1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26
27 #include <linux/fscrypt.h>
28 #include <linux/fsverity.h>
29
30 #ifdef CONFIG_F2FS_CHECK_FS
31 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
32 #else
33 #define f2fs_bug_on(sbi, condition) \
34 do { \
35 if (unlikely(condition)) { \
36 WARN_ON(1); \
37 set_sbi_flag(sbi, SBI_NEED_FSCK); \
38 } \
39 } while (0)
40 #endif
41
42 enum {
43 FAULT_KMALLOC,
44 FAULT_KVMALLOC,
45 FAULT_PAGE_ALLOC,
46 FAULT_PAGE_GET,
47 FAULT_ALLOC_BIO,
48 FAULT_ALLOC_NID,
49 FAULT_ORPHAN,
50 FAULT_BLOCK,
51 FAULT_DIR_DEPTH,
52 FAULT_EVICT_INODE,
53 FAULT_TRUNCATE,
54 FAULT_READ_IO,
55 FAULT_CHECKPOINT,
56 FAULT_DISCARD,
57 FAULT_WRITE_IO,
58 FAULT_MAX,
59 };
60
61 #ifdef CONFIG_F2FS_FAULT_INJECTION
62 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
63
64 struct f2fs_fault_info {
65 atomic_t inject_ops;
66 unsigned int inject_rate;
67 unsigned int inject_type;
68 };
69
70 extern const char *f2fs_fault_name[FAULT_MAX];
71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
72 #endif
73
74 /*
75 * For mount options
76 */
77 #define F2FS_MOUNT_BG_GC 0x00000001
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
79 #define F2FS_MOUNT_DISCARD 0x00000004
80 #define F2FS_MOUNT_NOHEAP 0x00000008
81 #define F2FS_MOUNT_XATTR_USER 0x00000010
82 #define F2FS_MOUNT_POSIX_ACL 0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
85 #define F2FS_MOUNT_INLINE_DATA 0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
88 #define F2FS_MOUNT_NOBARRIER 0x00000800
89 #define F2FS_MOUNT_FASTBOOT 0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
91 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
92 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
93 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
94 #define F2FS_MOUNT_ADAPTIVE 0x00020000
95 #define F2FS_MOUNT_LFS 0x00040000
96 #define F2FS_MOUNT_USRQUOTA 0x00080000
97 #define F2FS_MOUNT_GRPQUOTA 0x00100000
98 #define F2FS_MOUNT_PRJQUOTA 0x00200000
99 #define F2FS_MOUNT_QUOTA 0x00400000
100 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
101 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
102 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
103
104 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
105 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108
109 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
110 typecheck(unsigned long long, b) && \
111 ((long long)((a) - (b)) > 0))
112
113 typedef u32 block_t; /*
114 * should not change u32, since it is the on-disk block
115 * address format, __le32.
116 */
117 typedef u32 nid_t;
118
119 struct f2fs_mount_info {
120 unsigned int opt;
121 int write_io_size_bits; /* Write IO size bits */
122 block_t root_reserved_blocks; /* root reserved blocks */
123 kuid_t s_resuid; /* reserved blocks for uid */
124 kgid_t s_resgid; /* reserved blocks for gid */
125 int active_logs; /* # of active logs */
126 int inline_xattr_size; /* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 struct f2fs_fault_info fault_info; /* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 /* Names of quota files with journalled quota */
132 char *s_qf_names[MAXQUOTAS];
133 int s_jquota_fmt; /* Format of quota to use */
134 #endif
135 /* For which write hints are passed down to block layer */
136 int whint_mode;
137 int alloc_mode; /* segment allocation policy */
138 int fsync_mode; /* fsync policy */
139 bool test_dummy_encryption; /* test dummy encryption */
140 #ifdef CONFIG_FS_ENCRYPTION
141 bool inlinecrypt; /* inline encryption enabled */
142 #endif
143 block_t unusable_cap; /* Amount of space allowed to be
144 * unusable when disabling checkpoint
145 */
146 };
147
148 #define F2FS_FEATURE_ENCRYPT 0x0001
149 #define F2FS_FEATURE_BLKZONED 0x0002
150 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
151 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
152 #define F2FS_FEATURE_PRJQUOTA 0x0010
153 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
154 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
155 #define F2FS_FEATURE_QUOTA_INO 0x0080
156 #define F2FS_FEATURE_INODE_CRTIME 0x0100
157 #define F2FS_FEATURE_LOST_FOUND 0x0200
158 #define F2FS_FEATURE_VERITY 0x0400
159 #define F2FS_FEATURE_SB_CHKSUM 0x0800
160 #define F2FS_FEATURE_CASEFOLD 0x1000
161
162 #define __F2FS_HAS_FEATURE(raw_super, mask) \
163 ((raw_super->feature & cpu_to_le32(mask)) != 0)
164 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
165 #define F2FS_SET_FEATURE(sbi, mask) \
166 (sbi->raw_super->feature |= cpu_to_le32(mask))
167 #define F2FS_CLEAR_FEATURE(sbi, mask) \
168 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
169
170 /*
171 * Default values for user and/or group using reserved blocks
172 */
173 #define F2FS_DEF_RESUID 0
174 #define F2FS_DEF_RESGID 0
175
176 /*
177 * For checkpoint manager
178 */
179 enum {
180 NAT_BITMAP,
181 SIT_BITMAP
182 };
183
184 #define CP_UMOUNT 0x00000001
185 #define CP_FASTBOOT 0x00000002
186 #define CP_SYNC 0x00000004
187 #define CP_RECOVERY 0x00000008
188 #define CP_DISCARD 0x00000010
189 #define CP_TRIMMED 0x00000020
190 #define CP_PAUSE 0x00000040
191
192 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
193 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
194 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
195 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
196 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
197 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
198 #define DEF_CP_INTERVAL 60 /* 60 secs */
199 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
200 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
201 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
202 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
203
204 struct cp_control {
205 int reason;
206 __u64 trim_start;
207 __u64 trim_end;
208 __u64 trim_minlen;
209 };
210
211 /*
212 * indicate meta/data type
213 */
214 enum {
215 META_CP,
216 META_NAT,
217 META_SIT,
218 META_SSA,
219 META_MAX,
220 META_POR,
221 DATA_GENERIC, /* check range only */
222 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
223 DATA_GENERIC_ENHANCE_READ, /*
224 * strong check on range and segment
225 * bitmap but no warning due to race
226 * condition of read on truncated area
227 * by extent_cache
228 */
229 META_GENERIC,
230 };
231
232 /* for the list of ino */
233 enum {
234 ORPHAN_INO, /* for orphan ino list */
235 APPEND_INO, /* for append ino list */
236 UPDATE_INO, /* for update ino list */
237 TRANS_DIR_INO, /* for trasactions dir ino list */
238 FLUSH_INO, /* for multiple device flushing */
239 MAX_INO_ENTRY, /* max. list */
240 };
241
242 struct ino_entry {
243 struct list_head list; /* list head */
244 nid_t ino; /* inode number */
245 unsigned int dirty_device; /* dirty device bitmap */
246 };
247
248 /* for the list of inodes to be GCed */
249 struct inode_entry {
250 struct list_head list; /* list head */
251 struct inode *inode; /* vfs inode pointer */
252 };
253
254 struct fsync_node_entry {
255 struct list_head list; /* list head */
256 struct page *page; /* warm node page pointer */
257 unsigned int seq_id; /* sequence id */
258 };
259
260 /* for the bitmap indicate blocks to be discarded */
261 struct discard_entry {
262 struct list_head list; /* list head */
263 block_t start_blkaddr; /* start blockaddr of current segment */
264 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
265 };
266
267 /* default discard granularity of inner discard thread, unit: block count */
268 #define DEFAULT_DISCARD_GRANULARITY 16
269
270 /* max discard pend list number */
271 #define MAX_PLIST_NUM 512
272 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
273 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
274
275 enum {
276 D_PREP, /* initial */
277 D_PARTIAL, /* partially submitted */
278 D_SUBMIT, /* all submitted */
279 D_DONE, /* finished */
280 };
281
282 struct discard_info {
283 block_t lstart; /* logical start address */
284 block_t len; /* length */
285 block_t start; /* actual start address in dev */
286 };
287
288 struct discard_cmd {
289 struct rb_node rb_node; /* rb node located in rb-tree */
290 union {
291 struct {
292 block_t lstart; /* logical start address */
293 block_t len; /* length */
294 block_t start; /* actual start address in dev */
295 };
296 struct discard_info di; /* discard info */
297
298 };
299 struct list_head list; /* command list */
300 struct completion wait; /* compleation */
301 struct block_device *bdev; /* bdev */
302 unsigned short ref; /* reference count */
303 unsigned char state; /* state */
304 unsigned char queued; /* queued discard */
305 int error; /* bio error */
306 spinlock_t lock; /* for state/bio_ref updating */
307 unsigned short bio_ref; /* bio reference count */
308 };
309
310 enum {
311 DPOLICY_BG,
312 DPOLICY_FORCE,
313 DPOLICY_FSTRIM,
314 DPOLICY_UMOUNT,
315 MAX_DPOLICY,
316 };
317
318 struct discard_policy {
319 int type; /* type of discard */
320 unsigned int min_interval; /* used for candidates exist */
321 unsigned int mid_interval; /* used for device busy */
322 unsigned int max_interval; /* used for candidates not exist */
323 unsigned int max_requests; /* # of discards issued per round */
324 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
325 bool io_aware; /* issue discard in idle time */
326 bool sync; /* submit discard with REQ_SYNC flag */
327 bool ordered; /* issue discard by lba order */
328 unsigned int granularity; /* discard granularity */
329 int timeout; /* discard timeout for put_super */
330 };
331
332 struct discard_cmd_control {
333 struct task_struct *f2fs_issue_discard; /* discard thread */
334 struct list_head entry_list; /* 4KB discard entry list */
335 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
336 struct list_head wait_list; /* store on-flushing entries */
337 struct list_head fstrim_list; /* in-flight discard from fstrim */
338 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
339 unsigned int discard_wake; /* to wake up discard thread */
340 struct mutex cmd_lock;
341 unsigned int nr_discards; /* # of discards in the list */
342 unsigned int max_discards; /* max. discards to be issued */
343 unsigned int discard_granularity; /* discard granularity */
344 unsigned int undiscard_blks; /* # of undiscard blocks */
345 unsigned int next_pos; /* next discard position */
346 atomic_t issued_discard; /* # of issued discard */
347 atomic_t queued_discard; /* # of queued discard */
348 atomic_t discard_cmd_cnt; /* # of cached cmd count */
349 struct rb_root_cached root; /* root of discard rb-tree */
350 bool rbtree_check; /* config for consistence check */
351 };
352
353 /* for the list of fsync inodes, used only during recovery */
354 struct fsync_inode_entry {
355 struct list_head list; /* list head */
356 struct inode *inode; /* vfs inode pointer */
357 block_t blkaddr; /* block address locating the last fsync */
358 block_t last_dentry; /* block address locating the last dentry */
359 };
360
361 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
362 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
363
364 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
365 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
366 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
367 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
368
369 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
370 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
371
update_nats_in_cursum(struct f2fs_journal * journal,int i)372 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
373 {
374 int before = nats_in_cursum(journal);
375
376 journal->n_nats = cpu_to_le16(before + i);
377 return before;
378 }
379
update_sits_in_cursum(struct f2fs_journal * journal,int i)380 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
381 {
382 int before = sits_in_cursum(journal);
383
384 journal->n_sits = cpu_to_le16(before + i);
385 return before;
386 }
387
__has_cursum_space(struct f2fs_journal * journal,int size,int type)388 static inline bool __has_cursum_space(struct f2fs_journal *journal,
389 int size, int type)
390 {
391 if (type == NAT_JOURNAL)
392 return size <= MAX_NAT_JENTRIES(journal);
393 return size <= MAX_SIT_JENTRIES(journal);
394 }
395
396 /*
397 * ioctl commands
398 */
399 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
400 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
401 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
402
403 #define F2FS_IOCTL_MAGIC 0xf5
404 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
405 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
406 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
407 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
408 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
409 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
410 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
411 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
412 struct f2fs_defragment)
413 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
414 struct f2fs_move_range)
415 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
416 struct f2fs_flush_device)
417 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
418 struct f2fs_gc_range)
419 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
420 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32)
421 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32)
422 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15)
423 #define F2FS_IOC_RESIZE_FS _IOW(F2FS_IOCTL_MAGIC, 16, __u64)
424
425 #define F2FS_IOC_GET_VOLUME_NAME FS_IOC_GETFSLABEL
426 #define F2FS_IOC_SET_VOLUME_NAME FS_IOC_SETFSLABEL
427
428 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
429 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
430 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
431
432 /*
433 * should be same as XFS_IOC_GOINGDOWN.
434 * Flags for going down operation used by FS_IOC_GOINGDOWN
435 */
436 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
437 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
438 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
439 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
440 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
441 #define F2FS_GOING_DOWN_NEED_FSCK 0x4 /* going down to trigger fsck */
442
443 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
444 /*
445 * ioctl commands in 32 bit emulation
446 */
447 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
448 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
449 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
450 #endif
451
452 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR
453 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR
454
455 struct f2fs_gc_range {
456 u32 sync;
457 u64 start;
458 u64 len;
459 };
460
461 struct f2fs_defragment {
462 u64 start;
463 u64 len;
464 };
465
466 struct f2fs_move_range {
467 u32 dst_fd; /* destination fd */
468 u64 pos_in; /* start position in src_fd */
469 u64 pos_out; /* start position in dst_fd */
470 u64 len; /* size to move */
471 };
472
473 struct f2fs_flush_device {
474 u32 dev_num; /* device number to flush */
475 u32 segments; /* # of segments to flush */
476 };
477
478 /* for inline stuff */
479 #define DEF_INLINE_RESERVED_SIZE 1
480 static inline int get_extra_isize(struct inode *inode);
481 static inline int get_inline_xattr_addrs(struct inode *inode);
482 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
483 (CUR_ADDRS_PER_INODE(inode) - \
484 get_inline_xattr_addrs(inode) - \
485 DEF_INLINE_RESERVED_SIZE))
486
487 /* for inline dir */
488 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
489 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
490 BITS_PER_BYTE + 1))
491 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
492 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
493 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
494 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
495 NR_INLINE_DENTRY(inode) + \
496 INLINE_DENTRY_BITMAP_SIZE(inode)))
497
498 /*
499 * For INODE and NODE manager
500 */
501 /* for directory operations */
502 struct f2fs_dentry_ptr {
503 struct inode *inode;
504 void *bitmap;
505 struct f2fs_dir_entry *dentry;
506 __u8 (*filename)[F2FS_SLOT_LEN];
507 int max;
508 int nr_bitmap;
509 };
510
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)511 static inline void make_dentry_ptr_block(struct inode *inode,
512 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
513 {
514 d->inode = inode;
515 d->max = NR_DENTRY_IN_BLOCK;
516 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
517 d->bitmap = t->dentry_bitmap;
518 d->dentry = t->dentry;
519 d->filename = t->filename;
520 }
521
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)522 static inline void make_dentry_ptr_inline(struct inode *inode,
523 struct f2fs_dentry_ptr *d, void *t)
524 {
525 int entry_cnt = NR_INLINE_DENTRY(inode);
526 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
527 int reserved_size = INLINE_RESERVED_SIZE(inode);
528
529 d->inode = inode;
530 d->max = entry_cnt;
531 d->nr_bitmap = bitmap_size;
532 d->bitmap = t;
533 d->dentry = t + bitmap_size + reserved_size;
534 d->filename = t + bitmap_size + reserved_size +
535 SIZE_OF_DIR_ENTRY * entry_cnt;
536 }
537
538 /*
539 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
540 * as its node offset to distinguish from index node blocks.
