1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2013 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_da_format.h"
16 #include "xfs_da_btree.h"
17 #include "xfs_inode.h"
18 #include "xfs_trans.h"
19 #include "xfs_bmap_btree.h"
20 #include "xfs_bmap.h"
21 #include "xfs_attr_sf.h"
22 #include "xfs_attr_remote.h"
23 #include "xfs_attr.h"
24 #include "xfs_attr_leaf.h"
25 #include "xfs_error.h"
26 #include "xfs_trace.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_dir2.h"
29 #include "xfs_log.h"
30
31
32 /*
33 * xfs_attr_leaf.c
34 *
35 * Routines to implement leaf blocks of attributes as Btrees of hashed names.
36 */
37
38 /*========================================================================
39 * Function prototypes for the kernel.
40 *========================================================================*/
41
42 /*
43 * Routines used for growing the Btree.
44 */
45 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args,
46 xfs_dablk_t which_block, struct xfs_buf **bpp);
47 STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer,
48 struct xfs_attr3_icleaf_hdr *ichdr,
49 struct xfs_da_args *args, int freemap_index);
50 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args,
51 struct xfs_attr3_icleaf_hdr *ichdr,
52 struct xfs_buf *leaf_buffer);
53 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state,
54 xfs_da_state_blk_t *blk1,
55 xfs_da_state_blk_t *blk2);
56 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state,
57 xfs_da_state_blk_t *leaf_blk_1,
58 struct xfs_attr3_icleaf_hdr *ichdr1,
59 xfs_da_state_blk_t *leaf_blk_2,
60 struct xfs_attr3_icleaf_hdr *ichdr2,
61 int *number_entries_in_blk1,
62 int *number_usedbytes_in_blk1);
63
64 /*
65 * Utility routines.
66 */
67 STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args,
68 struct xfs_attr_leafblock *src_leaf,
69 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start,
70 struct xfs_attr_leafblock *dst_leaf,
71 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start,
72 int move_count);
73 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
74
75 /*
76 * attr3 block 'firstused' conversion helpers.
77 *
78 * firstused refers to the offset of the first used byte of the nameval region
79 * of an attr leaf block. The region starts at the tail of the block and expands
80 * backwards towards the middle. As such, firstused is initialized to the block
81 * size for an empty leaf block and is reduced from there.
82 *
83 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k.
84 * The in-core firstused field is 32-bit and thus supports the maximum fsb size.
85 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this
86 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent
87 * the attr block size. The following helpers manage the conversion between the
88 * in-core and on-disk formats.
89 */
90
91 static void
xfs_attr3_leaf_firstused_from_disk(struct xfs_da_geometry * geo,struct xfs_attr3_icleaf_hdr * to,struct xfs_attr_leafblock * from)92 xfs_attr3_leaf_firstused_from_disk(
93 struct xfs_da_geometry *geo,
94 struct xfs_attr3_icleaf_hdr *to,
95 struct xfs_attr_leafblock *from)
96 {
97 struct xfs_attr3_leaf_hdr *hdr3;
98
99 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
100 hdr3 = (struct xfs_attr3_leaf_hdr *) from;
101 to->firstused = be16_to_cpu(hdr3->firstused);
102 } else {
103 to->firstused = be16_to_cpu(from->hdr.firstused);
104 }
105
106 /*
107 * Convert from the magic fsb size value to actual blocksize. This
108 * should only occur for empty blocks when the block size overflows
109 * 16-bits.
110 */
111 if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) {
112 ASSERT(!to->count && !to->usedbytes);
113 ASSERT(geo->blksize > USHRT_MAX);
114 to->firstused = geo->blksize;
115 }
116 }
117
118 static void
xfs_attr3_leaf_firstused_to_disk(struct xfs_da_geometry * geo,struct xfs_attr_leafblock * to,struct xfs_attr3_icleaf_hdr * from)119 xfs_attr3_leaf_firstused_to_disk(
120 struct xfs_da_geometry *geo,
121 struct xfs_attr_leafblock *to,
122 struct xfs_attr3_icleaf_hdr *from)
123 {
124 struct xfs_attr3_leaf_hdr *hdr3;
125 uint32_t firstused;
126
127 /* magic value should only be seen on disk */
128 ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF);
129
130 /*
131 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk
132 * value. This only overflows at the max supported value of 64k. Use the
133 * magic on-disk value to represent block size in this case.
