• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2014 Facebook.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/stacktrace.h>
8 #include "ctree.h"
9 #include "disk-io.h"
10 #include "locking.h"
11 #include "delayed-ref.h"
12 #include "ref-verify.h"
13 
14 /*
15  * Used to keep track the roots and number of refs each root has for a given
16  * bytenr.  This just tracks the number of direct references, no shared
17  * references.
18  */
19 struct root_entry {
20 	u64 root_objectid;
21 	u64 num_refs;
22 	struct rb_node node;
23 };
24 
25 /*
26  * These are meant to represent what should exist in the extent tree, these can
27  * be used to verify the extent tree is consistent as these should all match
28  * what the extent tree says.
29  */
30 struct ref_entry {
31 	u64 root_objectid;
32 	u64 parent;
33 	u64 owner;
34 	u64 offset;
35 	u64 num_refs;
36 	struct rb_node node;
37 };
38 
39 #define MAX_TRACE	16
40 
41 /*
42  * Whenever we add/remove a reference we record the action.  The action maps
43  * back to the delayed ref action.  We hold the ref we are changing in the
44  * action so we can account for the history properly, and we record the root we
45  * were called with since it could be different from ref_root.  We also store
46  * stack traces because that's how I roll.
47  */
48 struct ref_action {
49 	int action;
50 	u64 root;
51 	struct ref_entry ref;
52 	struct list_head list;
53 	unsigned long trace[MAX_TRACE];
54 	unsigned int trace_len;
55 };
56 
57 /*
58  * One of these for every block we reference, it holds the roots and references
59  * to it as well as all of the ref actions that have occurred to it.  We never
60  * free it until we unmount the file system in order to make sure re-allocations
61  * are happening properly.
62  */
63 struct block_entry {
64 	u64 bytenr;
65 	u64 len;
66 	u64 num_refs;
67 	int metadata;
68 	int from_disk;
69 	struct rb_root roots;
70 	struct rb_root refs;
71 	struct rb_node node;
72 	struct list_head actions;
73 };
74 
insert_block_entry(struct rb_root * root,struct block_entry * be)75 static struct block_entry *insert_block_entry(struct rb_root *root,
76 					      struct block_entry *be)
77 {
78 	struct rb_node **p = &root->rb_node;
79 	struct rb_node *parent_node = NULL;
80 	struct block_entry *entry;
81 
82 	while (*p) {
83 		parent_node = *p;
84 		entry = rb_entry(parent_node, struct block_entry, node);
85 		if (entry->bytenr > be->bytenr)
86 			p = &(*p)->rb_left;
87 		else if (entry->bytenr < be->bytenr)
88 			p = &(*p)->rb_right;
89 		else
90 			return entry;
91 	}
92 
93 	rb_link_node(&be->node, parent_node, p);
94 	rb_insert_color(&be->node, root);
95 	return NULL;
96 }
97 
lookup_block_entry(struct rb_root * root,u64 bytenr)98 static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
99 {
100 	struct rb_node *n;
101 	struct block_entry *entry = NULL;
102 
103 	n = root->rb_node;
104 	while (n) {
105 		entry = rb_entry(n, struct block_entry, node);
106 		if (entry->bytenr < bytenr)
107 			n = n->rb_right;
108 		else if (entry->bytenr > bytenr)
109 			n = n->rb_left;
110 		else
111 			return entry;
112 	}
113 	return NULL;
114 }
115 
insert_root_entry(struct rb_root * root,struct root_entry * re)116 static struct root_entry *insert_root_entry(struct rb_root *root,
117 					    struct root_entry *re)
118 {
119 	struct rb_node **p = &root->rb_node;
120 	struct rb_node *parent_node = NULL;
121 	struct root_entry *entry;
122 
123 	while (*p) {
124 		parent_node = *p;
125 		entry = rb_entry(parent_node, struct root_entry, node);
126 		if (entry->root_objectid > re->root_objectid)
127 			p = &(*p)->rb_left;
128 		else if (entry->root_objectid < re->root_objectid)
129 			p = &(*p)->rb_right;
130 		else
131 			return entry;
132 	}
133 
134 	rb_link_node(&re->node, parent_node, p);
135 	rb_insert_color(&re->node, root);
136 	return NULL;
