1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/io.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/kexec.h>
40 #include <asm/perf_event.h>
41 #include <asm/mce.h>
42 #include <asm/mmu_context.h>
43 #include <asm/mshyperv.h>
44 #include <asm/spec-ctrl.h>
45 #include <asm/virtext.h>
46 #include <asm/vmx.h>
47
48 #include "capabilities.h"
49 #include "cpuid.h"
50 #include "evmcs.h"
51 #include "irq.h"
52 #include "kvm_cache_regs.h"
53 #include "lapic.h"
54 #include "mmu.h"
55 #include "nested.h"
56 #include "ops.h"
57 #include "pmu.h"
58 #include "trace.h"
59 #include "vmcs.h"
60 #include "vmcs12.h"
61 #include "vmx.h"
62 #include "x86.h"
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 static const struct x86_cpu_id vmx_cpu_id[] = {
68 X86_FEATURE_MATCH(X86_FEATURE_VMX),
69 {}
70 };
71 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
72
73 bool __read_mostly enable_vpid = 1;
74 module_param_named(vpid, enable_vpid, bool, 0444);
75
76 static bool __read_mostly enable_vnmi = 1;
77 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
78
79 bool __read_mostly flexpriority_enabled = 1;
80 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
81
82 bool __read_mostly enable_ept = 1;
83 module_param_named(ept, enable_ept, bool, S_IRUGO);
84
85 bool __read_mostly enable_unrestricted_guest = 1;
86 module_param_named(unrestricted_guest,
87 enable_unrestricted_guest, bool, S_IRUGO);
88
89 bool __read_mostly enable_ept_ad_bits = 1;
90 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
91
92 static bool __read_mostly emulate_invalid_guest_state = true;
93 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
94
95 static bool __read_mostly fasteoi = 1;
96 module_param(fasteoi, bool, S_IRUGO);
97
98 static bool __read_mostly enable_apicv = 1;
99 module_param(enable_apicv, bool, S_IRUGO);
100
101 /*
102 * If nested=1, nested virtualization is supported, i.e., guests may use
103 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
104 * use VMX instructions.
105 */
106 static bool __read_mostly nested = 1;
107 module_param(nested, bool, S_IRUGO);
108
109 static u64 __read_mostly host_xss;
110
111 bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
113
114 static bool __read_mostly dump_invalid_vmcs = 0;
115 module_param(dump_invalid_vmcs, bool, 0644);
116
117 #define MSR_BITMAP_MODE_X2APIC 1
118 #define MSR_BITMAP_MODE_X2APIC_APICV 2
119
120 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
121
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
125 #ifdef CONFIG_X86_64
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
127 #endif
128
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON \
132 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
133 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS \
135 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
136 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
137
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147 RTIT_STATUS_BYTECNT))
148
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150 (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151
152 /*
153 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154 * ple_gap: upper bound on the amount of time between two successive
155 * executions of PAUSE in a loop. Also indicate if ple enabled.
156 * According to test, this time is usually smaller than 128 cycles.
157 * ple_window: upper bound on the amount of time a guest is allowed to execute
158 * in a PAUSE loop. Tests indicate that most spinlocks are held for
159 * less than 2^12 cycles
160 * Time is measured based on a counter that runs at the same rate as the TSC,
161 * refer SDM volume 3b section 21.6.13 & 22.1.3.
162 */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191
192 static const struct {
193 const char *option;
194 bool for_parse;
195 } vmentry_l1d_param[] = {
196 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
197 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
198 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
199 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
200 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209 struct page *page;
210 unsigned int i;
211
212 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
213 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
214 return 0;
215 }
216
217 if (!enable_ept) {
218 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
219 return 0;
220 }
221
222 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
223 u64 msr;
224
225 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
226 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
227 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
228 return 0;
229 }
230 }
231
232 /* If set to auto use the default l1tf mitigation method */
233 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
234 switch (l1tf_mitigation) {
235 case L1TF_MITIGATION_OFF:
236 l1tf = VMENTER_L1D_FLUSH_NEVER;
237 break;
238 case L1TF_MITIGATION_FLUSH_NOWARN:
239 case L1TF_MITIGATION_FLUSH:
240 case L1TF_MITIGATION_FLUSH_NOSMT:
241 l1tf = VMENTER_L1D_FLUSH_COND;
242 break;
243 case L1TF_MITIGATION_FULL:
244 case L1TF_MITIGATION_FULL_FORCE:
245 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
246 break;
247 }
248 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
249 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
250 }
251
252 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
253 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
254 /*
255 * This allocation for vmx_l1d_flush_pages is not tied to a VM
256 * lifetime and so should not be charged to a memcg.
257 */
258 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
259 if (!page)
260 return -ENOMEM;
261 vmx_l1d_flush_pages = page_address(page);
262
263 /*
264 * Initialize each page with a different pattern in
265 * order to protect against KSM in the nested
266 * virtualization case.
267 */
268 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
269 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
270 PAGE_SIZE);
271 }
272 }
273
274 l1tf_vmx_mitigation = l1tf;
275
276 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
277 static_branch_enable(&vmx_l1d_should_flush);
278 else
279 static_branch_disable(&vmx_l1d_should_flush);
280
281 if (l1tf == VMENTER_L1D_FLUSH_COND)
282 static_branch_enable(&vmx_l1d_flush_cond);
283 else
284 static_branch_disable(&vmx_l1d_flush_cond);
285 return 0;
286 }
287
vmentry_l1d_flush_parse(const char * s)288 static int vmentry_l1d_flush_parse(const char *s)
289 {
290 unsigned int i;
291
292 if (s) {
293 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
294 if (vmentry_l1d_param[i].for_parse &&
295 sysfs_streq(s, vmentry_l1d_param[i].option))
296 return i;
297 }
298 }
299 return -EINVAL;
300 }
301
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)302 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
303 {
304 int l1tf, ret;
305
306 l1tf = vmentry_l1d_flush_parse(s);
307 if (l1tf < 0)
308 return l1tf;
309
310 if (!boot_cpu_has(X86_BUG_L1TF))
311 return 0;
312
313 /*
314 * Has vmx_init() run already? If not then this is the pre init
315 * parameter parsing. In that case just store the value and let
316 * vmx_init() do the proper setup after enable_ept has been
317 * established.
318 */
319 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
320 vmentry_l1d_flush_param = l1tf;
321 return 0;
322 }
323
324 mutex_lock(&vmx_l1d_flush_mutex);
325 ret = vmx_setup_l1d_flush(l1tf);
326 mutex_unlock(&vmx_l1d_flush_mutex);
327 return ret;
328 }
329
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)330 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
331 {
332 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
333 return sprintf(s, "???\n");
334
335 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
336 }
337
338 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
339 .set = vmentry_l1d_flush_set,
340 .get = vmentry_l1d_flush_get,
341 };
342 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
343
344 static bool guest_state_valid(struct kvm_vcpu *vcpu);
345 static u32 vmx_segment_access_rights(struct kvm_segment *var);
346 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
347 u32 msr, int type);
348
349 void vmx_vmexit(void);
350
351 #define vmx_insn_failed(fmt...) \
352 do { \
353 WARN_ONCE(1, fmt); \
354 pr_warn_ratelimited(fmt); \
355 } while (0)
356
vmread_error(unsigned long field,bool fault)357 asmlinkage void vmread_error(unsigned long field, bool fault)
358 {
359 if (fault)
360 kvm_spurious_fault();
361 else
362 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
363 }
364
vmwrite_error(unsigned long field,unsigned long value)365 noinline void vmwrite_error(unsigned long field, unsigned long value)
366 {
367 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
368 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
369 }
370
vmclear_error(struct vmcs * vmcs,u64 phys_addr)371 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
372 {
373 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
374 }
375
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)376 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
377 {
378 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
379 }
380
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)381 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
382 {
383 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
384 ext, vpid, gva);
385 }
386
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)387 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
388 {
389 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
390 ext, eptp, gpa);
391 }
392
393 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
394 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
395 /*
396 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
397 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
398 */
399 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
400
401 /*
402 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
403 * can find which vCPU should be waken up.
404 */
405 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
406 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
407
408 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
409 static DEFINE_SPINLOCK(vmx_vpid_lock);
410
411 struct vmcs_config vmcs_config;
412 struct vmx_capability vmx_capability;
413
414 #define VMX_SEGMENT_FIELD(seg) \
415 [VCPU_SREG_##seg] = { \
416 .selector = GUEST_##seg##_SELECTOR, \
417 .base = GUEST_##seg##_BASE, \
418 .limit = GUEST_##seg##_LIMIT, \
419 .ar_bytes = GUEST_##seg##_AR_BYTES, \
420 }
421
422 static const struct kvm_vmx_segment_field {
423 unsigned selector;
424 unsigned base;
425 unsigned limit;
426 unsigned ar_bytes;
427 } kvm_vmx_segment_fields[] = {
428 VMX_SEGMENT_FIELD(CS),
429 VMX_SEGMENT_FIELD(DS),
430 VMX_SEGMENT_FIELD(ES),
431 VMX_SEGMENT_FIELD(FS),
432 VMX_SEGMENT_FIELD(GS),
433 VMX_SEGMENT_FIELD(SS),
434 VMX_SEGMENT_FIELD(TR),
435 VMX_SEGMENT_FIELD(LDTR),
436 };
437
438 u64 host_efer;
439 static unsigned long host_idt_base;
440
441 /*
442 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
443 * will emulate SYSCALL in legacy mode if the vendor string in guest
444 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
445 * support this emulation, IA32_STAR must always be included in
446 * vmx_msr_index[], even in i386 builds.
447 */
448 const u32 vmx_msr_index[] = {
449 #ifdef CONFIG_X86_64
450 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
451 #endif
452 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
453 };
454
455 #if IS_ENABLED(CONFIG_HYPERV)
456 static bool __read_mostly enlightened_vmcs = true;
457 module_param(enlightened_vmcs, bool, 0444);
458
459 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
check_ept_pointer_match(struct kvm * kvm)460 static void check_ept_pointer_match(struct kvm *kvm)
461 {
462 struct kvm_vcpu *vcpu;
463 u64 tmp_eptp = INVALID_PAGE;
464 int i;
465
466 kvm_for_each_vcpu(i, vcpu, kvm) {
467 if (!VALID_PAGE(tmp_eptp)) {
468 tmp_eptp = to_vmx(vcpu)->ept_pointer;
469 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
470 to_kvm_vmx(kvm)->ept_pointers_match
471 = EPT_POINTERS_MISMATCH;
472 return;
473 }
474 }
475
476 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
477 }
478
kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list * flush,void * data)479 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
480 void *data)
481 {
482 struct kvm_tlb_range *range = data;
483
484 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
485 range->pages);
486 }
487
__hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_vcpu * vcpu,struct kvm_tlb_range * range)488 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
489 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
490 {
491 u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
492
493 /*
494 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
495 * of the base of EPT PML4 table, strip off EPT configuration
496 * information.
497 */
498 if (range)
499 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
500 kvm_fill_hv_flush_list_func, (void *)range);
501 else
502 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
503 }
504
hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_tlb_range * range)505 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
506 struct kvm_tlb_range *range)
507 {
508 struct kvm_vcpu *vcpu;
509 int ret = 0, i;
510
511 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
512
513 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
514 check_ept_pointer_match(kvm);
515
516 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
517 kvm_for_each_vcpu(i, vcpu, kvm) {
518 /* If ept_pointer is invalid pointer, bypass flush request. */
519 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
520 ret |= __hv_remote_flush_tlb_with_range(
521 kvm, vcpu, range);
522 }
523 } else {
524 ret = __hv_remote_flush_tlb_with_range(kvm,
525 kvm_get_vcpu(kvm, 0), range);
526 }
527
528 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
529 return ret;
530 }
hv_remote_flush_tlb(struct kvm * kvm)531 static int hv_remote_flush_tlb(struct kvm *kvm)
532 {
533 return hv_remote_flush_tlb_with_range(kvm, NULL);
534 }
535
hv_enable_direct_tlbflush(struct kvm_vcpu * vcpu)536 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
537 {
538 struct hv_enlightened_vmcs *evmcs;
539 struct hv_partition_assist_pg **p_hv_pa_pg =
540 &vcpu->kvm->arch.hyperv.hv_pa_pg;
541 /*
542 * Synthetic VM-Exit is not enabled in current code and so All
543 * evmcs in singe VM shares same assist page.
544 */
545 if (!*p_hv_pa_pg)
546 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
547
548 if (!*p_hv_pa_pg)
549 return -ENOMEM;
550
551 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
552
553 evmcs->partition_assist_page =
554 __pa(*p_hv_pa_pg);
555 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
556 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
557
558 return 0;
559 }
560
561 #endif /* IS_ENABLED(CONFIG_HYPERV) */
562
563 /*
564 * Comment's format: document - errata name - stepping - processor name.
565 * Refer from
566 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
567 */
568 static u32 vmx_preemption_cpu_tfms[] = {
569 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
570 0x000206E6,
571 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
572 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
573 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
574 0x00020652,
575 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
576 0x00020655,
577 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
578 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
579 /*
580 * 320767.pdf - AAP86 - B1 -
581 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
582 */
583 0x000106E5,
584 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
585 0x000106A0,
586 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
587 0x000106A1,
588 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
589 0x000106A4,
590 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
591 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
592 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
593 0x000106A5,
594 /* Xeon E3-1220 V2 */
595 0x000306A8,
596 };
597
cpu_has_broken_vmx_preemption_timer(void)598 static inline bool cpu_has_broken_vmx_preemption_timer(void)
599 {
600 u32 eax = cpuid_eax(0x00000001), i;
601
602 /* Clear the reserved bits */
603 eax &= ~(0x3U << 14 | 0xfU << 28);
604 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
605 if (eax == vmx_preemption_cpu_tfms[i])
606 return true;
607
608 return false;
609 }
610
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)611 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
612 {
613 return flexpriority_enabled && lapic_in_kernel(vcpu);
614 }
615
report_flexpriority(void)616 static inline bool report_flexpriority(void)
617 {
618 return flexpriority_enabled;
619 }
620
__find_msr_index(struct vcpu_vmx * vmx,u32 msr)621 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
622 {
623 int i;
624
625 for (i = 0; i < vmx->nmsrs; ++i)
626 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
627 return i;
628 return -1;
629 }
630
find_msr_entry(struct vcpu_vmx * vmx,u32 msr)631 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
632 {
633 int i;
634
635 i = __find_msr_index(vmx, msr);
636 if (i >= 0)
637 return &vmx->guest_msrs[i];
638 return NULL;
639 }
640
loaded_vmcs_init(struct loaded_vmcs * loaded_vmcs)641 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
642 {
643 vmcs_clear(loaded_vmcs->vmcs);
644 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
645 vmcs_clear(loaded_vmcs->shadow_vmcs);
646 loaded_vmcs->cpu = -1;
647 loaded_vmcs->launched = 0;
648 }
649
650 #ifdef CONFIG_KEXEC_CORE
651 /*
652 * This bitmap is used to indicate whether the vmclear
653 * operation is enabled on all cpus. All disabled by
654 * default.
655 */
656 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
657
crash_enable_local_vmclear(int cpu)658 static inline void crash_enable_local_vmclear(int cpu)
659 {
660 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
661 }
662
crash_disable_local_vmclear(int cpu)663 static inline void crash_disable_local_vmclear(int cpu)
664 {
665 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
666 }
667
crash_local_vmclear_enabled(int cpu)668 static inline int crash_local_vmclear_enabled(int cpu)
669 {
670 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
671 }
672
crash_vmclear_local_loaded_vmcss(void)673 static void crash_vmclear_local_loaded_vmcss(void)
674 {
675 int cpu = raw_smp_processor_id();
676 struct loaded_vmcs *v;
677
678 if (!crash_local_vmclear_enabled(cpu))
679 return;
680
681 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
682 loaded_vmcss_on_cpu_link)
683 vmcs_clear(v->vmcs);
684 }
685 #else
crash_enable_local_vmclear(int cpu)686 static inline void crash_enable_local_vmclear(int cpu) { }
crash_disable_local_vmclear(int cpu)687 static inline void crash_disable_local_vmclear(int cpu) { }
688 #endif /* CONFIG_KEXEC_CORE */
689
__loaded_vmcs_clear(void * arg)690 static void __loaded_vmcs_clear(void *arg)
691 {
692 struct loaded_vmcs *loaded_vmcs = arg;
693 int cpu = raw_smp_processor_id();
694
695 if (loaded_vmcs->cpu != cpu)
696 return; /* vcpu migration can race with cpu offline */
697 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
698 per_cpu(current_vmcs, cpu) = NULL;
699 crash_disable_local_vmclear(cpu);
700 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
701
702 /*
703 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
704 * is before setting loaded_vmcs->vcpu to -1 which is done in
705 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
706 * then adds the vmcs into percpu list before it is deleted.
707 */
708 smp_wmb();
709
710 loaded_vmcs_init(loaded_vmcs);
711 crash_enable_local_vmclear(cpu);
712 }
713
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)714 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
715 {
716 int cpu = loaded_vmcs->cpu;
717
718 if (cpu != -1)
719 smp_call_function_single(cpu,
720 __loaded_vmcs_clear, loaded_vmcs, 1);
721 }
722
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)723 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
724 unsigned field)
725 {
726 bool ret;
727 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
728
729 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
730 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
731 vmx->segment_cache.bitmask = 0;
732 }
733 ret = vmx->segment_cache.bitmask & mask;
734 vmx->segment_cache.bitmask |= mask;
735 return ret;
736 }
737
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)738 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
739 {
740 u16 *p = &vmx->segment_cache.seg[seg].selector;
741
742 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
743 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
744 return *p;
745 }
746
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)747 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
748 {
749 ulong *p = &vmx->segment_cache.seg[seg].base;
750
751 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
752 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
753 return *p;
754 }
755
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)756 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
757 {
758 u32 *p = &vmx->segment_cache.seg[seg].limit;
759
760 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
761 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
762 return *p;
763 }
764
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)765 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
766 {
767 u32 *p = &vmx->segment_cache.seg[seg].ar;
768
769 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
770 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
771 return *p;
772 }
773
update_exception_bitmap(struct kvm_vcpu * vcpu)774 void update_exception_bitmap(struct kvm_vcpu *vcpu)
775 {
776 u32 eb;
777
778 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
779 (1u << DB_VECTOR) | (1u << AC_VECTOR);
780 /*
781 * Guest access to VMware backdoor ports could legitimately
782 * trigger #GP because of TSS I/O permission bitmap.
783 * We intercept those #GP and allow access to them anyway
784 * as VMware does.
785 */
786 if (enable_vmware_backdoor)
787 eb |= (1u << GP_VECTOR);
788 if ((vcpu->guest_debug &
789 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
790 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
791 eb |= 1u << BP_VECTOR;
792 if (to_vmx(vcpu)->rmode.vm86_active)
793 eb = ~0;
794 if (enable_ept)
795 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
796
797 /* When we are running a nested L2 guest and L1 specified for it a
798 * certain exception bitmap, we must trap the same exceptions and pass
799 * them to L1. When running L2, we will only handle the exceptions
800 * specified above if L1 did not want them.
801 */
802 if (is_guest_mode(vcpu))
803 eb |= get_vmcs12(vcpu)->exception_bitmap;
804
805 vmcs_write32(EXCEPTION_BITMAP, eb);
806 }
807
808 /*
809 * Check if MSR is intercepted for currently loaded MSR bitmap.
810 */
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)811 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
812 {
813 unsigned long *msr_bitmap;
814 int f = sizeof(unsigned long);
815
816 if (!cpu_has_vmx_msr_bitmap())
817 return true;
818
819 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
820
821 if (msr <= 0x1fff) {
822 return !!test_bit(msr, msr_bitmap + 0x800 / f);
823 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
824 msr &= 0x1fff;
825 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
826 }
827
828 return true;
829 }
830
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)831 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
832 unsigned long entry, unsigned long exit)
833 {
834 vm_entry_controls_clearbit(vmx, entry);
835 vm_exit_controls_clearbit(vmx, exit);
836 }
837
find_msr(struct vmx_msrs * m,unsigned int msr)838 static int find_msr(struct vmx_msrs *m, unsigned int msr)
839 {
840 unsigned int i;
841
842 for (i = 0; i < m->nr; ++i) {
843 if (m->val[i].index == msr)
844 return i;
845 }
846 return -ENOENT;
847 }
848
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)849 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
850 {
851 int i;
852 struct msr_autoload *m = &vmx->msr_autoload;
853
854 switch (msr) {
855 case MSR_EFER:
856 if (cpu_has_load_ia32_efer()) {
857 clear_atomic_switch_msr_special(vmx,
858 VM_ENTRY_LOAD_IA32_EFER,
859 VM_EXIT_LOAD_IA32_EFER);
860 return;
861 }
862 break;
863 case MSR_CORE_PERF_GLOBAL_CTRL:
864 if (cpu_has_load_perf_global_ctrl()) {
865 clear_atomic_switch_msr_special(vmx,
866 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
867 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
868 return;
869 }
870 break;
871 }
872 i = find_msr(&m->guest, msr);
873 if (i < 0)
874 goto skip_guest;
875 --m->guest.nr;
876 m->guest.val[i] = m->guest.val[m->guest.nr];
877 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
878
879 skip_guest:
880 i = find_msr(&m->host, msr);
881 if (i < 0)
882 return;
883
884 --m->host.nr;
885 m->host.val[i] = m->host.val[m->host.nr];
886 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
887 }
888
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)889 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
890 unsigned long entry, unsigned long exit,
891 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
892 u64 guest_val, u64 host_val)
893 {
894 vmcs_write64(guest_val_vmcs, guest_val);
895 if (host_val_vmcs != HOST_IA32_EFER)
896 vmcs_write64(host_val_vmcs, host_val);
897 vm_entry_controls_setbit(vmx, entry);
898 vm_exit_controls_setbit(vmx, exit);
899 }
900
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)901 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
902 u64 guest_val, u64 host_val, bool entry_only)
903 {
904 int i, j = 0;
905 struct msr_autoload *m = &vmx->msr_autoload;
906
907 switch (msr) {
908 case MSR_EFER:
909 if (cpu_has_load_ia32_efer()) {
910 add_atomic_switch_msr_special(vmx,
911 VM_ENTRY_LOAD_IA32_EFER,
912 VM_EXIT_LOAD_IA32_EFER,
913 GUEST_IA32_EFER,
914 HOST_IA32_EFER,
915 guest_val, host_val);
916 return;
917 }
918 break;
919 case MSR_CORE_PERF_GLOBAL_CTRL:
920 if (cpu_has_load_perf_global_ctrl()) {
921 add_atomic_switch_msr_special(vmx,
922 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
923 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
924 GUEST_IA32_PERF_GLOBAL_CTRL,
925 HOST_IA32_PERF_GLOBAL_CTRL,
926 guest_val, host_val);
927 return;
928 }
929 break;
930 case MSR_IA32_PEBS_ENABLE:
931 /* PEBS needs a quiescent period after being disabled (to write
932 * a record). Disabling PEBS through VMX MSR swapping doesn't
933 * provide that period, so a CPU could write host's record into
934 * guest's memory.
935 */
936 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
937 }
938
939 i = find_msr(&m->guest, msr);
940 if (!entry_only)
941 j = find_msr(&m->host, msr);
942
943 if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
944 (j < 0 && m->host.nr == NR_AUTOLOAD_MSRS)) {
945 printk_once(KERN_WARNING "Not enough msr switch entries. "
946 "Can't add msr %x\n", msr);
947 return;
948 }
949 if (i < 0) {
950 i = m->guest.nr++;
951 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
952 }
953 m->guest.val[i].index = msr;
954 m->guest.val[i].value = guest_val;
955
956 if (entry_only)
957 return;
958
959 if (j < 0) {
960 j = m->host.nr++;
961 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
962 }
963 m->host.val[j].index = msr;
964 m->host.val[j].value = host_val;
965 }
966
update_transition_efer(struct vcpu_vmx * vmx,int efer_offset)967 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
968 {
969 u64 guest_efer = vmx->vcpu.arch.efer;
970 u64 ignore_bits = 0;
971
972 /* Shadow paging assumes NX to be available. */
973 if (!enable_ept)
974 guest_efer |= EFER_NX;
975
976 /*
977 * LMA and LME handled by hardware; SCE meaningless outside long mode.
978 */
979 ignore_bits |= EFER_SCE;
980 #ifdef CONFIG_X86_64
981 ignore_bits |= EFER_LMA | EFER_LME;
982 /* SCE is meaningful only in long mode on Intel */
983 if (guest_efer & EFER_LMA)
984 ignore_bits &= ~(u64)EFER_SCE;
985 #endif
986
987 /*
988 * On EPT, we can't emulate NX, so we must switch EFER atomically.
989 * On CPUs that support "load IA32_EFER", always switch EFER
990 * atomically, since it's faster than switching it manually.
991 */
992 if (cpu_has_load_ia32_efer() ||
993 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
994 if (!(guest_efer & EFER_LMA))
995 guest_efer &= ~EFER_LME;
996 if (guest_efer != host_efer)
997 add_atomic_switch_msr(vmx, MSR_EFER,
998 guest_efer, host_efer, false);
999 else
1000 clear_atomic_switch_msr(vmx, MSR_EFER);
1001 return false;
1002 } else {
1003 clear_atomic_switch_msr(vmx, MSR_EFER);
1004
1005 guest_efer &= ~ignore_bits;
1006 guest_efer |= host_efer & ignore_bits;
1007
1008 vmx->guest_msrs[efer_offset].data = guest_efer;
1009 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1010
1011 return true;
1012 }
1013 }
1014
1015 #ifdef CONFIG_X86_32
1016 /*
1017 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1018 * VMCS rather than the segment table. KVM uses this helper to figure
1019 * out the current bases to poke them into the VMCS before entry.
1020 */
segment_base(u16 selector)1021 static unsigned long segment_base(u16 selector)
1022 {
1023 struct desc_struct *table;
1024 unsigned long v;
1025
1026 if (!(selector & ~SEGMENT_RPL_MASK))
1027 return 0;
1028
1029 table = get_current_gdt_ro();
1030
1031 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1032 u16 ldt_selector = kvm_read_ldt();
1033
1034 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1035 return 0;
1036
1037 table = (struct desc_struct *)segment_base(ldt_selector);
1038 }
1039 v = get_desc_base(&table[selector >> 3]);
1040 return v;
1041 }
1042 #endif
1043
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1044 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1045 {
1046 u32 i;
1047
1048 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1049 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1050 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1051 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1052 for (i = 0; i < addr_range; i++) {
1053 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1054 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1055 }
1056 }
1057
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1058 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1059 {
1060 u32 i;
1061
1062 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1063 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1064 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1065 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1066 for (i = 0; i < addr_range; i++) {
1067 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1068 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1069 }
1070 }
1071
pt_guest_enter(struct vcpu_vmx * vmx)1072 static void pt_guest_enter(struct vcpu_vmx *vmx)
1073 {
1074 if (pt_mode == PT_MODE_SYSTEM)
1075 return;
1076
1077 /*
1078 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1079 * Save host state before VM entry.
1080 */
1081 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1082 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1083 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1084 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1085 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1086 }
1087 }
1088
pt_guest_exit(struct vcpu_vmx * vmx)1089 static void pt_guest_exit(struct vcpu_vmx *vmx)
1090 {
1091 if (pt_mode == PT_MODE_SYSTEM)
1092 return;
1093
1094 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1095 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1096 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1097 }
1098
1099 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1100 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1101 }
1102
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1103 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1104 unsigned long fs_base, unsigned long gs_base)
1105 {
1106 if (unlikely(fs_sel != host->fs_sel)) {
1107 if (!(fs_sel & 7))
1108 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1109 else
1110 vmcs_write16(HOST_FS_SELECTOR, 0);
1111 host->fs_sel = fs_sel;
1112 }
1113 if (unlikely(gs_sel != host->gs_sel)) {
1114 if (!(gs_sel & 7))
1115 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1116 else
1117 vmcs_write16(HOST_GS_SELECTOR, 0);
1118 host->gs_sel = gs_sel;
1119 }
1120 if (unlikely(fs_base != host->fs_base)) {
1121 vmcs_writel(HOST_FS_BASE, fs_base);
1122 host->fs_base = fs_base;
1123 }
1124 if (unlikely(gs_base != host->gs_base)) {
1125 vmcs_writel(HOST_GS_BASE, gs_base);
1126 host->gs_base = gs_base;
1127 }
1128 }
1129
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1130 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1131 {
1132 struct vcpu_vmx *vmx = to_vmx(vcpu);
1133 struct vmcs_host_state *host_state;
1134 #ifdef CONFIG_X86_64
1135 int cpu = raw_smp_processor_id();
1136 #endif
1137 unsigned long fs_base, gs_base;
1138 u16 fs_sel, gs_sel;
1139 int i;
1140
1141 vmx->req_immediate_exit = false;
1142
1143 /*
1144 * Note that guest MSRs to be saved/restored can also be changed
1145 * when guest state is loaded. This happens when guest transitions
1146 * to/from long-mode by setting MSR_EFER.LMA.
