• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/io.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/kexec.h>
40 #include <asm/perf_event.h>
41 #include <asm/mce.h>
42 #include <asm/mmu_context.h>
43 #include <asm/mshyperv.h>
44 #include <asm/spec-ctrl.h>
45 #include <asm/virtext.h>
46 #include <asm/vmx.h>
47 
48 #include "capabilities.h"
49 #include "cpuid.h"
50 #include "evmcs.h"
51 #include "irq.h"
52 #include "kvm_cache_regs.h"
53 #include "lapic.h"
54 #include "mmu.h"
55 #include "nested.h"
56 #include "ops.h"
57 #include "pmu.h"
58 #include "trace.h"
59 #include "vmcs.h"
60 #include "vmcs12.h"
61 #include "vmx.h"
62 #include "x86.h"
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 static const struct x86_cpu_id vmx_cpu_id[] = {
68 	X86_FEATURE_MATCH(X86_FEATURE_VMX),
69 	{}
70 };
71 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
72 
73 bool __read_mostly enable_vpid = 1;
74 module_param_named(vpid, enable_vpid, bool, 0444);
75 
76 static bool __read_mostly enable_vnmi = 1;
77 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
78 
79 bool __read_mostly flexpriority_enabled = 1;
80 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
81 
82 bool __read_mostly enable_ept = 1;
83 module_param_named(ept, enable_ept, bool, S_IRUGO);
84 
85 bool __read_mostly enable_unrestricted_guest = 1;
86 module_param_named(unrestricted_guest,
87 			enable_unrestricted_guest, bool, S_IRUGO);
88 
89 bool __read_mostly enable_ept_ad_bits = 1;
90 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
91 
92 static bool __read_mostly emulate_invalid_guest_state = true;
93 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
94 
95 static bool __read_mostly fasteoi = 1;
96 module_param(fasteoi, bool, S_IRUGO);
97 
98 static bool __read_mostly enable_apicv = 1;
99 module_param(enable_apicv, bool, S_IRUGO);
100 
101 /*
102  * If nested=1, nested virtualization is supported, i.e., guests may use
103  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
104  * use VMX instructions.
105  */
106 static bool __read_mostly nested = 1;
107 module_param(nested, bool, S_IRUGO);
108 
109 static u64 __read_mostly host_xss;
110 
111 bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
113 
114 static bool __read_mostly dump_invalid_vmcs = 0;
115 module_param(dump_invalid_vmcs, bool, 0644);
116 
117 #define MSR_BITMAP_MODE_X2APIC		1
118 #define MSR_BITMAP_MODE_X2APIC_APICV	2
119 
120 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
121 
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
125 #ifdef CONFIG_X86_64
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
127 #endif
128 
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON				\
132 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
133 	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS				      \
135 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
136 	 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
137 
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141 
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143 
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147 	RTIT_STATUS_BYTECNT))
148 
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150 	(~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151 
152 /*
153  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154  * ple_gap:    upper bound on the amount of time between two successive
155  *             executions of PAUSE in a loop. Also indicate if ple enabled.
156  *             According to test, this time is usually smaller than 128 cycles.
157  * ple_window: upper bound on the amount of time a guest is allowed to execute
158  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
159  *             less than 2^12 cycles
160  * Time is measured based on a counter that runs at the same rate as the TSC,
161  * refer SDM volume 3b section 21.6.13 & 22.1.3.
162  */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165 
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168 
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172 
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176 
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180 
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184 
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188 
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191 
192 static const struct {
193 	const char *option;
194 	bool for_parse;
195 } vmentry_l1d_param[] = {
196 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
197 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
198 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
199 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
200 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203 
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206 
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209 	struct page *page;
210 	unsigned int i;
211 
212 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
213 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
214 		return 0;
215 	}
216 
217 	if (!enable_ept) {
218 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
219 		return 0;
220 	}
221 
222 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
223 		u64 msr;
224 
225 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
226 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
227 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
228 			return 0;
229 		}
230 	}
231 
232 	/* If set to auto use the default l1tf mitigation method */
233 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
234 		switch (l1tf_mitigation) {
235 		case L1TF_MITIGATION_OFF:
236 			l1tf = VMENTER_L1D_FLUSH_NEVER;
237 			break;
238 		case L1TF_MITIGATION_FLUSH_NOWARN:
239 		case L1TF_MITIGATION_FLUSH:
240 		case L1TF_MITIGATION_FLUSH_NOSMT:
241 			l1tf = VMENTER_L1D_FLUSH_COND;
242 			break;
243 		case L1TF_MITIGATION_FULL:
244 		case L1TF_MITIGATION_FULL_FORCE:
245 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
246 			break;
247 		}
248 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
249 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
250 	}
251 
252 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
253 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
254 		/*
255 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
256 		 * lifetime and so should not be charged to a memcg.
257 		 */
258 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
259 		if (!page)
260 			return -ENOMEM;
261 		vmx_l1d_flush_pages = page_address(page);
262 
263 		/*
264 		 * Initialize each page with a different pattern in
265 		 * order to protect against KSM in the nested
266 		 * virtualization case.
267 		 */
268 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
269 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
270 			       PAGE_SIZE);
271 		}
272 	}
273 
274 	l1tf_vmx_mitigation = l1tf;
275 
276 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
277 		static_branch_enable(&vmx_l1d_should_flush);
278 	else
279 		static_branch_disable(&vmx_l1d_should_flush);
280 
281 	if (l1tf == VMENTER_L1D_FLUSH_COND)
282 		static_branch_enable(&vmx_l1d_flush_cond);
283 	else
284 		static_branch_disable(&vmx_l1d_flush_cond);
285 	return 0;
286 }
287 
vmentry_l1d_flush_parse(const char * s)288 static int vmentry_l1d_flush_parse(const char *s)
289 {
290 	unsigned int i;
291 
292 	if (s) {
293 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
294 			if (vmentry_l1d_param[i].for_parse &&
295 			    sysfs_streq(s, vmentry_l1d_param[i].option))
296 				return i;
297 		}
298 	}
299 	return -EINVAL;
300 }
301 
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)302 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
303 {
304 	int l1tf, ret;
305 
306 	l1tf = vmentry_l1d_flush_parse(s);
307 	if (l1tf < 0)
308 		return l1tf;
309 
310 	if (!boot_cpu_has(X86_BUG_L1TF))
311 		return 0;
312 
313 	/*
314 	 * Has vmx_init() run already? If not then this is the pre init
315 	 * parameter parsing. In that case just store the value and let
316 	 * vmx_init() do the proper setup after enable_ept has been
317 	 * established.
318 	 */
319 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
320 		vmentry_l1d_flush_param = l1tf;
321 		return 0;
322 	}
323 
324 	mutex_lock(&vmx_l1d_flush_mutex);
325 	ret = vmx_setup_l1d_flush(l1tf);
326 	mutex_unlock(&vmx_l1d_flush_mutex);
327 	return ret;
328 }
329 
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)330 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
331 {
332 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
333 		return sprintf(s, "???\n");
334 
335 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
336 }
337 
338 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
339 	.set = vmentry_l1d_flush_set,
340 	.get = vmentry_l1d_flush_get,
341 };
342 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
343 
344 static bool guest_state_valid(struct kvm_vcpu *vcpu);
345 static u32 vmx_segment_access_rights(struct kvm_segment *var);
346 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
347 							  u32 msr, int type);
348 
349 void vmx_vmexit(void);
350 
351 #define vmx_insn_failed(fmt...)		\
352 do {					\
353 	WARN_ONCE(1, fmt);		\
354 	pr_warn_ratelimited(fmt);	\
355 } while (0)
356 
vmread_error(unsigned long field,bool fault)357 asmlinkage void vmread_error(unsigned long field, bool fault)
358 {
359 	if (fault)
360 		kvm_spurious_fault();
361 	else
362 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
363 }
364 
vmwrite_error(unsigned long field,unsigned long value)365 noinline void vmwrite_error(unsigned long field, unsigned long value)
366 {
367 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
368 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
369 }
370 
vmclear_error(struct vmcs * vmcs,u64 phys_addr)371 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
372 {
373 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
374 }
375 
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)376 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
377 {
378 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
379 }
380 
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)381 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
382 {
383 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
384 			ext, vpid, gva);
385 }
386 
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)387 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
388 {
389 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
390 			ext, eptp, gpa);
391 }
392 
393 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
394 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
395 /*
396  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
397  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
398  */
399 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
400 
401 /*
402  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
403  * can find which vCPU should be waken up.
404  */
405 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
406 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
407 
408 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
409 static DEFINE_SPINLOCK(vmx_vpid_lock);
410 
411 struct vmcs_config vmcs_config;
412 struct vmx_capability vmx_capability;
413 
414 #define VMX_SEGMENT_FIELD(seg)					\
415 	[VCPU_SREG_##seg] = {                                   \
416 		.selector = GUEST_##seg##_SELECTOR,		\
417 		.base = GUEST_##seg##_BASE,		   	\
418 		.limit = GUEST_##seg##_LIMIT,		   	\
419 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
420 	}
421 
422 static const struct kvm_vmx_segment_field {
423 	unsigned selector;
424 	unsigned base;
425 	unsigned limit;
426 	unsigned ar_bytes;
427 } kvm_vmx_segment_fields[] = {
428 	VMX_SEGMENT_FIELD(CS),
429 	VMX_SEGMENT_FIELD(DS),
430 	VMX_SEGMENT_FIELD(ES),
431 	VMX_SEGMENT_FIELD(FS),
432 	VMX_SEGMENT_FIELD(GS),
433 	VMX_SEGMENT_FIELD(SS),
434 	VMX_SEGMENT_FIELD(TR),
435 	VMX_SEGMENT_FIELD(LDTR),
436 };
437 
438 u64 host_efer;
439 static unsigned long host_idt_base;
440 
441 /*
442  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
443  * will emulate SYSCALL in legacy mode if the vendor string in guest
444  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
445  * support this emulation, IA32_STAR must always be included in
446  * vmx_msr_index[], even in i386 builds.
447  */
448 const u32 vmx_msr_index[] = {
449 #ifdef CONFIG_X86_64
450 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
451 #endif
452 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
453 };
454 
455 #if IS_ENABLED(CONFIG_HYPERV)
456 static bool __read_mostly enlightened_vmcs = true;
457 module_param(enlightened_vmcs, bool, 0444);
458 
459 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
check_ept_pointer_match(struct kvm * kvm)460 static void check_ept_pointer_match(struct kvm *kvm)
461 {
462 	struct kvm_vcpu *vcpu;
463 	u64 tmp_eptp = INVALID_PAGE;
464 	int i;
465 
466 	kvm_for_each_vcpu(i, vcpu, kvm) {
467 		if (!VALID_PAGE(tmp_eptp)) {
468 			tmp_eptp = to_vmx(vcpu)->ept_pointer;
469 		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
470 			to_kvm_vmx(kvm)->ept_pointers_match
471 				= EPT_POINTERS_MISMATCH;
472 			return;
473 		}
474 	}
475 
476 	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
477 }
478 
kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list * flush,void * data)479 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
480 		void *data)
481 {
482 	struct kvm_tlb_range *range = data;
483 
484 	return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
485 			range->pages);
486 }
487 
__hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_vcpu * vcpu,struct kvm_tlb_range * range)488 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
489 		struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
490 {
491 	u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
492 
493 	/*
494 	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
495 	 * of the base of EPT PML4 table, strip off EPT configuration
496 	 * information.
497 	 */
498 	if (range)
499 		return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
500 				kvm_fill_hv_flush_list_func, (void *)range);
501 	else
502 		return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
503 }
504 
hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_tlb_range * range)505 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
506 		struct kvm_tlb_range *range)
507 {
508 	struct kvm_vcpu *vcpu;
509 	int ret = 0, i;
510 
511 	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
512 
513 	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
514 		check_ept_pointer_match(kvm);
515 
516 	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
517 		kvm_for_each_vcpu(i, vcpu, kvm) {
518 			/* If ept_pointer is invalid pointer, bypass flush request. */
519 			if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
520 				ret |= __hv_remote_flush_tlb_with_range(
521 					kvm, vcpu, range);
522 		}
523 	} else {
524 		ret = __hv_remote_flush_tlb_with_range(kvm,
525 				kvm_get_vcpu(kvm, 0), range);
526 	}
527 
528 	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
529 	return ret;
530 }
hv_remote_flush_tlb(struct kvm * kvm)531 static int hv_remote_flush_tlb(struct kvm *kvm)
532 {
533 	return hv_remote_flush_tlb_with_range(kvm, NULL);
534 }
535 
hv_enable_direct_tlbflush(struct kvm_vcpu * vcpu)536 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
537 {
538 	struct hv_enlightened_vmcs *evmcs;
539 	struct hv_partition_assist_pg **p_hv_pa_pg =
540 			&vcpu->kvm->arch.hyperv.hv_pa_pg;
541 	/*
542 	 * Synthetic VM-Exit is not enabled in current code and so All
543 	 * evmcs in singe VM shares same assist page.
544 	 */
545 	if (!*p_hv_pa_pg)
546 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
547 
548 	if (!*p_hv_pa_pg)
549 		return -ENOMEM;
550 
551 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
552 
553 	evmcs->partition_assist_page =
554 		__pa(*p_hv_pa_pg);
555 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
556 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
557 
558 	return 0;
559 }
560 
561 #endif /* IS_ENABLED(CONFIG_HYPERV) */
562 
563 /*
564  * Comment's format: document - errata name - stepping - processor name.
565  * Refer from
566  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
567  */
568 static u32 vmx_preemption_cpu_tfms[] = {
569 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
570 0x000206E6,
571 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
572 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
573 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
574 0x00020652,
575 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
576 0x00020655,
577 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
578 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
579 /*
580  * 320767.pdf - AAP86  - B1 -
581  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
582  */
583 0x000106E5,
584 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
585 0x000106A0,
586 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
587 0x000106A1,
588 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
589 0x000106A4,
590  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
591  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
592  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
593 0x000106A5,
594  /* Xeon E3-1220 V2 */
595 0x000306A8,
596 };
597 
cpu_has_broken_vmx_preemption_timer(void)598 static inline bool cpu_has_broken_vmx_preemption_timer(void)
599 {
600 	u32 eax = cpuid_eax(0x00000001), i;
601 
602 	/* Clear the reserved bits */
603 	eax &= ~(0x3U << 14 | 0xfU << 28);
604 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
605 		if (eax == vmx_preemption_cpu_tfms[i])
606 			return true;
607 
608 	return false;
609 }
610 
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)611 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
612 {
613 	return flexpriority_enabled && lapic_in_kernel(vcpu);
614 }
615 
report_flexpriority(void)616 static inline bool report_flexpriority(void)
617 {
618 	return flexpriority_enabled;
619 }
620 
__find_msr_index(struct vcpu_vmx * vmx,u32 msr)621 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
622 {
623 	int i;
624 
625 	for (i = 0; i < vmx->nmsrs; ++i)
626 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
627 			return i;
628 	return -1;
629 }
630 
find_msr_entry(struct vcpu_vmx * vmx,u32 msr)631 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
632 {
633 	int i;
634 
635 	i = __find_msr_index(vmx, msr);
636 	if (i >= 0)
637 		return &vmx->guest_msrs[i];
638 	return NULL;
639 }
640 
loaded_vmcs_init(struct loaded_vmcs * loaded_vmcs)641 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
642 {
643 	vmcs_clear(loaded_vmcs->vmcs);
644 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
645 		vmcs_clear(loaded_vmcs->shadow_vmcs);
646 	loaded_vmcs->cpu = -1;
647 	loaded_vmcs->launched = 0;
648 }
649 
650 #ifdef CONFIG_KEXEC_CORE
651 /*
652  * This bitmap is used to indicate whether the vmclear
653  * operation is enabled on all cpus. All disabled by
654  * default.
655  */
656 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
657 
crash_enable_local_vmclear(int cpu)658 static inline void crash_enable_local_vmclear(int cpu)
659 {
660 	cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
661 }
662 
crash_disable_local_vmclear(int cpu)663 static inline void crash_disable_local_vmclear(int cpu)
664 {
665 	cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
666 }
667 
crash_local_vmclear_enabled(int cpu)668 static inline int crash_local_vmclear_enabled(int cpu)
669 {
670 	return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
671 }
672 
crash_vmclear_local_loaded_vmcss(void)673 static void crash_vmclear_local_loaded_vmcss(void)
674 {
675 	int cpu = raw_smp_processor_id();
676 	struct loaded_vmcs *v;
677 
678 	if (!crash_local_vmclear_enabled(cpu))
679 		return;
680 
681 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
682 			    loaded_vmcss_on_cpu_link)
683 		vmcs_clear(v->vmcs);
684 }
685 #else
crash_enable_local_vmclear(int cpu)686 static inline void crash_enable_local_vmclear(int cpu) { }
crash_disable_local_vmclear(int cpu)687 static inline void crash_disable_local_vmclear(int cpu) { }
688 #endif /* CONFIG_KEXEC_CORE */
689 
__loaded_vmcs_clear(void * arg)690 static void __loaded_vmcs_clear(void *arg)
691 {
692 	struct loaded_vmcs *loaded_vmcs = arg;
693 	int cpu = raw_smp_processor_id();
694 
695 	if (loaded_vmcs->cpu != cpu)
696 		return; /* vcpu migration can race with cpu offline */
697 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
698 		per_cpu(current_vmcs, cpu) = NULL;
699 	crash_disable_local_vmclear(cpu);
700 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
701 
702 	/*
703 	 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
704 	 * is before setting loaded_vmcs->vcpu to -1 which is done in
705 	 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
706 	 * then adds the vmcs into percpu list before it is deleted.
707 	 */
708 	smp_wmb();
709 
710 	loaded_vmcs_init(loaded_vmcs);
711 	crash_enable_local_vmclear(cpu);
712 }
713 
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)714 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
715 {
716 	int cpu = loaded_vmcs->cpu;
717 
718 	if (cpu != -1)
719 		smp_call_function_single(cpu,
720 			 __loaded_vmcs_clear, loaded_vmcs, 1);
721 }
722 
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)723 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
724 				       unsigned field)
725 {
726 	bool ret;
727 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
728 
729 	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
730 		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
731 		vmx->segment_cache.bitmask = 0;
732 	}
733 	ret = vmx->segment_cache.bitmask & mask;
734 	vmx->segment_cache.bitmask |= mask;
735 	return ret;
736 }
737 
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)738 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
739 {
740 	u16 *p = &vmx->segment_cache.seg[seg].selector;
741 
742 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
743 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
744 	return *p;
745 }
746 
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)747 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
748 {
749 	ulong *p = &vmx->segment_cache.seg[seg].base;
750 
751 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
752 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
753 	return *p;
754 }
755 
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)756 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
757 {
758 	u32 *p = &vmx->segment_cache.seg[seg].limit;
759 
760 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
761 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
762 	return *p;
763 }
764 
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)765 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
766 {
767 	u32 *p = &vmx->segment_cache.seg[seg].ar;
768 
769 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
770 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
771 	return *p;
772 }
773 
update_exception_bitmap(struct kvm_vcpu * vcpu)774 void update_exception_bitmap(struct kvm_vcpu *vcpu)
775 {
776 	u32 eb;
777 
778 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
779 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
780 	/*
781 	 * Guest access to VMware backdoor ports could legitimately
782 	 * trigger #GP because of TSS I/O permission bitmap.
783 	 * We intercept those #GP and allow access to them anyway
784 	 * as VMware does.
785 	 */
786 	if (enable_vmware_backdoor)
787 		eb |= (1u << GP_VECTOR);
788 	if ((vcpu->guest_debug &
789 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
790 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
791 		eb |= 1u << BP_VECTOR;
792 	if (to_vmx(vcpu)->rmode.vm86_active)
793 		eb = ~0;
794 	if (enable_ept)
795 		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
796 
797 	/* When we are running a nested L2 guest and L1 specified for it a
798 	 * certain exception bitmap, we must trap the same exceptions and pass
799 	 * them to L1. When running L2, we will only handle the exceptions
800 	 * specified above if L1 did not want them.
801 	 */
802 	if (is_guest_mode(vcpu))
803 		eb |= get_vmcs12(vcpu)->exception_bitmap;
804 
805 	vmcs_write32(EXCEPTION_BITMAP, eb);
806 }
807 
808 /*
809  * Check if MSR is intercepted for currently loaded MSR bitmap.
810  */
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)811 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
812 {
813 	unsigned long *msr_bitmap;
814 	int f = sizeof(unsigned long);
815 
816 	if (!cpu_has_vmx_msr_bitmap())
817 		return true;
818 
819 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
820 
821 	if (msr <= 0x1fff) {
822 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
823 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
824 		msr &= 0x1fff;
825 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
826 	}
827 
828 	return true;
829 }
830 
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)831 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
832 		unsigned long entry, unsigned long exit)
833 {
834 	vm_entry_controls_clearbit(vmx, entry);
835 	vm_exit_controls_clearbit(vmx, exit);
836 }
837 
find_msr(struct vmx_msrs * m,unsigned int msr)838 static int find_msr(struct vmx_msrs *m, unsigned int msr)
839 {
840 	unsigned int i;
841 
842 	for (i = 0; i < m->nr; ++i) {
843 		if (m->val[i].index == msr)
844 			return i;
845 	}
846 	return -ENOENT;
847 }
848 
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)849 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
850 {
851 	int i;
852 	struct msr_autoload *m = &vmx->msr_autoload;
853 
854 	switch (msr) {
855 	case MSR_EFER:
856 		if (cpu_has_load_ia32_efer()) {
857 			clear_atomic_switch_msr_special(vmx,
858 					VM_ENTRY_LOAD_IA32_EFER,
859 					VM_EXIT_LOAD_IA32_EFER);
860 			return;
861 		}
862 		break;
863 	case MSR_CORE_PERF_GLOBAL_CTRL:
864 		if (cpu_has_load_perf_global_ctrl()) {
865 			clear_atomic_switch_msr_special(vmx,
866 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
867 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
868 			return;
869 		}
870 		break;
871 	}
872 	i = find_msr(&m->guest, msr);
873 	if (i < 0)
874 		goto skip_guest;
875 	--m->guest.nr;
876 	m->guest.val[i] = m->guest.val[m->guest.nr];
877 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
878 
879 skip_guest:
880 	i = find_msr(&m->host, msr);
881 	if (i < 0)
882 		return;
883 
884 	--m->host.nr;
885 	m->host.val[i] = m->host.val[m->host.nr];
886 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
887 }
888 
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)889 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
890 		unsigned long entry, unsigned long exit,
891 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
892 		u64 guest_val, u64 host_val)
893 {
894 	vmcs_write64(guest_val_vmcs, guest_val);
895 	if (host_val_vmcs != HOST_IA32_EFER)
896 		vmcs_write64(host_val_vmcs, host_val);
897 	vm_entry_controls_setbit(vmx, entry);
898 	vm_exit_controls_setbit(vmx, exit);
899 }
900 
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)901 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
902 				  u64 guest_val, u64 host_val, bool entry_only)
903 {
904 	int i, j = 0;
905 	struct msr_autoload *m = &vmx->msr_autoload;
906 
907 	switch (msr) {
908 	case MSR_EFER:
909 		if (cpu_has_load_ia32_efer()) {
910 			add_atomic_switch_msr_special(vmx,
911 					VM_ENTRY_LOAD_IA32_EFER,
912 					VM_EXIT_LOAD_IA32_EFER,
913 					GUEST_IA32_EFER,
914 					HOST_IA32_EFER,
915 					guest_val, host_val);
916 			return;
917 		}
918 		break;
919 	case MSR_CORE_PERF_GLOBAL_CTRL:
920 		if (cpu_has_load_perf_global_ctrl()) {
921 			add_atomic_switch_msr_special(vmx,
922 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
923 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
924 					GUEST_IA32_PERF_GLOBAL_CTRL,
925 					HOST_IA32_PERF_GLOBAL_CTRL,
926 					guest_val, host_val);
927 			return;
928 		}
929 		break;
930 	case MSR_IA32_PEBS_ENABLE:
931 		/* PEBS needs a quiescent period after being disabled (to write
932 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
933 		 * provide that period, so a CPU could write host's record into
934 		 * guest's memory.
935 		 */
936 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
937 	}
938 
939 	i = find_msr(&m->guest, msr);
940 	if (!entry_only)
941 		j = find_msr(&m->host, msr);
942 
943 	if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
944 		(j < 0 &&  m->host.nr == NR_AUTOLOAD_MSRS)) {
945 		printk_once(KERN_WARNING "Not enough msr switch entries. "
946 				"Can't add msr %x\n", msr);
947 		return;
948 	}
949 	if (i < 0) {
950 		i = m->guest.nr++;
951 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
952 	}
953 	m->guest.val[i].index = msr;
954 	m->guest.val[i].value = guest_val;
955 
956 	if (entry_only)
957 		return;
958 
959 	if (j < 0) {
960 		j = m->host.nr++;
961 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
962 	}
963 	m->host.val[j].index = msr;
964 	m->host.val[j].value = host_val;
965 }
966 
update_transition_efer(struct vcpu_vmx * vmx,int efer_offset)967 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
968 {
969 	u64 guest_efer = vmx->vcpu.arch.efer;
970 	u64 ignore_bits = 0;
971 
972 	/* Shadow paging assumes NX to be available.  */
973 	if (!enable_ept)
974 		guest_efer |= EFER_NX;
975 
976 	/*
977 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
978 	 */
979 	ignore_bits |= EFER_SCE;
980 #ifdef CONFIG_X86_64
981 	ignore_bits |= EFER_LMA | EFER_LME;
982 	/* SCE is meaningful only in long mode on Intel */
983 	if (guest_efer & EFER_LMA)
984 		ignore_bits &= ~(u64)EFER_SCE;
985 #endif
986 
987 	/*
988 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
989 	 * On CPUs that support "load IA32_EFER", always switch EFER
990 	 * atomically, since it's faster than switching it manually.
991 	 */
992 	if (cpu_has_load_ia32_efer() ||
993 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
994 		if (!(guest_efer & EFER_LMA))
995 			guest_efer &= ~EFER_LME;
996 		if (guest_efer != host_efer)
997 			add_atomic_switch_msr(vmx, MSR_EFER,
998 					      guest_efer, host_efer, false);
999 		else
1000 			clear_atomic_switch_msr(vmx, MSR_EFER);
1001 		return false;
1002 	} else {
1003 		clear_atomic_switch_msr(vmx, MSR_EFER);
1004 
1005 		guest_efer &= ~ignore_bits;
1006 		guest_efer |= host_efer & ignore_bits;
1007 
1008 		vmx->guest_msrs[efer_offset].data = guest_efer;
1009 		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1010 
1011 		return true;
1012 	}
1013 }
1014 
1015 #ifdef CONFIG_X86_32
1016 /*
1017  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1018  * VMCS rather than the segment table.  KVM uses this helper to figure
1019  * out the current bases to poke them into the VMCS before entry.
1020  */
segment_base(u16 selector)1021 static unsigned long segment_base(u16 selector)
1022 {
1023 	struct desc_struct *table;
1024 	unsigned long v;
1025 
1026 	if (!(selector & ~SEGMENT_RPL_MASK))
1027 		return 0;
1028 
1029 	table = get_current_gdt_ro();
1030 
1031 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1032 		u16 ldt_selector = kvm_read_ldt();
1033 
1034 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1035 			return 0;
1036 
1037 		table = (struct desc_struct *)segment_base(ldt_selector);
1038 	}
1039 	v = get_desc_base(&table[selector >> 3]);
1040 	return v;
1041 }
1042 #endif
1043 
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1044 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1045 {
1046 	u32 i;
1047 
1048 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1049 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1050 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1051 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1052 	for (i = 0; i < addr_range; i++) {
1053 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1054 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1055 	}
1056 }
1057 
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1058 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1059 {
1060 	u32 i;
1061 
1062 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1063 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1064 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1065 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1066 	for (i = 0; i < addr_range; i++) {
1067 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1068 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1069 	}
1070 }
1071 
pt_guest_enter(struct vcpu_vmx * vmx)1072 static void pt_guest_enter(struct vcpu_vmx *vmx)
1073 {
1074 	if (pt_mode == PT_MODE_SYSTEM)
1075 		return;
1076 
1077 	/*
1078 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1079 	 * Save host state before VM entry.
1080 	 */
1081 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1082 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1083 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1084 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1085 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1086 	}
1087 }
1088 
pt_guest_exit(struct vcpu_vmx * vmx)1089 static void pt_guest_exit(struct vcpu_vmx *vmx)
1090 {
1091 	if (pt_mode == PT_MODE_SYSTEM)
1092 		return;
1093 
1094 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1095 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1096 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1097 	}
1098 
1099 	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1100 	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1101 }
1102 
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1103 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1104 			unsigned long fs_base, unsigned long gs_base)
1105 {
1106 	if (unlikely(fs_sel != host->fs_sel)) {
1107 		if (!(fs_sel & 7))
1108 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1109 		else
1110 			vmcs_write16(HOST_FS_SELECTOR, 0);
1111 		host->fs_sel = fs_sel;
1112 	}
1113 	if (unlikely(gs_sel != host->gs_sel)) {
1114 		if (!(gs_sel & 7))
1115 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1116 		else
1117 			vmcs_write16(HOST_GS_SELECTOR, 0);
1118 		host->gs_sel = gs_sel;
1119 	}
1120 	if (unlikely(fs_base != host->fs_base)) {
1121 		vmcs_writel(HOST_FS_BASE, fs_base);
1122 		host->fs_base = fs_base;
1123 	}
1124 	if (unlikely(gs_base != host->gs_base)) {
1125 		vmcs_writel(HOST_GS_BASE, gs_base);
1126 		host->gs_base = gs_base;
1127 	}
1128 }
1129 
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1130 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1131 {
1132 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1133 	struct vmcs_host_state *host_state;
1134 #ifdef CONFIG_X86_64
1135 	int cpu = raw_smp_processor_id();
1136 #endif
1137 	unsigned long fs_base, gs_base;
1138 	u16 fs_sel, gs_sel;
1139 	int i;
1140 
1141 	vmx->req_immediate_exit = false;
1142 
1143 	/*
1144 	 * Note that guest MSRs to be saved/restored can also be changed
1145 	 * when guest state is loaded. This happens when guest transitions
1146 	 * to/from long-mode by setting MSR_EFER.LMA.