137 
138 }
139 
comp_refs(struct ref_entry * ref1,struct ref_entry * ref2)140 static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
141 {
142 	if (ref1->root_objectid < ref2->root_objectid)
143 		return -1;
144 	if (ref1->root_objectid > ref2->root_objectid)
145 		return 1;
146 	if (ref1->parent < ref2->parent)
147 		return -1;
148 	if (ref1->parent > ref2->parent)
149 		return 1;
150 	if (ref1->owner < ref2->owner)
151 		return -1;
152 	if (ref1->owner > ref2->owner)
153 		return 1;
154 	if (ref1->offset < ref2->offset)
155 		return -1;
156 	if (ref1->offset > ref2->offset)
157 		return 1;
158 	return 0;
159 }
160 
insert_ref_entry(struct rb_root * root,struct ref_entry * ref)161 static struct ref_entry *insert_ref_entry(struct rb_root *root,
162 					  struct ref_entry *ref)
163 {
164 	struct rb_node **p = &root->rb_node;
165 	struct rb_node *parent_node = NULL;
166 	struct ref_entry *entry;
167 	int cmp;
168 
169 	while (*p) {
170 		parent_node = *p;
171 		entry = rb_entry(parent_node, struct ref_entry, node);
172 		cmp = comp_refs(entry, ref);
173 		if (cmp > 0)
174 			p = &(*p)->rb_left;
175 		else if (cmp < 0)
176 			p = &(*p)->rb_right;
177 		else
178 			return entry;
179 	}
180 
181 	rb_link_node(&ref->node, parent_node, p);
182 	rb_insert_color(&ref->node, root);
183 	return NULL;
184 
185 }
186 
lookup_root_entry(struct rb_root * root,u64 objectid)187 static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
188 {
189 	struct rb_node *n;
190 	struct root_entry *entry = NULL;
191 
192 	n = root->rb_node;
193 	while (n) {
194 		entry = rb_entry(n, struct root_entry, node);
195 		if (entry->root_objectid < objectid)
196 			n = n->rb_right;
197 		else if (entry->root_objectid > objectid)
198 			n = n->rb_left;
199 		else
200 			return entry;
201 	}
202 	return NULL;
203 }
204 
205 #ifdef CONFIG_STACKTRACE
__save_stack_trace(struct ref_action * ra)206 static void __save_stack_trace(struct ref_action *ra)
207 {
208 	ra->trace_len = stack_trace_save(ra->trace, MAX_TRACE, 2);
209 }
210 
__print_stack_trace(struct btrfs_fs_info * fs_info,struct ref_action * ra)211 static void __print_stack_trace(struct btrfs_fs_info *fs_info,
212 				struct ref_action *ra)
213 {
214 	if (ra->trace_len == 0) {
215 		btrfs_err(fs_info, "  ref-verify: no stacktrace");
216 		return;
217 	}
218 	stack_trace_print(ra->trace, ra->trace_len, 2);
219 }
220 #else
__save_stack_trace(struct ref_action * ra)221 static void inline __save_stack_trace(struct ref_action *ra)
222 {
223 }
224 
__print_stack_trace(struct btrfs_fs_info * fs_info,struct ref_action * ra)225 static void inline __print_stack_trace(struct btrfs_fs_info *fs_info,
226 				       struct ref_action *ra)
227 {
228 	btrfs_err(fs_info, "  ref-verify: no stacktrace support");
229 }
230 #endif
231 
free_block_entry(struct block_entry * be)232 static void free_block_entry(struct block_entry *be)
233 {
234 	struct root_entry *re;
235 	struct ref_entry *ref;
236 	struct ref_action *ra;
237 	struct rb_node *n;
238 
239 	while ((n = rb_first(&be->roots))) {
240 		re = rb_entry(n, struct root_entry, node);
241 		rb_erase(&re->node, &be->roots);
242 		kfree(re);
243 	}
244 
245 	while((n = rb_first(&be->refs))) {
246 		ref = rb_entry(n, struct ref_entry, node);
247 		rb_erase(&ref->node, &be->refs);
248 		kfree(ref);
249 	}
250 
251 	while (!list_empty(&be->actions)) {
252 		ra = list_first_entry(&be->actions, struct ref_action,
253 				      list);
254 		list_del(&ra->list);
255 		kfree(ra);
256 	}
257 	kfree(be);
258 }
259 
add_block_entry(struct btrfs_fs_info * fs_info,u64 bytenr,u64 len,u64 root_objectid)260 static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
261 					   u64 bytenr, u64 len,
262 					   u64 root_objectid)
263 {
264 	struct block_entry *be = NULL, *exist;
265 	struct root_entry *re = NULL;
266 
