1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3 * Filename: target_core_transport.c
4 *
5 * This file contains the Generic Target Engine Core.
6 *
7 * (c) Copyright 2002-2013 Datera, Inc.
8 *
9 * Nicholas A. Bellinger <nab@kernel.org>
10 *
11 ******************************************************************************/
12
13 #include <linux/net.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/kthread.h>
20 #include <linux/in.h>
21 #include <linux/cdrom.h>
22 #include <linux/module.h>
23 #include <linux/ratelimit.h>
24 #include <linux/vmalloc.h>
25 #include <asm/unaligned.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28 #include <scsi/scsi_proto.h>
29 #include <scsi/scsi_common.h>
30
31 #include <target/target_core_base.h>
32 #include <target/target_core_backend.h>
33 #include <target/target_core_fabric.h>
34
35 #include "target_core_internal.h"
36 #include "target_core_alua.h"
37 #include "target_core_pr.h"
38 #include "target_core_ua.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/target.h>
42
43 static struct workqueue_struct *target_completion_wq;
44 static struct kmem_cache *se_sess_cache;
45 struct kmem_cache *se_ua_cache;
46 struct kmem_cache *t10_pr_reg_cache;
47 struct kmem_cache *t10_alua_lu_gp_cache;
48 struct kmem_cache *t10_alua_lu_gp_mem_cache;
49 struct kmem_cache *t10_alua_tg_pt_gp_cache;
50 struct kmem_cache *t10_alua_lba_map_cache;
51 struct kmem_cache *t10_alua_lba_map_mem_cache;
52
53 static void transport_complete_task_attr(struct se_cmd *cmd);
54 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
55 static void transport_handle_queue_full(struct se_cmd *cmd,
56 struct se_device *dev, int err, bool write_pending);
57 static void target_complete_ok_work(struct work_struct *work);
58
init_se_kmem_caches(void)59 int init_se_kmem_caches(void)
60 {
61 se_sess_cache = kmem_cache_create("se_sess_cache",
62 sizeof(struct se_session), __alignof__(struct se_session),
63 0, NULL);
64 if (!se_sess_cache) {
65 pr_err("kmem_cache_create() for struct se_session"
66 " failed\n");
67 goto out;
68 }
69 se_ua_cache = kmem_cache_create("se_ua_cache",
70 sizeof(struct se_ua), __alignof__(struct se_ua),
71 0, NULL);
72 if (!se_ua_cache) {
73 pr_err("kmem_cache_create() for struct se_ua failed\n");
74 goto out_free_sess_cache;
75 }
76 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
77 sizeof(struct t10_pr_registration),
78 __alignof__(struct t10_pr_registration), 0, NULL);
79 if (!t10_pr_reg_cache) {
80 pr_err("kmem_cache_create() for struct t10_pr_registration"
81 " failed\n");
82 goto out_free_ua_cache;
83 }
84 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
85 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
86 0, NULL);
87 if (!t10_alua_lu_gp_cache) {
88 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
89 " failed\n");
90 goto out_free_pr_reg_cache;
91 }
92 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
93 sizeof(struct t10_alua_lu_gp_member),
94 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
95 if (!t10_alua_lu_gp_mem_cache) {
96 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
97 "cache failed\n");
98 goto out_free_lu_gp_cache;
99 }
100 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
101 sizeof(struct t10_alua_tg_pt_gp),
102 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
103 if (!t10_alua_tg_pt_gp_cache) {
104 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
105 "cache failed\n");
106 goto out_free_lu_gp_mem_cache;
107 }
108 t10_alua_lba_map_cache = kmem_cache_create(
109 "t10_alua_lba_map_cache",
110 sizeof(struct t10_alua_lba_map),
111 __alignof__(struct t10_alua_lba_map), 0, NULL);
112 if (!t10_alua_lba_map_cache) {
113 pr_err("kmem_cache_create() for t10_alua_lba_map_"
114 "cache failed\n");
115 goto out_free_tg_pt_gp_cache;
116 }
117 t10_alua_lba_map_mem_cache = kmem_cache_create(
118 "t10_alua_lba_map_mem_cache",
119 sizeof(struct t10_alua_lba_map_member),
120 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
121 if (!t10_alua_lba_map_mem_cache) {
122 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
123 "cache failed\n");
124 goto out_free_lba_map_cache;
125 }
126
127 target_completion_wq = alloc_workqueue("target_completion",
128 WQ_MEM_RECLAIM, 0);
129 if (!target_completion_wq)
130 goto out_free_lba_map_mem_cache;
131
132 return 0;
133
134 out_free_lba_map_mem_cache:
135 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
136 out_free_lba_map_cache:
137 kmem_cache_destroy(t10_alua_lba_map_cache);
138 out_free_tg_pt_gp_cache:
139 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
140 out_free_lu_gp_mem_cache:
141 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
142 out_free_lu_gp_cache:
143 kmem_cache_destroy(t10_alua_lu_gp_cache);
144 out_free_pr_reg_cache:
145 kmem_cache_destroy(t10_pr_reg_cache);
146 out_free_ua_cache:
147 kmem_cache_destroy(se_ua_cache);
148 out_free_sess_cache:
149 kmem_cache_destroy(se_sess_cache);
150 out:
151 return -ENOMEM;
152 }
153
release_se_kmem_caches(void)154 void release_se_kmem_caches(void)
155 {
156 destroy_workqueue(target_completion_wq);
157 kmem_cache_destroy(se_sess_cache);
158 kmem_cache_destroy(se_ua_cache);
159 kmem_cache_destroy(t10_pr_reg_cache);
160 kmem_cache_destroy(t10_alua_lu_gp_cache);
161 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
162 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
163 kmem_cache_destroy(t10_alua_lba_map_cache);
164 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
165 }
166
167 /* This code ensures unique mib indexes are handed out. */
168 static DEFINE_SPINLOCK(scsi_mib_index_lock);
169 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
170
171 /*
172 * Allocate a new row index for the entry type specified
173 */
scsi_get_new_index(scsi_index_t type)174 u32 scsi_get_new_index(scsi_index_t type)
175 {
176 u32 new_index;
177
178 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
179
180 spin_lock(&scsi_mib_index_lock);
181 new_index = ++scsi_mib_index[type];
182 spin_unlock(&scsi_mib_index_lock);
183
184 return new_index;
185 }
186
transport_subsystem_check_init(void)187 void transport_subsystem_check_init(void)
188 {
189 int ret;
190 static int sub_api_initialized;
191
192 if (sub_api_initialized)
193 return;
194
195 ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
196 if (ret != 0)
197 pr_err("Unable to load target_core_iblock\n");
198
199 ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
200 if (ret != 0)
201 pr_err("Unable to load target_core_file\n");
202
203 ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
204 if (ret != 0)
205 pr_err("Unable to load target_core_pscsi\n");
206
207 ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
208 if (ret != 0)
209 pr_err("Unable to load target_core_user\n");
210
211 sub_api_initialized = 1;
212 }
213
target_release_sess_cmd_refcnt(struct percpu_ref * ref)214 static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
215 {
216 struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);
217
218 wake_up(&sess->cmd_list_wq);
219 }
220
221 /**
222 * transport_init_session - initialize a session object
223 * @se_sess: Session object pointer.
224 *
225 * The caller must have zero-initialized @se_sess before calling this function.
226 */
transport_init_session(struct se_session * se_sess)227 int transport_init_session(struct se_session *se_sess)
228 {
229 INIT_LIST_HEAD(&se_sess->sess_list);
230 INIT_LIST_HEAD(&se_sess->sess_acl_list);
231 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
232 spin_lock_init(&se_sess->sess_cmd_lock);
233 init_waitqueue_head(&se_sess->cmd_list_wq);
234 return percpu_ref_init(&se_sess->cmd_count,
235 target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
236 }
237 EXPORT_SYMBOL(transport_init_session);
238
239 /**
240 * transport_alloc_session - allocate a session object and initialize it
241 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
242 */
transport_alloc_session(enum target_prot_op sup_prot_ops)243 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
244 {
245 struct se_session *se_sess;
246 int ret;
247
248 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
249 if (!se_sess) {
250 pr_err("Unable to allocate struct se_session from"
251 " se_sess_cache\n");
252 return ERR_PTR(-ENOMEM);
253 }
254 ret = transport_init_session(se_sess);
255 if (ret < 0) {
256 kmem_cache_free(se_sess_cache, se_sess);
257 return ERR_PTR(ret);
258 }
259 se_sess->sup_prot_ops = sup_prot_ops;
260
261 return se_sess;
262 }
263 EXPORT_SYMBOL(transport_alloc_session);
264
265 /**
266 * transport_alloc_session_tags - allocate target driver private data
267 * @se_sess: Session pointer.
268 * @tag_num: Maximum number of in-flight commands between initiator and target.
269 * @tag_size: Size in bytes of the private data a target driver associates with
270 * each command.
271 */
transport_alloc_session_tags(struct se_session * se_sess,unsigned int tag_num,unsigned int tag_size)272 int transport_alloc_session_tags(struct se_session *se_sess,
273 unsigned int tag_num, unsigned int tag_size)
274 {
275 int rc;
276
277 se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
278 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
279 if (!se_sess->sess_cmd_map) {
280 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
281 return -ENOMEM;
282 }
283
284 rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
285 false, GFP_KERNEL, NUMA_NO_NODE);
286 if (rc < 0) {
287 pr_err("Unable to init se_sess->sess_tag_pool,"
288 " tag_num: %u\n", tag_num);
289 kvfree(se_sess->sess_cmd_map);
290 se_sess->sess_cmd_map = NULL;
291 return -ENOMEM;
292 }
293
294 return 0;
295 }
296 EXPORT_SYMBOL(transport_alloc_session_tags);
297
298 /**
299 * transport_init_session_tags - allocate a session and target driver private data
300 * @tag_num: Maximum number of in-flight commands between initiator and target.
301 * @tag_size: Size in bytes of the private data a target driver associates with
302 * each command.
303 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
304 */
305 static struct se_session *
transport_init_session_tags(unsigned int tag_num,unsigned int tag_size,enum target_prot_op sup_prot_ops)306 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
307 enum target_prot_op sup_prot_ops)
308 {
309 struct se_session *se_sess;
310 int rc;
311
312 if (tag_num != 0 && !tag_size) {
313 pr_err("init_session_tags called with percpu-ida tag_num:"
314 " %u, but zero tag_size\n", tag_num);
315 return ERR_PTR(-EINVAL);
316 }
317 if (!tag_num && tag_size) {
318 pr_err("init_session_tags called with percpu-ida tag_size:"
319 " %u, but zero tag_num\n", tag_size);
320 return ERR_PTR(-EINVAL);
321 }
322
323 se_sess = transport_alloc_session(sup_prot_ops);
324 if (IS_ERR(se_sess))
325 return se_sess;
326
327 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
328 if (rc < 0) {
329 transport_free_session(se_sess);
330 return ERR_PTR(-ENOMEM);
331 }
332
333 return se_sess;
334 }
335
336 /*
337 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
338 */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)339 void __transport_register_session(
340 struct se_portal_group *se_tpg,
341 struct se_node_acl *se_nacl,
342 struct se_session *se_sess,
343 void *fabric_sess_ptr)
344 {
345 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
346 unsigned char buf[PR_REG_ISID_LEN];
347 unsigned long flags;
348
349 se_sess->se_tpg = se_tpg;
350 se_sess->fabric_sess_ptr = fabric_sess_ptr;
351 /*
352 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
353 *
354 * Only set for struct se_session's that will actually be moving I/O.
355 * eg: *NOT* discovery sessions.
356 */
357 if (se_nacl) {
358 /*
359 *
360 * Determine if fabric allows for T10-PI feature bits exposed to
361 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
362 *
363 * If so, then always save prot_type on a per se_node_acl node
364 * basis and re-instate the previous sess_prot_type to avoid
365 * disabling PI from below any previously initiator side
366 * registered LUNs.
367 */
368 if (se_nacl->saved_prot_type)
369 se_sess->sess_prot_type = se_nacl->saved_prot_type;
370 else if (tfo->tpg_check_prot_fabric_only)
371 se_sess->sess_prot_type = se_nacl->saved_prot_type =
372 tfo->tpg_check_prot_fabric_only(se_tpg);
373 /*
374 * If the fabric module supports an ISID based TransportID,
375 * save this value in binary from the fabric I_T Nexus now.
376 */
377 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
378 memset(&buf[0], 0, PR_REG_ISID_LEN);
379 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
380 &buf[0], PR_REG_ISID_LEN);
381 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
382 }
383
384 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
385 /*
386 * The se_nacl->nacl_sess pointer will be set to the
387 * last active I_T Nexus for each struct se_node_acl.