1147 	 */
1148 	if (!vmx->guest_msrs_ready) {
1149 		vmx->guest_msrs_ready = true;
1150 		for (i = 0; i < vmx->save_nmsrs; ++i)
1151 			kvm_set_shared_msr(vmx->guest_msrs[i].index,
1152 					   vmx->guest_msrs[i].data,
1153 					   vmx->guest_msrs[i].mask);
1154 
1155 	}
1156 	if (vmx->guest_state_loaded)
1157 		return;
1158 
1159 	host_state = &vmx->loaded_vmcs->host_state;
1160 
1161 	/*
1162 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1163 	 * allow segment selectors with cpl > 0 or ti == 1.
1164 	 */
1165 	host_state->ldt_sel = kvm_read_ldt();
1166 
1167 #ifdef CONFIG_X86_64
1168 	savesegment(ds, host_state->ds_sel);
1169 	savesegment(es, host_state->es_sel);
1170 
1171 	gs_base = cpu_kernelmode_gs_base(cpu);
1172 	if (likely(is_64bit_mm(current->mm))) {
1173 		save_fsgs_for_kvm();
1174 		fs_sel = current->thread.fsindex;
1175 		gs_sel = current->thread.gsindex;
1176 		fs_base = current->thread.fsbase;
1177 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1178 	} else {
1179 		savesegment(fs, fs_sel);
1180 		savesegment(gs, gs_sel);
1181 		fs_base = read_msr(MSR_FS_BASE);
1182 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1183 	}
1184 
1185 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1186 #else
1187 	savesegment(fs, fs_sel);
1188 	savesegment(gs, gs_sel);
1189 	fs_base = segment_base(fs_sel);
1190 	gs_base = segment_base(gs_sel);
1191 #endif
1192 
1193 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1194 	vmx->guest_state_loaded = true;
1195 }
1196 
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1197 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1198 {
1199 	struct vmcs_host_state *host_state;
1200 
1201 	if (!vmx->guest_state_loaded)
1202 		return;
1203 
1204 	host_state = &vmx->loaded_vmcs->host_state;
1205 
1206 	++vmx->vcpu.stat.host_state_reload;
1207 
1208 #ifdef CONFIG_X86_64
1209 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1210 #endif
1211 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1212 		kvm_load_ldt(host_state->ldt_sel);
1213 #ifdef CONFIG_X86_64
1214 		load_gs_index(host_state->gs_sel);
1215 #else
1216 		loadsegment(gs, host_state->gs_sel);
1217 #endif
1218 	}
1219 	if (host_state->fs_sel & 7)
1220 		loadsegment(fs, host_state->fs_sel);
1221 #ifdef CONFIG_X86_64
1222 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1223 		loadsegment(ds, host_state->ds_sel);
1224 		loadsegment(es, host_state->es_sel);
1225 	}
1226 #endif
1227 	invalidate_tss_limit();
1228 #ifdef CONFIG_X86_64
1229 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1230 #endif
1231 	load_fixmap_gdt(raw_smp_processor_id());
1232 	vmx->guest_state_loaded = false;
1233 	vmx->guest_msrs_ready = false;
1234 }
1235 
1236 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1237 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1238 {
1239 	preempt_disable();
1240 	if (vmx->guest_state_loaded)
1241 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1242 	preempt_enable();
1243 	return vmx->msr_guest_kernel_gs_base;
1244 }
1245 
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1246 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1247 {
1248 	preempt_disable();
1249 	if (vmx->guest_state_loaded)
1250 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1251 	preempt_enable();
1252 	vmx->msr_guest_kernel_gs_base = data;
1253 }
1254 #endif
1255 
vmx_vcpu_pi_load(struct kvm_vcpu * vcpu,int cpu)1256 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1257 {
1258 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1259 	struct pi_desc old, new;
1260 	unsigned int dest;
1261 
1262 	/*
1263 	 * In case of hot-plug or hot-unplug, we may have to undo
1264 	 * vmx_vcpu_pi_put even if there is no assigned device.  And we
1265 	 * always keep PI.NDST up to date for simplicity: it makes the
1266 	 * code easier, and CPU migration is not a fast path.
1267 	 */
1268 	if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1269 		return;
1270 
1271 	/*
1272 	 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1273 	 * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1274 	 * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1275 	 * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1276 	 * correctly.
1277 	 */
1278 	if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1279 		pi_clear_sn(pi_desc);
1280 		goto after_clear_sn;
1281 	}
1282 
1283 	/* The full case.  */
1284 	do {
1285 		old.control = new.control = pi_desc->control;
1286 
1287 		dest = cpu_physical_id(cpu);
1288 
1289 		if (x2apic_enabled())
1290 			new.ndst = dest;
1291 		else
1292 			new.ndst = (dest << 8) & 0xFF00;
1293 
1294 		new.sn = 0;
1295 	} while (cmpxchg64(&pi_desc->control, old.control,
1296 			   new.control) != old.control);
1297 
1298 after_clear_sn:
1299 
1300 	/*
1301 	 * Clear SN before reading the bitmap.  The VT-d firmware
1302 	 * writes the bitmap and reads SN atomically (5.2.3 in the
1303 	 * spec), so it doesn't really have a memory barrier that
1304 	 * pairs with this, but we cannot do that and we need one.
1305 	 */
1306 	smp_mb__after_atomic();
1307 
1308 	if (!pi_is_pir_empty(pi_desc))
1309 		pi_set_on(pi_desc);
1310 }
1311 
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu)1312 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1313 {
1314 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1315 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1316 
1317 	if (!already_loaded) {
1318 		loaded_vmcs_clear(vmx->loaded_vmcs);
1319 		local_irq_disable();
1320 		crash_disable_local_vmclear(cpu);
1321 
1322 		/*
1323 		 * Read loaded_vmcs->cpu should be before fetching
1324 		 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1325 		 * See the comments in __loaded_vmcs_clear().
1326 		 */
1327 		smp_rmb();
1328 
1329 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1330 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1331 		crash_enable_local_vmclear(cpu);
1332 		local_irq_enable();
1333 	}
1334 
1335 	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1336 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1337 		vmcs_load(vmx->loaded_vmcs->vmcs);
1338 		indirect_branch_prediction_barrier();
1339 	}
1340 
1341 	if (!already_loaded) {
1342 		void *gdt = get_current_gdt_ro();
1343 		unsigned long sysenter_esp;
1344 
1345 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1346 
1347 		/*
1348 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1349 		 * processors.  See 22.2.4.
1350 		 */
1351 		vmcs_writel(HOST_TR_BASE,
1352 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1353 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1354 
1355 		/*
1356 		 * VM exits change the host TR limit to 0x67 after a VM
1357 		 * exit.  This is okay, since 0x67 covers everything except
1358 		 * the IO bitmap and have have code to handle the IO bitmap
1359 		 * being lost after a VM exit.
1360 		 */
1361 		BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1362 
1363 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1364 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1365 
1366 		vmx->loaded_vmcs->cpu = cpu;
1367 	}
1368 
1369 	/* Setup TSC multiplier */
1370 	if (kvm_has_tsc_control &&
1371 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1372 		decache_tsc_multiplier(vmx);
1373 }
1374 
1375 /*
1376  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1377  * vcpu mutex is already taken.
1378  */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1379 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1380 {
1381 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1382 
1383 	vmx_vcpu_load_vmcs(vcpu, cpu);
1384 
1385 	vmx_vcpu_pi_load(vcpu, cpu);
1386 
1387 	vmx->host_pkru = read_pkru();
1388 	vmx->host_debugctlmsr = get_debugctlmsr();
1389 }
1390 
vmx_vcpu_pi_put(struct kvm_vcpu * vcpu)1391 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1392 {
1393 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1394 
1395 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1396 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
1397 		!kvm_vcpu_apicv_active(vcpu))
1398 		return;
1399 
1400 	/* Set SN when the vCPU is preempted */
1401 	if (vcpu->preempted)
1402 		pi_set_sn(pi_desc);
1403 }
1404 
vmx_vcpu_put(struct kvm_vcpu * vcpu)1405 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1406 {
1407 	vmx_vcpu_pi_put(vcpu);
1408 
1409 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1410 }
1411 
emulation_required(struct kvm_vcpu * vcpu)1412 static bool emulation_required(struct kvm_vcpu *vcpu)
1413 {
1414 	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1415 }
1416 
1417 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1418 
vmx_get_rflags(struct kvm_vcpu * vcpu)1419 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1420 {
1421 	unsigned long rflags, save_rflags;
1422 
1423 	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1424 		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1425 		rflags = vmcs_readl(GUEST_RFLAGS);
1426 		if (to_vmx(vcpu)->rmode.vm86_active) {
1427 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1428 			save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1429 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1430 		}
1431 		to_vmx(vcpu)->rflags = rflags;
1432 	}
1433 	return to_vmx(vcpu)->rflags;
1434 }
1435 
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1436 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1437 {
1438 	unsigned long old_rflags = vmx_get_rflags(vcpu);
1439 
1440 	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1441 	to_vmx(vcpu)->rflags = rflags;
1442 	if (to_vmx(vcpu)->rmode.vm86_active) {
1443 		to_vmx(vcpu)->rmode.save_rflags = rflags;
1444 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1445 	}
1446 	vmcs_writel(GUEST_RFLAGS, rflags);
1447 
1448 	if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1449 		to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1450 }
1451 
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1452 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1453 {
1454 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1455 	int ret = 0;
1456 
1457 	if (interruptibility & GUEST_INTR_STATE_STI)
1458 		ret |= KVM_X86_SHADOW_INT_STI;
1459 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1460 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1461 
1462 	return ret;
1463 }
1464 
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1465 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1466 {
1467 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1468 	u32 interruptibility = interruptibility_old;
1469 
1470 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1471 
1472 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1473 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1474 	else if (mask & KVM_X86_SHADOW_INT_STI)
1475 		interruptibility |= GUEST_INTR_STATE_STI;
1476 
1477 	if ((interruptibility != interruptibility_old))
1478 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1479 }
1480 
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1481 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1482 {
1483 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1484 	unsigned long value;
1485 
1486 	/*
1487 	 * Any MSR write that attempts to change bits marked reserved will
1488 	 * case a #GP fault.
1489 	 */
1490 	if (data & vmx->pt_desc.ctl_bitmask)
1491 		return 1;
1492 
1493 	/*
1494 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1495 	 * result in a #GP unless the same write also clears TraceEn.
1496 	 */
1497 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1498 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1499 		return 1;
1500 
1501 	/*
1502 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1503 	 * and FabricEn would cause #GP, if
1504 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1505 	 */
1506 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1507 		!(data & RTIT_CTL_FABRIC_EN) &&
1508 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1509 					PT_CAP_single_range_output))
1510 		return 1;
1511 
1512 	/*
1513 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1514 	 * utilize encodings marked reserved will casue a #GP fault.
1515 	 */
1516 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1517 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1518 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1519 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1520 		return 1;
1521 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1522 						PT_CAP_cycle_thresholds);
1523 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1524 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1525 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1526 		return 1;
1527 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1528 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1529 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1530 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1531 		return 1;
1532 
1533 	/*
1534 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1535 	 * cause a #GP fault.
1536 	 */
1537 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1538 	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1539 		return 1;
1540 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1541 	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1542 		return 1;
1543 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1544 	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1545 		return 1;
1546 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1547 	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1548 		return 1;
1549 
1550 	return 0;
1551 }
1552 
skip_emulated_instruction(struct kvm_vcpu * vcpu)1553 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1554 {
1555 	unsigned long rip;
1556 
1557 	/*
1558 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1559 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1560 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1561 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1562 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1563 	 * i.e. we end up advancing IP with some random value.
1564 	 */
1565 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1566 	    to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1567 		rip = kvm_rip_read(vcpu);
1568 		rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1569 		kvm_rip_write(vcpu, rip);
1570 	} else {
1571 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1572 			return 0;
1573 	}
1574 
1575 	/* skipping an emulated instruction also counts */
1576 	vmx_set_interrupt_shadow(vcpu, 0);
1577 
1578 	return 1;
1579 }
1580 
vmx_clear_hlt(struct kvm_vcpu * vcpu)1581 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1582 {
1583 	/*
1584 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1585 	 * explicitly skip the instruction because if the HLT state is set,
1586 	 * then the instruction is already executing and RIP has already been
1587 	 * advanced.
1588 	 */
1589 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1590 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1591 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1592 }
1593 
vmx_queue_exception(struct kvm_vcpu * vcpu)1594 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1595 {
1596 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1597 	unsigned nr = vcpu->arch.exception.nr;
1598 	bool has_error_code = vcpu->arch.exception.has_error_code;
1599 	u32 error_code = vcpu->arch.exception.error_code;
1600 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1601 
1602 	kvm_deliver_exception_payload(vcpu);
1603 
1604 	if (has_error_code) {
1605 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1606 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1607 	}
1608 
1609 	if (vmx->rmode.vm86_active) {
1610 		int inc_eip = 0;
1611 		if (kvm_exception_is_soft(nr))
1612 			inc_eip = vcpu->arch.event_exit_inst_len;
1613 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1614 		return;
1615 	}
1616 
1617 	WARN_ON_ONCE(vmx->emulation_required);
1618 
1619 	if (kvm_exception_is_soft(nr)) {
1620 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1621 			     vmx->vcpu.arch.event_exit_inst_len);
1622 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1623 	} else
1624 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1625 
1626 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1627 
1628 	vmx_clear_hlt(vcpu);
1629 }
1630 
vmx_rdtscp_supported(void)1631 static bool vmx_rdtscp_supported(void)
1632 {
1633 	return cpu_has_vmx_rdtscp();
1634 }
1635 
vmx_invpcid_supported(void)1636 static bool vmx_invpcid_supported(void)
1637 {
1638 	return cpu_has_vmx_invpcid();
1639 }
1640 
1641 /*
1642  * Swap MSR entry in host/guest MSR entry array.
1643  */
move_msr_up(struct vcpu_vmx * vmx,int from,int to)1644 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1645 {
1646 	struct shared_msr_entry tmp;
1647 
1648 	tmp = vmx->guest_msrs[to];
1649 	vmx->guest_msrs[to] = vmx->guest_msrs[from];
1650 	vmx->guest_msrs[from] = tmp;
1651 }
1652 
1653 /*
1654  * Set up the vmcs to automatically save and restore system
1655  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1656  * mode, as fiddling with msrs is very expensive.
1657  */
setup_msrs(struct vcpu_vmx * vmx)1658 static void setup_msrs(struct vcpu_vmx *vmx)
1659 {
1660 	int save_nmsrs, index;
1661 
1662 	save_nmsrs = 0;
1663 #ifdef CONFIG_X86_64
1664 	/*
1665 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1666 	 * when EFER.SCE is set.
1667 	 */
1668 	if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1669 		index = __find_msr_index(vmx, MSR_STAR);
1670 		if (index >= 0)
1671 			move_msr_up(vmx, index, save_nmsrs++);
1672 		index = __find_msr_index(vmx, MSR_LSTAR);
1673 		if (index >= 0)
1674 			move_msr_up(vmx, index, save_nmsrs++);
1675 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1676 		if (index >= 0)
1677 			move_msr_up(vmx, index, save_nmsrs++);
1678 	}
1679 #endif
1680 	index = __find_msr_index(vmx, MSR_EFER);
1681 	if (index >= 0 && update_transition_efer(vmx, index))
1682 		move_msr_up(vmx, index, save_nmsrs++);
1683 	index = __find_msr_index(vmx, MSR_TSC_AUX);
1684 	if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1685 		move_msr_up(vmx, index, save_nmsrs++);
1686 
1687 	vmx->save_nmsrs = save_nmsrs;
1688 	vmx->guest_msrs_ready = false;
1689 
1690 	if (cpu_has_vmx_msr_bitmap())
1691 		vmx_update_msr_bitmap(&vmx->vcpu);
1692 }
1693 
vmx_read_l1_tsc_offset(struct kvm_vcpu * vcpu)1694 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1695 {
1696 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1697 
1698 	if (is_guest_mode(vcpu) &&
1699 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1700 		return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1701 
1702 	return vcpu->arch.tsc_offset;
1703 }
1704 
vmx_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1705 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1706 {
1707 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1708 	u64 g_tsc_offset = 0;
1709 
1710 	/*
1711 	 * We're here if L1 chose not to trap WRMSR to TSC. According
1712 	 * to the spec, this should set L1's TSC; The offset that L1
1713 	 * set for L2 remains unchanged, and still needs to be added
1714 	 * to the newly set TSC to get L2's TSC.
1715 	 */
1716 	if (is_guest_mode(vcpu) &&
1717 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1718 		g_tsc_offset = vmcs12->tsc_offset;
1719 
1720 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1721 				   vcpu->arch.tsc_offset - g_tsc_offset,
1722 				   offset);
1723 	vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1724 	return offset + g_tsc_offset;
1725 }
1726 
1727 /*
1728  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1729  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1730  * all guests if the "nested" module option is off, and can also be disabled
1731  * for a single guest by disabling its VMX cpuid bit.
1732  */
nested_vmx_allowed(struct kvm_vcpu * vcpu)1733 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1734 {
1735 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1736 }
1737 
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)1738 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1739 						 uint64_t val)
1740 {
1741 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1742 
1743 	return !(val & ~valid_bits);
1744 }
1745 
vmx_get_msr_feature(struct kvm_msr_entry * msr)1746 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1747 {
1748 	switch (msr->index) {
1749 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1750 		if (!nested)
1751 			return 1;
1752 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1753 	default:
1754 		return 1;
1755 	}
1756 
1757 	return 0;
1758 }
1759 
1760 /*
1761  * Reads an msr value (of 'msr_index') into 'pdata'.
1762  * Returns 0 on success, non-0 otherwise.
1763  * Assumes vcpu_load() was already called.
1764  */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1765 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1766 {
1767 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1768 	struct shared_msr_entry *msr;
1769 	u32 index;
1770 
1771 	switch (msr_info->index) {
1772 #ifdef CONFIG_X86_64
1773 	case MSR_FS_BASE:
1774 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1775 		break;
1776 	case MSR_GS_BASE:
1777 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1778 		break;
1779 	case MSR_KERNEL_GS_BASE:
1780 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1781 		break;
1782 #endif
1783 	case MSR_EFER:
1784 		return kvm_get_msr_common(vcpu, msr_info);
1785 	case MSR_IA32_UMWAIT_CONTROL:
1786 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1787 			return 1;
1788 
1789 		msr_info->data = vmx->msr_ia32_umwait_control;
1790 		break;
1791 	case MSR_IA32_SPEC_CTRL:
1792 		if (!msr_info->host_initiated &&
1793 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1794 			return 1;
1795 
1796 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1797 		break;
1798 	case MSR_IA32_SYSENTER_CS:
1799 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1800 		break;
1801 	case MSR_IA32_SYSENTER_EIP:
1802 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1803 		break;
1804 	case MSR_IA32_SYSENTER_ESP:
1805 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1806 		break;
1807 	case MSR_IA32_BNDCFGS:
1808 		if (!kvm_mpx_supported() ||
1809 		    (!msr_info->host_initiated &&
1810 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1811 			return 1;
1812 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1813 		break;
1814 	case MSR_IA32_MCG_EXT_CTL:
1815 		if (!msr_info->host_initiated &&
1816 		    !(vmx->msr_ia32_feature_control &
1817 		      FEATURE_CONTROL_LMCE))
1818 			return 1;
1819 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1820 		break;
1821 	case MSR_IA32_FEATURE_CONTROL:
1822 		msr_info->data = vmx->msr_ia32_feature_control;
1823 		break;
1824 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1825 		if (!nested_vmx_allowed(vcpu))
1826 			return 1;
1827 		return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1828 				       &msr_info->data);
1829 	case MSR_IA32_XSS:
1830 		if (!vmx_xsaves_supported() ||
1831 		    (!msr_info->host_initiated &&
1832 		     !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
1833 		       guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
1834 			return 1;
1835 		msr_info->data = vcpu->arch.ia32_xss;
1836 		break;
1837 	case MSR_IA32_RTIT_CTL:
1838 		if (pt_mode != PT_MODE_HOST_GUEST)
1839 			return 1;
1840 		msr_info->data = vmx->pt_desc.guest.ctl;
1841 		break;
1842 	case MSR_IA32_RTIT_STATUS:
1843 		if (pt_mode != PT_MODE_HOST_GUEST)
1844 			return 1;
1845 		msr_info->data = vmx->pt_desc.guest.status;
1846 		break;
1847 	case MSR_IA32_RTIT_CR3_MATCH:
1848 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1849 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1850 						PT_CAP_cr3_filtering))
1851 			return 1;
1852 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1853 		break;
1854 	case MSR_IA32_RTIT_OUTPUT_BASE:
1855 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1856 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1857 					PT_CAP_topa_output) &&
1858 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1859 					PT_CAP_single_range_output)))
1860 			return 1;
1861 		msr_info->data = vmx->pt_desc.guest.output_base;
1862 		break;
1863 	case MSR_IA32_RTIT_OUTPUT_MASK:
1864 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1865 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1866 					PT_CAP_topa_output) &&
1867 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1868 					PT_CAP_single_range_output)))
1869 			return 1;
1870 		msr_info->data = vmx->pt_desc.guest.output_mask;
1871 		break;
1872 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1873 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1874 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1875 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1876 					PT_CAP_num_address_ranges)))
1877 			return 1;
1878 		if (index % 2)
1879 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1880 		else
1881 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1882 		break;
1883 	case MSR_TSC_AUX:
1884 		if (!msr_info->host_initiated &&
1885 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1886 			return 1;
1887 		/* Else, falls through */
1888 	default:
1889 		msr = find_msr_entry(vmx, msr_info->index);
1890 		if (msr) {
1891 			msr_info->data = msr->data;
1892 			break;
1893 		}
1894 		return kvm_get_msr_common(vcpu, msr_info);
1895 	}
1896 
1897 	return 0;
1898 }
1899 
1900 /*
1901  * Writes msr value into into the appropriate "register".
1902  * Returns 0 on success, non-0 otherwise.
1903  * Assumes vcpu_load() was already called.
1904  */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1905 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1906 {
1907 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1908 	struct shared_msr_entry *msr;
1909 	int ret = 0;
1910 	u32 msr_index = msr_info->index;
1911 	u64 data = msr_info->data;
1912 	u32 index;
1913 
1914 	switch (msr_index) {
1915 	case MSR_EFER:
1916 		ret = kvm_set_msr_common(vcpu, msr_info);
1917 		break;
1918 #ifdef CONFIG_X86_64
1919 	case MSR_FS_BASE:
1920 		vmx_segment_cache_clear(vmx);
1921 		vmcs_writel(GUEST_FS_BASE, data);
1922 		break;
1923 	case MSR_GS_BASE:
1924 		vmx_segment_cache_clear(vmx);
1925 		vmcs_writel(GUEST_GS_BASE, data);
1926 		break;
1927 	case MSR_KERNEL_GS_BASE:
1928 		vmx_write_guest_kernel_gs_base(vmx, data);
1929 		break;
1930 #endif
1931 	case MSR_IA32_SYSENTER_CS:
1932 		if (is_guest_mode(vcpu))
1933 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
1934 		vmcs_write32(GUEST_SYSENTER_CS, data);
1935 		break;
1936 	case MSR_IA32_SYSENTER_EIP:
1937 		if (is_guest_mode(vcpu))
1938 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
1939 		vmcs_writel(GUEST_SYSENTER_EIP, data);
1940 		break;
1941 	case MSR_IA32_SYSENTER_ESP:
1942 		if (is_guest_mode(vcpu))
1943 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
1944 		vmcs_writel(GUEST_SYSENTER_ESP, data);
1945 		break;
1946 	case MSR_IA32_DEBUGCTLMSR:
1947 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1948 						VM_EXIT_SAVE_DEBUG_CONTROLS)
1949 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1950 
1951 		ret = kvm_set_msr_common(vcpu, msr_info);
1952 		break;
1953 
1954 	case MSR_IA32_BNDCFGS:
1955 		if (!kvm_mpx_supported() ||
1956 		    (!msr_info->host_initiated &&
1957 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1958 			return 1;
1959 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1960 		    (data & MSR_IA32_BNDCFGS_RSVD))
1961 			return 1;
1962 		vmcs_write64(GUEST_BNDCFGS, data);
1963 		break;
1964 	case MSR_IA32_UMWAIT_CONTROL:
1965 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1966 			return 1;
1967 
1968 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
1969 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
1970 			return 1;
1971 
1972 		vmx->msr_ia32_umwait_control = data;
1973 		break;
1974 	case MSR_IA32_SPEC_CTRL:
1975 		if (!msr_info->host_initiated &&
1976 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1977 			return 1;
1978 
1979 		/* The STIBP bit doesn't fault even if it's not advertised */
1980 		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1981 			return 1;
1982 
1983 		vmx->spec_ctrl = data;
1984 
1985 		if (!data)
1986 			break;
1987 
1988 		/*
1989 		 * For non-nested:
1990 		 * When it's written (to non-zero) for the first time, pass
1991 		 * it through.
1992 		 *
1993 		 * For nested:
1994 		 * The handling of the MSR bitmap for L2 guests is done in
1995 		 * nested_vmx_merge_msr_bitmap. We should not touch the
1996 		 * vmcs02.msr_bitmap here since it gets completely overwritten
1997 		 * in the merging. We update the vmcs01 here for L1 as well
1998 		 * since it will end up touching the MSR anyway now.
1999 		 */
2000 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2001 					      MSR_IA32_SPEC_CTRL,
2002 					      MSR_TYPE_RW);
2003 		break;
2004 	case MSR_IA32_PRED_CMD:
2005 		if (!msr_info->host_initiated &&
2006 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2007 			return 1;
2008 
2009 		if (data & ~PRED_CMD_IBPB)
2010 			return 1;
2011 
2012 		if (!data)
2013 			break;
2014 
2015 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2016 
2017 		/*
2018 		 * For non-nested:
2019 		 * When it's written (to non-zero) for the first time, pass
2020 		 * it through.
2021 		 *
2022 		 * For nested:
2023 		 * The handling of the MSR bitmap for L2 guests is done in
2024 		 * nested_vmx_merge_msr_bitmap. We should not touch the
2025 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2026 		 * in the merging.
2027 		 */
2028 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2029 					      MSR_TYPE_W);
2030 		break;
2031 	case MSR_IA32_CR_PAT:
2032 		if (!kvm_pat_valid(data))
2033 			return 1;
2034 
2035 		if (is_guest_mode(vcpu) &&
2036 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2037 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2038 
2039 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2040 			vmcs_write64(GUEST_IA32_PAT, data);
2041 			vcpu->arch.pat = data;
2042 			break;
2043 		}
2044 		ret = kvm_set_msr_common(vcpu, msr_info);
2045 		break;
2046 	case MSR_IA32_TSC_ADJUST:
2047 		ret = kvm_set_msr_common(vcpu, msr_info);
2048 		break;
2049 	case MSR_IA32_MCG_EXT_CTL:
2050 		if ((!msr_info->host_initiated &&
2051 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2052 		       FEATURE_CONTROL_LMCE)) ||
2053 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2054 			return 1;
2055 		vcpu->arch.mcg_ext_ctl = data;
2056 		break;
2057 	case MSR_IA32_FEATURE_CONTROL:
2058 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2059 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2060 		     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2061 			return 1;
2062 		vmx->msr_ia32_feature_control = data;
2063 		if (msr_info->host_initiated && data == 0)
2064 			vmx_leave_nested(vcpu);
2065 		break;
2066 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2067 		if (!msr_info->host_initiated)
2068 			return 1; /* they are read-only */
2069 		if (!nested_vmx_allowed(vcpu))
2070 			return 1;
2071 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2072 	case MSR_IA32_XSS:
2073 		if (!vmx_xsaves_supported() ||
2074 		    (!msr_info->host_initiated &&
2075 		     !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
2076 		       guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
2077 			return 1;
2078 		/*
2079 		 * The only supported bit as of Skylake is bit 8, but
2080 		 * it is not supported on KVM.