267 	re = kzalloc(sizeof(struct root_entry), GFP_KERNEL);
268 	be = kzalloc(sizeof(struct block_entry), GFP_KERNEL);
269 	if (!be || !re) {
270 		kfree(re);
271 		kfree(be);
272 		return ERR_PTR(-ENOMEM);
273 	}
274 	be->bytenr = bytenr;
275 	be->len = len;
276 
277 	re->root_objectid = root_objectid;
278 	re->num_refs = 0;
279 
280 	spin_lock(&fs_info->ref_verify_lock);
281 	exist = insert_block_entry(&fs_info->block_tree, be);
282 	if (exist) {
283 		if (root_objectid) {
284 			struct root_entry *exist_re;
285 
286 			exist_re = insert_root_entry(&exist->roots, re);
287 			if (exist_re)
288 				kfree(re);
289 		}
290 		kfree(be);
291 		return exist;
292 	}
293 
294 	be->num_refs = 0;
295 	be->metadata = 0;
296 	be->from_disk = 0;
297 	be->roots = RB_ROOT;
298 	be->refs = RB_ROOT;
299 	INIT_LIST_HEAD(&be->actions);
300 	if (root_objectid)
301 		insert_root_entry(&be->roots, re);
302 	else
303 		kfree(re);
304 	return be;
305 }
306 
add_tree_block(struct btrfs_fs_info * fs_info,u64 ref_root,u64 parent,u64 bytenr,int level)307 static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
308 			  u64 parent, u64 bytenr, int level)
309 {
310 	struct block_entry *be;
311 	struct root_entry *re;
312 	struct ref_entry *ref = NULL, *exist;
313 
314 	ref = kmalloc(sizeof(struct ref_entry), GFP_KERNEL);
315 	if (!ref)
316 		return -ENOMEM;
317 
318 	if (parent)
319 		ref->root_objectid = 0;
320 	else
321 		ref->root_objectid = ref_root;
322 	ref->parent = parent;
323 	ref->owner = level;
324 	ref->offset = 0;
325 	ref->num_refs = 1;
326 
327 	be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
328 	if (IS_ERR(be)) {
329 		kfree(ref);
330 		return PTR_ERR(be);
331 	}
332 	be->num_refs++;
333 	be->from_disk = 1;
334 	be->metadata = 1;
335 
336 	if (!parent) {
337 		ASSERT(ref_root);
338 		re = lookup_root_entry(&be->roots, ref_root);
339 		ASSERT(re);
340 		re->num_refs++;
341 	}
342 	exist = insert_ref_entry(&be->refs, ref);
343 	if (exist) {
344 		exist->num_refs++;
345 		kfree(ref);
346 	}
347 	spin_unlock(&fs_info->ref_verify_lock);
348 
349 	return 0;
350 }
351 
add_shared_data_ref(struct btrfs_fs_info * fs_info,u64 parent,u32 num_refs,u64 bytenr,u64 num_bytes)352 static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
353 			       u64 parent, u32 num_refs, u64 bytenr,
354 			       u64 num_bytes)
355 {
356 	struct block_entry *be;
357 	struct ref_entry *ref;
358 
359 	ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
360 	if (!ref)
361 		return -ENOMEM;
362 	be = add_block_entry(fs_info, bytenr, num_bytes, 0);
363 	if (IS_ERR(be)) {
364 		kfree(ref);
365 		return PTR_ERR(be);
366 	}
367 	be->num_refs += num_refs;
368 
369 	ref->parent = parent;
370 	ref->num_refs = num_refs;
371 	if (insert_ref_entry(&be->refs, ref)) {
372 		spin_unlock(&fs_info->ref_verify_lock);
373 		btrfs_err(fs_info, "existing shared ref when reading from disk?");
374 		kfree(ref);
375 		return -EINVAL;
376 	}
377 	spin_unlock(&fs_info->ref_verify_lock);
378 	return 0;
379 }
380 
add_extent_data_ref(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,struct btrfs_extent_data_ref * dref,u64 bytenr,u64 num_bytes)381 static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
382 			       struct extent_buffer *leaf,
383 			       struct btrfs_extent_data_ref *dref,
384 			       u64 bytenr, u64 num_bytes)
385 {
386 	struct block_entry *be;
387 	struct ref_entry *ref;
388 	struct root_entry *re;
389 	u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
390 	u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
391 	u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
392 	u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);
393 
394 	ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
395 	if (!ref)
396 		return -ENOMEM;
397 	be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
398 	if (IS_ERR(be)) {
399 		kfree(ref);