388 */
389 se_nacl->nacl_sess = se_sess;
390
391 list_add_tail(&se_sess->sess_acl_list,
392 &se_nacl->acl_sess_list);
393 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
394 }
395 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
396
397 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
398 se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
399 }
400 EXPORT_SYMBOL(__transport_register_session);
401
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)402 void transport_register_session(
403 struct se_portal_group *se_tpg,
404 struct se_node_acl *se_nacl,
405 struct se_session *se_sess,
406 void *fabric_sess_ptr)
407 {
408 unsigned long flags;
409
410 spin_lock_irqsave(&se_tpg->session_lock, flags);
411 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
412 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
413 }
414 EXPORT_SYMBOL(transport_register_session);
415
416 struct se_session *
target_setup_session(struct se_portal_group * tpg,unsigned int tag_num,unsigned int tag_size,enum target_prot_op prot_op,const char * initiatorname,void * private,int (* callback)(struct se_portal_group *,struct se_session *,void *))417 target_setup_session(struct se_portal_group *tpg,
418 unsigned int tag_num, unsigned int tag_size,
419 enum target_prot_op prot_op,
420 const char *initiatorname, void *private,
421 int (*callback)(struct se_portal_group *,
422 struct se_session *, void *))
423 {
424 struct se_session *sess;
425
426 /*
427 * If the fabric driver is using percpu-ida based pre allocation
428 * of I/O descriptor tags, go ahead and perform that setup now..
429 */
430 if (tag_num != 0)
431 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
432 else
433 sess = transport_alloc_session(prot_op);
434
435 if (IS_ERR(sess))
436 return sess;
437
438 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
439 (unsigned char *)initiatorname);
440 if (!sess->se_node_acl) {
441 transport_free_session(sess);
442 return ERR_PTR(-EACCES);
443 }
444 /*
445 * Go ahead and perform any remaining fabric setup that is
446 * required before transport_register_session().
447 */
448 if (callback != NULL) {
449 int rc = callback(tpg, sess, private);
450 if (rc) {
451 transport_free_session(sess);
452 return ERR_PTR(rc);
453 }
454 }
455
456 transport_register_session(tpg, sess->se_node_acl, sess, private);
457 return sess;
458 }
459 EXPORT_SYMBOL(target_setup_session);
460
target_show_dynamic_sessions(struct se_portal_group * se_tpg,char * page)461 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
462 {
463 struct se_session *se_sess;
464 ssize_t len = 0;
465
466 spin_lock_bh(&se_tpg->session_lock);
467 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
468 if (!se_sess->se_node_acl)
469 continue;
470 if (!se_sess->se_node_acl->dynamic_node_acl)
471 continue;
472 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
473 break;
474
475 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
476 se_sess->se_node_acl->initiatorname);
477 len += 1; /* Include NULL terminator */
478 }
479 spin_unlock_bh(&se_tpg->session_lock);
480
481 return len;
482 }
483 EXPORT_SYMBOL(target_show_dynamic_sessions);
484
target_complete_nacl(struct kref * kref)485 static void target_complete_nacl(struct kref *kref)
486 {
487 struct se_node_acl *nacl = container_of(kref,
488 struct se_node_acl, acl_kref);
489 struct se_portal_group *se_tpg = nacl->se_tpg;
490
491 if (!nacl->dynamic_stop) {
492 complete(&nacl->acl_free_comp);
493 return;
494 }
495
496 mutex_lock(&se_tpg->acl_node_mutex);
497 list_del_init(&nacl->acl_list);
498 mutex_unlock(&se_tpg->acl_node_mutex);
499
500 core_tpg_wait_for_nacl_pr_ref(nacl);
501 core_free_device_list_for_node(nacl, se_tpg);
502 kfree(nacl);
503 }
504
target_put_nacl(struct se_node_acl * nacl)505 void target_put_nacl(struct se_node_acl *nacl)
506 {
507 kref_put(&nacl->acl_kref, target_complete_nacl);
508 }
509 EXPORT_SYMBOL(target_put_nacl);
510
transport_deregister_session_configfs(struct se_session * se_sess)511 void transport_deregister_session_configfs(struct se_session *se_sess)
512 {
513 struct se_node_acl *se_nacl;
514 unsigned long flags;
515 /*
516 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
517 */
518 se_nacl = se_sess->se_node_acl;
519 if (se_nacl) {
520 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
521 if (!list_empty(&se_sess->sess_acl_list))
522 list_del_init(&se_sess->sess_acl_list);
523 /*
524 * If the session list is empty, then clear the pointer.
525 * Otherwise, set the struct se_session pointer from the tail
526 * element of the per struct se_node_acl active session list.
527 */
528 if (list_empty(&se_nacl->acl_sess_list))
529 se_nacl->nacl_sess = NULL;
530 else {
531 se_nacl->nacl_sess = container_of(
532 se_nacl->acl_sess_list.prev,
533 struct se_session, sess_acl_list);
534 }
535 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
536 }
537 }
538 EXPORT_SYMBOL(transport_deregister_session_configfs);
539
transport_free_session(struct se_session * se_sess)540 void transport_free_session(struct se_session *se_sess)
541 {
542 struct se_node_acl *se_nacl = se_sess->se_node_acl;
543
544 /*
545 * Drop the se_node_acl->nacl_kref obtained from within
546 * core_tpg_get_initiator_node_acl().
547 */
548 if (se_nacl) {
549 struct se_portal_group *se_tpg = se_nacl->se_tpg;
550 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
551 unsigned long flags;
552
553 se_sess->se_node_acl = NULL;
554
555 /*
556 * Also determine if we need to drop the extra ->cmd_kref if
557 * it had been previously dynamically generated, and
558 * the endpoint is not caching dynamic ACLs.
559 */
560 mutex_lock(&se_tpg->acl_node_mutex);
561 if (se_nacl->dynamic_node_acl &&
562 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
563 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
564 if (list_empty(&se_nacl->acl_sess_list))
565 se_nacl->dynamic_stop = true;
566 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
567
568 if (se_nacl->dynamic_stop)
569 list_del_init(&se_nacl->acl_list);
570 }
571 mutex_unlock(&se_tpg->acl_node_mutex);
572
573 if (se_nacl->dynamic_stop)
574 target_put_nacl(se_nacl);
575
576 target_put_nacl(se_nacl);
577 }
578 if (se_sess->sess_cmd_map) {
579 sbitmap_queue_free(&se_sess->sess_tag_pool);
580 kvfree(se_sess->sess_cmd_map);
581 }
582 percpu_ref_exit(&se_sess->cmd_count);
583 kmem_cache_free(se_sess_cache, se_sess);
584 }
585 EXPORT_SYMBOL(transport_free_session);
586
target_release_res(struct se_device * dev,void * data)587 static int target_release_res(struct se_device *dev, void *data)
588 {
589 struct se_session *sess = data;
590
591 if (dev->reservation_holder == sess)
592 target_release_reservation(dev);
593 return 0;
594 }
595
transport_deregister_session(struct se_session * se_sess)596 void transport_deregister_session(struct se_session *se_sess)
597 {
598 struct se_portal_group *se_tpg = se_sess->se_tpg;
599 unsigned long flags;
600
601 if (!se_tpg) {
602 transport_free_session(se_sess);
603 return;
604 }
605
606 spin_lock_irqsave(&se_tpg->session_lock, flags);
607 list_del(&se_sess->sess_list);
608 se_sess->se_tpg = NULL;
609 se_sess->fabric_sess_ptr = NULL;
610 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
611
612 /*
613 * Since the session is being removed, release SPC-2
614 * reservations held by the session that is disappearing.
615 */
616 target_for_each_device(target_release_res, se_sess);
617
618 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
619 se_tpg->se_tpg_tfo->fabric_name);
620 /*
621 * If last kref is dropping now for an explicit NodeACL, awake sleeping
622 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
623 * removal context from within transport_free_session() code.
624 *
625 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
626 * to release all remaining generate_node_acl=1 created ACL resources.
627 */
628
629 transport_free_session(se_sess);
630 }
631 EXPORT_SYMBOL(transport_deregister_session);
632
target_remove_session(struct se_session * se_sess)633 void target_remove_session(struct se_session *se_sess)
634 {
635 transport_deregister_session_configfs(se_sess);
636 transport_deregister_session(se_sess);
637 }
638 EXPORT_SYMBOL(target_remove_session);
639
target_remove_from_state_list(struct se_cmd * cmd)640 static void target_remove_from_state_list(struct se_cmd *cmd)
641 {
642 struct se_device *dev = cmd->se_dev;
643 unsigned long flags;
644
645 if (!dev)
646 return;
647
648 spin_lock_irqsave(&dev->execute_task_lock, flags);
649 if (cmd->state_active) {
650 list_del(&cmd->state_list);
651 cmd->state_active = false;
652 }
653 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
654 }
655
656 /*
657 * This function is called by the target core after the target core has
658 * finished processing a SCSI command or SCSI TMF. Both the regular command
659 * processing code and the code for aborting commands can call this
660 * function. CMD_T_STOP is set if and only if another thread is waiting
661 * inside transport_wait_for_tasks() for t_transport_stop_comp.
662 */
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)663 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
664 {
665 unsigned long flags;
666
667 target_remove_from_state_list(cmd);
668
669 spin_lock_irqsave(&cmd->t_state_lock, flags);
670 /*
671 * Determine if frontend context caller is requesting the stopping of
672 * this command for frontend exceptions.
673 */
674 if (cmd->transport_state & CMD_T_STOP) {
675 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
676 __func__, __LINE__, cmd->tag);
677
678 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
679
680 complete_all(&cmd->t_transport_stop_comp);
681 return 1;
682 }
683 cmd->transport_state &= ~CMD_T_ACTIVE;
684 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
685
686 /*
687 * Some fabric modules like tcm_loop can release their internally
688 * allocated I/O reference and struct se_cmd now.
689 *
690 * Fabric modules are expected to return '1' here if the se_cmd being
691 * passed is released at this point, or zero if not being released.
692 */
693 return cmd->se_tfo->check_stop_free(cmd);
694 }
695
target_complete_failure_work(struct work_struct * work)696 static void target_complete_failure_work(struct work_struct *work)
697 {
698 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
699
700 transport_generic_request_failure(cmd,
701 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
702 }
703
704 /*
705 * Used when asking transport to copy Sense Data from the underlying
706 * Linux/SCSI struct scsi_cmnd
707 */
transport_get_sense_buffer(struct se_cmd * cmd)708 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
709 {
710 struct se_device *dev = cmd->se_dev;
711
712 WARN_ON(!cmd->se_lun);
713
714 if (!dev)
715 return NULL;
716
717 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
718 return NULL;
719
720 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
721
722 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
723 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
724 return cmd->sense_buffer;
725 }
726
transport_copy_sense_to_cmd(struct se_cmd * cmd,unsigned char * sense)727 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
728 {
729 unsigned char *cmd_sense_buf;
730 unsigned long flags;
731
732 spin_lock_irqsave(&cmd->t_state_lock, flags);
733 cmd_sense_buf = transport_get_sense_buffer(cmd);
734 if (!cmd_sense_buf) {
735 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
736 return;
737 }
738
739 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
740 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
741 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
742 }
743 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
744
target_handle_abort(struct se_cmd * cmd)745 static void target_handle_abort(struct se_cmd *cmd)
746 {
747 bool tas = cmd->transport_state & CMD_T_TAS;
748 bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
749 int ret;
750
751 pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
752
753 if (tas) {
754 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
755 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
756 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
757 cmd->t_task_cdb[0], cmd->tag);
758 trace_target_cmd_complete(cmd);
759 ret = cmd->se_tfo->queue_status(cmd);
760 if (ret) {
761 transport_handle_queue_full(cmd, cmd->se_dev,
762 ret, false);
763 return;
764 }
765 } else {
766 cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
767 cmd->se_tfo->queue_tm_rsp(cmd);
768 }
769 } else {
770 /*
771 * Allow the fabric driver to unmap any resources before
772 * releasing the descriptor via TFO->release_cmd().
773 */
774 cmd->se_tfo->aborted_task(cmd);
775 if (ack_kref)
776 WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
777 /*
778 * To do: establish a unit attention condition on the I_T
779 * nexus associated with cmd. See also the paragraph "Aborting
780 * commands" in SAM.