541 * But some bits are used to mark the node block.
542 */
543 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
544 >> OFFSET_BIT_SHIFT)
545 enum {
546 ALLOC_NODE, /* allocate a new node page if needed */
547 LOOKUP_NODE, /* look up a node without readahead */
548 LOOKUP_NODE_RA, /*
549 * look up a node with readahead called
550 * by get_data_block.
551 */
552 };
553
554 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
555
556 /* maximum retry quota flush count */
557 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
558
559 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
560
561 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
562
563 /* for in-memory extent cache entry */
564 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
565
566 /* number of extent info in extent cache we try to shrink */
567 #define EXTENT_CACHE_SHRINK_NUMBER 128
568
569 struct rb_entry {
570 struct rb_node rb_node; /* rb node located in rb-tree */
571 unsigned int ofs; /* start offset of the entry */
572 unsigned int len; /* length of the entry */
573 };
574
575 struct extent_info {
576 unsigned int fofs; /* start offset in a file */
577 unsigned int len; /* length of the extent */
578 u32 blk; /* start block address of the extent */
579 };
580
581 struct extent_node {
582 struct rb_node rb_node; /* rb node located in rb-tree */
583 struct extent_info ei; /* extent info */
584 struct list_head list; /* node in global extent list of sbi */
585 struct extent_tree *et; /* extent tree pointer */
586 };
587
588 struct extent_tree {
589 nid_t ino; /* inode number */
590 struct rb_root_cached root; /* root of extent info rb-tree */
591 struct extent_node *cached_en; /* recently accessed extent node */
592 struct extent_info largest; /* largested extent info */
593 struct list_head list; /* to be used by sbi->zombie_list */
594 rwlock_t lock; /* protect extent info rb-tree */
595 atomic_t node_cnt; /* # of extent node in rb-tree*/
596 bool largest_updated; /* largest extent updated */
597 };
598
599 /*
600 * This structure is taken from ext4_map_blocks.
601 *
602 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
603 */
604 #define F2FS_MAP_NEW (1 << BH_New)
605 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
606 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
607 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
608 F2FS_MAP_UNWRITTEN)
609
610 struct f2fs_map_blocks {
611 block_t m_pblk;
612 block_t m_lblk;
613 unsigned int m_len;
614 unsigned int m_flags;
615 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
616 pgoff_t *m_next_extent; /* point to next possible extent */
617 int m_seg_type;
618 bool m_may_create; /* indicate it is from write path */
619 };
620
621 /* for flag in get_data_block */
622 enum {
623 F2FS_GET_BLOCK_DEFAULT,
624 F2FS_GET_BLOCK_FIEMAP,
625 F2FS_GET_BLOCK_BMAP,
626 F2FS_GET_BLOCK_DIO,
627 F2FS_GET_BLOCK_PRE_DIO,
628 F2FS_GET_BLOCK_PRE_AIO,
629 F2FS_GET_BLOCK_PRECACHE,
630 };
631
632 /*
633 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
634 */
635 #define FADVISE_COLD_BIT 0x01
636 #define FADVISE_LOST_PINO_BIT 0x02
637 #define FADVISE_ENCRYPT_BIT 0x04
638 #define FADVISE_ENC_NAME_BIT 0x08
639 #define FADVISE_KEEP_SIZE_BIT 0x10
640 #define FADVISE_HOT_BIT 0x20
641 #define FADVISE_VERITY_BIT 0x40
642
643 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
644
645 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
646 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
647 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
648 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
649 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
650 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
651 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
652 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
653 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
654 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
655 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
656 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
657 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
658 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
659 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
660 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
661 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
662 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
663
664 #define DEF_DIR_LEVEL 0
665
666 enum {
667 GC_FAILURE_PIN,
668 GC_FAILURE_ATOMIC,
669 MAX_GC_FAILURE
670 };
671
672 struct f2fs_inode_info {
673 struct inode vfs_inode; /* serve a vfs inode */
674 unsigned long i_flags; /* keep an inode flags for ioctl */
675 unsigned char i_advise; /* use to give file attribute hints */
676 unsigned char i_dir_level; /* use for dentry level for large dir */
677 unsigned int i_current_depth; /* only for directory depth */
678 /* for gc failure statistic */
679 unsigned int i_gc_failures[MAX_GC_FAILURE];
680 unsigned int i_pino; /* parent inode number */
681 umode_t i_acl_mode; /* keep file acl mode temporarily */
682
683 /* Use below internally in f2fs*/
684 unsigned long flags; /* use to pass per-file flags */
685 struct rw_semaphore i_sem; /* protect fi info */
686 atomic_t dirty_pages; /* # of dirty pages */
687 f2fs_hash_t chash; /* hash value of given file name */
688 unsigned int clevel; /* maximum level of given file name */
689 struct task_struct *task; /* lookup and create consistency */
690 struct task_struct *cp_task; /* separate cp/wb IO stats*/
691 nid_t i_xattr_nid; /* node id that contains xattrs */
692 loff_t last_disk_size; /* lastly written file size */
693
694 #ifdef CONFIG_QUOTA
695 struct dquot *i_dquot[MAXQUOTAS];
696
697 /* quota space reservation, managed internally by quota code */
698 qsize_t i_reserved_quota;
699 #endif
700 struct list_head dirty_list; /* dirty list for dirs and files */
701 struct list_head gdirty_list; /* linked in global dirty list */
702 struct list_head inmem_ilist; /* list for inmem inodes */
703 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
704 struct task_struct *inmem_task; /* store inmemory task */
705 struct mutex inmem_lock; /* lock for inmemory pages */
706 struct extent_tree *extent_tree; /* cached extent_tree entry */
707
708 /* avoid racing between foreground op and gc */
709 struct rw_semaphore i_gc_rwsem[2];
710 struct rw_semaphore i_mmap_sem;
711 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
712
713 int i_extra_isize; /* size of extra space located in i_addr */
714 kprojid_t i_projid; /* id for project quota */
715 int i_inline_xattr_size; /* inline xattr size */
716 struct timespec64 i_crtime; /* inode creation time */
717 struct timespec64 i_disk_time[4];/* inode disk times */
718 };
719
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)720 static inline void get_extent_info(struct extent_info *ext,
721 struct f2fs_extent *i_ext)
722 {
723 ext->fofs = le32_to_cpu(i_ext->fofs);
724 ext->blk = le32_to_cpu(i_ext->blk);
725 ext->len = le32_to_cpu(i_ext->len);
726 }
727
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)728 static inline void set_raw_extent(struct extent_info *ext,
729 struct f2fs_extent *i_ext)
730 {
731 i_ext->fofs = cpu_to_le32(ext->fofs);
732 i_ext->blk = cpu_to_le32(ext->blk);
733 i_ext->len = cpu_to_le32(ext->len);
734 }
735
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)736 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
737 u32 blk, unsigned int len)
738 {
739 ei->fofs = fofs;
740 ei->blk = blk;
741 ei->len = len;
742 }
743
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)744 static inline bool __is_discard_mergeable(struct discard_info *back,
745 struct discard_info *front, unsigned int max_len)
746 {
747 return (back->lstart + back->len == front->lstart) &&
748 (back->len + front->len <= max_len);
749 }
750
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)751 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
752 struct discard_info *back, unsigned int max_len)
753 {
754 return __is_discard_mergeable(back, cur, max_len);
755 }
756
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)757 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
758 struct discard_info *front, unsigned int max_len)
759 {
760 return __is_discard_mergeable(cur, front, max_len);
761 }
762
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)763 static inline bool __is_extent_mergeable(struct extent_info *back,
764 struct extent_info *front)
765 {
766 return (back->fofs + back->len == front->fofs &&
767 back->blk + back->len == front->blk);
768 }
769
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)770 static inline bool __is_back_mergeable(struct extent_info *cur,
771 struct extent_info *back)
772 {
773 return __is_extent_mergeable(back, cur);
774 }
775
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)776 static inline bool __is_front_mergeable(struct extent_info *cur,
777 struct extent_info *front)
778 {
779 return __is_extent_mergeable(cur, front);
780 }
781
782 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)783 static inline void __try_update_largest_extent(struct extent_tree *et,
784 struct extent_node *en)
785 {
786 if (en->ei.len > et->largest.len) {
787 et->largest = en->ei;
788 et->largest_updated = true;
789 }
790 }
791
792 /*
793 * For free nid management
794 */
795 enum nid_state {
796 FREE_NID, /* newly added to free nid list */
797 PREALLOC_NID, /* it is preallocated */
798 MAX_NID_STATE,
799 };
800
801 struct f2fs_nm_info {
802 block_t nat_blkaddr; /* base disk address of NAT */
803 nid_t max_nid; /* maximum possible node ids */
804 nid_t available_nids; /* # of available node ids */
805 nid_t next_scan_nid; /* the next nid to be scanned */
806 unsigned int ram_thresh; /* control the memory footprint */
807 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
808 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
809
810 /* NAT cache management */
811 struct radix_tree_root nat_root;/* root of the nat entry cache */
812 struct radix_tree_root nat_set_root;/* root of the nat set cache */
813 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
814 struct list_head nat_entries; /* cached nat entry list (clean) */
815 spinlock_t nat_list_lock; /* protect clean nat entry list */
816 unsigned int nat_cnt; /* the # of cached nat entries */
817 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
818 unsigned int nat_blocks; /* # of nat blocks */
819
820 /* free node ids management */
821 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
822 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
823 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
824 spinlock_t nid_list_lock; /* protect nid lists ops */
825 struct mutex build_lock; /* lock for build free nids */
826 unsigned char **free_nid_bitmap;
827 unsigned char *nat_block_bitmap;
828 unsigned short *free_nid_count; /* free nid count of NAT block */
829
830 /* for checkpoint */
831 char *nat_bitmap; /* NAT bitmap pointer */
832
833 unsigned int nat_bits_blocks; /* # of nat bits blocks */
834 unsigned char *nat_bits; /* NAT bits blocks */
835 unsigned char *full_nat_bits; /* full NAT pages */
836 unsigned char *empty_nat_bits; /* empty NAT pages */
837 #ifdef CONFIG_F2FS_CHECK_FS
838 char *nat_bitmap_mir; /* NAT bitmap mirror */
839 #endif
840 int bitmap_size; /* bitmap size */
841 };
842
843 /*
844 * this structure is used as one of function parameters.
845 * all the information are dedicated to a given direct node block determined
846 * by the data offset in a file.
847 */
848 struct dnode_of_data {
849 struct inode *inode; /* vfs inode pointer */
850 struct page *inode_page; /* its inode page, NULL is possible */
851 struct page *node_page; /* cached direct node page */
852 nid_t nid; /* node id of the direct node block */
853 unsigned int ofs_in_node; /* data offset in the node page */
854 bool inode_page_locked; /* inode page is locked or not */
855 bool node_changed; /* is node block changed */
856 char cur_level; /* level of hole node page */
857 char max_level; /* level of current page located */
858 block_t data_blkaddr; /* block address of the node block */
859 };
860
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)861 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
862 struct page *ipage, struct page *npage, nid_t nid)
863 {
864 memset(dn, 0, sizeof(*dn));
865 dn->inode = inode;
866 dn->inode_page = ipage;
867 dn->node_page = npage;
868 dn->nid = nid;
869 }
870
871 /*
872 * For SIT manager
873 *
874 * By default, there are 6 active log areas across the whole main area.
875 * When considering hot and cold data separation to reduce cleaning overhead,
876 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
877 * respectively.
878 * In the current design, you should not change the numbers intentionally.
879 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
880 * logs individually according to the underlying devices. (default: 6)
881 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
882 * data and 8 for node logs.