400 		return PTR_ERR(be);
401 	}
402 	be->num_refs += num_refs;
403 
404 	ref->parent = 0;
405 	ref->owner = owner;
406 	ref->root_objectid = ref_root;
407 	ref->offset = offset;
408 	ref->num_refs = num_refs;
409 	if (insert_ref_entry(&be->refs, ref)) {
410 		spin_unlock(&fs_info->ref_verify_lock);
411 		btrfs_err(fs_info, "existing ref when reading from disk?");
412 		kfree(ref);
413 		return -EINVAL;
414 	}
415 
416 	re = lookup_root_entry(&be->roots, ref_root);
417 	if (!re) {
418 		spin_unlock(&fs_info->ref_verify_lock);
419 		btrfs_err(fs_info, "missing root in new block entry?");
420 		return -EINVAL;
421 	}
422 	re->num_refs += num_refs;
423 	spin_unlock(&fs_info->ref_verify_lock);
424 	return 0;
425 }
426 
process_extent_item(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key,int slot,int * tree_block_level)427 static int process_extent_item(struct btrfs_fs_info *fs_info,
428 			       struct btrfs_path *path, struct btrfs_key *key,
429 			       int slot, int *tree_block_level)
430 {
431 	struct btrfs_extent_item *ei;
432 	struct btrfs_extent_inline_ref *iref;
433 	struct btrfs_extent_data_ref *dref;
434 	struct btrfs_shared_data_ref *sref;
435 	struct extent_buffer *leaf = path->nodes[0];
436 	u32 item_size = btrfs_item_size_nr(leaf, slot);
437 	unsigned long end, ptr;
438 	u64 offset, flags, count;
439 	int type, ret;
440 
441 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
442 	flags = btrfs_extent_flags(leaf, ei);
443 
444 	if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
445 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
446 		struct btrfs_tree_block_info *info;
447 
448 		info = (struct btrfs_tree_block_info *)(ei + 1);
449 		*tree_block_level = btrfs_tree_block_level(leaf, info);
450 		iref = (struct btrfs_extent_inline_ref *)(info + 1);
451 	} else {
452 		if (key->type == BTRFS_METADATA_ITEM_KEY)
453 			*tree_block_level = key->offset;
454 		iref = (struct btrfs_extent_inline_ref *)(ei + 1);
455 	}
456 
457 	ptr = (unsigned long)iref;
458 	end = (unsigned long)ei + item_size;
459 	while (ptr < end) {
460 		iref = (struct btrfs_extent_inline_ref *)ptr;
461 		type = btrfs_extent_inline_ref_type(leaf, iref);
462 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
463 		switch (type) {
464 		case BTRFS_TREE_BLOCK_REF_KEY:
465 			ret = add_tree_block(fs_info, offset, 0, key->objectid,
466 					     *tree_block_level);
467 			break;
468 		case BTRFS_SHARED_BLOCK_REF_KEY:
469 			ret = add_tree_block(fs_info, 0, offset, key->objectid,
470 					     *tree_block_level);
471 			break;
472 		case BTRFS_EXTENT_DATA_REF_KEY:
473 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
474 			ret = add_extent_data_ref(fs_info, leaf, dref,
475 						  key->objectid, key->offset);
476 			break;
477 		case BTRFS_SHARED_DATA_REF_KEY:
478 			sref = (struct btrfs_shared_data_ref *)(iref + 1);
479 			count = btrfs_shared_data_ref_count(leaf, sref);
480 			ret = add_shared_data_ref(fs_info, offset, count,
481 						  key->objectid, key->offset);
482 			break;
483 		default:
484 			btrfs_err(fs_info, "invalid key type in iref");
485 			ret = -EINVAL;
486 			break;
487 		}
488 		if (ret)
489 			break;
490 		ptr += btrfs_extent_inline_ref_size(type);
491 	}
492 	return ret;
493 }
494 
process_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 * bytenr,u64 * num_bytes)495 static int process_leaf(struct btrfs_root *root,
496 			struct btrfs_path *path, u64 *bytenr, u64 *num_bytes)
497 {
498 	struct btrfs_fs_info *fs_info = root->fs_info;
499 	struct extent_buffer *leaf = path->nodes[0];
500 	struct btrfs_extent_data_ref *dref;
501 	struct btrfs_shared_data_ref *sref;
502 	u32 count;
503 	int i = 0, tree_block_level = 0, ret = 0;
504 	struct btrfs_key key;
505 	int nritems = btrfs_header_nritems(leaf);
506 
507 	for (i = 0; i < nritems; i++) {