134 */
135 firstused = from->firstused;
136 if (firstused > USHRT_MAX) {
137 ASSERT(from->firstused == geo->blksize);
138 firstused = XFS_ATTR3_LEAF_NULLOFF;
139 }
140
141 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
142 hdr3 = (struct xfs_attr3_leaf_hdr *) to;
143 hdr3->firstused = cpu_to_be16(firstused);
144 } else {
145 to->hdr.firstused = cpu_to_be16(firstused);
146 }
147 }
148
149 void
xfs_attr3_leaf_hdr_from_disk(struct xfs_da_geometry * geo,struct xfs_attr3_icleaf_hdr * to,struct xfs_attr_leafblock * from)150 xfs_attr3_leaf_hdr_from_disk(
151 struct xfs_da_geometry *geo,
152 struct xfs_attr3_icleaf_hdr *to,
153 struct xfs_attr_leafblock *from)
154 {
155 int i;
156
157 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
158 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
159
160 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
161 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from;
162
163 to->forw = be32_to_cpu(hdr3->info.hdr.forw);
164 to->back = be32_to_cpu(hdr3->info.hdr.back);
165 to->magic = be16_to_cpu(hdr3->info.hdr.magic);
166 to->count = be16_to_cpu(hdr3->count);
167 to->usedbytes = be16_to_cpu(hdr3->usedbytes);
168 xfs_attr3_leaf_firstused_from_disk(geo, to, from);
169 to->holes = hdr3->holes;
170
171 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
172 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base);
173 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size);
174 }
175 return;
176 }
177 to->forw = be32_to_cpu(from->hdr.info.forw);
178 to->back = be32_to_cpu(from->hdr.info.back);
179 to->magic = be16_to_cpu(from->hdr.info.magic);
180 to->count = be16_to_cpu(from->hdr.count);
181 to->usedbytes = be16_to_cpu(from->hdr.usedbytes);
182 xfs_attr3_leaf_firstused_from_disk(geo, to, from);
183 to->holes = from->hdr.holes;
184
185 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
186 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base);
187 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size);
188 }
189 }
190
191 void
xfs_attr3_leaf_hdr_to_disk(struct xfs_da_geometry * geo,struct xfs_attr_leafblock * to,struct xfs_attr3_icleaf_hdr * from)192 xfs_attr3_leaf_hdr_to_disk(
193 struct xfs_da_geometry *geo,
194 struct xfs_attr_leafblock *to,
195 struct xfs_attr3_icleaf_hdr *from)
196 {
197 int i;
198
199 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC ||
200 from->magic == XFS_ATTR3_LEAF_MAGIC);
201
202 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
203 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to;
204
205 hdr3->info.hdr.forw = cpu_to_be32(from->forw);
206 hdr3->info.hdr.back = cpu_to_be32(from->back);
207 hdr3->info.hdr.magic = cpu_to_be16(from->magic);
208 hdr3->count = cpu_to_be16(from->count);
209 hdr3->usedbytes = cpu_to_be16(from->usedbytes);
210 xfs_attr3_leaf_firstused_to_disk(geo, to, from);
211 hdr3->holes = from->holes;
212 hdr3->pad1 = 0;
213
214 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
215 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base);
216 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size);
217 }
218 return;
219 }
220 to->hdr.info.forw = cpu_to_be32(from->forw);
221 to->hdr.info.back = cpu_to_be32(from->back);
222 to->hdr.info.magic = cpu_to_be16(from->magic);
223 to->hdr.count = cpu_to_be16(from->count);
224 to->hdr.usedbytes = cpu_to_be16(from->usedbytes);
225 xfs_attr3_leaf_firstused_to_disk(geo, to, from);
226 to->hdr.holes = from->holes;
227 to->hdr.pad1 = 0;
228
229 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
230 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base);
231 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size);
232 }
233 }
234
235 static xfs_failaddr_t
xfs_attr3_leaf_verify(struct xfs_buf * bp)236 xfs_attr3_leaf_verify(
237 struct xfs_buf *bp)
238 {
239 struct xfs_attr3_icleaf_hdr ichdr;
240 struct xfs_mount *mp = bp->b_mount;
241 struct xfs_attr_leafblock *leaf = bp->b_addr;
242 struct xfs_attr_leaf_entry *entries;
243 uint32_t end; /* must be 32bit - see below */
244 int i;
245 xfs_failaddr_t fa;
246
247 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf);
248
249 fa = xfs_da3_blkinfo_verify(bp, bp->b_addr);
250 if (fa)
251 return fa;
252
253 /*
254 * In recovery there is a transient state where count == 0 is valid
255 * because we may have transitioned an empty shortform attr to a leaf
256 * if the attr didn't fit in shortform.
257 */
258 if (!xfs_log_in_recovery(mp) && ichdr.count == 0)
259 return __this_address;
260
261 /*
262 * firstused is the block offset of the first name info structure.
263 * Make sure it doesn't go off the block or crash into the header.
264 */
265 if (ichdr.firstused > mp->m_attr_geo->blksize)
266 return __this_address;
267 if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf))
268 return __this_address;
269
270 /* Make sure the entries array doesn't crash into the name info. */
271 entries = xfs_attr3_leaf_entryp(bp->b_addr);
272 if ((char *)&entries[ichdr.count] >
273 (char *)bp->b_addr + ichdr.firstused)
274 return __this_address;
275
276 /* XXX: need to range check rest of attr header values */
277 /* XXX: hash order check? */
278
279 /*
280 * Quickly check the freemap information. Attribute data has to be
281 * aligned to 4-byte boundaries, and likewise for the free space.
282 *
283 * Note that for 64k block size filesystems, the freemap entries cannot
284 * overflow as they are only be16 fields. However, when checking end
285 * pointer of the freemap, we have to be careful to detect overflows and
286 * so use uint32_t for those checks.
287 */
288 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
289 if (ichdr.freemap[i].base > mp->m_attr_geo->blksize)
290 return __this_address;
291 if (ichdr.freemap[i].base & 0x3)
292 return __this_address;
293 if (ichdr.freemap[i].size > mp->m_attr_geo->blksize)
294 return __this_address;
295 if (ichdr.freemap[i].size & 0x3)
296 return __this_address;
297
298 /* be care of 16 bit overflows here */
299 end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size;
300 if (end < ichdr.freemap[i].base)
301 return __this_address;
302 if (end > mp->m_attr_geo->blksize)
303 return __this_address;
304 }
305
306 return NULL;
307 }
308
309 static void
xfs_attr3_leaf_write_verify(struct xfs_buf * bp)310 xfs_attr3_leaf_write_verify(
311 struct xfs_buf *bp)
312 {
313 struct xfs_mount *mp = bp->b_mount;
314 struct xfs_buf_log_item *bip = bp->b_log_item;
315 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr;
316 xfs_failaddr_t fa;
317
318 fa = xfs_attr3_leaf_verify(bp);
319 if (fa) {
320 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
321 return;
322 }
323
324 if (!xfs_sb_version_hascrc(&mp->m_sb))
325 return;
326
327 if (bip)
328 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
329
330 xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF);
331 }
332
333 /*
334 * leaf/node format detection on trees is sketchy, so a node read can be done on
335 * leaf level blocks when detection identifies the tree as a node format tree
336 * incorrectly. In this case, we need to swap the verifier to match the correct
337 * format of the block being read.