2081 		 */
2082 		if (data != 0)
2083 			return 1;
2084 		vcpu->arch.ia32_xss = data;
2085 		if (vcpu->arch.ia32_xss != host_xss)
2086 			add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2087 				vcpu->arch.ia32_xss, host_xss, false);
2088 		else
2089 			clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2090 		break;
2091 	case MSR_IA32_RTIT_CTL:
2092 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
2093 			vmx_rtit_ctl_check(vcpu, data) ||
2094 			vmx->nested.vmxon)
2095 			return 1;
2096 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2097 		vmx->pt_desc.guest.ctl = data;
2098 		pt_update_intercept_for_msr(vmx);
2099 		break;
2100 	case MSR_IA32_RTIT_STATUS:
2101 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
2102 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2103 			(data & MSR_IA32_RTIT_STATUS_MASK))
2104 			return 1;
2105 		vmx->pt_desc.guest.status = data;
2106 		break;
2107 	case MSR_IA32_RTIT_CR3_MATCH:
2108 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
2109 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2110 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2111 						PT_CAP_cr3_filtering))
2112 			return 1;
2113 		vmx->pt_desc.guest.cr3_match = data;
2114 		break;
2115 	case MSR_IA32_RTIT_OUTPUT_BASE:
2116 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
2117 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2118 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2119 					PT_CAP_topa_output) &&
2120 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2121 					PT_CAP_single_range_output)) ||
2122 			(data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
2123 			return 1;
2124 		vmx->pt_desc.guest.output_base = data;
2125 		break;
2126 	case MSR_IA32_RTIT_OUTPUT_MASK:
2127 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
2128 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2129 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2130 					PT_CAP_topa_output) &&
2131 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2132 					PT_CAP_single_range_output)))
2133 			return 1;
2134 		vmx->pt_desc.guest.output_mask = data;
2135 		break;
2136 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2137 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2138 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
2139 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2140 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2141 					PT_CAP_num_address_ranges)))
2142 			return 1;
2143 		if (index % 2)
2144 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2145 		else
2146 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2147 		break;
2148 	case MSR_TSC_AUX:
2149 		if (!msr_info->host_initiated &&
2150 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2151 			return 1;
2152 		/* Check reserved bit, higher 32 bits should be zero */
2153 		if ((data >> 32) != 0)
2154 			return 1;
2155 		/* Else, falls through */
2156 	default:
2157 		msr = find_msr_entry(vmx, msr_index);
2158 		if (msr) {
2159 			u64 old_msr_data = msr->data;
2160 			msr->data = data;
2161 			if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2162 				preempt_disable();
2163 				ret = kvm_set_shared_msr(msr->index, msr->data,
2164 							 msr->mask);
2165 				preempt_enable();
2166 				if (ret)
2167 					msr->data = old_msr_data;
2168 			}
2169 			break;
2170 		}
2171 		ret = kvm_set_msr_common(vcpu, msr_info);
2172 	}
2173 
2174 	return ret;
2175 }
2176 
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2177 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2178 {
2179 	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2180 	switch (reg) {
2181 	case VCPU_REGS_RSP:
2182 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2183 		break;
2184 	case VCPU_REGS_RIP:
2185 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2186 		break;
2187 	case VCPU_EXREG_PDPTR:
2188 		if (enable_ept)
2189 			ept_save_pdptrs(vcpu);
2190 		break;
2191 	default:
2192 		break;
2193 	}
2194 }
2195 
cpu_has_kvm_support(void)2196 static __init int cpu_has_kvm_support(void)
2197 {
2198 	return cpu_has_vmx();
2199 }
2200 
vmx_disabled_by_bios(void)2201 static __init int vmx_disabled_by_bios(void)
2202 {
2203 	u64 msr;
2204 
2205 	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2206 	if (msr & FEATURE_CONTROL_LOCKED) {
2207 		/* launched w/ TXT and VMX disabled */
2208 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2209 			&& tboot_enabled())
2210 			return 1;
2211 		/* launched w/o TXT and VMX only enabled w/ TXT */
2212 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2213 			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2214 			&& !tboot_enabled()) {
2215 			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2216 				"activate TXT before enabling KVM\n");
2217 			return 1;
2218 		}
2219 		/* launched w/o TXT and VMX disabled */
2220 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2221 			&& !tboot_enabled())
2222 			return 1;
2223 	}
2224 
2225 	return 0;
2226 }
2227 
kvm_cpu_vmxon(u64 addr)2228 static void kvm_cpu_vmxon(u64 addr)
2229 {
2230 	cr4_set_bits(X86_CR4_VMXE);
2231 	intel_pt_handle_vmx(1);
2232 
2233 	asm volatile ("vmxon %0" : : "m"(addr));
2234 }
2235 
hardware_enable(void)2236 static int hardware_enable(void)
2237 {
2238 	int cpu = raw_smp_processor_id();
2239 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2240 	u64 old, test_bits;
2241 
2242 	if (cr4_read_shadow() & X86_CR4_VMXE)
2243 		return -EBUSY;
2244 
2245 	/*
2246 	 * This can happen if we hot-added a CPU but failed to allocate
2247 	 * VP assist page for it.
2248 	 */
2249 	if (static_branch_unlikely(&enable_evmcs) &&
2250 	    !hv_get_vp_assist_page(cpu))
2251 		return -EFAULT;
2252 
2253 	INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2254 	INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2255 	spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2256 
2257 	/*
2258 	 * Now we can enable the vmclear operation in kdump
2259 	 * since the loaded_vmcss_on_cpu list on this cpu
2260 	 * has been initialized.
2261 	 *
2262 	 * Though the cpu is not in VMX operation now, there
2263 	 * is no problem to enable the vmclear operation
2264 	 * for the loaded_vmcss_on_cpu list is empty!
2265 	 */
2266 	crash_enable_local_vmclear(cpu);
2267 
2268 	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2269 
2270 	test_bits = FEATURE_CONTROL_LOCKED;
2271 	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2272 	if (tboot_enabled())
2273 		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2274 
2275 	if ((old & test_bits) != test_bits) {
2276 		/* enable and lock */
2277 		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2278 	}
2279 	kvm_cpu_vmxon(phys_addr);
2280 	if (enable_ept)
2281 		ept_sync_global();
2282 
2283 	return 0;
2284 }
2285 
vmclear_local_loaded_vmcss(void)2286 static void vmclear_local_loaded_vmcss(void)
2287 {
2288 	int cpu = raw_smp_processor_id();
2289 	struct loaded_vmcs *v, *n;
2290 
2291 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2292 				 loaded_vmcss_on_cpu_link)
2293 		__loaded_vmcs_clear(v);
2294 }
2295 
2296 
2297 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2298  * tricks.
2299  */
kvm_cpu_vmxoff(void)2300 static void kvm_cpu_vmxoff(void)
2301 {
2302 	asm volatile (__ex("vmxoff"));
2303 
2304 	intel_pt_handle_vmx(0);
2305 	cr4_clear_bits(X86_CR4_VMXE);
2306 }
2307 
hardware_disable(void)2308 static void hardware_disable(void)
2309 {
2310 	vmclear_local_loaded_vmcss();
2311 	kvm_cpu_vmxoff();
2312 }
2313 
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2314 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2315 				      u32 msr, u32 *result)
2316 {
2317 	u32 vmx_msr_low, vmx_msr_high;
2318 	u32 ctl = ctl_min | ctl_opt;
2319 
2320 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2321 
2322 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2323 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2324 
2325 	/* Ensure minimum (required) set of control bits are supported. */
2326 	if (ctl_min & ~ctl)
2327 		return -EIO;
2328 
2329 	*result = ctl;
2330 	return 0;
2331 }
2332 
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2333 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2334 				    struct vmx_capability *vmx_cap)
2335 {
2336 	u32 vmx_msr_low, vmx_msr_high;
2337 	u32 min, opt, min2, opt2;
2338 	u32 _pin_based_exec_control = 0;
2339 	u32 _cpu_based_exec_control = 0;
2340 	u32 _cpu_based_2nd_exec_control = 0;
2341 	u32 _vmexit_control = 0;
2342 	u32 _vmentry_control = 0;
2343 
2344 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2345 	min = CPU_BASED_HLT_EXITING |
2346 #ifdef CONFIG_X86_64
2347 	      CPU_BASED_CR8_LOAD_EXITING |
2348 	      CPU_BASED_CR8_STORE_EXITING |
2349 #endif
2350 	      CPU_BASED_CR3_LOAD_EXITING |
2351 	      CPU_BASED_CR3_STORE_EXITING |
2352 	      CPU_BASED_UNCOND_IO_EXITING |
2353 	      CPU_BASED_MOV_DR_EXITING |
2354 	      CPU_BASED_USE_TSC_OFFSETING |
2355 	      CPU_BASED_MWAIT_EXITING |
2356 	      CPU_BASED_MONITOR_EXITING |
2357 	      CPU_BASED_INVLPG_EXITING |
2358 	      CPU_BASED_RDPMC_EXITING;
2359 
2360 	opt = CPU_BASED_TPR_SHADOW |
2361 	      CPU_BASED_USE_MSR_BITMAPS |
2362 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2363 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2364 				&_cpu_based_exec_control) < 0)
2365 		return -EIO;
2366 #ifdef CONFIG_X86_64
2367 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2368 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2369 					   ~CPU_BASED_CR8_STORE_EXITING;
2370 #endif
2371 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2372 		min2 = 0;
2373 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2374 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2375 			SECONDARY_EXEC_WBINVD_EXITING |
2376 			SECONDARY_EXEC_ENABLE_VPID |
2377 			SECONDARY_EXEC_ENABLE_EPT |
2378 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2379 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2380 			SECONDARY_EXEC_DESC |
2381 			SECONDARY_EXEC_RDTSCP |
2382 			SECONDARY_EXEC_ENABLE_INVPCID |
2383 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2384 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2385 			SECONDARY_EXEC_SHADOW_VMCS |
2386 			SECONDARY_EXEC_XSAVES |
2387 			SECONDARY_EXEC_RDSEED_EXITING |
2388 			SECONDARY_EXEC_RDRAND_EXITING |
2389 			SECONDARY_EXEC_ENABLE_PML |
2390 			SECONDARY_EXEC_TSC_SCALING |
2391 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2392 			SECONDARY_EXEC_PT_USE_GPA |
2393 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2394 			SECONDARY_EXEC_ENABLE_VMFUNC |
2395 			SECONDARY_EXEC_ENCLS_EXITING;
2396 		if (adjust_vmx_controls(min2, opt2,
2397 					MSR_IA32_VMX_PROCBASED_CTLS2,
2398 					&_cpu_based_2nd_exec_control) < 0)
2399 			return -EIO;
2400 	}
2401 #ifndef CONFIG_X86_64
2402 	if (!(_cpu_based_2nd_exec_control &
2403 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2404 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2405 #endif
2406 
2407 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2408 		_cpu_based_2nd_exec_control &= ~(
2409 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2410 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2411 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2412 
2413 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2414 		&vmx_cap->ept, &vmx_cap->vpid);
2415 
2416 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2417 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2418 		   enabled */
2419 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2420 					     CPU_BASED_CR3_STORE_EXITING |
2421 					     CPU_BASED_INVLPG_EXITING);
2422 	} else if (vmx_cap->ept) {
2423 		vmx_cap->ept = 0;
2424 		pr_warn_once("EPT CAP should not exist if not support "
2425 				"1-setting enable EPT VM-execution control\n");
2426 	}
2427 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2428 		vmx_cap->vpid) {
2429 		vmx_cap->vpid = 0;
2430 		pr_warn_once("VPID CAP should not exist if not support "
2431 				"1-setting enable VPID VM-execution control\n");
2432 	}
2433 
2434 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2435 #ifdef CONFIG_X86_64
2436 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2437 #endif
2438 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2439 	      VM_EXIT_LOAD_IA32_PAT |
2440 	      VM_EXIT_LOAD_IA32_EFER |
2441 	      VM_EXIT_CLEAR_BNDCFGS |
2442 	      VM_EXIT_PT_CONCEAL_PIP |
2443 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2444 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2445 				&_vmexit_control) < 0)
2446 		return -EIO;
2447 
2448 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2449 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2450 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2451 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2452 				&_pin_based_exec_control) < 0)
2453 		return -EIO;
2454 
2455 	if (cpu_has_broken_vmx_preemption_timer())
2456 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2457 	if (!(_cpu_based_2nd_exec_control &
2458 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2459 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2460 
2461 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2462 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2463 	      VM_ENTRY_LOAD_IA32_PAT |
2464 	      VM_ENTRY_LOAD_IA32_EFER |
2465 	      VM_ENTRY_LOAD_BNDCFGS |
2466 	      VM_ENTRY_PT_CONCEAL_PIP |
2467 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2468 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2469 				&_vmentry_control) < 0)
2470 		return -EIO;
2471 
2472 	/*
2473 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2474 	 * can't be used due to an errata where VM Exit may incorrectly clear
2475 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2476 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2477 	 */
2478 	if (boot_cpu_data.x86 == 0x6) {
2479 		switch (boot_cpu_data.x86_model) {
2480 		case 26: /* AAK155 */
2481 		case 30: /* AAP115 */
2482 		case 37: /* AAT100 */
2483 		case 44: /* BC86,AAY89,BD102 */
2484 		case 46: /* BA97 */
2485 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2486 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2487 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2488 					"does not work properly. Using workaround\n");
2489 			break;
2490 		default:
2491 			break;
2492 		}
2493 	}
2494 
2495 
2496 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2497 
2498 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2499 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2500 		return -EIO;
2501 
2502 #ifdef CONFIG_X86_64
2503 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2504 	if (vmx_msr_high & (1u<<16))
2505 		return -EIO;
2506 #endif
2507 
2508 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2509 	if (((vmx_msr_high >> 18) & 15) != 6)
2510 		return -EIO;
2511 
2512 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2513 	vmcs_conf->order = get_order(vmcs_conf->size);
2514 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2515 
2516 	vmcs_conf->revision_id = vmx_msr_low;
2517 
2518 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2519 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2520 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2521 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2522 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2523 
2524 	if (static_branch_unlikely(&enable_evmcs))
2525 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2526 
2527 	return 0;
2528 }
2529 
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2530 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2531 {
2532 	int node = cpu_to_node(cpu);
2533 	struct page *pages;
2534 	struct vmcs *vmcs;
2535 
2536 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2537 	if (!pages)
2538 		return NULL;
2539 	vmcs = page_address(pages);
2540 	memset(vmcs, 0, vmcs_config.size);
2541 
2542 	/* KVM supports Enlightened VMCS v1 only */
2543 	if (static_branch_unlikely(&enable_evmcs))
2544 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2545 	else
2546 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2547 
2548 	if (shadow)
2549 		vmcs->hdr.shadow_vmcs = 1;
2550 	return vmcs;
2551 }
2552 
free_vmcs(struct vmcs * vmcs)2553 void free_vmcs(struct vmcs *vmcs)
2554 {
2555 	free_pages((unsigned long)vmcs, vmcs_config.order);
2556 }
2557 
2558 /*
2559  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2560  */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2561 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2562 {
2563 	if (!loaded_vmcs->vmcs)
2564 		return;
2565 	loaded_vmcs_clear(loaded_vmcs);
2566 	free_vmcs(loaded_vmcs->vmcs);
2567 	loaded_vmcs->vmcs = NULL;
2568 	if (loaded_vmcs->msr_bitmap)
2569 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2570 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2571 }
2572 
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2573 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2574 {
2575 	loaded_vmcs->vmcs = alloc_vmcs(false);
2576 	if (!loaded_vmcs->vmcs)
2577 		return -ENOMEM;
2578 
2579 	loaded_vmcs->shadow_vmcs = NULL;
2580 	loaded_vmcs->hv_timer_soft_disabled = false;
2581 	loaded_vmcs_init(loaded_vmcs);
2582 
2583 	if (cpu_has_vmx_msr_bitmap()) {
2584 		loaded_vmcs->msr_bitmap = (unsigned long *)
2585 				__get_free_page(GFP_KERNEL_ACCOUNT);
2586 		if (!loaded_vmcs->msr_bitmap)
2587 			goto out_vmcs;
2588 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2589 
2590 		if (IS_ENABLED(CONFIG_HYPERV) &&
2591 		    static_branch_unlikely(&enable_evmcs) &&
2592 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2593 			struct hv_enlightened_vmcs *evmcs =
2594 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2595 
2596 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2597 		}
2598 	}
2599 
2600 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2601 	memset(&loaded_vmcs->controls_shadow, 0,
2602 		sizeof(struct vmcs_controls_shadow));
2603 
2604 	return 0;
2605 
2606 out_vmcs:
2607 	free_loaded_vmcs(loaded_vmcs);
2608 	return -ENOMEM;
2609 }
2610 
free_kvm_area(void)2611 static void free_kvm_area(void)
2612 {
2613 	int cpu;
2614 
2615 	for_each_possible_cpu(cpu) {
2616 		free_vmcs(per_cpu(vmxarea, cpu));
2617 		per_cpu(vmxarea, cpu) = NULL;
2618 	}
2619 }
2620 
alloc_kvm_area(void)2621 static __init int alloc_kvm_area(void)
2622 {
2623 	int cpu;
2624 
2625 	for_each_possible_cpu(cpu) {
2626 		struct vmcs *vmcs;
2627 
2628 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2629 		if (!vmcs) {
2630 			free_kvm_area();
2631 			return -ENOMEM;
2632 		}
2633 
2634 		/*
2635 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2636 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2637 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2638 		 *
2639 		 * However, even though not explicitly documented by
2640 		 * TLFS, VMXArea passed as VMXON argument should
2641 		 * still be marked with revision_id reported by
2642 		 * physical CPU.
2643 		 */
2644 		if (static_branch_unlikely(&enable_evmcs))
2645 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2646 
2647 		per_cpu(vmxarea, cpu) = vmcs;
2648 	}
2649 	return 0;
2650 }
2651 
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2652 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2653 		struct kvm_segment *save)
2654 {
2655 	if (!emulate_invalid_guest_state) {
2656 		/*
2657 		 * CS and SS RPL should be equal during guest entry according
2658 		 * to VMX spec, but in reality it is not always so. Since vcpu
2659 		 * is in the middle of the transition from real mode to
2660 		 * protected mode it is safe to assume that RPL 0 is a good
2661 		 * default value.
2662 		 */
2663 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2664 			save->selector &= ~SEGMENT_RPL_MASK;
2665 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2666 		save->s = 1;
2667 	}
2668 	vmx_set_segment(vcpu, save, seg);
2669 }
2670 
enter_pmode(struct kvm_vcpu * vcpu)2671 static void enter_pmode(struct kvm_vcpu *vcpu)
2672 {
2673 	unsigned long flags;
2674 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2675 
2676 	/*
2677 	 * Update real mode segment cache. It may be not up-to-date if sement
2678 	 * register was written while vcpu was in a guest mode.
2679 	 */
2680 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2681 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2682 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2683 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2684 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2685 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2686 
2687 	vmx->rmode.vm86_active = 0;
2688 
2689 	vmx_segment_cache_clear(vmx);
2690 
2691 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2692 
2693 	flags = vmcs_readl(GUEST_RFLAGS);
2694 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2695 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2696 	vmcs_writel(GUEST_RFLAGS, flags);
2697 
2698 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2699 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2700 
2701 	update_exception_bitmap(vcpu);
2702 
2703 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2704 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2705 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2706 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2707 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2708 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2709 }
2710 
fix_rmode_seg(int seg,struct kvm_segment * save)2711 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2712 {
2713 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2714 	struct kvm_segment var = *save;
2715 
2716 	var.dpl = 0x3;
2717 	if (seg == VCPU_SREG_CS)
2718 		var.type = 0x3;
2719 
2720 	if (!emulate_invalid_guest_state) {
2721 		var.selector = var.base >> 4;
2722 		var.base = var.base & 0xffff0;
2723 		var.limit = 0xffff;
2724 		var.g = 0;
2725 		var.db = 0;
2726 		var.present = 1;
2727 		var.s = 1;
2728 		var.l = 0;
2729 		var.unusable = 0;
2730 		var.type = 0x3;
2731 		var.avl = 0;
2732 		if (save->base & 0xf)
2733 			printk_once(KERN_WARNING "kvm: segment base is not "
2734 					"paragraph aligned when entering "
2735 					"protected mode (seg=%d)", seg);
2736 	}
2737 
2738 	vmcs_write16(sf->selector, var.selector);
2739 	vmcs_writel(sf->base, var.base);
2740 	vmcs_write32(sf->limit, var.limit);
2741 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2742 }
2743 
enter_rmode(struct kvm_vcpu * vcpu)2744 static void enter_rmode(struct kvm_vcpu *vcpu)
2745 {
2746 	unsigned long flags;
2747 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2748 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2749 
2750 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2751 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2752 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2753 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2754 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2755 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2756 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2757 
2758 	vmx->rmode.vm86_active = 1;
2759 
2760 	/*
2761 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2762 	 * vcpu. Warn the user that an update is overdue.
2763 	 */
2764 	if (!kvm_vmx->tss_addr)
2765 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2766 			     "called before entering vcpu\n");
2767 
2768 	vmx_segment_cache_clear(vmx);
2769 
2770 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2771 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2772 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2773 
2774 	flags = vmcs_readl(GUEST_RFLAGS);
2775 	vmx->rmode.save_rflags = flags;
2776 
2777 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2778 
2779 	vmcs_writel(GUEST_RFLAGS, flags);
2780 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2781 	update_exception_bitmap(vcpu);
2782 
2783 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2784 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2785 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2786 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2787 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2788 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2789 
2790 	kvm_mmu_reset_context(vcpu);
2791 }
2792 
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)2793 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2794 {
2795 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2796 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2797 
2798 	if (!msr)
2799 		return;
2800 
2801 	vcpu->arch.efer = efer;
2802 	if (efer & EFER_LMA) {
2803 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2804 		msr->data = efer;
2805 	} else {
2806 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2807 
2808 		msr->data = efer & ~EFER_LME;
2809 	}
2810 	setup_msrs(vmx);
2811 }
2812 
2813 #ifdef CONFIG_X86_64
2814 
enter_lmode(struct kvm_vcpu * vcpu)2815 static void enter_lmode(struct kvm_vcpu *vcpu)
2816 {
2817 	u32 guest_tr_ar;
2818 
2819 	vmx_segment_cache_clear(to_vmx(vcpu));
2820 
2821 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2822 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2823 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2824 				     __func__);
2825 		vmcs_write32(GUEST_TR_AR_BYTES,
2826 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2827 			     | VMX_AR_TYPE_BUSY_64_TSS);
2828 	}
2829 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2830 }
2831 
exit_lmode(struct kvm_vcpu * vcpu)2832 static void exit_lmode(struct kvm_vcpu *vcpu)
2833 {
2834 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2835 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2836 }
2837 
2838 #endif
2839 
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)2840 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2841 {
2842 	int vpid = to_vmx(vcpu)->vpid;
2843 
2844 	if (!vpid_sync_vcpu_addr(vpid, addr))
2845 		vpid_sync_context(vpid);
2846 
2847 	/*
2848 	 * If VPIDs are not supported or enabled, then the above is a no-op.
2849 	 * But we don't really need a TLB flush in that case anyway, because
2850 	 * each VM entry/exit includes an implicit flush when VPID is 0.
2851 	 */
2852 }
2853 
vmx_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)2854 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2855 {
2856 	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2857 
2858 	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2859 	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2860 }
2861 
vmx_decache_cr3(struct kvm_vcpu * vcpu)2862 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2863 {
2864 	if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2865 		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2866 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2867 }
2868 
vmx_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)2869 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2870 {
2871 	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2872 
2873 	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2874 	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2875 }
2876 
ept_load_pdptrs(struct kvm_vcpu * vcpu)2877 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2878 {
2879 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2880 
2881 	if (!test_bit(VCPU_EXREG_PDPTR,
2882 		      (unsigned long *)&vcpu->arch.regs_dirty))
2883 		return;
2884 
2885 	if (is_pae_paging(vcpu)) {
2886 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2887 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2888 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2889 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2890 	}
2891 }
2892 
ept_save_pdptrs(struct kvm_vcpu * vcpu)2893 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2894 {
2895 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2896 
2897 	if (is_pae_paging(vcpu)) {
2898 		mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2899 		mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2900 		mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2901 		mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2902 	}
2903 
2904 	__set_bit(VCPU_EXREG_PDPTR,
2905 		  (unsigned long *)&vcpu->arch.regs_avail);
2906 	__set_bit(VCPU_EXREG_PDPTR,
2907 		  (unsigned long *)&vcpu->arch.regs_dirty);
2908 }
2909 
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)2910 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2911 					unsigned long cr0,
2912 					struct kvm_vcpu *vcpu)
2913 {
2914 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2915 
2916 	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2917 		vmx_decache_cr3(vcpu);
2918 	if (!(cr0 & X86_CR0_PG)) {
2919 		/* From paging/starting to nonpaging */
2920 		exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2921 					  CPU_BASED_CR3_STORE_EXITING);
2922 		vcpu->arch.cr0 = cr0;
2923 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2924 	} else if (!is_paging(vcpu)) {
2925 		/* From nonpaging to paging */
2926 		exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2927 					    CPU_BASED_CR3_STORE_EXITING);
2928 		vcpu->arch.cr0 = cr0;
2929 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2930 	}
2931 
2932 	if (!(cr0 & X86_CR0_WP))
2933 		*hw_cr0 &= ~X86_CR0_WP;
2934 }
2935 
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)2936 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2937 {
2938 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2939 	unsigned long hw_cr0;
2940 
2941 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2942 	if (enable_unrestricted_guest)
2943 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2944 	else {
2945 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2946 
2947 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2948 			enter_pmode(vcpu);
2949 
2950 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2951 			enter_rmode(vcpu);
2952 	}
2953 
2954 #ifdef CONFIG_X86_64
2955 	if (vcpu->arch.efer & EFER_LME) {
2956 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2957 			enter_lmode(vcpu);
2958 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2959 			exit_lmode(vcpu);
2960 	}
2961 #endif
2962 
2963 	if (enable_ept && !enable_unrestricted_guest)
2964 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2965 
2966 	vmcs_writel(CR0_READ_SHADOW, cr0);
2967 	vmcs_writel(GUEST_CR0, hw_cr0);
2968 	vcpu->arch.cr0 = cr0;
2969 
2970 	/* depends on vcpu->arch.cr0 to be set to a new value */
2971 	vmx->emulation_required = emulation_required(vcpu);
2972 }
2973 
get_ept_level(struct kvm_vcpu * vcpu)2974 static int get_ept_level(struct kvm_vcpu *vcpu)
2975 {
2976 	if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2977 		return 5;
2978 	return 4;
2979 }
2980 
construct_eptp(struct kvm_vcpu * vcpu,unsigned long root_hpa)2981 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2982 {
2983 	u64 eptp = VMX_EPTP_MT_WB;
2984 
2985 	eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2986 
2987 	if (enable_ept_ad_bits &&
2988 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2989 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
2990 	eptp |= (root_hpa & PAGE_MASK);
2991 
2992 	return eptp;
2993 }
2994 
vmx_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)2995 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2996 {
2997 	struct kvm *kvm = vcpu->kvm;
2998 	bool update_guest_cr3 = true;
2999 	unsigned long guest_cr3;
3000 	u64 eptp;
3001 
3002 	guest_cr3 = cr3;
3003 	if (enable_ept) {
3004 		eptp = construct_eptp(vcpu, cr3);
3005 		vmcs_write64(EPT_POINTER, eptp);
3006 
3007 		if (kvm_x86_ops->tlb_remote_flush) {
3008 			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3009 			to_vmx(vcpu)->ept_pointer = eptp;
3010 			to_kvm_vmx(kvm)->ept_pointers_match
3011 				= EPT_POINTERS_CHECK;
3012 			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3013 		}
3014 
3015 		/* Loading vmcs02.GUEST_CR3 is handled by nested VM-Enter. */
3016 		if (is_guest_mode(vcpu))
3017 			update_guest_cr3 = false;
3018 		else if (enable_unrestricted_guest || is_paging(vcpu))
3019 			guest_cr3 = kvm_read_cr3(vcpu);
3020 		else
3021 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3022 		ept_load_pdptrs(vcpu);
3023 	}
3024 
3025 	if (update_guest_cr3)
3026 		vmcs_writel(GUEST_CR3, guest_cr3);
3027 }
3028 
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3029 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3030 {
3031 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3032 	/*
3033 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3034 	 * is in force while we are in guest mode.  Do not let guests control
3035 	 * this bit, even if host CR4.MCE == 0.
3036 	 */
3037 	unsigned long hw_cr4;
3038 
3039 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3040 	if (enable_unrestricted_guest)
3041 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3042 	else if (vmx->rmode.vm86_active)
3043 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3044 	else
3045 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3046 
3047 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3048 		if (cr4 & X86_CR4_UMIP) {
3049 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3050 			hw_cr4 &= ~X86_CR4_UMIP;
3051 		} else if (!is_guest_mode(vcpu) ||
3052 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3053 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3054 		}
3055 	}
3056 
3057 	if (cr4 & X86_CR4_VMXE) {
3058 		/*
3059 		 * To use VMXON (and later other VMX instructions), a guest
3060 		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3061 		 * So basically the check on whether to allow nested VMX
3062 		 * is here.  We operate under the default treatment of SMM,
3063 		 * so VMX cannot be enabled under SMM.