508 		btrfs_item_key_to_cpu(leaf, &key, i);
509 		switch (key.type) {
510 		case BTRFS_EXTENT_ITEM_KEY:
511 			*num_bytes = key.offset;
512 			/* fall through */
513 		case BTRFS_METADATA_ITEM_KEY:
514 			*bytenr = key.objectid;
515 			ret = process_extent_item(fs_info, path, &key, i,
516 						  &tree_block_level);
517 			break;
518 		case BTRFS_TREE_BLOCK_REF_KEY:
519 			ret = add_tree_block(fs_info, key.offset, 0,
520 					     key.objectid, tree_block_level);
521 			break;
522 		case BTRFS_SHARED_BLOCK_REF_KEY:
523 			ret = add_tree_block(fs_info, 0, key.offset,
524 					     key.objectid, tree_block_level);
525 			break;
526 		case BTRFS_EXTENT_DATA_REF_KEY:
527 			dref = btrfs_item_ptr(leaf, i,
528 					      struct btrfs_extent_data_ref);
529 			ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
530 						  *num_bytes);
531 			break;
532 		case BTRFS_SHARED_DATA_REF_KEY:
533 			sref = btrfs_item_ptr(leaf, i,
534 					      struct btrfs_shared_data_ref);
535 			count = btrfs_shared_data_ref_count(leaf, sref);
536 			ret = add_shared_data_ref(fs_info, key.offset, count,
537 						  *bytenr, *num_bytes);
538 			break;
539 		default:
540 			break;
541 		}
542 		if (ret)
543 			break;
544 	}
545 	return ret;
546 }
547 
548 /* Walk down to the leaf from the given level */
walk_down_tree(struct btrfs_root * root,struct btrfs_path * path,int level,u64 * bytenr,u64 * num_bytes)549 static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
550 			  int level, u64 *bytenr, u64 *num_bytes)
551 {
552 	struct btrfs_fs_info *fs_info = root->fs_info;
553 	struct extent_buffer *eb;
554 	u64 block_bytenr, gen;
555 	int ret = 0;
556 
557 	while (level >= 0) {
558 		if (level) {
559 			struct btrfs_key first_key;
560 
561 			block_bytenr = btrfs_node_blockptr(path->nodes[level],
562 							   path->slots[level]);
563 			gen = btrfs_node_ptr_generation(path->nodes[level],
564 							path->slots[level]);
565 			btrfs_node_key_to_cpu(path->nodes[level], &first_key,
566 					      path->slots[level]);
567 			eb = read_tree_block(fs_info, block_bytenr, gen,
568 					     level - 1, &first_key);
569 			if (IS_ERR(eb))
570 				return PTR_ERR(eb);
571 			if (!extent_buffer_uptodate(eb)) {
572 				free_extent_buffer(eb);
573 				return -EIO;
574 			}
575 			btrfs_tree_read_lock(eb);
576 			btrfs_set_lock_blocking_read(eb);
577 			path->nodes[level-1] = eb;
578 			path->slots[level-1] = 0;
579 			path->locks[level-1] = BTRFS_READ_LOCK_BLOCKING;
580 		} else {
581 			ret = process_leaf(root, path, bytenr, num_bytes);
582 			if (ret)
583 				break;
584 		}
585 		level--;
586 	}
587 	return ret;
588 }
589 
590 /* Walk up to the next node that needs to be processed */
walk_up_tree(struct btrfs_path * path,int * level)591 static int walk_up_tree(struct btrfs_path *path, int *level)
592 {
593 	int l;
594 
595 	for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
596 		if (!path->nodes[l])
597 			continue;
598 		if (l) {
599 			path->slots[l]++;
600 			if (path->slots[l] <
601 			    btrfs_header_nritems(path->nodes[l])) {
602 				*level = l;
603 				return 0;
604 			}
605 		}
606 		btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
607 		free_extent_buffer(path->nodes[l]);
608 		path->nodes[l] = NULL;
609 		path->slots[l] = 0;
610 		path->locks[l] = 0;
611 	}
612 
613 	return 1;
614 }
615 
dump_ref_action(struct btrfs_fs_info * fs_info,struct ref_action * ra)616 static void dump_ref_action(struct btrfs_fs_info *fs_info,
617 			    struct ref_action *ra)
618 {
619 	btrfs_err(fs_info,
620 "  Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
621 		  ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
622 		  ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
623 	__print_stack_trace(fs_info, ra);
624 }
625 
626 /*
627  * Dumps all the information from the block entry to printk, it's going to be
628  * awesome.