338 */
339 static void
xfs_attr3_leaf_read_verify(struct xfs_buf * bp)340 xfs_attr3_leaf_read_verify(
341 struct xfs_buf *bp)
342 {
343 struct xfs_mount *mp = bp->b_mount;
344 xfs_failaddr_t fa;
345
346 if (xfs_sb_version_hascrc(&mp->m_sb) &&
347 !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF))
348 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
349 else {
350 fa = xfs_attr3_leaf_verify(bp);
351 if (fa)
352 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
353 }
354 }
355
356 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = {
357 .name = "xfs_attr3_leaf",
358 .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC),
359 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) },
360 .verify_read = xfs_attr3_leaf_read_verify,
361 .verify_write = xfs_attr3_leaf_write_verify,
362 .verify_struct = xfs_attr3_leaf_verify,
363 };
364
365 int
xfs_attr3_leaf_read(struct xfs_trans * tp,struct xfs_inode * dp,xfs_dablk_t bno,xfs_daddr_t mappedbno,struct xfs_buf ** bpp)366 xfs_attr3_leaf_read(
367 struct xfs_trans *tp,
368 struct xfs_inode *dp,
369 xfs_dablk_t bno,
370 xfs_daddr_t mappedbno,
371 struct xfs_buf **bpp)
372 {
373 int err;
374
375 err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp,
376 XFS_ATTR_FORK, &xfs_attr3_leaf_buf_ops);
377 if (!err && tp && *bpp)
378 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF);
379 return err;
380 }
381
382 /*========================================================================
383 * Namespace helper routines
384 *========================================================================*/
385
386 /*
387 * If namespace bits don't match return 0.
388 * If all match then return 1.
389 */
390 STATIC int
xfs_attr_namesp_match(int arg_flags,int ondisk_flags)391 xfs_attr_namesp_match(int arg_flags, int ondisk_flags)
392 {
393 return XFS_ATTR_NSP_ONDISK(ondisk_flags) == XFS_ATTR_NSP_ARGS_TO_ONDISK(arg_flags);
394 }
395
396 static int
xfs_attr_copy_value(struct xfs_da_args * args,unsigned char * value,int valuelen)397 xfs_attr_copy_value(
398 struct xfs_da_args *args,
399 unsigned char *value,
400 int valuelen)
401 {
402 /*
403 * No copy if all we have to do is get the length
404 */
405 if (args->flags & ATTR_KERNOVAL) {
406 args->valuelen = valuelen;
407 return 0;
408 }
409
410 /*
411 * No copy if the length of the existing buffer is too small
412 */
413 if (args->valuelen < valuelen) {
414 args->valuelen = valuelen;
415 return -ERANGE;
416 }
417
418 if (args->op_flags & XFS_DA_OP_ALLOCVAL) {
419 args->value = kmem_alloc_large(valuelen, 0);
420 if (!args->value)
421 return -ENOMEM;
422 }
423 args->valuelen = valuelen;
424
425 /* remote block xattr requires IO for copy-in */
426 if (args->rmtblkno)
427 return xfs_attr_rmtval_get(args);
428
429 /*
430 * This is to prevent a GCC warning because the remote xattr case
431 * doesn't have a value to pass in. In that case, we never reach here,
432 * but GCC can't work that out and so throws a "passing NULL to
433 * memcpy" warning.
434 */
435 if (!value)
436 return -EINVAL;
437 memcpy(args->value, value, valuelen);
438 return 0;
439 }
440
441 /*========================================================================
442 * External routines when attribute fork size < XFS_LITINO(mp).
443 *========================================================================*/
444
445 /*
446 * Query whether the requested number of additional bytes of extended
447 * attribute space will be able to fit inline.
448 *
449 * Returns zero if not, else the di_forkoff fork offset to be used in the
450 * literal area for attribute data once the new bytes have been added.
451 *
452 * di_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
453 * special case for dev/uuid inodes, they have fixed size data forks.
454 */
455 int
xfs_attr_shortform_bytesfit(xfs_inode_t * dp,int bytes)456 xfs_attr_shortform_bytesfit(xfs_inode_t *dp, int bytes)
457 {
458 int offset;
459 int minforkoff; /* lower limit on valid forkoff locations */
460 int maxforkoff; /* upper limit on valid forkoff locations */
461 int dsize;
462 xfs_mount_t *mp = dp->i_mount;
463
464 /* rounded down */
465 offset = (XFS_LITINO(mp, dp->i_d.di_version) - bytes) >> 3;
466
467 if (dp->i_d.di_format == XFS_DINODE_FMT_DEV) {
468 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
469 return (offset >= minforkoff) ? minforkoff : 0;
470 }
471
472 /*
473 * If the requested numbers of bytes is smaller or equal to the
474 * current attribute fork size we can always proceed.
475 *
476 * Note that if_bytes in the data fork might actually be larger than
477 * the current data fork size is due to delalloc extents. In that
478 * case either the extent count will go down when they are converted
479 * to real extents, or the delalloc conversion will take care of the
480 * literal area rebalancing.
481 */
482 if (bytes <= XFS_IFORK_ASIZE(dp))
483 return dp->i_d.di_forkoff;
484
485 /*
486 * For attr2 we can try to move the forkoff if there is space in the
487 * literal area, but for the old format we are done if there is no
488 * space in the fixed attribute fork.
489 */
490 if (!(mp->m_flags & XFS_MOUNT_ATTR2))
491 return 0;
492
493 dsize = dp->i_df.if_bytes;
494
495 switch (dp->i_d.di_format) {
496 case XFS_DINODE_FMT_EXTENTS:
497 /*
498 * If there is no attr fork and the data fork is extents,
499 * determine if creating the default attr fork will result
500 * in the extents form migrating to btree. If so, the
501 * minimum offset only needs to be the space required for
502 * the btree root.
503 */
504 if (!dp->i_d.di_forkoff && dp->i_df.if_bytes >
505 xfs_default_attroffset(dp))
506 dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
507 break;
508 case XFS_DINODE_FMT_BTREE:
509 /*
510 * If we have a data btree then keep forkoff if we have one,
511 * otherwise we are adding a new attr, so then we set
512 * minforkoff to where the btree root can finish so we have
513 * plenty of room for attrs
514 */
515 if (dp->i_d.di_forkoff) {
516 if (offset < dp->i_d.di_forkoff)
517 return 0;
518 return dp->i_d.di_forkoff;
519 }
520 dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot);
521 break;
522 }
523
524 /*
525 * A data fork btree root must have space for at least
526 * MINDBTPTRS key/ptr pairs if the data fork is small or empty.