1147 */
1148 if (!vmx->guest_msrs_ready) {
1149 vmx->guest_msrs_ready = true;
1150 for (i = 0; i < vmx->save_nmsrs; ++i)
1151 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1152 vmx->guest_msrs[i].data,
1153 vmx->guest_msrs[i].mask);
1154
1155 }
1156 if (vmx->guest_state_loaded)
1157 return;
1158
1159 host_state = &vmx->loaded_vmcs->host_state;
1160
1161 /*
1162 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1163 * allow segment selectors with cpl > 0 or ti == 1.
1164 */
1165 host_state->ldt_sel = kvm_read_ldt();
1166
1167 #ifdef CONFIG_X86_64
1168 savesegment(ds, host_state->ds_sel);
1169 savesegment(es, host_state->es_sel);
1170
1171 gs_base = cpu_kernelmode_gs_base(cpu);
1172 if (likely(is_64bit_mm(current->mm))) {
1173 save_fsgs_for_kvm();
1174 fs_sel = current->thread.fsindex;
1175 gs_sel = current->thread.gsindex;
1176 fs_base = current->thread.fsbase;
1177 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1178 } else {
1179 savesegment(fs, fs_sel);
1180 savesegment(gs, gs_sel);
1181 fs_base = read_msr(MSR_FS_BASE);
1182 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1183 }
1184
1185 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1186 #else
1187 savesegment(fs, fs_sel);
1188 savesegment(gs, gs_sel);
1189 fs_base = segment_base(fs_sel);
1190 gs_base = segment_base(gs_sel);
1191 #endif
1192
1193 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1194 vmx->guest_state_loaded = true;
1195 }
1196
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1197 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1198 {
1199 struct vmcs_host_state *host_state;
1200
1201 if (!vmx->guest_state_loaded)
1202 return;
1203
1204 host_state = &vmx->loaded_vmcs->host_state;
1205
1206 ++vmx->vcpu.stat.host_state_reload;
1207
1208 #ifdef CONFIG_X86_64
1209 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1210 #endif
1211 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1212 kvm_load_ldt(host_state->ldt_sel);
1213 #ifdef CONFIG_X86_64
1214 load_gs_index(host_state->gs_sel);
1215 #else
1216 loadsegment(gs, host_state->gs_sel);
1217 #endif
1218 }
1219 if (host_state->fs_sel & 7)
1220 loadsegment(fs, host_state->fs_sel);
1221 #ifdef CONFIG_X86_64
1222 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1223 loadsegment(ds, host_state->ds_sel);
1224 loadsegment(es, host_state->es_sel);
1225 }
1226 #endif
1227 invalidate_tss_limit();
1228 #ifdef CONFIG_X86_64
1229 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1230 #endif
1231 load_fixmap_gdt(raw_smp_processor_id());
1232 vmx->guest_state_loaded = false;
1233 vmx->guest_msrs_ready = false;
1234 }
1235
1236 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1237 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1238 {
1239 preempt_disable();
1240 if (vmx->guest_state_loaded)
1241 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1242 preempt_enable();
1243 return vmx->msr_guest_kernel_gs_base;
1244 }
1245
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1246 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1247 {
1248 preempt_disable();
1249 if (vmx->guest_state_loaded)
1250 wrmsrl(MSR_KERNEL_GS_BASE, data);
1251 preempt_enable();
1252 vmx->msr_guest_kernel_gs_base = data;
1253 }
1254 #endif
1255
vmx_vcpu_pi_load(struct kvm_vcpu * vcpu,int cpu)1256 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1257 {
1258 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1259 struct pi_desc old, new;
1260 unsigned int dest;
1261
1262 /*
1263 * In case of hot-plug or hot-unplug, we may have to undo
1264 * vmx_vcpu_pi_put even if there is no assigned device. And we
1265 * always keep PI.NDST up to date for simplicity: it makes the
1266 * code easier, and CPU migration is not a fast path.
1267 */
1268 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1269 return;
1270
1271 /*
1272 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1273 * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1274 * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1275 * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1276 * correctly.
1277 */
1278 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1279 pi_clear_sn(pi_desc);
1280 goto after_clear_sn;
1281 }
1282
1283 /* The full case. */
1284 do {
1285 old.control = new.control = pi_desc->control;
1286
1287 dest = cpu_physical_id(cpu);
1288
1289 if (x2apic_enabled())
1290 new.ndst = dest;
1291 else
1292 new.ndst = (dest << 8) & 0xFF00;
1293
1294 new.sn = 0;
1295 } while (cmpxchg64(&pi_desc->control, old.control,
1296 new.control) != old.control);
1297
1298 after_clear_sn:
1299
1300 /*
1301 * Clear SN before reading the bitmap. The VT-d firmware
1302 * writes the bitmap and reads SN atomically (5.2.3 in the
1303 * spec), so it doesn't really have a memory barrier that
1304 * pairs with this, but we cannot do that and we need one.
1305 */
1306 smp_mb__after_atomic();
1307
1308 if (!pi_is_pir_empty(pi_desc))
1309 pi_set_on(pi_desc);
1310 }
1311
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu)1312 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1313 {
1314 struct vcpu_vmx *vmx = to_vmx(vcpu);
1315 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1316
1317 if (!already_loaded) {
1318 loaded_vmcs_clear(vmx->loaded_vmcs);
1319 local_irq_disable();
1320 crash_disable_local_vmclear(cpu);
1321
1322 /*
1323 * Read loaded_vmcs->cpu should be before fetching
1324 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1325 * See the comments in __loaded_vmcs_clear().
1326 */
1327 smp_rmb();
1328
1329 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1330 &per_cpu(loaded_vmcss_on_cpu, cpu));
1331 crash_enable_local_vmclear(cpu);
1332 local_irq_enable();
1333 }
1334
1335 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1336 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1337 vmcs_load(vmx->loaded_vmcs->vmcs);
1338 indirect_branch_prediction_barrier();
1339 }
1340
1341 if (!already_loaded) {
1342 void *gdt = get_current_gdt_ro();
1343 unsigned long sysenter_esp;
1344
1345 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1346
1347 /*
1348 * Linux uses per-cpu TSS and GDT, so set these when switching
1349 * processors. See 22.2.4.
1350 */
1351 vmcs_writel(HOST_TR_BASE,
1352 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1353 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1354
1355 /*
1356 * VM exits change the host TR limit to 0x67 after a VM
1357 * exit. This is okay, since 0x67 covers everything except
1358 * the IO bitmap and have have code to handle the IO bitmap
1359 * being lost after a VM exit.
1360 */
1361 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1362
1363 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1364 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1365
1366 vmx->loaded_vmcs->cpu = cpu;
1367 }
1368
1369 /* Setup TSC multiplier */
1370 if (kvm_has_tsc_control &&
1371 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1372 decache_tsc_multiplier(vmx);
1373 }
1374
1375 /*
1376 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1377 * vcpu mutex is already taken.
1378 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1379 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1380 {
1381 struct vcpu_vmx *vmx = to_vmx(vcpu);
1382
1383 vmx_vcpu_load_vmcs(vcpu, cpu);
1384
1385 vmx_vcpu_pi_load(vcpu, cpu);
1386
1387 vmx->host_pkru = read_pkru();
1388 vmx->host_debugctlmsr = get_debugctlmsr();
1389 }
1390
vmx_vcpu_pi_put(struct kvm_vcpu * vcpu)1391 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1392 {
1393 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1394
1395 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1396 !irq_remapping_cap(IRQ_POSTING_CAP) ||
1397 !kvm_vcpu_apicv_active(vcpu))
1398 return;
1399
1400 /* Set SN when the vCPU is preempted */
1401 if (vcpu->preempted)
1402 pi_set_sn(pi_desc);
1403 }
1404
vmx_vcpu_put(struct kvm_vcpu * vcpu)1405 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1406 {
1407 vmx_vcpu_pi_put(vcpu);
1408
1409 vmx_prepare_switch_to_host(to_vmx(vcpu));
1410 }
1411
emulation_required(struct kvm_vcpu * vcpu)1412 static bool emulation_required(struct kvm_vcpu *vcpu)
1413 {
1414 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1415 }
1416
1417 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1418
vmx_get_rflags(struct kvm_vcpu * vcpu)1419 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1420 {
1421 unsigned long rflags, save_rflags;
1422
1423 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1424 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1425 rflags = vmcs_readl(GUEST_RFLAGS);
1426 if (to_vmx(vcpu)->rmode.vm86_active) {
1427 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1428 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1429 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1430 }
1431 to_vmx(vcpu)->rflags = rflags;
1432 }
1433 return to_vmx(vcpu)->rflags;
1434 }
1435
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1436 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1437 {
1438 unsigned long old_rflags = vmx_get_rflags(vcpu);
1439
1440 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1441 to_vmx(vcpu)->rflags = rflags;
1442 if (to_vmx(vcpu)->rmode.vm86_active) {
1443 to_vmx(vcpu)->rmode.save_rflags = rflags;
1444 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1445 }
1446 vmcs_writel(GUEST_RFLAGS, rflags);
1447
1448 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1449 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1450 }
1451
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1452 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1453 {
1454 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1455 int ret = 0;
1456
1457 if (interruptibility & GUEST_INTR_STATE_STI)
1458 ret |= KVM_X86_SHADOW_INT_STI;
1459 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1460 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1461
1462 return ret;
1463 }
1464
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1465 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1466 {
1467 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1468 u32 interruptibility = interruptibility_old;
1469
1470 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1471
1472 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1473 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1474 else if (mask & KVM_X86_SHADOW_INT_STI)
1475 interruptibility |= GUEST_INTR_STATE_STI;
1476
1477 if ((interruptibility != interruptibility_old))
1478 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1479 }
1480
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1481 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1482 {
1483 struct vcpu_vmx *vmx = to_vmx(vcpu);
1484 unsigned long value;
1485
1486 /*
1487 * Any MSR write that attempts to change bits marked reserved will
1488 * case a #GP fault.
1489 */
1490 if (data & vmx->pt_desc.ctl_bitmask)
1491 return 1;
1492
1493 /*
1494 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1495 * result in a #GP unless the same write also clears TraceEn.
1496 */
1497 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1498 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1499 return 1;
1500
1501 /*
1502 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1503 * and FabricEn would cause #GP, if
1504 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1505 */
1506 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1507 !(data & RTIT_CTL_FABRIC_EN) &&
1508 !intel_pt_validate_cap(vmx->pt_desc.caps,
1509 PT_CAP_single_range_output))
1510 return 1;
1511
1512 /*
1513 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1514 * utilize encodings marked reserved will casue a #GP fault.
1515 */
1516 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1517 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1518 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1519 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1520 return 1;
1521 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1522 PT_CAP_cycle_thresholds);
1523 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1524 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1525 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1526 return 1;
1527 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1528 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1529 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1530 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1531 return 1;
1532
1533 /*
1534 * If ADDRx_CFG is reserved or the encodings is >2 will
1535 * cause a #GP fault.
1536 */
1537 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1538 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1539 return 1;
1540 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1541 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1542 return 1;
1543 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1544 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1545 return 1;
1546 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1547 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1548 return 1;
1549
1550 return 0;
1551 }
1552
skip_emulated_instruction(struct kvm_vcpu * vcpu)1553 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1554 {
1555 unsigned long rip;
1556
1557 /*
1558 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1559 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1560 * set when EPT misconfig occurs. In practice, real hardware updates
1561 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1562 * (namely Hyper-V) don't set it due to it being undefined behavior,
1563 * i.e. we end up advancing IP with some random value.
1564 */
1565 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1566 to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1567 rip = kvm_rip_read(vcpu);
1568 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1569 kvm_rip_write(vcpu, rip);
1570 } else {
1571 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1572 return 0;
1573 }
1574
1575 /* skipping an emulated instruction also counts */
1576 vmx_set_interrupt_shadow(vcpu, 0);
1577
1578 return 1;
1579 }
1580
vmx_clear_hlt(struct kvm_vcpu * vcpu)1581 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1582 {
1583 /*
1584 * Ensure that we clear the HLT state in the VMCS. We don't need to
1585 * explicitly skip the instruction because if the HLT state is set,
1586 * then the instruction is already executing and RIP has already been
1587 * advanced.
1588 */
1589 if (kvm_hlt_in_guest(vcpu->kvm) &&
1590 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1591 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1592 }
1593
vmx_queue_exception(struct kvm_vcpu * vcpu)1594 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1595 {
1596 struct vcpu_vmx *vmx = to_vmx(vcpu);
1597 unsigned nr = vcpu->arch.exception.nr;
1598 bool has_error_code = vcpu->arch.exception.has_error_code;
1599 u32 error_code = vcpu->arch.exception.error_code;
1600 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1601
1602 kvm_deliver_exception_payload(vcpu);
1603
1604 if (has_error_code) {
1605 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1606 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1607 }
1608
1609 if (vmx->rmode.vm86_active) {
1610 int inc_eip = 0;
1611 if (kvm_exception_is_soft(nr))
1612 inc_eip = vcpu->arch.event_exit_inst_len;
1613 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1614 return;
1615 }
1616
1617 WARN_ON_ONCE(vmx->emulation_required);
1618
1619 if (kvm_exception_is_soft(nr)) {
1620 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1621 vmx->vcpu.arch.event_exit_inst_len);
1622 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1623 } else
1624 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1625
1626 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1627
1628 vmx_clear_hlt(vcpu);
1629 }
1630
vmx_rdtscp_supported(void)1631 static bool vmx_rdtscp_supported(void)
1632 {
1633 return cpu_has_vmx_rdtscp();
1634 }
1635
vmx_invpcid_supported(void)1636 static bool vmx_invpcid_supported(void)
1637 {
1638 return cpu_has_vmx_invpcid();
1639 }
1640
1641 /*
1642 * Swap MSR entry in host/guest MSR entry array.
1643 */
move_msr_up(struct vcpu_vmx * vmx,int from,int to)1644 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1645 {
1646 struct shared_msr_entry tmp;
1647
1648 tmp = vmx->guest_msrs[to];
1649 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1650 vmx->guest_msrs[from] = tmp;
1651 }
1652
1653 /*
1654 * Set up the vmcs to automatically save and restore system
1655 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1656 * mode, as fiddling with msrs is very expensive.
1657 */
setup_msrs(struct vcpu_vmx * vmx)1658 static void setup_msrs(struct vcpu_vmx *vmx)
1659 {
1660 int save_nmsrs, index;
1661
1662 save_nmsrs = 0;
1663 #ifdef CONFIG_X86_64
1664 /*
1665 * The SYSCALL MSRs are only needed on long mode guests, and only
1666 * when EFER.SCE is set.
1667 */
1668 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1669 index = __find_msr_index(vmx, MSR_STAR);
1670 if (index >= 0)
1671 move_msr_up(vmx, index, save_nmsrs++);
1672 index = __find_msr_index(vmx, MSR_LSTAR);
1673 if (index >= 0)
1674 move_msr_up(vmx, index, save_nmsrs++);
1675 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1676 if (index >= 0)
1677 move_msr_up(vmx, index, save_nmsrs++);
1678 }
1679 #endif
1680 index = __find_msr_index(vmx, MSR_EFER);
1681 if (index >= 0 && update_transition_efer(vmx, index))
1682 move_msr_up(vmx, index, save_nmsrs++);
1683 index = __find_msr_index(vmx, MSR_TSC_AUX);
1684 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1685 move_msr_up(vmx, index, save_nmsrs++);
1686
1687 vmx->save_nmsrs = save_nmsrs;
1688 vmx->guest_msrs_ready = false;
1689
1690 if (cpu_has_vmx_msr_bitmap())
1691 vmx_update_msr_bitmap(&vmx->vcpu);
1692 }
1693
vmx_read_l1_tsc_offset(struct kvm_vcpu * vcpu)1694 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1695 {
1696 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1697
1698 if (is_guest_mode(vcpu) &&
1699 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1700 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1701
1702 return vcpu->arch.tsc_offset;
1703 }
1704
vmx_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1705 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1706 {
1707 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1708 u64 g_tsc_offset = 0;
1709
1710 /*
1711 * We're here if L1 chose not to trap WRMSR to TSC. According
1712 * to the spec, this should set L1's TSC; The offset that L1
1713 * set for L2 remains unchanged, and still needs to be added
1714 * to the newly set TSC to get L2's TSC.
1715 */
1716 if (is_guest_mode(vcpu) &&
1717 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1718 g_tsc_offset = vmcs12->tsc_offset;
1719
1720 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1721 vcpu->arch.tsc_offset - g_tsc_offset,
1722 offset);
1723 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1724 return offset + g_tsc_offset;
1725 }
1726
1727 /*
1728 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1729 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1730 * all guests if the "nested" module option is off, and can also be disabled
1731 * for a single guest by disabling its VMX cpuid bit.
1732 */
nested_vmx_allowed(struct kvm_vcpu * vcpu)1733 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1734 {
1735 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1736 }
1737
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)1738 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1739 uint64_t val)
1740 {
1741 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1742
1743 return !(val & ~valid_bits);
1744 }
1745
vmx_get_msr_feature(struct kvm_msr_entry * msr)1746 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1747 {
1748 switch (msr->index) {
1749 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1750 if (!nested)
1751 return 1;
1752 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1753 default:
1754 return 1;
1755 }
1756
1757 return 0;
1758 }
1759
1760 /*
1761 * Reads an msr value (of 'msr_index') into 'pdata'.
1762 * Returns 0 on success, non-0 otherwise.
1763 * Assumes vcpu_load() was already called.
1764 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1765 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1766 {
1767 struct vcpu_vmx *vmx = to_vmx(vcpu);
1768 struct shared_msr_entry *msr;
1769 u32 index;
1770
1771 switch (msr_info->index) {
1772 #ifdef CONFIG_X86_64
1773 case MSR_FS_BASE:
1774 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1775 break;
1776 case MSR_GS_BASE:
1777 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1778 break;
1779 case MSR_KERNEL_GS_BASE:
1780 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1781 break;
1782 #endif
1783 case MSR_EFER:
1784 return kvm_get_msr_common(vcpu, msr_info);
1785 case MSR_IA32_UMWAIT_CONTROL:
1786 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1787 return 1;
1788
1789 msr_info->data = vmx->msr_ia32_umwait_control;
1790 break;
1791 case MSR_IA32_SPEC_CTRL:
1792 if (!msr_info->host_initiated &&
1793 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1794 return 1;
1795
1796 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1797 break;
1798 case MSR_IA32_SYSENTER_CS:
1799 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1800 break;
1801 case MSR_IA32_SYSENTER_EIP:
1802 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1803 break;
1804 case MSR_IA32_SYSENTER_ESP:
1805 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1806 break;
1807 case MSR_IA32_BNDCFGS:
1808 if (!kvm_mpx_supported() ||
1809 (!msr_info->host_initiated &&
1810 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1811 return 1;
1812 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1813 break;
1814 case MSR_IA32_MCG_EXT_CTL:
1815 if (!msr_info->host_initiated &&
1816 !(vmx->msr_ia32_feature_control &
1817 FEATURE_CONTROL_LMCE))
1818 return 1;
1819 msr_info->data = vcpu->arch.mcg_ext_ctl;
1820 break;
1821 case MSR_IA32_FEATURE_CONTROL:
1822 msr_info->data = vmx->msr_ia32_feature_control;
1823 break;
1824 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1825 if (!nested_vmx_allowed(vcpu))
1826 return 1;
1827 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1828 &msr_info->data);
1829 case MSR_IA32_XSS:
1830 if (!vmx_xsaves_supported() ||
1831 (!msr_info->host_initiated &&
1832 !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
1833 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
1834 return 1;
1835 msr_info->data = vcpu->arch.ia32_xss;
1836 break;
1837 case MSR_IA32_RTIT_CTL:
1838 if (pt_mode != PT_MODE_HOST_GUEST)
1839 return 1;
1840 msr_info->data = vmx->pt_desc.guest.ctl;
1841 break;
1842 case MSR_IA32_RTIT_STATUS:
1843 if (pt_mode != PT_MODE_HOST_GUEST)
1844 return 1;
1845 msr_info->data = vmx->pt_desc.guest.status;
1846 break;
1847 case MSR_IA32_RTIT_CR3_MATCH:
1848 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1849 !intel_pt_validate_cap(vmx->pt_desc.caps,
1850 PT_CAP_cr3_filtering))
1851 return 1;
1852 msr_info->data = vmx->pt_desc.guest.cr3_match;
1853 break;
1854 case MSR_IA32_RTIT_OUTPUT_BASE:
1855 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1856 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1857 PT_CAP_topa_output) &&
1858 !intel_pt_validate_cap(vmx->pt_desc.caps,
1859 PT_CAP_single_range_output)))
1860 return 1;
1861 msr_info->data = vmx->pt_desc.guest.output_base;
1862 break;
1863 case MSR_IA32_RTIT_OUTPUT_MASK:
1864 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1865 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1866 PT_CAP_topa_output) &&
1867 !intel_pt_validate_cap(vmx->pt_desc.caps,
1868 PT_CAP_single_range_output)))
1869 return 1;
1870 msr_info->data = vmx->pt_desc.guest.output_mask;
1871 break;
1872 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1873 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1874 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1875 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1876 PT_CAP_num_address_ranges)))
1877 return 1;
1878 if (index % 2)
1879 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1880 else
1881 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1882 break;
1883 case MSR_TSC_AUX:
1884 if (!msr_info->host_initiated &&
1885 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1886 return 1;
1887 /* Else, falls through */
1888 default:
1889 msr = find_msr_entry(vmx, msr_info->index);
1890 if (msr) {
1891 msr_info->data = msr->data;
1892 break;
1893 }
1894 return kvm_get_msr_common(vcpu, msr_info);
1895 }
1896
1897 return 0;
1898 }
1899
1900 /*
1901 * Writes msr value into into the appropriate "register".
1902 * Returns 0 on success, non-0 otherwise.
1903 * Assumes vcpu_load() was already called.
1904 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1905 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1906 {
1907 struct vcpu_vmx *vmx = to_vmx(vcpu);
1908 struct shared_msr_entry *msr;
1909 int ret = 0;
1910 u32 msr_index = msr_info->index;
1911 u64 data = msr_info->data;
1912 u32 index;
1913
1914 switch (msr_index) {
1915 case MSR_EFER:
1916 ret = kvm_set_msr_common(vcpu, msr_info);
1917 break;
1918 #ifdef CONFIG_X86_64
1919 case MSR_FS_BASE:
1920 vmx_segment_cache_clear(vmx);
1921 vmcs_writel(GUEST_FS_BASE, data);
1922 break;
1923 case MSR_GS_BASE:
1924 vmx_segment_cache_clear(vmx);
1925 vmcs_writel(GUEST_GS_BASE, data);
1926 break;
1927 case MSR_KERNEL_GS_BASE:
1928 vmx_write_guest_kernel_gs_base(vmx, data);
1929 break;
1930 #endif
1931 case MSR_IA32_SYSENTER_CS:
1932 if (is_guest_mode(vcpu))
1933 get_vmcs12(vcpu)->guest_sysenter_cs = data;
1934 vmcs_write32(GUEST_SYSENTER_CS, data);
1935 break;
1936 case MSR_IA32_SYSENTER_EIP:
1937 if (is_guest_mode(vcpu))
1938 get_vmcs12(vcpu)->guest_sysenter_eip = data;
1939 vmcs_writel(GUEST_SYSENTER_EIP, data);
1940 break;
1941 case MSR_IA32_SYSENTER_ESP:
1942 if (is_guest_mode(vcpu))
1943 get_vmcs12(vcpu)->guest_sysenter_esp = data;
1944 vmcs_writel(GUEST_SYSENTER_ESP, data);
1945 break;
1946 case MSR_IA32_DEBUGCTLMSR:
1947 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1948 VM_EXIT_SAVE_DEBUG_CONTROLS)
1949 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1950
1951 ret = kvm_set_msr_common(vcpu, msr_info);
1952 break;
1953
1954 case MSR_IA32_BNDCFGS:
1955 if (!kvm_mpx_supported() ||
1956 (!msr_info->host_initiated &&
1957 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1958 return 1;
1959 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1960 (data & MSR_IA32_BNDCFGS_RSVD))
1961 return 1;
1962 vmcs_write64(GUEST_BNDCFGS, data);
1963 break;
1964 case MSR_IA32_UMWAIT_CONTROL:
1965 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1966 return 1;
1967
1968 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
1969 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
1970 return 1;
1971
1972 vmx->msr_ia32_umwait_control = data;
1973 break;
1974 case MSR_IA32_SPEC_CTRL:
1975 if (!msr_info->host_initiated &&
1976 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1977 return 1;
1978
1979 /* The STIBP bit doesn't fault even if it's not advertised */
1980 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1981 return 1;
1982
1983 vmx->spec_ctrl = data;
1984
1985 if (!data)
1986 break;
1987
1988 /*
1989 * For non-nested:
1990 * When it's written (to non-zero) for the first time, pass
1991 * it through.
1992 *
1993 * For nested:
1994 * The handling of the MSR bitmap for L2 guests is done in
1995 * nested_vmx_merge_msr_bitmap. We should not touch the
1996 * vmcs02.msr_bitmap here since it gets completely overwritten
1997 * in the merging. We update the vmcs01 here for L1 as well
1998 * since it will end up touching the MSR anyway now.
1999 */
2000 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2001 MSR_IA32_SPEC_CTRL,
2002 MSR_TYPE_RW);
2003 break;
2004 case MSR_IA32_PRED_CMD:
2005 if (!msr_info->host_initiated &&
2006 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2007 return 1;
2008
2009 if (data & ~PRED_CMD_IBPB)
2010 return 1;
2011
2012 if (!data)
2013 break;
2014
2015 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2016
2017 /*
2018 * For non-nested:
2019 * When it's written (to non-zero) for the first time, pass
2020 * it through.
2021 *
2022 * For nested:
2023 * The handling of the MSR bitmap for L2 guests is done in
2024 * nested_vmx_merge_msr_bitmap. We should not touch the
2025 * vmcs02.msr_bitmap here since it gets completely overwritten
2026 * in the merging.
2027 */
2028 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2029 MSR_TYPE_W);
2030 break;
2031 case MSR_IA32_CR_PAT:
2032 if (!kvm_pat_valid(data))
2033 return 1;
2034
2035 if (is_guest_mode(vcpu) &&
2036 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2037 get_vmcs12(vcpu)->guest_ia32_pat = data;
2038
2039 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2040 vmcs_write64(GUEST_IA32_PAT, data);
2041 vcpu->arch.pat = data;
2042 break;
2043 }
2044 ret = kvm_set_msr_common(vcpu, msr_info);
2045 break;
2046 case MSR_IA32_TSC_ADJUST:
2047 ret = kvm_set_msr_common(vcpu, msr_info);
2048 break;
2049 case MSR_IA32_MCG_EXT_CTL:
2050 if ((!msr_info->host_initiated &&
2051 !(to_vmx(vcpu)->msr_ia32_feature_control &
2052 FEATURE_CONTROL_LMCE)) ||
2053 (data & ~MCG_EXT_CTL_LMCE_EN))
2054 return 1;
2055 vcpu->arch.mcg_ext_ctl = data;
2056 break;
2057 case MSR_IA32_FEATURE_CONTROL:
2058 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2059 (to_vmx(vcpu)->msr_ia32_feature_control &
2060 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2061 return 1;
2062 vmx->msr_ia32_feature_control = data;
2063 if (msr_info->host_initiated && data == 0)
2064 vmx_leave_nested(vcpu);
2065 break;
2066 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2067 if (!msr_info->host_initiated)
2068 return 1; /* they are read-only */
2069 if (!nested_vmx_allowed(vcpu))
2070 return 1;
2071 return vmx_set_vmx_msr(vcpu, msr_index, data);
2072 case MSR_IA32_XSS:
2073 if (!vmx_xsaves_supported() ||
2074 (!msr_info->host_initiated &&
2075 !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
2076 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
2077 return 1;
2078 /*
2079 * The only supported bit as of Skylake is bit 8, but
2080 * it is not supported on KVM.