3064 		 */
3065 		if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3066 			return 1;
3067 	}
3068 
3069 	if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3070 		return 1;
3071 
3072 	vcpu->arch.cr4 = cr4;
3073 
3074 	if (!enable_unrestricted_guest) {
3075 		if (enable_ept) {
3076 			if (!is_paging(vcpu)) {
3077 				hw_cr4 &= ~X86_CR4_PAE;
3078 				hw_cr4 |= X86_CR4_PSE;
3079 			} else if (!(cr4 & X86_CR4_PAE)) {
3080 				hw_cr4 &= ~X86_CR4_PAE;
3081 			}
3082 		}
3083 
3084 		/*
3085 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3086 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3087 		 * to be manually disabled when guest switches to non-paging
3088 		 * mode.
3089 		 *
3090 		 * If !enable_unrestricted_guest, the CPU is always running
3091 		 * with CR0.PG=1 and CR4 needs to be modified.
3092 		 * If enable_unrestricted_guest, the CPU automatically
3093 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3094 		 */
3095 		if (!is_paging(vcpu))
3096 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3097 	}
3098 
3099 	vmcs_writel(CR4_READ_SHADOW, cr4);
3100 	vmcs_writel(GUEST_CR4, hw_cr4);
3101 	return 0;
3102 }
3103 
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3104 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3105 {
3106 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3107 	u32 ar;
3108 
3109 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3110 		*var = vmx->rmode.segs[seg];
3111 		if (seg == VCPU_SREG_TR
3112 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3113 			return;
3114 		var->base = vmx_read_guest_seg_base(vmx, seg);
3115 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3116 		return;
3117 	}
3118 	var->base = vmx_read_guest_seg_base(vmx, seg);
3119 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3120 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3121 	ar = vmx_read_guest_seg_ar(vmx, seg);
3122 	var->unusable = (ar >> 16) & 1;
3123 	var->type = ar & 15;
3124 	var->s = (ar >> 4) & 1;
3125 	var->dpl = (ar >> 5) & 3;
3126 	/*
3127 	 * Some userspaces do not preserve unusable property. Since usable
3128 	 * segment has to be present according to VMX spec we can use present
3129 	 * property to amend userspace bug by making unusable segment always
3130 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3131 	 * segment as unusable.
3132 	 */
3133 	var->present = !var->unusable;
3134 	var->avl = (ar >> 12) & 1;
3135 	var->l = (ar >> 13) & 1;
3136 	var->db = (ar >> 14) & 1;
3137 	var->g = (ar >> 15) & 1;
3138 }
3139 
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3140 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3141 {
3142 	struct kvm_segment s;
3143 
3144 	if (to_vmx(vcpu)->rmode.vm86_active) {
3145 		vmx_get_segment(vcpu, &s, seg);
3146 		return s.base;
3147 	}
3148 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3149 }
3150 
vmx_get_cpl(struct kvm_vcpu * vcpu)3151 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3152 {
3153 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3154 
3155 	if (unlikely(vmx->rmode.vm86_active))
3156 		return 0;
3157 	else {
3158 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3159 		return VMX_AR_DPL(ar);
3160 	}
3161 }
3162 
vmx_segment_access_rights(struct kvm_segment * var)3163 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3164 {
3165 	u32 ar;
3166 
3167 	if (var->unusable || !var->present)
3168 		ar = 1 << 16;
3169 	else {
3170 		ar = var->type & 15;
3171 		ar |= (var->s & 1) << 4;
3172 		ar |= (var->dpl & 3) << 5;
3173 		ar |= (var->present & 1) << 7;
3174 		ar |= (var->avl & 1) << 12;
3175 		ar |= (var->l & 1) << 13;
3176 		ar |= (var->db & 1) << 14;
3177 		ar |= (var->g & 1) << 15;
3178 	}
3179 
3180 	return ar;
3181 }
3182 
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3183 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3184 {
3185 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3186 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3187 
3188 	vmx_segment_cache_clear(vmx);
3189 
3190 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3191 		vmx->rmode.segs[seg] = *var;
3192 		if (seg == VCPU_SREG_TR)
3193 			vmcs_write16(sf->selector, var->selector);
3194 		else if (var->s)
3195 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3196 		goto out;
3197 	}
3198 
3199 	vmcs_writel(sf->base, var->base);
3200 	vmcs_write32(sf->limit, var->limit);
3201 	vmcs_write16(sf->selector, var->selector);
3202 
3203 	/*
3204 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3205 	 * qemu binaries.
3206 	 *   IA32 arch specifies that at the time of processor reset the
3207 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3208 	 * is setting it to 0 in the userland code. This causes invalid guest
3209 	 * state vmexit when "unrestricted guest" mode is turned on.
3210 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3211 	 * tree. Newer qemu binaries with that qemu fix would not need this
3212 	 * kvm hack.
3213 	 */
3214 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3215 		var->type |= 0x1; /* Accessed */
3216 
3217 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3218 
3219 out:
3220 	vmx->emulation_required = emulation_required(vcpu);
3221 }
3222 
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3223 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3224 {
3225 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3226 
3227 	*db = (ar >> 14) & 1;
3228 	*l = (ar >> 13) & 1;
3229 }
3230 
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3231 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3232 {
3233 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3234 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3235 }
3236 
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3237 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3238 {
3239 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3240 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3241 }
3242 
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3243 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3244 {
3245 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3246 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3247 }
3248 
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3249 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3250 {
3251 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3252 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3253 }
3254 
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3255 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3256 {
3257 	struct kvm_segment var;
3258 	u32 ar;
3259 
3260 	vmx_get_segment(vcpu, &var, seg);
3261 	var.dpl = 0x3;
3262 	if (seg == VCPU_SREG_CS)
3263 		var.type = 0x3;
3264 	ar = vmx_segment_access_rights(&var);
3265 
3266 	if (var.base != (var.selector << 4))
3267 		return false;
3268 	if (var.limit != 0xffff)
3269 		return false;
3270 	if (ar != 0xf3)
3271 		return false;
3272 
3273 	return true;
3274 }
3275 
code_segment_valid(struct kvm_vcpu * vcpu)3276 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3277 {
3278 	struct kvm_segment cs;
3279 	unsigned int cs_rpl;
3280 
3281 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3282 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3283 
3284 	if (cs.unusable)
3285 		return false;
3286 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3287 		return false;
3288 	if (!cs.s)
3289 		return false;
3290 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3291 		if (cs.dpl > cs_rpl)
3292 			return false;
3293 	} else {
3294 		if (cs.dpl != cs_rpl)
3295 			return false;
3296 	}
3297 	if (!cs.present)
3298 		return false;
3299 
3300 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3301 	return true;
3302 }
3303 
stack_segment_valid(struct kvm_vcpu * vcpu)3304 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3305 {
3306 	struct kvm_segment ss;
3307 	unsigned int ss_rpl;
3308 
3309 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3310 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3311 
3312 	if (ss.unusable)
3313 		return true;
3314 	if (ss.type != 3 && ss.type != 7)
3315 		return false;
3316 	if (!ss.s)
3317 		return false;
3318 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3319 		return false;
3320 	if (!ss.present)
3321 		return false;
3322 
3323 	return true;
3324 }
3325 
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3326 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3327 {
3328 	struct kvm_segment var;
3329 	unsigned int rpl;
3330 
3331 	vmx_get_segment(vcpu, &var, seg);
3332 	rpl = var.selector & SEGMENT_RPL_MASK;
3333 
3334 	if (var.unusable)
3335 		return true;
3336 	if (!var.s)
3337 		return false;
3338 	if (!var.present)
3339 		return false;
3340 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3341 		if (var.dpl < rpl) /* DPL < RPL */
3342 			return false;
3343 	}
3344 
3345 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3346 	 * rights flags
3347 	 */
3348 	return true;
3349 }
3350 
tr_valid(struct kvm_vcpu * vcpu)3351 static bool tr_valid(struct kvm_vcpu *vcpu)
3352 {
3353 	struct kvm_segment tr;
3354 
3355 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3356 
3357 	if (tr.unusable)
3358 		return false;
3359 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3360 		return false;
3361 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3362 		return false;
3363 	if (!tr.present)
3364 		return false;
3365 
3366 	return true;
3367 }
3368 
ldtr_valid(struct kvm_vcpu * vcpu)3369 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3370 {
3371 	struct kvm_segment ldtr;
3372 
3373 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3374 
3375 	if (ldtr.unusable)
3376 		return true;
3377 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3378 		return false;
3379 	if (ldtr.type != 2)
3380 		return false;
3381 	if (!ldtr.present)
3382 		return false;
3383 
3384 	return true;
3385 }
3386 
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3387 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3388 {
3389 	struct kvm_segment cs, ss;
3390 
3391 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3392 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3393 
3394 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3395 		 (ss.selector & SEGMENT_RPL_MASK));
3396 }
3397 
3398 /*
3399  * Check if guest state is valid. Returns true if valid, false if
3400  * not.
3401  * We assume that registers are always usable
3402  */
guest_state_valid(struct kvm_vcpu * vcpu)3403 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3404 {
3405 	if (enable_unrestricted_guest)
3406 		return true;
3407 
3408 	/* real mode guest state checks */
3409 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3410 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3411 			return false;
3412 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3413 			return false;
3414 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3415 			return false;
3416 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3417 			return false;
3418 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3419 			return false;
3420 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3421 			return false;
3422 	} else {
3423 	/* protected mode guest state checks */
3424 		if (!cs_ss_rpl_check(vcpu))
3425 			return false;
3426 		if (!code_segment_valid(vcpu))
3427 			return false;
3428 		if (!stack_segment_valid(vcpu))
3429 			return false;
3430 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3431 			return false;
3432 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3433 			return false;
3434 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3435 			return false;
3436 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3437 			return false;
3438 		if (!tr_valid(vcpu))
3439 			return false;
3440 		if (!ldtr_valid(vcpu))
3441 			return false;
3442 	}
3443 	/* TODO:
3444 	 * - Add checks on RIP
3445 	 * - Add checks on RFLAGS
3446 	 */
3447 
3448 	return true;
3449 }
3450 
init_rmode_tss(struct kvm * kvm)3451 static int init_rmode_tss(struct kvm *kvm)
3452 {
3453 	gfn_t fn;
3454 	u16 data = 0;
3455 	int idx, r;
3456 
3457 	idx = srcu_read_lock(&kvm->srcu);
3458 	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3459 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3460 	if (r < 0)
3461 		goto out;
3462 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3463 	r = kvm_write_guest_page(kvm, fn++, &data,
3464 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
3465 	if (r < 0)
3466 		goto out;
3467 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3468 	if (r < 0)
3469 		goto out;
3470 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3471 	if (r < 0)
3472 		goto out;
3473 	data = ~0;
3474 	r = kvm_write_guest_page(kvm, fn, &data,
3475 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3476 				 sizeof(u8));
3477 out:
3478 	srcu_read_unlock(&kvm->srcu, idx);
3479 	return r;
3480 }
3481 
init_rmode_identity_map(struct kvm * kvm)3482 static int init_rmode_identity_map(struct kvm *kvm)
3483 {
3484 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3485 	int i, idx, r = 0;
3486 	kvm_pfn_t identity_map_pfn;
3487 	u32 tmp;
3488 
3489 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3490 	mutex_lock(&kvm->slots_lock);
3491 
3492 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3493 		goto out2;
3494 
3495 	if (!kvm_vmx->ept_identity_map_addr)
3496 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3497 	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3498 
3499 	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3500 				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3501 	if (r < 0)
3502 		goto out2;
3503 
3504 	idx = srcu_read_lock(&kvm->srcu);
3505 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3506 	if (r < 0)
3507 		goto out;
3508 	/* Set up identity-mapping pagetable for EPT in real mode */
3509 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3510 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3511 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3512 		r = kvm_write_guest_page(kvm, identity_map_pfn,
3513 				&tmp, i * sizeof(tmp), sizeof(tmp));
3514 		if (r < 0)
3515 			goto out;
3516 	}
3517 	kvm_vmx->ept_identity_pagetable_done = true;
3518 
3519 out:
3520 	srcu_read_unlock(&kvm->srcu, idx);
3521 
3522 out2:
3523 	mutex_unlock(&kvm->slots_lock);
3524 	return r;
3525 }
3526 
seg_setup(int seg)3527 static void seg_setup(int seg)
3528 {
3529 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3530 	unsigned int ar;
3531 
3532 	vmcs_write16(sf->selector, 0);
3533 	vmcs_writel(sf->base, 0);
3534 	vmcs_write32(sf->limit, 0xffff);
3535 	ar = 0x93;
3536 	if (seg == VCPU_SREG_CS)
3537 		ar |= 0x08; /* code segment */
3538 
3539 	vmcs_write32(sf->ar_bytes, ar);
3540 }
3541 
alloc_apic_access_page(struct kvm * kvm)3542 static int alloc_apic_access_page(struct kvm *kvm)
3543 {
3544 	struct page *page;
3545 	int r = 0;
3546 
3547 	mutex_lock(&kvm->slots_lock);
3548 	if (kvm->arch.apic_access_page_done)
3549 		goto out;
3550 	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3551 				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3552 	if (r)
3553 		goto out;
3554 
3555 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3556 	if (is_error_page(page)) {
3557 		r = -EFAULT;
3558 		goto out;
3559 	}
3560 
3561 	/*
3562 	 * Do not pin the page in memory, so that memory hot-unplug
3563 	 * is able to migrate it.
3564 	 */
3565 	put_page(page);
3566 	kvm->arch.apic_access_page_done = true;
3567 out:
3568 	mutex_unlock(&kvm->slots_lock);
3569 	return r;
3570 }
3571 
allocate_vpid(void)3572 int allocate_vpid(void)
3573 {
3574 	int vpid;
3575 
3576 	if (!enable_vpid)
3577 		return 0;
3578 	spin_lock(&vmx_vpid_lock);
3579 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3580 	if (vpid < VMX_NR_VPIDS)
3581 		__set_bit(vpid, vmx_vpid_bitmap);
3582 	else
3583 		vpid = 0;
3584 	spin_unlock(&vmx_vpid_lock);
3585 	return vpid;
3586 }
3587 
free_vpid(int vpid)3588 void free_vpid(int vpid)
3589 {
3590 	if (!enable_vpid || vpid == 0)
3591 		return;
3592 	spin_lock(&vmx_vpid_lock);
3593 	__clear_bit(vpid, vmx_vpid_bitmap);
3594 	spin_unlock(&vmx_vpid_lock);
3595 }
3596 
vmx_disable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)3597 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3598 							  u32 msr, int type)
3599 {
3600 	int f = sizeof(unsigned long);
3601 
3602 	if (!cpu_has_vmx_msr_bitmap())
3603 		return;
3604 
3605 	if (static_branch_unlikely(&enable_evmcs))
3606 		evmcs_touch_msr_bitmap();
3607 
3608 	/*
3609 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3610 	 * have the write-low and read-high bitmap offsets the wrong way round.
3611 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3612 	 */
3613 	if (msr <= 0x1fff) {
3614 		if (type & MSR_TYPE_R)
3615 			/* read-low */
3616 			__clear_bit(msr, msr_bitmap + 0x000 / f);
3617 
3618 		if (type & MSR_TYPE_W)
3619 			/* write-low */
3620 			__clear_bit(msr, msr_bitmap + 0x800 / f);
3621 
3622 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3623 		msr &= 0x1fff;
3624 		if (type & MSR_TYPE_R)
3625 			/* read-high */
3626 			__clear_bit(msr, msr_bitmap + 0x400 / f);
3627 
3628 		if (type & MSR_TYPE_W)
3629 			/* write-high */
3630 			__clear_bit(msr, msr_bitmap + 0xc00 / f);
3631 
3632 	}
3633 }
3634 
vmx_enable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)3635 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3636 							 u32 msr, int type)
3637 {
3638 	int f = sizeof(unsigned long);
3639 
3640 	if (!cpu_has_vmx_msr_bitmap())
3641 		return;
3642 
3643 	if (static_branch_unlikely(&enable_evmcs))
3644 		evmcs_touch_msr_bitmap();
3645 
3646 	/*
3647 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3648 	 * have the write-low and read-high bitmap offsets the wrong way round.
3649 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3650 	 */
3651 	if (msr <= 0x1fff) {
3652 		if (type & MSR_TYPE_R)
3653 			/* read-low */
3654 			__set_bit(msr, msr_bitmap + 0x000 / f);
3655 
3656 		if (type & MSR_TYPE_W)
3657 			/* write-low */
3658 			__set_bit(msr, msr_bitmap + 0x800 / f);
3659 
3660 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3661 		msr &= 0x1fff;
3662 		if (type & MSR_TYPE_R)
3663 			/* read-high */
3664 			__set_bit(msr, msr_bitmap + 0x400 / f);
3665 
3666 		if (type & MSR_TYPE_W)
3667 			/* write-high */
3668 			__set_bit(msr, msr_bitmap + 0xc00 / f);
3669 
3670 	}
3671 }
3672 
vmx_set_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type,bool value)3673 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3674 			     			      u32 msr, int type, bool value)
3675 {
3676 	if (value)
3677 		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3678 	else
3679 		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3680 }
3681 
vmx_msr_bitmap_mode(struct kvm_vcpu * vcpu)3682 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3683 {
3684 	u8 mode = 0;
3685 
3686 	if (cpu_has_secondary_exec_ctrls() &&
3687 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
3688 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3689 		mode |= MSR_BITMAP_MODE_X2APIC;
3690 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3691 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3692 	}
3693 
3694 	return mode;
3695 }
3696 
vmx_update_msr_bitmap_x2apic(unsigned long * msr_bitmap,u8 mode)3697 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3698 					 u8 mode)
3699 {
3700 	int msr;
3701 
3702 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3703 		unsigned word = msr / BITS_PER_LONG;
3704 		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3705 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3706 	}
3707 
3708 	if (mode & MSR_BITMAP_MODE_X2APIC) {
3709 		/*
3710 		 * TPR reads and writes can be virtualized even if virtual interrupt
3711 		 * delivery is not in use.
3712 		 */
3713 		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3714 		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3715 			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3716 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3717 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3718 		}
3719 	}
3720 }
3721 
vmx_update_msr_bitmap(struct kvm_vcpu * vcpu)3722 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3723 {
3724 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3725 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3726 	u8 mode = vmx_msr_bitmap_mode(vcpu);
3727 	u8 changed = mode ^ vmx->msr_bitmap_mode;
3728 
3729 	if (!changed)
3730 		return;
3731 
3732 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3733 		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3734 
3735 	vmx->msr_bitmap_mode = mode;
3736 }
3737 
pt_update_intercept_for_msr(struct vcpu_vmx * vmx)3738 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3739 {
3740 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3741 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3742 	u32 i;
3743 
3744 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3745 							MSR_TYPE_RW, flag);
3746 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3747 							MSR_TYPE_RW, flag);
3748 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3749 							MSR_TYPE_RW, flag);
3750 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3751 							MSR_TYPE_RW, flag);
3752 	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3753 		vmx_set_intercept_for_msr(msr_bitmap,
3754 			MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3755 		vmx_set_intercept_for_msr(msr_bitmap,
3756 			MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3757 	}
3758 }
3759 
vmx_get_enable_apicv(struct kvm_vcpu * vcpu)3760 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3761 {
3762 	return enable_apicv;
3763 }
3764 
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)3765 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3766 {
3767 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3768 	void *vapic_page;
3769 	u32 vppr;
3770 	int rvi;
3771 
3772 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3773 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3774 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3775 		return false;
3776 
3777 	rvi = vmx_get_rvi();
3778 
3779 	vapic_page = vmx->nested.virtual_apic_map.hva;
3780 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3781 
3782 	return ((rvi & 0xf0) > (vppr & 0xf0));
3783 }
3784 
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,bool nested)3785 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3786 						     bool nested)
3787 {
3788 #ifdef CONFIG_SMP
3789 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3790 
3791 	if (vcpu->mode == IN_GUEST_MODE) {
3792 		/*
3793 		 * The vector of interrupt to be delivered to vcpu had
3794 		 * been set in PIR before this function.
3795 		 *
3796 		 * Following cases will be reached in this block, and
3797 		 * we always send a notification event in all cases as
3798 		 * explained below.
3799 		 *
3800 		 * Case 1: vcpu keeps in non-root mode. Sending a
3801 		 * notification event posts the interrupt to vcpu.
3802 		 *
3803 		 * Case 2: vcpu exits to root mode and is still
3804 		 * runnable. PIR will be synced to vIRR before the
3805 		 * next vcpu entry. Sending a notification event in
3806 		 * this case has no effect, as vcpu is not in root
3807 		 * mode.
3808 		 *
3809 		 * Case 3: vcpu exits to root mode and is blocked.
3810 		 * vcpu_block() has already synced PIR to vIRR and
3811 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3812 		 * a blocked vcpu here does not wait for any requested
3813 		 * interrupts in PIR, and sending a notification event
3814 		 * which has no effect is safe here.
3815 		 */
3816 
3817 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3818 		return true;
3819 	}
3820 #endif
3821 	return false;
3822 }
3823 
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)3824 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3825 						int vector)
3826 {
3827 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3828 
3829 	if (is_guest_mode(vcpu) &&
3830 	    vector == vmx->nested.posted_intr_nv) {
3831 		/*
3832 		 * If a posted intr is not recognized by hardware,
3833 		 * we will accomplish it in the next vmentry.
3834 		 */
3835 		vmx->nested.pi_pending = true;
3836 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3837 		/* the PIR and ON have been set by L1. */
3838 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3839 			kvm_vcpu_kick(vcpu);
3840 		return 0;
3841 	}
3842 	return -1;
3843 }
3844 /*
3845  * Send interrupt to vcpu via posted interrupt way.
3846  * 1. If target vcpu is running(non-root mode), send posted interrupt
3847  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3848  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3849  * interrupt from PIR in next vmentry.
3850  */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)3851 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3852 {
3853 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3854 	int r;
3855 
3856 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3857 	if (!r)
3858 		return;
3859 
3860 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3861 		return;
3862 
3863 	/* If a previous notification has sent the IPI, nothing to do.  */
3864 	if (pi_test_and_set_on(&vmx->pi_desc))
3865 		return;
3866 
3867 	if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3868 		kvm_vcpu_kick(vcpu);
3869 }
3870 
3871 /*
3872  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3873  * will not change in the lifetime of the guest.
3874  * Note that host-state that does change is set elsewhere. E.g., host-state
3875  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3876  */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)3877 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3878 {
3879 	u32 low32, high32;
3880 	unsigned long tmpl;
3881 	unsigned long cr0, cr3, cr4;
3882 
3883 	cr0 = read_cr0();
3884 	WARN_ON(cr0 & X86_CR0_TS);
3885 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3886 
3887 	/*
3888 	 * Save the most likely value for this task's CR3 in the VMCS.
3889 	 * We can't use __get_current_cr3_fast() because we're not atomic.
3890 	 */
3891 	cr3 = __read_cr3();
3892 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
3893 	vmx->loaded_vmcs->host_state.cr3 = cr3;
3894 
3895 	/* Save the most likely value for this task's CR4 in the VMCS. */
3896 	cr4 = cr4_read_shadow();
3897 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
3898 	vmx->loaded_vmcs->host_state.cr4 = cr4;
3899 
3900 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3901 #ifdef CONFIG_X86_64
3902 	/*
3903 	 * Load null selectors, so we can avoid reloading them in
3904 	 * vmx_prepare_switch_to_host(), in case userspace uses
3905 	 * the null selectors too (the expected case).
3906 	 */
3907 	vmcs_write16(HOST_DS_SELECTOR, 0);
3908 	vmcs_write16(HOST_ES_SELECTOR, 0);
3909 #else
3910 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3911 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3912 #endif
3913 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3914 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3915 
3916 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3917 
3918 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3919 
3920 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3921 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3922 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3923 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3924 
3925 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3926 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
3927 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3928 	}
3929 
3930 	if (cpu_has_load_ia32_efer())
3931 		vmcs_write64(HOST_IA32_EFER, host_efer);
3932 }
3933 
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)3934 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3935 {
3936 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3937 	if (enable_ept)
3938 		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3939 	if (is_guest_mode(&vmx->vcpu))
3940 		vmx->vcpu.arch.cr4_guest_owned_bits &=
3941 			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3942 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3943 }
3944 
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)3945 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3946 {
3947 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3948 
3949 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3950 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3951 
3952 	if (!enable_vnmi)
3953 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3954 
3955 	if (!enable_preemption_timer)
3956 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3957 
3958 	return pin_based_exec_ctrl;
3959 }
3960 
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)3961 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3962 {
3963 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3964 
3965 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3966 	if (cpu_has_secondary_exec_ctrls()) {
3967 		if (kvm_vcpu_apicv_active(vcpu))
3968 			secondary_exec_controls_setbit(vmx,
3969 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
3970 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3971 		else
3972 			secondary_exec_controls_clearbit(vmx,
3973 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
3974 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3975 	}
3976 
3977 	if (cpu_has_vmx_msr_bitmap())
3978 		vmx_update_msr_bitmap(vcpu);
3979 }
3980 
vmx_exec_control(struct vcpu_vmx * vmx)3981 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3982 {
3983 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3984 
3985 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3986 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3987 
3988 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3989 		exec_control &= ~CPU_BASED_TPR_SHADOW;
3990 #ifdef CONFIG_X86_64
3991 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
3992 				CPU_BASED_CR8_LOAD_EXITING;
3993 #endif
3994 	}
3995 	if (!enable_ept)
3996 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
3997 				CPU_BASED_CR3_LOAD_EXITING  |
3998 				CPU_BASED_INVLPG_EXITING;
3999 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4000 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4001 				CPU_BASED_MONITOR_EXITING);
4002 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4003 		exec_control &= ~CPU_BASED_HLT_EXITING;
4004 	return exec_control;
4005 }
4006 
4007 
vmx_compute_secondary_exec_control(struct vcpu_vmx * vmx)4008 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4009 {
4010 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4011 
4012 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4013 
4014 	if (pt_mode == PT_MODE_SYSTEM)
4015 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4016 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4017 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4018 	if (vmx->vpid == 0)
4019 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4020 	if (!enable_ept) {
4021 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4022 		enable_unrestricted_guest = 0;
4023 	}
4024 	if (!enable_unrestricted_guest)
4025 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4026 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4027 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4028 	if (!kvm_vcpu_apicv_active(vcpu))
4029 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4030 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4031 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4032 
4033 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4034 	 * in vmx_set_cr4.  */
4035 	exec_control &= ~SECONDARY_EXEC_DESC;
4036 
4037 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4038 	   (handle_vmptrld).
4039 	   We can NOT enable shadow_vmcs here because we don't have yet
4040 	   a current VMCS12
4041 	*/
4042 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4043 
4044 	if (!enable_pml)
4045 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4046 
4047 	if (vmx_xsaves_supported()) {
4048 		/* Exposing XSAVES only when XSAVE is exposed */
4049 		bool xsaves_enabled =
4050 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4051 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4052 
4053 		if (!xsaves_enabled)
4054 			exec_control &= ~SECONDARY_EXEC_XSAVES;
4055 
4056 		if (nested) {
4057 			if (xsaves_enabled)
4058 				vmx->nested.msrs.secondary_ctls_high |=
4059 					SECONDARY_EXEC_XSAVES;
4060 			else
4061 				vmx->nested.msrs.secondary_ctls_high &=
4062 					~SECONDARY_EXEC_XSAVES;
4063 		}
4064 	}
4065 
4066 	if (vmx_rdtscp_supported()) {
4067 		bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4068 		if (!rdtscp_enabled)
4069 			exec_control &= ~SECONDARY_EXEC_RDTSCP;
4070 
4071 		if (nested) {
4072 			if (rdtscp_enabled)
4073 				vmx->nested.msrs.secondary_ctls_high |=
4074 					SECONDARY_EXEC_RDTSCP;
4075 			else
4076 				vmx->nested.msrs.secondary_ctls_high &=
4077 					~SECONDARY_EXEC_RDTSCP;
4078 		}
4079 	}
4080 
4081 	if (vmx_invpcid_supported()) {
4082 		/* Exposing INVPCID only when PCID is exposed */
4083 		bool invpcid_enabled =
4084 			guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4085 			guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4086 
4087 		if (!invpcid_enabled) {
4088 			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4089 			guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4090 		}
4091 
4092 		if (nested) {
4093 			if (invpcid_enabled)
4094 				vmx->nested.msrs.secondary_ctls_high |=
4095 					SECONDARY_EXEC_ENABLE_INVPCID;
4096 			else
4097 				vmx->nested.msrs.secondary_ctls_high &=
4098 					~SECONDARY_EXEC_ENABLE_INVPCID;
4099 		}
4100 	}
4101 
4102 	if (vmx_rdrand_supported()) {
4103 		bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4104 		if (rdrand_enabled)
4105 			exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4106 
4107 		if (nested) {
4108 			if (rdrand_enabled)
4109 				vmx->nested.msrs.secondary_ctls_high |=
4110 					SECONDARY_EXEC_RDRAND_EXITING;
4111 			else
4112 				vmx->nested.msrs.secondary_ctls_high &=
4113 					~SECONDARY_EXEC_RDRAND_EXITING;
4114 		}
4115 	}
4116 
4117 	if (vmx_rdseed_supported()) {
4118 		bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4119 		if (rdseed_enabled)
4120 			exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4121 
4122 		if (nested) {
4123 			if (rdseed_enabled)
4124 				vmx->nested.msrs.secondary_ctls_high |=
4125 					SECONDARY_EXEC_RDSEED_EXITING;
4126 			else
4127 				vmx->nested.msrs.secondary_ctls_high &=
4128 					~SECONDARY_EXEC_RDSEED_EXITING;
4129 		}
4130 	}
4131 
4132 	if (vmx_waitpkg_supported()) {
4133 		bool waitpkg_enabled =
4134 			guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4135 
4136 		if (!waitpkg_enabled)
4137 			exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4138 
4139 		if (nested) {
4140 			if (waitpkg_enabled)
4141 				vmx->nested.msrs.secondary_ctls_high |=
4142 					SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4143 			else
4144 				vmx->nested.msrs.secondary_ctls_high &=
4145 					~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4146 		}
4147 	}
4148 
4149 	vmx->secondary_exec_control = exec_control;
4150 }
4151 
ept_set_mmio_spte_mask(void)4152 static void ept_set_mmio_spte_mask(void)
4153 {
4154 	/*
4155 	 * EPT Misconfigurations can be generated if the value of bits 2:0
4156 	 * of an EPT paging-structure entry is 110b (write/execute).