629  */
dump_block_entry(struct btrfs_fs_info * fs_info,struct block_entry * be)630 static void dump_block_entry(struct btrfs_fs_info *fs_info,
631 			     struct block_entry *be)
632 {
633 	struct ref_entry *ref;
634 	struct root_entry *re;
635 	struct ref_action *ra;
636 	struct rb_node *n;
637 
638 	btrfs_err(fs_info,
639 "dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
640 		  be->bytenr, be->len, be->num_refs, be->metadata,
641 		  be->from_disk);
642 
643 	for (n = rb_first(&be->refs); n; n = rb_next(n)) {
644 		ref = rb_entry(n, struct ref_entry, node);
645 		btrfs_err(fs_info,
646 "  ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
647 			  ref->root_objectid, ref->parent, ref->owner,
648 			  ref->offset, ref->num_refs);
649 	}
650 
651 	for (n = rb_first(&be->roots); n; n = rb_next(n)) {
652 		re = rb_entry(n, struct root_entry, node);
653 		btrfs_err(fs_info, "  root entry %llu, num_refs %llu",
654 			  re->root_objectid, re->num_refs);
655 	}
656 
657 	list_for_each_entry(ra, &be->actions, list)
658 		dump_ref_action(fs_info, ra);
659 }
660 
661 /*
662  * btrfs_ref_tree_mod: called when we modify a ref for a bytenr
663  *
664  * This will add an action item to the given bytenr and do sanity checks to make
665  * sure we haven't messed something up.  If we are making a new allocation and
666  * this block entry has history we will delete all previous actions as long as
667  * our sanity checks pass as they are no longer needed.
668  */
btrfs_ref_tree_mod(struct btrfs_fs_info * fs_info,struct btrfs_ref * generic_ref)669 int btrfs_ref_tree_mod(struct btrfs_fs_info *fs_info,
670 		       struct btrfs_ref *generic_ref)
671 {
672 	struct ref_entry *ref = NULL, *exist;
673 	struct ref_action *ra = NULL;
674 	struct block_entry *be = NULL;
675 	struct root_entry *re = NULL;
676 	int action = generic_ref->action;
677 	int ret = 0;
678 	bool metadata;
679 	u64 bytenr = generic_ref->bytenr;
680 	u64 num_bytes = generic_ref->len;
681 	u64 parent = generic_ref->parent;
682 	u64 ref_root;
683 	u64 owner;
684 	u64 offset;
685 
686 	if (!btrfs_test_opt(fs_info, REF_VERIFY))
687 		return 0;
688 
689 	if (generic_ref->type == BTRFS_REF_METADATA) {
690 		ref_root = generic_ref->tree_ref.root;
691 		owner = generic_ref->tree_ref.level;
692 		offset = 0;
693 	} else {
694 		ref_root = generic_ref->data_ref.ref_root;
695 		owner = generic_ref->data_ref.ino;
696 		offset = generic_ref->data_ref.offset;
697 	}
698 	metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
699 
700 	ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
701 	ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
702 	if (!ra || !ref) {
703 		kfree(ref);
704 		kfree(ra);
705 		ret = -ENOMEM;
706 		goto out;
707 	}
708 
709 	if (parent) {
710 		ref->parent = parent;
711 	} else {
712 		ref->root_objectid = ref_root;
713 		ref->owner = owner;
714 		ref->offset = offset;
715 	}
716 	ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;
717 
718 	memcpy(&ra->ref, ref, sizeof(struct ref_entry));
719 	/*
720 	 * Save the extra info from the delayed ref in the ref action to make it
721 	 * easier to figure out what is happening.  The real ref's we add to the
722 	 * ref tree need to reflect what we save on disk so it matches any
723 	 * on-disk refs we pre-loaded.
724 	 */
725 	ra->ref.owner = owner;
726 	ra->ref.offset = offset;
727 	ra->ref.root_objectid = ref_root;
728 	__save_stack_trace(ra);
729 
730 	INIT_LIST_HEAD(&ra->list);
731 	ra->action = action;
732 	ra->root = generic_ref->real_root;
733 
734 	/*
735 	 * This is an allocation, preallocate the block_entry in case we haven't
736 	 * used it before.
737 	 */
738 	ret = -EINVAL;
739 	if (action == BTRFS_ADD_DELAYED_EXTENT) {
740 		/*
741 		 * For subvol_create we'll just pass in whatever the parent root
742 		 * is and the new root objectid, so let's not treat the passed
743 		 * in root as if it really has a ref for this bytenr.
