
2418 	FI_NEW_INODE,		/* indicate newly allocated inode */
2419 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2420 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2421 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2422 	FI_INC_LINK,		/* need to increment i_nlink */
2423 	FI_ACL_MODE,		/* indicate acl mode */
2424 	FI_NO_ALLOC,		/* should not allocate any blocks */
2425 	FI_FREE_NID,		/* free allocated nide */
2426 	FI_NO_EXTENT,		/* not to use the extent cache */
2427 	FI_INLINE_XATTR,	/* used for inline xattr */
2428 	FI_INLINE_DATA,		/* used for inline data*/
2429 	FI_INLINE_DENTRY,	/* used for inline dentry */
2430 	FI_APPEND_WRITE,	/* inode has appended data */
2431 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2432 	FI_NEED_IPU,		/* used for ipu per file */
2433 	FI_ATOMIC_FILE,		/* indicate atomic file */
2434 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2435 	FI_VOLATILE_FILE,	/* indicate volatile file */
2436 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2437 	FI_DROP_CACHE,		/* drop dirty page cache */
2438 	FI_DATA_EXIST,		/* indicate data exists */
2439 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2440 	FI_DO_DEFRAG,		/* indicate defragment is running */
2441 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2442 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2443 	FI_HOT_DATA,		/* indicate file is hot */
2444 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2445 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2446 	FI_PIN_FILE,		/* indicate file should not be gced */
2447 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2448 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
2449 };
2450 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2451 static inline void __mark_inode_dirty_flag(struct inode *inode,
2452 						int flag, bool set)
2453 {
2454 	switch (flag) {
2455 	case FI_INLINE_XATTR:
2456 	case FI_INLINE_DATA:
2457 	case FI_INLINE_DENTRY:
2458 	case FI_NEW_INODE:
2459 		if (set)
2460 			return;
2461 		/* fall through */
2462 	case FI_DATA_EXIST:
2463 	case FI_INLINE_DOTS:
2464 	case FI_PIN_FILE:
2465 		f2fs_mark_inode_dirty_sync(inode, true);
2466 	}
2467 }
2468 
set_inode_flag(struct inode * inode,int flag)2469 static inline void set_inode_flag(struct inode *inode, int flag)
2470 {
2471 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2472 		set_bit(flag, &F2FS_I(inode)->flags);
2473 	__mark_inode_dirty_flag(inode, flag, true);
2474 }
2475 
is_inode_flag_set(struct inode * inode,int flag)2476 static inline int is_inode_flag_set(struct inode *inode, int flag)
2477 {
2478 	return test_bit(flag, &F2FS_I(inode)->flags);
2479 }
2480 
clear_inode_flag(struct inode * inode,int flag)2481 static inline void clear_inode_flag(struct inode *inode, int flag)
2482 {
2483 	if (test_bit(flag, &F2FS_I(inode)->flags))
2484 		clear_bit(flag, &F2FS_I(inode)->flags);
2485 	__mark_inode_dirty_flag(inode, flag, false);
2486 }
2487 
f2fs_verity_in_progress(struct inode * inode)2488 static inline bool f2fs_verity_in_progress(struct inode *inode)
2489 {
2490 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2491 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2492 }
2493 
set_acl_inode(struct inode * inode,umode_t mode)2494 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2495 {
2496 	F2FS_I(inode)->i_acl_mode = mode;
2497 	set_inode_flag(inode, FI_ACL_MODE);
2498 	f2fs_mark_inode_dirty_sync(inode, false);
2499 }
2500 
f2fs_i_links_write(struct inode * inode,bool inc)2501 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2502 {
2503 	if (inc)
2504 		inc_nlink(inode);
2505 	else
2506 		drop_nlink(inode);
2507 	f2fs_mark_inode_dirty_sync(inode, true);
2508 }
2509 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2510 static inline void f2fs_i_blocks_write(struct inode *inode,
2511 					block_t diff, bool add, bool claim)
2512 {
2513 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2514 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2515 
2516 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2517 	if (add) {
2518 		if (claim)
2519 			dquot_claim_block(inode, diff);
2520 		else
2521 			dquot_alloc_block_nofail(inode, diff);
2522 	} else {
2523 		dquot_free_block(inode, diff);
2524 	}
2525 
2526 	f2fs_mark_inode_dirty_sync(inode, true);
2527 	if (clean || recover)
2528 		set_inode_flag(inode, FI_AUTO_RECOVER);
2529 }
2530 
f2fs_i_size_write(struct inode * inode,loff_t i_size)2531 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2532 {
2533 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2534 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2535 
2536 	if (i_size_read(inode) == i_size)
2537 		return;
2538 
2539 	i_size_write(inode, i_size);
2540 	f2fs_mark_inode_dirty_sync(inode, true);
2541 	if (clean || recover)
2542 		set_inode_flag(inode, FI_AUTO_RECOVER);
2543 }
2544 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2545 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2546 {
2547 	F2FS_I(inode)->i_current_depth = depth;
2548 	f2fs_mark_inode_dirty_sync(inode, true);
2549 }
2550 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2551 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2552 					unsigned int count)
2553 {
2554 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2555 	f2fs_mark_inode_dirty_sync(inode, true);
2556 }
2557 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2558 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2559 {
2560 	F2FS_I(inode)->i_xattr_nid = xnid;
2561 	f2fs_mark_inode_dirty_sync(inode, true);
2562 }
2563 
f2fs_i_pino_write(struct inode * inode,nid_t pino)2564 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2565 {
2566 	F2FS_I(inode)->i_pino = pino;
2567 	f2fs_mark_inode_dirty_sync(inode, true);
2568 }
2569 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2570 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2571 {
2572 	struct f2fs_inode_info *fi = F2FS_I(inode);
2573 
2574 	if (ri->i_inline & F2FS_INLINE_XATTR)
2575 		set_bit(FI_INLINE_XATTR, &fi->flags);
2576 	if (ri->i_inline & F2FS_INLINE_DATA)
2577 		set_bit(FI_INLINE_DATA, &fi->flags);
2578 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2579 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2580 	if (ri->i_inline & F2FS_DATA_EXIST)
2581 		set_bit(FI_DATA_EXIST, &fi->flags);
2582 	if (ri->i_inline & F2FS_INLINE_DOTS)
2583 		set_bit(FI_INLINE_DOTS, &fi->flags);
2584 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2585 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2586 	if (ri->i_inline & F2FS_PIN_FILE)
2587 		set_bit(FI_PIN_FILE, &fi->flags);
2588 }
2589 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2590 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2591 {
2592 	ri->i_inline = 0;
2593 
2594 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2595 		ri->i_inline |= F2FS_INLINE_XATTR;
2596 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2597 		ri->i_inline |= F2FS_INLINE_DATA;