527 */
528 minforkoff = max(dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
529 minforkoff = roundup(minforkoff, 8) >> 3;
530
531 /* attr fork btree root can have at least this many key/ptr pairs */
532 maxforkoff = XFS_LITINO(mp, dp->i_d.di_version) -
533 XFS_BMDR_SPACE_CALC(MINABTPTRS);
534 maxforkoff = maxforkoff >> 3; /* rounded down */
535
536 if (offset >= maxforkoff)
537 return maxforkoff;
538 if (offset >= minforkoff)
539 return offset;
540 return 0;
541 }
542
543 /*
544 * Switch on the ATTR2 superblock bit (implies also FEATURES2)
545 */
546 STATIC void
xfs_sbversion_add_attr2(xfs_mount_t * mp,xfs_trans_t * tp)547 xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp)
548 {
549 if ((mp->m_flags & XFS_MOUNT_ATTR2) &&
550 !(xfs_sb_version_hasattr2(&mp->m_sb))) {
551 spin_lock(&mp->m_sb_lock);
552 if (!xfs_sb_version_hasattr2(&mp->m_sb)) {
553 xfs_sb_version_addattr2(&mp->m_sb);
554 spin_unlock(&mp->m_sb_lock);
555 xfs_log_sb(tp);
556 } else
557 spin_unlock(&mp->m_sb_lock);
558 }
559 }
560
561 /*
562 * Create the initial contents of a shortform attribute list.
563 */
564 void
xfs_attr_shortform_create(xfs_da_args_t * args)565 xfs_attr_shortform_create(xfs_da_args_t *args)
566 {
567 xfs_attr_sf_hdr_t *hdr;
568 xfs_inode_t *dp;
569 struct xfs_ifork *ifp;
570
571 trace_xfs_attr_sf_create(args);
572
573 dp = args->dp;
574 ASSERT(dp != NULL);
575 ifp = dp->i_afp;
576 ASSERT(ifp != NULL);
577 ASSERT(ifp->if_bytes == 0);
578 if (dp->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS) {
579 ifp->if_flags &= ~XFS_IFEXTENTS; /* just in case */
580 dp->i_d.di_aformat = XFS_DINODE_FMT_LOCAL;
581 ifp->if_flags |= XFS_IFINLINE;
582 } else {
583 ASSERT(ifp->if_flags & XFS_IFINLINE);
584 }
585 xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
586 hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data;
587 hdr->count = 0;
588 hdr->totsize = cpu_to_be16(sizeof(*hdr));
589 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
590 }
591
592 /*
593 * Add a name/value pair to the shortform attribute list.
594 * Overflow from the inode has already been checked for.
595 */
596 void
xfs_attr_shortform_add(xfs_da_args_t * args,int forkoff)597 xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff)
598 {
599 xfs_attr_shortform_t *sf;
600 xfs_attr_sf_entry_t *sfe;
601 int i, offset, size;
602 xfs_mount_t *mp;
603 xfs_inode_t *dp;
604 struct xfs_ifork *ifp;
605
606 trace_xfs_attr_sf_add(args);
607
608 dp = args->dp;
609 mp = dp->i_mount;
610 dp->i_d.di_forkoff = forkoff;
611
612 ifp = dp->i_afp;
613 ASSERT(ifp->if_flags & XFS_IFINLINE);
614 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
615 sfe = &sf->list[0];
616 for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
617 #ifdef DEBUG
618 if (sfe->namelen != args->namelen)
619 continue;
620 if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
621 continue;
622 if (!xfs_attr_namesp_match(args->flags, sfe->flags))
623 continue;
624 ASSERT(0);
625 #endif
626 }
627
628 offset = (char *)sfe - (char *)sf;
629 size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen);
630 xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
631 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
632 sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset);
633
634 sfe->namelen = args->namelen;
635 sfe->valuelen = args->valuelen;
636 sfe->flags = XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
637 memcpy(sfe->nameval, args->name, args->namelen);
638 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
639 sf->hdr.count++;
640 be16_add_cpu(&sf->hdr.totsize, size);
641 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
642
643 xfs_sbversion_add_attr2(mp, args->trans);
644 }
645
646 /*
647 * After the last attribute is removed revert to original inode format,
648 * making all literal area available to the data fork once more.
649 */
650 void
xfs_attr_fork_remove(struct xfs_inode * ip,struct xfs_trans * tp)651 xfs_attr_fork_remove(
652 struct xfs_inode *ip,
653 struct xfs_trans *tp)
654 {
655 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
656 ip->i_d.di_forkoff = 0;
657 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
658
659 ASSERT(ip->i_d.di_anextents == 0);
660 ASSERT(ip->i_afp == NULL);
661
662 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
663 }
664
665 /*
666 * Remove an attribute from the shortform attribute list structure.
667 */
668 int
xfs_attr_shortform_remove(xfs_da_args_t * args)669 xfs_attr_shortform_remove(xfs_da_args_t *args)
670 {
671 xfs_attr_shortform_t *sf;
672 xfs_attr_sf_entry_t *sfe;
673 int base, size=0, end, totsize, i;
674 xfs_mount_t *mp;
675 xfs_inode_t *dp;
676
677 trace_xfs_attr_sf_remove(args);
678
679 dp = args->dp;
680 mp = dp->i_mount;
681 base = sizeof(xfs_attr_sf_hdr_t);
682 sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data;
683 sfe = &sf->list[0];
684 end = sf->hdr.count;
685 for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe),
686 base += size, i++) {
687 size = XFS_ATTR_SF_ENTSIZE(sfe);
688 if (sfe->namelen != args->namelen)
689 continue;
690 if (memcmp(sfe->nameval, args->name, args->namelen) != 0)
691 continue;
692 if (!xfs_attr_namesp_match(args->flags, sfe->flags))
693 continue;
694 break;
695 }
696 if (i == end)
697 return -ENOATTR;
698
699 /*
700 * Fix up the attribute fork data, covering the hole
701 */
702 end = base + size;
703 totsize = be16_to_cpu(sf->hdr.totsize);
704 if (end != totsize)
705 memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end);
706 sf->hdr.count--;
707 be16_add_cpu(&sf->hdr.totsize, -size);
708
709 /*
710 * Fix up the start offset of the attribute fork
711 */
712 totsize -= size;
713 if (totsize == sizeof(xfs_attr_sf_hdr_t) &&
714 (mp->m_flags & XFS_MOUNT_ATTR2) &&
715 (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
716 !(args->op_flags & XFS_DA_OP_ADDNAME)) {
717 xfs_attr_fork_remove(dp, args->trans);
718 } else {
719 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
720 dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
721 ASSERT(dp->i_d.di_forkoff);
722 ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) ||
723 (args->op_flags & XFS_DA_OP_ADDNAME) ||
724 !(mp->m_flags & XFS_MOUNT_ATTR2) ||
725 dp->i_d.di_format == XFS_DINODE_FMT_BTREE);
726 xfs_trans_log_inode(args->trans, dp,
727 XFS_ILOG_CORE | XFS_ILOG_ADATA);
728 }
729
730 xfs_sbversion_add_attr2(mp, args->trans);
731
732 return 0;
733 }
734
735 /*
736 * Look up a name in a shortform attribute list structure.