781 */
782 }
783
784 WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
785
786 transport_cmd_check_stop_to_fabric(cmd);
787 }
788
target_abort_work(struct work_struct * work)789 static void target_abort_work(struct work_struct *work)
790 {
791 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
792
793 target_handle_abort(cmd);
794 }
795
target_cmd_interrupted(struct se_cmd * cmd)796 static bool target_cmd_interrupted(struct se_cmd *cmd)
797 {
798 int post_ret;
799
800 if (cmd->transport_state & CMD_T_ABORTED) {
801 if (cmd->transport_complete_callback)
802 cmd->transport_complete_callback(cmd, false, &post_ret);
803 INIT_WORK(&cmd->work, target_abort_work);
804 queue_work(target_completion_wq, &cmd->work);
805 return true;
806 } else if (cmd->transport_state & CMD_T_STOP) {
807 if (cmd->transport_complete_callback)
808 cmd->transport_complete_callback(cmd, false, &post_ret);
809 complete_all(&cmd->t_transport_stop_comp);
810 return true;
811 }
812
813 return false;
814 }
815
816 /* May be called from interrupt context so must not sleep. */
target_complete_cmd(struct se_cmd * cmd,u8 scsi_status)817 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
818 {
819 int success;
820 unsigned long flags;
821
822 if (target_cmd_interrupted(cmd))
823 return;
824
825 cmd->scsi_status = scsi_status;
826
827 spin_lock_irqsave(&cmd->t_state_lock, flags);
828 switch (cmd->scsi_status) {
829 case SAM_STAT_CHECK_CONDITION:
830 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
831 success = 1;
832 else
833 success = 0;
834 break;
835 default:
836 success = 1;
837 break;
838 }
839
840 cmd->t_state = TRANSPORT_COMPLETE;
841 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
842 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
843
844 INIT_WORK(&cmd->work, success ? target_complete_ok_work :
845 target_complete_failure_work);
846 if (cmd->se_cmd_flags & SCF_USE_CPUID)
847 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
848 else
849 queue_work(target_completion_wq, &cmd->work);
850 }
851 EXPORT_SYMBOL(target_complete_cmd);
852
target_complete_cmd_with_length(struct se_cmd * cmd,u8 scsi_status,int length)853 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
854 {
855 if ((scsi_status == SAM_STAT_GOOD ||
856 cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
857 length < cmd->data_length) {
858 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
859 cmd->residual_count += cmd->data_length - length;
860 } else {
861 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
862 cmd->residual_count = cmd->data_length - length;
863 }
864
865 cmd->data_length = length;
866 }
867
868 target_complete_cmd(cmd, scsi_status);
869 }
870 EXPORT_SYMBOL(target_complete_cmd_with_length);
871
target_add_to_state_list(struct se_cmd * cmd)872 static void target_add_to_state_list(struct se_cmd *cmd)
873 {
874 struct se_device *dev = cmd->se_dev;
875 unsigned long flags;
876
877 spin_lock_irqsave(&dev->execute_task_lock, flags);
878 if (!cmd->state_active) {
879 list_add_tail(&cmd->state_list, &dev->state_list);
880 cmd->state_active = true;
881 }
882 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
883 }
884
885 /*
886 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
887 */
888 static void transport_write_pending_qf(struct se_cmd *cmd);
889 static void transport_complete_qf(struct se_cmd *cmd);
890
target_qf_do_work(struct work_struct * work)891 void target_qf_do_work(struct work_struct *work)
892 {
893 struct se_device *dev = container_of(work, struct se_device,
894 qf_work_queue);
895 LIST_HEAD(qf_cmd_list);
896 struct se_cmd *cmd, *cmd_tmp;
897
898 spin_lock_irq(&dev->qf_cmd_lock);
899 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
900 spin_unlock_irq(&dev->qf_cmd_lock);
901
902 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
903 list_del(&cmd->se_qf_node);
904 atomic_dec_mb(&dev->dev_qf_count);
905
906 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
907 " context: %s\n", cmd->se_tfo->fabric_name, cmd,
908 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
909 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
910 : "UNKNOWN");
911
912 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
913 transport_write_pending_qf(cmd);
914 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
915 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
916 transport_complete_qf(cmd);
917 }
918 }
919
transport_dump_cmd_direction(struct se_cmd * cmd)920 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
921 {
922 switch (cmd->data_direction) {
923 case DMA_NONE:
924 return "NONE";
925 case DMA_FROM_DEVICE:
926 return "READ";
927 case DMA_TO_DEVICE:
928 return "WRITE";
929 case DMA_BIDIRECTIONAL:
930 return "BIDI";
931 default:
932 break;
933 }
934
935 return "UNKNOWN";
936 }
937
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)938 void transport_dump_dev_state(
939 struct se_device *dev,
940 char *b,
941 int *bl)
942 {
943 *bl += sprintf(b + *bl, "Status: ");
944 if (dev->export_count)
945 *bl += sprintf(b + *bl, "ACTIVATED");
946 else
947 *bl += sprintf(b + *bl, "DEACTIVATED");
948
949 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
950 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
951 dev->dev_attrib.block_size,
952 dev->dev_attrib.hw_max_sectors);
953 *bl += sprintf(b + *bl, " ");
954 }
955
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)956 void transport_dump_vpd_proto_id(
957 struct t10_vpd *vpd,
958 unsigned char *p_buf,
959 int p_buf_len)
960 {
961 unsigned char buf[VPD_TMP_BUF_SIZE];
962 int len;
963
964 memset(buf, 0, VPD_TMP_BUF_SIZE);
965 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
966
967 switch (vpd->protocol_identifier) {
968 case 0x00:
969 sprintf(buf+len, "Fibre Channel\n");
970 break;
971 case 0x10:
972 sprintf(buf+len, "Parallel SCSI\n");
973 break;
974 case 0x20:
975 sprintf(buf+len, "SSA\n");
976 break;
977 case 0x30:
978 sprintf(buf+len, "IEEE 1394\n");
979 break;
980 case 0x40:
981 sprintf(buf+len, "SCSI Remote Direct Memory Access"
982 " Protocol\n");
983 break;
984 case 0x50:
985 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
986 break;
987 case 0x60:
988 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
989 break;
990 case 0x70:
991 sprintf(buf+len, "Automation/Drive Interface Transport"
992 " Protocol\n");
993 break;
994 case 0x80:
995 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
996 break;
997 default:
998 sprintf(buf+len, "Unknown 0x%02x\n",
999 vpd->protocol_identifier);
1000 break;
1001 }
1002
1003 if (p_buf)
1004 strncpy(p_buf, buf, p_buf_len);
1005 else
1006 pr_debug("%s", buf);
1007 }
1008
1009 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)1010 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1011 {
1012 /*
1013 * Check if the Protocol Identifier Valid (PIV) bit is set..
1014 *
1015 * from spc3r23.pdf section 7.5.1
1016 */
1017 if (page_83[1] & 0x80) {
1018 vpd->protocol_identifier = (page_83[0] & 0xf0);
1019 vpd->protocol_identifier_set = 1;
1020 transport_dump_vpd_proto_id(vpd, NULL, 0);
1021 }
1022 }
1023 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1024
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1025 int transport_dump_vpd_assoc(
1026 struct t10_vpd *vpd,
1027 unsigned char *p_buf,
1028 int p_buf_len)
1029 {
1030 unsigned char buf[VPD_TMP_BUF_SIZE];
1031 int ret = 0;
1032 int len;
1033
1034 memset(buf, 0, VPD_TMP_BUF_SIZE);
1035 len = sprintf(buf, "T10 VPD Identifier Association: ");
1036
1037 switch (vpd->association) {
1038 case 0x00:
1039 sprintf(buf+len, "addressed logical unit\n");
1040 break;
1041 case 0x10:
1042 sprintf(buf+len, "target port\n");
1043 break;
1044 case 0x20:
1045 sprintf(buf+len, "SCSI target device\n");
1046 break;
1047 default:
1048 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1049 ret = -EINVAL;
1050 break;
1051 }
1052
1053 if (p_buf)
1054 strncpy(p_buf, buf, p_buf_len);
1055 else
1056 pr_debug("%s", buf);
1057
1058 return ret;
1059 }
1060
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)1061 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1062 {
1063 /*
1064 * The VPD identification association..
1065 *
1066 * from spc3r23.pdf Section 7.6.3.1 Table 297
1067 */
1068 vpd->association = (page_83[1] & 0x30);
1069 return transport_dump_vpd_assoc(vpd, NULL, 0);
1070 }
1071 EXPORT_SYMBOL(transport_set_vpd_assoc);
1072
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1073 int transport_dump_vpd_ident_type(
1074 struct t10_vpd *vpd,
1075 unsigned char *p_buf,
1076 int p_buf_len)
1077 {
1078 unsigned char buf[VPD_TMP_BUF_SIZE];
1079 int ret = 0;
1080 int len;
1081
1082 memset(buf, 0, VPD_TMP_BUF_SIZE);
1083 len = sprintf(buf, "T10 VPD Identifier Type: ");
1084
1085 switch (vpd->device_identifier_type) {
1086 case 0x00:
1087 sprintf(buf+len, "Vendor specific\n");
1088 break;
1089 case 0x01:
1090 sprintf(buf+len, "T10 Vendor ID based\n");
1091 break;
1092 case 0x02:
1093 sprintf(buf+len, "EUI-64 based\n");
1094 break;
1095 case 0x03:
1096 sprintf(buf+len, "NAA\n");
1097 break;
1098 case 0x04:
1099 sprintf(buf+len, "Relative target port identifier\n");
1100 break;
1101 case 0x08:
1102 sprintf(buf+len, "SCSI name string\n");
1103 break;
1104 default:
1105 sprintf(buf+len, "Unsupported: 0x%02x\n",
1106 vpd->device_identifier_type);
1107 ret = -EINVAL;
1108 break;
1109 }
1110
1111 if (p_buf) {
1112 if (p_buf_len < strlen(buf)+1)
1113 return -EINVAL;
1114 strncpy(p_buf, buf, p_buf_len);
1115 } else {
1116 pr_debug("%s", buf);
1117 }
1118
1119 return ret;
1120 }
1121
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1122 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1123 {
1124 /*
1125 * The VPD identifier type..
1126 *
1127 * from spc3r23.pdf Section 7.6.3.1 Table 298
1128 */
1129 vpd->device_identifier_type = (page_83[1] & 0x0f);
1130 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1131 }
1132 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1133
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1134 int transport_dump_vpd_ident(
1135 struct t10_vpd *vpd,
1136 unsigned char *p_buf,
1137 int p_buf_len)
1138 {
1139 unsigned char buf[VPD_TMP_BUF_SIZE];
1140 int ret = 0;
1141
1142 memset(buf, 0, VPD_TMP_BUF_SIZE);
1143
1144 switch (vpd->device_identifier_code_set) {
1145 case 0x01: /* Binary */
1146 snprintf(buf, sizeof(buf),
1147 "T10 VPD Binary Device Identifier: %s\n",
1148 &vpd->device_identifier[0]);
1149 break;
1150 case 0x02: /* ASCII */
1151 snprintf(buf, sizeof(buf),
1152 "T10 VPD ASCII Device Identifier: %s\n",
1153 &vpd->device_identifier[0]);
1154 break;
1155 case 0x03: /* UTF-8 */
1156 snprintf(buf, sizeof(buf),
1157 "T10 VPD UTF-8 Device Identifier: %s\n",
1158 &vpd->device_identifier[0]);
1159 break;
1160 default:
1161 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1162 " 0x%02x", vpd->device_identifier_code_set);
1163 ret = -EINVAL;
1164 break;
1165 }
1166
1167 if (p_buf)
1168 strncpy(p_buf, buf, p_buf_len);
1169 else
1170 pr_debug("%s", buf);
1171
1172 return ret;
1173 }
1174
1175 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1176 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1177 {
1178 static const char hex_str[] = "0123456789abcdef";
1179 int j = 0, i = 4; /* offset to start of the identifier */
1180
1181 /*
1182 * The VPD Code Set (encoding)
1183 *
1184 * from spc3r23.pdf Section 7.6.3.1 Table 296
1185 */
1186 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1187 switch (vpd->device_identifier_code_set) {
1188 case 0x01: /* Binary */
1189 vpd->device_identifier[j++] =
1190 hex_str[vpd->device_identifier_type];
1191 while (i < (4 + page_83[3])) {
1192 vpd->device_identifier[j++] =
1193 hex_str[(page_83[i] & 0xf0) >> 4];
1194 vpd->device_identifier[j++] =
1195 hex_str[page_83[i] & 0x0f];
1196 i++;
1197 }
1198 break;
1199 case 0x02: /* ASCII */
1200 case 0x03: /* UTF-8 */
1201 while (i < (4 + page_83[3]))
1202 vpd->device_identifier[j++] = page_83[i++];
1203 break;
1204 default:
1205 break;
1206 }
1207
1208 return transport_dump_vpd_ident(vpd, NULL, 0);
1209 }
1210 EXPORT_SYMBOL(transport_set_vpd_ident);
1211
1212 static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd * cmd,struct se_device * dev,unsigned int size)1213 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1214 unsigned int size)
1215 {
1216 u32 mtl;
1217
1218 if (!cmd->se_tfo->max_data_sg_nents)
1219 return TCM_NO_SENSE;
1220 /*
1221 * Check if fabric enforced maximum SGL entries per I/O descriptor
1222 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1223 * residual_count and reduce original cmd->data_length to maximum
1224 * length based on single PAGE_SIZE entry scatter-lists.
1225 */
1226 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1227 if (cmd->data_length > mtl) {
1228 /*
1229 * If an existing CDB overflow is present, calculate new residual
1230 * based on CDB size minus fabric maximum transfer length.
1231 *
1232 * If an existing CDB underflow is present, calculate new residual
1233 * based on original cmd->data_length minus fabric maximum transfer
1234 * length.
1235 *
1236 * Otherwise, set the underflow residual based on cmd->data_length
1237 * minus fabric maximum transfer length.
1238 */
1239 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1240 cmd->residual_count = (size - mtl);
1241 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1242 u32 orig_dl = size + cmd->residual_count;
1243 cmd->residual_count = (orig_dl - mtl);
1244 } else {
1245 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1246 cmd->residual_count = (cmd->data_length - mtl);
1247 }
1248 cmd->data_length = mtl;
1249 /*
1250 * Reset sbc_check_prot() calculated protection payload
1251 * length based upon the new smaller MTL.