2081 */
2082 if (data != 0)
2083 return 1;
2084 vcpu->arch.ia32_xss = data;
2085 if (vcpu->arch.ia32_xss != host_xss)
2086 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2087 vcpu->arch.ia32_xss, host_xss, false);
2088 else
2089 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2090 break;
2091 case MSR_IA32_RTIT_CTL:
2092 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2093 vmx_rtit_ctl_check(vcpu, data) ||
2094 vmx->nested.vmxon)
2095 return 1;
2096 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2097 vmx->pt_desc.guest.ctl = data;
2098 pt_update_intercept_for_msr(vmx);
2099 break;
2100 case MSR_IA32_RTIT_STATUS:
2101 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2102 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2103 (data & MSR_IA32_RTIT_STATUS_MASK))
2104 return 1;
2105 vmx->pt_desc.guest.status = data;
2106 break;
2107 case MSR_IA32_RTIT_CR3_MATCH:
2108 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2109 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2110 !intel_pt_validate_cap(vmx->pt_desc.caps,
2111 PT_CAP_cr3_filtering))
2112 return 1;
2113 vmx->pt_desc.guest.cr3_match = data;
2114 break;
2115 case MSR_IA32_RTIT_OUTPUT_BASE:
2116 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2117 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2118 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2119 PT_CAP_topa_output) &&
2120 !intel_pt_validate_cap(vmx->pt_desc.caps,
2121 PT_CAP_single_range_output)) ||
2122 (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
2123 return 1;
2124 vmx->pt_desc.guest.output_base = data;
2125 break;
2126 case MSR_IA32_RTIT_OUTPUT_MASK:
2127 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2128 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2129 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2130 PT_CAP_topa_output) &&
2131 !intel_pt_validate_cap(vmx->pt_desc.caps,
2132 PT_CAP_single_range_output)))
2133 return 1;
2134 vmx->pt_desc.guest.output_mask = data;
2135 break;
2136 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2137 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2138 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2139 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2140 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2141 PT_CAP_num_address_ranges)))
2142 return 1;
2143 if (index % 2)
2144 vmx->pt_desc.guest.addr_b[index / 2] = data;
2145 else
2146 vmx->pt_desc.guest.addr_a[index / 2] = data;
2147 break;
2148 case MSR_TSC_AUX:
2149 if (!msr_info->host_initiated &&
2150 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2151 return 1;
2152 /* Check reserved bit, higher 32 bits should be zero */
2153 if ((data >> 32) != 0)
2154 return 1;
2155 /* Else, falls through */
2156 default:
2157 msr = find_msr_entry(vmx, msr_index);
2158 if (msr) {
2159 u64 old_msr_data = msr->data;
2160 msr->data = data;
2161 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2162 preempt_disable();
2163 ret = kvm_set_shared_msr(msr->index, msr->data,
2164 msr->mask);
2165 preempt_enable();
2166 if (ret)
2167 msr->data = old_msr_data;
2168 }
2169 break;
2170 }
2171 ret = kvm_set_msr_common(vcpu, msr_info);
2172 }
2173
2174 return ret;
2175 }
2176
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2177 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2178 {
2179 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2180 switch (reg) {
2181 case VCPU_REGS_RSP:
2182 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2183 break;
2184 case VCPU_REGS_RIP:
2185 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2186 break;
2187 case VCPU_EXREG_PDPTR:
2188 if (enable_ept)
2189 ept_save_pdptrs(vcpu);
2190 break;
2191 default:
2192 break;
2193 }
2194 }
2195
cpu_has_kvm_support(void)2196 static __init int cpu_has_kvm_support(void)
2197 {
2198 return cpu_has_vmx();
2199 }
2200
vmx_disabled_by_bios(void)2201 static __init int vmx_disabled_by_bios(void)
2202 {
2203 u64 msr;
2204
2205 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2206 if (msr & FEATURE_CONTROL_LOCKED) {
2207 /* launched w/ TXT and VMX disabled */
2208 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2209 && tboot_enabled())
2210 return 1;
2211 /* launched w/o TXT and VMX only enabled w/ TXT */
2212 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2213 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2214 && !tboot_enabled()) {
2215 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2216 "activate TXT before enabling KVM\n");
2217 return 1;
2218 }
2219 /* launched w/o TXT and VMX disabled */
2220 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2221 && !tboot_enabled())
2222 return 1;
2223 }
2224
2225 return 0;
2226 }
2227
kvm_cpu_vmxon(u64 addr)2228 static void kvm_cpu_vmxon(u64 addr)
2229 {
2230 cr4_set_bits(X86_CR4_VMXE);
2231 intel_pt_handle_vmx(1);
2232
2233 asm volatile ("vmxon %0" : : "m"(addr));
2234 }
2235
hardware_enable(void)2236 static int hardware_enable(void)
2237 {
2238 int cpu = raw_smp_processor_id();
2239 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2240 u64 old, test_bits;
2241
2242 if (cr4_read_shadow() & X86_CR4_VMXE)
2243 return -EBUSY;
2244
2245 /*
2246 * This can happen if we hot-added a CPU but failed to allocate
2247 * VP assist page for it.
2248 */
2249 if (static_branch_unlikely(&enable_evmcs) &&
2250 !hv_get_vp_assist_page(cpu))
2251 return -EFAULT;
2252
2253 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2254 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2255 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2256
2257 /*
2258 * Now we can enable the vmclear operation in kdump
2259 * since the loaded_vmcss_on_cpu list on this cpu
2260 * has been initialized.
2261 *
2262 * Though the cpu is not in VMX operation now, there
2263 * is no problem to enable the vmclear operation
2264 * for the loaded_vmcss_on_cpu list is empty!
2265 */
2266 crash_enable_local_vmclear(cpu);
2267
2268 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2269
2270 test_bits = FEATURE_CONTROL_LOCKED;
2271 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2272 if (tboot_enabled())
2273 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2274
2275 if ((old & test_bits) != test_bits) {
2276 /* enable and lock */
2277 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2278 }
2279 kvm_cpu_vmxon(phys_addr);
2280 if (enable_ept)
2281 ept_sync_global();
2282
2283 return 0;
2284 }
2285
vmclear_local_loaded_vmcss(void)2286 static void vmclear_local_loaded_vmcss(void)
2287 {
2288 int cpu = raw_smp_processor_id();
2289 struct loaded_vmcs *v, *n;
2290
2291 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2292 loaded_vmcss_on_cpu_link)
2293 __loaded_vmcs_clear(v);
2294 }
2295
2296
2297 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2298 * tricks.
2299 */
kvm_cpu_vmxoff(void)2300 static void kvm_cpu_vmxoff(void)
2301 {
2302 asm volatile (__ex("vmxoff"));
2303
2304 intel_pt_handle_vmx(0);
2305 cr4_clear_bits(X86_CR4_VMXE);
2306 }
2307
hardware_disable(void)2308 static void hardware_disable(void)
2309 {
2310 vmclear_local_loaded_vmcss();
2311 kvm_cpu_vmxoff();
2312 }
2313
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2314 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2315 u32 msr, u32 *result)
2316 {
2317 u32 vmx_msr_low, vmx_msr_high;
2318 u32 ctl = ctl_min | ctl_opt;
2319
2320 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2321
2322 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2323 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2324
2325 /* Ensure minimum (required) set of control bits are supported. */
2326 if (ctl_min & ~ctl)
2327 return -EIO;
2328
2329 *result = ctl;
2330 return 0;
2331 }
2332
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2333 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2334 struct vmx_capability *vmx_cap)
2335 {
2336 u32 vmx_msr_low, vmx_msr_high;
2337 u32 min, opt, min2, opt2;
2338 u32 _pin_based_exec_control = 0;
2339 u32 _cpu_based_exec_control = 0;
2340 u32 _cpu_based_2nd_exec_control = 0;
2341 u32 _vmexit_control = 0;
2342 u32 _vmentry_control = 0;
2343
2344 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2345 min = CPU_BASED_HLT_EXITING |
2346 #ifdef CONFIG_X86_64
2347 CPU_BASED_CR8_LOAD_EXITING |
2348 CPU_BASED_CR8_STORE_EXITING |
2349 #endif
2350 CPU_BASED_CR3_LOAD_EXITING |
2351 CPU_BASED_CR3_STORE_EXITING |
2352 CPU_BASED_UNCOND_IO_EXITING |
2353 CPU_BASED_MOV_DR_EXITING |
2354 CPU_BASED_USE_TSC_OFFSETING |
2355 CPU_BASED_MWAIT_EXITING |
2356 CPU_BASED_MONITOR_EXITING |
2357 CPU_BASED_INVLPG_EXITING |
2358 CPU_BASED_RDPMC_EXITING;
2359
2360 opt = CPU_BASED_TPR_SHADOW |
2361 CPU_BASED_USE_MSR_BITMAPS |
2362 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2363 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2364 &_cpu_based_exec_control) < 0)
2365 return -EIO;
2366 #ifdef CONFIG_X86_64
2367 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2368 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2369 ~CPU_BASED_CR8_STORE_EXITING;
2370 #endif
2371 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2372 min2 = 0;
2373 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2374 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2375 SECONDARY_EXEC_WBINVD_EXITING |
2376 SECONDARY_EXEC_ENABLE_VPID |
2377 SECONDARY_EXEC_ENABLE_EPT |
2378 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2379 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2380 SECONDARY_EXEC_DESC |
2381 SECONDARY_EXEC_RDTSCP |
2382 SECONDARY_EXEC_ENABLE_INVPCID |
2383 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2384 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2385 SECONDARY_EXEC_SHADOW_VMCS |
2386 SECONDARY_EXEC_XSAVES |
2387 SECONDARY_EXEC_RDSEED_EXITING |
2388 SECONDARY_EXEC_RDRAND_EXITING |
2389 SECONDARY_EXEC_ENABLE_PML |
2390 SECONDARY_EXEC_TSC_SCALING |
2391 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2392 SECONDARY_EXEC_PT_USE_GPA |
2393 SECONDARY_EXEC_PT_CONCEAL_VMX |
2394 SECONDARY_EXEC_ENABLE_VMFUNC |
2395 SECONDARY_EXEC_ENCLS_EXITING;
2396 if (adjust_vmx_controls(min2, opt2,
2397 MSR_IA32_VMX_PROCBASED_CTLS2,
2398 &_cpu_based_2nd_exec_control) < 0)
2399 return -EIO;
2400 }
2401 #ifndef CONFIG_X86_64
2402 if (!(_cpu_based_2nd_exec_control &
2403 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2404 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2405 #endif
2406
2407 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2408 _cpu_based_2nd_exec_control &= ~(
2409 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2410 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2411 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2412
2413 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2414 &vmx_cap->ept, &vmx_cap->vpid);
2415
2416 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2417 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2418 enabled */
2419 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2420 CPU_BASED_CR3_STORE_EXITING |
2421 CPU_BASED_INVLPG_EXITING);
2422 } else if (vmx_cap->ept) {
2423 vmx_cap->ept = 0;
2424 pr_warn_once("EPT CAP should not exist if not support "
2425 "1-setting enable EPT VM-execution control\n");
2426 }
2427 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2428 vmx_cap->vpid) {
2429 vmx_cap->vpid = 0;
2430 pr_warn_once("VPID CAP should not exist if not support "
2431 "1-setting enable VPID VM-execution control\n");
2432 }
2433
2434 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2435 #ifdef CONFIG_X86_64
2436 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2437 #endif
2438 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2439 VM_EXIT_LOAD_IA32_PAT |
2440 VM_EXIT_LOAD_IA32_EFER |
2441 VM_EXIT_CLEAR_BNDCFGS |
2442 VM_EXIT_PT_CONCEAL_PIP |
2443 VM_EXIT_CLEAR_IA32_RTIT_CTL;
2444 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2445 &_vmexit_control) < 0)
2446 return -EIO;
2447
2448 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2449 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2450 PIN_BASED_VMX_PREEMPTION_TIMER;
2451 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2452 &_pin_based_exec_control) < 0)
2453 return -EIO;
2454
2455 if (cpu_has_broken_vmx_preemption_timer())
2456 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2457 if (!(_cpu_based_2nd_exec_control &
2458 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2459 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2460
2461 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2462 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2463 VM_ENTRY_LOAD_IA32_PAT |
2464 VM_ENTRY_LOAD_IA32_EFER |
2465 VM_ENTRY_LOAD_BNDCFGS |
2466 VM_ENTRY_PT_CONCEAL_PIP |
2467 VM_ENTRY_LOAD_IA32_RTIT_CTL;
2468 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2469 &_vmentry_control) < 0)
2470 return -EIO;
2471
2472 /*
2473 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2474 * can't be used due to an errata where VM Exit may incorrectly clear
2475 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2476 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2477 */
2478 if (boot_cpu_data.x86 == 0x6) {
2479 switch (boot_cpu_data.x86_model) {
2480 case 26: /* AAK155 */
2481 case 30: /* AAP115 */
2482 case 37: /* AAT100 */
2483 case 44: /* BC86,AAY89,BD102 */
2484 case 46: /* BA97 */
2485 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2486 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2487 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2488 "does not work properly. Using workaround\n");
2489 break;
2490 default:
2491 break;
2492 }
2493 }
2494
2495
2496 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2497
2498 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2499 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2500 return -EIO;
2501
2502 #ifdef CONFIG_X86_64
2503 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2504 if (vmx_msr_high & (1u<<16))
2505 return -EIO;
2506 #endif
2507
2508 /* Require Write-Back (WB) memory type for VMCS accesses. */
2509 if (((vmx_msr_high >> 18) & 15) != 6)
2510 return -EIO;
2511
2512 vmcs_conf->size = vmx_msr_high & 0x1fff;
2513 vmcs_conf->order = get_order(vmcs_conf->size);
2514 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2515
2516 vmcs_conf->revision_id = vmx_msr_low;
2517
2518 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2519 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2520 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2521 vmcs_conf->vmexit_ctrl = _vmexit_control;
2522 vmcs_conf->vmentry_ctrl = _vmentry_control;
2523
2524 if (static_branch_unlikely(&enable_evmcs))
2525 evmcs_sanitize_exec_ctrls(vmcs_conf);
2526
2527 return 0;
2528 }
2529
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2530 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2531 {
2532 int node = cpu_to_node(cpu);
2533 struct page *pages;
2534 struct vmcs *vmcs;
2535
2536 pages = __alloc_pages_node(node, flags, vmcs_config.order);
2537 if (!pages)
2538 return NULL;
2539 vmcs = page_address(pages);
2540 memset(vmcs, 0, vmcs_config.size);
2541
2542 /* KVM supports Enlightened VMCS v1 only */
2543 if (static_branch_unlikely(&enable_evmcs))
2544 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2545 else
2546 vmcs->hdr.revision_id = vmcs_config.revision_id;
2547
2548 if (shadow)
2549 vmcs->hdr.shadow_vmcs = 1;
2550 return vmcs;
2551 }
2552
free_vmcs(struct vmcs * vmcs)2553 void free_vmcs(struct vmcs *vmcs)
2554 {
2555 free_pages((unsigned long)vmcs, vmcs_config.order);
2556 }
2557
2558 /*
2559 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2560 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2561 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2562 {
2563 if (!loaded_vmcs->vmcs)
2564 return;
2565 loaded_vmcs_clear(loaded_vmcs);
2566 free_vmcs(loaded_vmcs->vmcs);
2567 loaded_vmcs->vmcs = NULL;
2568 if (loaded_vmcs->msr_bitmap)
2569 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2570 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2571 }
2572
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2573 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2574 {
2575 loaded_vmcs->vmcs = alloc_vmcs(false);
2576 if (!loaded_vmcs->vmcs)
2577 return -ENOMEM;
2578
2579 loaded_vmcs->shadow_vmcs = NULL;
2580 loaded_vmcs->hv_timer_soft_disabled = false;
2581 loaded_vmcs_init(loaded_vmcs);
2582
2583 if (cpu_has_vmx_msr_bitmap()) {
2584 loaded_vmcs->msr_bitmap = (unsigned long *)
2585 __get_free_page(GFP_KERNEL_ACCOUNT);
2586 if (!loaded_vmcs->msr_bitmap)
2587 goto out_vmcs;
2588 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2589
2590 if (IS_ENABLED(CONFIG_HYPERV) &&
2591 static_branch_unlikely(&enable_evmcs) &&
2592 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2593 struct hv_enlightened_vmcs *evmcs =
2594 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2595
2596 evmcs->hv_enlightenments_control.msr_bitmap = 1;
2597 }
2598 }
2599
2600 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2601 memset(&loaded_vmcs->controls_shadow, 0,
2602 sizeof(struct vmcs_controls_shadow));
2603
2604 return 0;
2605
2606 out_vmcs:
2607 free_loaded_vmcs(loaded_vmcs);
2608 return -ENOMEM;
2609 }
2610
free_kvm_area(void)2611 static void free_kvm_area(void)
2612 {
2613 int cpu;
2614
2615 for_each_possible_cpu(cpu) {
2616 free_vmcs(per_cpu(vmxarea, cpu));
2617 per_cpu(vmxarea, cpu) = NULL;
2618 }
2619 }
2620
alloc_kvm_area(void)2621 static __init int alloc_kvm_area(void)
2622 {
2623 int cpu;
2624
2625 for_each_possible_cpu(cpu) {
2626 struct vmcs *vmcs;
2627
2628 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2629 if (!vmcs) {
2630 free_kvm_area();
2631 return -ENOMEM;
2632 }
2633
2634 /*
2635 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2636 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2637 * revision_id reported by MSR_IA32_VMX_BASIC.
2638 *
2639 * However, even though not explicitly documented by
2640 * TLFS, VMXArea passed as VMXON argument should
2641 * still be marked with revision_id reported by
2642 * physical CPU.
2643 */
2644 if (static_branch_unlikely(&enable_evmcs))
2645 vmcs->hdr.revision_id = vmcs_config.revision_id;
2646
2647 per_cpu(vmxarea, cpu) = vmcs;
2648 }
2649 return 0;
2650 }
2651
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2652 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2653 struct kvm_segment *save)
2654 {
2655 if (!emulate_invalid_guest_state) {
2656 /*
2657 * CS and SS RPL should be equal during guest entry according
2658 * to VMX spec, but in reality it is not always so. Since vcpu
2659 * is in the middle of the transition from real mode to
2660 * protected mode it is safe to assume that RPL 0 is a good
2661 * default value.
2662 */
2663 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2664 save->selector &= ~SEGMENT_RPL_MASK;
2665 save->dpl = save->selector & SEGMENT_RPL_MASK;
2666 save->s = 1;
2667 }
2668 vmx_set_segment(vcpu, save, seg);
2669 }
2670
enter_pmode(struct kvm_vcpu * vcpu)2671 static void enter_pmode(struct kvm_vcpu *vcpu)
2672 {
2673 unsigned long flags;
2674 struct vcpu_vmx *vmx = to_vmx(vcpu);
2675
2676 /*
2677 * Update real mode segment cache. It may be not up-to-date if sement
2678 * register was written while vcpu was in a guest mode.
2679 */
2680 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2681 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2682 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2683 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2684 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2685 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2686
2687 vmx->rmode.vm86_active = 0;
2688
2689 vmx_segment_cache_clear(vmx);
2690
2691 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2692
2693 flags = vmcs_readl(GUEST_RFLAGS);
2694 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2695 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2696 vmcs_writel(GUEST_RFLAGS, flags);
2697
2698 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2699 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2700
2701 update_exception_bitmap(vcpu);
2702
2703 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2704 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2705 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2706 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2707 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2708 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2709 }
2710
fix_rmode_seg(int seg,struct kvm_segment * save)2711 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2712 {
2713 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2714 struct kvm_segment var = *save;
2715
2716 var.dpl = 0x3;
2717 if (seg == VCPU_SREG_CS)
2718 var.type = 0x3;
2719
2720 if (!emulate_invalid_guest_state) {
2721 var.selector = var.base >> 4;
2722 var.base = var.base & 0xffff0;
2723 var.limit = 0xffff;
2724 var.g = 0;
2725 var.db = 0;
2726 var.present = 1;
2727 var.s = 1;
2728 var.l = 0;
2729 var.unusable = 0;
2730 var.type = 0x3;
2731 var.avl = 0;
2732 if (save->base & 0xf)
2733 printk_once(KERN_WARNING "kvm: segment base is not "
2734 "paragraph aligned when entering "
2735 "protected mode (seg=%d)", seg);
2736 }
2737
2738 vmcs_write16(sf->selector, var.selector);
2739 vmcs_writel(sf->base, var.base);
2740 vmcs_write32(sf->limit, var.limit);
2741 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2742 }
2743
enter_rmode(struct kvm_vcpu * vcpu)2744 static void enter_rmode(struct kvm_vcpu *vcpu)
2745 {
2746 unsigned long flags;
2747 struct vcpu_vmx *vmx = to_vmx(vcpu);
2748 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2749
2750 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2751 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2752 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2753 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2754 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2755 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2756 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2757
2758 vmx->rmode.vm86_active = 1;
2759
2760 /*
2761 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2762 * vcpu. Warn the user that an update is overdue.
2763 */
2764 if (!kvm_vmx->tss_addr)
2765 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2766 "called before entering vcpu\n");
2767
2768 vmx_segment_cache_clear(vmx);
2769
2770 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2771 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2772 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2773
2774 flags = vmcs_readl(GUEST_RFLAGS);
2775 vmx->rmode.save_rflags = flags;
2776
2777 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2778
2779 vmcs_writel(GUEST_RFLAGS, flags);
2780 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2781 update_exception_bitmap(vcpu);
2782
2783 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2784 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2785 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2786 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2787 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2788 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2789
2790 kvm_mmu_reset_context(vcpu);
2791 }
2792
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)2793 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2794 {
2795 struct vcpu_vmx *vmx = to_vmx(vcpu);
2796 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2797
2798 if (!msr)
2799 return;
2800
2801 vcpu->arch.efer = efer;
2802 if (efer & EFER_LMA) {
2803 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2804 msr->data = efer;
2805 } else {
2806 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2807
2808 msr->data = efer & ~EFER_LME;
2809 }
2810 setup_msrs(vmx);
2811 }
2812
2813 #ifdef CONFIG_X86_64
2814
enter_lmode(struct kvm_vcpu * vcpu)2815 static void enter_lmode(struct kvm_vcpu *vcpu)
2816 {
2817 u32 guest_tr_ar;
2818
2819 vmx_segment_cache_clear(to_vmx(vcpu));
2820
2821 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2822 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2823 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2824 __func__);
2825 vmcs_write32(GUEST_TR_AR_BYTES,
2826 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2827 | VMX_AR_TYPE_BUSY_64_TSS);
2828 }
2829 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2830 }
2831
exit_lmode(struct kvm_vcpu * vcpu)2832 static void exit_lmode(struct kvm_vcpu *vcpu)
2833 {
2834 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2835 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2836 }
2837
2838 #endif
2839
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)2840 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2841 {
2842 int vpid = to_vmx(vcpu)->vpid;
2843
2844 if (!vpid_sync_vcpu_addr(vpid, addr))
2845 vpid_sync_context(vpid);
2846
2847 /*
2848 * If VPIDs are not supported or enabled, then the above is a no-op.
2849 * But we don't really need a TLB flush in that case anyway, because
2850 * each VM entry/exit includes an implicit flush when VPID is 0.
2851 */
2852 }
2853
vmx_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)2854 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2855 {
2856 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2857
2858 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2859 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2860 }
2861
vmx_decache_cr3(struct kvm_vcpu * vcpu)2862 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2863 {
2864 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2865 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2866 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2867 }
2868
vmx_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)2869 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2870 {
2871 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2872
2873 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2874 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2875 }
2876
ept_load_pdptrs(struct kvm_vcpu * vcpu)2877 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2878 {
2879 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2880
2881 if (!test_bit(VCPU_EXREG_PDPTR,
2882 (unsigned long *)&vcpu->arch.regs_dirty))
2883 return;
2884
2885 if (is_pae_paging(vcpu)) {
2886 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2887 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2888 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2889 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2890 }
2891 }
2892
ept_save_pdptrs(struct kvm_vcpu * vcpu)2893 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2894 {
2895 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2896
2897 if (is_pae_paging(vcpu)) {
2898 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2899 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2900 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2901 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2902 }
2903
2904 __set_bit(VCPU_EXREG_PDPTR,
2905 (unsigned long *)&vcpu->arch.regs_avail);
2906 __set_bit(VCPU_EXREG_PDPTR,
2907 (unsigned long *)&vcpu->arch.regs_dirty);
2908 }
2909
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)2910 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2911 unsigned long cr0,
2912 struct kvm_vcpu *vcpu)
2913 {
2914 struct vcpu_vmx *vmx = to_vmx(vcpu);
2915
2916 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2917 vmx_decache_cr3(vcpu);
2918 if (!(cr0 & X86_CR0_PG)) {
2919 /* From paging/starting to nonpaging */
2920 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2921 CPU_BASED_CR3_STORE_EXITING);
2922 vcpu->arch.cr0 = cr0;
2923 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2924 } else if (!is_paging(vcpu)) {
2925 /* From nonpaging to paging */
2926 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2927 CPU_BASED_CR3_STORE_EXITING);
2928 vcpu->arch.cr0 = cr0;
2929 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2930 }
2931
2932 if (!(cr0 & X86_CR0_WP))
2933 *hw_cr0 &= ~X86_CR0_WP;
2934 }
2935
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)2936 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2937 {
2938 struct vcpu_vmx *vmx = to_vmx(vcpu);
2939 unsigned long hw_cr0;
2940
2941 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2942 if (enable_unrestricted_guest)
2943 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2944 else {
2945 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2946
2947 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2948 enter_pmode(vcpu);
2949
2950 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2951 enter_rmode(vcpu);
2952 }
2953
2954 #ifdef CONFIG_X86_64
2955 if (vcpu->arch.efer & EFER_LME) {
2956 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2957 enter_lmode(vcpu);
2958 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2959 exit_lmode(vcpu);
2960 }
2961 #endif
2962
2963 if (enable_ept && !enable_unrestricted_guest)
2964 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2965
2966 vmcs_writel(CR0_READ_SHADOW, cr0);
2967 vmcs_writel(GUEST_CR0, hw_cr0);
2968 vcpu->arch.cr0 = cr0;
2969
2970 /* depends on vcpu->arch.cr0 to be set to a new value */
2971 vmx->emulation_required = emulation_required(vcpu);
2972 }
2973
get_ept_level(struct kvm_vcpu * vcpu)2974 static int get_ept_level(struct kvm_vcpu *vcpu)
2975 {
2976 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2977 return 5;
2978 return 4;
2979 }
2980
construct_eptp(struct kvm_vcpu * vcpu,unsigned long root_hpa)2981 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2982 {
2983 u64 eptp = VMX_EPTP_MT_WB;
2984
2985 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2986
2987 if (enable_ept_ad_bits &&
2988 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2989 eptp |= VMX_EPTP_AD_ENABLE_BIT;
2990 eptp |= (root_hpa & PAGE_MASK);
2991
2992 return eptp;
2993 }
2994
vmx_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)2995 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2996 {
2997 struct kvm *kvm = vcpu->kvm;
2998 bool update_guest_cr3 = true;
2999 unsigned long guest_cr3;
3000 u64 eptp;
3001
3002 guest_cr3 = cr3;
3003 if (enable_ept) {
3004 eptp = construct_eptp(vcpu, cr3);
3005 vmcs_write64(EPT_POINTER, eptp);
3006
3007 if (kvm_x86_ops->tlb_remote_flush) {
3008 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3009 to_vmx(vcpu)->ept_pointer = eptp;
3010 to_kvm_vmx(kvm)->ept_pointers_match
3011 = EPT_POINTERS_CHECK;
3012 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3013 }
3014
3015 /* Loading vmcs02.GUEST_CR3 is handled by nested VM-Enter. */
3016 if (is_guest_mode(vcpu))
3017 update_guest_cr3 = false;
3018 else if (enable_unrestricted_guest || is_paging(vcpu))
3019 guest_cr3 = kvm_read_cr3(vcpu);
3020 else
3021 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3022 ept_load_pdptrs(vcpu);
3023 }
3024
3025 if (update_guest_cr3)
3026 vmcs_writel(GUEST_CR3, guest_cr3);
3027 }
3028
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3029 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3030 {
3031 struct vcpu_vmx *vmx = to_vmx(vcpu);
3032 /*
3033 * Pass through host's Machine Check Enable value to hw_cr4, which
3034 * is in force while we are in guest mode. Do not let guests control
3035 * this bit, even if host CR4.MCE == 0.
3036 */
3037 unsigned long hw_cr4;
3038
3039 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3040 if (enable_unrestricted_guest)
3041 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3042 else if (vmx->rmode.vm86_active)
3043 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3044 else
3045 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3046
3047 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3048 if (cr4 & X86_CR4_UMIP) {
3049 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3050 hw_cr4 &= ~X86_CR4_UMIP;
3051 } else if (!is_guest_mode(vcpu) ||
3052 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3053 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3054 }
3055 }
3056
3057 if (cr4 & X86_CR4_VMXE) {
3058 /*
3059 * To use VMXON (and later other VMX instructions), a guest
3060 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3061 * So basically the check on whether to allow nested VMX
3062 * is here. We operate under the default treatment of SMM,
3063 * so VMX cannot be enabled under SMM.