2598 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2599 		ri->i_inline |= F2FS_INLINE_DENTRY;
2600 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2601 		ri->i_inline |= F2FS_DATA_EXIST;
2602 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2603 		ri->i_inline |= F2FS_INLINE_DOTS;
2604 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2605 		ri->i_inline |= F2FS_EXTRA_ATTR;
2606 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2607 		ri->i_inline |= F2FS_PIN_FILE;
2608 }
2609 
f2fs_has_extra_attr(struct inode * inode)2610 static inline int f2fs_has_extra_attr(struct inode *inode)
2611 {
2612 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2613 }
2614 
f2fs_has_inline_xattr(struct inode * inode)2615 static inline int f2fs_has_inline_xattr(struct inode *inode)
2616 {
2617 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2618 }
2619 
addrs_per_inode(struct inode * inode)2620 static inline unsigned int addrs_per_inode(struct inode *inode)
2621 {
2622 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2623 				get_inline_xattr_addrs(inode);
2624 	return ALIGN_DOWN(addrs, 1);
2625 }
2626 
addrs_per_block(struct inode * inode)2627 static inline unsigned int addrs_per_block(struct inode *inode)
2628 {
2629 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, 1);
2630 }
2631 
inline_xattr_addr(struct inode * inode,struct page * page)2632 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2633 {
2634 	struct f2fs_inode *ri = F2FS_INODE(page);
2635 
2636 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2637 					get_inline_xattr_addrs(inode)]);
2638 }
2639 
inline_xattr_size(struct inode * inode)2640 static inline int inline_xattr_size(struct inode *inode)
2641 {
2642 	if (f2fs_has_inline_xattr(inode))
2643 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2644 	return 0;
2645 }
2646 
f2fs_has_inline_data(struct inode * inode)2647 static inline int f2fs_has_inline_data(struct inode *inode)
2648 {
2649 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2650 }
2651 
f2fs_exist_data(struct inode * inode)2652 static inline int f2fs_exist_data(struct inode *inode)
2653 {
2654 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2655 }
2656 
f2fs_has_inline_dots(struct inode * inode)2657 static inline int f2fs_has_inline_dots(struct inode *inode)
2658 {
2659 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2660 }
2661 
f2fs_is_pinned_file(struct inode * inode)2662 static inline bool f2fs_is_pinned_file(struct inode *inode)
2663 {
2664 	return is_inode_flag_set(inode, FI_PIN_FILE);
2665 }
2666 
f2fs_is_atomic_file(struct inode * inode)2667 static inline bool f2fs_is_atomic_file(struct inode *inode)
2668 {
2669 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2670 }
2671 
f2fs_is_commit_atomic_write(struct inode * inode)2672 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2673 {
2674 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2675 }
2676 
f2fs_is_volatile_file(struct inode * inode)2677 static inline bool f2fs_is_volatile_file(struct inode *inode)
2678 {
2679 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2680 }
2681 
f2fs_is_first_block_written(struct inode * inode)2682 static inline bool f2fs_is_first_block_written(struct inode *inode)
2683 {
2684 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2685 }
2686 
f2fs_is_drop_cache(struct inode * inode)2687 static inline bool f2fs_is_drop_cache(struct inode *inode)
2688 {
2689 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2690 }
2691 
inline_data_addr(struct inode * inode,struct page * page)2692 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2693 {
2694 	struct f2fs_inode *ri = F2FS_INODE(page);
2695 	int extra_size = get_extra_isize(inode);
2696 
2697 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2698 }
2699 
f2fs_has_inline_dentry(struct inode * inode)2700 static inline int f2fs_has_inline_dentry(struct inode *inode)
2701 {
2702 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2703 }
2704 
is_file(struct inode * inode,int type)2705 static inline int is_file(struct inode *inode, int type)
2706 {
2707 	return F2FS_I(inode)->i_advise & type;
2708 }
2709 
set_file(struct inode * inode,int type)2710 static inline void set_file(struct inode *inode, int type)
2711 {
2712 	F2FS_I(inode)->i_advise |= type;
2713 	f2fs_mark_inode_dirty_sync(inode, true);
2714 }
2715 
clear_file(struct inode * inode,int type)2716 static inline void clear_file(struct inode *inode, int type)
2717 {
2718 	F2FS_I(inode)->i_advise &= ~type;
2719 	f2fs_mark_inode_dirty_sync(inode, true);
2720 }
2721 
f2fs_is_time_consistent(struct inode * inode)2722 static inline bool f2fs_is_time_consistent(struct inode *inode)
2723 {
2724 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2725 		return false;
2726 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2727 		return false;
2728 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2729 		return false;
2730 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2731 						&F2FS_I(inode)->i_crtime))
2732 		return false;
2733 	return true;
2734 }
2735 
f2fs_skip_inode_update(struct inode * inode,int dsync)2736 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2737 {
2738 	bool ret;
2739 
2740 	if (dsync) {
2741 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2742 
2743 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2744 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2745 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2746 		return ret;
2747 	}
2748 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2749 			file_keep_isize(inode) ||
2750 			i_size_read(inode) & ~PAGE_MASK)
2751 		return false;
2752 
2753 	if (!f2fs_is_time_consistent(inode))
2754 		return false;
2755 
2756 	down_read(&F2FS_I(inode)->i_sem);
2757 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2758 	up_read(&F2FS_I(inode)->i_sem);
2759 
2760 	return ret;
2761 }
2762 
f2fs_readonly(struct super_block * sb)2763 static inline bool f2fs_readonly(struct super_block *sb)
2764 {
2765 	return sb_rdonly(sb);
2766 }
2767 
f2fs_cp_error(struct f2fs_sb_info * sbi)2768 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2769 {
2770 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2771 }
2772 
is_dot_dotdot(const struct qstr * str)2773 static inline bool is_dot_dotdot(const struct qstr *str)
2774 {
2775 	if (str->len == 1 && str->name[0] == '.')
2776 		return true;
2777 
2778 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2779 		return true;
2780 
2781 	return false;
2782 }
2783 
f2fs_may_extent_tree(struct inode * inode)2784 static inline bool f2fs_may_extent_tree(struct inode *inode)
2785 {
2786 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2787 
2788 	if (!test_opt(sbi, EXTENT_CACHE) ||
2789 			is_inode_flag_set(inode, FI_NO_EXTENT))
2790 		return false;
2791 
2792 	/*
2793 	 * for recovered files during mount do not create extents
2794 	 * if shrinker is not registered.
2795 	 */