1252 */
1253 if (cmd->prot_length) {
1254 u32 sectors = (mtl / dev->dev_attrib.block_size);
1255 cmd->prot_length = dev->prot_length * sectors;
1256 }
1257 }
1258 return TCM_NO_SENSE;
1259 }
1260
1261 sense_reason_t
target_cmd_size_check(struct se_cmd * cmd,unsigned int size)1262 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1263 {
1264 struct se_device *dev = cmd->se_dev;
1265
1266 if (cmd->unknown_data_length) {
1267 cmd->data_length = size;
1268 } else if (size != cmd->data_length) {
1269 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1270 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1271 " 0x%02x\n", cmd->se_tfo->fabric_name,
1272 cmd->data_length, size, cmd->t_task_cdb[0]);
1273
1274 if (cmd->data_direction == DMA_TO_DEVICE) {
1275 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1276 pr_err_ratelimited("Rejecting underflow/overflow"
1277 " for WRITE data CDB\n");
1278 return TCM_INVALID_CDB_FIELD;
1279 }
1280 /*
1281 * Some fabric drivers like iscsi-target still expect to
1282 * always reject overflow writes. Reject this case until
1283 * full fabric driver level support for overflow writes
1284 * is introduced tree-wide.
1285 */
1286 if (size > cmd->data_length) {
1287 pr_err_ratelimited("Rejecting overflow for"
1288 " WRITE control CDB\n");
1289 return TCM_INVALID_CDB_FIELD;
1290 }
1291 }
1292 /*
1293 * Reject READ_* or WRITE_* with overflow/underflow for
1294 * type SCF_SCSI_DATA_CDB.
1295 */
1296 if (dev->dev_attrib.block_size != 512) {
1297 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1298 " CDB on non 512-byte sector setup subsystem"
1299 " plugin: %s\n", dev->transport->name);
1300 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1301 return TCM_INVALID_CDB_FIELD;
1302 }
1303 /*
1304 * For the overflow case keep the existing fabric provided
1305 * ->data_length. Otherwise for the underflow case, reset
1306 * ->data_length to the smaller SCSI expected data transfer
1307 * length.
1308 */
1309 if (size > cmd->data_length) {
1310 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1311 cmd->residual_count = (size - cmd->data_length);
1312 } else {
1313 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1314 cmd->residual_count = (cmd->data_length - size);
1315 cmd->data_length = size;
1316 }
1317 }
1318
1319 return target_check_max_data_sg_nents(cmd, dev, size);
1320
1321 }
1322
1323 /*
1324 * Used by fabric modules containing a local struct se_cmd within their
1325 * fabric dependent per I/O descriptor.
1326 *
1327 * Preserves the value of @cmd->tag.
1328 */
transport_init_se_cmd(struct se_cmd * cmd,const struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer)1329 void transport_init_se_cmd(
1330 struct se_cmd *cmd,
1331 const struct target_core_fabric_ops *tfo,
1332 struct se_session *se_sess,
1333 u32 data_length,
1334 int data_direction,
1335 int task_attr,
1336 unsigned char *sense_buffer)
1337 {
1338 INIT_LIST_HEAD(&cmd->se_delayed_node);
1339 INIT_LIST_HEAD(&cmd->se_qf_node);
1340 INIT_LIST_HEAD(&cmd->se_cmd_list);
1341 INIT_LIST_HEAD(&cmd->state_list);
1342 init_completion(&cmd->t_transport_stop_comp);
1343 cmd->free_compl = NULL;
1344 cmd->abrt_compl = NULL;
1345 spin_lock_init(&cmd->t_state_lock);
1346 INIT_WORK(&cmd->work, NULL);
1347 kref_init(&cmd->cmd_kref);
1348
1349 cmd->se_tfo = tfo;
1350 cmd->se_sess = se_sess;
1351 cmd->data_length = data_length;
1352 cmd->data_direction = data_direction;
1353 cmd->sam_task_attr = task_attr;
1354 cmd->sense_buffer = sense_buffer;
1355
1356 cmd->state_active = false;
1357 }
1358 EXPORT_SYMBOL(transport_init_se_cmd);
1359
1360 static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd * cmd)1361 transport_check_alloc_task_attr(struct se_cmd *cmd)
1362 {
1363 struct se_device *dev = cmd->se_dev;
1364
1365 /*
1366 * Check if SAM Task Attribute emulation is enabled for this
1367 * struct se_device storage object
1368 */
1369 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1370 return 0;
1371
1372 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1373 pr_debug("SAM Task Attribute ACA"
1374 " emulation is not supported\n");
1375 return TCM_INVALID_CDB_FIELD;
1376 }
1377
1378 return 0;
1379 }
1380
1381 sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd * cmd,unsigned char * cdb)1382 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1383 {
1384 struct se_device *dev = cmd->se_dev;
1385 sense_reason_t ret;
1386
1387 /*
1388 * Ensure that the received CDB is less than the max (252 + 8) bytes
1389 * for VARIABLE_LENGTH_CMD
1390 */
1391 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1392 pr_err("Received SCSI CDB with command_size: %d that"
1393 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1394 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1395 return TCM_INVALID_CDB_FIELD;
1396 }
1397 /*
1398 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1399 * allocate the additional extended CDB buffer now.. Otherwise
1400 * setup the pointer from __t_task_cdb to t_task_cdb.
1401 */
1402 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1403 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1404 GFP_KERNEL);
1405 if (!cmd->t_task_cdb) {
1406 pr_err("Unable to allocate cmd->t_task_cdb"
1407 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1408 scsi_command_size(cdb),
1409 (unsigned long)sizeof(cmd->__t_task_cdb));
1410 return TCM_OUT_OF_RESOURCES;
1411 }
1412 } else
1413 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1414 /*
1415 * Copy the original CDB into cmd->
1416 */
1417 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1418
1419 trace_target_sequencer_start(cmd);
1420
1421 ret = dev->transport->parse_cdb(cmd);
1422 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1423 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1424 cmd->se_tfo->fabric_name,
1425 cmd->se_sess->se_node_acl->initiatorname,
1426 cmd->t_task_cdb[0]);
1427 if (ret)
1428 return ret;
1429
1430 ret = transport_check_alloc_task_attr(cmd);
1431 if (ret)
1432 return ret;
1433
1434 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1435 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1436 return 0;
1437 }
1438 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1439
1440 /*
1441 * Used by fabric module frontends to queue tasks directly.
1442 * May only be used from process context.
1443 */
transport_handle_cdb_direct(struct se_cmd * cmd)1444 int transport_handle_cdb_direct(
1445 struct se_cmd *cmd)
1446 {
1447 sense_reason_t ret;
1448
1449 if (!cmd->se_lun) {
1450 dump_stack();
1451 pr_err("cmd->se_lun is NULL\n");
1452 return -EINVAL;
1453 }
1454 if (in_interrupt()) {
1455 dump_stack();
1456 pr_err("transport_generic_handle_cdb cannot be called"
1457 " from interrupt context\n");
1458 return -EINVAL;
1459 }
1460 /*
1461 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1462 * outstanding descriptors are handled correctly during shutdown via
1463 * transport_wait_for_tasks()
1464 *
1465 * Also, we don't take cmd->t_state_lock here as we only expect
1466 * this to be called for initial descriptor submission.
1467 */
1468 cmd->t_state = TRANSPORT_NEW_CMD;
1469 cmd->transport_state |= CMD_T_ACTIVE;
1470
1471 /*
1472 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1473 * so follow TRANSPORT_NEW_CMD processing thread context usage
1474 * and call transport_generic_request_failure() if necessary..
1475 */
1476 ret = transport_generic_new_cmd(cmd);
1477 if (ret)
1478 transport_generic_request_failure(cmd, ret);
1479 return 0;
1480 }
1481 EXPORT_SYMBOL(transport_handle_cdb_direct);
1482
1483 sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)1484 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1485 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1486 {
1487 if (!sgl || !sgl_count)
1488 return 0;
1489
1490 /*
1491 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1492 * scatterlists already have been set to follow what the fabric
1493 * passes for the original expected data transfer length.
1494 */
1495 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1496 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1497 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1498 return TCM_INVALID_CDB_FIELD;
1499 }
1500
1501 cmd->t_data_sg = sgl;
1502 cmd->t_data_nents = sgl_count;
1503 cmd->t_bidi_data_sg = sgl_bidi;
1504 cmd->t_bidi_data_nents = sgl_bidi_count;
1505
1506 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1507 return 0;
1508 }
1509
1510 /**
1511 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1512 * se_cmd + use pre-allocated SGL memory.
1513 *
1514 * @se_cmd: command descriptor to submit
1515 * @se_sess: associated se_sess for endpoint
1516 * @cdb: pointer to SCSI CDB
1517 * @sense: pointer to SCSI sense buffer
1518 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1519 * @data_length: fabric expected data transfer length
1520 * @task_attr: SAM task attribute
1521 * @data_dir: DMA data direction
1522 * @flags: flags for command submission from target_sc_flags_tables
1523 * @sgl: struct scatterlist memory for unidirectional mapping
1524 * @sgl_count: scatterlist count for unidirectional mapping
1525 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1526 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1527 * @sgl_prot: struct scatterlist memory protection information
1528 * @sgl_prot_count: scatterlist count for protection information
1529 *
1530 * Task tags are supported if the caller has set @se_cmd->tag.
1531 *
1532 * Returns non zero to signal active I/O shutdown failure. All other
1533 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1534 * but still return zero here.
1535 *
1536 * This may only be called from process context, and also currently
1537 * assumes internal allocation of fabric payload buffer by target-core.
1538 */
target_submit_cmd_map_sgls(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count,struct scatterlist * sgl_prot,u32 sgl_prot_count)1539 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1540 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1541 u32 data_length, int task_attr, int data_dir, int flags,
1542 struct scatterlist *sgl, u32 sgl_count,
1543 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1544 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1545 {
1546 struct se_portal_group *se_tpg;
1547 sense_reason_t rc;
1548 int ret;
1549
1550 se_tpg = se_sess->se_tpg;
1551 BUG_ON(!se_tpg);
1552 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1553 BUG_ON(in_interrupt());
1554 /*
1555 * Initialize se_cmd for target operation. From this point
1556 * exceptions are handled by sending exception status via
1557 * target_core_fabric_ops->queue_status() callback
1558 */
1559 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1560 data_length, data_dir, task_attr, sense);
1561
1562 if (flags & TARGET_SCF_USE_CPUID)
1563 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1564 else
1565 se_cmd->cpuid = WORK_CPU_UNBOUND;
1566
1567 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1568 se_cmd->unknown_data_length = 1;
1569 /*
1570 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1571 * se_sess->sess_cmd_list. A second kref_get here is necessary
1572 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1573 * kref_put() to happen during fabric packet acknowledgement.
1574 */
1575 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1576 if (ret)
1577 return ret;
1578 /*
1579 * Signal bidirectional data payloads to target-core
1580 */
1581 if (flags & TARGET_SCF_BIDI_OP)
1582 se_cmd->se_cmd_flags |= SCF_BIDI;
1583 /*
1584 * Locate se_lun pointer and attach it to struct se_cmd
1585 */
1586 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1587 if (rc) {
1588 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1589 target_put_sess_cmd(se_cmd);
1590 return 0;
1591 }
1592
1593 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1594 if (rc != 0) {
1595 transport_generic_request_failure(se_cmd, rc);
1596 return 0;
1597 }
1598
1599 /*
1600 * Save pointers for SGLs containing protection information,
1601 * if present.
1602 */
1603 if (sgl_prot_count) {
1604 se_cmd->t_prot_sg = sgl_prot;
1605 se_cmd->t_prot_nents = sgl_prot_count;
1606 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1607 }
1608
1609 /*
1610 * When a non zero sgl_count has been passed perform SGL passthrough
1611 * mapping for pre-allocated fabric memory instead of having target
1612 * core perform an internal SGL allocation..
1613 */
1614 if (sgl_count != 0) {
1615 BUG_ON(!sgl);
1616
1617 /*
1618 * A work-around for tcm_loop as some userspace code via
1619 * scsi-generic do not memset their associated read buffers,
1620 * so go ahead and do that here for type non-data CDBs. Also
1621 * note that this is currently guaranteed to be a single SGL
1622 * for this case by target core in target_setup_cmd_from_cdb()
1623 * -> transport_generic_cmd_sequencer().
1624 */
1625 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1626 se_cmd->data_direction == DMA_FROM_DEVICE) {
1627 unsigned char *buf = NULL;
1628
1629 if (sgl)
1630 buf = kmap(sg_page(sgl)) + sgl->offset;
1631
1632 if (buf) {
1633 memset(buf, 0, sgl->length);
1634 kunmap(sg_page(sgl));
1635 }
1636 }
1637
1638 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1639 sgl_bidi, sgl_bidi_count);
1640 if (rc != 0) {
1641 transport_generic_request_failure(se_cmd, rc);
1642 return 0;
1643 }
1644 }
1645
1646 /*
1647 * Check if we need to delay processing because of ALUA
1648 * Active/NonOptimized primary access state..