4157 	 */
4158 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4159 				   VMX_EPT_MISCONFIG_WX_VALUE, 0);
4160 }
4161 
4162 #define VMX_XSS_EXIT_BITMAP 0
4163 
4164 /*
4165  * Sets up the vmcs for emulated real mode.
4166  */
vmx_vcpu_setup(struct vcpu_vmx * vmx)4167 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4168 {
4169 	int i;
4170 
4171 	if (nested)
4172 		nested_vmx_vcpu_setup();
4173 
4174 	if (cpu_has_vmx_msr_bitmap())
4175 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4176 
4177 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4178 
4179 	/* Control */
4180 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4181 	vmx->hv_deadline_tsc = -1;
4182 
4183 	exec_controls_set(vmx, vmx_exec_control(vmx));
4184 
4185 	if (cpu_has_secondary_exec_ctrls()) {
4186 		vmx_compute_secondary_exec_control(vmx);
4187 		secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4188 	}
4189 
4190 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4191 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4192 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4193 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4194 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4195 
4196 		vmcs_write16(GUEST_INTR_STATUS, 0);
4197 
4198 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4199 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4200 	}
4201 
4202 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4203 		vmcs_write32(PLE_GAP, ple_gap);
4204 		vmx->ple_window = ple_window;
4205 		vmx->ple_window_dirty = true;
4206 	}
4207 
4208 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4209 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4210 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4211 
4212 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4213 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4214 	vmx_set_constant_host_state(vmx);
4215 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4216 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4217 
4218 	if (cpu_has_vmx_vmfunc())
4219 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4220 
4221 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4222 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4223 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4224 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4225 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4226 
4227 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4228 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4229 
4230 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4231 		u32 index = vmx_msr_index[i];
4232 		u32 data_low, data_high;
4233 		int j = vmx->nmsrs;
4234 
4235 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
4236 			continue;
4237 		if (wrmsr_safe(index, data_low, data_high) < 0)
4238 			continue;
4239 		vmx->guest_msrs[j].index = i;
4240 		vmx->guest_msrs[j].data = 0;
4241 		vmx->guest_msrs[j].mask = -1ull;
4242 		++vmx->nmsrs;
4243 	}
4244 
4245 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4246 
4247 	/* 22.2.1, 20.8.1 */
4248 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4249 
4250 	vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4251 	vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4252 
4253 	set_cr4_guest_host_mask(vmx);
4254 
4255 	if (vmx_xsaves_supported())
4256 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4257 
4258 	if (enable_pml) {
4259 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4260 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4261 	}
4262 
4263 	if (cpu_has_vmx_encls_vmexit())
4264 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4265 
4266 	if (pt_mode == PT_MODE_HOST_GUEST) {
4267 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4268 		/* Bit[6~0] are forced to 1, writes are ignored. */
4269 		vmx->pt_desc.guest.output_mask = 0x7F;
4270 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4271 	}
4272 }
4273 
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4274 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4275 {
4276 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4277 	struct msr_data apic_base_msr;
4278 	u64 cr0;
4279 
4280 	vmx->rmode.vm86_active = 0;
4281 	vmx->spec_ctrl = 0;
4282 
4283 	vmx->msr_ia32_umwait_control = 0;
4284 
4285 	vcpu->arch.microcode_version = 0x100000000ULL;
4286 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4287 	vmx->hv_deadline_tsc = -1;
4288 	kvm_set_cr8(vcpu, 0);
4289 
4290 	if (!init_event) {
4291 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4292 				     MSR_IA32_APICBASE_ENABLE;
4293 		if (kvm_vcpu_is_reset_bsp(vcpu))
4294 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4295 		apic_base_msr.host_initiated = true;
4296 		kvm_set_apic_base(vcpu, &apic_base_msr);
4297 	}
4298 
4299 	vmx_segment_cache_clear(vmx);
4300 
4301 	seg_setup(VCPU_SREG_CS);
4302 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4303 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4304 
4305 	seg_setup(VCPU_SREG_DS);
4306 	seg_setup(VCPU_SREG_ES);
4307 	seg_setup(VCPU_SREG_FS);
4308 	seg_setup(VCPU_SREG_GS);
4309 	seg_setup(VCPU_SREG_SS);
4310 
4311 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4312 	vmcs_writel(GUEST_TR_BASE, 0);
4313 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4314 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4315 
4316 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4317 	vmcs_writel(GUEST_LDTR_BASE, 0);
4318 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4319 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4320 
4321 	if (!init_event) {
4322 		vmcs_write32(GUEST_SYSENTER_CS, 0);
4323 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
4324 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
4325 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4326 	}
4327 
4328 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4329 	kvm_rip_write(vcpu, 0xfff0);
4330 
4331 	vmcs_writel(GUEST_GDTR_BASE, 0);
4332 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4333 
4334 	vmcs_writel(GUEST_IDTR_BASE, 0);
4335 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4336 
4337 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4338 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4339 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4340 	if (kvm_mpx_supported())
4341 		vmcs_write64(GUEST_BNDCFGS, 0);
4342 
4343 	setup_msrs(vmx);
4344 
4345 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4346 
4347 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
4348 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4349 		if (cpu_need_tpr_shadow(vcpu))
4350 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4351 				     __pa(vcpu->arch.apic->regs));
4352 		vmcs_write32(TPR_THRESHOLD, 0);
4353 	}
4354 
4355 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4356 
4357 	if (vmx->vpid != 0)
4358 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4359 
4360 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4361 	vmx->vcpu.arch.cr0 = cr0;
4362 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
4363 	vmx_set_cr4(vcpu, 0);
4364 	vmx_set_efer(vcpu, 0);
4365 
4366 	update_exception_bitmap(vcpu);
4367 
4368 	vpid_sync_context(vmx->vpid);
4369 	if (init_event)
4370 		vmx_clear_hlt(vcpu);
4371 }
4372 
enable_irq_window(struct kvm_vcpu * vcpu)4373 static void enable_irq_window(struct kvm_vcpu *vcpu)
4374 {
4375 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4376 }
4377 
enable_nmi_window(struct kvm_vcpu * vcpu)4378 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4379 {
4380 	if (!enable_vnmi ||
4381 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4382 		enable_irq_window(vcpu);
4383 		return;
4384 	}
4385 
4386 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
4387 }
4388 
vmx_inject_irq(struct kvm_vcpu * vcpu)4389 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4390 {
4391 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4392 	uint32_t intr;
4393 	int irq = vcpu->arch.interrupt.nr;
4394 
4395 	trace_kvm_inj_virq(irq);
4396 
4397 	++vcpu->stat.irq_injections;
4398 	if (vmx->rmode.vm86_active) {
4399 		int inc_eip = 0;
4400 		if (vcpu->arch.interrupt.soft)
4401 			inc_eip = vcpu->arch.event_exit_inst_len;
4402 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4403 		return;
4404 	}
4405 	intr = irq | INTR_INFO_VALID_MASK;
4406 	if (vcpu->arch.interrupt.soft) {
4407 		intr |= INTR_TYPE_SOFT_INTR;
4408 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4409 			     vmx->vcpu.arch.event_exit_inst_len);
4410 	} else
4411 		intr |= INTR_TYPE_EXT_INTR;
4412 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4413 
4414 	vmx_clear_hlt(vcpu);
4415 }
4416 
vmx_inject_nmi(struct kvm_vcpu * vcpu)4417 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4418 {
4419 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4420 
4421 	if (!enable_vnmi) {
4422 		/*
4423 		 * Tracking the NMI-blocked state in software is built upon
4424 		 * finding the next open IRQ window. This, in turn, depends on
4425 		 * well-behaving guests: They have to keep IRQs disabled at
4426 		 * least as long as the NMI handler runs. Otherwise we may
4427 		 * cause NMI nesting, maybe breaking the guest. But as this is
4428 		 * highly unlikely, we can live with the residual risk.
4429 		 */
4430 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4431 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4432 	}
4433 
4434 	++vcpu->stat.nmi_injections;
4435 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4436 
4437 	if (vmx->rmode.vm86_active) {
4438 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4439 		return;
4440 	}
4441 
4442 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4443 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4444 
4445 	vmx_clear_hlt(vcpu);
4446 }
4447 
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4448 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4449 {
4450 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4451 	bool masked;
4452 
4453 	if (!enable_vnmi)
4454 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4455 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4456 		return false;
4457 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4458 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4459 	return masked;
4460 }
4461 
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4462 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4463 {
4464 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4465 
4466 	if (!enable_vnmi) {
4467 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4468 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4469 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4470 		}
4471 	} else {
4472 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4473 		if (masked)
4474 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4475 				      GUEST_INTR_STATE_NMI);
4476 		else
4477 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4478 					GUEST_INTR_STATE_NMI);
4479 	}
4480 }
4481 
vmx_nmi_allowed(struct kvm_vcpu * vcpu)4482 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4483 {
4484 	if (to_vmx(vcpu)->nested.nested_run_pending)
4485 		return 0;
4486 
4487 	if (!enable_vnmi &&
4488 	    to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4489 		return 0;
4490 
4491 	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4492 		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4493 		   | GUEST_INTR_STATE_NMI));
4494 }
4495 
vmx_interrupt_allowed(struct kvm_vcpu * vcpu)4496 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4497 {
4498 	return (!to_vmx(vcpu)->nested.nested_run_pending &&
4499 		vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4500 		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4501 			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4502 }
4503 
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4504 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4505 {
4506 	int ret;
4507 
4508 	if (enable_unrestricted_guest)
4509 		return 0;
4510 
4511 	ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4512 				    PAGE_SIZE * 3);
4513 	if (ret)
4514 		return ret;
4515 	to_kvm_vmx(kvm)->tss_addr = addr;
4516 	return init_rmode_tss(kvm);
4517 }
4518 
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4519 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4520 {
4521 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4522 	return 0;
4523 }
4524 
rmode_exception(struct kvm_vcpu * vcpu,int vec)4525 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4526 {
4527 	switch (vec) {
4528 	case BP_VECTOR:
4529 		/*
4530 		 * Update instruction length as we may reinject the exception
4531 		 * from user space while in guest debugging mode.
4532 		 */
4533 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4534 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4535 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4536 			return false;
4537 		/* fall through */
4538 	case DB_VECTOR:
4539 		if (vcpu->guest_debug &
4540 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4541 			return false;
4542 		/* fall through */
4543 	case DE_VECTOR:
4544 	case OF_VECTOR:
4545 	case BR_VECTOR:
4546 	case UD_VECTOR:
4547 	case DF_VECTOR:
4548 	case SS_VECTOR:
4549 	case GP_VECTOR:
4550 	case MF_VECTOR:
4551 		return true;
4552 	break;
4553 	}
4554 	return false;
4555 }
4556 
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)4557 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4558 				  int vec, u32 err_code)
4559 {
4560 	/*
4561 	 * Instruction with address size override prefix opcode 0x67
4562 	 * Cause the #SS fault with 0 error code in VM86 mode.
4563 	 */
4564 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4565 		if (kvm_emulate_instruction(vcpu, 0)) {
4566 			if (vcpu->arch.halt_request) {
4567 				vcpu->arch.halt_request = 0;
4568 				return kvm_vcpu_halt(vcpu);
4569 			}
4570 			return 1;
4571 		}
4572 		return 0;
4573 	}
4574 
4575 	/*
4576 	 * Forward all other exceptions that are valid in real mode.
4577 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4578 	 *        the required debugging infrastructure rework.
4579 	 */
4580 	kvm_queue_exception(vcpu, vec);
4581 	return 1;
4582 }
4583 
4584 /*
4585  * Trigger machine check on the host. We assume all the MSRs are already set up
4586  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4587  * We pass a fake environment to the machine check handler because we want
4588  * the guest to be always treated like user space, no matter what context
4589  * it used internally.
4590  */
kvm_machine_check(void)4591 static void kvm_machine_check(void)
4592 {
4593 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4594 	struct pt_regs regs = {
4595 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
4596 		.flags = X86_EFLAGS_IF,
4597 	};
4598 
4599 	do_machine_check(&regs, 0);
4600 #endif
4601 }
4602 
handle_machine_check(struct kvm_vcpu * vcpu)4603 static int handle_machine_check(struct kvm_vcpu *vcpu)
4604 {
4605 	/* handled by vmx_vcpu_run() */
4606 	return 1;
4607 }
4608 
handle_exception_nmi(struct kvm_vcpu * vcpu)4609 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4610 {
4611 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4612 	struct kvm_run *kvm_run = vcpu->run;
4613 	u32 intr_info, ex_no, error_code;
4614 	unsigned long cr2, rip, dr6;
4615 	u32 vect_info;
4616 
4617 	vect_info = vmx->idt_vectoring_info;
4618 	intr_info = vmx->exit_intr_info;
4619 
4620 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4621 		return 1; /* handled by handle_exception_nmi_irqoff() */
4622 
4623 	if (is_invalid_opcode(intr_info))
4624 		return handle_ud(vcpu);
4625 
4626 	error_code = 0;
4627 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4628 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4629 
4630 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4631 		WARN_ON_ONCE(!enable_vmware_backdoor);
4632 
4633 		/*
4634 		 * VMware backdoor emulation on #GP interception only handles
4635 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4636 		 * error code on #GP.
4637 		 */
4638 		if (error_code) {
4639 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4640 			return 1;
4641 		}
4642 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4643 	}
4644 
4645 	/*
4646 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4647 	 * MMIO, it is better to report an internal error.
4648 	 * See the comments in vmx_handle_exit.
4649 	 */
4650 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4651 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4652 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4653 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4654 		vcpu->run->internal.ndata = 3;
4655 		vcpu->run->internal.data[0] = vect_info;
4656 		vcpu->run->internal.data[1] = intr_info;
4657 		vcpu->run->internal.data[2] = error_code;
4658 		return 0;
4659 	}
4660 
4661 	if (is_page_fault(intr_info)) {
4662 		cr2 = vmcs_readl(EXIT_QUALIFICATION);
4663 		/* EPT won't cause page fault directly */
4664 		WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4665 		return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4666 	}
4667 
4668 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4669 
4670 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4671 		return handle_rmode_exception(vcpu, ex_no, error_code);
4672 
4673 	switch (ex_no) {
4674 	case AC_VECTOR:
4675 		kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4676 		return 1;
4677 	case DB_VECTOR:
4678 		dr6 = vmcs_readl(EXIT_QUALIFICATION);
4679 		if (!(vcpu->guest_debug &
4680 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4681 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4682 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
4683 			if (is_icebp(intr_info))
4684 				WARN_ON(!skip_emulated_instruction(vcpu));
4685 
4686 			kvm_queue_exception(vcpu, DB_VECTOR);
4687 			return 1;
4688 		}
4689 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4690 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4691 		/* fall through */
4692 	case BP_VECTOR:
4693 		/*
4694 		 * Update instruction length as we may reinject #BP from
4695 		 * user space while in guest debugging mode. Reading it for
4696 		 * #DB as well causes no harm, it is not used in that case.
4697 		 */
4698 		vmx->vcpu.arch.event_exit_inst_len =
4699 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4700 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4701 		rip = kvm_rip_read(vcpu);
4702 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4703 		kvm_run->debug.arch.exception = ex_no;
4704 		break;
4705 	default:
4706 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4707 		kvm_run->ex.exception = ex_no;
4708 		kvm_run->ex.error_code = error_code;
4709 		break;
4710 	}
4711 	return 0;
4712 }
4713 
handle_external_interrupt(struct kvm_vcpu * vcpu)4714 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4715 {
4716 	++vcpu->stat.irq_exits;
4717 	return 1;
4718 }
4719 
handle_triple_fault(struct kvm_vcpu * vcpu)4720 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4721 {
4722 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4723 	vcpu->mmio_needed = 0;
4724 	return 0;
4725 }
4726 
handle_io(struct kvm_vcpu * vcpu)4727 static int handle_io(struct kvm_vcpu *vcpu)
4728 {
4729 	unsigned long exit_qualification;
4730 	int size, in, string;
4731 	unsigned port;
4732 
4733 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4734 	string = (exit_qualification & 16) != 0;
4735 
4736 	++vcpu->stat.io_exits;
4737 
4738 	if (string)
4739 		return kvm_emulate_instruction(vcpu, 0);
4740 
4741 	port = exit_qualification >> 16;
4742 	size = (exit_qualification & 7) + 1;
4743 	in = (exit_qualification & 8) != 0;
4744 
4745 	return kvm_fast_pio(vcpu, size, port, in);
4746 }
4747 
4748 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4749 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4750 {
4751 	/*
4752 	 * Patch in the VMCALL instruction:
4753 	 */
4754 	hypercall[0] = 0x0f;
4755 	hypercall[1] = 0x01;
4756 	hypercall[2] = 0xc1;
4757 }
4758 
4759 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)4760 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4761 {
4762 	if (is_guest_mode(vcpu)) {
4763 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4764 		unsigned long orig_val = val;
4765 
4766 		/*
4767 		 * We get here when L2 changed cr0 in a way that did not change
4768 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4769 		 * but did change L0 shadowed bits. So we first calculate the
4770 		 * effective cr0 value that L1 would like to write into the
4771 		 * hardware. It consists of the L2-owned bits from the new
4772 		 * value combined with the L1-owned bits from L1's guest_cr0.
4773 		 */
4774 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4775 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4776 
4777 		if (!nested_guest_cr0_valid(vcpu, val))
4778 			return 1;
4779 
4780 		if (kvm_set_cr0(vcpu, val))
4781 			return 1;
4782 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4783 		return 0;
4784 	} else {
4785 		if (to_vmx(vcpu)->nested.vmxon &&
4786 		    !nested_host_cr0_valid(vcpu, val))
4787 			return 1;
4788 
4789 		return kvm_set_cr0(vcpu, val);
4790 	}
4791 }
4792 
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)4793 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4794 {
4795 	if (is_guest_mode(vcpu)) {
4796 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4797 		unsigned long orig_val = val;
4798 
4799 		/* analogously to handle_set_cr0 */
4800 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4801 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4802 		if (kvm_set_cr4(vcpu, val))
4803 			return 1;
4804 		vmcs_writel(CR4_READ_SHADOW, orig_val);
4805 		return 0;
4806 	} else
4807 		return kvm_set_cr4(vcpu, val);
4808 }
4809 
handle_desc(struct kvm_vcpu * vcpu)4810 static int handle_desc(struct kvm_vcpu *vcpu)
4811 {
4812 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4813 	return kvm_emulate_instruction(vcpu, 0);
4814 }
4815 
handle_cr(struct kvm_vcpu * vcpu)4816 static int handle_cr(struct kvm_vcpu *vcpu)
4817 {
4818 	unsigned long exit_qualification, val;
4819 	int cr;
4820 	int reg;
4821 	int err;
4822 	int ret;
4823 
4824 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4825 	cr = exit_qualification & 15;
4826 	reg = (exit_qualification >> 8) & 15;
4827 	switch ((exit_qualification >> 4) & 3) {
4828 	case 0: /* mov to cr */
4829 		val = kvm_register_readl(vcpu, reg);
4830 		trace_kvm_cr_write(cr, val);
4831 		switch (cr) {
4832 		case 0:
4833 			err = handle_set_cr0(vcpu, val);
4834 			return kvm_complete_insn_gp(vcpu, err);
4835 		case 3:
4836 			WARN_ON_ONCE(enable_unrestricted_guest);
4837 			err = kvm_set_cr3(vcpu, val);
4838 			return kvm_complete_insn_gp(vcpu, err);
4839 		case 4:
4840 			err = handle_set_cr4(vcpu, val);
4841 			return kvm_complete_insn_gp(vcpu, err);
4842 		case 8: {
4843 				u8 cr8_prev = kvm_get_cr8(vcpu);
4844 				u8 cr8 = (u8)val;
4845 				err = kvm_set_cr8(vcpu, cr8);
4846 				ret = kvm_complete_insn_gp(vcpu, err);
4847 				if (lapic_in_kernel(vcpu))
4848 					return ret;
4849 				if (cr8_prev <= cr8)
4850 					return ret;
4851 				/*
4852 				 * TODO: we might be squashing a
4853 				 * KVM_GUESTDBG_SINGLESTEP-triggered
4854 				 * KVM_EXIT_DEBUG here.
4855 				 */
4856 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4857 				return 0;
4858 			}
4859 		}
4860 		break;
4861 	case 2: /* clts */
4862 		WARN_ONCE(1, "Guest should always own CR0.TS");
4863 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4864 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4865 		return kvm_skip_emulated_instruction(vcpu);
4866 	case 1: /*mov from cr*/
4867 		switch (cr) {
4868 		case 3:
4869 			WARN_ON_ONCE(enable_unrestricted_guest);
4870 			val = kvm_read_cr3(vcpu);
4871 			kvm_register_write(vcpu, reg, val);
4872 			trace_kvm_cr_read(cr, val);
4873 			return kvm_skip_emulated_instruction(vcpu);
4874 		case 8:
4875 			val = kvm_get_cr8(vcpu);
4876 			kvm_register_write(vcpu, reg, val);
4877 			trace_kvm_cr_read(cr, val);
4878 			return kvm_skip_emulated_instruction(vcpu);
4879 		}
4880 		break;
4881 	case 3: /* lmsw */
4882 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4883 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4884 		kvm_lmsw(vcpu, val);
4885 
4886 		return kvm_skip_emulated_instruction(vcpu);
4887 	default:
4888 		break;
4889 	}
4890 	vcpu->run->exit_reason = 0;
4891 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4892 	       (int)(exit_qualification >> 4) & 3, cr);
4893 	return 0;
4894 }
4895 
handle_dr(struct kvm_vcpu * vcpu)4896 static int handle_dr(struct kvm_vcpu *vcpu)
4897 {
4898 	unsigned long exit_qualification;
4899 	int dr, dr7, reg;
4900 
4901 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4902 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4903 
4904 	/* First, if DR does not exist, trigger UD */
4905 	if (!kvm_require_dr(vcpu, dr))
4906 		return 1;
4907 
4908 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
4909 	if (!kvm_require_cpl(vcpu, 0))
4910 		return 1;
4911 	dr7 = vmcs_readl(GUEST_DR7);
4912 	if (dr7 & DR7_GD) {
4913 		/*
4914 		 * As the vm-exit takes precedence over the debug trap, we
4915 		 * need to emulate the latter, either for the host or the
4916 		 * guest debugging itself.
4917 		 */
4918 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4919 			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4920 			vcpu->run->debug.arch.dr7 = dr7;
4921 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4922 			vcpu->run->debug.arch.exception = DB_VECTOR;
4923 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4924 			return 0;
4925 		} else {
4926 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4927 			vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4928 			kvm_queue_exception(vcpu, DB_VECTOR);
4929 			return 1;
4930 		}
4931 	}
4932 
4933 	if (vcpu->guest_debug == 0) {
4934 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4935 
4936 		/*
4937 		 * No more DR vmexits; force a reload of the debug registers
4938 		 * and reenter on this instruction.  The next vmexit will
4939 		 * retrieve the full state of the debug registers.
4940 		 */
4941 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4942 		return 1;
4943 	}
4944 
4945 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4946 	if (exit_qualification & TYPE_MOV_FROM_DR) {
4947 		unsigned long val;
4948 
4949 		if (kvm_get_dr(vcpu, dr, &val))
4950 			return 1;
4951 		kvm_register_write(vcpu, reg, val);
4952 	} else
4953 		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4954 			return 1;
4955 
4956 	return kvm_skip_emulated_instruction(vcpu);
4957 }
4958 
vmx_get_dr6(struct kvm_vcpu * vcpu)4959 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4960 {
4961 	return vcpu->arch.dr6;
4962 }
4963 
vmx_set_dr6(struct kvm_vcpu * vcpu,unsigned long val)4964 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4965 {
4966 }
4967 
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)4968 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4969 {
4970 	get_debugreg(vcpu->arch.db[0], 0);
4971 	get_debugreg(vcpu->arch.db[1], 1);
4972 	get_debugreg(vcpu->arch.db[2], 2);
4973 	get_debugreg(vcpu->arch.db[3], 3);
4974 	get_debugreg(vcpu->arch.dr6, 6);
4975 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4976 
4977 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4978 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4979 }
4980 
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)4981 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4982 {
4983 	vmcs_writel(GUEST_DR7, val);
4984 }
4985 
handle_cpuid(struct kvm_vcpu * vcpu)4986 static int handle_cpuid(struct kvm_vcpu *vcpu)
4987 {
4988 	return kvm_emulate_cpuid(vcpu);
4989 }
4990 
handle_rdmsr(struct kvm_vcpu * vcpu)4991 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4992 {
4993 	return kvm_emulate_rdmsr(vcpu);
4994 }
4995 
handle_wrmsr(struct kvm_vcpu * vcpu)4996 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4997 {
4998 	return kvm_emulate_wrmsr(vcpu);
4999 }
5000 
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5001 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5002 {
5003 	kvm_apic_update_ppr(vcpu);
5004 	return 1;
5005 }
5006 
handle_interrupt_window(struct kvm_vcpu * vcpu)5007 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5008 {
5009 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
5010 
5011 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5012 
5013 	++vcpu->stat.irq_window_exits;
5014 	return 1;
5015 }
5016 
handle_halt(struct kvm_vcpu * vcpu)5017 static int handle_halt(struct kvm_vcpu *vcpu)
5018 {
5019 	return kvm_emulate_halt(vcpu);
5020 }
5021 
handle_vmcall(struct kvm_vcpu * vcpu)5022 static int handle_vmcall(struct kvm_vcpu *vcpu)
5023 {
5024 	return kvm_emulate_hypercall(vcpu);
5025 }
5026 
handle_invd(struct kvm_vcpu * vcpu)5027 static int handle_invd(struct kvm_vcpu *vcpu)
5028 {
5029 	return kvm_emulate_instruction(vcpu, 0);
5030 }
5031 
handle_invlpg(struct kvm_vcpu * vcpu)5032 static int handle_invlpg(struct kvm_vcpu *vcpu)
5033 {
5034 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5035 
5036 	kvm_mmu_invlpg(vcpu, exit_qualification);
5037 	return kvm_skip_emulated_instruction(vcpu);
5038 }
5039 
handle_rdpmc(struct kvm_vcpu * vcpu)5040 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5041 {
5042 	int err;
5043 
5044 	err = kvm_rdpmc(vcpu);
5045 	return kvm_complete_insn_gp(vcpu, err);
5046 }
5047 
handle_wbinvd(struct kvm_vcpu * vcpu)5048 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5049 {
5050 	return kvm_emulate_wbinvd(vcpu);
5051 }
5052 
handle_xsetbv(struct kvm_vcpu * vcpu)5053 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5054 {
5055 	u64 new_bv = kvm_read_edx_eax(vcpu);
5056 	u32 index = kvm_rcx_read(vcpu);
5057 
5058 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5059 		return kvm_skip_emulated_instruction(vcpu);
5060 	return 1;
5061 }
5062 
handle_apic_access(struct kvm_vcpu * vcpu)5063 static int handle_apic_access(struct kvm_vcpu *vcpu)
5064 {
5065 	if (likely(fasteoi)) {
5066 		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5067 		int access_type, offset;
5068 
5069 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5070 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5071 		/*
5072 		 * Sane guest uses MOV to write EOI, with written value
5073 		 * not cared. So make a short-circuit here by avoiding
5074 		 * heavy instruction emulation.