2796 	if (list_empty(&sbi->s_list))
2797 		return false;
2798 
2799 	return S_ISREG(inode->i_mode);
2800 }
2801 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2802 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2803 					size_t size, gfp_t flags)
2804 {
2805 	void *ret;
2806 
2807 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2808 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
2809 		return NULL;
2810 	}
2811 
2812 	ret = kmalloc(size, flags);
2813 	if (ret)
2814 		return ret;
2815 
2816 	return kvmalloc(size, flags);
2817 }
2818 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2819 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2820 					size_t size, gfp_t flags)
2821 {
2822 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2823 }
2824 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2825 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2826 					size_t size, gfp_t flags)
2827 {
2828 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2829 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
2830 		return NULL;
2831 	}
2832 
2833 	return kvmalloc(size, flags);
2834 }
2835 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2836 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2837 					size_t size, gfp_t flags)
2838 {
2839 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2840 }
2841 
get_extra_isize(struct inode * inode)2842 static inline int get_extra_isize(struct inode *inode)
2843 {
2844 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2845 }
2846 
get_inline_xattr_addrs(struct inode * inode)2847 static inline int get_inline_xattr_addrs(struct inode *inode)
2848 {
2849 	return F2FS_I(inode)->i_inline_xattr_size;
2850 }
2851 
2852 #define f2fs_get_inode_mode(i) \
2853 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2854 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2855 
2856 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2857 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2858 	offsetof(struct f2fs_inode, i_extra_isize))	\
2859 
2860 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2861 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2862 		((offsetof(typeof(*(f2fs_inode)), field) +	\
2863 		sizeof((f2fs_inode)->field))			\
2864 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
2865 
f2fs_reset_iostat(struct f2fs_sb_info * sbi)2866 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2867 {
2868 	int i;
2869 
2870 	spin_lock(&sbi->iostat_lock);
2871 	for (i = 0; i < NR_IO_TYPE; i++)
2872 		sbi->write_iostat[i] = 0;
2873 	spin_unlock(&sbi->iostat_lock);
2874 }
2875 
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)2876 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2877 			enum iostat_type type, unsigned long long io_bytes)
2878 {
2879 	if (!sbi->iostat_enable)
2880 		return;
2881 	spin_lock(&sbi->iostat_lock);
2882 	sbi->write_iostat[type] += io_bytes;
2883 
2884 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2885 		sbi->write_iostat[APP_BUFFERED_IO] =
2886 			sbi->write_iostat[APP_WRITE_IO] -
2887 			sbi->write_iostat[APP_DIRECT_IO];
2888 	spin_unlock(&sbi->iostat_lock);
2889 }
2890 
2891 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
2892 
2893 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
2894 
2895 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2896 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)2897 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2898 					block_t blkaddr, int type)
2899 {
2900 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2901 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
2902 			 blkaddr, type);
2903 		f2fs_bug_on(sbi, 1);
2904 	}
2905 }
2906 
__is_valid_data_blkaddr(block_t blkaddr)2907 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2908 {
2909 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2910 		return false;
2911 	return true;
2912 }
2913 
f2fs_set_page_private(struct page * page,unsigned long data)2914 static inline void f2fs_set_page_private(struct page *page,
2915 						unsigned long data)
2916 {
2917 	if (PagePrivate(page))
2918 		return;
2919 
2920 	get_page(page);
2921 	SetPagePrivate(page);
2922 	set_page_private(page, data);
2923 }
2924 
f2fs_clear_page_private(struct page * page)2925 static inline void f2fs_clear_page_private(struct page *page)
2926 {
2927 	if (!PagePrivate(page))
2928 		return;
2929 
2930 	set_page_private(page, 0);
2931 	ClearPagePrivate(page);
2932 	f2fs_put_page(page, 0);
2933 }
2934 
2935 /*
2936  * file.c
2937  */
2938 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2939 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2940 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2941 int f2fs_truncate(struct inode *inode);
2942 int f2fs_getattr(const struct path *path, struct kstat *stat,
2943 			u32 request_mask, unsigned int flags);
2944 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2945 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2946 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2947 int f2fs_precache_extents(struct inode *inode);
2948 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2949 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2950 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2951 int f2fs_pin_file_control(struct inode *inode, bool inc);
2952 
2953 /*
2954  * inode.c
2955  */
2956 void f2fs_set_inode_flags(struct inode *inode);
2957 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2958 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2959 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2960 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2961 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2962 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2963 void f2fs_update_inode_page(struct inode *inode);
2964 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2965 void f2fs_evict_inode(struct inode *inode);
2966 void f2fs_handle_failed_inode(struct inode *inode);
2967 
2968 /*
2969  * namei.c
2970  */
2971 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2972 							bool hot, bool set);
2973 struct dentry *f2fs_get_parent(struct dentry *child);
2974 
2975 extern int f2fs_ci_compare(const struct inode *parent,
2976 			   const struct qstr *name,
2977 			   const struct qstr *entry,
2978 			   bool quick);
2979 
2980 /*
2981  * dir.c
2982  */
2983 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2984 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2985 			f2fs_hash_t namehash, int *max_slots,
2986 			struct f2fs_dentry_ptr *d);
2987 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2988 			unsigned int start_pos, struct fscrypt_str *fstr);
2989 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2990 			struct f2fs_dentry_ptr *d);
2991 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2992 			const struct qstr *new_name,
2993 			const struct qstr *orig_name, struct page *dpage);