883 */
884 #define NR_CURSEG_DATA_TYPE (3)
885 #define NR_CURSEG_NODE_TYPE (3)
886 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
887
888 enum {
889 CURSEG_HOT_DATA = 0, /* directory entry blocks */
890 CURSEG_WARM_DATA, /* data blocks */
891 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
892 CURSEG_HOT_NODE, /* direct node blocks of directory files */
893 CURSEG_WARM_NODE, /* direct node blocks of normal files */
894 CURSEG_COLD_NODE, /* indirect node blocks */
895 NO_CHECK_TYPE,
896 CURSEG_COLD_DATA_PINNED,/* cold data for pinned file */
897 };
898
899 struct flush_cmd {
900 struct completion wait;
901 struct llist_node llnode;
902 nid_t ino;
903 int ret;
904 };
905
906 struct flush_cmd_control {
907 struct task_struct *f2fs_issue_flush; /* flush thread */
908 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
909 atomic_t issued_flush; /* # of issued flushes */
910 atomic_t queued_flush; /* # of queued flushes */
911 struct llist_head issue_list; /* list for command issue */
912 struct llist_node *dispatch_list; /* list for command dispatch */
913 };
914
915 struct f2fs_sm_info {
916 struct sit_info *sit_info; /* whole segment information */
917 struct free_segmap_info *free_info; /* free segment information */
918 struct dirty_seglist_info *dirty_info; /* dirty segment information */
919 struct curseg_info *curseg_array; /* active segment information */
920
921 struct rw_semaphore curseg_lock; /* for preventing curseg change */
922
923 block_t seg0_blkaddr; /* block address of 0'th segment */
924 block_t main_blkaddr; /* start block address of main area */
925 block_t ssa_blkaddr; /* start block address of SSA area */
926
927 unsigned int segment_count; /* total # of segments */
928 unsigned int main_segments; /* # of segments in main area */
929 unsigned int reserved_segments; /* # of reserved segments */
930 unsigned int ovp_segments; /* # of overprovision segments */
931
932 /* a threshold to reclaim prefree segments */
933 unsigned int rec_prefree_segments;
934
935 /* for batched trimming */
936 unsigned int trim_sections; /* # of sections to trim */
937
938 struct list_head sit_entry_set; /* sit entry set list */
939
940 unsigned int ipu_policy; /* in-place-update policy */
941 unsigned int min_ipu_util; /* in-place-update threshold */
942 unsigned int min_fsync_blocks; /* threshold for fsync */
943 unsigned int min_seq_blocks; /* threshold for sequential blocks */
944 unsigned int min_hot_blocks; /* threshold for hot block allocation */
945 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
946
947 /* for flush command control */
948 struct flush_cmd_control *fcc_info;
949
950 /* for discard command control */
951 struct discard_cmd_control *dcc_info;
952 };
953
954 /*
955 * For superblock
956 */
957 /*
958 * COUNT_TYPE for monitoring
959 *
960 * f2fs monitors the number of several block types such as on-writeback,
961 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
962 */
963 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
964 enum count_type {
965 F2FS_DIRTY_DENTS,
966 F2FS_DIRTY_DATA,
967 F2FS_DIRTY_QDATA,
968 F2FS_DIRTY_NODES,
969 F2FS_DIRTY_META,
970 F2FS_INMEM_PAGES,
971 F2FS_DIRTY_IMETA,
972 F2FS_WB_CP_DATA,
973 F2FS_WB_DATA,
974 F2FS_RD_DATA,
975 F2FS_RD_NODE,
976 F2FS_RD_META,
977 F2FS_DIO_WRITE,
978 F2FS_DIO_READ,
979 NR_COUNT_TYPE,
980 };
981
982 /*
983 * The below are the page types of bios used in submit_bio().
984 * The available types are:
985 * DATA User data pages. It operates as async mode.
986 * NODE Node pages. It operates as async mode.
987 * META FS metadata pages such as SIT, NAT, CP.
988 * NR_PAGE_TYPE The number of page types.
989 * META_FLUSH Make sure the previous pages are written
990 * with waiting the bio's completion
991 * ... Only can be used with META.
992 */
993 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
994 enum page_type {
995 DATA,
996 NODE,
997 META,
998 NR_PAGE_TYPE,
999 META_FLUSH,
1000 INMEM, /* the below types are used by tracepoints only. */
1001 INMEM_DROP,
1002 INMEM_INVALIDATE,
1003 INMEM_REVOKE,
1004 IPU,
1005 OPU,
1006 };
1007
1008 enum temp_type {
1009 HOT = 0, /* must be zero for meta bio */
1010 WARM,
1011 COLD,
1012 NR_TEMP_TYPE,
1013 };
1014
1015 enum need_lock_type {
1016 LOCK_REQ = 0,
1017 LOCK_DONE,
1018 LOCK_RETRY,
1019 };
1020
1021 enum cp_reason_type {
1022 CP_NO_NEEDED,
1023 CP_NON_REGULAR,
1024 CP_HARDLINK,
1025 CP_SB_NEED_CP,
1026 CP_WRONG_PINO,
1027 CP_NO_SPC_ROLL,
1028 CP_NODE_NEED_CP,
1029 CP_FASTBOOT_MODE,
1030 CP_SPEC_LOG_NUM,
1031 CP_RECOVER_DIR,
1032 };
1033
1034 enum iostat_type {
1035 APP_DIRECT_IO, /* app direct IOs */
1036 APP_BUFFERED_IO, /* app buffered IOs */
1037 APP_WRITE_IO, /* app write IOs */
1038 APP_MAPPED_IO, /* app mapped IOs */
1039 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1040 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1041 FS_META_IO, /* meta IOs from kworker/reclaimer */
1042 FS_GC_DATA_IO, /* data IOs from forground gc */
1043 FS_GC_NODE_IO, /* node IOs from forground gc */
1044 FS_CP_DATA_IO, /* data IOs from checkpoint */
1045 FS_CP_NODE_IO, /* node IOs from checkpoint */
1046 FS_CP_META_IO, /* meta IOs from checkpoint */
1047 FS_DISCARD, /* discard */
1048 NR_IO_TYPE,
1049 };
1050
1051 struct f2fs_io_info {
1052 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1053 nid_t ino; /* inode number */
1054 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1055 enum temp_type temp; /* contains HOT/WARM/COLD */
1056 int op; /* contains REQ_OP_ */
1057 int op_flags; /* req_flag_bits */
1058 block_t new_blkaddr; /* new block address to be written */
1059 block_t old_blkaddr; /* old block address before Cow */
1060 struct page *page; /* page to be written */
1061 struct page *encrypted_page; /* encrypted page */
1062 struct list_head list; /* serialize IOs */
1063 bool submitted; /* indicate IO submission */
1064 int need_lock; /* indicate we need to lock cp_rwsem */
1065 bool in_list; /* indicate fio is in io_list */
1066 bool is_por; /* indicate IO is from recovery or not */
1067 bool retry; /* need to reallocate block address */
1068 enum iostat_type io_type; /* io type */
1069 struct writeback_control *io_wbc; /* writeback control */
1070 struct bio **bio; /* bio for ipu */
1071 sector_t *last_block; /* last block number in bio */
1072 unsigned char version; /* version of the node */
1073 };
1074
1075 struct bio_entry {
1076 struct bio *bio;
1077 struct list_head list;
1078 };
1079
1080 #define is_read_io(rw) ((rw) == READ)
1081 struct f2fs_bio_info {
1082 struct f2fs_sb_info *sbi; /* f2fs superblock */
1083 struct bio *bio; /* bios to merge */
1084 sector_t last_block_in_bio; /* last block number */
1085 struct f2fs_io_info fio; /* store buffered io info. */
1086 struct rw_semaphore io_rwsem; /* blocking op for bio */
1087 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1088 struct list_head io_list; /* track fios */
1089 struct list_head bio_list; /* bio entry list head */
1090 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */
1091 };
1092
1093 #define FDEV(i) (sbi->devs[i])
1094 #define RDEV(i) (raw_super->devs[i])
1095 struct f2fs_dev_info {
1096 struct block_device *bdev;
1097 char path[MAX_PATH_LEN];
1098 unsigned int total_segments;
1099 block_t start_blk;
1100 block_t end_blk;
1101 #ifdef CONFIG_BLK_DEV_ZONED
1102 unsigned int nr_blkz; /* Total number of zones */
1103 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1104 #endif
1105 };
1106
1107 enum inode_type {
1108 DIR_INODE, /* for dirty dir inode */
1109 FILE_INODE, /* for dirty regular/symlink inode */
1110 DIRTY_META, /* for all dirtied inode metadata */
1111 ATOMIC_FILE, /* for all atomic files */
1112 NR_INODE_TYPE,
1113 };
1114
1115 /* for inner inode cache management */
1116 struct inode_management {
1117 struct radix_tree_root ino_root; /* ino entry array */
1118 spinlock_t ino_lock; /* for ino entry lock */
1119 struct list_head ino_list; /* inode list head */
1120 unsigned long ino_num; /* number of entries */
1121 };
1122
1123 /* For s_flag in struct f2fs_sb_info */
1124 enum {
1125 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1126 SBI_IS_CLOSE, /* specify unmounting */
1127 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1128 SBI_POR_DOING, /* recovery is doing or not */
1129 SBI_NEED_SB_WRITE, /* need to recover superblock */
1130 SBI_NEED_CP, /* need to checkpoint */
1131 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1132 SBI_IS_RECOVERED, /* recovered orphan/data */
1133 SBI_CP_DISABLED, /* CP was disabled last mount */
1134 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1135 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1136 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1137 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1138 SBI_IS_RESIZEFS, /* resizefs is in process */
1139 };
1140
1141 enum {
1142 CP_TIME,
1143 REQ_TIME,
1144 DISCARD_TIME,
1145 GC_TIME,
1146 DISABLE_TIME,
1147 UMOUNT_DISCARD_TIMEOUT,
1148 MAX_TIME,
1149 };
1150
1151 enum {
1152 GC_NORMAL,
1153 GC_IDLE_CB,
1154 GC_IDLE_GREEDY,
1155 GC_URGENT,
1156 };
1157
1158 enum {
1159 WHINT_MODE_OFF, /* not pass down write hints */
1160 WHINT_MODE_USER, /* try to pass down hints given by users */
1161 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1162 };
1163
1164 enum {
1165 ALLOC_MODE_DEFAULT, /* stay default */
1166 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1167 };
1168
1169 enum fsync_mode {
1170 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1171 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1172 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1173 };
1174
1175 #ifdef CONFIG_FS_ENCRYPTION
1176 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1177 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1178 #else
1179 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1180 #endif
1181
1182 struct f2fs_sb_info {
1183 struct super_block *sb; /* pointer to VFS super block */
1184 struct proc_dir_entry *s_proc; /* proc entry */
1185 struct f2fs_super_block *raw_super; /* raw super block pointer */
1186 struct rw_semaphore sb_lock; /* lock for raw super block */
1187 int valid_super_block; /* valid super block no */
1188 unsigned long s_flag; /* flags for sbi */
1189 struct mutex writepages; /* mutex for writepages() */
1190 #ifdef CONFIG_UNICODE
1191 struct unicode_map *s_encoding;
1192 __u16 s_encoding_flags;
1193 #endif
1194
1195 #ifdef CONFIG_BLK_DEV_ZONED
1196 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1197 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1198 #endif
1199
1200 /* for node-related operations */
1201 struct f2fs_nm_info *nm_info; /* node manager */
1202 struct inode *node_inode; /* cache node blocks */
1203
1204 /* for segment-related operations */
1205 struct f2fs_sm_info *sm_info; /* segment manager */
1206
1207 /* for bio operations */
1208 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1209 /* keep migration IO order for LFS mode */
1210 struct rw_semaphore io_order_lock;
1211 mempool_t *write_io_dummy; /* Dummy pages */
1212
1213 /* for checkpoint */
1214 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1215 int cur_cp_pack; /* remain current cp pack */
1216 spinlock_t cp_lock; /* for flag in ckpt */
1217 struct inode *meta_inode; /* cache meta blocks */
1218 struct mutex cp_mutex; /* checkpoint procedure lock */
1219 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1220 struct rw_semaphore node_write; /* locking node writes */
1221 struct rw_semaphore node_change; /* locking node change */
1222 wait_queue_head_t cp_wait;
1223 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1224 long interval_time[MAX_TIME]; /* to store thresholds */
1225
1226 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1227
1228 spinlock_t fsync_node_lock; /* for node entry lock */
1229 struct list_head fsync_node_list; /* node list head */
1230 unsigned int fsync_seg_id; /* sequence id */
1231 unsigned int fsync_node_num; /* number of node entries */
1232
1233 /* for orphan inode, use 0'th array */
1234 unsigned int max_orphans; /* max orphan inodes */
1235
1236 /* for inode management */
1237 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1238 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1239 struct mutex flush_lock; /* for flush exclusion */
1240
1241 /* for extent tree cache */
1242 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1243 struct mutex extent_tree_lock; /* locking extent radix tree */
1244 struct list_head extent_list; /* lru list for shrinker */
1245 spinlock_t extent_lock; /* locking extent lru list */
1246 atomic_t total_ext_tree; /* extent tree count */
1247 struct list_head zombie_list; /* extent zombie tree list */
1248 atomic_t total_zombie_tree; /* extent zombie tree count */
1249 atomic_t total_ext_node; /* extent info count */
1250
1251 /* basic filesystem units */
1252 unsigned int log_sectors_per_block; /* log2 sectors per block */
1253 unsigned int log_blocksize; /* log2 block size */
1254 unsigned int blocksize; /* block size */
1255 unsigned int root_ino_num; /* root inode number*/
1256 unsigned int node_ino_num; /* node inode number*/
1257 unsigned int meta_ino_num; /* meta inode number*/
1258 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1259 unsigned int blocks_per_seg; /* blocks per segment */
1260 unsigned int segs_per_sec; /* segments per section */
1261 unsigned int secs_per_zone; /* sections per zone */
1262 unsigned int total_sections; /* total section count */
1263 struct mutex resize_mutex; /* for resize exclusion */
1264 unsigned int total_node_count; /* total node block count */
1265 unsigned int total_valid_node_count; /* valid node block count */
1266 loff_t max_file_blocks; /* max block index of file */
1267 int dir_level; /* directory level */
1268 int readdir_ra; /* readahead inode in readdir */
1269
1270 block_t user_block_count; /* # of user blocks */
1271 block_t total_valid_block_count; /* # of valid blocks */
1272 block_t discard_blks; /* discard command candidats */
1273 block_t last_valid_block_count; /* for recovery */
1274 block_t reserved_blocks; /* configurable reserved blocks */
1275 block_t current_reserved_blocks; /* current reserved blocks */
1276
1277 /* Additional tracking for no checkpoint mode */
1278 block_t unusable_block_count; /* # of blocks saved by last cp */
1279
1280 unsigned int nquota_files; /* # of quota sysfile */
1281 struct rw_semaphore quota_sem; /* blocking cp for flags */
1282
1283 /* # of pages, see count_type */
1284 atomic_t nr_pages[NR_COUNT_TYPE];
1285 /* # of allocated blocks */
1286 struct percpu_counter alloc_valid_block_count;
1287
1288 /* writeback control */
1289 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1290
1291 /* valid inode count */
1292 struct percpu_counter total_valid_inode_count;
1293
1294 struct f2fs_mount_info mount_opt; /* mount options */
1295
1296 /* for cleaning operations */
1297 struct mutex gc_mutex; /* mutex for GC */
1298 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1299 unsigned int cur_victim_sec; /* current victim section num */
1300 unsigned int gc_mode; /* current GC state */
1301 unsigned int next_victim_seg[2]; /* next segment in victim section */
1302 /* for skip statistic */
1303 unsigned int atomic_files; /* # of opened atomic file */
1304 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1305 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1306
1307 /* threshold for gc trials on pinned files */
1308 u64 gc_pin_file_threshold;
1309 struct rw_semaphore pin_sem;
1310
1311 /* maximum # of trials to find a victim segment for SSR and GC */
1312 unsigned int max_victim_search;
1313 /* migration granularity of garbage collection, unit: segment */
1314 unsigned int migration_granularity;
1315
1316 /*
1317 * for stat information.