1649 */
1650 core_alua_check_nonop_delay(se_cmd);
1651
1652 transport_handle_cdb_direct(se_cmd);
1653 return 0;
1654 }
1655 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1656
1657 /**
1658 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1659 *
1660 * @se_cmd: command descriptor to submit
1661 * @se_sess: associated se_sess for endpoint
1662 * @cdb: pointer to SCSI CDB
1663 * @sense: pointer to SCSI sense buffer
1664 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1665 * @data_length: fabric expected data transfer length
1666 * @task_attr: SAM task attribute
1667 * @data_dir: DMA data direction
1668 * @flags: flags for command submission from target_sc_flags_tables
1669 *
1670 * Task tags are supported if the caller has set @se_cmd->tag.
1671 *
1672 * Returns non zero to signal active I/O shutdown failure. All other
1673 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1674 * but still return zero here.
1675 *
1676 * This may only be called from process context, and also currently
1677 * assumes internal allocation of fabric payload buffer by target-core.
1678 *
1679 * It also assumes interal target core SGL memory allocation.
1680 */
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1681 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1682 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1683 u32 data_length, int task_attr, int data_dir, int flags)
1684 {
1685 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1686 unpacked_lun, data_length, task_attr, data_dir,
1687 flags, NULL, 0, NULL, 0, NULL, 0);
1688 }
1689 EXPORT_SYMBOL(target_submit_cmd);
1690
target_complete_tmr_failure(struct work_struct * work)1691 static void target_complete_tmr_failure(struct work_struct *work)
1692 {
1693 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1694
1695 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1696 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1697
1698 transport_cmd_check_stop_to_fabric(se_cmd);
1699 }
1700
target_lookup_lun_from_tag(struct se_session * se_sess,u64 tag,u64 * unpacked_lun)1701 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
1702 u64 *unpacked_lun)
1703 {
1704 struct se_cmd *se_cmd;
1705 unsigned long flags;
1706 bool ret = false;
1707
1708 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
1709 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
1710 if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1711 continue;
1712
1713 if (se_cmd->tag == tag) {
1714 *unpacked_lun = se_cmd->orig_fe_lun;
1715 ret = true;
1716 break;
1717 }
1718 }
1719 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
1720
1721 return ret;
1722 }
1723
1724 /**
1725 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1726 * for TMR CDBs
1727 *
1728 * @se_cmd: command descriptor to submit
1729 * @se_sess: associated se_sess for endpoint
1730 * @sense: pointer to SCSI sense buffer
1731 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1732 * @fabric_tmr_ptr: fabric context for TMR req
1733 * @tm_type: Type of TM request
1734 * @gfp: gfp type for caller
1735 * @tag: referenced task tag for TMR_ABORT_TASK
1736 * @flags: submit cmd flags
1737 *
1738 * Callable from all contexts.
1739 **/
1740
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,u64 tag,int flags)1741 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1742 unsigned char *sense, u64 unpacked_lun,
1743 void *fabric_tmr_ptr, unsigned char tm_type,
1744 gfp_t gfp, u64 tag, int flags)
1745 {
1746 struct se_portal_group *se_tpg;
1747 int ret;
1748
1749 se_tpg = se_sess->se_tpg;
1750 BUG_ON(!se_tpg);
1751
1752 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1753 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1754 /*
1755 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1756 * allocation failure.
1757 */
1758 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1759 if (ret < 0)
1760 return -ENOMEM;
1761
1762 if (tm_type == TMR_ABORT_TASK)
1763 se_cmd->se_tmr_req->ref_task_tag = tag;
1764
1765 /* See target_submit_cmd for commentary */
1766 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1767 if (ret) {
1768 core_tmr_release_req(se_cmd->se_tmr_req);
1769 return ret;
1770 }
1771 /*
1772 * If this is ABORT_TASK with no explicit fabric provided LUN,
1773 * go ahead and search active session tags for a match to figure
1774 * out unpacked_lun for the original se_cmd.
1775 */
1776 if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
1777 if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
1778 goto failure;
1779 }
1780
1781 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1782 if (ret)
1783 goto failure;
1784
1785 transport_generic_handle_tmr(se_cmd);
1786 return 0;
1787
1788 /*
1789 * For callback during failure handling, push this work off
1790 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1791 */
1792 failure:
1793 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1794 schedule_work(&se_cmd->work);
1795 return 0;
1796 }
1797 EXPORT_SYMBOL(target_submit_tmr);
1798
1799 /*
1800 * Handle SAM-esque emulation for generic transport request failures.
1801 */
transport_generic_request_failure(struct se_cmd * cmd,sense_reason_t sense_reason)1802 void transport_generic_request_failure(struct se_cmd *cmd,
1803 sense_reason_t sense_reason)
1804 {
1805 int ret = 0, post_ret;
1806
1807 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1808 sense_reason);
1809 target_show_cmd("-----[ ", cmd);
1810
1811 /*
1812 * For SAM Task Attribute emulation for failed struct se_cmd
1813 */
1814 transport_complete_task_attr(cmd);
1815
1816 if (cmd->transport_complete_callback)
1817 cmd->transport_complete_callback(cmd, false, &post_ret);
1818
1819 if (cmd->transport_state & CMD_T_ABORTED) {
1820 INIT_WORK(&cmd->work, target_abort_work);
1821 queue_work(target_completion_wq, &cmd->work);
1822 return;
1823 }
1824
1825 switch (sense_reason) {
1826 case TCM_NON_EXISTENT_LUN:
1827 case TCM_UNSUPPORTED_SCSI_OPCODE:
1828 case TCM_INVALID_CDB_FIELD:
1829 case TCM_INVALID_PARAMETER_LIST:
1830 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1831 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1832 case TCM_UNKNOWN_MODE_PAGE:
1833 case TCM_WRITE_PROTECTED:
1834 case TCM_ADDRESS_OUT_OF_RANGE:
1835 case TCM_CHECK_CONDITION_ABORT_CMD:
1836 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1837 case TCM_CHECK_CONDITION_NOT_READY:
1838 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1839 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1840 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1841 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1842 case TCM_TOO_MANY_TARGET_DESCS:
1843 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1844 case TCM_TOO_MANY_SEGMENT_DESCS:
1845 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1846 break;
1847 case TCM_OUT_OF_RESOURCES:
1848 cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
1849 goto queue_status;
1850 case TCM_LUN_BUSY:
1851 cmd->scsi_status = SAM_STAT_BUSY;
1852 goto queue_status;
1853 case TCM_RESERVATION_CONFLICT:
1854 /*
1855 * No SENSE Data payload for this case, set SCSI Status
1856 * and queue the response to $FABRIC_MOD.
1857 *
1858 * Uses linux/include/scsi/scsi.h SAM status codes defs
1859 */
1860 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1861 /*
1862 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1863 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1864 * CONFLICT STATUS.
1865 *
1866 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1867 */
1868 if (cmd->se_sess &&
1869 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1870 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1871 cmd->orig_fe_lun, 0x2C,
1872 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1873 }
1874
1875 goto queue_status;
1876 default:
1877 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1878 cmd->t_task_cdb[0], sense_reason);
1879 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1880 break;
1881 }
1882
1883 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1884 if (ret)
1885 goto queue_full;
1886
1887 check_stop:
1888 transport_cmd_check_stop_to_fabric(cmd);
1889 return;
1890
1891 queue_status:
1892 trace_target_cmd_complete(cmd);
1893 ret = cmd->se_tfo->queue_status(cmd);
1894 if (!ret)
1895 goto check_stop;
1896 queue_full:
1897 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1898 }
1899 EXPORT_SYMBOL(transport_generic_request_failure);
1900
__target_execute_cmd(struct se_cmd * cmd,bool do_checks)1901 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1902 {
1903 sense_reason_t ret;
1904
1905 if (!cmd->execute_cmd) {
1906 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1907 goto err;
1908 }
1909 if (do_checks) {
1910 /*
1911 * Check for an existing UNIT ATTENTION condition after
1912 * target_handle_task_attr() has done SAM task attr
1913 * checking, and possibly have already defered execution
1914 * out to target_restart_delayed_cmds() context.
1915 */
1916 ret = target_scsi3_ua_check(cmd);
1917 if (ret)
1918 goto err;
1919
1920 ret = target_alua_state_check(cmd);
1921 if (ret)
1922 goto err;
1923
1924 ret = target_check_reservation(cmd);
1925 if (ret) {
1926 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1927 goto err;
1928 }
1929 }
1930
1931 ret = cmd->execute_cmd(cmd);
1932 if (!ret)
1933 return;
1934 err:
1935 spin_lock_irq(&cmd->t_state_lock);
1936 cmd->transport_state &= ~CMD_T_SENT;
1937 spin_unlock_irq(&cmd->t_state_lock);
1938
1939 transport_generic_request_failure(cmd, ret);
1940 }
1941
target_write_prot_action(struct se_cmd * cmd)1942 static int target_write_prot_action(struct se_cmd *cmd)
1943 {
1944 u32 sectors;
1945 /*
1946 * Perform WRITE_INSERT of PI using software emulation when backend
1947 * device has PI enabled, if the transport has not already generated
1948 * PI using hardware WRITE_INSERT offload.
1949 */
1950 switch (cmd->prot_op) {
1951 case TARGET_PROT_DOUT_INSERT:
1952 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1953 sbc_dif_generate(cmd);
1954 break;
1955 case TARGET_PROT_DOUT_STRIP:
1956 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1957 break;
1958
1959 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1960 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1961 sectors, 0, cmd->t_prot_sg, 0);
1962 if (unlikely(cmd->pi_err)) {
1963 spin_lock_irq(&cmd->t_state_lock);
1964 cmd->transport_state &= ~CMD_T_SENT;
1965 spin_unlock_irq(&cmd->t_state_lock);
1966 transport_generic_request_failure(cmd, cmd->pi_err);
1967 return -1;
1968 }
1969 break;
1970 default:
1971 break;
1972 }
1973
1974 return 0;
1975 }
1976
target_handle_task_attr(struct se_cmd * cmd)1977 static bool target_handle_task_attr(struct se_cmd *cmd)
1978 {
1979 struct se_device *dev = cmd->se_dev;
1980
1981 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1982 return false;
1983
1984 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1985
1986 /*
1987 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1988 * to allow the passed struct se_cmd list of tasks to the front of the list.
1989 */
1990 switch (cmd->sam_task_attr) {
1991 case TCM_HEAD_TAG:
1992 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1993 cmd->t_task_cdb[0]);
1994 return false;
1995 case TCM_ORDERED_TAG:
1996 atomic_inc_mb(&dev->dev_ordered_sync);
1997
1998 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1999 cmd->t_task_cdb[0]);
2000
2001 /*
2002 * Execute an ORDERED command if no other older commands
2003 * exist that need to be completed first.
2004 */
2005 if (!atomic_read(&dev->simple_cmds))
2006 return false;
2007 break;
2008 default:
2009 /*
2010 * For SIMPLE and UNTAGGED Task Attribute commands
2011 */
2012 atomic_inc_mb(&dev->simple_cmds);
2013 break;
2014 }
2015
2016 if (atomic_read(&dev->dev_ordered_sync) == 0)
2017 return false;
2018
2019 spin_lock(&dev->delayed_cmd_lock);
2020 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2021 spin_unlock(&dev->delayed_cmd_lock);
2022
2023 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2024 cmd->t_task_cdb[0], cmd->sam_task_attr);
2025 return true;
2026 }
2027
target_execute_cmd(struct se_cmd * cmd)2028 void target_execute_cmd(struct se_cmd *cmd)
2029 {
2030 /*
2031 * Determine if frontend context caller is requesting the stopping of
2032 * this command for frontend exceptions.
2033 *
2034 * If the received CDB has already been aborted stop processing it here.
2035 */
2036 if (target_cmd_interrupted(cmd))
2037 return;
2038
2039 spin_lock_irq(&cmd->t_state_lock);
2040 cmd->t_state = TRANSPORT_PROCESSING;
2041 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2042 spin_unlock_irq(&cmd->t_state_lock);
2043
2044 if (target_write_prot_action(cmd))
2045 return;
2046
2047 if (target_handle_task_attr(cmd)) {
2048 spin_lock_irq(&cmd->t_state_lock);
2049 cmd->transport_state &= ~CMD_T_SENT;
2050 spin_unlock_irq(&cmd->t_state_lock);
2051 return;
2052 }
2053
2054 __target_execute_cmd(cmd, true);
2055 }
2056 EXPORT_SYMBOL(target_execute_cmd);
2057
2058 /*
2059 * Process all commands up to the last received ORDERED task attribute which
2060 * requires another blocking boundary
2061 */
target_restart_delayed_cmds(struct se_device * dev)2062 static void target_restart_delayed_cmds(struct se_device *dev)
2063 {
2064 for (;;) {
2065 struct se_cmd *cmd;
2066
2067 spin_lock(&dev->delayed_cmd_lock);
2068 if (list_empty(&dev->delayed_cmd_list)) {
2069 spin_unlock(&dev->delayed_cmd_lock);
2070 break;
2071 }
2072
2073 cmd = list_entry(dev->delayed_cmd_list.next,
2074 struct se_cmd, se_delayed_node);
2075 list_del(&cmd->se_delayed_node);
2076 spin_unlock(&dev->delayed_cmd_lock);
2077
2078 cmd->transport_state |= CMD_T_SENT;
2079
2080 __target_execute_cmd(cmd, true);
2081
2082 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2083 break;
2084 }
2085 }
2086
2087 /*
2088 * Called from I/O completion to determine which dormant/delayed
2089 * and ordered cmds need to have their tasks added to the execution queue.