3064 */
3065 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3066 return 1;
3067 }
3068
3069 if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3070 return 1;
3071
3072 vcpu->arch.cr4 = cr4;
3073
3074 if (!enable_unrestricted_guest) {
3075 if (enable_ept) {
3076 if (!is_paging(vcpu)) {
3077 hw_cr4 &= ~X86_CR4_PAE;
3078 hw_cr4 |= X86_CR4_PSE;
3079 } else if (!(cr4 & X86_CR4_PAE)) {
3080 hw_cr4 &= ~X86_CR4_PAE;
3081 }
3082 }
3083
3084 /*
3085 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3086 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3087 * to be manually disabled when guest switches to non-paging
3088 * mode.
3089 *
3090 * If !enable_unrestricted_guest, the CPU is always running
3091 * with CR0.PG=1 and CR4 needs to be modified.
3092 * If enable_unrestricted_guest, the CPU automatically
3093 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3094 */
3095 if (!is_paging(vcpu))
3096 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3097 }
3098
3099 vmcs_writel(CR4_READ_SHADOW, cr4);
3100 vmcs_writel(GUEST_CR4, hw_cr4);
3101 return 0;
3102 }
3103
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3104 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3105 {
3106 struct vcpu_vmx *vmx = to_vmx(vcpu);
3107 u32 ar;
3108
3109 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3110 *var = vmx->rmode.segs[seg];
3111 if (seg == VCPU_SREG_TR
3112 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3113 return;
3114 var->base = vmx_read_guest_seg_base(vmx, seg);
3115 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3116 return;
3117 }
3118 var->base = vmx_read_guest_seg_base(vmx, seg);
3119 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3120 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3121 ar = vmx_read_guest_seg_ar(vmx, seg);
3122 var->unusable = (ar >> 16) & 1;
3123 var->type = ar & 15;
3124 var->s = (ar >> 4) & 1;
3125 var->dpl = (ar >> 5) & 3;
3126 /*
3127 * Some userspaces do not preserve unusable property. Since usable
3128 * segment has to be present according to VMX spec we can use present
3129 * property to amend userspace bug by making unusable segment always
3130 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3131 * segment as unusable.
3132 */
3133 var->present = !var->unusable;
3134 var->avl = (ar >> 12) & 1;
3135 var->l = (ar >> 13) & 1;
3136 var->db = (ar >> 14) & 1;
3137 var->g = (ar >> 15) & 1;
3138 }
3139
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3140 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3141 {
3142 struct kvm_segment s;
3143
3144 if (to_vmx(vcpu)->rmode.vm86_active) {
3145 vmx_get_segment(vcpu, &s, seg);
3146 return s.base;
3147 }
3148 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3149 }
3150
vmx_get_cpl(struct kvm_vcpu * vcpu)3151 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3152 {
3153 struct vcpu_vmx *vmx = to_vmx(vcpu);
3154
3155 if (unlikely(vmx->rmode.vm86_active))
3156 return 0;
3157 else {
3158 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3159 return VMX_AR_DPL(ar);
3160 }
3161 }
3162
vmx_segment_access_rights(struct kvm_segment * var)3163 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3164 {
3165 u32 ar;
3166
3167 if (var->unusable || !var->present)
3168 ar = 1 << 16;
3169 else {
3170 ar = var->type & 15;
3171 ar |= (var->s & 1) << 4;
3172 ar |= (var->dpl & 3) << 5;
3173 ar |= (var->present & 1) << 7;
3174 ar |= (var->avl & 1) << 12;
3175 ar |= (var->l & 1) << 13;
3176 ar |= (var->db & 1) << 14;
3177 ar |= (var->g & 1) << 15;
3178 }
3179
3180 return ar;
3181 }
3182
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3183 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3184 {
3185 struct vcpu_vmx *vmx = to_vmx(vcpu);
3186 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3187
3188 vmx_segment_cache_clear(vmx);
3189
3190 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3191 vmx->rmode.segs[seg] = *var;
3192 if (seg == VCPU_SREG_TR)
3193 vmcs_write16(sf->selector, var->selector);
3194 else if (var->s)
3195 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3196 goto out;
3197 }
3198
3199 vmcs_writel(sf->base, var->base);
3200 vmcs_write32(sf->limit, var->limit);
3201 vmcs_write16(sf->selector, var->selector);
3202
3203 /*
3204 * Fix the "Accessed" bit in AR field of segment registers for older
3205 * qemu binaries.
3206 * IA32 arch specifies that at the time of processor reset the
3207 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3208 * is setting it to 0 in the userland code. This causes invalid guest
3209 * state vmexit when "unrestricted guest" mode is turned on.
3210 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3211 * tree. Newer qemu binaries with that qemu fix would not need this
3212 * kvm hack.
3213 */
3214 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3215 var->type |= 0x1; /* Accessed */
3216
3217 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3218
3219 out:
3220 vmx->emulation_required = emulation_required(vcpu);
3221 }
3222
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3223 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3224 {
3225 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3226
3227 *db = (ar >> 14) & 1;
3228 *l = (ar >> 13) & 1;
3229 }
3230
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3231 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3232 {
3233 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3234 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3235 }
3236
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3237 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3238 {
3239 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3240 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3241 }
3242
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3243 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3244 {
3245 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3246 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3247 }
3248
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3249 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3250 {
3251 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3252 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3253 }
3254
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3255 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3256 {
3257 struct kvm_segment var;
3258 u32 ar;
3259
3260 vmx_get_segment(vcpu, &var, seg);
3261 var.dpl = 0x3;
3262 if (seg == VCPU_SREG_CS)
3263 var.type = 0x3;
3264 ar = vmx_segment_access_rights(&var);
3265
3266 if (var.base != (var.selector << 4))
3267 return false;
3268 if (var.limit != 0xffff)
3269 return false;
3270 if (ar != 0xf3)
3271 return false;
3272
3273 return true;
3274 }
3275
code_segment_valid(struct kvm_vcpu * vcpu)3276 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3277 {
3278 struct kvm_segment cs;
3279 unsigned int cs_rpl;
3280
3281 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3282 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3283
3284 if (cs.unusable)
3285 return false;
3286 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3287 return false;
3288 if (!cs.s)
3289 return false;
3290 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3291 if (cs.dpl > cs_rpl)
3292 return false;
3293 } else {
3294 if (cs.dpl != cs_rpl)
3295 return false;
3296 }
3297 if (!cs.present)
3298 return false;
3299
3300 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3301 return true;
3302 }
3303
stack_segment_valid(struct kvm_vcpu * vcpu)3304 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3305 {
3306 struct kvm_segment ss;
3307 unsigned int ss_rpl;
3308
3309 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3310 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3311
3312 if (ss.unusable)
3313 return true;
3314 if (ss.type != 3 && ss.type != 7)
3315 return false;
3316 if (!ss.s)
3317 return false;
3318 if (ss.dpl != ss_rpl) /* DPL != RPL */
3319 return false;
3320 if (!ss.present)
3321 return false;
3322
3323 return true;
3324 }
3325
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3326 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3327 {
3328 struct kvm_segment var;
3329 unsigned int rpl;
3330
3331 vmx_get_segment(vcpu, &var, seg);
3332 rpl = var.selector & SEGMENT_RPL_MASK;
3333
3334 if (var.unusable)
3335 return true;
3336 if (!var.s)
3337 return false;
3338 if (!var.present)
3339 return false;
3340 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3341 if (var.dpl < rpl) /* DPL < RPL */
3342 return false;
3343 }
3344
3345 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3346 * rights flags
3347 */
3348 return true;
3349 }
3350
tr_valid(struct kvm_vcpu * vcpu)3351 static bool tr_valid(struct kvm_vcpu *vcpu)
3352 {
3353 struct kvm_segment tr;
3354
3355 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3356
3357 if (tr.unusable)
3358 return false;
3359 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3360 return false;
3361 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3362 return false;
3363 if (!tr.present)
3364 return false;
3365
3366 return true;
3367 }
3368
ldtr_valid(struct kvm_vcpu * vcpu)3369 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3370 {
3371 struct kvm_segment ldtr;
3372
3373 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3374
3375 if (ldtr.unusable)
3376 return true;
3377 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3378 return false;
3379 if (ldtr.type != 2)
3380 return false;
3381 if (!ldtr.present)
3382 return false;
3383
3384 return true;
3385 }
3386
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3387 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3388 {
3389 struct kvm_segment cs, ss;
3390
3391 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3392 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3393
3394 return ((cs.selector & SEGMENT_RPL_MASK) ==
3395 (ss.selector & SEGMENT_RPL_MASK));
3396 }
3397
3398 /*
3399 * Check if guest state is valid. Returns true if valid, false if
3400 * not.
3401 * We assume that registers are always usable
3402 */
guest_state_valid(struct kvm_vcpu * vcpu)3403 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3404 {
3405 if (enable_unrestricted_guest)
3406 return true;
3407
3408 /* real mode guest state checks */
3409 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3410 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3411 return false;
3412 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3413 return false;
3414 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3415 return false;
3416 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3417 return false;
3418 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3419 return false;
3420 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3421 return false;
3422 } else {
3423 /* protected mode guest state checks */
3424 if (!cs_ss_rpl_check(vcpu))
3425 return false;
3426 if (!code_segment_valid(vcpu))
3427 return false;
3428 if (!stack_segment_valid(vcpu))
3429 return false;
3430 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3431 return false;
3432 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3433 return false;
3434 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3435 return false;
3436 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3437 return false;
3438 if (!tr_valid(vcpu))
3439 return false;
3440 if (!ldtr_valid(vcpu))
3441 return false;
3442 }
3443 /* TODO:
3444 * - Add checks on RIP
3445 * - Add checks on RFLAGS
3446 */
3447
3448 return true;
3449 }
3450
init_rmode_tss(struct kvm * kvm)3451 static int init_rmode_tss(struct kvm *kvm)
3452 {
3453 gfn_t fn;
3454 u16 data = 0;
3455 int idx, r;
3456
3457 idx = srcu_read_lock(&kvm->srcu);
3458 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3459 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3460 if (r < 0)
3461 goto out;
3462 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3463 r = kvm_write_guest_page(kvm, fn++, &data,
3464 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3465 if (r < 0)
3466 goto out;
3467 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3468 if (r < 0)
3469 goto out;
3470 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3471 if (r < 0)
3472 goto out;
3473 data = ~0;
3474 r = kvm_write_guest_page(kvm, fn, &data,
3475 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3476 sizeof(u8));
3477 out:
3478 srcu_read_unlock(&kvm->srcu, idx);
3479 return r;
3480 }
3481
init_rmode_identity_map(struct kvm * kvm)3482 static int init_rmode_identity_map(struct kvm *kvm)
3483 {
3484 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3485 int i, idx, r = 0;
3486 kvm_pfn_t identity_map_pfn;
3487 u32 tmp;
3488
3489 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3490 mutex_lock(&kvm->slots_lock);
3491
3492 if (likely(kvm_vmx->ept_identity_pagetable_done))
3493 goto out2;
3494
3495 if (!kvm_vmx->ept_identity_map_addr)
3496 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3497 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3498
3499 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3500 kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3501 if (r < 0)
3502 goto out2;
3503
3504 idx = srcu_read_lock(&kvm->srcu);
3505 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3506 if (r < 0)
3507 goto out;
3508 /* Set up identity-mapping pagetable for EPT in real mode */
3509 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3510 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3511 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3512 r = kvm_write_guest_page(kvm, identity_map_pfn,
3513 &tmp, i * sizeof(tmp), sizeof(tmp));
3514 if (r < 0)
3515 goto out;
3516 }
3517 kvm_vmx->ept_identity_pagetable_done = true;
3518
3519 out:
3520 srcu_read_unlock(&kvm->srcu, idx);
3521
3522 out2:
3523 mutex_unlock(&kvm->slots_lock);
3524 return r;
3525 }
3526
seg_setup(int seg)3527 static void seg_setup(int seg)
3528 {
3529 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3530 unsigned int ar;
3531
3532 vmcs_write16(sf->selector, 0);
3533 vmcs_writel(sf->base, 0);
3534 vmcs_write32(sf->limit, 0xffff);
3535 ar = 0x93;
3536 if (seg == VCPU_SREG_CS)
3537 ar |= 0x08; /* code segment */
3538
3539 vmcs_write32(sf->ar_bytes, ar);
3540 }
3541
alloc_apic_access_page(struct kvm * kvm)3542 static int alloc_apic_access_page(struct kvm *kvm)
3543 {
3544 struct page *page;
3545 int r = 0;
3546
3547 mutex_lock(&kvm->slots_lock);
3548 if (kvm->arch.apic_access_page_done)
3549 goto out;
3550 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3551 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3552 if (r)
3553 goto out;
3554
3555 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3556 if (is_error_page(page)) {
3557 r = -EFAULT;
3558 goto out;
3559 }
3560
3561 /*
3562 * Do not pin the page in memory, so that memory hot-unplug
3563 * is able to migrate it.
3564 */
3565 put_page(page);
3566 kvm->arch.apic_access_page_done = true;
3567 out:
3568 mutex_unlock(&kvm->slots_lock);
3569 return r;
3570 }
3571
allocate_vpid(void)3572 int allocate_vpid(void)
3573 {
3574 int vpid;
3575
3576 if (!enable_vpid)
3577 return 0;
3578 spin_lock(&vmx_vpid_lock);
3579 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3580 if (vpid < VMX_NR_VPIDS)
3581 __set_bit(vpid, vmx_vpid_bitmap);
3582 else
3583 vpid = 0;
3584 spin_unlock(&vmx_vpid_lock);
3585 return vpid;
3586 }
3587
free_vpid(int vpid)3588 void free_vpid(int vpid)
3589 {
3590 if (!enable_vpid || vpid == 0)
3591 return;
3592 spin_lock(&vmx_vpid_lock);
3593 __clear_bit(vpid, vmx_vpid_bitmap);
3594 spin_unlock(&vmx_vpid_lock);
3595 }
3596
vmx_disable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)3597 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3598 u32 msr, int type)
3599 {
3600 int f = sizeof(unsigned long);
3601
3602 if (!cpu_has_vmx_msr_bitmap())
3603 return;
3604
3605 if (static_branch_unlikely(&enable_evmcs))
3606 evmcs_touch_msr_bitmap();
3607
3608 /*
3609 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3610 * have the write-low and read-high bitmap offsets the wrong way round.
3611 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3612 */
3613 if (msr <= 0x1fff) {
3614 if (type & MSR_TYPE_R)
3615 /* read-low */
3616 __clear_bit(msr, msr_bitmap + 0x000 / f);
3617
3618 if (type & MSR_TYPE_W)
3619 /* write-low */
3620 __clear_bit(msr, msr_bitmap + 0x800 / f);
3621
3622 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3623 msr &= 0x1fff;
3624 if (type & MSR_TYPE_R)
3625 /* read-high */
3626 __clear_bit(msr, msr_bitmap + 0x400 / f);
3627
3628 if (type & MSR_TYPE_W)
3629 /* write-high */
3630 __clear_bit(msr, msr_bitmap + 0xc00 / f);
3631
3632 }
3633 }
3634
vmx_enable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)3635 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3636 u32 msr, int type)
3637 {
3638 int f = sizeof(unsigned long);
3639
3640 if (!cpu_has_vmx_msr_bitmap())
3641 return;
3642
3643 if (static_branch_unlikely(&enable_evmcs))
3644 evmcs_touch_msr_bitmap();
3645
3646 /*
3647 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3648 * have the write-low and read-high bitmap offsets the wrong way round.
3649 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3650 */
3651 if (msr <= 0x1fff) {
3652 if (type & MSR_TYPE_R)
3653 /* read-low */
3654 __set_bit(msr, msr_bitmap + 0x000 / f);
3655
3656 if (type & MSR_TYPE_W)
3657 /* write-low */
3658 __set_bit(msr, msr_bitmap + 0x800 / f);
3659
3660 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3661 msr &= 0x1fff;
3662 if (type & MSR_TYPE_R)
3663 /* read-high */
3664 __set_bit(msr, msr_bitmap + 0x400 / f);
3665
3666 if (type & MSR_TYPE_W)
3667 /* write-high */
3668 __set_bit(msr, msr_bitmap + 0xc00 / f);
3669
3670 }
3671 }
3672
vmx_set_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type,bool value)3673 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3674 u32 msr, int type, bool value)
3675 {
3676 if (value)
3677 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3678 else
3679 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3680 }
3681
vmx_msr_bitmap_mode(struct kvm_vcpu * vcpu)3682 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3683 {
3684 u8 mode = 0;
3685
3686 if (cpu_has_secondary_exec_ctrls() &&
3687 (secondary_exec_controls_get(to_vmx(vcpu)) &
3688 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3689 mode |= MSR_BITMAP_MODE_X2APIC;
3690 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3691 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3692 }
3693
3694 return mode;
3695 }
3696
vmx_update_msr_bitmap_x2apic(unsigned long * msr_bitmap,u8 mode)3697 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3698 u8 mode)
3699 {
3700 int msr;
3701
3702 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3703 unsigned word = msr / BITS_PER_LONG;
3704 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3705 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3706 }
3707
3708 if (mode & MSR_BITMAP_MODE_X2APIC) {
3709 /*
3710 * TPR reads and writes can be virtualized even if virtual interrupt
3711 * delivery is not in use.
3712 */
3713 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3714 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3715 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3716 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3717 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3718 }
3719 }
3720 }
3721
vmx_update_msr_bitmap(struct kvm_vcpu * vcpu)3722 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3723 {
3724 struct vcpu_vmx *vmx = to_vmx(vcpu);
3725 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3726 u8 mode = vmx_msr_bitmap_mode(vcpu);
3727 u8 changed = mode ^ vmx->msr_bitmap_mode;
3728
3729 if (!changed)
3730 return;
3731
3732 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3733 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3734
3735 vmx->msr_bitmap_mode = mode;
3736 }
3737
pt_update_intercept_for_msr(struct vcpu_vmx * vmx)3738 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3739 {
3740 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3741 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3742 u32 i;
3743
3744 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3745 MSR_TYPE_RW, flag);
3746 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3747 MSR_TYPE_RW, flag);
3748 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3749 MSR_TYPE_RW, flag);
3750 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3751 MSR_TYPE_RW, flag);
3752 for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3753 vmx_set_intercept_for_msr(msr_bitmap,
3754 MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3755 vmx_set_intercept_for_msr(msr_bitmap,
3756 MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3757 }
3758 }
3759
vmx_get_enable_apicv(struct kvm_vcpu * vcpu)3760 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3761 {
3762 return enable_apicv;
3763 }
3764
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)3765 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3766 {
3767 struct vcpu_vmx *vmx = to_vmx(vcpu);
3768 void *vapic_page;
3769 u32 vppr;
3770 int rvi;
3771
3772 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3773 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3774 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3775 return false;
3776
3777 rvi = vmx_get_rvi();
3778
3779 vapic_page = vmx->nested.virtual_apic_map.hva;
3780 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3781
3782 return ((rvi & 0xf0) > (vppr & 0xf0));
3783 }
3784
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,bool nested)3785 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3786 bool nested)
3787 {
3788 #ifdef CONFIG_SMP
3789 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3790
3791 if (vcpu->mode == IN_GUEST_MODE) {
3792 /*
3793 * The vector of interrupt to be delivered to vcpu had
3794 * been set in PIR before this function.
3795 *
3796 * Following cases will be reached in this block, and
3797 * we always send a notification event in all cases as
3798 * explained below.
3799 *
3800 * Case 1: vcpu keeps in non-root mode. Sending a
3801 * notification event posts the interrupt to vcpu.
3802 *
3803 * Case 2: vcpu exits to root mode and is still
3804 * runnable. PIR will be synced to vIRR before the
3805 * next vcpu entry. Sending a notification event in
3806 * this case has no effect, as vcpu is not in root
3807 * mode.
3808 *
3809 * Case 3: vcpu exits to root mode and is blocked.
3810 * vcpu_block() has already synced PIR to vIRR and
3811 * never blocks vcpu if vIRR is not cleared. Therefore,
3812 * a blocked vcpu here does not wait for any requested
3813 * interrupts in PIR, and sending a notification event
3814 * which has no effect is safe here.
3815 */
3816
3817 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3818 return true;
3819 }
3820 #endif
3821 return false;
3822 }
3823
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)3824 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3825 int vector)
3826 {
3827 struct vcpu_vmx *vmx = to_vmx(vcpu);
3828
3829 if (is_guest_mode(vcpu) &&
3830 vector == vmx->nested.posted_intr_nv) {
3831 /*
3832 * If a posted intr is not recognized by hardware,
3833 * we will accomplish it in the next vmentry.
3834 */
3835 vmx->nested.pi_pending = true;
3836 kvm_make_request(KVM_REQ_EVENT, vcpu);
3837 /* the PIR and ON have been set by L1. */
3838 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3839 kvm_vcpu_kick(vcpu);
3840 return 0;
3841 }
3842 return -1;
3843 }
3844 /*
3845 * Send interrupt to vcpu via posted interrupt way.
3846 * 1. If target vcpu is running(non-root mode), send posted interrupt
3847 * notification to vcpu and hardware will sync PIR to vIRR atomically.
3848 * 2. If target vcpu isn't running(root mode), kick it to pick up the
3849 * interrupt from PIR in next vmentry.
3850 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)3851 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3852 {
3853 struct vcpu_vmx *vmx = to_vmx(vcpu);
3854 int r;
3855
3856 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3857 if (!r)
3858 return;
3859
3860 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3861 return;
3862
3863 /* If a previous notification has sent the IPI, nothing to do. */
3864 if (pi_test_and_set_on(&vmx->pi_desc))
3865 return;
3866
3867 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3868 kvm_vcpu_kick(vcpu);
3869 }
3870
3871 /*
3872 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3873 * will not change in the lifetime of the guest.
3874 * Note that host-state that does change is set elsewhere. E.g., host-state
3875 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3876 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)3877 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3878 {
3879 u32 low32, high32;
3880 unsigned long tmpl;
3881 unsigned long cr0, cr3, cr4;
3882
3883 cr0 = read_cr0();
3884 WARN_ON(cr0 & X86_CR0_TS);
3885 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
3886
3887 /*
3888 * Save the most likely value for this task's CR3 in the VMCS.
3889 * We can't use __get_current_cr3_fast() because we're not atomic.
3890 */
3891 cr3 = __read_cr3();
3892 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
3893 vmx->loaded_vmcs->host_state.cr3 = cr3;
3894
3895 /* Save the most likely value for this task's CR4 in the VMCS. */
3896 cr4 = cr4_read_shadow();
3897 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
3898 vmx->loaded_vmcs->host_state.cr4 = cr4;
3899
3900 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3901 #ifdef CONFIG_X86_64
3902 /*
3903 * Load null selectors, so we can avoid reloading them in
3904 * vmx_prepare_switch_to_host(), in case userspace uses
3905 * the null selectors too (the expected case).
3906 */
3907 vmcs_write16(HOST_DS_SELECTOR, 0);
3908 vmcs_write16(HOST_ES_SELECTOR, 0);
3909 #else
3910 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3911 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3912 #endif
3913 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3914 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3915
3916 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
3917
3918 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3919
3920 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3921 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3922 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3923 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3924
3925 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3926 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3927 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3928 }
3929
3930 if (cpu_has_load_ia32_efer())
3931 vmcs_write64(HOST_IA32_EFER, host_efer);
3932 }
3933
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)3934 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3935 {
3936 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3937 if (enable_ept)
3938 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3939 if (is_guest_mode(&vmx->vcpu))
3940 vmx->vcpu.arch.cr4_guest_owned_bits &=
3941 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3942 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3943 }
3944
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)3945 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3946 {
3947 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3948
3949 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3950 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3951
3952 if (!enable_vnmi)
3953 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3954
3955 if (!enable_preemption_timer)
3956 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3957
3958 return pin_based_exec_ctrl;
3959 }
3960
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)3961 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3962 {
3963 struct vcpu_vmx *vmx = to_vmx(vcpu);
3964
3965 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3966 if (cpu_has_secondary_exec_ctrls()) {
3967 if (kvm_vcpu_apicv_active(vcpu))
3968 secondary_exec_controls_setbit(vmx,
3969 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3970 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3971 else
3972 secondary_exec_controls_clearbit(vmx,
3973 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3974 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3975 }
3976
3977 if (cpu_has_vmx_msr_bitmap())
3978 vmx_update_msr_bitmap(vcpu);
3979 }
3980
vmx_exec_control(struct vcpu_vmx * vmx)3981 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3982 {
3983 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3984
3985 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3986 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3987
3988 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3989 exec_control &= ~CPU_BASED_TPR_SHADOW;
3990 #ifdef CONFIG_X86_64
3991 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3992 CPU_BASED_CR8_LOAD_EXITING;
3993 #endif
3994 }
3995 if (!enable_ept)
3996 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3997 CPU_BASED_CR3_LOAD_EXITING |
3998 CPU_BASED_INVLPG_EXITING;
3999 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4000 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4001 CPU_BASED_MONITOR_EXITING);
4002 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4003 exec_control &= ~CPU_BASED_HLT_EXITING;
4004 return exec_control;
4005 }
4006
4007
vmx_compute_secondary_exec_control(struct vcpu_vmx * vmx)4008 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4009 {
4010 struct kvm_vcpu *vcpu = &vmx->vcpu;
4011
4012 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4013
4014 if (pt_mode == PT_MODE_SYSTEM)
4015 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4016 if (!cpu_need_virtualize_apic_accesses(vcpu))
4017 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4018 if (vmx->vpid == 0)
4019 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4020 if (!enable_ept) {
4021 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4022 enable_unrestricted_guest = 0;
4023 }
4024 if (!enable_unrestricted_guest)
4025 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4026 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4027 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4028 if (!kvm_vcpu_apicv_active(vcpu))
4029 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4030 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4031 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4032
4033 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4034 * in vmx_set_cr4. */
4035 exec_control &= ~SECONDARY_EXEC_DESC;
4036
4037 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4038 (handle_vmptrld).
4039 We can NOT enable shadow_vmcs here because we don't have yet
4040 a current VMCS12
4041 */
4042 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4043
4044 if (!enable_pml)
4045 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4046
4047 if (vmx_xsaves_supported()) {
4048 /* Exposing XSAVES only when XSAVE is exposed */
4049 bool xsaves_enabled =
4050 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4051 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4052
4053 if (!xsaves_enabled)
4054 exec_control &= ~SECONDARY_EXEC_XSAVES;
4055
4056 if (nested) {
4057 if (xsaves_enabled)
4058 vmx->nested.msrs.secondary_ctls_high |=
4059 SECONDARY_EXEC_XSAVES;
4060 else
4061 vmx->nested.msrs.secondary_ctls_high &=
4062 ~SECONDARY_EXEC_XSAVES;
4063 }
4064 }
4065
4066 if (vmx_rdtscp_supported()) {
4067 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4068 if (!rdtscp_enabled)
4069 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4070
4071 if (nested) {
4072 if (rdtscp_enabled)
4073 vmx->nested.msrs.secondary_ctls_high |=
4074 SECONDARY_EXEC_RDTSCP;
4075 else
4076 vmx->nested.msrs.secondary_ctls_high &=
4077 ~SECONDARY_EXEC_RDTSCP;
4078 }
4079 }
4080
4081 if (vmx_invpcid_supported()) {
4082 /* Exposing INVPCID only when PCID is exposed */
4083 bool invpcid_enabled =
4084 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4085 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4086
4087 if (!invpcid_enabled) {
4088 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4089 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4090 }
4091
4092 if (nested) {
4093 if (invpcid_enabled)
4094 vmx->nested.msrs.secondary_ctls_high |=
4095 SECONDARY_EXEC_ENABLE_INVPCID;
4096 else
4097 vmx->nested.msrs.secondary_ctls_high &=
4098 ~SECONDARY_EXEC_ENABLE_INVPCID;
4099 }
4100 }
4101
4102 if (vmx_rdrand_supported()) {
4103 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4104 if (rdrand_enabled)
4105 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4106
4107 if (nested) {
4108 if (rdrand_enabled)
4109 vmx->nested.msrs.secondary_ctls_high |=
4110 SECONDARY_EXEC_RDRAND_EXITING;
4111 else
4112 vmx->nested.msrs.secondary_ctls_high &=
4113 ~SECONDARY_EXEC_RDRAND_EXITING;
4114 }
4115 }
4116
4117 if (vmx_rdseed_supported()) {
4118 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4119 if (rdseed_enabled)
4120 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4121
4122 if (nested) {
4123 if (rdseed_enabled)
4124 vmx->nested.msrs.secondary_ctls_high |=
4125 SECONDARY_EXEC_RDSEED_EXITING;
4126 else
4127 vmx->nested.msrs.secondary_ctls_high &=
4128 ~SECONDARY_EXEC_RDSEED_EXITING;
4129 }
4130 }
4131
4132 if (vmx_waitpkg_supported()) {
4133 bool waitpkg_enabled =
4134 guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4135
4136 if (!waitpkg_enabled)
4137 exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4138
4139 if (nested) {
4140 if (waitpkg_enabled)
4141 vmx->nested.msrs.secondary_ctls_high |=
4142 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4143 else
4144 vmx->nested.msrs.secondary_ctls_high &=
4145 ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4146 }
4147 }
4148
4149 vmx->secondary_exec_control = exec_control;
4150 }
4151
ept_set_mmio_spte_mask(void)4152 static void ept_set_mmio_spte_mask(void)
4153 {
4154 /*
4155 * EPT Misconfigurations can be generated if the value of bits 2:0
4156 * of an EPT paging-structure entry is 110b (write/execute).