1318 * one is for the LFS mode, and the other is for the SSR mode.
1319 */
1320 #ifdef CONFIG_F2FS_STAT_FS
1321 struct f2fs_stat_info *stat_info; /* FS status information */
1322 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1323 unsigned int segment_count[2]; /* # of allocated segments */
1324 unsigned int block_count[2]; /* # of allocated blocks */
1325 atomic_t inplace_count; /* # of inplace update */
1326 atomic64_t total_hit_ext; /* # of lookup extent cache */
1327 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1328 atomic64_t read_hit_largest; /* # of hit largest extent node */
1329 atomic64_t read_hit_cached; /* # of hit cached extent node */
1330 atomic_t inline_xattr; /* # of inline_xattr inodes */
1331 atomic_t inline_inode; /* # of inline_data inodes */
1332 atomic_t inline_dir; /* # of inline_dentry inodes */
1333 atomic_t aw_cnt; /* # of atomic writes */
1334 atomic_t vw_cnt; /* # of volatile writes */
1335 atomic_t max_aw_cnt; /* max # of atomic writes */
1336 atomic_t max_vw_cnt; /* max # of volatile writes */
1337 int bg_gc; /* background gc calls */
1338 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1339 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1340 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1341 #endif
1342 spinlock_t stat_lock; /* lock for stat operations */
1343
1344 /* For app/fs IO statistics */
1345 spinlock_t iostat_lock;
1346 unsigned long long write_iostat[NR_IO_TYPE];
1347 bool iostat_enable;
1348
1349 /* For sysfs suppport */
1350 struct kobject s_kobj;
1351 struct completion s_kobj_unregister;
1352
1353 /* For shrinker support */
1354 struct list_head s_list;
1355 int s_ndevs; /* number of devices */
1356 struct f2fs_dev_info *devs; /* for device list */
1357 unsigned int dirty_device; /* for checkpoint data flush */
1358 spinlock_t dev_lock; /* protect dirty_device */
1359 struct mutex umount_mutex;
1360 unsigned int shrinker_run_no;
1361
1362 /* For write statistics */
1363 u64 sectors_written_start;
1364 u64 kbytes_written;
1365
1366 /* Reference to checksum algorithm driver via cryptoapi */
1367 struct crypto_shash *s_chksum_driver;
1368
1369 /* Precomputed FS UUID checksum for seeding other checksums */
1370 __u32 s_chksum_seed;
1371 };
1372
1373 struct f2fs_private_dio {
1374 struct inode *inode;
1375 void *orig_private;
1376 bio_end_io_t *orig_end_io;
1377 bool write;
1378 };
1379
1380 #ifdef CONFIG_F2FS_FAULT_INJECTION
1381 #define f2fs_show_injection_info(sbi, type) \
1382 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \
1383 KERN_INFO, sbi->sb->s_id, \
1384 f2fs_fault_name[type], \
1385 __func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1386 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1387 {
1388 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1389
1390 if (!ffi->inject_rate)
1391 return false;
1392
1393 if (!IS_FAULT_SET(ffi, type))
1394 return false;
1395
1396 atomic_inc(&ffi->inject_ops);
1397 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1398 atomic_set(&ffi->inject_ops, 0);
1399 return true;
1400 }
1401 return false;
1402 }
1403 #else
1404 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1405 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1406 {
1407 return false;
1408 }
1409 #endif
1410
1411 /*
1412 * Test if the mounted volume is a multi-device volume.
1413 * - For a single regular disk volume, sbi->s_ndevs is 0.
1414 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1415 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1416 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1417 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1418 {
1419 return sbi->s_ndevs > 1;
1420 }
1421
1422 /* For write statistics. Suppose sector size is 512 bytes,
1423 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1424 */
1425 #define BD_PART_WRITTEN(s) \
1426 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \
1427 (s)->sectors_written_start) >> 1)
1428
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1429 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1430 {
1431 unsigned long now = jiffies;
1432
1433 sbi->last_time[type] = now;
1434
1435 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1436 if (type == REQ_TIME) {
1437 sbi->last_time[DISCARD_TIME] = now;
1438 sbi->last_time[GC_TIME] = now;
1439 }
1440 }
1441
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1442 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1443 {
1444 unsigned long interval = sbi->interval_time[type] * HZ;
1445
1446 return time_after(jiffies, sbi->last_time[type] + interval);
1447 }
1448
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1449 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1450 int type)
1451 {
1452 unsigned long interval = sbi->interval_time[type] * HZ;
1453 unsigned int wait_ms = 0;
1454 long delta;
1455
1456 delta = (sbi->last_time[type] + interval) - jiffies;
1457 if (delta > 0)
1458 wait_ms = jiffies_to_msecs(delta);
1459
1460 return wait_ms;
1461 }
1462
1463 /*
1464 * Inline functions
1465 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1466 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1467 const void *address, unsigned int length)
1468 {
1469 struct {
1470 struct shash_desc shash;
1471 char ctx[4];
1472 } desc;
1473 int err;
1474
1475 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1476
1477 desc.shash.tfm = sbi->s_chksum_driver;
1478 *(u32 *)desc.ctx = crc;
1479
1480 err = crypto_shash_update(&desc.shash, address, length);
1481 BUG_ON(err);
1482
1483 return *(u32 *)desc.ctx;
1484 }
1485
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1486 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1487 unsigned int length)
1488 {
1489 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1490 }
1491
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1492 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1493 void *buf, size_t buf_size)
1494 {
1495 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1496 }
1497
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1498 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1499 const void *address, unsigned int length)
1500 {
1501 return __f2fs_crc32(sbi, crc, address, length);
1502 }
1503
F2FS_I(struct inode * inode)1504 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1505 {
1506 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1507 }
1508
F2FS_SB(struct super_block * sb)1509 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1510 {
1511 return sb->s_fs_info;
1512 }
1513
F2FS_I_SB(struct inode * inode)1514 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1515 {
1516 return F2FS_SB(inode->i_sb);
1517 }
1518
F2FS_M_SB(struct address_space * mapping)1519 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1520 {
1521 return F2FS_I_SB(mapping->host);
1522 }
1523
F2FS_P_SB(struct page * page)1524 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1525 {
1526 return F2FS_M_SB(page_file_mapping(page));
1527 }
1528
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1529 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1530 {
1531 return (struct f2fs_super_block *)(sbi->raw_super);
1532 }
1533
F2FS_CKPT(struct f2fs_sb_info * sbi)1534 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1535 {
1536 return (struct f2fs_checkpoint *)(sbi->ckpt);
1537 }
1538
F2FS_NODE(struct page * page)1539 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1540 {
1541 return (struct f2fs_node *)page_address(page);
1542 }
1543
F2FS_INODE(struct page * page)1544 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1545 {
1546 return &((struct f2fs_node *)page_address(page))->i;
1547 }
1548
NM_I(struct f2fs_sb_info * sbi)1549 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1550 {
1551 return (struct f2fs_nm_info *)(sbi->nm_info);
1552 }
1553
SM_I(struct f2fs_sb_info * sbi)1554 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1555 {
1556 return (struct f2fs_sm_info *)(sbi->sm_info);
1557 }
1558
SIT_I(struct f2fs_sb_info * sbi)1559 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1560 {
1561 return (struct sit_info *)(SM_I(sbi)->sit_info);
1562 }
1563
FREE_I(struct f2fs_sb_info * sbi)1564 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1565 {
1566 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1567 }
1568
DIRTY_I(struct f2fs_sb_info * sbi)1569 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1570 {
1571 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1572 }
1573
META_MAPPING(struct f2fs_sb_info * sbi)1574 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1575 {
1576 return sbi->meta_inode->i_mapping;
1577 }
1578
NODE_MAPPING(struct f2fs_sb_info * sbi)1579 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1580 {
1581 return sbi->node_inode->i_mapping;
1582 }
1583
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1584 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1585 {
1586 return test_bit(type, &sbi->s_flag);
1587 }
1588
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1589 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1590 {
1591 set_bit(type, &sbi->s_flag);
1592 }
1593
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1594 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1595 {
1596 clear_bit(type, &sbi->s_flag);
1597 }
1598
cur_cp_version(struct f2fs_checkpoint * cp)1599 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1600 {
1601 return le64_to_cpu(cp->checkpoint_ver);
1602 }
1603
f2fs_qf_ino(struct super_block * sb,int type)1604 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1605 {
1606 if (type < F2FS_MAX_QUOTAS)
1607 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1608 return 0;
1609 }
1610
cur_cp_crc(struct f2fs_checkpoint * cp)1611 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1612 {
1613 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1614 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1615 }
1616
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1617 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1618 {
1619 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1620
1621 return ckpt_flags & f;
1622 }
1623
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1624 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1625 {
1626 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1627 }
1628
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1629 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1630 {
1631 unsigned int ckpt_flags;
1632
1633 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1634 ckpt_flags |= f;
1635 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1636 }
1637
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1638 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1639 {
1640 unsigned long flags;
1641
1642 spin_lock_irqsave(&sbi->cp_lock, flags);
1643 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1644 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1645 }
1646
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1647 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1648 {
1649 unsigned int ckpt_flags;
1650
1651 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1652 ckpt_flags &= (~f);
1653 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1654 }
1655
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1656 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1657 {
1658 unsigned long flags;
1659
1660 spin_lock_irqsave(&sbi->cp_lock, flags);
1661 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1662 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1663 }
1664
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1665 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1666 {
1667 unsigned long flags;
1668 unsigned char *nat_bits;
1669
1670 /*
1671 * In order to re-enable nat_bits we need to call fsck.f2fs by
1672 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1673 * so let's rely on regular fsck or unclean shutdown.
1674 */
1675
1676 if (lock)
1677 spin_lock_irqsave(&sbi->cp_lock, flags);
1678 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1679 nat_bits = NM_I(sbi)->nat_bits;
1680 NM_I(sbi)->nat_bits = NULL;
1681 if (lock)
1682 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1683
1684 kvfree(nat_bits);
1685 }
1686
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1687 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1688 struct cp_control *cpc)
1689 {
1690 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1691
1692 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1693 }
1694
f2fs_lock_op(struct f2fs_sb_info * sbi)1695 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1696 {
1697 down_read(&sbi->cp_rwsem);
1698 }
1699
f2fs_trylock_op(struct f2fs_sb_info * sbi)1700 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1701 {
1702 return down_read_trylock(&sbi->cp_rwsem);
1703 }
1704
f2fs_unlock_op(struct f2fs_sb_info * sbi)1705 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1706 {
1707 up_read(&sbi->cp_rwsem);
1708 }
1709
f2fs_lock_all(struct f2fs_sb_info * sbi)1710 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1711 {
1712 down_write(&sbi->cp_rwsem);
1713 }
1714
f2fs_unlock_all(struct f2fs_sb_info * sbi)1715 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1716 {
1717 up_write(&sbi->cp_rwsem);
1718 }
1719
__get_cp_reason(struct f2fs_sb_info * sbi)1720 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1721 {
1722 int reason = CP_SYNC;
1723
1724 if (test_opt(sbi, FASTBOOT))
1725 reason = CP_FASTBOOT;
1726 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1727 reason = CP_UMOUNT;
1728 return reason;
1729 }
1730
__remain_node_summaries(int reason)1731 static inline bool __remain_node_summaries(int reason)
1732 {
1733 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1734 }
1735
__exist_node_summaries(struct f2fs_sb_info * sbi)1736 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1737 {
1738 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1739 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1740 }
1741
1742 /*
1743 * Check whether the inode has blocks or not
1744 */
F2FS_HAS_BLOCKS(struct inode * inode)1745 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1746 {
1747 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1748
1749 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1750 }
1751
f2fs_has_xattr_block(unsigned int ofs)1752 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1753 {
1754 return ofs == XATTR_NODE_OFFSET;
1755 }
1756
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)1757 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1758 struct inode *inode, bool cap)
1759 {
1760 if (!inode)
1761 return true;
1762 if (!test_opt(sbi, RESERVE_ROOT))
1763 return false;
1764 if (IS_NOQUOTA(inode))
1765 return true;
1766 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1767 return true;
1768 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1769 in_group_p(F2FS_OPTION(sbi).s_resgid))
1770 return true;
1771 if (cap && capable(CAP_SYS_RESOURCE))
1772 return true;
1773 return false;
1774 }
1775
1776 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)1777 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1778 struct inode *inode, blkcnt_t *count)
1779 {
1780 blkcnt_t diff = 0, release = 0;
1781 block_t avail_user_block_count;
1782 int ret;
1783
1784 ret = dquot_reserve_block(inode, *count);
1785 if (ret)
1786 return ret;
1787
1788 if (time_to_inject(sbi, FAULT_BLOCK)) {
1789 f2fs_show_injection_info(sbi, FAULT_BLOCK);
1790 release = *count;
1791 goto release_quota;
1792 }
1793
1794 /*
1795 * let's increase this in prior to actual block count change in order
1796 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1797 */
1798 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1799
1800 spin_lock(&sbi->stat_lock);
1801 sbi->total_valid_block_count += (block_t)(*count);
1802 avail_user_block_count = sbi->user_block_count -
1803 sbi->current_reserved_blocks;
1804
1805 if (!__allow_reserved_blocks(sbi, inode, true))
1806 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1807 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1808 if (avail_user_block_count > sbi->unusable_block_count)
1809 avail_user_block_count -= sbi->unusable_block_count;
1810 else
1811 avail_user_block_count = 0;
1812 }
1813 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1814 diff = sbi->total_valid_block_count - avail_user_block_count;
1815 if (diff > *count)
1816 diff = *count;
1817 *count -= diff;
1818 release = diff;
1819 sbi->total_valid_block_count -= diff;
1820 if (!*count) {
1821 spin_unlock(&sbi->stat_lock);
1822 goto enospc;
1823 }
1824 }
1825 spin_unlock(&sbi->stat_lock);
1826
1827 if (unlikely(release)) {
1828 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1829 dquot_release_reservation_block(inode, release);
1830 }
1831 f2fs_i_blocks_write(inode, *count, true, true);
1832 return 0;
1833
1834 enospc:
1835 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1836 release_quota:
1837 dquot_release_reservation_block(inode, release);
1838 return -ENOSPC;
1839 }
1840
1841 __printf(2, 3)
1842 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
1843
1844 #define f2fs_err(sbi, fmt, ...) \
1845 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
1846 #define f2fs_warn(sbi, fmt, ...) \
1847 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
1848 #define f2fs_notice(sbi, fmt, ...) \
1849 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
1850 #define f2fs_info(sbi, fmt, ...) \
1851 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
1852 #define f2fs_debug(sbi, fmt, ...) \
1853 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
1854
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)1855 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1856 struct inode *inode,
1857 block_t count)
1858 {
1859 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1860
1861 spin_lock(&sbi->stat_lock);
1862 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1863 sbi->total_valid_block_count -= (block_t)count;
1864 if (sbi->reserved_blocks &&
1865 sbi->current_reserved_blocks < sbi->reserved_blocks)
1866 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1867 sbi->current_reserved_blocks + count);
1868 spin_unlock(&sbi->stat_lock);
1869 if (unlikely(inode->i_blocks < sectors)) {
1870 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
1871 inode->i_ino,
1872 (unsigned long long)inode->i_blocks,
1873 (unsigned long long)sectors);
1874 set_sbi_flag(sbi, SBI_NEED_FSCK);
1875 return;
1876 }
1877 f2fs_i_blocks_write(inode, count, false, true);
1878 }
1879
inc_page_count(struct f2fs_sb_info * sbi,int count_type)1880 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1881 {
1882 atomic_inc(&sbi->nr_pages[count_type]);
1883
1884 if (count_type == F2FS_DIRTY_DENTS ||
1885 count_type == F2FS_DIRTY_NODES ||
1886 count_type == F2FS_DIRTY_META ||
1887 count_type == F2FS_DIRTY_QDATA ||
1888 count_type == F2FS_DIRTY_IMETA)
1889 set_sbi_flag(sbi, SBI_IS_DIRTY);
1890 }
1891
inode_inc_dirty_pages(struct inode * inode)1892 static inline void inode_inc_dirty_pages(struct inode *inode)
1893 {
1894 atomic_inc(&F2FS_I(inode)->dirty_pages);
1895 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1896 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1897 if (IS_NOQUOTA(inode))
1898 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1899 }
1900
dec_page_count(struct f2fs_sb_info * sbi,int count_type)1901 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1902 {
1903 atomic_dec(&sbi->nr_pages[count_type]);
1904 }
1905
inode_dec_dirty_pages(struct inode * inode)1906 static inline void inode_dec_dirty_pages(struct inode *inode)
1907 {
1908 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1909 !S_ISLNK(inode->i_mode))
1910 return;
1911
1912 atomic_dec(&F2FS_I(inode)->dirty_pages);
1913 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1914 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1915 if (IS_NOQUOTA(inode))
1916 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1917 }
1918
get_pages(struct f2fs_sb_info * sbi,int count_type)1919 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1920 {
1921 return atomic_read(&sbi->nr_pages[count_type]);
1922 }
1923
get_dirty_pages(struct inode * inode)1924 static inline int get_dirty_pages(struct inode *inode)
1925 {
1926 return atomic_read(&F2FS_I(inode)->dirty_pages);
1927 }
1928
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)1929 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1930 {
1931 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1932 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1933 sbi->log_blocks_per_seg;
1934
1935 return segs / sbi->segs_per_sec;
1936 }
1937
valid_user_blocks(struct f2fs_sb_info * sbi)1938 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1939 {
1940 return sbi->total_valid_block_count;
1941 }
1942
discard_blocks(struct f2fs_sb_info * sbi)1943 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1944 {
1945 return sbi->discard_blks;
1946 }
1947
__bitmap_size(struct f2fs_sb_info * sbi,int flag)1948 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1949 {
1950 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1951
1952 /* return NAT or SIT bitmap */
1953 if (flag == NAT_BITMAP)
1954 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1955 else if (flag == SIT_BITMAP)
1956 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1957
1958 return 0;
1959 }
1960
__cp_payload(struct f2fs_sb_info * sbi)1961 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1962 {
1963 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1964 }
1965
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)1966 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1967 {
1968 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1969 int offset;
1970
1971 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1972 offset = (flag == SIT_BITMAP) ?