2994 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2995 			unsigned int current_depth);
2996 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2997 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2998 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2999 			struct fscrypt_name *fname, struct page **res_page);
3000 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3001 			const struct qstr *child, struct page **res_page);
3002 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3003 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3004 			struct page **page);
3005 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3006 			struct page *page, struct inode *inode);
3007 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3008 			const struct qstr *name, f2fs_hash_t name_hash,
3009 			unsigned int bit_pos);
3010 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
3011 			const struct qstr *orig_name,
3012 			struct inode *inode, nid_t ino, umode_t mode);
3013 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
3014 			struct inode *inode, nid_t ino, umode_t mode);
3015 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3016 			struct inode *inode, nid_t ino, umode_t mode);
3017 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3018 			struct inode *dir, struct inode *inode);
3019 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3020 bool f2fs_empty_dir(struct inode *dir);
3021 
f2fs_add_link(struct dentry * dentry,struct inode * inode)3022 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3023 {
3024 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3025 				inode, inode->i_ino, inode->i_mode);
3026 }
3027 
3028 /*
3029  * super.c
3030  */
3031 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3032 void f2fs_inode_synced(struct inode *inode);
3033 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3034 int f2fs_quota_sync(struct super_block *sb, int type);
3035 void f2fs_quota_off_umount(struct super_block *sb);
3036 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3037 int f2fs_sync_fs(struct super_block *sb, int sync);
3038 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3039 
3040 /*
3041  * hash.c
3042  */
3043 f2fs_hash_t f2fs_dentry_hash(const struct inode *dir,
3044 		const struct qstr *name_info, struct fscrypt_name *fname);
3045 
3046 /*
3047  * node.c
3048  */
3049 struct dnode_of_data;
3050 struct node_info;
3051 
3052 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3053 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3054 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3055 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3056 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3057 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3058 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3059 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3060 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3061 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3062 						struct node_info *ni);
3063 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3064 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3065 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3066 int f2fs_truncate_xattr_node(struct inode *inode);
3067 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3068 					unsigned int seq_id);
3069 int f2fs_remove_inode_page(struct inode *inode);
3070 struct page *f2fs_new_inode_page(struct inode *inode);
3071 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3072 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3073 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3074 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3075 int f2fs_move_node_page(struct page *node_page, int gc_type);
3076 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3077 			struct writeback_control *wbc, bool atomic,
3078 			unsigned int *seq_id);
3079 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3080 			struct writeback_control *wbc,
3081 			bool do_balance, enum iostat_type io_type);
3082 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3083 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3084 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3085 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3086 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3087 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3088 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3089 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3090 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3091 			unsigned int segno, struct f2fs_summary_block *sum);
3092 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3093 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3094 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3095 int __init f2fs_create_node_manager_caches(void);
3096 void f2fs_destroy_node_manager_caches(void);
3097 
3098 /*
3099  * segment.c
3100  */
3101 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3102 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3103 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3104 void f2fs_drop_inmem_pages(struct inode *inode);
3105 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3106 int f2fs_commit_inmem_pages(struct inode *inode);
3107 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3108 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3109 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3110 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3111 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3112 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3113 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3114 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3115 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3116 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3117 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3118 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3119 					struct cp_control *cpc);
3120 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3121 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3122 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3123 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3124 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3125 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3126 					unsigned int start, unsigned int end);
3127 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type);
3128 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3129 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3130 					struct cp_control *cpc);
3131 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3132 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3133 					block_t blk_addr);
3134 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3135 						enum iostat_type io_type);
3136 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3137 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3138 			struct f2fs_io_info *fio);