4157 */
4158 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4159 VMX_EPT_MISCONFIG_WX_VALUE, 0);
4160 }
4161
4162 #define VMX_XSS_EXIT_BITMAP 0
4163
4164 /*
4165 * Sets up the vmcs for emulated real mode.
4166 */
vmx_vcpu_setup(struct vcpu_vmx * vmx)4167 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4168 {
4169 int i;
4170
4171 if (nested)
4172 nested_vmx_vcpu_setup();
4173
4174 if (cpu_has_vmx_msr_bitmap())
4175 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4176
4177 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4178
4179 /* Control */
4180 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4181 vmx->hv_deadline_tsc = -1;
4182
4183 exec_controls_set(vmx, vmx_exec_control(vmx));
4184
4185 if (cpu_has_secondary_exec_ctrls()) {
4186 vmx_compute_secondary_exec_control(vmx);
4187 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4188 }
4189
4190 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4191 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4192 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4193 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4194 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4195
4196 vmcs_write16(GUEST_INTR_STATUS, 0);
4197
4198 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4199 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4200 }
4201
4202 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4203 vmcs_write32(PLE_GAP, ple_gap);
4204 vmx->ple_window = ple_window;
4205 vmx->ple_window_dirty = true;
4206 }
4207
4208 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4209 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4210 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4211
4212 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4213 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4214 vmx_set_constant_host_state(vmx);
4215 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4216 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4217
4218 if (cpu_has_vmx_vmfunc())
4219 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4220
4221 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4222 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4223 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4224 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4225 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4226
4227 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4228 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4229
4230 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4231 u32 index = vmx_msr_index[i];
4232 u32 data_low, data_high;
4233 int j = vmx->nmsrs;
4234
4235 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4236 continue;
4237 if (wrmsr_safe(index, data_low, data_high) < 0)
4238 continue;
4239 vmx->guest_msrs[j].index = i;
4240 vmx->guest_msrs[j].data = 0;
4241 vmx->guest_msrs[j].mask = -1ull;
4242 ++vmx->nmsrs;
4243 }
4244
4245 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4246
4247 /* 22.2.1, 20.8.1 */
4248 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4249
4250 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4251 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4252
4253 set_cr4_guest_host_mask(vmx);
4254
4255 if (vmx_xsaves_supported())
4256 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4257
4258 if (enable_pml) {
4259 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4260 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4261 }
4262
4263 if (cpu_has_vmx_encls_vmexit())
4264 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4265
4266 if (pt_mode == PT_MODE_HOST_GUEST) {
4267 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4268 /* Bit[6~0] are forced to 1, writes are ignored. */
4269 vmx->pt_desc.guest.output_mask = 0x7F;
4270 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4271 }
4272 }
4273
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4274 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4275 {
4276 struct vcpu_vmx *vmx = to_vmx(vcpu);
4277 struct msr_data apic_base_msr;
4278 u64 cr0;
4279
4280 vmx->rmode.vm86_active = 0;
4281 vmx->spec_ctrl = 0;
4282
4283 vmx->msr_ia32_umwait_control = 0;
4284
4285 vcpu->arch.microcode_version = 0x100000000ULL;
4286 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4287 vmx->hv_deadline_tsc = -1;
4288 kvm_set_cr8(vcpu, 0);
4289
4290 if (!init_event) {
4291 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4292 MSR_IA32_APICBASE_ENABLE;
4293 if (kvm_vcpu_is_reset_bsp(vcpu))
4294 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4295 apic_base_msr.host_initiated = true;
4296 kvm_set_apic_base(vcpu, &apic_base_msr);
4297 }
4298
4299 vmx_segment_cache_clear(vmx);
4300
4301 seg_setup(VCPU_SREG_CS);
4302 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4303 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4304
4305 seg_setup(VCPU_SREG_DS);
4306 seg_setup(VCPU_SREG_ES);
4307 seg_setup(VCPU_SREG_FS);
4308 seg_setup(VCPU_SREG_GS);
4309 seg_setup(VCPU_SREG_SS);
4310
4311 vmcs_write16(GUEST_TR_SELECTOR, 0);
4312 vmcs_writel(GUEST_TR_BASE, 0);
4313 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4314 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4315
4316 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4317 vmcs_writel(GUEST_LDTR_BASE, 0);
4318 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4319 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4320
4321 if (!init_event) {
4322 vmcs_write32(GUEST_SYSENTER_CS, 0);
4323 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4324 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4325 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4326 }
4327
4328 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4329 kvm_rip_write(vcpu, 0xfff0);
4330
4331 vmcs_writel(GUEST_GDTR_BASE, 0);
4332 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4333
4334 vmcs_writel(GUEST_IDTR_BASE, 0);
4335 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4336
4337 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4338 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4339 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4340 if (kvm_mpx_supported())
4341 vmcs_write64(GUEST_BNDCFGS, 0);
4342
4343 setup_msrs(vmx);
4344
4345 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4346
4347 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4348 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4349 if (cpu_need_tpr_shadow(vcpu))
4350 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4351 __pa(vcpu->arch.apic->regs));
4352 vmcs_write32(TPR_THRESHOLD, 0);
4353 }
4354
4355 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4356
4357 if (vmx->vpid != 0)
4358 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4359
4360 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4361 vmx->vcpu.arch.cr0 = cr0;
4362 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4363 vmx_set_cr4(vcpu, 0);
4364 vmx_set_efer(vcpu, 0);
4365
4366 update_exception_bitmap(vcpu);
4367
4368 vpid_sync_context(vmx->vpid);
4369 if (init_event)
4370 vmx_clear_hlt(vcpu);
4371 }
4372
enable_irq_window(struct kvm_vcpu * vcpu)4373 static void enable_irq_window(struct kvm_vcpu *vcpu)
4374 {
4375 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4376 }
4377
enable_nmi_window(struct kvm_vcpu * vcpu)4378 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4379 {
4380 if (!enable_vnmi ||
4381 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4382 enable_irq_window(vcpu);
4383 return;
4384 }
4385
4386 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
4387 }
4388
vmx_inject_irq(struct kvm_vcpu * vcpu)4389 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4390 {
4391 struct vcpu_vmx *vmx = to_vmx(vcpu);
4392 uint32_t intr;
4393 int irq = vcpu->arch.interrupt.nr;
4394
4395 trace_kvm_inj_virq(irq);
4396
4397 ++vcpu->stat.irq_injections;
4398 if (vmx->rmode.vm86_active) {
4399 int inc_eip = 0;
4400 if (vcpu->arch.interrupt.soft)
4401 inc_eip = vcpu->arch.event_exit_inst_len;
4402 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4403 return;
4404 }
4405 intr = irq | INTR_INFO_VALID_MASK;
4406 if (vcpu->arch.interrupt.soft) {
4407 intr |= INTR_TYPE_SOFT_INTR;
4408 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4409 vmx->vcpu.arch.event_exit_inst_len);
4410 } else
4411 intr |= INTR_TYPE_EXT_INTR;
4412 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4413
4414 vmx_clear_hlt(vcpu);
4415 }
4416
vmx_inject_nmi(struct kvm_vcpu * vcpu)4417 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4418 {
4419 struct vcpu_vmx *vmx = to_vmx(vcpu);
4420
4421 if (!enable_vnmi) {
4422 /*
4423 * Tracking the NMI-blocked state in software is built upon
4424 * finding the next open IRQ window. This, in turn, depends on
4425 * well-behaving guests: They have to keep IRQs disabled at
4426 * least as long as the NMI handler runs. Otherwise we may
4427 * cause NMI nesting, maybe breaking the guest. But as this is
4428 * highly unlikely, we can live with the residual risk.
4429 */
4430 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4431 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4432 }
4433
4434 ++vcpu->stat.nmi_injections;
4435 vmx->loaded_vmcs->nmi_known_unmasked = false;
4436
4437 if (vmx->rmode.vm86_active) {
4438 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4439 return;
4440 }
4441
4442 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4443 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4444
4445 vmx_clear_hlt(vcpu);
4446 }
4447
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4448 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4449 {
4450 struct vcpu_vmx *vmx = to_vmx(vcpu);
4451 bool masked;
4452
4453 if (!enable_vnmi)
4454 return vmx->loaded_vmcs->soft_vnmi_blocked;
4455 if (vmx->loaded_vmcs->nmi_known_unmasked)
4456 return false;
4457 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4458 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4459 return masked;
4460 }
4461
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4462 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4463 {
4464 struct vcpu_vmx *vmx = to_vmx(vcpu);
4465
4466 if (!enable_vnmi) {
4467 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4468 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4469 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4470 }
4471 } else {
4472 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4473 if (masked)
4474 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4475 GUEST_INTR_STATE_NMI);
4476 else
4477 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4478 GUEST_INTR_STATE_NMI);
4479 }
4480 }
4481
vmx_nmi_allowed(struct kvm_vcpu * vcpu)4482 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4483 {
4484 if (to_vmx(vcpu)->nested.nested_run_pending)
4485 return 0;
4486
4487 if (!enable_vnmi &&
4488 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4489 return 0;
4490
4491 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4492 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4493 | GUEST_INTR_STATE_NMI));
4494 }
4495
vmx_interrupt_allowed(struct kvm_vcpu * vcpu)4496 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4497 {
4498 return (!to_vmx(vcpu)->nested.nested_run_pending &&
4499 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4500 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4501 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4502 }
4503
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4504 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4505 {
4506 int ret;
4507
4508 if (enable_unrestricted_guest)
4509 return 0;
4510
4511 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4512 PAGE_SIZE * 3);
4513 if (ret)
4514 return ret;
4515 to_kvm_vmx(kvm)->tss_addr = addr;
4516 return init_rmode_tss(kvm);
4517 }
4518
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4519 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4520 {
4521 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4522 return 0;
4523 }
4524
rmode_exception(struct kvm_vcpu * vcpu,int vec)4525 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4526 {
4527 switch (vec) {
4528 case BP_VECTOR:
4529 /*
4530 * Update instruction length as we may reinject the exception
4531 * from user space while in guest debugging mode.
4532 */
4533 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4534 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4535 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4536 return false;
4537 /* fall through */
4538 case DB_VECTOR:
4539 if (vcpu->guest_debug &
4540 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4541 return false;
4542 /* fall through */
4543 case DE_VECTOR:
4544 case OF_VECTOR:
4545 case BR_VECTOR:
4546 case UD_VECTOR:
4547 case DF_VECTOR:
4548 case SS_VECTOR:
4549 case GP_VECTOR:
4550 case MF_VECTOR:
4551 return true;
4552 break;
4553 }
4554 return false;
4555 }
4556
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)4557 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4558 int vec, u32 err_code)
4559 {
4560 /*
4561 * Instruction with address size override prefix opcode 0x67
4562 * Cause the #SS fault with 0 error code in VM86 mode.
4563 */
4564 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4565 if (kvm_emulate_instruction(vcpu, 0)) {
4566 if (vcpu->arch.halt_request) {
4567 vcpu->arch.halt_request = 0;
4568 return kvm_vcpu_halt(vcpu);
4569 }
4570 return 1;
4571 }
4572 return 0;
4573 }
4574
4575 /*
4576 * Forward all other exceptions that are valid in real mode.
4577 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4578 * the required debugging infrastructure rework.
4579 */
4580 kvm_queue_exception(vcpu, vec);
4581 return 1;
4582 }
4583
4584 /*
4585 * Trigger machine check on the host. We assume all the MSRs are already set up
4586 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4587 * We pass a fake environment to the machine check handler because we want
4588 * the guest to be always treated like user space, no matter what context
4589 * it used internally.
4590 */
kvm_machine_check(void)4591 static void kvm_machine_check(void)
4592 {
4593 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4594 struct pt_regs regs = {
4595 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4596 .flags = X86_EFLAGS_IF,
4597 };
4598
4599 do_machine_check(®s, 0);
4600 #endif
4601 }
4602
handle_machine_check(struct kvm_vcpu * vcpu)4603 static int handle_machine_check(struct kvm_vcpu *vcpu)
4604 {
4605 /* handled by vmx_vcpu_run() */
4606 return 1;
4607 }
4608
handle_exception_nmi(struct kvm_vcpu * vcpu)4609 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4610 {
4611 struct vcpu_vmx *vmx = to_vmx(vcpu);
4612 struct kvm_run *kvm_run = vcpu->run;
4613 u32 intr_info, ex_no, error_code;
4614 unsigned long cr2, rip, dr6;
4615 u32 vect_info;
4616
4617 vect_info = vmx->idt_vectoring_info;
4618 intr_info = vmx->exit_intr_info;
4619
4620 if (is_machine_check(intr_info) || is_nmi(intr_info))
4621 return 1; /* handled by handle_exception_nmi_irqoff() */
4622
4623 if (is_invalid_opcode(intr_info))
4624 return handle_ud(vcpu);
4625
4626 error_code = 0;
4627 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4628 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4629
4630 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4631 WARN_ON_ONCE(!enable_vmware_backdoor);
4632
4633 /*
4634 * VMware backdoor emulation on #GP interception only handles
4635 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4636 * error code on #GP.
4637 */
4638 if (error_code) {
4639 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4640 return 1;
4641 }
4642 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4643 }
4644
4645 /*
4646 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4647 * MMIO, it is better to report an internal error.
4648 * See the comments in vmx_handle_exit.
4649 */
4650 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4651 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4652 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4653 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4654 vcpu->run->internal.ndata = 3;
4655 vcpu->run->internal.data[0] = vect_info;
4656 vcpu->run->internal.data[1] = intr_info;
4657 vcpu->run->internal.data[2] = error_code;
4658 return 0;
4659 }
4660
4661 if (is_page_fault(intr_info)) {
4662 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4663 /* EPT won't cause page fault directly */
4664 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4665 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4666 }
4667
4668 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4669
4670 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4671 return handle_rmode_exception(vcpu, ex_no, error_code);
4672
4673 switch (ex_no) {
4674 case AC_VECTOR:
4675 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4676 return 1;
4677 case DB_VECTOR:
4678 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4679 if (!(vcpu->guest_debug &
4680 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4681 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4682 vcpu->arch.dr6 |= dr6 | DR6_RTM;
4683 if (is_icebp(intr_info))
4684 WARN_ON(!skip_emulated_instruction(vcpu));
4685
4686 kvm_queue_exception(vcpu, DB_VECTOR);
4687 return 1;
4688 }
4689 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4690 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4691 /* fall through */
4692 case BP_VECTOR:
4693 /*
4694 * Update instruction length as we may reinject #BP from
4695 * user space while in guest debugging mode. Reading it for
4696 * #DB as well causes no harm, it is not used in that case.
4697 */
4698 vmx->vcpu.arch.event_exit_inst_len =
4699 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4700 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4701 rip = kvm_rip_read(vcpu);
4702 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4703 kvm_run->debug.arch.exception = ex_no;
4704 break;
4705 default:
4706 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4707 kvm_run->ex.exception = ex_no;
4708 kvm_run->ex.error_code = error_code;
4709 break;
4710 }
4711 return 0;
4712 }
4713
handle_external_interrupt(struct kvm_vcpu * vcpu)4714 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4715 {
4716 ++vcpu->stat.irq_exits;
4717 return 1;
4718 }
4719
handle_triple_fault(struct kvm_vcpu * vcpu)4720 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4721 {
4722 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4723 vcpu->mmio_needed = 0;
4724 return 0;
4725 }
4726
handle_io(struct kvm_vcpu * vcpu)4727 static int handle_io(struct kvm_vcpu *vcpu)
4728 {
4729 unsigned long exit_qualification;
4730 int size, in, string;
4731 unsigned port;
4732
4733 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4734 string = (exit_qualification & 16) != 0;
4735
4736 ++vcpu->stat.io_exits;
4737
4738 if (string)
4739 return kvm_emulate_instruction(vcpu, 0);
4740
4741 port = exit_qualification >> 16;
4742 size = (exit_qualification & 7) + 1;
4743 in = (exit_qualification & 8) != 0;
4744
4745 return kvm_fast_pio(vcpu, size, port, in);
4746 }
4747
4748 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4749 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4750 {
4751 /*
4752 * Patch in the VMCALL instruction:
4753 */
4754 hypercall[0] = 0x0f;
4755 hypercall[1] = 0x01;
4756 hypercall[2] = 0xc1;
4757 }
4758
4759 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)4760 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4761 {
4762 if (is_guest_mode(vcpu)) {
4763 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4764 unsigned long orig_val = val;
4765
4766 /*
4767 * We get here when L2 changed cr0 in a way that did not change
4768 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4769 * but did change L0 shadowed bits. So we first calculate the
4770 * effective cr0 value that L1 would like to write into the
4771 * hardware. It consists of the L2-owned bits from the new
4772 * value combined with the L1-owned bits from L1's guest_cr0.
4773 */
4774 val = (val & ~vmcs12->cr0_guest_host_mask) |
4775 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4776
4777 if (!nested_guest_cr0_valid(vcpu, val))
4778 return 1;
4779
4780 if (kvm_set_cr0(vcpu, val))
4781 return 1;
4782 vmcs_writel(CR0_READ_SHADOW, orig_val);
4783 return 0;
4784 } else {
4785 if (to_vmx(vcpu)->nested.vmxon &&
4786 !nested_host_cr0_valid(vcpu, val))
4787 return 1;
4788
4789 return kvm_set_cr0(vcpu, val);
4790 }
4791 }
4792
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)4793 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4794 {
4795 if (is_guest_mode(vcpu)) {
4796 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4797 unsigned long orig_val = val;
4798
4799 /* analogously to handle_set_cr0 */
4800 val = (val & ~vmcs12->cr4_guest_host_mask) |
4801 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4802 if (kvm_set_cr4(vcpu, val))
4803 return 1;
4804 vmcs_writel(CR4_READ_SHADOW, orig_val);
4805 return 0;
4806 } else
4807 return kvm_set_cr4(vcpu, val);
4808 }
4809
handle_desc(struct kvm_vcpu * vcpu)4810 static int handle_desc(struct kvm_vcpu *vcpu)
4811 {
4812 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4813 return kvm_emulate_instruction(vcpu, 0);
4814 }
4815
handle_cr(struct kvm_vcpu * vcpu)4816 static int handle_cr(struct kvm_vcpu *vcpu)
4817 {
4818 unsigned long exit_qualification, val;
4819 int cr;
4820 int reg;
4821 int err;
4822 int ret;
4823
4824 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4825 cr = exit_qualification & 15;
4826 reg = (exit_qualification >> 8) & 15;
4827 switch ((exit_qualification >> 4) & 3) {
4828 case 0: /* mov to cr */
4829 val = kvm_register_readl(vcpu, reg);
4830 trace_kvm_cr_write(cr, val);
4831 switch (cr) {
4832 case 0:
4833 err = handle_set_cr0(vcpu, val);
4834 return kvm_complete_insn_gp(vcpu, err);
4835 case 3:
4836 WARN_ON_ONCE(enable_unrestricted_guest);
4837 err = kvm_set_cr3(vcpu, val);
4838 return kvm_complete_insn_gp(vcpu, err);
4839 case 4:
4840 err = handle_set_cr4(vcpu, val);
4841 return kvm_complete_insn_gp(vcpu, err);
4842 case 8: {
4843 u8 cr8_prev = kvm_get_cr8(vcpu);
4844 u8 cr8 = (u8)val;
4845 err = kvm_set_cr8(vcpu, cr8);
4846 ret = kvm_complete_insn_gp(vcpu, err);
4847 if (lapic_in_kernel(vcpu))
4848 return ret;
4849 if (cr8_prev <= cr8)
4850 return ret;
4851 /*
4852 * TODO: we might be squashing a
4853 * KVM_GUESTDBG_SINGLESTEP-triggered
4854 * KVM_EXIT_DEBUG here.
4855 */
4856 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4857 return 0;
4858 }
4859 }
4860 break;
4861 case 2: /* clts */
4862 WARN_ONCE(1, "Guest should always own CR0.TS");
4863 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4864 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4865 return kvm_skip_emulated_instruction(vcpu);
4866 case 1: /*mov from cr*/
4867 switch (cr) {
4868 case 3:
4869 WARN_ON_ONCE(enable_unrestricted_guest);
4870 val = kvm_read_cr3(vcpu);
4871 kvm_register_write(vcpu, reg, val);
4872 trace_kvm_cr_read(cr, val);
4873 return kvm_skip_emulated_instruction(vcpu);
4874 case 8:
4875 val = kvm_get_cr8(vcpu);
4876 kvm_register_write(vcpu, reg, val);
4877 trace_kvm_cr_read(cr, val);
4878 return kvm_skip_emulated_instruction(vcpu);
4879 }
4880 break;
4881 case 3: /* lmsw */
4882 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4883 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4884 kvm_lmsw(vcpu, val);
4885
4886 return kvm_skip_emulated_instruction(vcpu);
4887 default:
4888 break;
4889 }
4890 vcpu->run->exit_reason = 0;
4891 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4892 (int)(exit_qualification >> 4) & 3, cr);
4893 return 0;
4894 }
4895
handle_dr(struct kvm_vcpu * vcpu)4896 static int handle_dr(struct kvm_vcpu *vcpu)
4897 {
4898 unsigned long exit_qualification;
4899 int dr, dr7, reg;
4900
4901 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4902 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4903
4904 /* First, if DR does not exist, trigger UD */
4905 if (!kvm_require_dr(vcpu, dr))
4906 return 1;
4907
4908 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4909 if (!kvm_require_cpl(vcpu, 0))
4910 return 1;
4911 dr7 = vmcs_readl(GUEST_DR7);
4912 if (dr7 & DR7_GD) {
4913 /*
4914 * As the vm-exit takes precedence over the debug trap, we
4915 * need to emulate the latter, either for the host or the
4916 * guest debugging itself.
4917 */
4918 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4919 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4920 vcpu->run->debug.arch.dr7 = dr7;
4921 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4922 vcpu->run->debug.arch.exception = DB_VECTOR;
4923 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4924 return 0;
4925 } else {
4926 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4927 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4928 kvm_queue_exception(vcpu, DB_VECTOR);
4929 return 1;
4930 }
4931 }
4932
4933 if (vcpu->guest_debug == 0) {
4934 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4935
4936 /*
4937 * No more DR vmexits; force a reload of the debug registers
4938 * and reenter on this instruction. The next vmexit will
4939 * retrieve the full state of the debug registers.
4940 */
4941 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4942 return 1;
4943 }
4944
4945 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4946 if (exit_qualification & TYPE_MOV_FROM_DR) {
4947 unsigned long val;
4948
4949 if (kvm_get_dr(vcpu, dr, &val))
4950 return 1;
4951 kvm_register_write(vcpu, reg, val);
4952 } else
4953 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4954 return 1;
4955
4956 return kvm_skip_emulated_instruction(vcpu);
4957 }
4958
vmx_get_dr6(struct kvm_vcpu * vcpu)4959 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4960 {
4961 return vcpu->arch.dr6;
4962 }
4963
vmx_set_dr6(struct kvm_vcpu * vcpu,unsigned long val)4964 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4965 {
4966 }
4967
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)4968 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4969 {
4970 get_debugreg(vcpu->arch.db[0], 0);
4971 get_debugreg(vcpu->arch.db[1], 1);
4972 get_debugreg(vcpu->arch.db[2], 2);
4973 get_debugreg(vcpu->arch.db[3], 3);
4974 get_debugreg(vcpu->arch.dr6, 6);
4975 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4976
4977 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4978 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4979 }
4980
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)4981 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4982 {
4983 vmcs_writel(GUEST_DR7, val);
4984 }
4985
handle_cpuid(struct kvm_vcpu * vcpu)4986 static int handle_cpuid(struct kvm_vcpu *vcpu)
4987 {
4988 return kvm_emulate_cpuid(vcpu);
4989 }
4990
handle_rdmsr(struct kvm_vcpu * vcpu)4991 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4992 {
4993 return kvm_emulate_rdmsr(vcpu);
4994 }
4995
handle_wrmsr(struct kvm_vcpu * vcpu)4996 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4997 {
4998 return kvm_emulate_wrmsr(vcpu);
4999 }
5000
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5001 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5002 {
5003 kvm_apic_update_ppr(vcpu);
5004 return 1;
5005 }
5006
handle_interrupt_window(struct kvm_vcpu * vcpu)5007 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5008 {
5009 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
5010
5011 kvm_make_request(KVM_REQ_EVENT, vcpu);
5012
5013 ++vcpu->stat.irq_window_exits;
5014 return 1;
5015 }
5016
handle_halt(struct kvm_vcpu * vcpu)5017 static int handle_halt(struct kvm_vcpu *vcpu)
5018 {
5019 return kvm_emulate_halt(vcpu);
5020 }
5021
handle_vmcall(struct kvm_vcpu * vcpu)5022 static int handle_vmcall(struct kvm_vcpu *vcpu)
5023 {
5024 return kvm_emulate_hypercall(vcpu);
5025 }
5026
handle_invd(struct kvm_vcpu * vcpu)5027 static int handle_invd(struct kvm_vcpu *vcpu)
5028 {
5029 return kvm_emulate_instruction(vcpu, 0);
5030 }
5031
handle_invlpg(struct kvm_vcpu * vcpu)5032 static int handle_invlpg(struct kvm_vcpu *vcpu)
5033 {
5034 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5035
5036 kvm_mmu_invlpg(vcpu, exit_qualification);
5037 return kvm_skip_emulated_instruction(vcpu);
5038 }
5039
handle_rdpmc(struct kvm_vcpu * vcpu)5040 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5041 {
5042 int err;
5043
5044 err = kvm_rdpmc(vcpu);
5045 return kvm_complete_insn_gp(vcpu, err);
5046 }
5047
handle_wbinvd(struct kvm_vcpu * vcpu)5048 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5049 {
5050 return kvm_emulate_wbinvd(vcpu);
5051 }
5052
handle_xsetbv(struct kvm_vcpu * vcpu)5053 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5054 {
5055 u64 new_bv = kvm_read_edx_eax(vcpu);
5056 u32 index = kvm_rcx_read(vcpu);
5057
5058 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5059 return kvm_skip_emulated_instruction(vcpu);
5060 return 1;
5061 }
5062
handle_apic_access(struct kvm_vcpu * vcpu)5063 static int handle_apic_access(struct kvm_vcpu *vcpu)
5064 {
5065 if (likely(fasteoi)) {
5066 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5067 int access_type, offset;
5068
5069 access_type = exit_qualification & APIC_ACCESS_TYPE;
5070 offset = exit_qualification & APIC_ACCESS_OFFSET;
5071 /*
5072 * Sane guest uses MOV to write EOI, with written value
5073 * not cared. So make a short-circuit here by avoiding
5074 * heavy instruction emulation.
5075 */
5076 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5077 (offset == APIC_EOI)) {
5078 kvm_lapic_set_eoi(vcpu);
5079 return kvm_skip_emulated_instruction(vcpu);
5080 }
5081 }
5082 return kvm_emulate_instruction(vcpu, 0);
5083 }
5084
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5085 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5086 {
5087 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5088 int vector = exit_qualification & 0xff;
5089
5090 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5091 kvm_apic_set_eoi_accelerated(vcpu, vector);
5092 return 1;
5093 }
5094
handle_apic_write(struct kvm_vcpu * vcpu)5095 static int handle_apic_write(struct kvm_vcpu *vcpu)
5096 {
5097 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5098 u32 offset = exit_qualification & 0xfff;
5099
5100 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5101 kvm_apic_write_nodecode(vcpu, offset);
5102 return 1;
5103 }
5104
handle_task_switch(struct kvm_vcpu * vcpu)5105 static int handle_task_switch(struct kvm_vcpu *vcpu)
5106 {
5107 struct vcpu_vmx *vmx = to_vmx(vcpu);
5108 unsigned long exit_qualification;
5109 bool has_error_code = false;
5110 u32 error_code = 0;
5111 u16 tss_selector;
5112 int reason, type, idt_v, idt_index;
5113
5114 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5115 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5116 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5117
5118 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5119
5120 reason = (u32)exit_qualification >> 30;
5121 if (reason == TASK_SWITCH_GATE && idt_v) {
5122 switch (type) {
5123 case INTR_TYPE_NMI_INTR:
5124 vcpu->arch.nmi_injected = false;
5125 vmx_set_nmi_mask(vcpu, true);
5126 break;
5127 case INTR_TYPE_EXT_INTR:
5128 case INTR_TYPE_SOFT_INTR:
5129 kvm_clear_interrupt_queue(vcpu);
5130 break;
5131 case INTR_TYPE_HARD_EXCEPTION:
5132 if (vmx->idt_vectoring_info &
5133 VECTORING_INFO_DELIVER_CODE_MASK) {
5134 has_error_code = true;
5135 error_code =
5136 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5137 }
5138 /* fall through */
5139 case INTR_TYPE_SOFT_EXCEPTION:
5140 kvm_clear_exception_queue(vcpu);
5141 break;
5142 default:
5143 break;
5144 }
5145 }
5146 tss_selector = exit_qualification;
5147
5148 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5149 type != INTR_TYPE_EXT_INTR &&
5150 type != INTR_TYPE_NMI_INTR))
5151 WARN_ON(!skip_emulated_instruction(vcpu));
5152
5153 /*
5154 * TODO: What about debug traps on tss switch?