1973 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1974 /*
1975 * if large_nat_bitmap feature is enabled, leave checksum
1976 * protection for all nat/sit bitmaps.
1977 */
1978 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
1979 }
1980
1981 if (__cp_payload(sbi) > 0) {
1982 if (flag == NAT_BITMAP)
1983 return &ckpt->sit_nat_version_bitmap;
1984 else
1985 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1986 } else {
1987 offset = (flag == NAT_BITMAP) ?
1988 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1989 return &ckpt->sit_nat_version_bitmap + offset;
1990 }
1991 }
1992
__start_cp_addr(struct f2fs_sb_info * sbi)1993 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1994 {
1995 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1996
1997 if (sbi->cur_cp_pack == 2)
1998 start_addr += sbi->blocks_per_seg;
1999 return start_addr;
2000 }
2001
__start_cp_next_addr(struct f2fs_sb_info * sbi)2002 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2003 {
2004 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2005
2006 if (sbi->cur_cp_pack == 1)
2007 start_addr += sbi->blocks_per_seg;
2008 return start_addr;
2009 }
2010
__set_cp_next_pack(struct f2fs_sb_info * sbi)2011 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2012 {
2013 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2014 }
2015
__start_sum_addr(struct f2fs_sb_info * sbi)2016 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2017 {
2018 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2019 }
2020
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2021 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2022 struct inode *inode, bool is_inode)
2023 {
2024 block_t valid_block_count;
2025 unsigned int valid_node_count, user_block_count;
2026 int err;
2027
2028 if (is_inode) {
2029 if (inode) {
2030 err = dquot_alloc_inode(inode);
2031 if (err)
2032 return err;
2033 }
2034 } else {
2035 err = dquot_reserve_block(inode, 1);
2036 if (err)
2037 return err;
2038 }
2039
2040 if (time_to_inject(sbi, FAULT_BLOCK)) {
2041 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2042 goto enospc;
2043 }
2044
2045 spin_lock(&sbi->stat_lock);
2046
2047 valid_block_count = sbi->total_valid_block_count +
2048 sbi->current_reserved_blocks + 1;
2049
2050 if (!__allow_reserved_blocks(sbi, inode, false))
2051 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2052 user_block_count = sbi->user_block_count;
2053 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2054 user_block_count -= sbi->unusable_block_count;
2055
2056 if (unlikely(valid_block_count > user_block_count)) {
2057 spin_unlock(&sbi->stat_lock);
2058 goto enospc;
2059 }
2060
2061 valid_node_count = sbi->total_valid_node_count + 1;
2062 if (unlikely(valid_node_count > sbi->total_node_count)) {
2063 spin_unlock(&sbi->stat_lock);
2064 goto enospc;
2065 }
2066
2067 sbi->total_valid_node_count++;
2068 sbi->total_valid_block_count++;
2069 spin_unlock(&sbi->stat_lock);
2070
2071 if (inode) {
2072 if (is_inode)
2073 f2fs_mark_inode_dirty_sync(inode, true);
2074 else
2075 f2fs_i_blocks_write(inode, 1, true, true);
2076 }
2077
2078 percpu_counter_inc(&sbi->alloc_valid_block_count);
2079 return 0;
2080
2081 enospc:
2082 if (is_inode) {
2083 if (inode)
2084 dquot_free_inode(inode);
2085 } else {
2086 dquot_release_reservation_block(inode, 1);
2087 }
2088 return -ENOSPC;
2089 }
2090
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2091 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2092 struct inode *inode, bool is_inode)
2093 {
2094 spin_lock(&sbi->stat_lock);
2095
2096 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2097 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2098
2099 sbi->total_valid_node_count--;
2100 sbi->total_valid_block_count--;
2101 if (sbi->reserved_blocks &&
2102 sbi->current_reserved_blocks < sbi->reserved_blocks)
2103 sbi->current_reserved_blocks++;
2104
2105 spin_unlock(&sbi->stat_lock);
2106
2107 if (is_inode) {
2108 dquot_free_inode(inode);
2109 } else {
2110 if (unlikely(inode->i_blocks == 0)) {
2111 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
2112 inode->i_ino,
2113 (unsigned long long)inode->i_blocks);
2114 set_sbi_flag(sbi, SBI_NEED_FSCK);
2115 return;
2116 }
2117 f2fs_i_blocks_write(inode, 1, false, true);
2118 }
2119 }
2120
valid_node_count(struct f2fs_sb_info * sbi)2121 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2122 {
2123 return sbi->total_valid_node_count;
2124 }
2125
inc_valid_inode_count(struct f2fs_sb_info * sbi)2126 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2127 {
2128 percpu_counter_inc(&sbi->total_valid_inode_count);
2129 }
2130
dec_valid_inode_count(struct f2fs_sb_info * sbi)2131 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2132 {
2133 percpu_counter_dec(&sbi->total_valid_inode_count);
2134 }
2135
valid_inode_count(struct f2fs_sb_info * sbi)2136 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2137 {
2138 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2139 }
2140
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2141 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2142 pgoff_t index, bool for_write)
2143 {
2144 struct page *page;
2145
2146 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2147 if (!for_write)
2148 page = find_get_page_flags(mapping, index,
2149 FGP_LOCK | FGP_ACCESSED);
2150 else
2151 page = find_lock_page(mapping, index);
2152 if (page)
2153 return page;
2154
2155 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2156 f2fs_show_injection_info(F2FS_M_SB(mapping),
2157 FAULT_PAGE_ALLOC);
2158 return NULL;
2159 }
2160 }
2161
2162 if (!for_write)
2163 return grab_cache_page(mapping, index);
2164 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2165 }
2166
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2167 static inline struct page *f2fs_pagecache_get_page(
2168 struct address_space *mapping, pgoff_t index,
2169 int fgp_flags, gfp_t gfp_mask)
2170 {
2171 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2172 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2173 return NULL;
2174 }
2175
2176 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2177 }
2178
f2fs_copy_page(struct page * src,struct page * dst)2179 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2180 {
2181 char *src_kaddr = kmap(src);
2182 char *dst_kaddr = kmap(dst);
2183
2184 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2185 kunmap(dst);
2186 kunmap(src);
2187 }
2188
f2fs_put_page(struct page * page,int unlock)2189 static inline void f2fs_put_page(struct page *page, int unlock)
2190 {
2191 if (!page)
2192 return;
2193
2194 if (unlock) {
2195 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2196 unlock_page(page);
2197 }
2198 put_page(page);
2199 }
2200
f2fs_put_dnode(struct dnode_of_data * dn)2201 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2202 {
2203 if (dn->node_page)
2204 f2fs_put_page(dn->node_page, 1);
2205 if (dn->inode_page && dn->node_page != dn->inode_page)
2206 f2fs_put_page(dn->inode_page, 0);
2207 dn->node_page = NULL;
2208 dn->inode_page = NULL;
2209 }
2210
f2fs_kmem_cache_create(const char * name,size_t size)2211 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2212 size_t size)
2213 {
2214 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2215 }
2216
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2217 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2218 gfp_t flags)
2219 {
2220 void *entry;
2221
2222 entry = kmem_cache_alloc(cachep, flags);
2223 if (!entry)
2224 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2225 return entry;
2226 }
2227
f2fs_bio_alloc(struct f2fs_sb_info * sbi,int npages,bool no_fail)2228 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2229 int npages, bool no_fail)
2230 {
2231 struct bio *bio;
2232
2233 if (no_fail) {
2234 /* No failure on bio allocation */
2235 bio = bio_alloc(GFP_NOIO, npages);
2236 if (!bio)
2237 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2238 return bio;
2239 }
2240 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2241 f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
2242 return NULL;
2243 }
2244
2245 return bio_alloc(GFP_KERNEL, npages);
2246 }
2247
is_idle(struct f2fs_sb_info * sbi,int type)2248 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2249 {
2250 if (sbi->gc_mode == GC_URGENT)
2251 return true;
2252
2253 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2254 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2255 get_pages(sbi, F2FS_WB_CP_DATA) ||
2256 get_pages(sbi, F2FS_DIO_READ) ||
2257 get_pages(sbi, F2FS_DIO_WRITE))
2258 return false;
2259
2260 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2261 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2262 return false;
2263
2264 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2265 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2266 return false;
2267
2268 return f2fs_time_over(sbi, type);
2269 }
2270
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2271 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2272 unsigned long index, void *item)
2273 {
2274 while (radix_tree_insert(root, index, item))
2275 cond_resched();
2276 }
2277
2278 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2279
IS_INODE(struct page * page)2280 static inline bool IS_INODE(struct page *page)
2281 {
2282 struct f2fs_node *p = F2FS_NODE(page);
2283
2284 return RAW_IS_INODE(p);
2285 }
2286
offset_in_addr(struct f2fs_inode * i)2287 static inline int offset_in_addr(struct f2fs_inode *i)
2288 {
2289 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2290 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2291 }
2292
blkaddr_in_node(struct f2fs_node * node)2293 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2294 {
2295 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2296 }
2297
2298 static inline int f2fs_has_extra_attr(struct inode *inode);
datablock_addr(struct inode * inode,struct page * node_page,unsigned int offset)2299 static inline block_t datablock_addr(struct inode *inode,
2300 struct page *node_page, unsigned int offset)
2301 {
2302 struct f2fs_node *raw_node;
2303 __le32 *addr_array;
2304 int base = 0;
2305 bool is_inode = IS_INODE(node_page);
2306
2307 raw_node = F2FS_NODE(node_page);
2308
2309 /* from GC path only */
2310 if (is_inode) {
2311 if (!inode)
2312 base = offset_in_addr(&raw_node->i);
2313 else if (f2fs_has_extra_attr(inode))
2314 base = get_extra_isize(inode);
2315 }
2316
2317 addr_array = blkaddr_in_node(raw_node);
2318 return le32_to_cpu(addr_array[base + offset]);
2319 }
2320
f2fs_test_bit(unsigned int nr,char * addr)2321 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2322 {
2323 int mask;
2324
2325 addr += (nr >> 3);
2326 mask = 1 << (7 - (nr & 0x07));
2327 return mask & *addr;
2328 }
2329
f2fs_set_bit(unsigned int nr,char * addr)2330 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2331 {
2332 int mask;
2333
2334 addr += (nr >> 3);
2335 mask = 1 << (7 - (nr & 0x07));
2336 *addr |= mask;
2337 }
2338
f2fs_clear_bit(unsigned int nr,char * addr)2339 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2340 {
2341 int mask;
2342
2343 addr += (nr >> 3);
2344 mask = 1 << (7 - (nr & 0x07));
2345 *addr &= ~mask;
2346 }
2347
f2fs_test_and_set_bit(unsigned int nr,char * addr)2348 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2349 {
2350 int mask;
2351 int ret;
2352
2353 addr += (nr >> 3);
2354 mask = 1 << (7 - (nr & 0x07));
2355 ret = mask & *addr;
2356 *addr |= mask;
2357 return ret;
2358 }
2359
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2360 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2361 {
2362 int mask;
2363 int ret;
2364
2365 addr += (nr >> 3);
2366 mask = 1 << (7 - (nr & 0x07));
2367 ret = mask & *addr;
2368 *addr &= ~mask;
2369 return ret;
2370 }
2371
f2fs_change_bit(unsigned int nr,char * addr)2372 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2373 {
2374 int mask;
2375
2376 addr += (nr >> 3);
2377 mask = 1 << (7 - (nr & 0x07));
2378 *addr ^= mask;
2379 }
2380
2381 /*
2382 * On-disk inode flags (f2fs_inode::i_flags)
2383 */
2384 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2385 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2386 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2387 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2388 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2389 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2390 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2391 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2392 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2393
2394 /* Flags that should be inherited by new inodes from their parent. */
2395 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2396 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2397 F2FS_CASEFOLD_FL)
2398
2399 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2400 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2401 F2FS_CASEFOLD_FL))
2402
2403 /* Flags that are appropriate for non-directories/regular files. */
2404 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2405
f2fs_mask_flags(umode_t mode,__u32 flags)2406 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2407 {