744 		 */
745 		be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
746 		if (IS_ERR(be)) {
747 			kfree(ra);
748 			ret = PTR_ERR(be);
749 			goto out;
750 		}
751 		be->num_refs++;
752 		if (metadata)
753 			be->metadata = 1;
754 
755 		if (be->num_refs != 1) {
756 			btrfs_err(fs_info,
757 			"re-allocated a block that still has references to it!");
758 			dump_block_entry(fs_info, be);
759 			dump_ref_action(fs_info, ra);
760 			goto out_unlock;
761 		}
762 
763 		while (!list_empty(&be->actions)) {
764 			struct ref_action *tmp;
765 
766 			tmp = list_first_entry(&be->actions, struct ref_action,
767 					       list);
768 			list_del(&tmp->list);
769 			kfree(tmp);
770 		}
771 	} else {
772 		struct root_entry *tmp;
773 
774 		if (!parent) {
775 			re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
776 			if (!re) {
777 				kfree(ref);
778 				kfree(ra);
779 				ret = -ENOMEM;
780 				goto out;
781 			}
782 			/*
783 			 * This is the root that is modifying us, so it's the
784 			 * one we want to lookup below when we modify the
785 			 * re->num_refs.
786 			 */
787 			ref_root = generic_ref->real_root;
788 			re->root_objectid = generic_ref->real_root;
789 			re->num_refs = 0;
790 		}
791 
792 		spin_lock(&fs_info->ref_verify_lock);
793 		be = lookup_block_entry(&fs_info->block_tree, bytenr);
794 		if (!be) {
795 			btrfs_err(fs_info,
796 "trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
797 				  action, (unsigned long long)bytenr,
798 				  (unsigned long long)num_bytes);
799 			dump_ref_action(fs_info, ra);
800 			kfree(ref);
801 			kfree(ra);
802 			goto out_unlock;
803 		}
804 
805 		if (!parent) {
806 			tmp = insert_root_entry(&be->roots, re);
807 			if (tmp) {
808 				kfree(re);
809 				re = tmp;
810 			}
811 		}
812 	}
813 
814 	exist = insert_ref_entry(&be->refs, ref);
815 	if (exist) {
816 		if (action == BTRFS_DROP_DELAYED_REF) {
817 			if (exist->num_refs == 0) {
818 				btrfs_err(fs_info,
819 "dropping a ref for a existing root that doesn't have a ref on the block");
820 				dump_block_entry(fs_info, be);
821 				dump_ref_action(fs_info, ra);
822 				kfree(ra);
823 				goto out_unlock;
824 			}
825 			exist->num_refs--;
826 			if (exist->num_refs == 0) {
827 				rb_erase(&exist->node, &be->refs);
828 				kfree(exist);
829 			}
830 		} else if (!be->metadata) {
831 			exist->num_refs++;
832 		} else {
833 			btrfs_err(fs_info,
834 "attempting to add another ref for an existing ref on a tree block");
835 			dump_block_entry(fs_info, be);
836 			dump_ref_action(fs_info, ra);
837 			kfree(ra);
838 			goto out_unlock;
839 		}
840 		kfree(ref);
841 	} else {
842 		if (action == BTRFS_DROP_DELAYED_REF) {
843 			btrfs_err(fs_info,
844 "dropping a ref for a root that doesn't have a ref on the block");
845 			dump_block_entry(fs_info, be);
846 			dump_ref_action(fs_info, ra);
847 			kfree(ra);
848 			goto out_unlock;
849 		}
850 	}
851 
852 	if (!parent && !re) {
853 		re = lookup_root_entry(&be->roots, ref_root);
854 		if (!re) {
855 			/*
856 			 * This shouldn't happen because we will add our re
857 			 * above when we lookup the be with !parent, but just in
858 			 * case catch this case so we don't panic because I
859 			 * didn't think of some other corner case.