5155 * Are we supposed to inject them and update dr6?
5156 */
5157 return kvm_task_switch(vcpu, tss_selector,
5158 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5159 reason, has_error_code, error_code);
5160 }
5161
handle_ept_violation(struct kvm_vcpu * vcpu)5162 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5163 {
5164 unsigned long exit_qualification;
5165 gpa_t gpa;
5166 u64 error_code;
5167
5168 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5169
5170 /*
5171 * EPT violation happened while executing iret from NMI,
5172 * "blocked by NMI" bit has to be set before next VM entry.
5173 * There are errata that may cause this bit to not be set:
5174 * AAK134, BY25.
5175 */
5176 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5177 enable_vnmi &&
5178 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5179 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5180
5181 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5182 trace_kvm_page_fault(gpa, exit_qualification);
5183
5184 /* Is it a read fault? */
5185 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5186 ? PFERR_USER_MASK : 0;
5187 /* Is it a write fault? */
5188 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5189 ? PFERR_WRITE_MASK : 0;
5190 /* Is it a fetch fault? */
5191 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5192 ? PFERR_FETCH_MASK : 0;
5193 /* ept page table entry is present? */
5194 error_code |= (exit_qualification &
5195 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5196 EPT_VIOLATION_EXECUTABLE))
5197 ? PFERR_PRESENT_MASK : 0;
5198
5199 error_code |= (exit_qualification & 0x100) != 0 ?
5200 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5201
5202 vcpu->arch.exit_qualification = exit_qualification;
5203 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5204 }
5205
handle_ept_misconfig(struct kvm_vcpu * vcpu)5206 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5207 {
5208 gpa_t gpa;
5209
5210 /*
5211 * A nested guest cannot optimize MMIO vmexits, because we have an
5212 * nGPA here instead of the required GPA.
5213 */
5214 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5215 if (!is_guest_mode(vcpu) &&
5216 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5217 trace_kvm_fast_mmio(gpa);
5218 return kvm_skip_emulated_instruction(vcpu);
5219 }
5220
5221 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5222 }
5223
handle_nmi_window(struct kvm_vcpu * vcpu)5224 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5225 {
5226 WARN_ON_ONCE(!enable_vnmi);
5227 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
5228 ++vcpu->stat.nmi_window_exits;
5229 kvm_make_request(KVM_REQ_EVENT, vcpu);
5230
5231 return 1;
5232 }
5233
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5234 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5235 {
5236 struct vcpu_vmx *vmx = to_vmx(vcpu);
5237 bool intr_window_requested;
5238 unsigned count = 130;
5239
5240 /*
5241 * We should never reach the point where we are emulating L2
5242 * due to invalid guest state as that means we incorrectly
5243 * allowed a nested VMEntry with an invalid vmcs12.
5244 */
5245 WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5246
5247 intr_window_requested = exec_controls_get(vmx) &
5248 CPU_BASED_VIRTUAL_INTR_PENDING;
5249
5250 while (vmx->emulation_required && count-- != 0) {
5251 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5252 return handle_interrupt_window(&vmx->vcpu);
5253
5254 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5255 return 1;
5256
5257 if (!kvm_emulate_instruction(vcpu, 0))
5258 return 0;
5259
5260 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5261 vcpu->arch.exception.pending) {
5262 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5263 vcpu->run->internal.suberror =
5264 KVM_INTERNAL_ERROR_EMULATION;
5265 vcpu->run->internal.ndata = 0;
5266 return 0;
5267 }
5268
5269 if (vcpu->arch.halt_request) {
5270 vcpu->arch.halt_request = 0;
5271 return kvm_vcpu_halt(vcpu);
5272 }
5273
5274 /*
5275 * Note, return 1 and not 0, vcpu_run() is responsible for
5276 * morphing the pending signal into the proper return code.
5277 */
5278 if (signal_pending(current))
5279 return 1;
5280
5281 if (need_resched())
5282 schedule();
5283 }
5284
5285 return 1;
5286 }
5287
grow_ple_window(struct kvm_vcpu * vcpu)5288 static void grow_ple_window(struct kvm_vcpu *vcpu)
5289 {
5290 struct vcpu_vmx *vmx = to_vmx(vcpu);
5291 unsigned int old = vmx->ple_window;
5292
5293 vmx->ple_window = __grow_ple_window(old, ple_window,
5294 ple_window_grow,
5295 ple_window_max);
5296
5297 if (vmx->ple_window != old) {
5298 vmx->ple_window_dirty = true;
5299 trace_kvm_ple_window_update(vcpu->vcpu_id,
5300 vmx->ple_window, old);
5301 }
5302 }
5303
shrink_ple_window(struct kvm_vcpu * vcpu)5304 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5305 {
5306 struct vcpu_vmx *vmx = to_vmx(vcpu);
5307 unsigned int old = vmx->ple_window;
5308
5309 vmx->ple_window = __shrink_ple_window(old, ple_window,
5310 ple_window_shrink,
5311 ple_window);
5312
5313 if (vmx->ple_window != old) {
5314 vmx->ple_window_dirty = true;
5315 trace_kvm_ple_window_update(vcpu->vcpu_id,
5316 vmx->ple_window, old);
5317 }
5318 }
5319
5320 /*
5321 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5322 */
wakeup_handler(void)5323 static void wakeup_handler(void)
5324 {
5325 struct kvm_vcpu *vcpu;
5326 int cpu = smp_processor_id();
5327
5328 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5329 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5330 blocked_vcpu_list) {
5331 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5332
5333 if (pi_test_on(pi_desc) == 1)
5334 kvm_vcpu_kick(vcpu);
5335 }
5336 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5337 }
5338
vmx_enable_tdp(void)5339 static void vmx_enable_tdp(void)
5340 {
5341 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5342 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5343 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5344 0ull, VMX_EPT_EXECUTABLE_MASK,
5345 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5346 VMX_EPT_RWX_MASK, 0ull);
5347
5348 ept_set_mmio_spte_mask();
5349 kvm_enable_tdp();
5350 }
5351
5352 /*
5353 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5354 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5355 */
handle_pause(struct kvm_vcpu * vcpu)5356 static int handle_pause(struct kvm_vcpu *vcpu)
5357 {
5358 if (!kvm_pause_in_guest(vcpu->kvm))
5359 grow_ple_window(vcpu);
5360
5361 /*
5362 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5363 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5364 * never set PAUSE_EXITING and just set PLE if supported,
5365 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5366 */
5367 kvm_vcpu_on_spin(vcpu, true);
5368 return kvm_skip_emulated_instruction(vcpu);
5369 }
5370
handle_nop(struct kvm_vcpu * vcpu)5371 static int handle_nop(struct kvm_vcpu *vcpu)
5372 {
5373 return kvm_skip_emulated_instruction(vcpu);
5374 }
5375
handle_mwait(struct kvm_vcpu * vcpu)5376 static int handle_mwait(struct kvm_vcpu *vcpu)
5377 {
5378 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5379 return handle_nop(vcpu);
5380 }
5381
handle_invalid_op(struct kvm_vcpu * vcpu)5382 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5383 {
5384 kvm_queue_exception(vcpu, UD_VECTOR);
5385 return 1;
5386 }
5387
handle_monitor_trap(struct kvm_vcpu * vcpu)5388 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5389 {
5390 return 1;
5391 }
5392
handle_monitor(struct kvm_vcpu * vcpu)5393 static int handle_monitor(struct kvm_vcpu *vcpu)
5394 {
5395 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5396 return handle_nop(vcpu);
5397 }
5398
handle_invpcid(struct kvm_vcpu * vcpu)5399 static int handle_invpcid(struct kvm_vcpu *vcpu)
5400 {
5401 u32 vmx_instruction_info;
5402 unsigned long type;
5403 bool pcid_enabled;
5404 gva_t gva;
5405 struct x86_exception e;
5406 unsigned i;
5407 unsigned long roots_to_free = 0;
5408 struct {
5409 u64 pcid;
5410 u64 gla;
5411 } operand;
5412
5413 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5414 kvm_queue_exception(vcpu, UD_VECTOR);
5415 return 1;
5416 }
5417
5418 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5419 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5420
5421 if (type > 3) {
5422 kvm_inject_gp(vcpu, 0);
5423 return 1;
5424 }
5425
5426 /* According to the Intel instruction reference, the memory operand
5427 * is read even if it isn't needed (e.g., for type==all)
5428 */
5429 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5430 vmx_instruction_info, false,
5431 sizeof(operand), &gva))
5432 return 1;
5433
5434 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5435 kvm_inject_page_fault(vcpu, &e);
5436 return 1;
5437 }
5438
5439 if (operand.pcid >> 12 != 0) {
5440 kvm_inject_gp(vcpu, 0);
5441 return 1;
5442 }
5443
5444 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5445
5446 switch (type) {
5447 case INVPCID_TYPE_INDIV_ADDR:
5448 if ((!pcid_enabled && (operand.pcid != 0)) ||
5449 is_noncanonical_address(operand.gla, vcpu)) {
5450 kvm_inject_gp(vcpu, 0);
5451 return 1;
5452 }
5453 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5454 return kvm_skip_emulated_instruction(vcpu);
5455
5456 case INVPCID_TYPE_SINGLE_CTXT:
5457 if (!pcid_enabled && (operand.pcid != 0)) {
5458 kvm_inject_gp(vcpu, 0);
5459 return 1;
5460 }
5461
5462 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5463 kvm_mmu_sync_roots(vcpu);
5464 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5465 }
5466
5467 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5468 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5469 == operand.pcid)
5470 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5471
5472 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5473 /*
5474 * If neither the current cr3 nor any of the prev_roots use the
5475 * given PCID, then nothing needs to be done here because a
5476 * resync will happen anyway before switching to any other CR3.
5477 */
5478
5479 return kvm_skip_emulated_instruction(vcpu);
5480
5481 case INVPCID_TYPE_ALL_NON_GLOBAL:
5482 /*
5483 * Currently, KVM doesn't mark global entries in the shadow
5484 * page tables, so a non-global flush just degenerates to a
5485 * global flush. If needed, we could optimize this later by
5486 * keeping track of global entries in shadow page tables.
5487 */
5488
5489 /* fall-through */
5490 case INVPCID_TYPE_ALL_INCL_GLOBAL:
5491 kvm_mmu_unload(vcpu);
5492 return kvm_skip_emulated_instruction(vcpu);
5493
5494 default:
5495 BUG(); /* We have already checked above that type <= 3 */
5496 }
5497 }
5498
handle_pml_full(struct kvm_vcpu * vcpu)5499 static int handle_pml_full(struct kvm_vcpu *vcpu)
5500 {
5501 unsigned long exit_qualification;
5502
5503 trace_kvm_pml_full(vcpu->vcpu_id);
5504
5505 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5506
5507 /*
5508 * PML buffer FULL happened while executing iret from NMI,
5509 * "blocked by NMI" bit has to be set before next VM entry.
5510 */
5511 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5512 enable_vnmi &&
5513 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5514 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5515 GUEST_INTR_STATE_NMI);
5516
5517 /*
5518 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5519 * here.., and there's no userspace involvement needed for PML.
5520 */
5521 return 1;
5522 }
5523
handle_preemption_timer(struct kvm_vcpu * vcpu)5524 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5525 {
5526 struct vcpu_vmx *vmx = to_vmx(vcpu);
5527
5528 if (!vmx->req_immediate_exit &&
5529 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5530 kvm_lapic_expired_hv_timer(vcpu);
5531
5532 return 1;
5533 }
5534
5535 /*
5536 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5537 * are overwritten by nested_vmx_setup() when nested=1.
5538 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)5539 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5540 {
5541 kvm_queue_exception(vcpu, UD_VECTOR);
5542 return 1;
5543 }
5544
handle_encls(struct kvm_vcpu * vcpu)5545 static int handle_encls(struct kvm_vcpu *vcpu)
5546 {
5547 /*
5548 * SGX virtualization is not yet supported. There is no software
5549 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5550 * to prevent the guest from executing ENCLS.
5551 */
5552 kvm_queue_exception(vcpu, UD_VECTOR);
5553 return 1;
5554 }
5555
5556 /*
5557 * The exit handlers return 1 if the exit was handled fully and guest execution
5558 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5559 * to be done to userspace and return 0.
5560 */
5561 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5562 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5563 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5564 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5565 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5566 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5567 [EXIT_REASON_CR_ACCESS] = handle_cr,
5568 [EXIT_REASON_DR_ACCESS] = handle_dr,
5569 [EXIT_REASON_CPUID] = handle_cpuid,
5570 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5571 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5572 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5573 [EXIT_REASON_HLT] = handle_halt,
5574 [EXIT_REASON_INVD] = handle_invd,
5575 [EXIT_REASON_INVLPG] = handle_invlpg,
5576 [EXIT_REASON_RDPMC] = handle_rdpmc,
5577 [EXIT_REASON_VMCALL] = handle_vmcall,
5578 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5579 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5580 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5581 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5582 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5583 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5584 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5585 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5586 [EXIT_REASON_VMON] = handle_vmx_instruction,
5587 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5588 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5589 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5590 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5591 [EXIT_REASON_WBINVD] = handle_wbinvd,
5592 [EXIT_REASON_XSETBV] = handle_xsetbv,
5593 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5594 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5595 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5596 [EXIT_REASON_LDTR_TR] = handle_desc,
5597 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5598 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5599 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5600 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5601 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5602 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
5603 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5604 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
5605 [EXIT_REASON_RDRAND] = handle_invalid_op,
5606 [EXIT_REASON_RDSEED] = handle_invalid_op,
5607 [EXIT_REASON_PML_FULL] = handle_pml_full,
5608 [EXIT_REASON_INVPCID] = handle_invpcid,
5609 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
5610 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
5611 [EXIT_REASON_ENCLS] = handle_encls,
5612 };
5613
5614 static const int kvm_vmx_max_exit_handlers =
5615 ARRAY_SIZE(kvm_vmx_exit_handlers);
5616
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)5617 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5618 {
5619 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5620 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5621 }
5622
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)5623 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5624 {
5625 if (vmx->pml_pg) {
5626 __free_page(vmx->pml_pg);
5627 vmx->pml_pg = NULL;
5628 }
5629 }
5630
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)5631 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5632 {
5633 struct vcpu_vmx *vmx = to_vmx(vcpu);
5634 u64 *pml_buf;
5635 u16 pml_idx;
5636
5637 pml_idx = vmcs_read16(GUEST_PML_INDEX);
5638
5639 /* Do nothing if PML buffer is empty */
5640 if (pml_idx == (PML_ENTITY_NUM - 1))
5641 return;
5642
5643 /* PML index always points to next available PML buffer entity */
5644 if (pml_idx >= PML_ENTITY_NUM)
5645 pml_idx = 0;
5646 else
5647 pml_idx++;
5648
5649 pml_buf = page_address(vmx->pml_pg);
5650 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5651 u64 gpa;
5652
5653 gpa = pml_buf[pml_idx];
5654 WARN_ON(gpa & (PAGE_SIZE - 1));
5655 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5656 }
5657
5658 /* reset PML index */
5659 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5660 }
5661
5662 /*
5663 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5664 * Called before reporting dirty_bitmap to userspace.
5665 */
kvm_flush_pml_buffers(struct kvm * kvm)5666 static void kvm_flush_pml_buffers(struct kvm *kvm)
5667 {
5668 int i;
5669 struct kvm_vcpu *vcpu;
5670 /*
5671 * We only need to kick vcpu out of guest mode here, as PML buffer
5672 * is flushed at beginning of all VMEXITs, and it's obvious that only
5673 * vcpus running in guest are possible to have unflushed GPAs in PML
5674 * buffer.
5675 */
5676 kvm_for_each_vcpu(i, vcpu, kvm)
5677 kvm_vcpu_kick(vcpu);
5678 }
5679
vmx_dump_sel(char * name,uint32_t sel)5680 static void vmx_dump_sel(char *name, uint32_t sel)
5681 {
5682 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5683 name, vmcs_read16(sel),
5684 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5685 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5686 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5687 }
5688
vmx_dump_dtsel(char * name,uint32_t limit)5689 static void vmx_dump_dtsel(char *name, uint32_t limit)
5690 {
5691 pr_err("%s limit=0x%08x, base=0x%016lx\n",
5692 name, vmcs_read32(limit),
5693 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5694 }
5695
dump_vmcs(void)5696 void dump_vmcs(void)
5697 {
5698 u32 vmentry_ctl, vmexit_ctl;
5699 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5700 unsigned long cr4;
5701 u64 efer;
5702 int i, n;
5703
5704 if (!dump_invalid_vmcs) {
5705 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5706 return;
5707 }
5708
5709 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5710 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5711 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5712 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5713 cr4 = vmcs_readl(GUEST_CR4);
5714 efer = vmcs_read64(GUEST_IA32_EFER);
5715 secondary_exec_control = 0;
5716 if (cpu_has_secondary_exec_ctrls())
5717 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5718
5719 pr_err("*** Guest State ***\n");
5720 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5721 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5722 vmcs_readl(CR0_GUEST_HOST_MASK));
5723 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5724 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5725 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5726 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5727 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5728 {
5729 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
5730 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5731 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
5732 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5733 }
5734 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
5735 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5736 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
5737 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5738 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5739 vmcs_readl(GUEST_SYSENTER_ESP),
5740 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5741 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
5742 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
5743 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
5744 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
5745 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
5746 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
5747 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5748 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5749 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5750 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
5751 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5752 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5753 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5754 efer, vmcs_read64(GUEST_IA32_PAT));
5755 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
5756 vmcs_read64(GUEST_IA32_DEBUGCTL),
5757 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5758 if (cpu_has_load_perf_global_ctrl() &&
5759 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5760 pr_err("PerfGlobCtl = 0x%016llx\n",
5761 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5762 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5763 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5764 pr_err("Interruptibility = %08x ActivityState = %08x\n",
5765 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5766 vmcs_read32(GUEST_ACTIVITY_STATE));
5767 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5768 pr_err("InterruptStatus = %04x\n",
5769 vmcs_read16(GUEST_INTR_STATUS));
5770
5771 pr_err("*** Host State ***\n");
5772 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
5773 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5774 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5775 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5776 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5777 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5778 vmcs_read16(HOST_TR_SELECTOR));
5779 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5780 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5781 vmcs_readl(HOST_TR_BASE));
5782 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5783 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5784 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5785 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5786 vmcs_readl(HOST_CR4));
5787 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5788 vmcs_readl(HOST_IA32_SYSENTER_ESP),
5789 vmcs_read32(HOST_IA32_SYSENTER_CS),
5790 vmcs_readl(HOST_IA32_SYSENTER_EIP));
5791 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5792 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5793 vmcs_read64(HOST_IA32_EFER),
5794 vmcs_read64(HOST_IA32_PAT));
5795 if (cpu_has_load_perf_global_ctrl() &&
5796 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5797 pr_err("PerfGlobCtl = 0x%016llx\n",
5798 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5799
5800 pr_err("*** Control State ***\n");
5801 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5802 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5803 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5804 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5805 vmcs_read32(EXCEPTION_BITMAP),
5806 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5807 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5808 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5809 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5810 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5811 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5812 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5813 vmcs_read32(VM_EXIT_INTR_INFO),
5814 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5815 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5816 pr_err(" reason=%08x qualification=%016lx\n",
5817 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5818 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5819 vmcs_read32(IDT_VECTORING_INFO_FIELD),
5820 vmcs_read32(IDT_VECTORING_ERROR_CODE));
5821 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5822 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5823 pr_err("TSC Multiplier = 0x%016llx\n",
5824 vmcs_read64(TSC_MULTIPLIER));
5825 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5826 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5827 u16 status = vmcs_read16(GUEST_INTR_STATUS);
5828 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5829 }
5830 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5831 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5832 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5833 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5834 }
5835 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5836 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5837 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5838 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5839 n = vmcs_read32(CR3_TARGET_COUNT);
5840 for (i = 0; i + 1 < n; i += 4)
5841 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5842 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5843 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5844 if (i < n)
5845 pr_err("CR3 target%u=%016lx\n",
5846 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5847 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5848 pr_err("PLE Gap=%08x Window=%08x\n",
5849 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5850 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5851 pr_err("Virtual processor ID = 0x%04x\n",
5852 vmcs_read16(VIRTUAL_PROCESSOR_ID));
5853 }
5854
5855 /*
5856 * The guest has exited. See if we can fix it or if we need userspace
5857 * assistance.
5858 */
vmx_handle_exit(struct kvm_vcpu * vcpu)5859 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5860 {
5861 struct vcpu_vmx *vmx = to_vmx(vcpu);
5862 u32 exit_reason = vmx->exit_reason;
5863 u32 vectoring_info = vmx->idt_vectoring_info;
5864
5865 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5866
5867 /*
5868 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5869 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5870 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5871 * mode as if vcpus is in root mode, the PML buffer must has been
5872 * flushed already.
5873 */
5874 if (enable_pml)
5875 vmx_flush_pml_buffer(vcpu);
5876
5877 /* If guest state is invalid, start emulating */
5878 if (vmx->emulation_required)
5879 return handle_invalid_guest_state(vcpu);
5880
5881 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5882 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5883
5884 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5885 dump_vmcs();
5886 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5887 vcpu->run->fail_entry.hardware_entry_failure_reason
5888 = exit_reason;
5889 return 0;
5890 }
5891
5892 if (unlikely(vmx->fail)) {
5893 dump_vmcs();
5894 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5895 vcpu->run->fail_entry.hardware_entry_failure_reason
5896 = vmcs_read32(VM_INSTRUCTION_ERROR);
5897 return 0;
5898 }
5899
5900 /*
5901 * Note:
5902 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5903 * delivery event since it indicates guest is accessing MMIO.
5904 * The vm-exit can be triggered again after return to guest that
5905 * will cause infinite loop.
5906 */
5907 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5908 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5909 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5910 exit_reason != EXIT_REASON_PML_FULL &&
5911 exit_reason != EXIT_REASON_TASK_SWITCH)) {
5912 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5913 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5914 vcpu->run->internal.ndata = 3;
5915 vcpu->run->internal.data[0] = vectoring_info;
5916 vcpu->run->internal.data[1] = exit_reason;
5917 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5918 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5919 vcpu->run->internal.ndata++;
5920 vcpu->run->internal.data[3] =
5921 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5922 }
5923 return 0;
5924 }
5925
5926 if (unlikely(!enable_vnmi &&
5927 vmx->loaded_vmcs->soft_vnmi_blocked)) {
5928 if (vmx_interrupt_allowed(vcpu)) {
5929 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5930 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5931 vcpu->arch.nmi_pending) {
5932 /*
5933 * This CPU don't support us in finding the end of an
5934 * NMI-blocked window if the guest runs with IRQs
5935 * disabled. So we pull the trigger after 1 s of
5936 * futile waiting, but inform the user about this.
5937 */
5938 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5939 "state on VCPU %d after 1 s timeout\n",
5940 __func__, vcpu->vcpu_id);
5941 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5942 }
5943 }
5944
5945 if (exit_reason < kvm_vmx_max_exit_handlers
5946 && kvm_vmx_exit_handlers[exit_reason])
5947 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5948 else {
5949 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5950 exit_reason);
5951 dump_vmcs();
5952 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5953 vcpu->run->internal.suberror =
5954 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5955 vcpu->run->internal.ndata = 1;
5956 vcpu->run->internal.data[0] = exit_reason;
5957 return 0;
5958 }
5959 }
5960
5961 /*
5962 * Software based L1D cache flush which is used when microcode providing
5963 * the cache control MSR is not loaded.
5964 *
5965 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5966 * flush it is required to read in 64 KiB because the replacement algorithm
5967 * is not exactly LRU. This could be sized at runtime via topology
5968 * information but as all relevant affected CPUs have 32KiB L1D cache size
5969 * there is no point in doing so.
5970 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)5971 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5972 {
5973 int size = PAGE_SIZE << L1D_CACHE_ORDER;
5974
5975 /*
5976 * This code is only executed when the the flush mode is 'cond' or
5977 * 'always'
5978 */
5979 if (static_branch_likely(&vmx_l1d_flush_cond)) {
5980 bool flush_l1d;
5981
5982 /*
5983 * Clear the per-vcpu flush bit, it gets set again
5984 * either from vcpu_run() or from one of the unsafe
5985 * VMEXIT handlers.
5986 */
5987 flush_l1d = vcpu->arch.l1tf_flush_l1d;
5988 vcpu->arch.l1tf_flush_l1d = false;
5989
5990 /*
5991 * Clear the per-cpu flush bit, it gets set again from
5992 * the interrupt handlers.
5993 */
5994 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5995 kvm_clear_cpu_l1tf_flush_l1d();
5996
5997 if (!flush_l1d)
5998 return;
5999 }
6000
6001 vcpu->stat.l1d_flush++;
6002
6003 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6004 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6005 return;
6006 }
6007
6008 asm volatile(
6009 /* First ensure the pages are in the TLB */
6010 "xorl %%eax, %%eax\n"
6011 ".Lpopulate_tlb:\n\t"
6012 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6013 "addl $4096, %%eax\n\t"
6014 "cmpl %%eax, %[size]\n\t"
6015 "jne .Lpopulate_tlb\n\t"
6016 "xorl %%eax, %%eax\n\t"
6017 "cpuid\n\t"
6018 /* Now fill the cache */
6019 "xorl %%eax, %%eax\n"
6020 ".Lfill_cache:\n"
6021 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6022 "addl $64, %%eax\n\t"
6023 "cmpl %%eax, %[size]\n\t"
6024 "jne .Lfill_cache\n\t"
6025 "lfence\n"
6026 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6027 [size] "r" (size)
6028 : "eax", "ebx", "ecx", "edx");
6029 }
6030
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6031 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6032 {
6033 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6034
6035 if (is_guest_mode(vcpu) &&
6036 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6037 return;
6038
6039 if (irr == -1 || tpr < irr) {
6040 vmcs_write32(TPR_THRESHOLD, 0);
6041 return;
6042 }
6043
6044 vmcs_write32(TPR_THRESHOLD, irr);
6045 }
6046
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6047 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6048 {
6049 struct vcpu_vmx *vmx = to_vmx(vcpu);
6050 u32 sec_exec_control;
6051
6052 if (!lapic_in_kernel(vcpu))
6053 return;
6054
6055 if (!flexpriority_enabled &&
6056 !cpu_has_vmx_virtualize_x2apic_mode())
6057 return;
6058
6059 /* Postpone execution until vmcs01 is the current VMCS. */
6060 if (is_guest_mode(vcpu)) {
6061 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6062 return;
6063 }
6064
6065 sec_exec_control = secondary_exec_controls_get(vmx);
6066 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6067 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6068
6069 switch (kvm_get_apic_mode(vcpu)) {
6070 case LAPIC_MODE_INVALID:
6071 WARN_ONCE(true, "Invalid local APIC state");
6072 case LAPIC_MODE_DISABLED:
6073 break;
6074 case LAPIC_MODE_XAPIC:
6075 if (flexpriority_enabled) {
6076 sec_exec_control |=
6077 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6078 vmx_flush_tlb(vcpu, true);
6079 }
6080 break;
6081 case LAPIC_MODE_X2APIC:
6082 if (cpu_has_vmx_virtualize_x2apic_mode())
6083 sec_exec_control |=
6084 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6085 break;
6086 }
6087 secondary_exec_controls_set(vmx, sec_exec_control);
6088
6089 vmx_update_msr_bitmap(vcpu);
6090 }
6091
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu,hpa_t hpa)6092 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6093 {
6094 if (!is_guest_mode(vcpu)) {
6095 vmcs_write64(APIC_ACCESS_ADDR, hpa);
6096 vmx_flush_tlb(vcpu, true);
6097 }
6098 }
6099
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6100 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6101 {
6102 u16 status;
6103 u8 old;
6104
6105 if (max_isr == -1)
6106 max_isr = 0;
6107
6108 status = vmcs_read16(GUEST_INTR_STATUS);
6109 old = status >> 8;
6110 if (max_isr != old) {
6111 status &= 0xff;
6112 status |= max_isr << 8;
6113 vmcs_write16(GUEST_INTR_STATUS, status);
6114 }
6115 }
6116
vmx_set_rvi(int vector)6117 static void vmx_set_rvi(int vector)
6118 {
6119 u16 status;
6120 u8 old;
6121
6122 if (vector == -1)
6123 vector = 0;
6124
6125 status = vmcs_read16(GUEST_INTR_STATUS);
6126 old = (u8)status & 0xff;
6127 if ((u8)vector != old) {
6128 status &= ~0xff;
6129 status |= (u8)vector;
6130 vmcs_write16(GUEST_INTR_STATUS, status);
6131 }
6132 }
6133
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6134 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6135 {
6136 /*
6137 * When running L2, updating RVI is only relevant when
6138 * vmcs12 virtual-interrupt-delivery enabled.