2408 if (S_ISDIR(mode))
2409 return flags;
2410 else if (S_ISREG(mode))
2411 return flags & F2FS_REG_FLMASK;
2412 else
2413 return flags & F2FS_OTHER_FLMASK;
2414 }
2415
2416 /* used for f2fs_inode_info->flags */
2417 enum {
2418 FI_NEW_INODE, /* indicate newly allocated inode */
2419 FI_DIRTY_INODE, /* indicate inode is dirty or not */
2420 FI_AUTO_RECOVER, /* indicate inode is recoverable */
2421 FI_DIRTY_DIR, /* indicate directory has dirty pages */
2422 FI_INC_LINK, /* need to increment i_nlink */
2423 FI_ACL_MODE, /* indicate acl mode */
2424 FI_NO_ALLOC, /* should not allocate any blocks */
2425 FI_FREE_NID, /* free allocated nide */
2426 FI_NO_EXTENT, /* not to use the extent cache */
2427 FI_INLINE_XATTR, /* used for inline xattr */
2428 FI_INLINE_DATA, /* used for inline data*/
2429 FI_INLINE_DENTRY, /* used for inline dentry */
2430 FI_APPEND_WRITE, /* inode has appended data */
2431 FI_UPDATE_WRITE, /* inode has in-place-update data */
2432 FI_NEED_IPU, /* used for ipu per file */
2433 FI_ATOMIC_FILE, /* indicate atomic file */
2434 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
2435 FI_VOLATILE_FILE, /* indicate volatile file */
2436 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2437 FI_DROP_CACHE, /* drop dirty page cache */
2438 FI_DATA_EXIST, /* indicate data exists */
2439 FI_INLINE_DOTS, /* indicate inline dot dentries */
2440 FI_DO_DEFRAG, /* indicate defragment is running */
2441 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
2442 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
2443 FI_HOT_DATA, /* indicate file is hot */
2444 FI_EXTRA_ATTR, /* indicate file has extra attribute */
2445 FI_PROJ_INHERIT, /* indicate file inherits projectid */
2446 FI_PIN_FILE, /* indicate file should not be gced */
2447 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2448 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
2449 };
2450
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2451 static inline void __mark_inode_dirty_flag(struct inode *inode,
2452 int flag, bool set)
2453 {
2454 switch (flag) {
2455 case FI_INLINE_XATTR:
2456 case FI_INLINE_DATA:
2457 case FI_INLINE_DENTRY:
2458 case FI_NEW_INODE:
2459 if (set)
2460 return;
2461 /* fall through */
2462 case FI_DATA_EXIST:
2463 case FI_INLINE_DOTS:
2464 case FI_PIN_FILE:
2465 f2fs_mark_inode_dirty_sync(inode, true);
2466 }
2467 }
2468
set_inode_flag(struct inode * inode,int flag)2469 static inline void set_inode_flag(struct inode *inode, int flag)
2470 {
2471 if (!test_bit(flag, &F2FS_I(inode)->flags))
2472 set_bit(flag, &F2FS_I(inode)->flags);
2473 __mark_inode_dirty_flag(inode, flag, true);
2474 }
2475
is_inode_flag_set(struct inode * inode,int flag)2476 static inline int is_inode_flag_set(struct inode *inode, int flag)
2477 {
2478 return test_bit(flag, &F2FS_I(inode)->flags);
2479 }
2480
clear_inode_flag(struct inode * inode,int flag)2481 static inline void clear_inode_flag(struct inode *inode, int flag)
2482 {
2483 if (test_bit(flag, &F2FS_I(inode)->flags))
2484 clear_bit(flag, &F2FS_I(inode)->flags);
2485 __mark_inode_dirty_flag(inode, flag, false);
2486 }
2487
f2fs_verity_in_progress(struct inode * inode)2488 static inline bool f2fs_verity_in_progress(struct inode *inode)
2489 {
2490 return IS_ENABLED(CONFIG_FS_VERITY) &&
2491 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2492 }
2493
set_acl_inode(struct inode * inode,umode_t mode)2494 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2495 {
2496 F2FS_I(inode)->i_acl_mode = mode;
2497 set_inode_flag(inode, FI_ACL_MODE);
2498 f2fs_mark_inode_dirty_sync(inode, false);
2499 }
2500
f2fs_i_links_write(struct inode * inode,bool inc)2501 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2502 {
2503 if (inc)
2504 inc_nlink(inode);
2505 else
2506 drop_nlink(inode);
2507 f2fs_mark_inode_dirty_sync(inode, true);
2508 }
2509
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2510 static inline void f2fs_i_blocks_write(struct inode *inode,
2511 block_t diff, bool add, bool claim)
2512 {
2513 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2514 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2515
2516 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2517 if (add) {
2518 if (claim)
2519 dquot_claim_block(inode, diff);
2520 else
2521 dquot_alloc_block_nofail(inode, diff);
2522 } else {
2523 dquot_free_block(inode, diff);
2524 }
2525
2526 f2fs_mark_inode_dirty_sync(inode, true);
2527 if (clean || recover)
2528 set_inode_flag(inode, FI_AUTO_RECOVER);
2529 }
2530
f2fs_i_size_write(struct inode * inode,loff_t i_size)2531 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2532 {
2533 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2534 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2535
2536 if (i_size_read(inode) == i_size)
2537 return;
2538
2539 i_size_write(inode, i_size);
2540 f2fs_mark_inode_dirty_sync(inode, true);
2541 if (clean || recover)
2542 set_inode_flag(inode, FI_AUTO_RECOVER);
2543 }
2544
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2545 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2546 {
2547 F2FS_I(inode)->i_current_depth = depth;
2548 f2fs_mark_inode_dirty_sync(inode, true);
2549 }
2550
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2551 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2552 unsigned int count)
2553 {
2554 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2555 f2fs_mark_inode_dirty_sync(inode, true);
2556 }
2557
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2558 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2559 {
2560 F2FS_I(inode)->i_xattr_nid = xnid;
2561 f2fs_mark_inode_dirty_sync(inode, true);
2562 }
2563
f2fs_i_pino_write(struct inode * inode,nid_t pino)2564 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2565 {
2566 F2FS_I(inode)->i_pino = pino;
2567 f2fs_mark_inode_dirty_sync(inode, true);
2568 }
2569
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2570 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2571 {
2572 struct f2fs_inode_info *fi = F2FS_I(inode);
2573
2574 if (ri->i_inline & F2FS_INLINE_XATTR)
2575 set_bit(FI_INLINE_XATTR, &fi->flags);
2576 if (ri->i_inline & F2FS_INLINE_DATA)
2577 set_bit(FI_INLINE_DATA, &fi->flags);
2578 if (ri->i_inline & F2FS_INLINE_DENTRY)
2579 set_bit(FI_INLINE_DENTRY, &fi->flags);
2580 if (ri->i_inline & F2FS_DATA_EXIST)
2581 set_bit(FI_DATA_EXIST, &fi->flags);
2582 if (ri->i_inline & F2FS_INLINE_DOTS)
2583 set_bit(FI_INLINE_DOTS, &fi->flags);
2584 if (ri->i_inline & F2FS_EXTRA_ATTR)
2585 set_bit(FI_EXTRA_ATTR, &fi->flags);
2586 if (ri->i_inline & F2FS_PIN_FILE)
2587 set_bit(FI_PIN_FILE, &fi->flags);
2588 }
2589
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2590 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2591 {
2592 ri->i_inline = 0;
2593
2594 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2595 ri->i_inline |= F2FS_INLINE_XATTR;
2596 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2597 ri->i_inline |= F2FS_INLINE_DATA;
2598 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2599 ri->i_inline |= F2FS_INLINE_DENTRY;
2600 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2601 ri->i_inline |= F2FS_DATA_EXIST;
2602 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2603 ri->i_inline |= F2FS_INLINE_DOTS;
2604 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2605 ri->i_inline |= F2FS_EXTRA_ATTR;
2606 if (is_inode_flag_set(inode, FI_PIN_FILE))
2607 ri->i_inline |= F2FS_PIN_FILE;
2608 }
2609
f2fs_has_extra_attr(struct inode * inode)2610 static inline int f2fs_has_extra_attr(struct inode *inode)
2611 {
2612 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2613 }
2614
f2fs_has_inline_xattr(struct inode * inode)2615 static inline int f2fs_has_inline_xattr(struct inode *inode)
2616 {
2617 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2618 }
2619
addrs_per_inode(struct inode * inode)2620 static inline unsigned int addrs_per_inode(struct inode *inode)
2621 {
2622 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2623 get_inline_xattr_addrs(inode);
2624 return ALIGN_DOWN(addrs, 1);
2625 }
2626
addrs_per_block(struct inode * inode)2627 static inline unsigned int addrs_per_block(struct inode *inode)
2628 {
2629 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, 1);
2630 }
2631
inline_xattr_addr(struct inode * inode,struct page * page)2632 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2633 {
2634 struct f2fs_inode *ri = F2FS_INODE(page);
2635
2636 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2637 get_inline_xattr_addrs(inode)]);
2638 }
2639
inline_xattr_size(struct inode * inode)2640 static inline int inline_xattr_size(struct inode *inode)
2641 {
2642 if (f2fs_has_inline_xattr(inode))
2643 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2644 return 0;
2645 }
2646
f2fs_has_inline_data(struct inode * inode)2647 static inline int f2fs_has_inline_data(struct inode *inode)
2648 {
2649 return is_inode_flag_set(inode, FI_INLINE_DATA);
2650 }
2651
f2fs_exist_data(struct inode * inode)2652 static inline int f2fs_exist_data(struct inode *inode)
2653 {
2654 return is_inode_flag_set(inode, FI_DATA_EXIST);
2655 }
2656
f2fs_has_inline_dots(struct inode * inode)2657 static inline int f2fs_has_inline_dots(struct inode *inode)
2658 {
2659 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2660 }
2661
f2fs_is_pinned_file(struct inode * inode)2662 static inline bool f2fs_is_pinned_file(struct inode *inode)
2663 {
2664 return is_inode_flag_set(inode, FI_PIN_FILE);
2665 }
2666
f2fs_is_atomic_file(struct inode * inode)2667 static inline bool f2fs_is_atomic_file(struct inode *inode)
2668 {
2669 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2670 }
2671
f2fs_is_commit_atomic_write(struct inode * inode)2672 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2673 {
2674 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2675 }
2676
f2fs_is_volatile_file(struct inode * inode)2677 static inline bool f2fs_is_volatile_file(struct inode *inode)
2678 {
2679 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2680 }
2681
f2fs_is_first_block_written(struct inode * inode)2682 static inline bool f2fs_is_first_block_written(struct inode *inode)
2683 {
2684 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2685 }
2686
f2fs_is_drop_cache(struct inode * inode)2687 static inline bool f2fs_is_drop_cache(struct inode *inode)
2688 {
2689 return is_inode_flag_set(inode, FI_DROP_CACHE);
2690 }
2691
inline_data_addr(struct inode * inode,struct page * page)2692 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2693 {
2694 struct f2fs_inode *ri = F2FS_INODE(page);
2695 int extra_size = get_extra_isize(inode);
2696
2697 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2698 }
2699
f2fs_has_inline_dentry(struct inode * inode)2700 static inline int f2fs_has_inline_dentry(struct inode *inode)
2701 {
2702 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2703 }
2704
is_file(struct inode * inode,int type)2705 static inline int is_file(struct inode *inode, int type)
2706 {
2707 return F2FS_I(inode)->i_advise & type;
2708 }
2709
set_file(struct inode * inode,int type)2710 static inline void set_file(struct inode *inode, int type)
2711 {
2712 F2FS_I(inode)->i_advise |= type;
2713 f2fs_mark_inode_dirty_sync(inode, true);
2714 }
2715
clear_file(struct inode * inode,int type)2716 static inline void clear_file(struct inode *inode, int type)
2717 {
2718 F2FS_I(inode)->i_advise &= ~type;
2719 f2fs_mark_inode_dirty_sync(inode, true);
2720 }
2721
f2fs_is_time_consistent(struct inode * inode)2722 static inline bool f2fs_is_time_consistent(struct inode *inode)
2723 {
2724 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2725 return false;
2726 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2727 return false;
2728 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2729 return false;
2730 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2731 &F2FS_I(inode)->i_crtime))
2732 return false;
2733 return true;
2734 }
2735
f2fs_skip_inode_update(struct inode * inode,int dsync)2736 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2737 {
2738 bool ret;
2739
2740 if (dsync) {
2741 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2742
2743 spin_lock(&sbi->inode_lock[DIRTY_META]);
2744 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2745 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2746 return ret;
2747 }
2748 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2749 file_keep_isize(inode) ||
2750 i_size_read(inode) & ~PAGE_MASK)
2751 return false;
2752
2753 if (!f2fs_is_time_consistent(inode))
2754 return false;
2755
2756 down_read(&F2FS_I(inode)->i_sem);
2757 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2758 up_read(&F2FS_I(inode)->i_sem);
2759
2760 return ret;
2761 }
2762
f2fs_readonly(struct super_block * sb)2763 static inline bool f2fs_readonly(struct super_block *sb)
2764 {
2765 return sb_rdonly(sb);
2766 }
2767
f2fs_cp_error(struct f2fs_sb_info * sbi)2768 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2769 {
2770 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2771 }
2772
is_dot_dotdot(const struct qstr * str)2773 static inline bool is_dot_dotdot(const struct qstr *str)
2774 {
2775 if (str->len == 1 && str->name[0] == '.')