2090 */
transport_complete_task_attr(struct se_cmd * cmd)2091 static void transport_complete_task_attr(struct se_cmd *cmd)
2092 {
2093 struct se_device *dev = cmd->se_dev;
2094
2095 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2096 return;
2097
2098 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2099 goto restart;
2100
2101 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2102 atomic_dec_mb(&dev->simple_cmds);
2103 dev->dev_cur_ordered_id++;
2104 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2105 dev->dev_cur_ordered_id++;
2106 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2107 dev->dev_cur_ordered_id);
2108 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2109 atomic_dec_mb(&dev->dev_ordered_sync);
2110
2111 dev->dev_cur_ordered_id++;
2112 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2113 dev->dev_cur_ordered_id);
2114 }
2115 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2116
2117 restart:
2118 target_restart_delayed_cmds(dev);
2119 }
2120
transport_complete_qf(struct se_cmd * cmd)2121 static void transport_complete_qf(struct se_cmd *cmd)
2122 {
2123 int ret = 0;
2124
2125 transport_complete_task_attr(cmd);
2126 /*
2127 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2128 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2129 * the same callbacks should not be retried. Return CHECK_CONDITION
2130 * if a scsi_status is not already set.
2131 *
2132 * If a fabric driver ->queue_status() has returned non zero, always
2133 * keep retrying no matter what..
2134 */
2135 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2136 if (cmd->scsi_status)
2137 goto queue_status;
2138
2139 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2140 goto queue_status;
2141 }
2142
2143 /*
2144 * Check if we need to send a sense buffer from
2145 * the struct se_cmd in question. We do NOT want
2146 * to take this path of the IO has been marked as
2147 * needing to be treated like a "normal read". This
2148 * is the case if it's a tape read, and either the
2149 * FM, EOM, or ILI bits are set, but there is no
2150 * sense data.
2151 */
2152 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2153 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2154 goto queue_status;
2155
2156 switch (cmd->data_direction) {
2157 case DMA_FROM_DEVICE:
2158 /* queue status if not treating this as a normal read */
2159 if (cmd->scsi_status &&
2160 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2161 goto queue_status;
2162
2163 trace_target_cmd_complete(cmd);
2164 ret = cmd->se_tfo->queue_data_in(cmd);
2165 break;
2166 case DMA_TO_DEVICE:
2167 if (cmd->se_cmd_flags & SCF_BIDI) {
2168 ret = cmd->se_tfo->queue_data_in(cmd);
2169 break;
2170 }
2171 /* fall through */
2172 case DMA_NONE:
2173 queue_status:
2174 trace_target_cmd_complete(cmd);
2175 ret = cmd->se_tfo->queue_status(cmd);
2176 break;
2177 default:
2178 break;
2179 }
2180
2181 if (ret < 0) {
2182 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2183 return;
2184 }
2185 transport_cmd_check_stop_to_fabric(cmd);
2186 }
2187
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev,int err,bool write_pending)2188 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2189 int err, bool write_pending)
2190 {
2191 /*
2192 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2193 * ->queue_data_in() callbacks from new process context.
2194 *
2195 * Otherwise for other errors, transport_complete_qf() will send
2196 * CHECK_CONDITION via ->queue_status() instead of attempting to
2197 * retry associated fabric driver data-transfer callbacks.
2198 */
2199 if (err == -EAGAIN || err == -ENOMEM) {
2200 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2201 TRANSPORT_COMPLETE_QF_OK;
2202 } else {
2203 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2204 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2205 }
2206
2207 spin_lock_irq(&dev->qf_cmd_lock);
2208 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2209 atomic_inc_mb(&dev->dev_qf_count);
2210 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2211
2212 schedule_work(&cmd->se_dev->qf_work_queue);
2213 }
2214
target_read_prot_action(struct se_cmd * cmd)2215 static bool target_read_prot_action(struct se_cmd *cmd)
2216 {
2217 switch (cmd->prot_op) {
2218 case TARGET_PROT_DIN_STRIP:
2219 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2220 u32 sectors = cmd->data_length >>
2221 ilog2(cmd->se_dev->dev_attrib.block_size);
2222
2223 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2224 sectors, 0, cmd->t_prot_sg,
2225 0);
2226 if (cmd->pi_err)
2227 return true;
2228 }
2229 break;
2230 case TARGET_PROT_DIN_INSERT:
2231 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2232 break;
2233
2234 sbc_dif_generate(cmd);
2235 break;
2236 default:
2237 break;
2238 }
2239
2240 return false;
2241 }
2242
target_complete_ok_work(struct work_struct * work)2243 static void target_complete_ok_work(struct work_struct *work)
2244 {
2245 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2246 int ret;
2247
2248 /*
2249 * Check if we need to move delayed/dormant tasks from cmds on the
2250 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2251 * Attribute.
2252 */
2253 transport_complete_task_attr(cmd);
2254
2255 /*
2256 * Check to schedule QUEUE_FULL work, or execute an existing
2257 * cmd->transport_qf_callback()
2258 */
2259 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2260 schedule_work(&cmd->se_dev->qf_work_queue);
2261
2262 /*
2263 * Check if we need to send a sense buffer from
2264 * the struct se_cmd in question. We do NOT want
2265 * to take this path of the IO has been marked as
2266 * needing to be treated like a "normal read". This
2267 * is the case if it's a tape read, and either the
2268 * FM, EOM, or ILI bits are set, but there is no
2269 * sense data.
2270 */
2271 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2272 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2273 WARN_ON(!cmd->scsi_status);
2274 ret = transport_send_check_condition_and_sense(
2275 cmd, 0, 1);
2276 if (ret)
2277 goto queue_full;
2278
2279 transport_cmd_check_stop_to_fabric(cmd);
2280 return;
2281 }
2282 /*
2283 * Check for a callback, used by amongst other things
2284 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2285 */
2286 if (cmd->transport_complete_callback) {
2287 sense_reason_t rc;
2288 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2289 bool zero_dl = !(cmd->data_length);
2290 int post_ret = 0;
2291
2292 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2293 if (!rc && !post_ret) {
2294 if (caw && zero_dl)
2295 goto queue_rsp;
2296
2297 return;
2298 } else if (rc) {
2299 ret = transport_send_check_condition_and_sense(cmd,
2300 rc, 0);
2301 if (ret)
2302 goto queue_full;
2303
2304 transport_cmd_check_stop_to_fabric(cmd);
2305 return;
2306 }
2307 }
2308
2309 queue_rsp:
2310 switch (cmd->data_direction) {
2311 case DMA_FROM_DEVICE:
2312 /*
2313 * if this is a READ-type IO, but SCSI status
2314 * is set, then skip returning data and just
2315 * return the status -- unless this IO is marked
2316 * as needing to be treated as a normal read,
2317 * in which case we want to go ahead and return
2318 * the data. This happens, for example, for tape
2319 * reads with the FM, EOM, or ILI bits set, with
2320 * no sense data.
2321 */
2322 if (cmd->scsi_status &&
2323 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2324 goto queue_status;
2325
2326 atomic_long_add(cmd->data_length,
2327 &cmd->se_lun->lun_stats.tx_data_octets);
2328 /*
2329 * Perform READ_STRIP of PI using software emulation when
2330 * backend had PI enabled, if the transport will not be
2331 * performing hardware READ_STRIP offload.
2332 */
2333 if (target_read_prot_action(cmd)) {
2334 ret = transport_send_check_condition_and_sense(cmd,
2335 cmd->pi_err, 0);
2336 if (ret)
2337 goto queue_full;
2338
2339 transport_cmd_check_stop_to_fabric(cmd);
2340 return;
2341 }
2342
2343 trace_target_cmd_complete(cmd);
2344 ret = cmd->se_tfo->queue_data_in(cmd);
2345 if (ret)
2346 goto queue_full;
2347 break;
2348 case DMA_TO_DEVICE:
2349 atomic_long_add(cmd->data_length,
2350 &cmd->se_lun->lun_stats.rx_data_octets);
2351 /*
2352 * Check if we need to send READ payload for BIDI-COMMAND
2353 */
2354 if (cmd->se_cmd_flags & SCF_BIDI) {
2355 atomic_long_add(cmd->data_length,
2356 &cmd->se_lun->lun_stats.tx_data_octets);
2357 ret = cmd->se_tfo->queue_data_in(cmd);
2358 if (ret)
2359 goto queue_full;
2360 break;
2361 }
2362 /* fall through */
2363 case DMA_NONE:
2364 queue_status:
2365 trace_target_cmd_complete(cmd);
2366 ret = cmd->se_tfo->queue_status(cmd);
2367 if (ret)
2368 goto queue_full;
2369 break;
2370 default:
2371 break;
2372 }
2373
2374 transport_cmd_check_stop_to_fabric(cmd);
2375 return;
2376
2377 queue_full:
2378 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2379 " data_direction: %d\n", cmd, cmd->data_direction);
2380
2381 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2382 }
2383
target_free_sgl(struct scatterlist * sgl,int nents)2384 void target_free_sgl(struct scatterlist *sgl, int nents)
2385 {
2386 sgl_free_n_order(sgl, nents, 0);
2387 }
2388 EXPORT_SYMBOL(target_free_sgl);
2389
transport_reset_sgl_orig(struct se_cmd * cmd)2390 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2391 {
2392 /*
2393 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2394 * emulation, and free + reset pointers if necessary..
2395 */
2396 if (!cmd->t_data_sg_orig)
2397 return;
2398
2399 kfree(cmd->t_data_sg);
2400 cmd->t_data_sg = cmd->t_data_sg_orig;
2401 cmd->t_data_sg_orig = NULL;
2402 cmd->t_data_nents = cmd->t_data_nents_orig;
2403 cmd->t_data_nents_orig = 0;
2404 }
2405
transport_free_pages(struct se_cmd * cmd)2406 static inline void transport_free_pages(struct se_cmd *cmd)
2407 {
2408 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2409 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2410 cmd->t_prot_sg = NULL;
2411 cmd->t_prot_nents = 0;
2412 }
2413
2414 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2415 /*
2416 * Release special case READ buffer payload required for
2417 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2418 */
2419 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2420 target_free_sgl(cmd->t_bidi_data_sg,
2421 cmd->t_bidi_data_nents);
2422 cmd->t_bidi_data_sg = NULL;
2423 cmd->t_bidi_data_nents = 0;
2424 }
2425 transport_reset_sgl_orig(cmd);
2426 return;
2427 }
2428 transport_reset_sgl_orig(cmd);
2429
2430 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2431 cmd->t_data_sg = NULL;
2432 cmd->t_data_nents = 0;
2433
2434 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2435 cmd->t_bidi_data_sg = NULL;
2436 cmd->t_bidi_data_nents = 0;
2437 }
2438
transport_kmap_data_sg(struct se_cmd * cmd)2439 void *transport_kmap_data_sg(struct se_cmd *cmd)
2440 {
2441 struct scatterlist *sg = cmd->t_data_sg;
2442 struct page **pages;
2443 int i;
2444
2445 /*
2446 * We need to take into account a possible offset here for fabrics like
2447 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2448 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2449 */
2450 if (!cmd->t_data_nents)
2451 return NULL;
2452
2453 BUG_ON(!sg);
2454 if (cmd->t_data_nents == 1)
2455 return kmap(sg_page(sg)) + sg->offset;
2456
2457 /* >1 page. use vmap */
2458 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2459 if (!pages)
2460 return NULL;
2461
2462 /* convert sg[] to pages[] */
2463 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2464 pages[i] = sg_page(sg);
2465 }
2466
2467 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2468 kfree(pages);
2469 if (!cmd->t_data_vmap)
2470 return NULL;
2471
2472 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2473 }
2474 EXPORT_SYMBOL(transport_kmap_data_sg);
2475
transport_kunmap_data_sg(struct se_cmd * cmd)2476 void transport_kunmap_data_sg(struct se_cmd *cmd)
2477 {
2478 if (!cmd->t_data_nents) {
2479 return;
2480 } else if (cmd->t_data_nents == 1) {
2481 kunmap(sg_page(cmd->t_data_sg));
2482 return;
2483 }
2484
2485 vunmap(cmd->t_data_vmap);
2486 cmd->t_data_vmap = NULL;
2487 }
2488 EXPORT_SYMBOL(transport_kunmap_data_sg);
2489
2490 int
target_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length,bool zero_page,bool chainable)2491 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2492 bool zero_page, bool chainable)
2493 {
2494 gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2495
2496 *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2497 return *sgl ? 0 : -ENOMEM;
2498 }
2499 EXPORT_SYMBOL(target_alloc_sgl);
2500
2501 /*
2502 * Allocate any required resources to execute the command. For writes we
2503 * might not have the payload yet, so notify the fabric via a call to
2504 * ->write_pending instead. Otherwise place it on the execution queue.
2505 */
2506 sense_reason_t
transport_generic_new_cmd(struct se_cmd * cmd)2507 transport_generic_new_cmd(struct se_cmd *cmd)
2508 {
2509 unsigned long flags;
2510 int ret = 0;
2511 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2512
2513 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2514 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2515 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2516 cmd->prot_length, true, false);
2517 if (ret < 0)
2518 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2519 }
2520
2521 /*
2522 * Determine if the TCM fabric module has already allocated physical
2523 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2524 * beforehand.