3139 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3140 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3141 			block_t old_blkaddr, block_t new_blkaddr,
3142 			bool recover_curseg, bool recover_newaddr);
3143 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3144 			block_t old_addr, block_t new_addr,
3145 			unsigned char version, bool recover_curseg,
3146 			bool recover_newaddr);
3147 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3148 			block_t old_blkaddr, block_t *new_blkaddr,
3149 			struct f2fs_summary *sum, int type,
3150 			struct f2fs_io_info *fio, bool add_list);
3151 void f2fs_wait_on_page_writeback(struct page *page,
3152 			enum page_type type, bool ordered, bool locked);
3153 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3154 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3155 								block_t len);
3156 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3157 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3158 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3159 			unsigned int val, int alloc);
3160 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3161 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3162 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3163 int __init f2fs_create_segment_manager_caches(void);
3164 void f2fs_destroy_segment_manager_caches(void);
3165 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3166 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3167 			enum page_type type, enum temp_type temp);
3168 
3169 /*
3170  * checkpoint.c
3171  */
3172 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3173 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3174 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3175 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3176 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3177 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3178 					block_t blkaddr, int type);
3179 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3180 			int type, bool sync);
3181 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3182 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3183 			long nr_to_write, enum iostat_type io_type);
3184 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3185 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3186 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3187 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3188 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3189 					unsigned int devidx, int type);
3190 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3191 					unsigned int devidx, int type);
3192 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3193 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3194 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3195 void f2fs_add_orphan_inode(struct inode *inode);
3196 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3197 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3198 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3199 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3200 void f2fs_remove_dirty_inode(struct inode *inode);
3201 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3202 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3203 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3204 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3205 int __init f2fs_create_checkpoint_caches(void);
3206 void f2fs_destroy_checkpoint_caches(void);
3207 
3208 /*
3209  * data.c
3210  */
3211 int f2fs_init_post_read_processing(void);
3212 void f2fs_destroy_post_read_processing(void);
3213 int f2fs_init_bio_entry_cache(void);
3214 void f2fs_destroy_bio_entry_cache(void);
3215 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3216 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3217 				struct inode *inode, struct page *page,
3218 				nid_t ino, enum page_type type);
3219 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3220 					struct bio **bio, struct page *page);
3221 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3222 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3223 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3224 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3225 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3226 			block_t blk_addr, struct bio *bio);
3227 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3228 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3229 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3230 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3231 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3232 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3233 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3234 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3235 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3236 			int op_flags, bool for_write);
3237 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3238 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3239 			bool for_write);
3240 struct page *f2fs_get_new_data_page(struct inode *inode,
3241 			struct page *ipage, pgoff_t index, bool new_i_size);
3242 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3243 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3244 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3245 			int create, int flag);
3246 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3247 			u64 start, u64 len);
3248 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3249 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3250 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3251 			unsigned int length);
3252 int f2fs_release_page(struct page *page, gfp_t wait);
3253 #ifdef CONFIG_MIGRATION
3254 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3255 			struct page *page, enum migrate_mode mode);
3256 #endif
3257 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3258 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3259 
3260 /*
3261  * gc.c
3262  */
3263 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3264 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3265 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3266 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3267 			unsigned int segno);
3268 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3269 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3270 
3271 /*
3272  * recovery.c
3273  */
3274 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3275 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3276 
3277 /*
3278  * debug.c
3279  */
3280 #ifdef CONFIG_F2FS_STAT_FS
3281 struct f2fs_stat_info {
3282 	struct list_head stat_list;
3283 	struct f2fs_sb_info *sbi;
3284 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3285 	int main_area_segs, main_area_sections, main_area_zones;
3286 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3287 	unsigned long long hit_total, total_ext;