2776 return true;
2777
2778 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2779 return true;
2780
2781 return false;
2782 }
2783
f2fs_may_extent_tree(struct inode * inode)2784 static inline bool f2fs_may_extent_tree(struct inode *inode)
2785 {
2786 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2787
2788 if (!test_opt(sbi, EXTENT_CACHE) ||
2789 is_inode_flag_set(inode, FI_NO_EXTENT))
2790 return false;
2791
2792 /*
2793 * for recovered files during mount do not create extents
2794 * if shrinker is not registered.
2795 */
2796 if (list_empty(&sbi->s_list))
2797 return false;
2798
2799 return S_ISREG(inode->i_mode);
2800 }
2801
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2802 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2803 size_t size, gfp_t flags)
2804 {
2805 void *ret;
2806
2807 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2808 f2fs_show_injection_info(sbi, FAULT_KMALLOC);
2809 return NULL;
2810 }
2811
2812 ret = kmalloc(size, flags);
2813 if (ret)
2814 return ret;
2815
2816 return kvmalloc(size, flags);
2817 }
2818
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2819 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2820 size_t size, gfp_t flags)
2821 {
2822 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2823 }
2824
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2825 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2826 size_t size, gfp_t flags)
2827 {
2828 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2829 f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
2830 return NULL;
2831 }
2832
2833 return kvmalloc(size, flags);
2834 }
2835
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2836 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2837 size_t size, gfp_t flags)
2838 {
2839 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2840 }
2841
get_extra_isize(struct inode * inode)2842 static inline int get_extra_isize(struct inode *inode)
2843 {
2844 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2845 }
2846
get_inline_xattr_addrs(struct inode * inode)2847 static inline int get_inline_xattr_addrs(struct inode *inode)
2848 {
2849 return F2FS_I(inode)->i_inline_xattr_size;
2850 }
2851
2852 #define f2fs_get_inode_mode(i) \
2853 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2854 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2855
2856 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2857 (offsetof(struct f2fs_inode, i_extra_end) - \
2858 offsetof(struct f2fs_inode, i_extra_isize)) \
2859
2860 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2861 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2862 ((offsetof(typeof(*(f2fs_inode)), field) + \
2863 sizeof((f2fs_inode)->field)) \
2864 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
2865
f2fs_reset_iostat(struct f2fs_sb_info * sbi)2866 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2867 {
2868 int i;
2869
2870 spin_lock(&sbi->iostat_lock);
2871 for (i = 0; i < NR_IO_TYPE; i++)
2872 sbi->write_iostat[i] = 0;
2873 spin_unlock(&sbi->iostat_lock);
2874 }
2875
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)2876 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2877 enum iostat_type type, unsigned long long io_bytes)
2878 {
2879 if (!sbi->iostat_enable)
2880 return;
2881 spin_lock(&sbi->iostat_lock);
2882 sbi->write_iostat[type] += io_bytes;
2883
2884 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2885 sbi->write_iostat[APP_BUFFERED_IO] =
2886 sbi->write_iostat[APP_WRITE_IO] -
2887 sbi->write_iostat[APP_DIRECT_IO];
2888 spin_unlock(&sbi->iostat_lock);
2889 }
2890
2891 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
2892
2893 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
2894
2895 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2896 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)2897 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2898 block_t blkaddr, int type)
2899 {
2900 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2901 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
2902 blkaddr, type);
2903 f2fs_bug_on(sbi, 1);
2904 }
2905 }
2906
__is_valid_data_blkaddr(block_t blkaddr)2907 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2908 {
2909 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2910 return false;
2911 return true;
2912 }
2913
f2fs_set_page_private(struct page * page,unsigned long data)2914 static inline void f2fs_set_page_private(struct page *page,
2915 unsigned long data)
2916 {
2917 if (PagePrivate(page))
2918 return;
2919
2920 get_page(page);
2921 SetPagePrivate(page);
2922 set_page_private(page, data);
2923 }
2924
f2fs_clear_page_private(struct page * page)2925 static inline void f2fs_clear_page_private(struct page *page)
2926 {
2927 if (!PagePrivate(page))
2928 return;
2929
2930 set_page_private(page, 0);
2931 ClearPagePrivate(page);
2932 f2fs_put_page(page, 0);
2933 }
2934
2935 /*
2936 * file.c
2937 */
2938 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2939 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2940 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2941 int f2fs_truncate(struct inode *inode);
2942 int f2fs_getattr(const struct path *path, struct kstat *stat,
2943 u32 request_mask, unsigned int flags);
2944 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2945 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2946 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2947 int f2fs_precache_extents(struct inode *inode);
2948 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2949 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2950 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2951 int f2fs_pin_file_control(struct inode *inode, bool inc);
2952
2953 /*
2954 * inode.c
2955 */
2956 void f2fs_set_inode_flags(struct inode *inode);
2957 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2958 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2959 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2960 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2961 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2962 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2963 void f2fs_update_inode_page(struct inode *inode);
2964 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2965 void f2fs_evict_inode(struct inode *inode);
2966 void f2fs_handle_failed_inode(struct inode *inode);
2967
2968 /*
2969 * namei.c
2970 */
2971 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2972 bool hot, bool set);
2973 struct dentry *f2fs_get_parent(struct dentry *child);
2974
2975 extern int f2fs_ci_compare(const struct inode *parent,
2976 const struct qstr *name,
2977 const struct qstr *entry,
2978 bool quick);
2979
2980 /*
2981 * dir.c
2982 */
2983 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2984 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2985 f2fs_hash_t namehash, int *max_slots,
2986 struct f2fs_dentry_ptr *d);
2987 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2988 unsigned int start_pos, struct fscrypt_str *fstr);
2989 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2990 struct f2fs_dentry_ptr *d);
2991 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2992 const struct qstr *new_name,
2993 const struct qstr *orig_name, struct page *dpage);
2994 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2995 unsigned int current_depth);
2996 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2997 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2998 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2999 struct fscrypt_name *fname, struct page **res_page);
3000 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3001 const struct qstr *child, struct page **res_page);
3002 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3003 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3004 struct page **page);
3005 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3006 struct page *page, struct inode *inode);
3007 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3008 const struct qstr *name, f2fs_hash_t name_hash,
3009 unsigned int bit_pos);
3010 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
3011 const struct qstr *orig_name,
3012 struct inode *inode, nid_t ino, umode_t mode);
3013 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
3014 struct inode *inode, nid_t ino, umode_t mode);
3015 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3016 struct inode *inode, nid_t ino, umode_t mode);
3017 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3018 struct inode *dir, struct inode *inode);
3019 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3020 bool f2fs_empty_dir(struct inode *dir);
3021
f2fs_add_link(struct dentry * dentry,struct inode * inode)3022 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3023 {
3024 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3025 inode, inode->i_ino, inode->i_mode);
3026 }
3027
3028 /*
3029 * super.c
3030 */
3031 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3032 void f2fs_inode_synced(struct inode *inode);
3033 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3034 int f2fs_quota_sync(struct super_block *sb, int type);
3035 void f2fs_quota_off_umount(struct super_block *sb);
3036 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3037 int f2fs_sync_fs(struct super_block *sb, int sync);
3038 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3039
3040 /*
3041 * hash.c
3042 */
3043 f2fs_hash_t f2fs_dentry_hash(const struct inode *dir,
3044 const struct qstr *name_info, struct fscrypt_name *fname);
3045
3046 /*
3047 * node.c
3048 */
3049 struct dnode_of_data;
3050 struct node_info;
3051
3052 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3053 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3054 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3055 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3056 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3057 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3058 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3059 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3060 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3061 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3062 struct node_info *ni);
3063 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3064 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3065 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3066 int f2fs_truncate_xattr_node(struct inode *inode);
3067 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3068 unsigned int seq_id);
3069 int f2fs_remove_inode_page(struct inode *inode);
3070 struct page *f2fs_new_inode_page(struct inode *inode);
3071 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3072 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3073 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3074 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3075 int f2fs_move_node_page(struct page *node_page, int gc_type);
3076 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3077 struct writeback_control *wbc, bool atomic,
3078 unsigned int *seq_id);
3079 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3080 struct writeback_control *wbc,
3081 bool do_balance, enum iostat_type io_type);
3082 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3083 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3084 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3085 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3086 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3087 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3088 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3089 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3090 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3091 unsigned int segno, struct f2fs_summary_block *sum);
3092 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3093 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3094 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3095 int __init f2fs_create_node_manager_caches(void);
3096 void f2fs_destroy_node_manager_caches(void);
3097
3098 /*
3099 * segment.c
3100 */
3101 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3102 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3103 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3104 void f2fs_drop_inmem_pages(struct inode *inode);
3105 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3106 int f2fs_commit_inmem_pages(struct inode *inode);
3107 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3108 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3109 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3110 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3111 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3112 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3113 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3114 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3115 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3116 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3117 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3118 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3119 struct cp_control *cpc);
3120 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3121 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3122 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3123 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3124 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3125 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3126 unsigned int start, unsigned int end);
3127 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type);
3128 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3129 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3130 struct cp_control *cpc);
3131 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3132 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3133 block_t blk_addr);
3134 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3135 enum iostat_type io_type);
3136 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3137 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3138 struct f2fs_io_info *fio);
3139 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3140 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3141 block_t old_blkaddr, block_t new_blkaddr,
3142 bool recover_curseg, bool recover_newaddr);
3143 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3144 block_t old_addr, block_t new_addr,
3145 unsigned char version, bool recover_curseg,
3146 bool recover_newaddr);
3147 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3148 block_t old_blkaddr, block_t *new_blkaddr,
3149 struct f2fs_summary *sum, int type,
3150 struct f2fs_io_info *fio, bool add_list);
3151 void f2fs_wait_on_page_writeback(struct page *page,
3152 enum page_type type, bool ordered, bool locked);
3153 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3154 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3155 block_t len);
3156 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3157 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3158 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3159 unsigned int val, int alloc);
3160 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3161 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3162 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3163 int __init f2fs_create_segment_manager_caches(void);
3164 void f2fs_destroy_segment_manager_caches(void);
3165 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3166 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3167 enum page_type type, enum temp_type temp);
3168
3169 /*
3170 * checkpoint.c
3171 */
3172 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3173 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3174 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3175 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3176 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3177 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3178 block_t blkaddr, int type);
3179 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3180 int type, bool sync);
3181 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3182 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3183 long nr_to_write, enum iostat_type io_type);
3184 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3185 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3186 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3187 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3188 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3189 unsigned int devidx, int type);
3190 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3191 unsigned int devidx, int type);
3192 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3193 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3194 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3195 void f2fs_add_orphan_inode(struct inode *inode);
3196 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3197 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3198 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3199 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3200 void f2fs_remove_dirty_inode(struct inode *inode);
3201 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3202 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3203 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3204 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3205 int __init f2fs_create_checkpoint_caches(void);
3206 void f2fs_destroy_checkpoint_caches(void);
3207
3208 /*
3209 * data.c
3210 */
3211 int f2fs_init_post_read_processing(void);
3212 void f2fs_destroy_post_read_processing(void);
3213 int f2fs_init_bio_entry_cache(void);
3214 void f2fs_destroy_bio_entry_cache(void);
3215 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3216 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3217 struct inode *inode, struct page *page,
3218 nid_t ino, enum page_type type);
3219 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3220 struct bio **bio, struct page *page);
3221 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3222 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3223 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3224 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3225 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3226 block_t blk_addr, struct bio *bio);
3227 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3228 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3229 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3230 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3231 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3232 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3233 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3234 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3235 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3236 int op_flags, bool for_write);
3237 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3238 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3239 bool for_write);
3240 struct page *f2fs_get_new_data_page(struct inode *inode,
3241 struct page *ipage, pgoff_t index, bool new_i_size);
3242 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3243 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3244 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3245 int create, int flag);
3246 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3247 u64 start, u64 len);
3248 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3249 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3250 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3251 unsigned int length);
3252 int f2fs_release_page(struct page *page, gfp_t wait);
3253 #ifdef CONFIG_MIGRATION
3254 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3255 struct page *page, enum migrate_mode mode);
3256 #endif
3257 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3258 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3259
3260 /*
3261 * gc.c
3262 */
3263 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3264 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3265 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3266 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3267 unsigned int segno);