2525 */
2526 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2527 cmd->data_length) {
2528
2529 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2530 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2531 u32 bidi_length;
2532
2533 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2534 bidi_length = cmd->t_task_nolb *
2535 cmd->se_dev->dev_attrib.block_size;
2536 else
2537 bidi_length = cmd->data_length;
2538
2539 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2540 &cmd->t_bidi_data_nents,
2541 bidi_length, zero_flag, false);
2542 if (ret < 0)
2543 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2544 }
2545
2546 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2547 cmd->data_length, zero_flag, false);
2548 if (ret < 0)
2549 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2550 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2551 cmd->data_length) {
2552 /*
2553 * Special case for COMPARE_AND_WRITE with fabrics
2554 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2555 */
2556 u32 caw_length = cmd->t_task_nolb *
2557 cmd->se_dev->dev_attrib.block_size;
2558
2559 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2560 &cmd->t_bidi_data_nents,
2561 caw_length, zero_flag, false);
2562 if (ret < 0)
2563 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2564 }
2565 /*
2566 * If this command is not a write we can execute it right here,
2567 * for write buffers we need to notify the fabric driver first
2568 * and let it call back once the write buffers are ready.
2569 */
2570 target_add_to_state_list(cmd);
2571 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2572 target_execute_cmd(cmd);
2573 return 0;
2574 }
2575
2576 spin_lock_irqsave(&cmd->t_state_lock, flags);
2577 cmd->t_state = TRANSPORT_WRITE_PENDING;
2578 /*
2579 * Determine if frontend context caller is requesting the stopping of
2580 * this command for frontend exceptions.
2581 */
2582 if (cmd->transport_state & CMD_T_STOP &&
2583 !cmd->se_tfo->write_pending_must_be_called) {
2584 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2585 __func__, __LINE__, cmd->tag);
2586
2587 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2588
2589 complete_all(&cmd->t_transport_stop_comp);
2590 return 0;
2591 }
2592 cmd->transport_state &= ~CMD_T_ACTIVE;
2593 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2594
2595 ret = cmd->se_tfo->write_pending(cmd);
2596 if (ret)
2597 goto queue_full;
2598
2599 return 0;
2600
2601 queue_full:
2602 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2603 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2604 return 0;
2605 }
2606 EXPORT_SYMBOL(transport_generic_new_cmd);
2607
transport_write_pending_qf(struct se_cmd * cmd)2608 static void transport_write_pending_qf(struct se_cmd *cmd)
2609 {
2610 unsigned long flags;
2611 int ret;
2612 bool stop;
2613
2614 spin_lock_irqsave(&cmd->t_state_lock, flags);
2615 stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2616 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2617
2618 if (stop) {
2619 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2620 __func__, __LINE__, cmd->tag);
2621 complete_all(&cmd->t_transport_stop_comp);
2622 return;
2623 }
2624
2625 ret = cmd->se_tfo->write_pending(cmd);
2626 if (ret) {
2627 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2628 cmd);
2629 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2630 }
2631 }
2632
2633 static bool
2634 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2635 unsigned long *flags);
2636
target_wait_free_cmd(struct se_cmd * cmd,bool * aborted,bool * tas)2637 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2638 {
2639 unsigned long flags;
2640
2641 spin_lock_irqsave(&cmd->t_state_lock, flags);
2642 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2643 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2644 }
2645
2646 /*
2647 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2648 * finished.
2649 */
target_put_cmd_and_wait(struct se_cmd * cmd)2650 void target_put_cmd_and_wait(struct se_cmd *cmd)
2651 {
2652 DECLARE_COMPLETION_ONSTACK(compl);
2653
2654 WARN_ON_ONCE(cmd->abrt_compl);
2655 cmd->abrt_compl = &compl;
2656 target_put_sess_cmd(cmd);
2657 wait_for_completion(&compl);
2658 }
2659
2660 /*
2661 * This function is called by frontend drivers after processing of a command
2662 * has finished.
2663 *
2664 * The protocol for ensuring that either the regular frontend command
2665 * processing flow or target_handle_abort() code drops one reference is as
2666 * follows:
2667 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2668 * the frontend driver to call this function synchronously or asynchronously.
2669 * That will cause one reference to be dropped.
2670 * - During regular command processing the target core sets CMD_T_COMPLETE
2671 * before invoking one of the .queue_*() functions.
2672 * - The code that aborts commands skips commands and TMFs for which
2673 * CMD_T_COMPLETE has been set.
2674 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2675 * commands that will be aborted.
2676 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2677 * transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2678 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2679 * be called and will drop a reference.
2680 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2681 * will be called. target_handle_abort() will drop the final reference.
2682 */
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)2683 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2684 {
2685 DECLARE_COMPLETION_ONSTACK(compl);
2686 int ret = 0;
2687 bool aborted = false, tas = false;
2688
2689 if (wait_for_tasks)
2690 target_wait_free_cmd(cmd, &aborted, &tas);
2691
2692 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2693 /*
2694 * Handle WRITE failure case where transport_generic_new_cmd()
2695 * has already added se_cmd to state_list, but fabric has
2696 * failed command before I/O submission.
2697 */
2698 if (cmd->state_active)
2699 target_remove_from_state_list(cmd);
2700 }
2701 if (aborted)
2702 cmd->free_compl = &compl;
2703 ret = target_put_sess_cmd(cmd);
2704 if (aborted) {
2705 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2706 wait_for_completion(&compl);
2707 ret = 1;
2708 }
2709 return ret;
2710 }
2711 EXPORT_SYMBOL(transport_generic_free_cmd);
2712
2713 /**
2714 * target_get_sess_cmd - Add command to active ->sess_cmd_list
2715 * @se_cmd: command descriptor to add
2716 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2717 */
target_get_sess_cmd(struct se_cmd * se_cmd,bool ack_kref)2718 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2719 {
2720 struct se_session *se_sess = se_cmd->se_sess;
2721 unsigned long flags;
2722 int ret = 0;
2723
2724 /*
2725 * Add a second kref if the fabric caller is expecting to handle
2726 * fabric acknowledgement that requires two target_put_sess_cmd()
2727 * invocations before se_cmd descriptor release.
2728 */
2729 if (ack_kref) {
2730 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2731 return -EINVAL;
2732
2733 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2734 }
2735
2736 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2737 if (se_sess->sess_tearing_down) {
2738 ret = -ESHUTDOWN;
2739 goto out;
2740 }
2741 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2742 percpu_ref_get(&se_sess->cmd_count);
2743 out:
2744 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2745
2746 if (ret && ack_kref)
2747 target_put_sess_cmd(se_cmd);
2748
2749 return ret;
2750 }
2751 EXPORT_SYMBOL(target_get_sess_cmd);
2752
target_free_cmd_mem(struct se_cmd * cmd)2753 static void target_free_cmd_mem(struct se_cmd *cmd)
2754 {
2755 transport_free_pages(cmd);
2756
2757 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2758 core_tmr_release_req(cmd->se_tmr_req);
2759 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2760 kfree(cmd->t_task_cdb);
2761 }
2762
target_release_cmd_kref(struct kref * kref)2763 static void target_release_cmd_kref(struct kref *kref)
2764 {
2765 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2766 struct se_session *se_sess = se_cmd->se_sess;
2767 struct completion *free_compl = se_cmd->free_compl;
2768 struct completion *abrt_compl = se_cmd->abrt_compl;
2769 unsigned long flags;
2770
2771 if (se_cmd->lun_ref_active)
2772 percpu_ref_put(&se_cmd->se_lun->lun_ref);
2773
2774 if (se_sess) {
2775 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2776 list_del_init(&se_cmd->se_cmd_list);
2777 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2778 }
2779
2780 target_free_cmd_mem(se_cmd);
2781 se_cmd->se_tfo->release_cmd(se_cmd);
2782 if (free_compl)
2783 complete(free_compl);
2784 if (abrt_compl)
2785 complete(abrt_compl);
2786
2787 percpu_ref_put(&se_sess->cmd_count);
2788 }
2789
2790 /**
2791 * target_put_sess_cmd - decrease the command reference count
2792 * @se_cmd: command to drop a reference from
2793 *
2794 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2795 * refcount to drop to zero. Returns zero otherwise.
2796 */
target_put_sess_cmd(struct se_cmd * se_cmd)2797 int target_put_sess_cmd(struct se_cmd *se_cmd)
2798 {
2799 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2800 }
2801 EXPORT_SYMBOL(target_put_sess_cmd);
2802
data_dir_name(enum dma_data_direction d)2803 static const char *data_dir_name(enum dma_data_direction d)
2804 {
2805 switch (d) {
2806 case DMA_BIDIRECTIONAL: return "BIDI";
2807 case DMA_TO_DEVICE: return "WRITE";
2808 case DMA_FROM_DEVICE: return "READ";
2809 case DMA_NONE: return "NONE";
2810 }
2811
2812 return "(?)";
2813 }
2814
cmd_state_name(enum transport_state_table t)2815 static const char *cmd_state_name(enum transport_state_table t)
2816 {
2817 switch (t) {
2818 case TRANSPORT_NO_STATE: return "NO_STATE";
2819 case TRANSPORT_NEW_CMD: return "NEW_CMD";
2820 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING";
2821 case TRANSPORT_PROCESSING: return "PROCESSING";
2822 case TRANSPORT_COMPLETE: return "COMPLETE";
2823 case TRANSPORT_ISTATE_PROCESSING:
2824 return "ISTATE_PROCESSING";
2825 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP";
2826 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK";
2827 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
2828 }
2829
2830 return "(?)";
2831 }
2832
target_append_str(char ** str,const char * txt)2833 static void target_append_str(char **str, const char *txt)
2834 {
2835 char *prev = *str;
2836
2837 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
2838 kstrdup(txt, GFP_ATOMIC);
2839 kfree(prev);
2840 }
2841
2842 /*
2843 * Convert a transport state bitmask into a string. The caller is
2844 * responsible for freeing the returned pointer.
2845 */
target_ts_to_str(u32 ts)2846 static char *target_ts_to_str(u32 ts)
2847 {
2848 char *str = NULL;
2849
2850 if (ts & CMD_T_ABORTED)
2851 target_append_str(&str, "aborted");
2852 if (ts & CMD_T_ACTIVE)
2853 target_append_str(&str, "active");
2854 if (ts & CMD_T_COMPLETE)
2855 target_append_str(&str, "complete");
2856 if (ts & CMD_T_SENT)
2857 target_append_str(&str, "sent");
2858 if (ts & CMD_T_STOP)
2859 target_append_str(&str, "stop");
2860 if (ts & CMD_T_FABRIC_STOP)
2861 target_append_str(&str, "fabric_stop");
2862
2863 return str;
2864 }
2865
target_tmf_name(enum tcm_tmreq_table tmf)2866 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
2867 {
2868 switch (tmf) {
2869 case TMR_ABORT_TASK: return "ABORT_TASK";
2870 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET";
2871 case TMR_CLEAR_ACA: return "CLEAR_ACA";
2872 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET";
2873 case TMR_LUN_RESET: return "LUN_RESET";
2874 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET";
2875 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET";
2876 case TMR_UNKNOWN: break;
2877 }
2878 return "(?)";
2879 }
2880
target_show_cmd(const char * pfx,struct se_cmd * cmd)2881 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
2882 {
2883 char *ts_str = target_ts_to_str(cmd->transport_state);
2884 const u8 *cdb = cmd->t_task_cdb;
2885 struct se_tmr_req *tmf = cmd->se_tmr_req;
2886
2887 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2888 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2889 pfx, cdb[0], cdb[1], cmd->tag,
2890 data_dir_name(cmd->data_direction),
2891 cmd->se_tfo->get_cmd_state(cmd),
2892 cmd_state_name(cmd->t_state), cmd->data_length,
2893 kref_read(&cmd->cmd_kref), ts_str);
2894 } else {
2895 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2896 pfx, target_tmf_name(tmf->function), cmd->tag,
2897 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
2898 cmd_state_name(cmd->t_state),
2899 kref_read(&cmd->cmd_kref), ts_str);
2900 }
2901 kfree(ts_str);
2902 }
2903 EXPORT_SYMBOL(target_show_cmd);
2904
2905 /**
2906 * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued.
2907 * @se_sess: session to flag
2908 */
target_sess_cmd_list_set_waiting(struct se_session * se_sess)2909 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2910 {
2911 unsigned long flags;
2912
2913 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2914 se_sess->sess_tearing_down = 1;
2915 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2916
2917 percpu_ref_kill(&se_sess->cmd_count);
2918 }
2919 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2920
2921 /**
2922 * target_wait_for_sess_cmds - Wait for outstanding commands
2923 * @se_sess: session to wait for active I/O
2924 */
target_wait_for_sess_cmds(struct se_session * se_sess)2925 void target_wait_for_sess_cmds(struct se_session *se_sess)
2926 {
2927 struct se_cmd *cmd;
2928 int ret;
2929
2930 WARN_ON_ONCE(!se_sess->sess_tearing_down);
2931
2932 do {
2933 ret = wait_event_timeout(se_sess->cmd_list_wq,
2934 percpu_ref_is_zero(&se_sess->cmd_count),
2935 180 * HZ);
2936 list_for_each_entry(cmd, &se_sess->sess_cmd_list, se_cmd_list)
2937 target_show_cmd("session shutdown: still waiting for ",
2938 cmd);
2939 } while (ret <= 0);
2940 }
2941 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2942
2943 /*
2944 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
2945 * all references to the LUN have been released. Called during LUN shutdown.