737 */
738 /*ARGSUSED*/
739 int
xfs_attr_shortform_lookup(xfs_da_args_t * args)740 xfs_attr_shortform_lookup(xfs_da_args_t *args)
741 {
742 xfs_attr_shortform_t *sf;
743 xfs_attr_sf_entry_t *sfe;
744 int i;
745 struct xfs_ifork *ifp;
746
747 trace_xfs_attr_sf_lookup(args);
748
749 ifp = args->dp->i_afp;
750 ASSERT(ifp->if_flags & XFS_IFINLINE);
751 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
752 sfe = &sf->list[0];
753 for (i = 0; i < sf->hdr.count;
754 sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
755 if (sfe->namelen != args->namelen)
756 continue;
757 if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
758 continue;
759 if (!xfs_attr_namesp_match(args->flags, sfe->flags))
760 continue;
761 return -EEXIST;
762 }
763 return -ENOATTR;
764 }
765
766 /*
767 * Retreive the attribute value and length.
768 *
769 * If ATTR_KERNOVAL is specified, only the length needs to be returned.
770 * Unlike a lookup, we only return an error if the attribute does not
771 * exist or we can't retrieve the value.
772 */
773 int
xfs_attr_shortform_getvalue(struct xfs_da_args * args)774 xfs_attr_shortform_getvalue(
775 struct xfs_da_args *args)
776 {
777 struct xfs_attr_shortform *sf;
778 struct xfs_attr_sf_entry *sfe;
779 int i;
780
781 ASSERT(args->dp->i_afp->if_flags == XFS_IFINLINE);
782 sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data;
783 sfe = &sf->list[0];
784 for (i = 0; i < sf->hdr.count;
785 sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
786 if (sfe->namelen != args->namelen)
787 continue;
788 if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
789 continue;
790 if (!xfs_attr_namesp_match(args->flags, sfe->flags))
791 continue;
792 return xfs_attr_copy_value(args, &sfe->nameval[args->namelen],
793 sfe->valuelen);
794 }
795 return -ENOATTR;
796 }
797
798 /*
799 * Convert from using the shortform to the leaf. On success, return the
800 * buffer so that we can keep it locked until we're totally done with it.
801 */
802 int
xfs_attr_shortform_to_leaf(struct xfs_da_args * args,struct xfs_buf ** leaf_bp)803 xfs_attr_shortform_to_leaf(
804 struct xfs_da_args *args,
805 struct xfs_buf **leaf_bp)
806 {
807 struct xfs_inode *dp;
808 struct xfs_attr_shortform *sf;
809 struct xfs_attr_sf_entry *sfe;
810 struct xfs_da_args nargs;
811 char *tmpbuffer;
812 int error, i, size;
813 xfs_dablk_t blkno;
814 struct xfs_buf *bp;
815 struct xfs_ifork *ifp;
816
817 trace_xfs_attr_sf_to_leaf(args);
818
819 dp = args->dp;
820 ifp = dp->i_afp;
821 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
822 size = be16_to_cpu(sf->hdr.totsize);
823 tmpbuffer = kmem_alloc(size, 0);
824 ASSERT(tmpbuffer != NULL);
825 memcpy(tmpbuffer, ifp->if_u1.if_data, size);
826 sf = (xfs_attr_shortform_t *)tmpbuffer;
827
828 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
829 xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK);
830
831 bp = NULL;
832 error = xfs_da_grow_inode(args, &blkno);
833 if (error)
834 goto out;
835
836 ASSERT(blkno == 0);
837 error = xfs_attr3_leaf_create(args, blkno, &bp);
838 if (error)
839 goto out;
840
841 memset((char *)&nargs, 0, sizeof(nargs));
842 nargs.dp = dp;
843 nargs.geo = args->geo;
844 nargs.total = args->total;
845 nargs.whichfork = XFS_ATTR_FORK;
846 nargs.trans = args->trans;
847 nargs.op_flags = XFS_DA_OP_OKNOENT;
848
849 sfe = &sf->list[0];
850 for (i = 0; i < sf->hdr.count; i++) {
851 nargs.name = sfe->nameval;
852 nargs.namelen = sfe->namelen;
853 nargs.value = &sfe->nameval[nargs.namelen];
854 nargs.valuelen = sfe->valuelen;
855 nargs.hashval = xfs_da_hashname(sfe->nameval,
856 sfe->namelen);
857 nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(sfe->flags);
858 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */
859 ASSERT(error == -ENOATTR);
860 error = xfs_attr3_leaf_add(bp, &nargs);
861 ASSERT(error != -ENOSPC);
862 if (error)
863 goto out;
864 sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
865 }
866 error = 0;
867 *leaf_bp = bp;
868 out:
869 kmem_free(tmpbuffer);
870 return error;
871 }
872
873 /*
874 * Check a leaf attribute block to see if all the entries would fit into
875 * a shortform attribute list.