6139 * However, it can be enabled only when L1 also
6140 * intercepts external-interrupts and in that case
6141 * we should not update vmcs02 RVI but instead intercept
6142 * interrupt. Therefore, do nothing when running L2.
6143 */
6144 if (!is_guest_mode(vcpu))
6145 vmx_set_rvi(max_irr);
6146 }
6147
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6148 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6149 {
6150 struct vcpu_vmx *vmx = to_vmx(vcpu);
6151 int max_irr;
6152 bool max_irr_updated;
6153
6154 WARN_ON(!vcpu->arch.apicv_active);
6155 if (pi_test_on(&vmx->pi_desc)) {
6156 pi_clear_on(&vmx->pi_desc);
6157 /*
6158 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6159 * But on x86 this is just a compiler barrier anyway.
6160 */
6161 smp_mb__after_atomic();
6162 max_irr_updated =
6163 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6164
6165 /*
6166 * If we are running L2 and L1 has a new pending interrupt
6167 * which can be injected, we should re-evaluate
6168 * what should be done with this new L1 interrupt.
6169 * If L1 intercepts external-interrupts, we should
6170 * exit from L2 to L1. Otherwise, interrupt should be
6171 * delivered directly to L2.
6172 */
6173 if (is_guest_mode(vcpu) && max_irr_updated) {
6174 if (nested_exit_on_intr(vcpu))
6175 kvm_vcpu_exiting_guest_mode(vcpu);
6176 else
6177 kvm_make_request(KVM_REQ_EVENT, vcpu);
6178 }
6179 } else {
6180 max_irr = kvm_lapic_find_highest_irr(vcpu);
6181 }
6182 vmx_hwapic_irr_update(vcpu, max_irr);
6183 return max_irr;
6184 }
6185
vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu * vcpu)6186 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6187 {
6188 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6189
6190 return pi_test_on(pi_desc) ||
6191 (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6192 }
6193
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6194 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6195 {
6196 if (!kvm_vcpu_apicv_active(vcpu))
6197 return;
6198
6199 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6200 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6201 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6202 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6203 }
6204
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)6205 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6206 {
6207 struct vcpu_vmx *vmx = to_vmx(vcpu);
6208
6209 pi_clear_on(&vmx->pi_desc);
6210 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6211 }
6212
handle_exception_nmi_irqoff(struct vcpu_vmx * vmx)6213 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6214 {
6215 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6216
6217 /* if exit due to PF check for async PF */
6218 if (is_page_fault(vmx->exit_intr_info))
6219 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6220
6221 /* Handle machine checks before interrupts are enabled */
6222 if (is_machine_check(vmx->exit_intr_info))
6223 kvm_machine_check();
6224
6225 /* We need to handle NMIs before interrupts are enabled */
6226 if (is_nmi(vmx->exit_intr_info)) {
6227 kvm_before_interrupt(&vmx->vcpu);
6228 asm("int $2");
6229 kvm_after_interrupt(&vmx->vcpu);
6230 }
6231 }
6232
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6233 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6234 {
6235 unsigned int vector;
6236 unsigned long entry;
6237 #ifdef CONFIG_X86_64
6238 unsigned long tmp;
6239 #endif
6240 gate_desc *desc;
6241 u32 intr_info;
6242
6243 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6244 if (WARN_ONCE(!is_external_intr(intr_info),
6245 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6246 return;
6247
6248 vector = intr_info & INTR_INFO_VECTOR_MASK;
6249 desc = (gate_desc *)host_idt_base + vector;
6250 entry = gate_offset(desc);
6251
6252 kvm_before_interrupt(vcpu);
6253
6254 asm volatile(
6255 #ifdef CONFIG_X86_64
6256 "mov %%" _ASM_SP ", %[sp]\n\t"
6257 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6258 "push $%c[ss]\n\t"
6259 "push %[sp]\n\t"
6260 #endif
6261 "pushf\n\t"
6262 __ASM_SIZE(push) " $%c[cs]\n\t"
6263 CALL_NOSPEC
6264 :
6265 #ifdef CONFIG_X86_64
6266 [sp]"=&r"(tmp),
6267 #endif
6268 ASM_CALL_CONSTRAINT
6269 :
6270 THUNK_TARGET(entry),
6271 [ss]"i"(__KERNEL_DS),
6272 [cs]"i"(__KERNEL_CS)
6273 );
6274
6275 kvm_after_interrupt(vcpu);
6276 }
6277 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6278
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6279 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6280 {
6281 struct vcpu_vmx *vmx = to_vmx(vcpu);
6282
6283 if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6284 handle_external_interrupt_irqoff(vcpu);
6285 else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6286 handle_exception_nmi_irqoff(vmx);
6287 }
6288
vmx_has_emulated_msr(int index)6289 static bool vmx_has_emulated_msr(int index)
6290 {
6291 switch (index) {
6292 case MSR_IA32_SMBASE:
6293 /*
6294 * We cannot do SMM unless we can run the guest in big
6295 * real mode.
6296 */
6297 return enable_unrestricted_guest || emulate_invalid_guest_state;
6298 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6299 return nested;
6300 case MSR_AMD64_VIRT_SPEC_CTRL:
6301 /* This is AMD only. */
6302 return false;
6303 default:
6304 return true;
6305 }
6306 }
6307
vmx_pt_supported(void)6308 static bool vmx_pt_supported(void)
6309 {
6310 return pt_mode == PT_MODE_HOST_GUEST;
6311 }
6312
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)6313 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6314 {
6315 u32 exit_intr_info;
6316 bool unblock_nmi;
6317 u8 vector;
6318 bool idtv_info_valid;
6319
6320 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6321
6322 if (enable_vnmi) {
6323 if (vmx->loaded_vmcs->nmi_known_unmasked)
6324 return;
6325 /*
6326 * Can't use vmx->exit_intr_info since we're not sure what
6327 * the exit reason is.
6328 */
6329 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6330 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6331 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6332 /*
6333 * SDM 3: 27.7.1.2 (September 2008)
6334 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6335 * a guest IRET fault.
6336 * SDM 3: 23.2.2 (September 2008)
6337 * Bit 12 is undefined in any of the following cases:
6338 * If the VM exit sets the valid bit in the IDT-vectoring
6339 * information field.
6340 * If the VM exit is due to a double fault.
6341 */
6342 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6343 vector != DF_VECTOR && !idtv_info_valid)
6344 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6345 GUEST_INTR_STATE_NMI);
6346 else
6347 vmx->loaded_vmcs->nmi_known_unmasked =
6348 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6349 & GUEST_INTR_STATE_NMI);
6350 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6351 vmx->loaded_vmcs->vnmi_blocked_time +=
6352 ktime_to_ns(ktime_sub(ktime_get(),
6353 vmx->loaded_vmcs->entry_time));
6354 }
6355
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)6356 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6357 u32 idt_vectoring_info,
6358 int instr_len_field,
6359 int error_code_field)
6360 {
6361 u8 vector;
6362 int type;
6363 bool idtv_info_valid;
6364
6365 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6366
6367 vcpu->arch.nmi_injected = false;
6368 kvm_clear_exception_queue(vcpu);
6369 kvm_clear_interrupt_queue(vcpu);
6370
6371 if (!idtv_info_valid)
6372 return;
6373
6374 kvm_make_request(KVM_REQ_EVENT, vcpu);
6375
6376 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6377 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6378
6379 switch (type) {
6380 case INTR_TYPE_NMI_INTR:
6381 vcpu->arch.nmi_injected = true;
6382 /*
6383 * SDM 3: 27.7.1.2 (September 2008)
6384 * Clear bit "block by NMI" before VM entry if a NMI
6385 * delivery faulted.
6386 */
6387 vmx_set_nmi_mask(vcpu, false);
6388 break;
6389 case INTR_TYPE_SOFT_EXCEPTION:
6390 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6391 /* fall through */
6392 case INTR_TYPE_HARD_EXCEPTION:
6393 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6394 u32 err = vmcs_read32(error_code_field);
6395 kvm_requeue_exception_e(vcpu, vector, err);
6396 } else
6397 kvm_requeue_exception(vcpu, vector);
6398 break;
6399 case INTR_TYPE_SOFT_INTR:
6400 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6401 /* fall through */
6402 case INTR_TYPE_EXT_INTR:
6403 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6404 break;
6405 default:
6406 break;
6407 }
6408 }
6409
vmx_complete_interrupts(struct vcpu_vmx * vmx)6410 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6411 {
6412 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6413 VM_EXIT_INSTRUCTION_LEN,
6414 IDT_VECTORING_ERROR_CODE);
6415 }
6416
vmx_cancel_injection(struct kvm_vcpu * vcpu)6417 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6418 {
6419 __vmx_complete_interrupts(vcpu,
6420 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6421 VM_ENTRY_INSTRUCTION_LEN,
6422 VM_ENTRY_EXCEPTION_ERROR_CODE);
6423
6424 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6425 }
6426
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)6427 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6428 {
6429 int i, nr_msrs;
6430 struct perf_guest_switch_msr *msrs;
6431
6432 msrs = perf_guest_get_msrs(&nr_msrs);
6433
6434 if (!msrs)
6435 return;
6436
6437 for (i = 0; i < nr_msrs; i++)
6438 if (msrs[i].host == msrs[i].guest)
6439 clear_atomic_switch_msr(vmx, msrs[i].msr);
6440 else
6441 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6442 msrs[i].host, false);
6443 }
6444
atomic_switch_umwait_control_msr(struct vcpu_vmx * vmx)6445 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6446 {
6447 u32 host_umwait_control;
6448
6449 if (!vmx_has_waitpkg(vmx))
6450 return;
6451
6452 host_umwait_control = get_umwait_control_msr();
6453
6454 if (vmx->msr_ia32_umwait_control != host_umwait_control)
6455 add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6456 vmx->msr_ia32_umwait_control,
6457 host_umwait_control, false);
6458 else
6459 clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6460 }
6461
vmx_update_hv_timer(struct kvm_vcpu * vcpu)6462 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6463 {
6464 struct vcpu_vmx *vmx = to_vmx(vcpu);
6465 u64 tscl;
6466 u32 delta_tsc;
6467
6468 if (vmx->req_immediate_exit) {
6469 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6470 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6471 } else if (vmx->hv_deadline_tsc != -1) {
6472 tscl = rdtsc();
6473 if (vmx->hv_deadline_tsc > tscl)
6474 /* set_hv_timer ensures the delta fits in 32-bits */
6475 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6476 cpu_preemption_timer_multi);
6477 else
6478 delta_tsc = 0;
6479
6480 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6481 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6482 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6483 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6484 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6485 }
6486 }
6487
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)6488 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6489 {
6490 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6491 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6492 vmcs_writel(HOST_RSP, host_rsp);
6493 }
6494 }
6495
6496 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6497
vmx_vcpu_run(struct kvm_vcpu * vcpu)6498 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6499 {
6500 struct vcpu_vmx *vmx = to_vmx(vcpu);
6501 unsigned long cr3, cr4;
6502
6503 /* Record the guest's net vcpu time for enforced NMI injections. */
6504 if (unlikely(!enable_vnmi &&
6505 vmx->loaded_vmcs->soft_vnmi_blocked))
6506 vmx->loaded_vmcs->entry_time = ktime_get();
6507
6508 /* Don't enter VMX if guest state is invalid, let the exit handler
6509 start emulation until we arrive back to a valid state */
6510 if (vmx->emulation_required)
6511 return;
6512
6513 if (vmx->ple_window_dirty) {
6514 vmx->ple_window_dirty = false;
6515 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6516 }
6517
6518 if (vmx->nested.need_vmcs12_to_shadow_sync)
6519 nested_sync_vmcs12_to_shadow(vcpu);
6520
6521 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6522 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6523 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6524 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6525
6526 cr3 = __get_current_cr3_fast();
6527 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6528 vmcs_writel(HOST_CR3, cr3);
6529 vmx->loaded_vmcs->host_state.cr3 = cr3;
6530 }
6531
6532 cr4 = cr4_read_shadow();
6533 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6534 vmcs_writel(HOST_CR4, cr4);
6535 vmx->loaded_vmcs->host_state.cr4 = cr4;
6536 }
6537
6538 /* When single-stepping over STI and MOV SS, we must clear the
6539 * corresponding interruptibility bits in the guest state. Otherwise
6540 * vmentry fails as it then expects bit 14 (BS) in pending debug
6541 * exceptions being set, but that's not correct for the guest debugging
6542 * case. */
6543 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6544 vmx_set_interrupt_shadow(vcpu, 0);
6545
6546 kvm_load_guest_xcr0(vcpu);
6547
6548 if (static_cpu_has(X86_FEATURE_PKU) &&
6549 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6550 vcpu->arch.pkru != vmx->host_pkru)
6551 __write_pkru(vcpu->arch.pkru);
6552
6553 pt_guest_enter(vmx);
6554
6555 atomic_switch_perf_msrs(vmx);
6556 atomic_switch_umwait_control_msr(vmx);
6557
6558 if (enable_preemption_timer)
6559 vmx_update_hv_timer(vcpu);
6560
6561 if (lapic_in_kernel(vcpu) &&
6562 vcpu->arch.apic->lapic_timer.timer_advance_ns)
6563 kvm_wait_lapic_expire(vcpu);
6564
6565 /*
6566 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6567 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6568 * is no need to worry about the conditional branch over the wrmsr
6569 * being speculatively taken.
6570 */
6571 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6572
6573 /* L1D Flush includes CPU buffer clear to mitigate MDS */
6574 if (static_branch_unlikely(&vmx_l1d_should_flush))
6575 vmx_l1d_flush(vcpu);
6576 else if (static_branch_unlikely(&mds_user_clear))
6577 mds_clear_cpu_buffers();
6578
6579 if (vcpu->arch.cr2 != read_cr2())
6580 write_cr2(vcpu->arch.cr2);
6581
6582 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6583 vmx->loaded_vmcs->launched);
6584
6585 vcpu->arch.cr2 = read_cr2();
6586
6587 /*
6588 * We do not use IBRS in the kernel. If this vCPU has used the
6589 * SPEC_CTRL MSR it may have left it on; save the value and
6590 * turn it off. This is much more efficient than blindly adding
6591 * it to the atomic save/restore list. Especially as the former
6592 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6593 *
6594 * For non-nested case:
6595 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6596 * save it.
6597 *
6598 * For nested case:
6599 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6600 * save it.
6601 */
6602 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6603 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6604
6605 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6606
6607 /* All fields are clean at this point */
6608 if (static_branch_unlikely(&enable_evmcs))
6609 current_evmcs->hv_clean_fields |=
6610 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6611
6612 if (static_branch_unlikely(&enable_evmcs))
6613 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6614
6615 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6616 if (vmx->host_debugctlmsr)
6617 update_debugctlmsr(vmx->host_debugctlmsr);
6618
6619 #ifndef CONFIG_X86_64
6620 /*
6621 * The sysexit path does not restore ds/es, so we must set them to
6622 * a reasonable value ourselves.
6623 *
6624 * We can't defer this to vmx_prepare_switch_to_host() since that
6625 * function may be executed in interrupt context, which saves and
6626 * restore segments around it, nullifying its effect.
6627 */
6628 loadsegment(ds, __USER_DS);
6629 loadsegment(es, __USER_DS);
6630 #endif
6631
6632 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6633 | (1 << VCPU_EXREG_RFLAGS)
6634 | (1 << VCPU_EXREG_PDPTR)
6635 | (1 << VCPU_EXREG_SEGMENTS)
6636 | (1 << VCPU_EXREG_CR3));
6637 vcpu->arch.regs_dirty = 0;
6638
6639 pt_guest_exit(vmx);
6640
6641 /*
6642 * eager fpu is enabled if PKEY is supported and CR4 is switched
6643 * back on host, so it is safe to read guest PKRU from current
6644 * XSAVE.
6645 */
6646 if (static_cpu_has(X86_FEATURE_PKU) &&
6647 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6648 vcpu->arch.pkru = rdpkru();
6649 if (vcpu->arch.pkru != vmx->host_pkru)
6650 __write_pkru(vmx->host_pkru);
6651 }
6652
6653 kvm_put_guest_xcr0(vcpu);
6654
6655 vmx->nested.nested_run_pending = 0;
6656 vmx->idt_vectoring_info = 0;
6657
6658 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6659 if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6660 kvm_machine_check();
6661
6662 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6663 return;
6664
6665 vmx->loaded_vmcs->launched = 1;
6666 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6667
6668 vmx_recover_nmi_blocking(vmx);
6669 vmx_complete_interrupts(vmx);
6670 }
6671
vmx_vm_alloc(void)6672 static struct kvm *vmx_vm_alloc(void)
6673 {
6674 struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6675 GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6676 PAGE_KERNEL);
6677 return &kvm_vmx->kvm;
6678 }
6679
vmx_vm_free(struct kvm * kvm)6680 static void vmx_vm_free(struct kvm *kvm)
6681 {
6682 kfree(kvm->arch.hyperv.hv_pa_pg);
6683 vfree(to_kvm_vmx(kvm));
6684 }
6685
vmx_free_vcpu(struct kvm_vcpu * vcpu)6686 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6687 {
6688 struct vcpu_vmx *vmx = to_vmx(vcpu);
6689
6690 if (enable_pml)
6691 vmx_destroy_pml_buffer(vmx);
6692 free_vpid(vmx->vpid);
6693 nested_vmx_free_vcpu(vcpu);
6694 free_loaded_vmcs(vmx->loaded_vmcs);
6695 kfree(vmx->guest_msrs);
6696 kvm_vcpu_uninit(vcpu);
6697 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6698 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6699 kmem_cache_free(kvm_vcpu_cache, vmx);
6700 }
6701
vmx_create_vcpu(struct kvm * kvm,unsigned int id)6702 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6703 {
6704 int err;
6705 struct vcpu_vmx *vmx;
6706 unsigned long *msr_bitmap;
6707 int cpu;
6708
6709 BUILD_BUG_ON_MSG(offsetof(struct vcpu_vmx, vcpu) != 0,
6710 "struct kvm_vcpu must be at offset 0 for arch usercopy region");
6711
6712 vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6713 if (!vmx)
6714 return ERR_PTR(-ENOMEM);
6715
6716 vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
6717 GFP_KERNEL_ACCOUNT);
6718 if (!vmx->vcpu.arch.user_fpu) {
6719 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
6720 err = -ENOMEM;
6721 goto free_partial_vcpu;
6722 }
6723
6724 vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6725 GFP_KERNEL_ACCOUNT);
6726 if (!vmx->vcpu.arch.guest_fpu) {
6727 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6728 err = -ENOMEM;
6729 goto free_user_fpu;
6730 }
6731
6732 vmx->vpid = allocate_vpid();
6733
6734 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6735 if (err)
6736 goto free_vcpu;
6737
6738 err = -ENOMEM;
6739
6740 /*
6741 * If PML is turned on, failure on enabling PML just results in failure
6742 * of creating the vcpu, therefore we can simplify PML logic (by
6743 * avoiding dealing with cases, such as enabling PML partially on vcpus
6744 * for the guest, etc.
6745 */
6746 if (enable_pml) {
6747 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6748 if (!vmx->pml_pg)
6749 goto uninit_vcpu;
6750 }
6751
6752 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6753 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6754 > PAGE_SIZE);
6755
6756 if (!vmx->guest_msrs)
6757 goto free_pml;
6758
6759 err = alloc_loaded_vmcs(&vmx->vmcs01);
6760 if (err < 0)
6761 goto free_msrs;
6762
6763 msr_bitmap = vmx->vmcs01.msr_bitmap;
6764 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6765 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6766 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6767 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6768 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6769 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6770 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6771 if (kvm_cstate_in_guest(kvm)) {
6772 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6773 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6774 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6775 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6776 }
6777 vmx->msr_bitmap_mode = 0;
6778
6779 vmx->loaded_vmcs = &vmx->vmcs01;
6780 cpu = get_cpu();
6781 vmx_vcpu_load(&vmx->vcpu, cpu);
6782 vmx->vcpu.cpu = cpu;
6783 vmx_vcpu_setup(vmx);
6784 vmx_vcpu_put(&vmx->vcpu);
6785 put_cpu();
6786 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6787 err = alloc_apic_access_page(kvm);
6788 if (err)
6789 goto free_vmcs;
6790 }
6791
6792 if (enable_ept && !enable_unrestricted_guest) {
6793 err = init_rmode_identity_map(kvm);
6794 if (err)
6795 goto free_vmcs;
6796 }
6797
6798 if (nested)
6799 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6800 vmx_capability.ept,
6801 kvm_vcpu_apicv_active(&vmx->vcpu));
6802 else
6803 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6804
6805 vmx->nested.posted_intr_nv = -1;
6806 vmx->nested.current_vmptr = -1ull;
6807
6808 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6809
6810 /*
6811 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6812 * or POSTED_INTR_WAKEUP_VECTOR.
6813 */
6814 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6815 vmx->pi_desc.sn = 1;
6816
6817 vmx->ept_pointer = INVALID_PAGE;
6818
6819 return &vmx->vcpu;
6820
6821 free_vmcs:
6822 free_loaded_vmcs(vmx->loaded_vmcs);
6823 free_msrs:
6824 kfree(vmx->guest_msrs);
6825 free_pml:
6826 vmx_destroy_pml_buffer(vmx);
6827 uninit_vcpu:
6828 kvm_vcpu_uninit(&vmx->vcpu);
6829 free_vcpu:
6830 free_vpid(vmx->vpid);
6831 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6832 free_user_fpu:
6833 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6834 free_partial_vcpu:
6835 kmem_cache_free(kvm_vcpu_cache, vmx);
6836 return ERR_PTR(err);
6837 }
6838
6839 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6840 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6841
vmx_vm_init(struct kvm * kvm)6842 static int vmx_vm_init(struct kvm *kvm)
6843 {
6844 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6845
6846 if (!ple_gap)
6847 kvm->arch.pause_in_guest = true;
6848
6849 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6850 switch (l1tf_mitigation) {
6851 case L1TF_MITIGATION_OFF:
6852 case L1TF_MITIGATION_FLUSH_NOWARN:
6853 /* 'I explicitly don't care' is set */
6854 break;
6855 case L1TF_MITIGATION_FLUSH:
6856 case L1TF_MITIGATION_FLUSH_NOSMT:
6857 case L1TF_MITIGATION_FULL:
6858 /*
6859 * Warn upon starting the first VM in a potentially
6860 * insecure environment.
6861 */
6862 if (sched_smt_active())
6863 pr_warn_once(L1TF_MSG_SMT);
6864 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6865 pr_warn_once(L1TF_MSG_L1D);
6866 break;
6867 case L1TF_MITIGATION_FULL_FORCE:
6868 /* Flush is enforced */
6869 break;
6870 }
6871 }
6872 return 0;
6873 }
6874
vmx_check_processor_compat(void)6875 static int __init vmx_check_processor_compat(void)
6876 {
6877 struct vmcs_config vmcs_conf;
6878 struct vmx_capability vmx_cap;
6879
6880 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6881 return -EIO;
6882 if (nested)
6883 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6884 enable_apicv);
6885 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6886 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6887 smp_processor_id());
6888 return -EIO;
6889 }
6890 return 0;
6891 }
6892
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)6893 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6894 {
6895 u8 cache;
6896 u64 ipat = 0;
6897
6898 /* For VT-d and EPT combination
6899 * 1. MMIO: always map as UC
6900 * 2. EPT with VT-d:
6901 * a. VT-d without snooping control feature: can't guarantee the
6902 * result, try to trust guest.
6903 * b. VT-d with snooping control feature: snooping control feature of
6904 * VT-d engine can guarantee the cache correctness. Just set it
6905 * to WB to keep consistent with host. So the same as item 3.
6906 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6907 * consistent with host MTRR
6908 */
6909 if (is_mmio) {
6910 cache = MTRR_TYPE_UNCACHABLE;
6911 goto exit;
6912 }
6913
6914 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6915 ipat = VMX_EPT_IPAT_BIT;
6916 cache = MTRR_TYPE_WRBACK;
6917 goto exit;
6918 }
6919
6920 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6921 ipat = VMX_EPT_IPAT_BIT;
6922 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6923 cache = MTRR_TYPE_WRBACK;
6924 else
6925 cache = MTRR_TYPE_UNCACHABLE;
6926 goto exit;
6927 }
6928
6929 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6930
6931 exit:
6932 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6933 }
6934
vmx_get_lpage_level(void)6935 static int vmx_get_lpage_level(void)
6936 {
6937 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6938 return PT_DIRECTORY_LEVEL;
6939 else
6940 /* For shadow and EPT supported 1GB page */
6941 return PT_PDPE_LEVEL;
6942 }
6943
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx)6944 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6945 {
6946 /*
6947 * These bits in the secondary execution controls field
6948 * are dynamic, the others are mostly based on the hypervisor
6949 * architecture and the guest's CPUID. Do not touch the
6950 * dynamic bits.
6951 */
6952 u32 mask =
6953 SECONDARY_EXEC_SHADOW_VMCS |
6954 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6955 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6956 SECONDARY_EXEC_DESC;
6957
6958 u32 new_ctl = vmx->secondary_exec_control;
6959 u32 cur_ctl = secondary_exec_controls_get(vmx);
6960
6961 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6962 }
6963
6964 /*
6965 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6966 * (indicating "allowed-1") if they are supported in the guest's CPUID.
6967 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)6968 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6969 {
6970 struct vcpu_vmx *vmx = to_vmx(vcpu);
6971 struct kvm_cpuid_entry2 *entry;
6972
6973 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6974 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6975
6976 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
6977 if (entry && (entry->_reg & (_cpuid_mask))) \
6978 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
6979 } while (0)
6980
6981 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6982 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
6983 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
6984 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
6985 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
6986 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
6987 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
6988 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
6989 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
6990 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
6991 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6992 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
6993 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
6994 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
6995 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
6996
6997 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6998 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
6999 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
7000 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
7001 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
7002 cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP));
7003
7004 #undef cr4_fixed1_update
7005 }
7006
nested_vmx_entry_exit_ctls_update(struct kvm_vcpu * vcpu)7007 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7008 {
7009 struct vcpu_vmx *vmx = to_vmx(vcpu);
7010
7011 if (kvm_mpx_supported()) {
7012 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7013
7014 if (mpx_enabled) {
7015 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7016 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7017 } else {
7018 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7019 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7020 }
7021 }
7022 }
7023
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7024 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7025 {
7026 struct vcpu_vmx *vmx = to_vmx(vcpu);
7027 struct kvm_cpuid_entry2 *best = NULL;
7028 int i;
7029
7030 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7031 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7032 if (!best)
7033 return;
7034 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7035 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7036 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7037 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7038 }
7039
7040 /* Get the number of configurable Address Ranges for filtering */
7041 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7042 PT_CAP_num_address_ranges);
7043
7044 /* Initialize and clear the no dependency bits */
7045 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7046 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7047
7048 /*
7049 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7050 * will inject an #GP
7051 */
7052 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7053 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7054
7055 /*
7056 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7057 * PSBFreq can be set
7058 */
7059 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7060 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7061 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7062
7063 /*
7064 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7065 * MTCFreq can be set
7066 */
7067 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7068 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7069 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7070
7071 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7072 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7073 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7074 RTIT_CTL_PTW_EN);
7075
7076 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7077 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7078 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7079
7080 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7081 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7082 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7083
7084 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7085 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7086 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7087
7088 /* unmask address range configure area */
7089 for (i = 0; i < vmx->pt_desc.addr_range; i++)
7090 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7091 }
7092
vmx_cpuid_update(struct kvm_vcpu * vcpu)7093 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7094 {
7095 struct vcpu_vmx *vmx = to_vmx(vcpu);
7096
7097 if (cpu_has_secondary_exec_ctrls()) {
7098 vmx_compute_secondary_exec_control(vmx);
7099 vmcs_set_secondary_exec_control(vmx);
7100 }
7101
7102 if (nested_vmx_allowed(vcpu))
7103 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7104 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7105 else
7106 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7107 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7108
7109 if (nested_vmx_allowed(vcpu)) {
7110 nested_vmx_cr_fixed1_bits_update(vcpu);
7111 nested_vmx_entry_exit_ctls_update(vcpu);
7112 }
7113
7114 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7115 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7116 update_intel_pt_cfg(vcpu);
7117 }
7118
vmx_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)7119 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7120 {
7121 if (func == 1 && nested)
7122 entry->ecx |= bit(X86_FEATURE_VMX);
7123 }
7124
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7125 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7126 {
7127 to_vmx(vcpu)->req_immediate_exit = true;
7128 }
7129
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)7130 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7131 struct x86_instruction_info *info,
7132 enum x86_intercept_stage stage)
7133 {
7134 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7135 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7136
7137 /*
7138 * RDPID causes #UD if disabled through secondary execution controls.