2946 */
transport_clear_lun_ref(struct se_lun * lun)2947 void transport_clear_lun_ref(struct se_lun *lun)
2948 {
2949 percpu_ref_kill(&lun->lun_ref);
2950 wait_for_completion(&lun->lun_shutdown_comp);
2951 }
2952
2953 static bool
__transport_wait_for_tasks(struct se_cmd * cmd,bool fabric_stop,bool * aborted,bool * tas,unsigned long * flags)2954 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2955 bool *aborted, bool *tas, unsigned long *flags)
2956 __releases(&cmd->t_state_lock)
2957 __acquires(&cmd->t_state_lock)
2958 {
2959
2960 assert_spin_locked(&cmd->t_state_lock);
2961 WARN_ON_ONCE(!irqs_disabled());
2962
2963 if (fabric_stop)
2964 cmd->transport_state |= CMD_T_FABRIC_STOP;
2965
2966 if (cmd->transport_state & CMD_T_ABORTED)
2967 *aborted = true;
2968
2969 if (cmd->transport_state & CMD_T_TAS)
2970 *tas = true;
2971
2972 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2973 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2974 return false;
2975
2976 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2977 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2978 return false;
2979
2980 if (!(cmd->transport_state & CMD_T_ACTIVE))
2981 return false;
2982
2983 if (fabric_stop && *aborted)
2984 return false;
2985
2986 cmd->transport_state |= CMD_T_STOP;
2987
2988 target_show_cmd("wait_for_tasks: Stopping ", cmd);
2989
2990 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2991
2992 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
2993 180 * HZ))
2994 target_show_cmd("wait for tasks: ", cmd);
2995
2996 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2997 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2998
2999 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3000 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3001
3002 return true;
3003 }
3004
3005 /**
3006 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3007 * @cmd: command to wait on
3008 */
transport_wait_for_tasks(struct se_cmd * cmd)3009 bool transport_wait_for_tasks(struct se_cmd *cmd)
3010 {
3011 unsigned long flags;
3012 bool ret, aborted = false, tas = false;
3013
3014 spin_lock_irqsave(&cmd->t_state_lock, flags);
3015 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3016 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3017
3018 return ret;
3019 }
3020 EXPORT_SYMBOL(transport_wait_for_tasks);
3021
3022 struct sense_info {
3023 u8 key;
3024 u8 asc;
3025 u8 ascq;
3026 bool add_sector_info;
3027 };
3028
3029 static const struct sense_info sense_info_table[] = {
3030 [TCM_NO_SENSE] = {
3031 .key = NOT_READY
3032 },
3033 [TCM_NON_EXISTENT_LUN] = {
3034 .key = ILLEGAL_REQUEST,
3035 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3036 },
3037 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3038 .key = ILLEGAL_REQUEST,
3039 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3040 },
3041 [TCM_SECTOR_COUNT_TOO_MANY] = {
3042 .key = ILLEGAL_REQUEST,
3043 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3044 },
3045 [TCM_UNKNOWN_MODE_PAGE] = {
3046 .key = ILLEGAL_REQUEST,
3047 .asc = 0x24, /* INVALID FIELD IN CDB */
3048 },
3049 [TCM_CHECK_CONDITION_ABORT_CMD] = {
3050 .key = ABORTED_COMMAND,
3051 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3052 .ascq = 0x03,
3053 },
3054 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3055 .key = ABORTED_COMMAND,
3056 .asc = 0x0c, /* WRITE ERROR */
3057 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3058 },
3059 [TCM_INVALID_CDB_FIELD] = {
3060 .key = ILLEGAL_REQUEST,
3061 .asc = 0x24, /* INVALID FIELD IN CDB */
3062 },
3063 [TCM_INVALID_PARAMETER_LIST] = {
3064 .key = ILLEGAL_REQUEST,
3065 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3066 },
3067 [TCM_TOO_MANY_TARGET_DESCS] = {
3068 .key = ILLEGAL_REQUEST,
3069 .asc = 0x26,
3070 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3071 },
3072 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3073 .key = ILLEGAL_REQUEST,
3074 .asc = 0x26,
3075 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3076 },
3077 [TCM_TOO_MANY_SEGMENT_DESCS] = {
3078 .key = ILLEGAL_REQUEST,
3079 .asc = 0x26,
3080 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3081 },
3082 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3083 .key = ILLEGAL_REQUEST,
3084 .asc = 0x26,
3085 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3086 },
3087 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3088 .key = ILLEGAL_REQUEST,
3089 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3090 },
3091 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3092 .key = ILLEGAL_REQUEST,
3093 .asc = 0x0c, /* WRITE ERROR */
3094 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3095 },
3096 [TCM_SERVICE_CRC_ERROR] = {
3097 .key = ABORTED_COMMAND,
3098 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3099 .ascq = 0x05, /* N/A */
3100 },
3101 [TCM_SNACK_REJECTED] = {
3102 .key = ABORTED_COMMAND,
3103 .asc = 0x11, /* READ ERROR */
3104 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3105 },
3106 [TCM_WRITE_PROTECTED] = {
3107 .key = DATA_PROTECT,
3108 .asc = 0x27, /* WRITE PROTECTED */
3109 },
3110 [TCM_ADDRESS_OUT_OF_RANGE] = {
3111 .key = ILLEGAL_REQUEST,
3112 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3113 },
3114 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3115 .key = UNIT_ATTENTION,
3116 },
3117 [TCM_CHECK_CONDITION_NOT_READY] = {
3118 .key = NOT_READY,
3119 },
3120 [TCM_MISCOMPARE_VERIFY] = {
3121 .key = MISCOMPARE,
3122 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3123 .ascq = 0x00,
3124 },
3125 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3126 .key = ABORTED_COMMAND,
3127 .asc = 0x10,
3128 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3129 .add_sector_info = true,
3130 },
3131 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3132 .key = ABORTED_COMMAND,
3133 .asc = 0x10,
3134 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3135 .add_sector_info = true,
3136 },
3137 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3138 .key = ABORTED_COMMAND,
3139 .asc = 0x10,
3140 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3141 .add_sector_info = true,
3142 },
3143 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3144 .key = COPY_ABORTED,
3145 .asc = 0x0d,
3146 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3147
3148 },
3149 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3150 /*
3151 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3152 * Solaris initiators. Returning NOT READY instead means the
3153 * operations will be retried a finite number of times and we
3154 * can survive intermittent errors.
3155 */
3156 .key = NOT_READY,
3157 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3158 },
3159 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3160 /*
3161 * From spc4r22 section5.7.7,5.7.8
3162 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3163 * or a REGISTER AND IGNORE EXISTING KEY service action or
3164 * REGISTER AND MOVE service actionis attempted,
3165 * but there are insufficient device server resources to complete the
3166 * operation, then the command shall be terminated with CHECK CONDITION
3167 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3168 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3169 */
3170 .key = ILLEGAL_REQUEST,
3171 .asc = 0x55,
3172 .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3173 },
3174 };
3175
3176 /**
3177 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3178 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3179 * be stored.
3180 * @reason: LIO sense reason code. If this argument has the value
3181 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3182 * dequeuing a unit attention fails due to multiple commands being processed
3183 * concurrently, set the command status to BUSY.
3184 *
3185 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3186 */
translate_sense_reason(struct se_cmd * cmd,sense_reason_t reason)3187 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3188 {
3189 const struct sense_info *si;
3190 u8 *buffer = cmd->sense_buffer;
3191 int r = (__force int)reason;
3192 u8 key, asc, ascq;
3193 bool desc_format = target_sense_desc_format(cmd->se_dev);
3194
3195 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
3196 si = &sense_info_table[r];
3197 else
3198 si = &sense_info_table[(__force int)
3199 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3200
3201 key = si->key;
3202 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3203 if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3204 &ascq)) {
3205 cmd->scsi_status = SAM_STAT_BUSY;
3206 return;
3207 }
3208 } else if (si->asc == 0) {
3209 WARN_ON_ONCE(cmd->scsi_asc == 0);
3210 asc = cmd->scsi_asc;
3211 ascq = cmd->scsi_ascq;
3212 } else {
3213 asc = si->asc;
3214 ascq = si->ascq;
3215 }
3216
3217 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3218 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3219 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3220 scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3221 if (si->add_sector_info)
3222 WARN_ON_ONCE(scsi_set_sense_information(buffer,
3223 cmd->scsi_sense_length,
3224 cmd->bad_sector) < 0);
3225 }
3226
3227 int
transport_send_check_condition_and_sense(struct se_cmd * cmd,sense_reason_t reason,int from_transport)3228 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3229 sense_reason_t reason, int from_transport)
3230 {
3231 unsigned long flags;
3232
3233 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3234
3235 spin_lock_irqsave(&cmd->t_state_lock, flags);
3236 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3237 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3238 return 0;
3239 }
3240 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3241 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3242
3243 if (!from_transport)
3244 translate_sense_reason(cmd, reason);
3245
3246 trace_target_cmd_complete(cmd);
3247 return cmd->se_tfo->queue_status(cmd);
3248 }
3249 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3250
3251 /**
3252 * target_send_busy - Send SCSI BUSY status back to the initiator
3253 * @cmd: SCSI command for which to send a BUSY reply.
3254 *
3255 * Note: Only call this function if target_submit_cmd*() failed.
3256 */
target_send_busy(struct se_cmd * cmd)3257 int target_send_busy(struct se_cmd *cmd)
3258 {
3259 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3260
3261 cmd->scsi_status = SAM_STAT_BUSY;
3262 trace_target_cmd_complete(cmd);
3263 return cmd->se_tfo->queue_status(cmd);
3264 }
3265 EXPORT_SYMBOL(target_send_busy);
3266
target_tmr_work(struct work_struct * work)3267 static void target_tmr_work(struct work_struct *work)
3268 {
3269 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3270 struct se_device *dev = cmd->se_dev;
3271 struct se_tmr_req *tmr = cmd->se_tmr_req;
3272 int ret;
3273
3274 if (cmd->transport_state & CMD_T_ABORTED)
3275 goto aborted;
3276
3277 switch (tmr->function) {
3278 case TMR_ABORT_TASK:
3279 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3280 break;
3281 case TMR_ABORT_TASK_SET:
3282 case TMR_CLEAR_ACA:
3283 case TMR_CLEAR_TASK_SET:
3284 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3285 break;
3286 case TMR_LUN_RESET:
3287 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3288 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3289 TMR_FUNCTION_REJECTED;
3290 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3291 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3292 cmd->orig_fe_lun, 0x29,
3293 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3294 }
3295 break;
3296 case TMR_TARGET_WARM_RESET:
3297 tmr->response = TMR_FUNCTION_REJECTED;
3298 break;
3299 case TMR_TARGET_COLD_RESET:
3300 tmr->response = TMR_FUNCTION_REJECTED;
3301 break;
3302 default:
3303 pr_err("Unknown TMR function: 0x%02x.\n",
3304 tmr->function);
3305 tmr->response = TMR_FUNCTION_REJECTED;
3306 break;
3307 }
3308
3309 if (cmd->transport_state & CMD_T_ABORTED)
3310 goto aborted;
3311
3312 cmd->se_tfo->queue_tm_rsp(cmd);
3313
3314 transport_cmd_check_stop_to_fabric(cmd);
3315 return;
3316
3317 aborted:
3318 target_handle_abort(cmd);
3319 }
3320
transport_generic_handle_tmr(struct se_cmd * cmd)3321 int transport_generic_handle_tmr(
3322 struct se_cmd *cmd)
3323 {
3324 unsigned long flags;
3325 bool aborted = false;
3326
3327 spin_lock_irqsave(&cmd->t_state_lock, flags);
3328 if (cmd->transport_state & CMD_T_ABORTED) {
3329 aborted = true;
3330 } else {
3331 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3332 cmd->transport_state |= CMD_T_ACTIVE;
3333 }
3334 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3335
3336 if (aborted) {
3337 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3338 cmd->se_tmr_req->function,
3339 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3340 target_handle_abort(cmd);
3341 return 0;
3342 }
3343
3344 INIT_WORK(&cmd->work, target_tmr_work);
3345 schedule_work(&cmd->work);
3346 return 0;
3347 }
3348 EXPORT_SYMBOL(transport_generic_handle_tmr);
3349
3350 bool
target_check_wce(struct se_device * dev)3351 target_check_wce(struct se_device *dev)
3352 {
3353 bool wce = false;
3354
3355 if (dev->transport->get_write_cache)
3356 wce = dev->transport->get_write_cache(dev);
3357 else if (dev->dev_attrib.emulate_write_cache > 0)
3358 wce = true;
3359
3360 return wce;
3361 }
3362
3363 bool
target_check_fua(struct se_device * dev)3364 target_check_fua(struct se_device *dev)
3365 {
3366 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3367 }
3368