876 */
877 int
xfs_attr_shortform_allfit(struct xfs_buf * bp,struct xfs_inode * dp)878 xfs_attr_shortform_allfit(
879 struct xfs_buf *bp,
880 struct xfs_inode *dp)
881 {
882 struct xfs_attr_leafblock *leaf;
883 struct xfs_attr_leaf_entry *entry;
884 xfs_attr_leaf_name_local_t *name_loc;
885 struct xfs_attr3_icleaf_hdr leafhdr;
886 int bytes;
887 int i;
888 struct xfs_mount *mp = bp->b_mount;
889
890 leaf = bp->b_addr;
891 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf);
892 entry = xfs_attr3_leaf_entryp(leaf);
893
894 bytes = sizeof(struct xfs_attr_sf_hdr);
895 for (i = 0; i < leafhdr.count; entry++, i++) {
896 if (entry->flags & XFS_ATTR_INCOMPLETE)
897 continue; /* don't copy partial entries */
898 if (!(entry->flags & XFS_ATTR_LOCAL))
899 return 0;
900 name_loc = xfs_attr3_leaf_name_local(leaf, i);
901 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
902 return 0;
903 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
904 return 0;
905 bytes += sizeof(struct xfs_attr_sf_entry) - 1
906 + name_loc->namelen
907 + be16_to_cpu(name_loc->valuelen);
908 }
909 if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) &&
910 (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
911 (bytes == sizeof(struct xfs_attr_sf_hdr)))
912 return -1;
913 return xfs_attr_shortform_bytesfit(dp, bytes);
914 }
915
916 /* Verify the consistency of an inline attribute fork. */
917 xfs_failaddr_t
xfs_attr_shortform_verify(struct xfs_inode * ip)918 xfs_attr_shortform_verify(
919 struct xfs_inode *ip)
920 {
921 struct xfs_attr_shortform *sfp;
922 struct xfs_attr_sf_entry *sfep;
923 struct xfs_attr_sf_entry *next_sfep;
924 char *endp;
925 struct xfs_ifork *ifp;
926 int i;
927 int size;
928
929 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_LOCAL);
930 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
931 sfp = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
932 size = ifp->if_bytes;
933
934 /*
935 * Give up if the attribute is way too short.
936 */
937 if (size < sizeof(struct xfs_attr_sf_hdr))
938 return __this_address;
939
940 endp = (char *)sfp + size;
941
942 /* Check all reported entries */
943 sfep = &sfp->list[0];
944 for (i = 0; i < sfp->hdr.count; i++) {
945 /*
946 * struct xfs_attr_sf_entry has a variable length.
947 * Check the fixed-offset parts of the structure are
948 * within the data buffer.
949 */
950 if (((char *)sfep + sizeof(*sfep)) >= endp)
951 return __this_address;
952
953 /* Don't allow names with known bad length. */
954 if (sfep->namelen == 0)
955 return __this_address;
956
957 /*
958 * Check that the variable-length part of the structure is
959 * within the data buffer. The next entry starts after the
960 * name component, so nextentry is an acceptable test.
961 */
962 next_sfep = XFS_ATTR_SF_NEXTENTRY(sfep);
963 if ((char *)next_sfep > endp)
964 return __this_address;
965
966 /*
967 * Check for unknown flags. Short form doesn't support
968 * the incomplete or local bits, so we can use the namespace
969 * mask here.
970 */
971 if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK)
972 return __this_address;
973
974 /*
975 * Check for invalid namespace combinations. We only allow
976 * one namespace flag per xattr, so we can just count the
977 * bits (i.e. hweight) here.
978 */
979 if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1)
980 return __this_address;
981
982 sfep = next_sfep;
983 }
984 if ((void *)sfep != (void *)endp)
985 return __this_address;
986
987 return NULL;
988 }
989
990 /*
991 * Convert a leaf attribute list to shortform attribute list
992 */
993 int
xfs_attr3_leaf_to_shortform(struct xfs_buf * bp,struct xfs_da_args * args,int forkoff)994 xfs_attr3_leaf_to_shortform(
995 struct xfs_buf *bp,
996 struct xfs_da_args *args,
997 int forkoff)
998 {
999 struct xfs_attr_leafblock *leaf;
1000 struct xfs_attr3_icleaf_hdr ichdr;
1001 struct xfs_attr_leaf_entry *entry;
1002 struct xfs_attr_leaf_name_local *name_loc;
1003 struct xfs_da_args nargs;
1004 struct xfs_inode *dp = args->dp;
1005 char *tmpbuffer;
1006 int error;
1007 int i;
1008
1009 trace_xfs_attr_leaf_to_sf(args);
1010
1011 tmpbuffer = kmem_alloc(args->geo->blksize, 0);
1012 if (!tmpbuffer)
1013 return -ENOMEM;
1014
1015 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1016
1017 leaf = (xfs_attr_leafblock_t *)tmpbuffer;
1018 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1019 entry = xfs_attr3_leaf_entryp(leaf);
1020
1021 /* XXX (dgc): buffer is about to be marked stale - why zero it? */
1022 memset(bp->b_addr, 0, args->geo->blksize);
1023
1024 /*
1025 * Clean out the prior contents of the attribute list.