5075 		 */
5076 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5077 		    (offset == APIC_EOI)) {
5078 			kvm_lapic_set_eoi(vcpu);
5079 			return kvm_skip_emulated_instruction(vcpu);
5080 		}
5081 	}
5082 	return kvm_emulate_instruction(vcpu, 0);
5083 }
5084 
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5085 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5086 {
5087 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5088 	int vector = exit_qualification & 0xff;
5089 
5090 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5091 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5092 	return 1;
5093 }
5094 
handle_apic_write(struct kvm_vcpu * vcpu)5095 static int handle_apic_write(struct kvm_vcpu *vcpu)
5096 {
5097 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5098 	u32 offset = exit_qualification & 0xfff;
5099 
5100 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5101 	kvm_apic_write_nodecode(vcpu, offset);
5102 	return 1;
5103 }
5104 
handle_task_switch(struct kvm_vcpu * vcpu)5105 static int handle_task_switch(struct kvm_vcpu *vcpu)
5106 {
5107 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5108 	unsigned long exit_qualification;
5109 	bool has_error_code = false;
5110 	u32 error_code = 0;
5111 	u16 tss_selector;
5112 	int reason, type, idt_v, idt_index;
5113 
5114 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5115 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5116 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5117 
5118 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5119 
5120 	reason = (u32)exit_qualification >> 30;
5121 	if (reason == TASK_SWITCH_GATE && idt_v) {
5122 		switch (type) {
5123 		case INTR_TYPE_NMI_INTR:
5124 			vcpu->arch.nmi_injected = false;
5125 			vmx_set_nmi_mask(vcpu, true);
5126 			break;
5127 		case INTR_TYPE_EXT_INTR:
5128 		case INTR_TYPE_SOFT_INTR:
5129 			kvm_clear_interrupt_queue(vcpu);
5130 			break;
5131 		case INTR_TYPE_HARD_EXCEPTION:
5132 			if (vmx->idt_vectoring_info &
5133 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5134 				has_error_code = true;
5135 				error_code =
5136 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5137 			}
5138 			/* fall through */
5139 		case INTR_TYPE_SOFT_EXCEPTION:
5140 			kvm_clear_exception_queue(vcpu);
5141 			break;
5142 		default:
5143 			break;
5144 		}
5145 	}
5146 	tss_selector = exit_qualification;
5147 
5148 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5149 		       type != INTR_TYPE_EXT_INTR &&
5150 		       type != INTR_TYPE_NMI_INTR))
5151 		WARN_ON(!skip_emulated_instruction(vcpu));
5152 
5153 	/*
5154 	 * TODO: What about debug traps on tss switch?
5155 	 *       Are we supposed to inject them and update dr6?
5156 	 */
5157 	return kvm_task_switch(vcpu, tss_selector,
5158 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5159 			       reason, has_error_code, error_code);
5160 }
5161 
handle_ept_violation(struct kvm_vcpu * vcpu)5162 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5163 {
5164 	unsigned long exit_qualification;
5165 	gpa_t gpa;
5166 	u64 error_code;
5167 
5168 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5169 
5170 	/*
5171 	 * EPT violation happened while executing iret from NMI,
5172 	 * "blocked by NMI" bit has to be set before next VM entry.
5173 	 * There are errata that may cause this bit to not be set:
5174 	 * AAK134, BY25.
5175 	 */
5176 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5177 			enable_vnmi &&
5178 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5179 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5180 
5181 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5182 	trace_kvm_page_fault(gpa, exit_qualification);
5183 
5184 	/* Is it a read fault? */
5185 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5186 		     ? PFERR_USER_MASK : 0;
5187 	/* Is it a write fault? */
5188 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5189 		      ? PFERR_WRITE_MASK : 0;
5190 	/* Is it a fetch fault? */
5191 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5192 		      ? PFERR_FETCH_MASK : 0;
5193 	/* ept page table entry is present? */
5194 	error_code |= (exit_qualification &
5195 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5196 			EPT_VIOLATION_EXECUTABLE))
5197 		      ? PFERR_PRESENT_MASK : 0;
5198 
5199 	error_code |= (exit_qualification & 0x100) != 0 ?
5200 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5201 
5202 	vcpu->arch.exit_qualification = exit_qualification;
5203 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5204 }
5205 
handle_ept_misconfig(struct kvm_vcpu * vcpu)5206 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5207 {
5208 	gpa_t gpa;
5209 
5210 	/*
5211 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5212 	 * nGPA here instead of the required GPA.
5213 	 */
5214 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5215 	if (!is_guest_mode(vcpu) &&
5216 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5217 		trace_kvm_fast_mmio(gpa);
5218 		return kvm_skip_emulated_instruction(vcpu);
5219 	}
5220 
5221 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5222 }
5223 
handle_nmi_window(struct kvm_vcpu * vcpu)5224 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5225 {
5226 	WARN_ON_ONCE(!enable_vnmi);
5227 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
5228 	++vcpu->stat.nmi_window_exits;
5229 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5230 
5231 	return 1;
5232 }
5233 
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5234 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5235 {
5236 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5237 	bool intr_window_requested;
5238 	unsigned count = 130;
5239 
5240 	/*
5241 	 * We should never reach the point where we are emulating L2
5242 	 * due to invalid guest state as that means we incorrectly
5243 	 * allowed a nested VMEntry with an invalid vmcs12.
5244 	 */
5245 	WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5246 
5247 	intr_window_requested = exec_controls_get(vmx) &
5248 				CPU_BASED_VIRTUAL_INTR_PENDING;
5249 
5250 	while (vmx->emulation_required && count-- != 0) {
5251 		if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5252 			return handle_interrupt_window(&vmx->vcpu);
5253 
5254 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5255 			return 1;
5256 
5257 		if (!kvm_emulate_instruction(vcpu, 0))
5258 			return 0;
5259 
5260 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5261 		    vcpu->arch.exception.pending) {
5262 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5263 			vcpu->run->internal.suberror =
5264 						KVM_INTERNAL_ERROR_EMULATION;
5265 			vcpu->run->internal.ndata = 0;
5266 			return 0;
5267 		}
5268 
5269 		if (vcpu->arch.halt_request) {
5270 			vcpu->arch.halt_request = 0;
5271 			return kvm_vcpu_halt(vcpu);
5272 		}
5273 
5274 		/*
5275 		 * Note, return 1 and not 0, vcpu_run() is responsible for
5276 		 * morphing the pending signal into the proper return code.
5277 		 */
5278 		if (signal_pending(current))
5279 			return 1;
5280 
5281 		if (need_resched())
5282 			schedule();
5283 	}
5284 
5285 	return 1;
5286 }
5287 
grow_ple_window(struct kvm_vcpu * vcpu)5288 static void grow_ple_window(struct kvm_vcpu *vcpu)
5289 {
5290 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5291 	unsigned int old = vmx->ple_window;
5292 
5293 	vmx->ple_window = __grow_ple_window(old, ple_window,
5294 					    ple_window_grow,
5295 					    ple_window_max);
5296 
5297 	if (vmx->ple_window != old) {
5298 		vmx->ple_window_dirty = true;
5299 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5300 					    vmx->ple_window, old);
5301 	}
5302 }
5303 
shrink_ple_window(struct kvm_vcpu * vcpu)5304 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5305 {
5306 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5307 	unsigned int old = vmx->ple_window;
5308 
5309 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5310 					      ple_window_shrink,
5311 					      ple_window);
5312 
5313 	if (vmx->ple_window != old) {
5314 		vmx->ple_window_dirty = true;
5315 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5316 					    vmx->ple_window, old);
5317 	}
5318 }
5319 
5320 /*
5321  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5322  */
wakeup_handler(void)5323 static void wakeup_handler(void)
5324 {
5325 	struct kvm_vcpu *vcpu;
5326 	int cpu = smp_processor_id();
5327 
5328 	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5329 	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5330 			blocked_vcpu_list) {
5331 		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5332 
5333 		if (pi_test_on(pi_desc) == 1)
5334 			kvm_vcpu_kick(vcpu);
5335 	}
5336 	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5337 }
5338 
vmx_enable_tdp(void)5339 static void vmx_enable_tdp(void)
5340 {
5341 	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5342 		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5343 		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5344 		0ull, VMX_EPT_EXECUTABLE_MASK,
5345 		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5346 		VMX_EPT_RWX_MASK, 0ull);
5347 
5348 	ept_set_mmio_spte_mask();
5349 	kvm_enable_tdp();
5350 }
5351 
5352 /*
5353  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5354  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5355  */
handle_pause(struct kvm_vcpu * vcpu)5356 static int handle_pause(struct kvm_vcpu *vcpu)
5357 {
5358 	if (!kvm_pause_in_guest(vcpu->kvm))
5359 		grow_ple_window(vcpu);
5360 
5361 	/*
5362 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5363 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5364 	 * never set PAUSE_EXITING and just set PLE if supported,
5365 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5366 	 */
5367 	kvm_vcpu_on_spin(vcpu, true);
5368 	return kvm_skip_emulated_instruction(vcpu);
5369 }
5370 
handle_nop(struct kvm_vcpu * vcpu)5371 static int handle_nop(struct kvm_vcpu *vcpu)
5372 {
5373 	return kvm_skip_emulated_instruction(vcpu);
5374 }
5375 
handle_mwait(struct kvm_vcpu * vcpu)5376 static int handle_mwait(struct kvm_vcpu *vcpu)
5377 {
5378 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5379 	return handle_nop(vcpu);
5380 }
5381 
handle_invalid_op(struct kvm_vcpu * vcpu)5382 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5383 {
5384 	kvm_queue_exception(vcpu, UD_VECTOR);
5385 	return 1;
5386 }
5387 
handle_monitor_trap(struct kvm_vcpu * vcpu)5388 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5389 {
5390 	return 1;
5391 }
5392 
handle_monitor(struct kvm_vcpu * vcpu)5393 static int handle_monitor(struct kvm_vcpu *vcpu)
5394 {
5395 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5396 	return handle_nop(vcpu);
5397 }
5398 
handle_invpcid(struct kvm_vcpu * vcpu)5399 static int handle_invpcid(struct kvm_vcpu *vcpu)
5400 {
5401 	u32 vmx_instruction_info;
5402 	unsigned long type;
5403 	bool pcid_enabled;
5404 	gva_t gva;
5405 	struct x86_exception e;
5406 	unsigned i;
5407 	unsigned long roots_to_free = 0;
5408 	struct {
5409 		u64 pcid;
5410 		u64 gla;
5411 	} operand;
5412 
5413 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5414 		kvm_queue_exception(vcpu, UD_VECTOR);
5415 		return 1;
5416 	}
5417 
5418 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5419 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5420 
5421 	if (type > 3) {
5422 		kvm_inject_gp(vcpu, 0);
5423 		return 1;
5424 	}
5425 
5426 	/* According to the Intel instruction reference, the memory operand
5427 	 * is read even if it isn't needed (e.g., for type==all)
5428 	 */
5429 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5430 				vmx_instruction_info, false,
5431 				sizeof(operand), &gva))
5432 		return 1;
5433 
5434 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5435 		kvm_inject_page_fault(vcpu, &e);
5436 		return 1;
5437 	}
5438 
5439 	if (operand.pcid >> 12 != 0) {
5440 		kvm_inject_gp(vcpu, 0);
5441 		return 1;
5442 	}
5443 
5444 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5445 
5446 	switch (type) {
5447 	case INVPCID_TYPE_INDIV_ADDR:
5448 		if ((!pcid_enabled && (operand.pcid != 0)) ||
5449 		    is_noncanonical_address(operand.gla, vcpu)) {
5450 			kvm_inject_gp(vcpu, 0);
5451 			return 1;
5452 		}
5453 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5454 		return kvm_skip_emulated_instruction(vcpu);
5455 
5456 	case INVPCID_TYPE_SINGLE_CTXT:
5457 		if (!pcid_enabled && (operand.pcid != 0)) {
5458 			kvm_inject_gp(vcpu, 0);
5459 			return 1;
5460 		}
5461 
5462 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5463 			kvm_mmu_sync_roots(vcpu);
5464 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5465 		}
5466 
5467 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5468 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5469 			    == operand.pcid)
5470 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5471 
5472 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5473 		/*
5474 		 * If neither the current cr3 nor any of the prev_roots use the
5475 		 * given PCID, then nothing needs to be done here because a
5476 		 * resync will happen anyway before switching to any other CR3.
5477 		 */
5478 
5479 		return kvm_skip_emulated_instruction(vcpu);
5480 
5481 	case INVPCID_TYPE_ALL_NON_GLOBAL:
5482 		/*
5483 		 * Currently, KVM doesn't mark global entries in the shadow
5484 		 * page tables, so a non-global flush just degenerates to a
5485 		 * global flush. If needed, we could optimize this later by
5486 		 * keeping track of global entries in shadow page tables.
5487 		 */
5488 
5489 		/* fall-through */
5490 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
5491 		kvm_mmu_unload(vcpu);
5492 		return kvm_skip_emulated_instruction(vcpu);
5493 
5494 	default:
5495 		BUG(); /* We have already checked above that type <= 3 */
5496 	}
5497 }
5498 
handle_pml_full(struct kvm_vcpu * vcpu)5499 static int handle_pml_full(struct kvm_vcpu *vcpu)
5500 {
5501 	unsigned long exit_qualification;
5502 
5503 	trace_kvm_pml_full(vcpu->vcpu_id);
5504 
5505 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5506 
5507 	/*
5508 	 * PML buffer FULL happened while executing iret from NMI,
5509 	 * "blocked by NMI" bit has to be set before next VM entry.
5510 	 */
5511 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5512 			enable_vnmi &&
5513 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5514 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5515 				GUEST_INTR_STATE_NMI);
5516 
5517 	/*
5518 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5519 	 * here.., and there's no userspace involvement needed for PML.
5520 	 */
5521 	return 1;
5522 }
5523 
handle_preemption_timer(struct kvm_vcpu * vcpu)5524 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5525 {
5526 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5527 
5528 	if (!vmx->req_immediate_exit &&
5529 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5530 		kvm_lapic_expired_hv_timer(vcpu);
5531 
5532 	return 1;
5533 }
5534 
5535 /*
5536  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5537  * are overwritten by nested_vmx_setup() when nested=1.
5538  */
handle_vmx_instruction(struct kvm_vcpu * vcpu)5539 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5540 {
5541 	kvm_queue_exception(vcpu, UD_VECTOR);
5542 	return 1;
5543 }
5544 
handle_encls(struct kvm_vcpu * vcpu)5545 static int handle_encls(struct kvm_vcpu *vcpu)
5546 {
5547 	/*
5548 	 * SGX virtualization is not yet supported.  There is no software
5549 	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5550 	 * to prevent the guest from executing ENCLS.
5551 	 */
5552 	kvm_queue_exception(vcpu, UD_VECTOR);
5553 	return 1;
5554 }
5555 
5556 /*
5557  * The exit handlers return 1 if the exit was handled fully and guest execution
5558  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5559  * to be done to userspace and return 0.
5560  */
5561 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5562 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5563 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5564 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5565 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5566 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5567 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5568 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5569 	[EXIT_REASON_CPUID]                   = handle_cpuid,
5570 	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
5571 	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5572 	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5573 	[EXIT_REASON_HLT]                     = handle_halt,
5574 	[EXIT_REASON_INVD]		      = handle_invd,
5575 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5576 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
5577 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
5578 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5579 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5580 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5581 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5582 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5583 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5584 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5585 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5586 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5587 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5588 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5589 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5590 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5591 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
5592 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
5593 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5594 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5595 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5596 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5597 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5598 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5599 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5600 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
5601 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5602 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5603 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5604 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5605 	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
5606 	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
5607 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5608 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5609 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5610 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5611 	[EXIT_REASON_ENCLS]		      = handle_encls,
5612 };
5613 
5614 static const int kvm_vmx_max_exit_handlers =
5615 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5616 
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)5617 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5618 {
5619 	*info1 = vmcs_readl(EXIT_QUALIFICATION);
5620 	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5621 }
5622 
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)5623 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5624 {
5625 	if (vmx->pml_pg) {
5626 		__free_page(vmx->pml_pg);
5627 		vmx->pml_pg = NULL;
5628 	}
5629 }
5630 
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)5631 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5632 {
5633 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5634 	u64 *pml_buf;
5635 	u16 pml_idx;
5636 
5637 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5638 
5639 	/* Do nothing if PML buffer is empty */
5640 	if (pml_idx == (PML_ENTITY_NUM - 1))
5641 		return;
5642 
5643 	/* PML index always points to next available PML buffer entity */
5644 	if (pml_idx >= PML_ENTITY_NUM)
5645 		pml_idx = 0;
5646 	else
5647 		pml_idx++;
5648 
5649 	pml_buf = page_address(vmx->pml_pg);
5650 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5651 		u64 gpa;
5652 
5653 		gpa = pml_buf[pml_idx];
5654 		WARN_ON(gpa & (PAGE_SIZE - 1));
5655 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5656 	}
5657 
5658 	/* reset PML index */
5659 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5660 }
5661 
5662 /*
5663  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5664  * Called before reporting dirty_bitmap to userspace.
5665  */
kvm_flush_pml_buffers(struct kvm * kvm)5666 static void kvm_flush_pml_buffers(struct kvm *kvm)
5667 {
5668 	int i;
5669 	struct kvm_vcpu *vcpu;
5670 	/*
5671 	 * We only need to kick vcpu out of guest mode here, as PML buffer
5672 	 * is flushed at beginning of all VMEXITs, and it's obvious that only
5673 	 * vcpus running in guest are possible to have unflushed GPAs in PML
5674 	 * buffer.
5675 	 */
5676 	kvm_for_each_vcpu(i, vcpu, kvm)
5677 		kvm_vcpu_kick(vcpu);
5678 }
5679 
vmx_dump_sel(char * name,uint32_t sel)5680 static void vmx_dump_sel(char *name, uint32_t sel)
5681 {
5682 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5683 	       name, vmcs_read16(sel),
5684 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5685 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5686 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5687 }
5688 
vmx_dump_dtsel(char * name,uint32_t limit)5689 static void vmx_dump_dtsel(char *name, uint32_t limit)
5690 {
5691 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5692 	       name, vmcs_read32(limit),
5693 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5694 }
5695 
dump_vmcs(void)5696 void dump_vmcs(void)
5697 {
5698 	u32 vmentry_ctl, vmexit_ctl;
5699 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5700 	unsigned long cr4;
5701 	u64 efer;
5702 	int i, n;
5703 
5704 	if (!dump_invalid_vmcs) {
5705 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5706 		return;
5707 	}
5708 
5709 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5710 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5711 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5712 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5713 	cr4 = vmcs_readl(GUEST_CR4);
5714 	efer = vmcs_read64(GUEST_IA32_EFER);
5715 	secondary_exec_control = 0;
5716 	if (cpu_has_secondary_exec_ctrls())
5717 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5718 
5719 	pr_err("*** Guest State ***\n");
5720 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5721 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5722 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5723 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5724 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5725 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5726 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5727 	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5728 	{
5729 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5730 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5731 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5732 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5733 	}
5734 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5735 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5736 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5737 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5738 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5739 	       vmcs_readl(GUEST_SYSENTER_ESP),
5740 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5741 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5742 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5743 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5744 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5745 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5746 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5747 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5748 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5749 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5750 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5751 	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5752 	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5753 		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5754 		       efer, vmcs_read64(GUEST_IA32_PAT));
5755 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5756 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5757 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5758 	if (cpu_has_load_perf_global_ctrl() &&
5759 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5760 		pr_err("PerfGlobCtl = 0x%016llx\n",
5761 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5762 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5763 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5764 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5765 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5766 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5767 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5768 		pr_err("InterruptStatus = %04x\n",
5769 		       vmcs_read16(GUEST_INTR_STATUS));
5770 
5771 	pr_err("*** Host State ***\n");
5772 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5773 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5774 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5775 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5776 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5777 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5778 	       vmcs_read16(HOST_TR_SELECTOR));
5779 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5780 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5781 	       vmcs_readl(HOST_TR_BASE));
5782 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5783 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5784 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5785 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5786 	       vmcs_readl(HOST_CR4));
5787 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5788 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5789 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5790 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5791 	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5792 		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5793 		       vmcs_read64(HOST_IA32_EFER),
5794 		       vmcs_read64(HOST_IA32_PAT));
5795 	if (cpu_has_load_perf_global_ctrl() &&
5796 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5797 		pr_err("PerfGlobCtl = 0x%016llx\n",
5798 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5799 
5800 	pr_err("*** Control State ***\n");
5801 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5802 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5803 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5804 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5805 	       vmcs_read32(EXCEPTION_BITMAP),
5806 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5807 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5808 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5809 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5810 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5811 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5812 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5813 	       vmcs_read32(VM_EXIT_INTR_INFO),
5814 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5815 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5816 	pr_err("        reason=%08x qualification=%016lx\n",
5817 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5818 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5819 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5820 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5821 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5822 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5823 		pr_err("TSC Multiplier = 0x%016llx\n",
5824 		       vmcs_read64(TSC_MULTIPLIER));
5825 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5826 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5827 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5828 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5829 		}
5830 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5831 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5832 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5833 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5834 	}
5835 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5836 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5837 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5838 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5839 	n = vmcs_read32(CR3_TARGET_COUNT);
5840 	for (i = 0; i + 1 < n; i += 4)
5841 		pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5842 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5843 		       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5844 	if (i < n)
5845 		pr_err("CR3 target%u=%016lx\n",
5846 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5847 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5848 		pr_err("PLE Gap=%08x Window=%08x\n",
5849 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5850 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5851 		pr_err("Virtual processor ID = 0x%04x\n",
5852 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5853 }
5854 
5855 /*
5856  * The guest has exited.  See if we can fix it or if we need userspace
5857  * assistance.
5858  */
vmx_handle_exit(struct kvm_vcpu * vcpu)5859 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5860 {
5861 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5862 	u32 exit_reason = vmx->exit_reason;
5863 	u32 vectoring_info = vmx->idt_vectoring_info;
5864 
5865 	trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5866 
5867 	/*
5868 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5869 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5870 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5871 	 * mode as if vcpus is in root mode, the PML buffer must has been
5872 	 * flushed already.
5873 	 */
5874 	if (enable_pml)
5875 		vmx_flush_pml_buffer(vcpu);
5876 
5877 	/* If guest state is invalid, start emulating */
5878 	if (vmx->emulation_required)
5879 		return handle_invalid_guest_state(vcpu);
5880 
5881 	if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5882 		return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5883 
5884 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5885 		dump_vmcs();
5886 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5887 		vcpu->run->fail_entry.hardware_entry_failure_reason
5888 			= exit_reason;
5889 		return 0;
5890 	}
5891 
5892 	if (unlikely(vmx->fail)) {
5893 		dump_vmcs();
5894 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5895 		vcpu->run->fail_entry.hardware_entry_failure_reason
5896 			= vmcs_read32(VM_INSTRUCTION_ERROR);
5897 		return 0;
5898 	}
5899 
5900 	/*
5901 	 * Note:
5902 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5903 	 * delivery event since it indicates guest is accessing MMIO.
5904 	 * The vm-exit can be triggered again after return to guest that
5905 	 * will cause infinite loop.
5906 	 */
5907 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5908 			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5909 			exit_reason != EXIT_REASON_EPT_VIOLATION &&
5910 			exit_reason != EXIT_REASON_PML_FULL &&
5911 			exit_reason != EXIT_REASON_TASK_SWITCH)) {
5912 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5913 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5914 		vcpu->run->internal.ndata = 3;
5915 		vcpu->run->internal.data[0] = vectoring_info;
5916 		vcpu->run->internal.data[1] = exit_reason;
5917 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5918 		if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5919 			vcpu->run->internal.ndata++;
5920 			vcpu->run->internal.data[3] =
5921 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5922 		}
5923 		return 0;
5924 	}
5925 
5926 	if (unlikely(!enable_vnmi &&
5927 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
5928 		if (vmx_interrupt_allowed(vcpu)) {
5929 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5930 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5931 			   vcpu->arch.nmi_pending) {
5932 			/*
5933 			 * This CPU don't support us in finding the end of an
5934 			 * NMI-blocked window if the guest runs with IRQs
5935 			 * disabled. So we pull the trigger after 1 s of
5936 			 * futile waiting, but inform the user about this.
5937 			 */
5938 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5939 			       "state on VCPU %d after 1 s timeout\n",
5940 			       __func__, vcpu->vcpu_id);
5941 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5942 		}
5943 	}
5944 
5945 	if (exit_reason < kvm_vmx_max_exit_handlers
5946 	    && kvm_vmx_exit_handlers[exit_reason])
5947 		return kvm_vmx_exit_handlers[exit_reason](vcpu);
5948 	else {
5949 		vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5950 				exit_reason);
5951 		dump_vmcs();
5952 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5953 		vcpu->run->internal.suberror =
5954 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5955 		vcpu->run->internal.ndata = 1;
5956 		vcpu->run->internal.data[0] = exit_reason;
5957 		return 0;
5958 	}
5959 }
5960 
5961 /*
5962  * Software based L1D cache flush which is used when microcode providing
5963  * the cache control MSR is not loaded.
5964  *
5965  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5966  * flush it is required to read in 64 KiB because the replacement algorithm
5967  * is not exactly LRU. This could be sized at runtime via topology
5968  * information but as all relevant affected CPUs have 32KiB L1D cache size
5969  * there is no point in doing so.
5970  */
vmx_l1d_flush(struct kvm_vcpu * vcpu)5971 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5972 {
5973 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
5974 
5975 	/*
5976 	 * This code is only executed when the the flush mode is 'cond' or
5977 	 * 'always'
5978 	 */
5979 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
5980 		bool flush_l1d;
5981 
5982 		/*
5983 		 * Clear the per-vcpu flush bit, it gets set again
5984 		 * either from vcpu_run() or from one of the unsafe
5985 		 * VMEXIT handlers.
5986 		 */
5987 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
5988 		vcpu->arch.l1tf_flush_l1d = false;
5989 
5990 		/*
5991 		 * Clear the per-cpu flush bit, it gets set again from
5992 		 * the interrupt handlers.
5993 		 */
5994 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5995 		kvm_clear_cpu_l1tf_flush_l1d();
5996 
5997 		if (!flush_l1d)
5998 			return;
5999 	}
6000 
6001 	vcpu->stat.l1d_flush++;
6002 
6003 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6004 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6005 		return;
6006 	}
6007 
6008 	asm volatile(
6009 		/* First ensure the pages are in the TLB */
6010 		"xorl	%%eax, %%eax\n"
6011 		".Lpopulate_tlb:\n\t"
6012 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6013 		"addl	$4096, %%eax\n\t"
6014 		"cmpl	%%eax, %[size]\n\t"
6015 		"jne	.Lpopulate_tlb\n\t"
6016 		"xorl	%%eax, %%eax\n\t"
6017 		"cpuid\n\t"
6018 		/* Now fill the cache */
6019 		"xorl	%%eax, %%eax\n"
6020 		".Lfill_cache:\n"
6021 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6022 		"addl	$64, %%eax\n\t"
6023 		"cmpl	%%eax, %[size]\n\t"
6024 		"jne	.Lfill_cache\n\t"
6025 		"lfence\n"
6026 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6027 		    [size] "r" (size)
6028 		: "eax", "ebx", "ecx", "edx");
6029 }
6030 
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6031 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6032 {
6033 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6034 
6035 	if (is_guest_mode(vcpu) &&
6036 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6037 		return;
6038 
6039 	if (irr == -1 || tpr < irr) {
6040 		vmcs_write32(TPR_THRESHOLD, 0);
6041 		return;
6042 	}
6043 
6044 	vmcs_write32(TPR_THRESHOLD, irr);
6045 }
6046 
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6047 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6048 {
6049 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6050 	u32 sec_exec_control;
6051 
6052 	if (!lapic_in_kernel(vcpu))
6053 		return;
6054 
6055 	if (!flexpriority_enabled &&
6056 	    !cpu_has_vmx_virtualize_x2apic_mode())
6057 		return;
6058 
6059 	/* Postpone execution until vmcs01 is the current VMCS. */
6060 	if (is_guest_mode(vcpu)) {
6061 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6062 		return;
6063 	}
6064 
6065 	sec_exec_control = secondary_exec_controls_get(vmx);
6066 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6067 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6068 
6069 	switch (kvm_get_apic_mode(vcpu)) {
6070 	case LAPIC_MODE_INVALID:
6071 		WARN_ONCE(true, "Invalid local APIC state");
6072 	case LAPIC_MODE_DISABLED:
6073 		break;
6074 	case LAPIC_MODE_XAPIC:
6075 		if (flexpriority_enabled) {
6076 			sec_exec_control |=
6077 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6078 			vmx_flush_tlb(vcpu, true);
6079 		}
6080 		break;
6081 	case LAPIC_MODE_X2APIC:
6082 		if (cpu_has_vmx_virtualize_x2apic_mode())
6083 			sec_exec_control |=
6084 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6085 		break;
6086 	}
6087 	secondary_exec_controls_set(vmx, sec_exec_control);
6088 
6089 	vmx_update_msr_bitmap(vcpu);
6090 }
6091 
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu,hpa_t hpa)6092 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6093 {
6094 	if (!is_guest_mode(vcpu)) {
6095 		vmcs_write64(APIC_ACCESS_ADDR, hpa);
6096 		vmx_flush_tlb(vcpu, true);
6097 	}
6098 }
6099 
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6100 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6101 {
6102 	u16 status;
6103 	u8 old;
6104 
6105 	if (max_isr == -1)
6106 		max_isr = 0;
6107 
6108 	status = vmcs_read16(GUEST_INTR_STATUS);
6109 	old = status >> 8;
6110 	if (max_isr != old) {
6111 		status &= 0xff;
6112 		status |= max_isr << 8;
6113 		vmcs_write16(GUEST_INTR_STATUS, status);
6114 	}
6115 }
6116 
vmx_set_rvi(int vector)6117 static void vmx_set_rvi(int vector)
6118 {
6119 	u16 status;
6120 	u8 old;
6121 
6122 	if (vector == -1)
6123 		vector = 0;
6124 
6125 	status = vmcs_read16(GUEST_INTR_STATUS);
6126 	old = (u8)status & 0xff;
6127 	if ((u8)vector != old) {
6128 		status &= ~0xff;
6129 		status |= (u8)vector;
6130 		vmcs_write16(GUEST_INTR_STATUS, status);
6131 	}
6132 }
6133 
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6134 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6135 {
6136 	/*
6137 	 * When running L2, updating RVI is only relevant when
6138 	 * vmcs12 virtual-interrupt-delivery enabled.