3288 	int ext_tree, zombie_tree, ext_node;
3289 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3290 	int ndirty_data, ndirty_qdata;
3291 	int inmem_pages;
3292 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3293 	int nats, dirty_nats, sits, dirty_sits;
3294 	int free_nids, avail_nids, alloc_nids;
3295 	int total_count, utilization;
3296 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3297 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3298 	int nr_dio_read, nr_dio_write;
3299 	unsigned int io_skip_bggc, other_skip_bggc;
3300 	int nr_flushing, nr_flushed, flush_list_empty;
3301 	int nr_discarding, nr_discarded;
3302 	int nr_discard_cmd;
3303 	unsigned int undiscard_blks;
3304 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3305 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3306 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3307 	unsigned int bimodal, avg_vblocks;
3308 	int util_free, util_valid, util_invalid;
3309 	int rsvd_segs, overp_segs;
3310 	int dirty_count, node_pages, meta_pages;
3311 	int prefree_count, call_count, cp_count, bg_cp_count;
3312 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3313 	int bg_node_segs, bg_data_segs;
3314 	int tot_blks, data_blks, node_blks;
3315 	int bg_data_blks, bg_node_blks;
3316 	unsigned long long skipped_atomic_files[2];
3317 	int curseg[NR_CURSEG_TYPE];
3318 	int cursec[NR_CURSEG_TYPE];
3319 	int curzone[NR_CURSEG_TYPE];
3320 
3321 	unsigned int meta_count[META_MAX];
3322 	unsigned int segment_count[2];
3323 	unsigned int block_count[2];
3324 	unsigned int inplace_count;
3325 	unsigned long long base_mem, cache_mem, page_mem;
3326 };
3327 
F2FS_STAT(struct f2fs_sb_info * sbi)3328 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3329 {
3330 	return (struct f2fs_stat_info *)sbi->stat_info;
3331 }
3332 
3333 #define stat_inc_cp_count(si)		((si)->cp_count++)
3334 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3335 #define stat_inc_call_count(si)		((si)->call_count++)
3336 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3337 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3338 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3339 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3340 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3341 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3342 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3343 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3344 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3345 #define stat_inc_inline_xattr(inode)					\
3346 	do {								\
3347 		if (f2fs_has_inline_xattr(inode))			\
3348 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3349 	} while (0)
3350 #define stat_dec_inline_xattr(inode)					\
3351 	do {								\
3352 		if (f2fs_has_inline_xattr(inode))			\
3353 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3354 	} while (0)
3355 #define stat_inc_inline_inode(inode)					\
3356 	do {								\
3357 		if (f2fs_has_inline_data(inode))			\
3358 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3359 	} while (0)
3360 #define stat_dec_inline_inode(inode)					\
3361 	do {								\
3362 		if (f2fs_has_inline_data(inode))			\
3363 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3364 	} while (0)
3365 #define stat_inc_inline_dir(inode)					\
3366 	do {								\
3367 		if (f2fs_has_inline_dentry(inode))			\
3368 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3369 	} while (0)
3370 #define stat_dec_inline_dir(inode)					\
3371 	do {								\
3372 		if (f2fs_has_inline_dentry(inode))			\
3373 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3374 	} while (0)
3375 #define stat_inc_meta_count(sbi, blkaddr)				\
3376 	do {								\
3377 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3378 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3379 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3380 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3381 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3382 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3383 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3384 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3385 	} while (0)
3386 #define stat_inc_seg_type(sbi, curseg)					\
3387 		((sbi)->segment_count[(curseg)->alloc_type]++)
3388 #define stat_inc_block_count(sbi, curseg)				\
3389 		((sbi)->block_count[(curseg)->alloc_type]++)
3390 #define stat_inc_inplace_blocks(sbi)					\
3391 		(atomic_inc(&(sbi)->inplace_count))
3392 #define stat_inc_atomic_write(inode)					\
3393 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3394 #define stat_dec_atomic_write(inode)					\
3395 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3396 #define stat_update_max_atomic_write(inode)				\
3397 	do {								\
3398 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3399 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3400 		if (cur > max)						\
3401 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3402 	} while (0)
3403 #define stat_inc_volatile_write(inode)					\
3404 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3405 #define stat_dec_volatile_write(inode)					\
3406 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3407 #define stat_update_max_volatile_write(inode)				\
3408 	do {								\
3409 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3410 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3411 		if (cur > max)						\
3412 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3413 	} while (0)
3414 #define stat_inc_seg_count(sbi, type, gc_type)				\
3415 	do {								\
3416 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3417 		si->tot_segs++;						\
3418 		if ((type) == SUM_TYPE_DATA) {				\
3419 			si->data_segs++;				\
3420 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3421 		} else {						\
3422 			si->node_segs++;				\
3423 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3424 		}							\
3425 	} while (0)
3426 
3427 #define stat_inc_tot_blk_count(si, blks)				\
3428 	((si)->tot_blks += (blks))
3429 
3430 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3431 	do {								\
3432 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3433 		stat_inc_tot_blk_count(si, blks);			\
3434 		si->data_blks += (blks);				\
3435 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3436 	} while (0)
3437 
3438 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3439 	do {								\
3440 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3441 		stat_inc_tot_blk_count(si, blks);			\
3442 		si->node_blks += (blks);				\
3443 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3444 	} while (0)
3445 
3446 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3447 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3448 void __init f2fs_create_root_stats(void);
3449 void f2fs_destroy_root_stats(void);
3450 #else
3451 #define stat_inc_cp_count(si)				do { } while (0)
3452 #define stat_inc_bg_cp_count(si)			do { } while (0)