7139 * Because it is marked as EmulateOnUD, we need to intercept it here.
7140 */
7141 if (info->intercept == x86_intercept_rdtscp &&
7142 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7143 ctxt->exception.vector = UD_VECTOR;
7144 ctxt->exception.error_code_valid = false;
7145 return X86EMUL_PROPAGATE_FAULT;
7146 }
7147
7148 /* TODO: check more intercepts... */
7149 return X86EMUL_CONTINUE;
7150 }
7151
7152 #ifdef CONFIG_X86_64
7153 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)7154 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7155 u64 divisor, u64 *result)
7156 {
7157 u64 low = a << shift, high = a >> (64 - shift);
7158
7159 /* To avoid the overflow on divq */
7160 if (high >= divisor)
7161 return 1;
7162
7163 /* Low hold the result, high hold rem which is discarded */
7164 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7165 "rm" (divisor), "0" (low), "1" (high));
7166 *result = low;
7167
7168 return 0;
7169 }
7170
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)7171 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7172 bool *expired)
7173 {
7174 struct vcpu_vmx *vmx;
7175 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7176 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7177
7178 if (kvm_mwait_in_guest(vcpu->kvm) ||
7179 kvm_can_post_timer_interrupt(vcpu))
7180 return -EOPNOTSUPP;
7181
7182 vmx = to_vmx(vcpu);
7183 tscl = rdtsc();
7184 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7185 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7186 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7187 ktimer->timer_advance_ns);
7188
7189 if (delta_tsc > lapic_timer_advance_cycles)
7190 delta_tsc -= lapic_timer_advance_cycles;
7191 else
7192 delta_tsc = 0;
7193
7194 /* Convert to host delta tsc if tsc scaling is enabled */
7195 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7196 delta_tsc && u64_shl_div_u64(delta_tsc,
7197 kvm_tsc_scaling_ratio_frac_bits,
7198 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7199 return -ERANGE;
7200
7201 /*
7202 * If the delta tsc can't fit in the 32 bit after the multi shift,
7203 * we can't use the preemption timer.
7204 * It's possible that it fits on later vmentries, but checking
7205 * on every vmentry is costly so we just use an hrtimer.
7206 */
7207 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7208 return -ERANGE;
7209
7210 vmx->hv_deadline_tsc = tscl + delta_tsc;
7211 *expired = !delta_tsc;
7212 return 0;
7213 }
7214
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)7215 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7216 {
7217 to_vmx(vcpu)->hv_deadline_tsc = -1;
7218 }
7219 #endif
7220
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)7221 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7222 {
7223 if (!kvm_pause_in_guest(vcpu->kvm))
7224 shrink_ple_window(vcpu);
7225 }
7226
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7227 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7228 struct kvm_memory_slot *slot)
7229 {
7230 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7231 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7232 }
7233
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7234 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7235 struct kvm_memory_slot *slot)
7236 {
7237 kvm_mmu_slot_set_dirty(kvm, slot);
7238 }
7239
vmx_flush_log_dirty(struct kvm * kvm)7240 static void vmx_flush_log_dirty(struct kvm *kvm)
7241 {
7242 kvm_flush_pml_buffers(kvm);
7243 }
7244
vmx_write_pml_buffer(struct kvm_vcpu * vcpu)7245 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7246 {
7247 struct vmcs12 *vmcs12;
7248 struct vcpu_vmx *vmx = to_vmx(vcpu);
7249 gpa_t gpa, dst;
7250
7251 if (is_guest_mode(vcpu)) {
7252 WARN_ON_ONCE(vmx->nested.pml_full);
7253
7254 /*
7255 * Check if PML is enabled for the nested guest.
7256 * Whether eptp bit 6 is set is already checked
7257 * as part of A/D emulation.
7258 */
7259 vmcs12 = get_vmcs12(vcpu);
7260 if (!nested_cpu_has_pml(vmcs12))
7261 return 0;
7262
7263 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7264 vmx->nested.pml_full = true;
7265 return 1;
7266 }
7267
7268 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7269 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7270
7271 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7272 offset_in_page(dst), sizeof(gpa)))
7273 return 0;
7274
7275 vmcs12->guest_pml_index--;
7276 }
7277
7278 return 0;
7279 }
7280
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)7281 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7282 struct kvm_memory_slot *memslot,
7283 gfn_t offset, unsigned long mask)
7284 {
7285 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7286 }
7287
__pi_post_block(struct kvm_vcpu * vcpu)7288 static void __pi_post_block(struct kvm_vcpu *vcpu)
7289 {
7290 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7291 struct pi_desc old, new;
7292 unsigned int dest;
7293
7294 do {
7295 old.control = new.control = pi_desc->control;
7296 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7297 "Wakeup handler not enabled while the VCPU is blocked\n");
7298
7299 dest = cpu_physical_id(vcpu->cpu);
7300
7301 if (x2apic_enabled())
7302 new.ndst = dest;
7303 else
7304 new.ndst = (dest << 8) & 0xFF00;
7305
7306 /* set 'NV' to 'notification vector' */
7307 new.nv = POSTED_INTR_VECTOR;
7308 } while (cmpxchg64(&pi_desc->control, old.control,
7309 new.control) != old.control);
7310
7311 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7312 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7313 list_del(&vcpu->blocked_vcpu_list);
7314 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7315 vcpu->pre_pcpu = -1;
7316 }
7317 }
7318
7319 /*
7320 * This routine does the following things for vCPU which is going
7321 * to be blocked if VT-d PI is enabled.
7322 * - Store the vCPU to the wakeup list, so when interrupts happen
7323 * we can find the right vCPU to wake up.
7324 * - Change the Posted-interrupt descriptor as below:
7325 * 'NDST' <-- vcpu->pre_pcpu
7326 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7327 * - If 'ON' is set during this process, which means at least one
7328 * interrupt is posted for this vCPU, we cannot block it, in
7329 * this case, return 1, otherwise, return 0.
7330 *
7331 */
pi_pre_block(struct kvm_vcpu * vcpu)7332 static int pi_pre_block(struct kvm_vcpu *vcpu)
7333 {
7334 unsigned int dest;
7335 struct pi_desc old, new;
7336 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7337
7338 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7339 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7340 !kvm_vcpu_apicv_active(vcpu))
7341 return 0;
7342
7343 WARN_ON(irqs_disabled());
7344 local_irq_disable();
7345 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7346 vcpu->pre_pcpu = vcpu->cpu;
7347 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7348 list_add_tail(&vcpu->blocked_vcpu_list,
7349 &per_cpu(blocked_vcpu_on_cpu,
7350 vcpu->pre_pcpu));
7351 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7352 }
7353
7354 do {
7355 old.control = new.control = pi_desc->control;
7356
7357 WARN((pi_desc->sn == 1),
7358 "Warning: SN field of posted-interrupts "
7359 "is set before blocking\n");
7360
7361 /*
7362 * Since vCPU can be preempted during this process,
7363 * vcpu->cpu could be different with pre_pcpu, we
7364 * need to set pre_pcpu as the destination of wakeup
7365 * notification event, then we can find the right vCPU
7366 * to wakeup in wakeup handler if interrupts happen
7367 * when the vCPU is in blocked state.
7368 */
7369 dest = cpu_physical_id(vcpu->pre_pcpu);
7370
7371 if (x2apic_enabled())
7372 new.ndst = dest;
7373 else
7374 new.ndst = (dest << 8) & 0xFF00;
7375
7376 /* set 'NV' to 'wakeup vector' */
7377 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7378 } while (cmpxchg64(&pi_desc->control, old.control,
7379 new.control) != old.control);
7380
7381 /* We should not block the vCPU if an interrupt is posted for it. */
7382 if (pi_test_on(pi_desc) == 1)
7383 __pi_post_block(vcpu);
7384
7385 local_irq_enable();
7386 return (vcpu->pre_pcpu == -1);
7387 }
7388
vmx_pre_block(struct kvm_vcpu * vcpu)7389 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7390 {
7391 if (pi_pre_block(vcpu))
7392 return 1;
7393
7394 if (kvm_lapic_hv_timer_in_use(vcpu))
7395 kvm_lapic_switch_to_sw_timer(vcpu);
7396
7397 return 0;
7398 }
7399
pi_post_block(struct kvm_vcpu * vcpu)7400 static void pi_post_block(struct kvm_vcpu *vcpu)
7401 {
7402 if (vcpu->pre_pcpu == -1)
7403 return;
7404
7405 WARN_ON(irqs_disabled());
7406 local_irq_disable();
7407 __pi_post_block(vcpu);
7408 local_irq_enable();
7409 }
7410
vmx_post_block(struct kvm_vcpu * vcpu)7411 static void vmx_post_block(struct kvm_vcpu *vcpu)
7412 {
7413 if (kvm_x86_ops->set_hv_timer)
7414 kvm_lapic_switch_to_hv_timer(vcpu);
7415
7416 pi_post_block(vcpu);
7417 }
7418
7419 /*
7420 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7421 *
7422 * @kvm: kvm
7423 * @host_irq: host irq of the interrupt
7424 * @guest_irq: gsi of the interrupt
7425 * @set: set or unset PI
7426 * returns 0 on success, < 0 on failure
7427 */
vmx_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)7428 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7429 uint32_t guest_irq, bool set)
7430 {
7431 struct kvm_kernel_irq_routing_entry *e;
7432 struct kvm_irq_routing_table *irq_rt;
7433 struct kvm_lapic_irq irq;
7434 struct kvm_vcpu *vcpu;
7435 struct vcpu_data vcpu_info;
7436 int idx, ret = 0;
7437
7438 if (!kvm_arch_has_assigned_device(kvm) ||
7439 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7440 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7441 return 0;
7442
7443 idx = srcu_read_lock(&kvm->irq_srcu);
7444 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7445 if (guest_irq >= irq_rt->nr_rt_entries ||
7446 hlist_empty(&irq_rt->map[guest_irq])) {
7447 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7448 guest_irq, irq_rt->nr_rt_entries);
7449 goto out;
7450 }
7451
7452 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7453 if (e->type != KVM_IRQ_ROUTING_MSI)
7454 continue;
7455 /*
7456 * VT-d PI cannot support posting multicast/broadcast
7457 * interrupts to a vCPU, we still use interrupt remapping
7458 * for these kind of interrupts.
7459 *
7460 * For lowest-priority interrupts, we only support
7461 * those with single CPU as the destination, e.g. user
7462 * configures the interrupts via /proc/irq or uses
7463 * irqbalance to make the interrupts single-CPU.
7464 *
7465 * We will support full lowest-priority interrupt later.
7466 *
7467 * In addition, we can only inject generic interrupts using
7468 * the PI mechanism, refuse to route others through it.
7469 */
7470
7471 kvm_set_msi_irq(kvm, e, &irq);
7472 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7473 !kvm_irq_is_postable(&irq)) {
7474 /*
7475 * Make sure the IRTE is in remapped mode if
7476 * we don't handle it in posted mode.
7477 */
7478 ret = irq_set_vcpu_affinity(host_irq, NULL);
7479 if (ret < 0) {
7480 printk(KERN_INFO
7481 "failed to back to remapped mode, irq: %u\n",
7482 host_irq);
7483 goto out;
7484 }
7485
7486 continue;
7487 }
7488
7489 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7490 vcpu_info.vector = irq.vector;
7491
7492 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7493 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7494
7495 if (set)
7496 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7497 else
7498 ret = irq_set_vcpu_affinity(host_irq, NULL);
7499
7500 if (ret < 0) {
7501 printk(KERN_INFO "%s: failed to update PI IRTE\n",
7502 __func__);
7503 goto out;
7504 }
7505 }
7506
7507 ret = 0;
7508 out:
7509 srcu_read_unlock(&kvm->irq_srcu, idx);
7510 return ret;
7511 }
7512
vmx_setup_mce(struct kvm_vcpu * vcpu)7513 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7514 {
7515 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7516 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7517 FEATURE_CONTROL_LMCE;
7518 else
7519 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7520 ~FEATURE_CONTROL_LMCE;
7521 }
7522
vmx_smi_allowed(struct kvm_vcpu * vcpu)7523 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7524 {
7525 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7526 if (to_vmx(vcpu)->nested.nested_run_pending)
7527 return 0;
7528 return 1;
7529 }
7530
vmx_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)7531 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7532 {
7533 struct vcpu_vmx *vmx = to_vmx(vcpu);
7534
7535 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7536 if (vmx->nested.smm.guest_mode)
7537 nested_vmx_vmexit(vcpu, -1, 0, 0);
7538
7539 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7540 vmx->nested.vmxon = false;
7541 vmx_clear_hlt(vcpu);
7542 return 0;
7543 }
7544
vmx_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)7545 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7546 {
7547 struct vcpu_vmx *vmx = to_vmx(vcpu);
7548 int ret;
7549
7550 if (vmx->nested.smm.vmxon) {
7551 vmx->nested.vmxon = true;
7552 vmx->nested.smm.vmxon = false;
7553 }
7554
7555 if (vmx->nested.smm.guest_mode) {
7556 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7557 if (ret)
7558 return ret;
7559
7560 vmx->nested.smm.guest_mode = false;
7561 }
7562 return 0;
7563 }
7564
enable_smi_window(struct kvm_vcpu * vcpu)7565 static int enable_smi_window(struct kvm_vcpu *vcpu)
7566 {
7567 return 0;
7568 }
7569
vmx_need_emulation_on_page_fault(struct kvm_vcpu * vcpu)7570 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7571 {
7572 return false;
7573 }
7574
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)7575 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7576 {
7577 return to_vmx(vcpu)->nested.vmxon;
7578 }
7579
hardware_setup(void)7580 static __init int hardware_setup(void)
7581 {
7582 unsigned long host_bndcfgs;
7583 struct desc_ptr dt;
7584 int r, i;
7585
7586 rdmsrl_safe(MSR_EFER, &host_efer);
7587
7588 store_idt(&dt);
7589 host_idt_base = dt.address;
7590
7591 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7592 kvm_define_shared_msr(i, vmx_msr_index[i]);
7593
7594 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7595 return -EIO;
7596
7597 if (boot_cpu_has(X86_FEATURE_NX))
7598 kvm_enable_efer_bits(EFER_NX);
7599
7600 if (boot_cpu_has(X86_FEATURE_MPX)) {
7601 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7602 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7603 }
7604
7605 if (boot_cpu_has(X86_FEATURE_XSAVES))
7606 rdmsrl(MSR_IA32_XSS, host_xss);
7607
7608 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7609 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7610 enable_vpid = 0;
7611
7612 if (!cpu_has_vmx_ept() ||
7613 !cpu_has_vmx_ept_4levels() ||
7614 !cpu_has_vmx_ept_mt_wb() ||
7615 !cpu_has_vmx_invept_global())
7616 enable_ept = 0;
7617
7618 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7619 enable_ept_ad_bits = 0;
7620
7621 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7622 enable_unrestricted_guest = 0;
7623
7624 if (!cpu_has_vmx_flexpriority())
7625 flexpriority_enabled = 0;
7626
7627 if (!cpu_has_virtual_nmis())
7628 enable_vnmi = 0;
7629
7630 /*
7631 * set_apic_access_page_addr() is used to reload apic access
7632 * page upon invalidation. No need to do anything if not
7633 * using the APIC_ACCESS_ADDR VMCS field.
7634 */
7635 if (!flexpriority_enabled)
7636 kvm_x86_ops->set_apic_access_page_addr = NULL;
7637
7638 if (!cpu_has_vmx_tpr_shadow())
7639 kvm_x86_ops->update_cr8_intercept = NULL;
7640
7641 if (enable_ept && !cpu_has_vmx_ept_2m_page())
7642 kvm_disable_largepages();
7643
7644 #if IS_ENABLED(CONFIG_HYPERV)
7645 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7646 && enable_ept) {
7647 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7648 kvm_x86_ops->tlb_remote_flush_with_range =
7649 hv_remote_flush_tlb_with_range;
7650 }
7651 #endif
7652
7653 if (!cpu_has_vmx_ple()) {
7654 ple_gap = 0;
7655 ple_window = 0;
7656 ple_window_grow = 0;
7657 ple_window_max = 0;
7658 ple_window_shrink = 0;
7659 }
7660
7661 if (!cpu_has_vmx_apicv()) {
7662 enable_apicv = 0;
7663 kvm_x86_ops->sync_pir_to_irr = NULL;
7664 }
7665
7666 if (cpu_has_vmx_tsc_scaling()) {
7667 kvm_has_tsc_control = true;
7668 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7669 kvm_tsc_scaling_ratio_frac_bits = 48;
7670 }
7671
7672 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7673
7674 if (enable_ept)
7675 vmx_enable_tdp();
7676 else
7677 kvm_disable_tdp();
7678
7679 /*
7680 * Only enable PML when hardware supports PML feature, and both EPT
7681 * and EPT A/D bit features are enabled -- PML depends on them to work.
7682 */
7683 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7684 enable_pml = 0;
7685
7686 if (!enable_pml) {
7687 kvm_x86_ops->slot_enable_log_dirty = NULL;
7688 kvm_x86_ops->slot_disable_log_dirty = NULL;
7689 kvm_x86_ops->flush_log_dirty = NULL;
7690 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7691 }
7692
7693 if (!cpu_has_vmx_preemption_timer())
7694 enable_preemption_timer = false;
7695
7696 if (enable_preemption_timer) {
7697 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7698 u64 vmx_msr;
7699
7700 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7701 cpu_preemption_timer_multi =
7702 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7703
7704 if (tsc_khz)
7705 use_timer_freq = (u64)tsc_khz * 1000;
7706 use_timer_freq >>= cpu_preemption_timer_multi;
7707
7708 /*
7709 * KVM "disables" the preemption timer by setting it to its max
7710 * value. Don't use the timer if it might cause spurious exits
7711 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7712 */
7713 if (use_timer_freq > 0xffffffffu / 10)
7714 enable_preemption_timer = false;
7715 }
7716
7717 if (!enable_preemption_timer) {
7718 kvm_x86_ops->set_hv_timer = NULL;
7719 kvm_x86_ops->cancel_hv_timer = NULL;
7720 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7721 }
7722
7723 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7724
7725 kvm_mce_cap_supported |= MCG_LMCE_P;
7726
7727 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7728 return -EINVAL;
7729 if (!enable_ept || !cpu_has_vmx_intel_pt())
7730 pt_mode = PT_MODE_SYSTEM;
7731
7732 if (nested) {
7733 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7734 vmx_capability.ept, enable_apicv);
7735
7736 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7737 if (r)
7738 return r;
7739 }
7740
7741 r = alloc_kvm_area();
7742 if (r)
7743 nested_vmx_hardware_unsetup();
7744 return r;
7745 }
7746
hardware_unsetup(void)7747 static __exit void hardware_unsetup(void)
7748 {
7749 if (nested)
7750 nested_vmx_hardware_unsetup();
7751
7752 free_kvm_area();
7753 }
7754
7755 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7756 .cpu_has_kvm_support = cpu_has_kvm_support,
7757 .disabled_by_bios = vmx_disabled_by_bios,
7758 .hardware_setup = hardware_setup,
7759 .hardware_unsetup = hardware_unsetup,
7760 .check_processor_compatibility = vmx_check_processor_compat,
7761 .hardware_enable = hardware_enable,
7762 .hardware_disable = hardware_disable,
7763 .cpu_has_accelerated_tpr = report_flexpriority,
7764 .has_emulated_msr = vmx_has_emulated_msr,
7765
7766 .vm_init = vmx_vm_init,
7767 .vm_alloc = vmx_vm_alloc,
7768 .vm_free = vmx_vm_free,
7769
7770 .vcpu_create = vmx_create_vcpu,
7771 .vcpu_free = vmx_free_vcpu,
7772 .vcpu_reset = vmx_vcpu_reset,
7773
7774 .prepare_guest_switch = vmx_prepare_switch_to_guest,
7775 .vcpu_load = vmx_vcpu_load,
7776 .vcpu_put = vmx_vcpu_put,
7777
7778 .update_bp_intercept = update_exception_bitmap,
7779 .get_msr_feature = vmx_get_msr_feature,
7780 .get_msr = vmx_get_msr,
7781 .set_msr = vmx_set_msr,
7782 .get_segment_base = vmx_get_segment_base,
7783 .get_segment = vmx_get_segment,
7784 .set_segment = vmx_set_segment,
7785 .get_cpl = vmx_get_cpl,
7786 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7787 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7788 .decache_cr3 = vmx_decache_cr3,
7789 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7790 .set_cr0 = vmx_set_cr0,
7791 .set_cr3 = vmx_set_cr3,
7792 .set_cr4 = vmx_set_cr4,
7793 .set_efer = vmx_set_efer,
7794 .get_idt = vmx_get_idt,
7795 .set_idt = vmx_set_idt,
7796 .get_gdt = vmx_get_gdt,
7797 .set_gdt = vmx_set_gdt,
7798 .get_dr6 = vmx_get_dr6,
7799 .set_dr6 = vmx_set_dr6,
7800 .set_dr7 = vmx_set_dr7,
7801 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7802 .cache_reg = vmx_cache_reg,
7803 .get_rflags = vmx_get_rflags,
7804 .set_rflags = vmx_set_rflags,
7805
7806 .tlb_flush = vmx_flush_tlb,
7807 .tlb_flush_gva = vmx_flush_tlb_gva,
7808
7809 .run = vmx_vcpu_run,
7810 .handle_exit = vmx_handle_exit,
7811 .skip_emulated_instruction = skip_emulated_instruction,
7812 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7813 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7814 .patch_hypercall = vmx_patch_hypercall,
7815 .set_irq = vmx_inject_irq,
7816 .set_nmi = vmx_inject_nmi,
7817 .queue_exception = vmx_queue_exception,
7818 .cancel_injection = vmx_cancel_injection,
7819 .interrupt_allowed = vmx_interrupt_allowed,
7820 .nmi_allowed = vmx_nmi_allowed,
7821 .get_nmi_mask = vmx_get_nmi_mask,
7822 .set_nmi_mask = vmx_set_nmi_mask,
7823 .enable_nmi_window = enable_nmi_window,
7824 .enable_irq_window = enable_irq_window,
7825 .update_cr8_intercept = update_cr8_intercept,
7826 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7827 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7828 .get_enable_apicv = vmx_get_enable_apicv,
7829 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7830 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7831 .apicv_post_state_restore = vmx_apicv_post_state_restore,
7832 .hwapic_irr_update = vmx_hwapic_irr_update,
7833 .hwapic_isr_update = vmx_hwapic_isr_update,
7834 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7835 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7836 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7837 .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7838
7839 .set_tss_addr = vmx_set_tss_addr,
7840 .set_identity_map_addr = vmx_set_identity_map_addr,
7841 .get_tdp_level = get_ept_level,
7842 .get_mt_mask = vmx_get_mt_mask,
7843
7844 .get_exit_info = vmx_get_exit_info,
7845
7846 .get_lpage_level = vmx_get_lpage_level,
7847
7848 .cpuid_update = vmx_cpuid_update,
7849
7850 .rdtscp_supported = vmx_rdtscp_supported,
7851 .invpcid_supported = vmx_invpcid_supported,
7852
7853 .set_supported_cpuid = vmx_set_supported_cpuid,
7854
7855 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7856
7857 .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7858 .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7859
7860 .set_tdp_cr3 = vmx_set_cr3,
7861
7862 .check_intercept = vmx_check_intercept,
7863 .handle_exit_irqoff = vmx_handle_exit_irqoff,
7864 .mpx_supported = vmx_mpx_supported,
7865 .xsaves_supported = vmx_xsaves_supported,
7866 .umip_emulated = vmx_umip_emulated,
7867 .pt_supported = vmx_pt_supported,
7868
7869 .request_immediate_exit = vmx_request_immediate_exit,
7870
7871 .sched_in = vmx_sched_in,
7872
7873 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7874 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7875 .flush_log_dirty = vmx_flush_log_dirty,
7876 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7877 .write_log_dirty = vmx_write_pml_buffer,
7878
7879 .pre_block = vmx_pre_block,
7880 .post_block = vmx_post_block,
7881
7882 .pmu_ops = &intel_pmu_ops,
7883
7884 .update_pi_irte = vmx_update_pi_irte,
7885
7886 #ifdef CONFIG_X86_64
7887 .set_hv_timer = vmx_set_hv_timer,
7888 .cancel_hv_timer = vmx_cancel_hv_timer,
7889 #endif
7890
7891 .setup_mce = vmx_setup_mce,
7892
7893 .smi_allowed = vmx_smi_allowed,
7894 .pre_enter_smm = vmx_pre_enter_smm,
7895 .pre_leave_smm = vmx_pre_leave_smm,
7896 .enable_smi_window = enable_smi_window,
7897
7898 .check_nested_events = NULL,
7899 .get_nested_state = NULL,
7900 .set_nested_state = NULL,
7901 .get_vmcs12_pages = NULL,
7902 .nested_enable_evmcs = NULL,
7903 .nested_get_evmcs_version = NULL,
7904 .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7905 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7906 };
7907
vmx_cleanup_l1d_flush(void)7908 static void vmx_cleanup_l1d_flush(void)
7909 {
7910 if (vmx_l1d_flush_pages) {
7911 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7912 vmx_l1d_flush_pages = NULL;
7913 }
7914 /* Restore state so sysfs ignores VMX */
7915 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7916 }
7917
vmx_exit(void)7918 static void vmx_exit(void)
7919 {
7920 #ifdef CONFIG_KEXEC_CORE
7921 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7922 synchronize_rcu();
7923 #endif
7924
7925 kvm_exit();
7926
7927 #if IS_ENABLED(CONFIG_HYPERV)
7928 if (static_branch_unlikely(&enable_evmcs)) {
7929 int cpu;
7930 struct hv_vp_assist_page *vp_ap;
7931 /*
7932 * Reset everything to support using non-enlightened VMCS
7933 * access later (e.g. when we reload the module with
7934 * enlightened_vmcs=0)
7935 */
7936 for_each_online_cpu(cpu) {
7937 vp_ap = hv_get_vp_assist_page(cpu);
7938
7939 if (!vp_ap)
7940 continue;
7941
7942 vp_ap->nested_control.features.directhypercall = 0;
7943 vp_ap->current_nested_vmcs = 0;
7944 vp_ap->enlighten_vmentry = 0;
7945 }
7946
7947 static_branch_disable(&enable_evmcs);
7948 }
7949 #endif
7950 vmx_cleanup_l1d_flush();
7951 }
7952 module_exit(vmx_exit);
7953
vmx_init(void)7954 static int __init vmx_init(void)
7955 {
7956 int r;
7957
7958 #if IS_ENABLED(CONFIG_HYPERV)
7959 /*
7960 * Enlightened VMCS usage should be recommended and the host needs
7961 * to support eVMCS v1 or above. We can also disable eVMCS support
7962 * with module parameter.
7963 */
7964 if (enlightened_vmcs &&
7965 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7966 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7967 KVM_EVMCS_VERSION) {
7968 int cpu;
7969
7970 /* Check that we have assist pages on all online CPUs */
7971 for_each_online_cpu(cpu) {
7972 if (!hv_get_vp_assist_page(cpu)) {
7973 enlightened_vmcs = false;
7974 break;
7975 }
7976 }
7977
7978 if (enlightened_vmcs) {
7979 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7980 static_branch_enable(&enable_evmcs);
7981 }
7982
7983 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7984 vmx_x86_ops.enable_direct_tlbflush
7985 = hv_enable_direct_tlbflush;
7986
7987 } else {
7988 enlightened_vmcs = false;
7989 }
7990 #endif
7991
7992 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7993 __alignof__(struct vcpu_vmx), THIS_MODULE);
7994 if (r)
7995 return r;
7996
7997 /*
7998 * Must be called after kvm_init() so enable_ept is properly set
7999 * up. Hand the parameter mitigation value in which was stored in
8000 * the pre module init parser. If no parameter was given, it will
8001 * contain 'auto' which will be turned into the default 'cond'
8002 * mitigation mode.
8003 */
8004 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8005 if (r) {
8006 vmx_exit();
8007 return r;
8008 }
8009
8010 #ifdef CONFIG_KEXEC_CORE
8011 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8012 crash_vmclear_local_loaded_vmcss);
8013 #endif
8014 vmx_check_vmcs12_offsets();
8015
8016 return 0;
8017 }
8018 module_init(vmx_init);
8019