3268 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3269 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3270
3271 /*
3272 * recovery.c
3273 */
3274 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3275 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3276
3277 /*
3278 * debug.c
3279 */
3280 #ifdef CONFIG_F2FS_STAT_FS
3281 struct f2fs_stat_info {
3282 struct list_head stat_list;
3283 struct f2fs_sb_info *sbi;
3284 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3285 int main_area_segs, main_area_sections, main_area_zones;
3286 unsigned long long hit_largest, hit_cached, hit_rbtree;
3287 unsigned long long hit_total, total_ext;
3288 int ext_tree, zombie_tree, ext_node;
3289 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3290 int ndirty_data, ndirty_qdata;
3291 int inmem_pages;
3292 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3293 int nats, dirty_nats, sits, dirty_sits;
3294 int free_nids, avail_nids, alloc_nids;
3295 int total_count, utilization;
3296 int bg_gc, nr_wb_cp_data, nr_wb_data;
3297 int nr_rd_data, nr_rd_node, nr_rd_meta;
3298 int nr_dio_read, nr_dio_write;
3299 unsigned int io_skip_bggc, other_skip_bggc;
3300 int nr_flushing, nr_flushed, flush_list_empty;
3301 int nr_discarding, nr_discarded;
3302 int nr_discard_cmd;
3303 unsigned int undiscard_blks;
3304 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3305 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3306 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3307 unsigned int bimodal, avg_vblocks;
3308 int util_free, util_valid, util_invalid;
3309 int rsvd_segs, overp_segs;
3310 int dirty_count, node_pages, meta_pages;
3311 int prefree_count, call_count, cp_count, bg_cp_count;
3312 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3313 int bg_node_segs, bg_data_segs;
3314 int tot_blks, data_blks, node_blks;
3315 int bg_data_blks, bg_node_blks;
3316 unsigned long long skipped_atomic_files[2];
3317 int curseg[NR_CURSEG_TYPE];
3318 int cursec[NR_CURSEG_TYPE];
3319 int curzone[NR_CURSEG_TYPE];
3320
3321 unsigned int meta_count[META_MAX];
3322 unsigned int segment_count[2];
3323 unsigned int block_count[2];
3324 unsigned int inplace_count;
3325 unsigned long long base_mem, cache_mem, page_mem;
3326 };
3327
F2FS_STAT(struct f2fs_sb_info * sbi)3328 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3329 {
3330 return (struct f2fs_stat_info *)sbi->stat_info;
3331 }
3332
3333 #define stat_inc_cp_count(si) ((si)->cp_count++)
3334 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3335 #define stat_inc_call_count(si) ((si)->call_count++)
3336 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
3337 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3338 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3339 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3340 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3341 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3342 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3343 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3344 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3345 #define stat_inc_inline_xattr(inode) \
3346 do { \
3347 if (f2fs_has_inline_xattr(inode)) \
3348 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3349 } while (0)
3350 #define stat_dec_inline_xattr(inode) \
3351 do { \
3352 if (f2fs_has_inline_xattr(inode)) \
3353 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3354 } while (0)
3355 #define stat_inc_inline_inode(inode) \
3356 do { \
3357 if (f2fs_has_inline_data(inode)) \
3358 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3359 } while (0)
3360 #define stat_dec_inline_inode(inode) \
3361 do { \
3362 if (f2fs_has_inline_data(inode)) \
3363 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3364 } while (0)
3365 #define stat_inc_inline_dir(inode) \
3366 do { \
3367 if (f2fs_has_inline_dentry(inode)) \
3368 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3369 } while (0)
3370 #define stat_dec_inline_dir(inode) \
3371 do { \
3372 if (f2fs_has_inline_dentry(inode)) \
3373 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3374 } while (0)
3375 #define stat_inc_meta_count(sbi, blkaddr) \
3376 do { \
3377 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3378 atomic_inc(&(sbi)->meta_count[META_CP]); \
3379 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3380 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3381 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3382 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3383 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3384 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3385 } while (0)
3386 #define stat_inc_seg_type(sbi, curseg) \
3387 ((sbi)->segment_count[(curseg)->alloc_type]++)
3388 #define stat_inc_block_count(sbi, curseg) \
3389 ((sbi)->block_count[(curseg)->alloc_type]++)
3390 #define stat_inc_inplace_blocks(sbi) \
3391 (atomic_inc(&(sbi)->inplace_count))
3392 #define stat_inc_atomic_write(inode) \
3393 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3394 #define stat_dec_atomic_write(inode) \
3395 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3396 #define stat_update_max_atomic_write(inode) \
3397 do { \
3398 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
3399 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3400 if (cur > max) \
3401 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3402 } while (0)
3403 #define stat_inc_volatile_write(inode) \
3404 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3405 #define stat_dec_volatile_write(inode) \
3406 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3407 #define stat_update_max_volatile_write(inode) \
3408 do { \
3409 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3410 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3411 if (cur > max) \
3412 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3413 } while (0)
3414 #define stat_inc_seg_count(sbi, type, gc_type) \
3415 do { \
3416 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3417 si->tot_segs++; \
3418 if ((type) == SUM_TYPE_DATA) { \
3419 si->data_segs++; \
3420 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3421 } else { \
3422 si->node_segs++; \
3423 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3424 } \
3425 } while (0)
3426
3427 #define stat_inc_tot_blk_count(si, blks) \
3428 ((si)->tot_blks += (blks))
3429
3430 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3431 do { \
3432 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3433 stat_inc_tot_blk_count(si, blks); \
3434 si->data_blks += (blks); \
3435 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3436 } while (0)
3437
3438 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3439 do { \
3440 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3441 stat_inc_tot_blk_count(si, blks); \
3442 si->node_blks += (blks); \
3443 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3444 } while (0)
3445
3446 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3447 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3448 void __init f2fs_create_root_stats(void);
3449 void f2fs_destroy_root_stats(void);
3450 #else
3451 #define stat_inc_cp_count(si) do { } while (0)
3452 #define stat_inc_bg_cp_count(si) do { } while (0)
3453 #define stat_inc_call_count(si) do { } while (0)
3454 #define stat_inc_bggc_count(si) do { } while (0)
3455 #define stat_io_skip_bggc_count(sbi) do { } while (0)
3456 #define stat_other_skip_bggc_count(sbi) do { } while (0)
3457 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3458 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3459 #define stat_inc_total_hit(sb) do { } while (0)
3460 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
3461 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3462 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3463 #define stat_inc_inline_xattr(inode) do { } while (0)
3464 #define stat_dec_inline_xattr(inode) do { } while (0)
3465 #define stat_inc_inline_inode(inode) do { } while (0)
3466 #define stat_dec_inline_inode(inode) do { } while (0)
3467 #define stat_inc_inline_dir(inode) do { } while (0)
3468 #define stat_dec_inline_dir(inode) do { } while (0)
3469 #define stat_inc_atomic_write(inode) do { } while (0)
3470 #define stat_dec_atomic_write(inode) do { } while (0)
3471 #define stat_update_max_atomic_write(inode) do { } while (0)
3472 #define stat_inc_volatile_write(inode) do { } while (0)
3473 #define stat_dec_volatile_write(inode) do { } while (0)
3474 #define stat_update_max_volatile_write(inode) do { } while (0)
3475 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
3476 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3477 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3478 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3479 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3480 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3481 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3482 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3483
f2fs_build_stats(struct f2fs_sb_info * sbi)3484 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3485 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3486 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)3487 static inline void f2fs_destroy_root_stats(void) { }
3488 #endif
3489
3490 extern const struct file_operations f2fs_dir_operations;
3491 #ifdef CONFIG_UNICODE
3492 extern const struct dentry_operations f2fs_dentry_ops;
3493 #endif
3494 extern const struct file_operations f2fs_file_operations;
3495 extern const struct inode_operations f2fs_file_inode_operations;
3496 extern const struct address_space_operations f2fs_dblock_aops;
3497 extern const struct address_space_operations f2fs_node_aops;
3498 extern const struct address_space_operations f2fs_meta_aops;
3499 extern const struct inode_operations f2fs_dir_inode_operations;
3500 extern const struct inode_operations f2fs_symlink_inode_operations;
3501 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3502 extern const struct inode_operations f2fs_special_inode_operations;
3503 extern struct kmem_cache *f2fs_inode_entry_slab;
3504
3505 /*
3506 * inline.c
3507 */
3508 bool f2fs_may_inline_data(struct inode *inode);
3509 bool f2fs_may_inline_dentry(struct inode *inode);
3510 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3511 void f2fs_truncate_inline_inode(struct inode *inode,
3512 struct page *ipage, u64 from);
3513 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3514 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3515 int f2fs_convert_inline_inode(struct inode *inode);
3516 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3517 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3518 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3519 struct fscrypt_name *fname, struct page **res_page);
3520 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3521 struct page *ipage);
3522 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3523 const struct qstr *orig_name,
3524 struct inode *inode, nid_t ino, umode_t mode);
3525 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3526 struct page *page, struct inode *dir,
3527 struct inode *inode);
3528 bool f2fs_empty_inline_dir(struct inode *dir);
3529 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3530 struct fscrypt_str *fstr);
3531 int f2fs_inline_data_fiemap(struct inode *inode,
3532 struct fiemap_extent_info *fieinfo,
3533 __u64 start, __u64 len);
3534
3535 /*
3536 * shrinker.c
3537 */
3538 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3539 struct shrink_control *sc);
3540 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3541 struct shrink_control *sc);
3542 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3543 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3544
3545 /*
3546 * extent_cache.c
3547 */
3548 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3549 struct rb_entry *cached_re, unsigned int ofs);
3550 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3551 struct rb_root_cached *root,
3552 struct rb_node **parent,
3553 unsigned int ofs, bool *leftmost);
3554 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3555 struct rb_entry *cached_re, unsigned int ofs,
3556 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3557 struct rb_node ***insert_p, struct rb_node **insert_parent,
3558 bool force, bool *leftmost);
3559 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3560 struct rb_root_cached *root);
3561 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3562 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3563 void f2fs_drop_extent_tree(struct inode *inode);
3564 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3565 void f2fs_destroy_extent_tree(struct inode *inode);
3566 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3567 struct extent_info *ei);
3568 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3569 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3570 pgoff_t fofs, block_t blkaddr, unsigned int len);
3571 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3572 int __init f2fs_create_extent_cache(void);
3573 void f2fs_destroy_extent_cache(void);
3574
3575 /*
3576 * sysfs.c
3577 */
3578 int __init f2fs_init_sysfs(void);
3579 void f2fs_exit_sysfs(void);
3580 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3581 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3582
3583 /* verity.c */
3584 extern const struct fsverity_operations f2fs_verityops;
3585
3586 /*
3587 * crypto support
3588 */
f2fs_encrypted_file(struct inode * inode)3589 static inline bool f2fs_encrypted_file(struct inode *inode)
3590 {
3591 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3592 }
3593
f2fs_set_encrypted_inode(struct inode * inode)3594 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3595 {
3596 #ifdef CONFIG_FS_ENCRYPTION
3597 file_set_encrypt(inode);
3598 f2fs_set_inode_flags(inode);
3599 #endif
3600 }
3601
3602 /*
3603 * Returns true if the reads of the inode's data need to undergo some
3604 * postprocessing step, like decryption or authenticity verification.
3605 */
f2fs_post_read_required(struct inode * inode)3606 static inline bool f2fs_post_read_required(struct inode *inode)
3607 {
3608 return f2fs_encrypted_file(inode) || fsverity_active(inode);
3609 }
3610
3611 #define F2FS_FEATURE_FUNCS(name, flagname) \
3612 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3613 { \
3614 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3615 }
3616
3617 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3618 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3619 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3620 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3621 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3622 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3623 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3624 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3625 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3626 F2FS_FEATURE_FUNCS(verity, VERITY);
3627 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3628 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3629
3630 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)3631 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3632 block_t blkaddr)
3633 {
3634 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3635
3636 return test_bit(zno, FDEV(devi).blkz_seq);
3637 }
3638 #endif
3639
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)3640 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3641 {
3642 return f2fs_sb_has_blkzoned(sbi);
3643 }
3644
f2fs_bdev_support_discard(struct block_device * bdev)3645 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3646 {
3647 return blk_queue_discard(bdev_get_queue(bdev)) ||
3648 bdev_is_zoned(bdev);
3649 }
3650
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)3651 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3652 {
3653 int i;
3654
3655 if (!f2fs_is_multi_device(sbi))
3656 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3657
3658 for (i = 0; i < sbi->s_ndevs; i++)
3659 if (f2fs_bdev_support_discard(FDEV(i).bdev))
3660 return true;
3661 return false;
3662 }
3663
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)3664 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3665 {
3666 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3667 f2fs_hw_should_discard(sbi);
3668 }
3669
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)3670 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
3671 {
3672 int i;
3673
3674 if (!f2fs_is_multi_device(sbi))
3675 return bdev_read_only(sbi->sb->s_bdev);
3676
3677 for (i = 0; i < sbi->s_ndevs; i++)
3678 if (bdev_read_only(FDEV(i).bdev))
3679 return true;
3680 return false;
3681 }
3682
3683
set_opt_mode(struct f2fs_sb_info * sbi,unsigned int mt)3684 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3685 {
3686 clear_opt(sbi, ADAPTIVE);
3687 clear_opt(sbi, LFS);
3688
3689 switch (mt) {
3690 case F2FS_MOUNT_ADAPTIVE:
3691 set_opt(sbi, ADAPTIVE);
3692 break;
3693 case F2FS_MOUNT_LFS:
3694 set_opt(sbi, LFS);
3695 break;
3696 }
3697 }
3698
f2fs_may_encrypt(struct inode * inode)3699 static inline bool f2fs_may_encrypt(struct inode *inode)
3700 {
3701 #ifdef CONFIG_FS_ENCRYPTION
3702 umode_t mode = inode->i_mode;
3703
3704 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3705 #else
3706 return false;
3707 #endif
3708 }
3709
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)3710 static inline int block_unaligned_IO(struct inode *inode,
3711 struct kiocb *iocb, struct iov_iter *iter)
3712 {
3713 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3714 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3715 loff_t offset = iocb->ki_pos;
3716 unsigned long align = offset | iov_iter_alignment(iter);
3717
3718 return align & blocksize_mask;
3719 }
3720
allow_outplace_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)3721 static inline int allow_outplace_dio(struct inode *inode,
3722 struct kiocb *iocb, struct iov_iter *iter)
3723 {
3724 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3725 int rw = iov_iter_rw(iter);
3726
3727 return (test_opt(sbi, LFS) && (rw == WRITE) &&
3728 !block_unaligned_IO(inode, iocb, iter));
3729 }
3730
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)3731 static inline bool f2fs_force_buffered_io(struct inode *inode,
3732 struct kiocb *iocb, struct iov_iter *iter)
3733 {
3734 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3735 int rw = iov_iter_rw(iter);
3736
3737 if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && f2fs_encrypted_file(inode)) {
3738 if (!fscrypt_inode_uses_inline_crypto(inode) ||
3739 !IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter),
3740 F2FS_BLKSIZE))
3741 return true;
3742 }
3743 if (fsverity_active(inode))
3744 return true;
3745 if (f2fs_is_multi_device(sbi))
3746 return true;
3747 /*
3748 * for blkzoned device, fallback direct IO to buffered IO, so
3749 * all IOs can be serialized by log-structured write.
3750 */
3751 if (f2fs_sb_has_blkzoned(sbi))
3752 return true;
3753 if (test_opt(sbi, LFS) && (rw == WRITE)) {
3754 if (block_unaligned_IO(inode, iocb, iter))
3755 return true;
3756 if (F2FS_IO_ALIGNED(sbi))
3757 return true;
3758 }
3759 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
3760 !IS_SWAPFILE(inode))
3761 return true;
3762
3763 return false;
3764 }
3765
3766 #ifdef CONFIG_F2FS_FAULT_INJECTION
3767 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3768 unsigned int type);
3769 #else
3770 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
3771 #endif
3772
is_journalled_quota(struct f2fs_sb_info * sbi)3773 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3774 {
3775 #ifdef CONFIG_QUOTA
3776 if (f2fs_sb_has_quota_ino(sbi))
3777 return true;
3778 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3779 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3780 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3781 return true;
3782 #endif
3783 return false;
3784 }
3785
3786 #define EFSBADCRC EBADMSG /* Bad CRC detected */
3787 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
3788
3789 #endif /* _LINUX_F2FS_H */
3790