3453 #define stat_inc_call_count(si)				do { } while (0)
3454 #define stat_inc_bggc_count(si)				do { } while (0)
3455 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3456 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3457 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3458 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3459 #define stat_inc_total_hit(sb)				do { } while (0)
3460 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3461 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3462 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3463 #define stat_inc_inline_xattr(inode)			do { } while (0)
3464 #define stat_dec_inline_xattr(inode)			do { } while (0)
3465 #define stat_inc_inline_inode(inode)			do { } while (0)
3466 #define stat_dec_inline_inode(inode)			do { } while (0)
3467 #define stat_inc_inline_dir(inode)			do { } while (0)
3468 #define stat_dec_inline_dir(inode)			do { } while (0)
3469 #define stat_inc_atomic_write(inode)			do { } while (0)
3470 #define stat_dec_atomic_write(inode)			do { } while (0)
3471 #define stat_update_max_atomic_write(inode)		do { } while (0)
3472 #define stat_inc_volatile_write(inode)			do { } while (0)
3473 #define stat_dec_volatile_write(inode)			do { } while (0)
3474 #define stat_update_max_volatile_write(inode)		do { } while (0)
3475 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3476 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3477 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3478 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3479 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3480 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3481 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3482 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3483 
f2fs_build_stats(struct f2fs_sb_info * sbi)3484 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3485 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3486 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)3487 static inline void f2fs_destroy_root_stats(void) { }
3488 #endif
3489 
3490 extern const struct file_operations f2fs_dir_operations;
3491 #ifdef CONFIG_UNICODE
3492 extern const struct dentry_operations f2fs_dentry_ops;
3493 #endif
3494 extern const struct file_operations f2fs_file_operations;
3495 extern const struct inode_operations f2fs_file_inode_operations;
3496 extern const struct address_space_operations f2fs_dblock_aops;
3497 extern const struct address_space_operations f2fs_node_aops;
3498 extern const struct address_space_operations f2fs_meta_aops;
3499 extern const struct inode_operations f2fs_dir_inode_operations;
3500 extern const struct inode_operations f2fs_symlink_inode_operations;
3501 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3502 extern const struct inode_operations f2fs_special_inode_operations;
3503 extern struct kmem_cache *f2fs_inode_entry_slab;
3504 
3505 /*
3506  * inline.c
3507  */
3508 bool f2fs_may_inline_data(struct inode *inode);
3509 bool f2fs_may_inline_dentry(struct inode *inode);
3510 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3511 void f2fs_truncate_inline_inode(struct inode *inode,
3512 						struct page *ipage, u64 from);
3513 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3514 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3515 int f2fs_convert_inline_inode(struct inode *inode);
3516 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3517 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3518 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3519 			struct fscrypt_name *fname, struct page **res_page);
3520 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3521 			struct page *ipage);
3522 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3523 			const struct qstr *orig_name,
3524 			struct inode *inode, nid_t ino, umode_t mode);
3525 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3526 				struct page *page, struct inode *dir,
3527 				struct inode *inode);
3528 bool f2fs_empty_inline_dir(struct inode *dir);
3529 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3530 			struct fscrypt_str *fstr);
3531 int f2fs_inline_data_fiemap(struct inode *inode,
3532 			struct fiemap_extent_info *fieinfo,
3533 			__u64 start, __u64 len);
3534 
3535 /*
3536  * shrinker.c
3537  */
3538 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3539 			struct shrink_control *sc);
3540 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3541 			struct shrink_control *sc);
3542 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3543 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3544 
3545 /*
3546  * extent_cache.c
3547  */
3548 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3549 				struct rb_entry *cached_re, unsigned int ofs);
3550 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3551 				struct rb_root_cached *root,
3552 				struct rb_node **parent,
3553 				unsigned int ofs, bool *leftmost);
3554 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3555 		struct rb_entry *cached_re, unsigned int ofs,
3556 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3557 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3558 		bool force, bool *leftmost);
3559 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3560 						struct rb_root_cached *root);
3561 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3562 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3563 void f2fs_drop_extent_tree(struct inode *inode);
3564 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3565 void f2fs_destroy_extent_tree(struct inode *inode);
3566 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3567 			struct extent_info *ei);
3568 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3569 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3570 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3571 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3572 int __init f2fs_create_extent_cache(void);
3573 void f2fs_destroy_extent_cache(void);
3574 
3575 /*
3576  * sysfs.c
3577  */
3578 int __init f2fs_init_sysfs(void);
3579 void f2fs_exit_sysfs(void);
3580 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3581 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3582 
3583 /* verity.c */
3584 extern const struct fsverity_operations f2fs_verityops;
3585 
3586 /*
3587  * crypto support
3588  */
f2fs_encrypted_file(struct inode * inode)3589 static inline bool f2fs_encrypted_file(struct inode *inode)
3590 {
3591 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3592 }
3593 
f2fs_set_encrypted_inode(struct inode * inode)3594 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3595 {
3596 #ifdef CONFIG_FS_ENCRYPTION
3597 	file_set_encrypt(inode);
3598 	f2fs_set_inode_flags(inode);
3599 #endif
3600 }
3601 
3602 /*
3603  * Returns true if the reads of the inode's data need to undergo some
3604  * postprocessing step, like decryption or authenticity verification.