6139 	 * However, it can be enabled only when L1 also
6140 	 * intercepts external-interrupts and in that case
6141 	 * we should not update vmcs02 RVI but instead intercept
6142 	 * interrupt. Therefore, do nothing when running L2.
6143 	 */
6144 	if (!is_guest_mode(vcpu))
6145 		vmx_set_rvi(max_irr);
6146 }
6147 
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6148 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6149 {
6150 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6151 	int max_irr;
6152 	bool max_irr_updated;
6153 
6154 	WARN_ON(!vcpu->arch.apicv_active);
6155 	if (pi_test_on(&vmx->pi_desc)) {
6156 		pi_clear_on(&vmx->pi_desc);
6157 		/*
6158 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6159 		 * But on x86 this is just a compiler barrier anyway.
6160 		 */
6161 		smp_mb__after_atomic();
6162 		max_irr_updated =
6163 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6164 
6165 		/*
6166 		 * If we are running L2 and L1 has a new pending interrupt
6167 		 * which can be injected, we should re-evaluate
6168 		 * what should be done with this new L1 interrupt.
6169 		 * If L1 intercepts external-interrupts, we should
6170 		 * exit from L2 to L1. Otherwise, interrupt should be
6171 		 * delivered directly to L2.
6172 		 */
6173 		if (is_guest_mode(vcpu) && max_irr_updated) {
6174 			if (nested_exit_on_intr(vcpu))
6175 				kvm_vcpu_exiting_guest_mode(vcpu);
6176 			else
6177 				kvm_make_request(KVM_REQ_EVENT, vcpu);
6178 		}
6179 	} else {
6180 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6181 	}
6182 	vmx_hwapic_irr_update(vcpu, max_irr);
6183 	return max_irr;
6184 }
6185 
vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu * vcpu)6186 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6187 {
6188 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6189 
6190 	return pi_test_on(pi_desc) ||
6191 		(pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6192 }
6193 
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6194 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6195 {
6196 	if (!kvm_vcpu_apicv_active(vcpu))
6197 		return;
6198 
6199 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6200 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6201 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6202 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6203 }
6204 
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)6205 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6206 {
6207 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6208 
6209 	pi_clear_on(&vmx->pi_desc);
6210 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6211 }
6212 
handle_exception_nmi_irqoff(struct vcpu_vmx * vmx)6213 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6214 {
6215 	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6216 
6217 	/* if exit due to PF check for async PF */
6218 	if (is_page_fault(vmx->exit_intr_info))
6219 		vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6220 
6221 	/* Handle machine checks before interrupts are enabled */
6222 	if (is_machine_check(vmx->exit_intr_info))
6223 		kvm_machine_check();
6224 
6225 	/* We need to handle NMIs before interrupts are enabled */
6226 	if (is_nmi(vmx->exit_intr_info)) {
6227 		kvm_before_interrupt(&vmx->vcpu);
6228 		asm("int $2");
6229 		kvm_after_interrupt(&vmx->vcpu);
6230 	}
6231 }
6232 
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6233 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6234 {
6235 	unsigned int vector;
6236 	unsigned long entry;
6237 #ifdef CONFIG_X86_64
6238 	unsigned long tmp;
6239 #endif
6240 	gate_desc *desc;
6241 	u32 intr_info;
6242 
6243 	intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6244 	if (WARN_ONCE(!is_external_intr(intr_info),
6245 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6246 		return;
6247 
6248 	vector = intr_info & INTR_INFO_VECTOR_MASK;
6249 	desc = (gate_desc *)host_idt_base + vector;
6250 	entry = gate_offset(desc);
6251 
6252 	kvm_before_interrupt(vcpu);
6253 
6254 	asm volatile(
6255 #ifdef CONFIG_X86_64
6256 		"mov %%" _ASM_SP ", %[sp]\n\t"
6257 		"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6258 		"push $%c[ss]\n\t"
6259 		"push %[sp]\n\t"
6260 #endif
6261 		"pushf\n\t"
6262 		__ASM_SIZE(push) " $%c[cs]\n\t"
6263 		CALL_NOSPEC
6264 		:
6265 #ifdef CONFIG_X86_64
6266 		[sp]"=&r"(tmp),
6267 #endif
6268 		ASM_CALL_CONSTRAINT
6269 		:
6270 		THUNK_TARGET(entry),
6271 		[ss]"i"(__KERNEL_DS),
6272 		[cs]"i"(__KERNEL_CS)
6273 	);
6274 
6275 	kvm_after_interrupt(vcpu);
6276 }
6277 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6278 
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6279 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6280 {
6281 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6282 
6283 	if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6284 		handle_external_interrupt_irqoff(vcpu);
6285 	else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6286 		handle_exception_nmi_irqoff(vmx);
6287 }
6288 
vmx_has_emulated_msr(int index)6289 static bool vmx_has_emulated_msr(int index)
6290 {
6291 	switch (index) {
6292 	case MSR_IA32_SMBASE:
6293 		/*
6294 		 * We cannot do SMM unless we can run the guest in big
6295 		 * real mode.
6296 		 */
6297 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6298 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6299 		return nested;
6300 	case MSR_AMD64_VIRT_SPEC_CTRL:
6301 		/* This is AMD only.  */
6302 		return false;
6303 	default:
6304 		return true;
6305 	}
6306 }
6307 
vmx_pt_supported(void)6308 static bool vmx_pt_supported(void)
6309 {
6310 	return pt_mode == PT_MODE_HOST_GUEST;
6311 }
6312 
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)6313 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6314 {
6315 	u32 exit_intr_info;
6316 	bool unblock_nmi;
6317 	u8 vector;
6318 	bool idtv_info_valid;
6319 
6320 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6321 
6322 	if (enable_vnmi) {
6323 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6324 			return;
6325 		/*
6326 		 * Can't use vmx->exit_intr_info since we're not sure what
6327 		 * the exit reason is.
6328 		 */
6329 		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6330 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6331 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6332 		/*
6333 		 * SDM 3: 27.7.1.2 (September 2008)
6334 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6335 		 * a guest IRET fault.
6336 		 * SDM 3: 23.2.2 (September 2008)
6337 		 * Bit 12 is undefined in any of the following cases:
6338 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6339 		 *   information field.
6340 		 *  If the VM exit is due to a double fault.
6341 		 */
6342 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6343 		    vector != DF_VECTOR && !idtv_info_valid)
6344 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6345 				      GUEST_INTR_STATE_NMI);
6346 		else
6347 			vmx->loaded_vmcs->nmi_known_unmasked =
6348 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6349 				  & GUEST_INTR_STATE_NMI);
6350 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6351 		vmx->loaded_vmcs->vnmi_blocked_time +=
6352 			ktime_to_ns(ktime_sub(ktime_get(),
6353 					      vmx->loaded_vmcs->entry_time));
6354 }
6355 
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)6356 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6357 				      u32 idt_vectoring_info,
6358 				      int instr_len_field,
6359 				      int error_code_field)
6360 {
6361 	u8 vector;
6362 	int type;
6363 	bool idtv_info_valid;
6364 
6365 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6366 
6367 	vcpu->arch.nmi_injected = false;
6368 	kvm_clear_exception_queue(vcpu);
6369 	kvm_clear_interrupt_queue(vcpu);
6370 
6371 	if (!idtv_info_valid)
6372 		return;
6373 
6374 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6375 
6376 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6377 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6378 
6379 	switch (type) {
6380 	case INTR_TYPE_NMI_INTR:
6381 		vcpu->arch.nmi_injected = true;
6382 		/*
6383 		 * SDM 3: 27.7.1.2 (September 2008)
6384 		 * Clear bit "block by NMI" before VM entry if a NMI
6385 		 * delivery faulted.
6386 		 */
6387 		vmx_set_nmi_mask(vcpu, false);
6388 		break;
6389 	case INTR_TYPE_SOFT_EXCEPTION:
6390 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6391 		/* fall through */
6392 	case INTR_TYPE_HARD_EXCEPTION:
6393 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6394 			u32 err = vmcs_read32(error_code_field);
6395 			kvm_requeue_exception_e(vcpu, vector, err);
6396 		} else
6397 			kvm_requeue_exception(vcpu, vector);
6398 		break;
6399 	case INTR_TYPE_SOFT_INTR:
6400 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6401 		/* fall through */
6402 	case INTR_TYPE_EXT_INTR:
6403 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6404 		break;
6405 	default:
6406 		break;
6407 	}
6408 }
6409 
vmx_complete_interrupts(struct vcpu_vmx * vmx)6410 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6411 {
6412 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6413 				  VM_EXIT_INSTRUCTION_LEN,
6414 				  IDT_VECTORING_ERROR_CODE);
6415 }
6416 
vmx_cancel_injection(struct kvm_vcpu * vcpu)6417 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6418 {
6419 	__vmx_complete_interrupts(vcpu,
6420 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6421 				  VM_ENTRY_INSTRUCTION_LEN,
6422 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6423 
6424 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6425 }
6426 
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)6427 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6428 {
6429 	int i, nr_msrs;
6430 	struct perf_guest_switch_msr *msrs;
6431 
6432 	msrs = perf_guest_get_msrs(&nr_msrs);
6433 
6434 	if (!msrs)
6435 		return;
6436 
6437 	for (i = 0; i < nr_msrs; i++)
6438 		if (msrs[i].host == msrs[i].guest)
6439 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6440 		else
6441 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6442 					msrs[i].host, false);
6443 }
6444 
atomic_switch_umwait_control_msr(struct vcpu_vmx * vmx)6445 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6446 {
6447 	u32 host_umwait_control;
6448 
6449 	if (!vmx_has_waitpkg(vmx))
6450 		return;
6451 
6452 	host_umwait_control = get_umwait_control_msr();
6453 
6454 	if (vmx->msr_ia32_umwait_control != host_umwait_control)
6455 		add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6456 			vmx->msr_ia32_umwait_control,
6457 			host_umwait_control, false);
6458 	else
6459 		clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6460 }
6461 
vmx_update_hv_timer(struct kvm_vcpu * vcpu)6462 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6463 {
6464 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6465 	u64 tscl;
6466 	u32 delta_tsc;
6467 
6468 	if (vmx->req_immediate_exit) {
6469 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6470 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6471 	} else if (vmx->hv_deadline_tsc != -1) {
6472 		tscl = rdtsc();
6473 		if (vmx->hv_deadline_tsc > tscl)
6474 			/* set_hv_timer ensures the delta fits in 32-bits */
6475 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6476 				cpu_preemption_timer_multi);
6477 		else
6478 			delta_tsc = 0;
6479 
6480 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6481 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6482 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6483 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6484 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6485 	}
6486 }
6487 
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)6488 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6489 {
6490 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6491 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6492 		vmcs_writel(HOST_RSP, host_rsp);
6493 	}
6494 }
6495 
6496 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6497 
vmx_vcpu_run(struct kvm_vcpu * vcpu)6498 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6499 {
6500 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6501 	unsigned long cr3, cr4;
6502 
6503 	/* Record the guest's net vcpu time for enforced NMI injections. */
6504 	if (unlikely(!enable_vnmi &&
6505 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6506 		vmx->loaded_vmcs->entry_time = ktime_get();
6507 
6508 	/* Don't enter VMX if guest state is invalid, let the exit handler
6509 	   start emulation until we arrive back to a valid state */
6510 	if (vmx->emulation_required)
6511 		return;
6512 
6513 	if (vmx->ple_window_dirty) {
6514 		vmx->ple_window_dirty = false;
6515 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6516 	}
6517 
6518 	if (vmx->nested.need_vmcs12_to_shadow_sync)
6519 		nested_sync_vmcs12_to_shadow(vcpu);
6520 
6521 	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6522 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6523 	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6524 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6525 
6526 	cr3 = __get_current_cr3_fast();
6527 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6528 		vmcs_writel(HOST_CR3, cr3);
6529 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6530 	}
6531 
6532 	cr4 = cr4_read_shadow();
6533 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6534 		vmcs_writel(HOST_CR4, cr4);
6535 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6536 	}
6537 
6538 	/* When single-stepping over STI and MOV SS, we must clear the
6539 	 * corresponding interruptibility bits in the guest state. Otherwise
6540 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6541 	 * exceptions being set, but that's not correct for the guest debugging
6542 	 * case. */
6543 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6544 		vmx_set_interrupt_shadow(vcpu, 0);
6545 
6546 	kvm_load_guest_xcr0(vcpu);
6547 
6548 	if (static_cpu_has(X86_FEATURE_PKU) &&
6549 	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6550 	    vcpu->arch.pkru != vmx->host_pkru)
6551 		__write_pkru(vcpu->arch.pkru);
6552 
6553 	pt_guest_enter(vmx);
6554 
6555 	atomic_switch_perf_msrs(vmx);
6556 	atomic_switch_umwait_control_msr(vmx);
6557 
6558 	if (enable_preemption_timer)
6559 		vmx_update_hv_timer(vcpu);
6560 
6561 	if (lapic_in_kernel(vcpu) &&
6562 		vcpu->arch.apic->lapic_timer.timer_advance_ns)
6563 		kvm_wait_lapic_expire(vcpu);
6564 
6565 	/*
6566 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6567 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6568 	 * is no need to worry about the conditional branch over the wrmsr
6569 	 * being speculatively taken.
6570 	 */
6571 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6572 
6573 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6574 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6575 		vmx_l1d_flush(vcpu);
6576 	else if (static_branch_unlikely(&mds_user_clear))
6577 		mds_clear_cpu_buffers();
6578 
6579 	if (vcpu->arch.cr2 != read_cr2())
6580 		write_cr2(vcpu->arch.cr2);
6581 
6582 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6583 				   vmx->loaded_vmcs->launched);
6584 
6585 	vcpu->arch.cr2 = read_cr2();
6586 
6587 	/*
6588 	 * We do not use IBRS in the kernel. If this vCPU has used the
6589 	 * SPEC_CTRL MSR it may have left it on; save the value and
6590 	 * turn it off. This is much more efficient than blindly adding
6591 	 * it to the atomic save/restore list. Especially as the former
6592 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6593 	 *
6594 	 * For non-nested case:
6595 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6596 	 * save it.
6597 	 *
6598 	 * For nested case:
6599 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6600 	 * save it.
6601 	 */
6602 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6603 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6604 
6605 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6606 
6607 	/* All fields are clean at this point */
6608 	if (static_branch_unlikely(&enable_evmcs))
6609 		current_evmcs->hv_clean_fields |=
6610 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6611 
6612 	if (static_branch_unlikely(&enable_evmcs))
6613 		current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6614 
6615 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6616 	if (vmx->host_debugctlmsr)
6617 		update_debugctlmsr(vmx->host_debugctlmsr);
6618 
6619 #ifndef CONFIG_X86_64
6620 	/*
6621 	 * The sysexit path does not restore ds/es, so we must set them to
6622 	 * a reasonable value ourselves.
6623 	 *
6624 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6625 	 * function may be executed in interrupt context, which saves and
6626 	 * restore segments around it, nullifying its effect.
6627 	 */
6628 	loadsegment(ds, __USER_DS);
6629 	loadsegment(es, __USER_DS);
6630 #endif
6631 
6632 	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6633 				  | (1 << VCPU_EXREG_RFLAGS)
6634 				  | (1 << VCPU_EXREG_PDPTR)
6635 				  | (1 << VCPU_EXREG_SEGMENTS)
6636 				  | (1 << VCPU_EXREG_CR3));
6637 	vcpu->arch.regs_dirty = 0;
6638 
6639 	pt_guest_exit(vmx);
6640 
6641 	/*
6642 	 * eager fpu is enabled if PKEY is supported and CR4 is switched
6643 	 * back on host, so it is safe to read guest PKRU from current
6644 	 * XSAVE.
6645 	 */
6646 	if (static_cpu_has(X86_FEATURE_PKU) &&
6647 	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6648 		vcpu->arch.pkru = rdpkru();
6649 		if (vcpu->arch.pkru != vmx->host_pkru)
6650 			__write_pkru(vmx->host_pkru);
6651 	}
6652 
6653 	kvm_put_guest_xcr0(vcpu);
6654 
6655 	vmx->nested.nested_run_pending = 0;
6656 	vmx->idt_vectoring_info = 0;
6657 
6658 	vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6659 	if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6660 		kvm_machine_check();
6661 
6662 	if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6663 		return;
6664 
6665 	vmx->loaded_vmcs->launched = 1;
6666 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6667 
6668 	vmx_recover_nmi_blocking(vmx);
6669 	vmx_complete_interrupts(vmx);
6670 }
6671 
vmx_vm_alloc(void)6672 static struct kvm *vmx_vm_alloc(void)
6673 {
6674 	struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6675 					    GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6676 					    PAGE_KERNEL);
6677 	return &kvm_vmx->kvm;
6678 }
6679 
vmx_vm_free(struct kvm * kvm)6680 static void vmx_vm_free(struct kvm *kvm)
6681 {
6682 	kfree(kvm->arch.hyperv.hv_pa_pg);
6683 	vfree(to_kvm_vmx(kvm));
6684 }
6685 
vmx_free_vcpu(struct kvm_vcpu * vcpu)6686 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6687 {
6688 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6689 
6690 	if (enable_pml)
6691 		vmx_destroy_pml_buffer(vmx);
6692 	free_vpid(vmx->vpid);
6693 	nested_vmx_free_vcpu(vcpu);
6694 	free_loaded_vmcs(vmx->loaded_vmcs);
6695 	kfree(vmx->guest_msrs);
6696 	kvm_vcpu_uninit(vcpu);
6697 	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6698 	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6699 	kmem_cache_free(kvm_vcpu_cache, vmx);
6700 }
6701 
vmx_create_vcpu(struct kvm * kvm,unsigned int id)6702 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6703 {
6704 	int err;
6705 	struct vcpu_vmx *vmx;
6706 	unsigned long *msr_bitmap;
6707 	int cpu;
6708 
6709 	BUILD_BUG_ON_MSG(offsetof(struct vcpu_vmx, vcpu) != 0,
6710 		"struct kvm_vcpu must be at offset 0 for arch usercopy region");
6711 
6712 	vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6713 	if (!vmx)
6714 		return ERR_PTR(-ENOMEM);
6715 
6716 	vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
6717 			GFP_KERNEL_ACCOUNT);
6718 	if (!vmx->vcpu.arch.user_fpu) {
6719 		printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
6720 		err = -ENOMEM;
6721 		goto free_partial_vcpu;
6722 	}
6723 
6724 	vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6725 			GFP_KERNEL_ACCOUNT);
6726 	if (!vmx->vcpu.arch.guest_fpu) {
6727 		printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6728 		err = -ENOMEM;
6729 		goto free_user_fpu;
6730 	}
6731 
6732 	vmx->vpid = allocate_vpid();
6733 
6734 	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6735 	if (err)
6736 		goto free_vcpu;
6737 
6738 	err = -ENOMEM;
6739 
6740 	/*
6741 	 * If PML is turned on, failure on enabling PML just results in failure
6742 	 * of creating the vcpu, therefore we can simplify PML logic (by
6743 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6744 	 * for the guest, etc.
6745 	 */
6746 	if (enable_pml) {
6747 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6748 		if (!vmx->pml_pg)
6749 			goto uninit_vcpu;
6750 	}
6751 
6752 	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6753 	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6754 		     > PAGE_SIZE);
6755 
6756 	if (!vmx->guest_msrs)
6757 		goto free_pml;
6758 
6759 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6760 	if (err < 0)
6761 		goto free_msrs;
6762 
6763 	msr_bitmap = vmx->vmcs01.msr_bitmap;
6764 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6765 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6766 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6767 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6768 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6769 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6770 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6771 	if (kvm_cstate_in_guest(kvm)) {
6772 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6773 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6774 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6775 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6776 	}
6777 	vmx->msr_bitmap_mode = 0;
6778 
6779 	vmx->loaded_vmcs = &vmx->vmcs01;
6780 	cpu = get_cpu();
6781 	vmx_vcpu_load(&vmx->vcpu, cpu);
6782 	vmx->vcpu.cpu = cpu;
6783 	vmx_vcpu_setup(vmx);
6784 	vmx_vcpu_put(&vmx->vcpu);
6785 	put_cpu();
6786 	if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6787 		err = alloc_apic_access_page(kvm);
6788 		if (err)
6789 			goto free_vmcs;
6790 	}
6791 
6792 	if (enable_ept && !enable_unrestricted_guest) {
6793 		err = init_rmode_identity_map(kvm);
6794 		if (err)
6795 			goto free_vmcs;
6796 	}
6797 
6798 	if (nested)
6799 		nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6800 					   vmx_capability.ept,
6801 					   kvm_vcpu_apicv_active(&vmx->vcpu));
6802 	else
6803 		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6804 
6805 	vmx->nested.posted_intr_nv = -1;
6806 	vmx->nested.current_vmptr = -1ull;
6807 
6808 	vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6809 
6810 	/*
6811 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6812 	 * or POSTED_INTR_WAKEUP_VECTOR.
6813 	 */
6814 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6815 	vmx->pi_desc.sn = 1;
6816 
6817 	vmx->ept_pointer = INVALID_PAGE;
6818 
6819 	return &vmx->vcpu;
6820 
6821 free_vmcs:
6822 	free_loaded_vmcs(vmx->loaded_vmcs);
6823 free_msrs:
6824 	kfree(vmx->guest_msrs);
6825 free_pml:
6826 	vmx_destroy_pml_buffer(vmx);
6827 uninit_vcpu:
6828 	kvm_vcpu_uninit(&vmx->vcpu);
6829 free_vcpu:
6830 	free_vpid(vmx->vpid);
6831 	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6832 free_user_fpu:
6833 	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6834 free_partial_vcpu:
6835 	kmem_cache_free(kvm_vcpu_cache, vmx);
6836 	return ERR_PTR(err);
6837 }
6838 
6839 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6840 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6841 
vmx_vm_init(struct kvm * kvm)6842 static int vmx_vm_init(struct kvm *kvm)
6843 {
6844 	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6845 
6846 	if (!ple_gap)
6847 		kvm->arch.pause_in_guest = true;
6848 
6849 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6850 		switch (l1tf_mitigation) {
6851 		case L1TF_MITIGATION_OFF:
6852 		case L1TF_MITIGATION_FLUSH_NOWARN:
6853 			/* 'I explicitly don't care' is set */
6854 			break;
6855 		case L1TF_MITIGATION_FLUSH:
6856 		case L1TF_MITIGATION_FLUSH_NOSMT:
6857 		case L1TF_MITIGATION_FULL:
6858 			/*
6859 			 * Warn upon starting the first VM in a potentially
6860 			 * insecure environment.
6861 			 */
6862 			if (sched_smt_active())
6863 				pr_warn_once(L1TF_MSG_SMT);
6864 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6865 				pr_warn_once(L1TF_MSG_L1D);
6866 			break;
6867 		case L1TF_MITIGATION_FULL_FORCE:
6868 			/* Flush is enforced */
6869 			break;
6870 		}
6871 	}
6872 	return 0;
6873 }
6874 
vmx_check_processor_compat(void)6875 static int __init vmx_check_processor_compat(void)
6876 {
6877 	struct vmcs_config vmcs_conf;
6878 	struct vmx_capability vmx_cap;
6879 
6880 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6881 		return -EIO;
6882 	if (nested)
6883 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6884 					   enable_apicv);
6885 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6886 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6887 				smp_processor_id());
6888 		return -EIO;
6889 	}
6890 	return 0;
6891 }
6892 
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)6893 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6894 {
6895 	u8 cache;
6896 	u64 ipat = 0;
6897 
6898 	/* For VT-d and EPT combination
6899 	 * 1. MMIO: always map as UC
6900 	 * 2. EPT with VT-d:
6901 	 *   a. VT-d without snooping control feature: can't guarantee the
6902 	 *	result, try to trust guest.
6903 	 *   b. VT-d with snooping control feature: snooping control feature of
6904 	 *	VT-d engine can guarantee the cache correctness. Just set it
6905 	 *	to WB to keep consistent with host. So the same as item 3.
6906 	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6907 	 *    consistent with host MTRR
6908 	 */
6909 	if (is_mmio) {
6910 		cache = MTRR_TYPE_UNCACHABLE;
6911 		goto exit;
6912 	}
6913 
6914 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6915 		ipat = VMX_EPT_IPAT_BIT;
6916 		cache = MTRR_TYPE_WRBACK;
6917 		goto exit;
6918 	}
6919 
6920 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6921 		ipat = VMX_EPT_IPAT_BIT;
6922 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6923 			cache = MTRR_TYPE_WRBACK;
6924 		else
6925 			cache = MTRR_TYPE_UNCACHABLE;
6926 		goto exit;
6927 	}
6928 
6929 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6930 
6931 exit:
6932 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6933 }
6934 
vmx_get_lpage_level(void)6935 static int vmx_get_lpage_level(void)
6936 {
6937 	if (enable_ept && !cpu_has_vmx_ept_1g_page())
6938 		return PT_DIRECTORY_LEVEL;
6939 	else
6940 		/* For shadow and EPT supported 1GB page */
6941 		return PT_PDPE_LEVEL;
6942 }
6943 
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx)6944 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6945 {
6946 	/*
6947 	 * These bits in the secondary execution controls field
6948 	 * are dynamic, the others are mostly based on the hypervisor
6949 	 * architecture and the guest's CPUID.  Do not touch the
6950 	 * dynamic bits.
6951 	 */
6952 	u32 mask =
6953 		SECONDARY_EXEC_SHADOW_VMCS |
6954 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6955 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6956 		SECONDARY_EXEC_DESC;
6957 
6958 	u32 new_ctl = vmx->secondary_exec_control;
6959 	u32 cur_ctl = secondary_exec_controls_get(vmx);
6960 
6961 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6962 }
6963 
6964 /*
6965  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6966  * (indicating "allowed-1") if they are supported in the guest's CPUID.
6967  */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)6968 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6969 {
6970 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6971 	struct kvm_cpuid_entry2 *entry;
6972 
6973 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6974 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6975 
6976 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
6977 	if (entry && (entry->_reg & (_cpuid_mask)))			\
6978 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
6979 } while (0)
6980 
6981 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6982 	cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
6983 	cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
6984 	cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
6985 	cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
6986 	cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
6987 	cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
6988 	cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
6989 	cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
6990 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
6991 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6992 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
6993 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
6994 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
6995 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
6996 
6997 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6998 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
6999 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
7000 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
7001 	cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
7002 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
7003 
7004 #undef cr4_fixed1_update
7005 }
7006 
nested_vmx_entry_exit_ctls_update(struct kvm_vcpu * vcpu)7007 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7008 {
7009 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7010 
7011 	if (kvm_mpx_supported()) {
7012 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7013 
7014 		if (mpx_enabled) {
7015 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7016 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7017 		} else {
7018 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7019 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7020 		}
7021 	}
7022 }
7023 
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7024 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7025 {
7026 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7027 	struct kvm_cpuid_entry2 *best = NULL;
7028 	int i;
7029 
7030 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7031 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7032 		if (!best)
7033 			return;
7034 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7035 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7036 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7037 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7038 	}
7039 
7040 	/* Get the number of configurable Address Ranges for filtering */
7041 	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7042 						PT_CAP_num_address_ranges);
7043 
7044 	/* Initialize and clear the no dependency bits */
7045 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7046 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7047 
7048 	/*
7049 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7050 	 * will inject an #GP
7051 	 */
7052 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7053 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7054 
7055 	/*
7056 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7057 	 * PSBFreq can be set
7058 	 */
7059 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7060 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7061 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7062 
7063 	/*
7064 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7065 	 * MTCFreq can be set
7066 	 */
7067 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7068 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7069 				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7070 
7071 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7072 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7073 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7074 							RTIT_CTL_PTW_EN);
7075 
7076 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7077 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7078 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7079 
7080 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7081 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7082 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7083 
7084 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7085 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7086 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7087 
7088 	/* unmask address range configure area */
7089 	for (i = 0; i < vmx->pt_desc.addr_range; i++)
7090 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7091 }
7092 
vmx_cpuid_update(struct kvm_vcpu * vcpu)7093 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7094 {
7095 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7096 
7097 	if (cpu_has_secondary_exec_ctrls()) {
7098 		vmx_compute_secondary_exec_control(vmx);
7099 		vmcs_set_secondary_exec_control(vmx);
7100 	}
7101 
7102 	if (nested_vmx_allowed(vcpu))
7103 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7104 			FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7105 	else
7106 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7107 			~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7108 
7109 	if (nested_vmx_allowed(vcpu)) {
7110 		nested_vmx_cr_fixed1_bits_update(vcpu);
7111 		nested_vmx_entry_exit_ctls_update(vcpu);
7112 	}
7113 
7114 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7115 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7116 		update_intel_pt_cfg(vcpu);
7117 }
7118 
vmx_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)7119 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7120 {
7121 	if (func == 1 && nested)
7122 		entry->ecx |= bit(X86_FEATURE_VMX);
7123 }
7124 
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7125 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7126 {
7127 	to_vmx(vcpu)->req_immediate_exit = true;
7128 }
7129 
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)7130 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7131 			       struct x86_instruction_info *info,
7132 			       enum x86_intercept_stage stage)
7133 {
7134 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7135 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7136 
7137 	/*
7138 	 * RDPID causes #UD if disabled through secondary execution controls.