1026 */
1027 error = xfs_da_shrink_inode(args, 0, bp);
1028 if (error)
1029 goto out;
1030
1031 if (forkoff == -1) {
1032 ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2);
1033 ASSERT(dp->i_d.di_format != XFS_DINODE_FMT_BTREE);
1034 xfs_attr_fork_remove(dp, args->trans);
1035 goto out;
1036 }
1037
1038 xfs_attr_shortform_create(args);
1039
1040 /*
1041 * Copy the attributes
1042 */
1043 memset((char *)&nargs, 0, sizeof(nargs));
1044 nargs.geo = args->geo;
1045 nargs.dp = dp;
1046 nargs.total = args->total;
1047 nargs.whichfork = XFS_ATTR_FORK;
1048 nargs.trans = args->trans;
1049 nargs.op_flags = XFS_DA_OP_OKNOENT;
1050
1051 for (i = 0; i < ichdr.count; entry++, i++) {
1052 if (entry->flags & XFS_ATTR_INCOMPLETE)
1053 continue; /* don't copy partial entries */
1054 if (!entry->nameidx)
1055 continue;
1056 ASSERT(entry->flags & XFS_ATTR_LOCAL);
1057 name_loc = xfs_attr3_leaf_name_local(leaf, i);
1058 nargs.name = name_loc->nameval;
1059 nargs.namelen = name_loc->namelen;
1060 nargs.value = &name_loc->nameval[nargs.namelen];
1061 nargs.valuelen = be16_to_cpu(name_loc->valuelen);
1062 nargs.hashval = be32_to_cpu(entry->hashval);
1063 nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(entry->flags);
1064 xfs_attr_shortform_add(&nargs, forkoff);
1065 }
1066 error = 0;
1067
1068 out:
1069 kmem_free(tmpbuffer);
1070 return error;
1071 }
1072
1073 /*
1074 * Convert from using a single leaf to a root node and a leaf.
1075 */
1076 int
xfs_attr3_leaf_to_node(struct xfs_da_args * args)1077 xfs_attr3_leaf_to_node(
1078 struct xfs_da_args *args)
1079 {
1080 struct xfs_attr_leafblock *leaf;
1081 struct xfs_attr3_icleaf_hdr icleafhdr;
1082 struct xfs_attr_leaf_entry *entries;
1083 struct xfs_da_node_entry *btree;
1084 struct xfs_da3_icnode_hdr icnodehdr;
1085 struct xfs_da_intnode *node;
1086 struct xfs_inode *dp = args->dp;
1087 struct xfs_mount *mp = dp->i_mount;
1088 struct xfs_buf *bp1 = NULL;
1089 struct xfs_buf *bp2 = NULL;
1090 xfs_dablk_t blkno;
1091 int error;
1092
1093 trace_xfs_attr_leaf_to_node(args);
1094
1095 error = xfs_da_grow_inode(args, &blkno);
1096 if (error)
1097 goto out;
1098 error = xfs_attr3_leaf_read(args->trans, dp, 0, -1, &bp1);
1099 if (error)
1100 goto out;
1101
1102 error = xfs_da_get_buf(args->trans, dp, blkno, -1, &bp2, XFS_ATTR_FORK);
1103 if (error)
1104 goto out;
1105
1106 /* copy leaf to new buffer, update identifiers */
1107 xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF);
1108 bp2->b_ops = bp1->b_ops;
1109 memcpy(bp2->b_addr, bp1->b_addr, args->geo->blksize);
1110 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1111 struct xfs_da3_blkinfo *hdr3 = bp2->b_addr;
1112 hdr3->blkno = cpu_to_be64(bp2->b_bn);
1113 }
1114 xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1);
1115
1116 /*
1117 * Set up the new root node.
1118 */
1119 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
1120 if (error)
1121 goto out;
1122 node = bp1->b_addr;
1123 dp->d_ops->node_hdr_from_disk(&icnodehdr, node);
1124 btree = dp->d_ops->node_tree_p(node);
1125
1126 leaf = bp2->b_addr;
1127 xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf);
1128 entries = xfs_attr3_leaf_entryp(leaf);
1129
1130 /* both on-disk, don't endian-flip twice */
1131 btree[0].hashval = entries[icleafhdr.count - 1].hashval;
1132 btree[0].before = cpu_to_be32(blkno);
1133 icnodehdr.count = 1;
1134 dp->d_ops->node_hdr_to_disk(node, &icnodehdr);
1135 xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1);
1136 error = 0;
1137 out:
1138 return error;
1139 }
1140
1141 /*========================================================================
1142 * Routines used for growing the Btree.
1143 *========================================================================*/
1144
1145 /*
1146 * Create the initial contents of a leaf attribute list
1147 * or a leaf in a node attribute list.
1148 */
1149 STATIC int
xfs_attr3_leaf_create(struct xfs_da_args * args,xfs_dablk_t blkno,struct xfs_buf ** bpp)1150 xfs_attr3_leaf_create(
1151 struct xfs_da_args *args,
1152 xfs_dablk_t blkno,
1153 struct xfs_buf **bpp)
1154 {
1155 struct xfs_attr_leafblock *leaf;
1156 struct xfs_attr3_icleaf_hdr ichdr;
1157 struct xfs_inode *dp = args->dp;
1158 struct xfs_mount *mp = dp->i_mount;
1159 struct xfs_buf *bp;
1160 int error;
1161
1162 trace_xfs_attr_leaf_create(args);
1163
1164 error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp,
1165 XFS_ATTR_FORK);
1166 if (error)
1167 return error;
1168 bp->b_ops = &xfs_attr3_leaf_buf_ops;
1169 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF);
1170 leaf = bp->b_addr;
1171 memset(leaf, 0, args->geo->blksize);
1172
1173 memset(&ichdr, 0, sizeof(ichdr));
1174 ichdr.firstused = args->geo->blksize;
1175
1176 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1177 struct xfs_da3_blkinfo *hdr3 = bp->b_addr;
1178
1179 ichdr.magic = XFS_ATTR3_LEAF_MAGIC;
1180
1181 hdr3->blkno = cpu_to_be64(bp->b_bn);
1182 hdr3->owner = cpu_to_be64(dp->i_ino);
1183 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid);
1184
1185 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr);
1186 } else {
1187 ichdr.magic = XFS_ATTR_LEAF_MAGIC;
1188 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr);
1189 }
1190 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base;
1191
1192 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1193 xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1);
1194
1195 *bpp = bp;
1196 return 0;
1197 }
1198
1199 /*
1200 * Split the leaf node, rebalance, then add the new entry.
1201 */
1202 int
xfs_attr3_leaf_split(struct xfs_da_state * state,struct xfs_da_state_blk * oldblk,struct xfs_da_state_blk * newblk)1203 xfs_attr3_leaf_split(
1204 struct xfs_da_state *state,
1205 struct xfs_da_state_blk *oldblk,
1206 struct xfs_da_state_blk *newblk)
1207 {
1208 xfs_dablk_t blkno;
1209 int error;
1210
1211 trace_xfs_attr_leaf_split(state->args);
1212
1213 /*
1214 * Allocate space for a new leaf node.