3605  */
f2fs_post_read_required(struct inode * inode)3606 static inline bool f2fs_post_read_required(struct inode *inode)
3607 {
3608 	return f2fs_encrypted_file(inode) || fsverity_active(inode);
3609 }
3610 
3611 #define F2FS_FEATURE_FUNCS(name, flagname) \
3612 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3613 { \
3614 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3615 }
3616 
3617 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3618 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3619 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3620 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3621 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3622 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3623 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3624 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3625 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3626 F2FS_FEATURE_FUNCS(verity, VERITY);
3627 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3628 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3629 
3630 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)3631 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3632 				    block_t blkaddr)
3633 {
3634 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3635 
3636 	return test_bit(zno, FDEV(devi).blkz_seq);
3637 }
3638 #endif
3639 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)3640 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3641 {
3642 	return f2fs_sb_has_blkzoned(sbi);
3643 }
3644 
f2fs_bdev_support_discard(struct block_device * bdev)3645 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3646 {
3647 	return blk_queue_discard(bdev_get_queue(bdev)) ||
3648 	       bdev_is_zoned(bdev);
3649 }
3650 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)3651 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3652 {
3653 	int i;
3654 
3655 	if (!f2fs_is_multi_device(sbi))
3656 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3657 
3658 	for (i = 0; i < sbi->s_ndevs; i++)
3659 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
3660 			return true;
3661 	return false;
3662 }
3663 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)3664 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3665 {
3666 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3667 					f2fs_hw_should_discard(sbi);
3668 }
3669 
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)3670 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
3671 {
3672 	int i;
3673 
3674 	if (!f2fs_is_multi_device(sbi))
3675 		return bdev_read_only(sbi->sb->s_bdev);
3676 
3677 	for (i = 0; i < sbi->s_ndevs; i++)
3678 		if (bdev_read_only(FDEV(i).bdev))
3679 			return true;
3680 	return false;
3681 }
3682 
3683 
set_opt_mode(struct f2fs_sb_info * sbi,unsigned int mt)3684 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3685 {
3686 	clear_opt(sbi, ADAPTIVE);
3687 	clear_opt(sbi, LFS);
3688 
3689 	switch (mt) {
3690 	case F2FS_MOUNT_ADAPTIVE:
3691 		set_opt(sbi, ADAPTIVE);
3692 		break;
3693 	case F2FS_MOUNT_LFS:
3694 		set_opt(sbi, LFS);
3695 		break;
3696 	}
3697 }
3698 
f2fs_may_encrypt(struct inode * inode)3699 static inline bool f2fs_may_encrypt(struct inode *inode)
3700 {
3701 #ifdef CONFIG_FS_ENCRYPTION
3702 	umode_t mode = inode->i_mode;
3703 
3704 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3705 #else
3706 	return false;
3707 #endif
3708 }
3709 
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)3710 static inline int block_unaligned_IO(struct inode *inode,
3711 				struct kiocb *iocb, struct iov_iter *iter)
3712 {
3713 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3714 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3715 	loff_t offset = iocb->ki_pos;
3716 	unsigned long align = offset | iov_iter_alignment(iter);
3717 
3718 	return align & blocksize_mask;
3719 }
3720 
allow_outplace_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)3721 static inline int allow_outplace_dio(struct inode *inode,
3722 				struct kiocb *iocb, struct iov_iter *iter)
3723 {
3724 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3725 	int rw = iov_iter_rw(iter);
3726 
3727 	return (test_opt(sbi, LFS) && (rw == WRITE) &&
3728 				!block_unaligned_IO(inode, iocb, iter));
3729 }
3730 
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)3731 static inline bool f2fs_force_buffered_io(struct inode *inode,
3732 				struct kiocb *iocb, struct iov_iter *iter)
3733 {
3734 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3735 	int rw = iov_iter_rw(iter);
3736 
3737 	if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && f2fs_encrypted_file(inode)) {
3738 		if (!fscrypt_inode_uses_inline_crypto(inode) ||
3739 		    !IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter),
3740 				F2FS_BLKSIZE))
3741 			return true;
3742 	}
3743 	if (fsverity_active(inode))
3744 		return true;
3745 	if (f2fs_is_multi_device(sbi))
3746 		return true;
3747 	/*
3748 	 * for blkzoned device, fallback direct IO to buffered IO, so
3749 	 * all IOs can be serialized by log-structured write.
3750 	 */
3751 	if (f2fs_sb_has_blkzoned(sbi))
3752 		return true;
3753 	if (test_opt(sbi, LFS) && (rw == WRITE)) {
3754 		if (block_unaligned_IO(inode, iocb, iter))
3755 			return true;
3756 		if (F2FS_IO_ALIGNED(sbi))
3757 			return true;
3758 	}
3759 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
3760 					!IS_SWAPFILE(inode))
3761 		return true;
3762 
3763 	return false;
3764 }
3765 
3766 #ifdef CONFIG_F2FS_FAULT_INJECTION
3767 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3768 							unsigned int type);
3769 #else
3770 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
3771 #endif
3772 
is_journalled_quota(struct f2fs_sb_info * sbi)3773 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3774 {
3775 #ifdef CONFIG_QUOTA
3776 	if (f2fs_sb_has_quota_ino(sbi))
3777 		return true;
3778 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3779 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3780 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3781 		return true;
3782 #endif
3783 	return false;
3784 }
3785 
3786 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
3787 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
3788 
3789 #endif /* _LINUX_F2FS_H */
3790