860 			 */
861 			btrfs_err(fs_info, "failed to find root %llu for %llu",
862 				  generic_ref->real_root, be->bytenr);
863 			dump_block_entry(fs_info, be);
864 			dump_ref_action(fs_info, ra);
865 			kfree(ra);
866 			goto out_unlock;
867 		}
868 	}
869 	if (action == BTRFS_DROP_DELAYED_REF) {
870 		if (re)
871 			re->num_refs--;
872 		be->num_refs--;
873 	} else if (action == BTRFS_ADD_DELAYED_REF) {
874 		be->num_refs++;
875 		if (re)
876 			re->num_refs++;
877 	}
878 	list_add_tail(&ra->list, &be->actions);
879 	ret = 0;
880 out_unlock:
881 	spin_unlock(&fs_info->ref_verify_lock);
882 out:
883 	if (ret)
884 		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
885 	return ret;
886 }
887 
888 /* Free up the ref cache */
btrfs_free_ref_cache(struct btrfs_fs_info * fs_info)889 void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
890 {
891 	struct block_entry *be;
892 	struct rb_node *n;
893 
894 	if (!btrfs_test_opt(fs_info, REF_VERIFY))
895 		return;
896 
897 	spin_lock(&fs_info->ref_verify_lock);
898 	while ((n = rb_first(&fs_info->block_tree))) {
899 		be = rb_entry(n, struct block_entry, node);
900 		rb_erase(&be->node, &fs_info->block_tree);
901 		free_block_entry(be);
902 		cond_resched_lock(&fs_info->ref_verify_lock);
903 	}
904 	spin_unlock(&fs_info->ref_verify_lock);
905 }
906 
btrfs_free_ref_tree_range(struct btrfs_fs_info * fs_info,u64 start,u64 len)907 void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
908 			       u64 len)
909 {
910 	struct block_entry *be = NULL, *entry;
911 	struct rb_node *n;
912 
913 	if (!btrfs_test_opt(fs_info, REF_VERIFY))
914 		return;
915 
916 	spin_lock(&fs_info->ref_verify_lock);
917 	n = fs_info->block_tree.rb_node;
918 	while (n) {
919 		entry = rb_entry(n, struct block_entry, node);
920 		if (entry->bytenr < start) {
921 			n = n->rb_right;
922 		} else if (entry->bytenr > start) {
923 			n = n->rb_left;
924 		} else {
925 			be = entry;
926 			break;
927 		}
928 		/* We want to get as close to start as possible */
929 		if (be == NULL ||
930 		    (entry->bytenr < start && be->bytenr > start) ||
931 		    (entry->bytenr < start && entry->bytenr > be->bytenr))
932 			be = entry;
933 	}
934 
935 	/*
936 	 * Could have an empty block group, maybe have something to check for
937 	 * this case to verify we were actually empty?
938 	 */
939 	if (!be) {
940 		spin_unlock(&fs_info->ref_verify_lock);
941 		return;
942 	}
943 
944 	n = &be->node;
945 	while (n) {
946 		be = rb_entry(n, struct block_entry, node);
947 		n = rb_next(n);
948 		if (be->bytenr < start && be->bytenr + be->len > start) {
949 			btrfs_err(fs_info,
950 				"block entry overlaps a block group [%llu,%llu]!",
951 				start, len);
952 			dump_block_entry(fs_info, be);
953 			continue;
954 		}
955 		if (be->bytenr < start)
956 			continue;
957 		if (be->bytenr >= start + len)
958 			break;
959 		if (be->bytenr + be->len > start + len) {
960 			btrfs_err(fs_info,
961 				"block entry overlaps a block group [%llu,%llu]!",
962 				start, len);
963 			dump_block_entry(fs_info, be);
964 		}
965 		rb_erase(&be->node, &fs_info->block_tree);
966 		free_block_entry(be);
967 	}
968 	spin_unlock(&fs_info->ref_verify_lock);
969 }
970 
971 /* Walk down all roots and build the ref tree, meant to be called at mount */
btrfs_build_ref_tree(struct btrfs_fs_info * fs_info)972 int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
973 {
974 	struct btrfs_path *path;
975 	struct extent_buffer *eb;
976 	u64 bytenr = 0, num_bytes = 0;
977 	int ret, level;
978 
979 	if (!btrfs_test_opt(fs_info, REF_VERIFY))
980 		return 0;
981 
982 	path = btrfs_alloc_path();
983 	if (!path)
984 		return -ENOMEM;
985 
986 	eb = btrfs_read_lock_root_node(fs_info->extent_root);
987 	btrfs_set_lock_blocking_read(eb);
988 	level = btrfs_header_level(eb);
989 	path->nodes[level] = eb;
990 	path->slots[level] = 0;
991 	path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
992 
993 	while (1) {
994 		/*
995 		 * We have to keep track of the bytenr/num_bytes we last hit
996 		 * because we could have run out of space for an inline ref, and
997 		 * would have had to added a ref key item which may appear on a
998 		 * different leaf from the original extent item.
999 		 */
1000 		ret = walk_down_tree(fs_info->extent_root, path, level,
1001 				     &bytenr, &num_bytes);
1002 		if (ret)
1003 			break;
1004 		ret = walk_up_tree(path, &level);
1005 		if (ret < 0)
1006 			break;
1007 		if (ret > 0) {
1008 			ret = 0;
1009 			break;
1010 		}
1011 	}
1012 	if (ret) {
1013 		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
1014 		btrfs_free_ref_cache(fs_info);
1015 	}
1016 	btrfs_free_path(path);
1017 	return ret;
1018 }
1019