7139 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7140 	 */
7141 	if (info->intercept == x86_intercept_rdtscp &&
7142 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7143 		ctxt->exception.vector = UD_VECTOR;
7144 		ctxt->exception.error_code_valid = false;
7145 		return X86EMUL_PROPAGATE_FAULT;
7146 	}
7147 
7148 	/* TODO: check more intercepts... */
7149 	return X86EMUL_CONTINUE;
7150 }
7151 
7152 #ifdef CONFIG_X86_64
7153 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)7154 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7155 				  u64 divisor, u64 *result)
7156 {
7157 	u64 low = a << shift, high = a >> (64 - shift);
7158 
7159 	/* To avoid the overflow on divq */
7160 	if (high >= divisor)
7161 		return 1;
7162 
7163 	/* Low hold the result, high hold rem which is discarded */
7164 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7165 	    "rm" (divisor), "0" (low), "1" (high));
7166 	*result = low;
7167 
7168 	return 0;
7169 }
7170 
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)7171 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7172 			    bool *expired)
7173 {
7174 	struct vcpu_vmx *vmx;
7175 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7176 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7177 
7178 	if (kvm_mwait_in_guest(vcpu->kvm) ||
7179 		kvm_can_post_timer_interrupt(vcpu))
7180 		return -EOPNOTSUPP;
7181 
7182 	vmx = to_vmx(vcpu);
7183 	tscl = rdtsc();
7184 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7185 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7186 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7187 						    ktimer->timer_advance_ns);
7188 
7189 	if (delta_tsc > lapic_timer_advance_cycles)
7190 		delta_tsc -= lapic_timer_advance_cycles;
7191 	else
7192 		delta_tsc = 0;
7193 
7194 	/* Convert to host delta tsc if tsc scaling is enabled */
7195 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7196 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7197 				kvm_tsc_scaling_ratio_frac_bits,
7198 				vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7199 		return -ERANGE;
7200 
7201 	/*
7202 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7203 	 * we can't use the preemption timer.
7204 	 * It's possible that it fits on later vmentries, but checking
7205 	 * on every vmentry is costly so we just use an hrtimer.
7206 	 */
7207 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7208 		return -ERANGE;
7209 
7210 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7211 	*expired = !delta_tsc;
7212 	return 0;
7213 }
7214 
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)7215 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7216 {
7217 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7218 }
7219 #endif
7220 
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)7221 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7222 {
7223 	if (!kvm_pause_in_guest(vcpu->kvm))
7224 		shrink_ple_window(vcpu);
7225 }
7226 
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7227 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7228 				     struct kvm_memory_slot *slot)
7229 {
7230 	kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7231 	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7232 }
7233 
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7234 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7235 				       struct kvm_memory_slot *slot)
7236 {
7237 	kvm_mmu_slot_set_dirty(kvm, slot);
7238 }
7239 
vmx_flush_log_dirty(struct kvm * kvm)7240 static void vmx_flush_log_dirty(struct kvm *kvm)
7241 {
7242 	kvm_flush_pml_buffers(kvm);
7243 }
7244 
vmx_write_pml_buffer(struct kvm_vcpu * vcpu)7245 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7246 {
7247 	struct vmcs12 *vmcs12;
7248 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7249 	gpa_t gpa, dst;
7250 
7251 	if (is_guest_mode(vcpu)) {
7252 		WARN_ON_ONCE(vmx->nested.pml_full);
7253 
7254 		/*
7255 		 * Check if PML is enabled for the nested guest.
7256 		 * Whether eptp bit 6 is set is already checked
7257 		 * as part of A/D emulation.
7258 		 */
7259 		vmcs12 = get_vmcs12(vcpu);
7260 		if (!nested_cpu_has_pml(vmcs12))
7261 			return 0;
7262 
7263 		if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7264 			vmx->nested.pml_full = true;
7265 			return 1;
7266 		}
7267 
7268 		gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7269 		dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7270 
7271 		if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7272 					 offset_in_page(dst), sizeof(gpa)))
7273 			return 0;
7274 
7275 		vmcs12->guest_pml_index--;
7276 	}
7277 
7278 	return 0;
7279 }
7280 
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)7281 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7282 					   struct kvm_memory_slot *memslot,
7283 					   gfn_t offset, unsigned long mask)
7284 {
7285 	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7286 }
7287 
__pi_post_block(struct kvm_vcpu * vcpu)7288 static void __pi_post_block(struct kvm_vcpu *vcpu)
7289 {
7290 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7291 	struct pi_desc old, new;
7292 	unsigned int dest;
7293 
7294 	do {
7295 		old.control = new.control = pi_desc->control;
7296 		WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7297 		     "Wakeup handler not enabled while the VCPU is blocked\n");
7298 
7299 		dest = cpu_physical_id(vcpu->cpu);
7300 
7301 		if (x2apic_enabled())
7302 			new.ndst = dest;
7303 		else
7304 			new.ndst = (dest << 8) & 0xFF00;
7305 
7306 		/* set 'NV' to 'notification vector' */
7307 		new.nv = POSTED_INTR_VECTOR;
7308 	} while (cmpxchg64(&pi_desc->control, old.control,
7309 			   new.control) != old.control);
7310 
7311 	if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7312 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7313 		list_del(&vcpu->blocked_vcpu_list);
7314 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7315 		vcpu->pre_pcpu = -1;
7316 	}
7317 }
7318 
7319 /*
7320  * This routine does the following things for vCPU which is going
7321  * to be blocked if VT-d PI is enabled.
7322  * - Store the vCPU to the wakeup list, so when interrupts happen
7323  *   we can find the right vCPU to wake up.
7324  * - Change the Posted-interrupt descriptor as below:
7325  *      'NDST' <-- vcpu->pre_pcpu
7326  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7327  * - If 'ON' is set during this process, which means at least one
7328  *   interrupt is posted for this vCPU, we cannot block it, in
7329  *   this case, return 1, otherwise, return 0.
7330  *
7331  */
pi_pre_block(struct kvm_vcpu * vcpu)7332 static int pi_pre_block(struct kvm_vcpu *vcpu)
7333 {
7334 	unsigned int dest;
7335 	struct pi_desc old, new;
7336 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7337 
7338 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7339 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
7340 		!kvm_vcpu_apicv_active(vcpu))
7341 		return 0;
7342 
7343 	WARN_ON(irqs_disabled());
7344 	local_irq_disable();
7345 	if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7346 		vcpu->pre_pcpu = vcpu->cpu;
7347 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7348 		list_add_tail(&vcpu->blocked_vcpu_list,
7349 			      &per_cpu(blocked_vcpu_on_cpu,
7350 				       vcpu->pre_pcpu));
7351 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7352 	}
7353 
7354 	do {
7355 		old.control = new.control = pi_desc->control;
7356 
7357 		WARN((pi_desc->sn == 1),
7358 		     "Warning: SN field of posted-interrupts "
7359 		     "is set before blocking\n");
7360 
7361 		/*
7362 		 * Since vCPU can be preempted during this process,
7363 		 * vcpu->cpu could be different with pre_pcpu, we
7364 		 * need to set pre_pcpu as the destination of wakeup
7365 		 * notification event, then we can find the right vCPU
7366 		 * to wakeup in wakeup handler if interrupts happen
7367 		 * when the vCPU is in blocked state.
7368 		 */
7369 		dest = cpu_physical_id(vcpu->pre_pcpu);
7370 
7371 		if (x2apic_enabled())
7372 			new.ndst = dest;
7373 		else
7374 			new.ndst = (dest << 8) & 0xFF00;
7375 
7376 		/* set 'NV' to 'wakeup vector' */
7377 		new.nv = POSTED_INTR_WAKEUP_VECTOR;
7378 	} while (cmpxchg64(&pi_desc->control, old.control,
7379 			   new.control) != old.control);
7380 
7381 	/* We should not block the vCPU if an interrupt is posted for it.  */
7382 	if (pi_test_on(pi_desc) == 1)
7383 		__pi_post_block(vcpu);
7384 
7385 	local_irq_enable();
7386 	return (vcpu->pre_pcpu == -1);
7387 }
7388 
vmx_pre_block(struct kvm_vcpu * vcpu)7389 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7390 {
7391 	if (pi_pre_block(vcpu))
7392 		return 1;
7393 
7394 	if (kvm_lapic_hv_timer_in_use(vcpu))
7395 		kvm_lapic_switch_to_sw_timer(vcpu);
7396 
7397 	return 0;
7398 }
7399 
pi_post_block(struct kvm_vcpu * vcpu)7400 static void pi_post_block(struct kvm_vcpu *vcpu)
7401 {
7402 	if (vcpu->pre_pcpu == -1)
7403 		return;
7404 
7405 	WARN_ON(irqs_disabled());
7406 	local_irq_disable();
7407 	__pi_post_block(vcpu);
7408 	local_irq_enable();
7409 }
7410 
vmx_post_block(struct kvm_vcpu * vcpu)7411 static void vmx_post_block(struct kvm_vcpu *vcpu)
7412 {
7413 	if (kvm_x86_ops->set_hv_timer)
7414 		kvm_lapic_switch_to_hv_timer(vcpu);
7415 
7416 	pi_post_block(vcpu);
7417 }
7418 
7419 /*
7420  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7421  *
7422  * @kvm: kvm
7423  * @host_irq: host irq of the interrupt
7424  * @guest_irq: gsi of the interrupt
7425  * @set: set or unset PI
7426  * returns 0 on success, < 0 on failure
7427  */
vmx_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)7428 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7429 			      uint32_t guest_irq, bool set)
7430 {
7431 	struct kvm_kernel_irq_routing_entry *e;
7432 	struct kvm_irq_routing_table *irq_rt;
7433 	struct kvm_lapic_irq irq;
7434 	struct kvm_vcpu *vcpu;
7435 	struct vcpu_data vcpu_info;
7436 	int idx, ret = 0;
7437 
7438 	if (!kvm_arch_has_assigned_device(kvm) ||
7439 		!irq_remapping_cap(IRQ_POSTING_CAP) ||
7440 		!kvm_vcpu_apicv_active(kvm->vcpus[0]))
7441 		return 0;
7442 
7443 	idx = srcu_read_lock(&kvm->irq_srcu);
7444 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7445 	if (guest_irq >= irq_rt->nr_rt_entries ||
7446 	    hlist_empty(&irq_rt->map[guest_irq])) {
7447 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7448 			     guest_irq, irq_rt->nr_rt_entries);
7449 		goto out;
7450 	}
7451 
7452 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7453 		if (e->type != KVM_IRQ_ROUTING_MSI)
7454 			continue;
7455 		/*
7456 		 * VT-d PI cannot support posting multicast/broadcast
7457 		 * interrupts to a vCPU, we still use interrupt remapping
7458 		 * for these kind of interrupts.
7459 		 *
7460 		 * For lowest-priority interrupts, we only support
7461 		 * those with single CPU as the destination, e.g. user
7462 		 * configures the interrupts via /proc/irq or uses
7463 		 * irqbalance to make the interrupts single-CPU.
7464 		 *
7465 		 * We will support full lowest-priority interrupt later.
7466 		 *
7467 		 * In addition, we can only inject generic interrupts using
7468 		 * the PI mechanism, refuse to route others through it.
7469 		 */
7470 
7471 		kvm_set_msi_irq(kvm, e, &irq);
7472 		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7473 		    !kvm_irq_is_postable(&irq)) {
7474 			/*
7475 			 * Make sure the IRTE is in remapped mode if
7476 			 * we don't handle it in posted mode.
7477 			 */
7478 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7479 			if (ret < 0) {
7480 				printk(KERN_INFO
7481 				   "failed to back to remapped mode, irq: %u\n",
7482 				   host_irq);
7483 				goto out;
7484 			}
7485 
7486 			continue;
7487 		}
7488 
7489 		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7490 		vcpu_info.vector = irq.vector;
7491 
7492 		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7493 				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7494 
7495 		if (set)
7496 			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7497 		else
7498 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7499 
7500 		if (ret < 0) {
7501 			printk(KERN_INFO "%s: failed to update PI IRTE\n",
7502 					__func__);
7503 			goto out;
7504 		}
7505 	}
7506 
7507 	ret = 0;
7508 out:
7509 	srcu_read_unlock(&kvm->irq_srcu, idx);
7510 	return ret;
7511 }
7512 
vmx_setup_mce(struct kvm_vcpu * vcpu)7513 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7514 {
7515 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7516 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7517 			FEATURE_CONTROL_LMCE;
7518 	else
7519 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7520 			~FEATURE_CONTROL_LMCE;
7521 }
7522 
vmx_smi_allowed(struct kvm_vcpu * vcpu)7523 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7524 {
7525 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7526 	if (to_vmx(vcpu)->nested.nested_run_pending)
7527 		return 0;
7528 	return 1;
7529 }
7530 
vmx_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)7531 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7532 {
7533 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7534 
7535 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7536 	if (vmx->nested.smm.guest_mode)
7537 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7538 
7539 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7540 	vmx->nested.vmxon = false;
7541 	vmx_clear_hlt(vcpu);
7542 	return 0;
7543 }
7544 
vmx_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)7545 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7546 {
7547 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7548 	int ret;
7549 
7550 	if (vmx->nested.smm.vmxon) {
7551 		vmx->nested.vmxon = true;
7552 		vmx->nested.smm.vmxon = false;
7553 	}
7554 
7555 	if (vmx->nested.smm.guest_mode) {
7556 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7557 		if (ret)
7558 			return ret;
7559 
7560 		vmx->nested.smm.guest_mode = false;
7561 	}
7562 	return 0;
7563 }
7564 
enable_smi_window(struct kvm_vcpu * vcpu)7565 static int enable_smi_window(struct kvm_vcpu *vcpu)
7566 {
7567 	return 0;
7568 }
7569 
vmx_need_emulation_on_page_fault(struct kvm_vcpu * vcpu)7570 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7571 {
7572 	return false;
7573 }
7574 
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)7575 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7576 {
7577 	return to_vmx(vcpu)->nested.vmxon;
7578 }
7579 
hardware_setup(void)7580 static __init int hardware_setup(void)
7581 {
7582 	unsigned long host_bndcfgs;
7583 	struct desc_ptr dt;
7584 	int r, i;
7585 
7586 	rdmsrl_safe(MSR_EFER, &host_efer);
7587 
7588 	store_idt(&dt);
7589 	host_idt_base = dt.address;
7590 
7591 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7592 		kvm_define_shared_msr(i, vmx_msr_index[i]);
7593 
7594 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7595 		return -EIO;
7596 
7597 	if (boot_cpu_has(X86_FEATURE_NX))
7598 		kvm_enable_efer_bits(EFER_NX);
7599 
7600 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7601 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7602 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7603 	}
7604 
7605 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7606 		rdmsrl(MSR_IA32_XSS, host_xss);
7607 
7608 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7609 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7610 		enable_vpid = 0;
7611 
7612 	if (!cpu_has_vmx_ept() ||
7613 	    !cpu_has_vmx_ept_4levels() ||
7614 	    !cpu_has_vmx_ept_mt_wb() ||
7615 	    !cpu_has_vmx_invept_global())
7616 		enable_ept = 0;
7617 
7618 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7619 		enable_ept_ad_bits = 0;
7620 
7621 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7622 		enable_unrestricted_guest = 0;
7623 
7624 	if (!cpu_has_vmx_flexpriority())
7625 		flexpriority_enabled = 0;
7626 
7627 	if (!cpu_has_virtual_nmis())
7628 		enable_vnmi = 0;
7629 
7630 	/*
7631 	 * set_apic_access_page_addr() is used to reload apic access
7632 	 * page upon invalidation.  No need to do anything if not
7633 	 * using the APIC_ACCESS_ADDR VMCS field.
7634 	 */
7635 	if (!flexpriority_enabled)
7636 		kvm_x86_ops->set_apic_access_page_addr = NULL;
7637 
7638 	if (!cpu_has_vmx_tpr_shadow())
7639 		kvm_x86_ops->update_cr8_intercept = NULL;
7640 
7641 	if (enable_ept && !cpu_has_vmx_ept_2m_page())
7642 		kvm_disable_largepages();
7643 
7644 #if IS_ENABLED(CONFIG_HYPERV)
7645 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7646 	    && enable_ept) {
7647 		kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7648 		kvm_x86_ops->tlb_remote_flush_with_range =
7649 				hv_remote_flush_tlb_with_range;
7650 	}
7651 #endif
7652 
7653 	if (!cpu_has_vmx_ple()) {
7654 		ple_gap = 0;
7655 		ple_window = 0;
7656 		ple_window_grow = 0;
7657 		ple_window_max = 0;
7658 		ple_window_shrink = 0;
7659 	}
7660 
7661 	if (!cpu_has_vmx_apicv()) {
7662 		enable_apicv = 0;
7663 		kvm_x86_ops->sync_pir_to_irr = NULL;
7664 	}
7665 
7666 	if (cpu_has_vmx_tsc_scaling()) {
7667 		kvm_has_tsc_control = true;
7668 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7669 		kvm_tsc_scaling_ratio_frac_bits = 48;
7670 	}
7671 
7672 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7673 
7674 	if (enable_ept)
7675 		vmx_enable_tdp();
7676 	else
7677 		kvm_disable_tdp();
7678 
7679 	/*
7680 	 * Only enable PML when hardware supports PML feature, and both EPT
7681 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7682 	 */
7683 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7684 		enable_pml = 0;
7685 
7686 	if (!enable_pml) {
7687 		kvm_x86_ops->slot_enable_log_dirty = NULL;
7688 		kvm_x86_ops->slot_disable_log_dirty = NULL;
7689 		kvm_x86_ops->flush_log_dirty = NULL;
7690 		kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7691 	}
7692 
7693 	if (!cpu_has_vmx_preemption_timer())
7694 		enable_preemption_timer = false;
7695 
7696 	if (enable_preemption_timer) {
7697 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
7698 		u64 vmx_msr;
7699 
7700 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7701 		cpu_preemption_timer_multi =
7702 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7703 
7704 		if (tsc_khz)
7705 			use_timer_freq = (u64)tsc_khz * 1000;
7706 		use_timer_freq >>= cpu_preemption_timer_multi;
7707 
7708 		/*
7709 		 * KVM "disables" the preemption timer by setting it to its max
7710 		 * value.  Don't use the timer if it might cause spurious exits
7711 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7712 		 */
7713 		if (use_timer_freq > 0xffffffffu / 10)
7714 			enable_preemption_timer = false;
7715 	}
7716 
7717 	if (!enable_preemption_timer) {
7718 		kvm_x86_ops->set_hv_timer = NULL;
7719 		kvm_x86_ops->cancel_hv_timer = NULL;
7720 		kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7721 	}
7722 
7723 	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7724 
7725 	kvm_mce_cap_supported |= MCG_LMCE_P;
7726 
7727 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7728 		return -EINVAL;
7729 	if (!enable_ept || !cpu_has_vmx_intel_pt())
7730 		pt_mode = PT_MODE_SYSTEM;
7731 
7732 	if (nested) {
7733 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7734 					   vmx_capability.ept, enable_apicv);
7735 
7736 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7737 		if (r)
7738 			return r;
7739 	}
7740 
7741 	r = alloc_kvm_area();
7742 	if (r)
7743 		nested_vmx_hardware_unsetup();
7744 	return r;
7745 }
7746 
hardware_unsetup(void)7747 static __exit void hardware_unsetup(void)
7748 {
7749 	if (nested)
7750 		nested_vmx_hardware_unsetup();
7751 
7752 	free_kvm_area();
7753 }
7754 
7755 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7756 	.cpu_has_kvm_support = cpu_has_kvm_support,
7757 	.disabled_by_bios = vmx_disabled_by_bios,
7758 	.hardware_setup = hardware_setup,
7759 	.hardware_unsetup = hardware_unsetup,
7760 	.check_processor_compatibility = vmx_check_processor_compat,
7761 	.hardware_enable = hardware_enable,
7762 	.hardware_disable = hardware_disable,
7763 	.cpu_has_accelerated_tpr = report_flexpriority,
7764 	.has_emulated_msr = vmx_has_emulated_msr,
7765 
7766 	.vm_init = vmx_vm_init,
7767 	.vm_alloc = vmx_vm_alloc,
7768 	.vm_free = vmx_vm_free,
7769 
7770 	.vcpu_create = vmx_create_vcpu,
7771 	.vcpu_free = vmx_free_vcpu,
7772 	.vcpu_reset = vmx_vcpu_reset,
7773 
7774 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7775 	.vcpu_load = vmx_vcpu_load,
7776 	.vcpu_put = vmx_vcpu_put,
7777 
7778 	.update_bp_intercept = update_exception_bitmap,
7779 	.get_msr_feature = vmx_get_msr_feature,
7780 	.get_msr = vmx_get_msr,
7781 	.set_msr = vmx_set_msr,
7782 	.get_segment_base = vmx_get_segment_base,
7783 	.get_segment = vmx_get_segment,
7784 	.set_segment = vmx_set_segment,
7785 	.get_cpl = vmx_get_cpl,
7786 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7787 	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7788 	.decache_cr3 = vmx_decache_cr3,
7789 	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7790 	.set_cr0 = vmx_set_cr0,
7791 	.set_cr3 = vmx_set_cr3,
7792 	.set_cr4 = vmx_set_cr4,
7793 	.set_efer = vmx_set_efer,
7794 	.get_idt = vmx_get_idt,
7795 	.set_idt = vmx_set_idt,
7796 	.get_gdt = vmx_get_gdt,
7797 	.set_gdt = vmx_set_gdt,
7798 	.get_dr6 = vmx_get_dr6,
7799 	.set_dr6 = vmx_set_dr6,
7800 	.set_dr7 = vmx_set_dr7,
7801 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7802 	.cache_reg = vmx_cache_reg,
7803 	.get_rflags = vmx_get_rflags,
7804 	.set_rflags = vmx_set_rflags,
7805 
7806 	.tlb_flush = vmx_flush_tlb,
7807 	.tlb_flush_gva = vmx_flush_tlb_gva,
7808 
7809 	.run = vmx_vcpu_run,
7810 	.handle_exit = vmx_handle_exit,
7811 	.skip_emulated_instruction = skip_emulated_instruction,
7812 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7813 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7814 	.patch_hypercall = vmx_patch_hypercall,
7815 	.set_irq = vmx_inject_irq,
7816 	.set_nmi = vmx_inject_nmi,
7817 	.queue_exception = vmx_queue_exception,
7818 	.cancel_injection = vmx_cancel_injection,
7819 	.interrupt_allowed = vmx_interrupt_allowed,
7820 	.nmi_allowed = vmx_nmi_allowed,
7821 	.get_nmi_mask = vmx_get_nmi_mask,
7822 	.set_nmi_mask = vmx_set_nmi_mask,
7823 	.enable_nmi_window = enable_nmi_window,
7824 	.enable_irq_window = enable_irq_window,
7825 	.update_cr8_intercept = update_cr8_intercept,
7826 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7827 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7828 	.get_enable_apicv = vmx_get_enable_apicv,
7829 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7830 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7831 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7832 	.hwapic_irr_update = vmx_hwapic_irr_update,
7833 	.hwapic_isr_update = vmx_hwapic_isr_update,
7834 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7835 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7836 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7837 	.dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7838 
7839 	.set_tss_addr = vmx_set_tss_addr,
7840 	.set_identity_map_addr = vmx_set_identity_map_addr,
7841 	.get_tdp_level = get_ept_level,
7842 	.get_mt_mask = vmx_get_mt_mask,
7843 
7844 	.get_exit_info = vmx_get_exit_info,
7845 
7846 	.get_lpage_level = vmx_get_lpage_level,
7847 
7848 	.cpuid_update = vmx_cpuid_update,
7849 
7850 	.rdtscp_supported = vmx_rdtscp_supported,
7851 	.invpcid_supported = vmx_invpcid_supported,
7852 
7853 	.set_supported_cpuid = vmx_set_supported_cpuid,
7854 
7855 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7856 
7857 	.read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7858 	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7859 
7860 	.set_tdp_cr3 = vmx_set_cr3,
7861 
7862 	.check_intercept = vmx_check_intercept,
7863 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7864 	.mpx_supported = vmx_mpx_supported,
7865 	.xsaves_supported = vmx_xsaves_supported,
7866 	.umip_emulated = vmx_umip_emulated,
7867 	.pt_supported = vmx_pt_supported,
7868 
7869 	.request_immediate_exit = vmx_request_immediate_exit,
7870 
7871 	.sched_in = vmx_sched_in,
7872 
7873 	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7874 	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7875 	.flush_log_dirty = vmx_flush_log_dirty,
7876 	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7877 	.write_log_dirty = vmx_write_pml_buffer,
7878 
7879 	.pre_block = vmx_pre_block,
7880 	.post_block = vmx_post_block,
7881 
7882 	.pmu_ops = &intel_pmu_ops,
7883 
7884 	.update_pi_irte = vmx_update_pi_irte,
7885 
7886 #ifdef CONFIG_X86_64
7887 	.set_hv_timer = vmx_set_hv_timer,
7888 	.cancel_hv_timer = vmx_cancel_hv_timer,
7889 #endif
7890 
7891 	.setup_mce = vmx_setup_mce,
7892 
7893 	.smi_allowed = vmx_smi_allowed,
7894 	.pre_enter_smm = vmx_pre_enter_smm,
7895 	.pre_leave_smm = vmx_pre_leave_smm,
7896 	.enable_smi_window = enable_smi_window,
7897 
7898 	.check_nested_events = NULL,
7899 	.get_nested_state = NULL,
7900 	.set_nested_state = NULL,
7901 	.get_vmcs12_pages = NULL,
7902 	.nested_enable_evmcs = NULL,
7903 	.nested_get_evmcs_version = NULL,
7904 	.need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7905 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7906 };
7907 
vmx_cleanup_l1d_flush(void)7908 static void vmx_cleanup_l1d_flush(void)
7909 {
7910 	if (vmx_l1d_flush_pages) {
7911 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7912 		vmx_l1d_flush_pages = NULL;
7913 	}
7914 	/* Restore state so sysfs ignores VMX */
7915 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7916 }
7917 
vmx_exit(void)7918 static void vmx_exit(void)
7919 {
7920 #ifdef CONFIG_KEXEC_CORE
7921 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7922 	synchronize_rcu();
7923 #endif
7924 
7925 	kvm_exit();
7926 
7927 #if IS_ENABLED(CONFIG_HYPERV)
7928 	if (static_branch_unlikely(&enable_evmcs)) {
7929 		int cpu;
7930 		struct hv_vp_assist_page *vp_ap;
7931 		/*
7932 		 * Reset everything to support using non-enlightened VMCS
7933 		 * access later (e.g. when we reload the module with
7934 		 * enlightened_vmcs=0)
7935 		 */
7936 		for_each_online_cpu(cpu) {
7937 			vp_ap =	hv_get_vp_assist_page(cpu);
7938 
7939 			if (!vp_ap)
7940 				continue;
7941 
7942 			vp_ap->nested_control.features.directhypercall = 0;
7943 			vp_ap->current_nested_vmcs = 0;
7944 			vp_ap->enlighten_vmentry = 0;
7945 		}
7946 
7947 		static_branch_disable(&enable_evmcs);
7948 	}
7949 #endif
7950 	vmx_cleanup_l1d_flush();
7951 }
7952 module_exit(vmx_exit);
7953 
vmx_init(void)7954 static int __init vmx_init(void)
7955 {
7956 	int r;
7957 
7958 #if IS_ENABLED(CONFIG_HYPERV)
7959 	/*
7960 	 * Enlightened VMCS usage should be recommended and the host needs
7961 	 * to support eVMCS v1 or above. We can also disable eVMCS support
7962 	 * with module parameter.
7963 	 */
7964 	if (enlightened_vmcs &&
7965 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7966 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7967 	    KVM_EVMCS_VERSION) {
7968 		int cpu;
7969 
7970 		/* Check that we have assist pages on all online CPUs */
7971 		for_each_online_cpu(cpu) {
7972 			if (!hv_get_vp_assist_page(cpu)) {
7973 				enlightened_vmcs = false;
7974 				break;
7975 			}
7976 		}
7977 
7978 		if (enlightened_vmcs) {
7979 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7980 			static_branch_enable(&enable_evmcs);
7981 		}
7982 
7983 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7984 			vmx_x86_ops.enable_direct_tlbflush
7985 				= hv_enable_direct_tlbflush;
7986 
7987 	} else {
7988 		enlightened_vmcs = false;
7989 	}
7990 #endif
7991 
7992 	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7993 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
7994 	if (r)
7995 		return r;
7996 
7997 	/*
7998 	 * Must be called after kvm_init() so enable_ept is properly set
7999 	 * up. Hand the parameter mitigation value in which was stored in
8000 	 * the pre module init parser. If no parameter was given, it will
8001 	 * contain 'auto' which will be turned into the default 'cond'
8002 	 * mitigation mode.
8003 	 */
8004 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8005 	if (r) {
8006 		vmx_exit();
8007 		return r;
8008 	}
8009 
8010 #ifdef CONFIG_KEXEC_CORE
8011 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8012 			   crash_vmclear_local_loaded_vmcss);
8013 #endif
8014 	vmx_check_vmcs12_offsets();
8015 
8016 	return 0;
8017 }
8018 module_init(vmx_init);
8019