1215 */
1216 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
1217 error = xfs_da_grow_inode(state->args, &blkno);
1218 if (error)
1219 return error;
1220 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp);
1221 if (error)
1222 return error;
1223 newblk->blkno = blkno;
1224 newblk->magic = XFS_ATTR_LEAF_MAGIC;
1225
1226 /*
1227 * Rebalance the entries across the two leaves.
1228 * NOTE: rebalance() currently depends on the 2nd block being empty.
1229 */
1230 xfs_attr3_leaf_rebalance(state, oldblk, newblk);
1231 error = xfs_da3_blk_link(state, oldblk, newblk);
1232 if (error)
1233 return error;
1234
1235 /*
1236 * Save info on "old" attribute for "atomic rename" ops, leaf_add()
1237 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
1238 * "new" attrs info. Will need the "old" info to remove it later.
1239 *
1240 * Insert the "new" entry in the correct block.
1241 */
1242 if (state->inleaf) {
1243 trace_xfs_attr_leaf_add_old(state->args);
1244 error = xfs_attr3_leaf_add(oldblk->bp, state->args);
1245 } else {
1246 trace_xfs_attr_leaf_add_new(state->args);
1247 error = xfs_attr3_leaf_add(newblk->bp, state->args);
1248 }
1249
1250 /*
1251 * Update last hashval in each block since we added the name.
1252 */
1253 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
1254 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
1255 return error;
1256 }
1257
1258 /*
1259 * Add a name to the leaf attribute list structure.
1260 */
1261 int
xfs_attr3_leaf_add(struct xfs_buf * bp,struct xfs_da_args * args)1262 xfs_attr3_leaf_add(
1263 struct xfs_buf *bp,
1264 struct xfs_da_args *args)
1265 {
1266 struct xfs_attr_leafblock *leaf;
1267 struct xfs_attr3_icleaf_hdr ichdr;
1268 int tablesize;
1269 int entsize;
1270 int sum;
1271 int tmp;
1272 int i;
1273
1274 trace_xfs_attr_leaf_add(args);
1275
1276 leaf = bp->b_addr;
1277 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1278 ASSERT(args->index >= 0 && args->index <= ichdr.count);
1279 entsize = xfs_attr_leaf_newentsize(args, NULL);
1280
1281 /*
1282 * Search through freemap for first-fit on new name length.
1283 * (may need to figure in size of entry struct too)
1284 */
1285 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t)
1286 + xfs_attr3_leaf_hdr_size(leaf);
1287 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) {
1288 if (tablesize > ichdr.firstused) {
1289 sum += ichdr.freemap[i].size;
1290 continue;
1291 }
1292 if (!ichdr.freemap[i].size)
1293 continue; /* no space in this map */
1294 tmp = entsize;
1295 if (ichdr.freemap[i].base < ichdr.firstused)
1296 tmp += sizeof(xfs_attr_leaf_entry_t);
1297 if (ichdr.freemap[i].size >= tmp) {
1298 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i);
1299 goto out_log_hdr;
1300 }
1301 sum += ichdr.freemap[i].size;
1302 }
1303
1304 /*
1305 * If there are no holes in the address space of the block,
1306 * and we don't have enough freespace, then compaction will do us
1307 * no good and we should just give up.
1308 */
1309 if (!ichdr.holes && sum < entsize)
1310 return -ENOSPC;
1311
1312 /*
1313 * Compact the entries to coalesce free space.
1314 * This may change the hdr->count via dropping INCOMPLETE entries.
1315 */
1316 xfs_attr3_leaf_compact(args, &ichdr, bp);
1317
1318 /*
1319 * After compaction, the block is guaranteed to have only one
1320 * free region, in freemap[0]. If it is not big enough, give up.
1321 */
1322 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) {
1323 tmp = -ENOSPC;
1324 goto out_log_hdr;
1325 }
1326
1327 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0);
1328
1329 out_log_hdr:
1330 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1331 xfs_trans_log_buf(args->trans, bp,
1332 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
1333 xfs_attr3_leaf_hdr_size(leaf)));
1334 return tmp;
1335 }
1336
1337 /*
1338 * Add a name to a leaf attribute list structure.
1339 */
1340 STATIC int
xfs_attr3_leaf_add_work(struct xfs_buf * bp,struct xfs_attr3_icleaf_hdr * ichdr,struct xfs_da_args * args,int mapindex)1341 xfs_attr3_leaf_add_work(
1342 struct xfs_buf *bp,
1343 struct xfs_attr3_icleaf_hdr *ichdr,
1344 struct xfs_da_args *args,
1345 int mapindex)
1346 {
1347 struct xfs_attr_leafblock *leaf;
1348 struct xfs_attr_leaf_entry *entry;
1349 struct xfs_attr_leaf_name_local *name_loc;
1350 struct xfs_attr_leaf_name_remote *name_rmt;
1351 struct xfs_mount *mp;
1352 int tmp;
1353 int i;
1354
1355 trace_xfs_attr_leaf_add_work(args);
1356
1357 leaf = bp->b_addr;
1358 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE);
1359 ASSERT(args->index >= 0 && args->index <= ichdr->count);
1360
1361 /*
1362 * Force open some space in the entry array and fill it in.
1363 */
1364 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
1365 if (args->index < ichdr->count) {
1366 tmp = ichdr->count - args->index;
1367 tmp *= sizeof(xfs_attr_leaf_entry_t);
1368 memmove(entry + 1, entry, tmp);
1369 xfs_trans_log_buf(args->trans, bp,
1370 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
1371 }
1372 ichdr->count++;
1373
1374 /*
1375 * Allocate space for the new string (at the end of the run).
1376 */
1377 mp = args->trans->t_mountp;
1378 ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize);
1379 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0);
1380 ASSERT(ichdr->freemap[mapindex].size >=
1381 xfs_attr_leaf_newentsize(args, NULL));
1382 ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize);
1383 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0);
1384
1385 ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp);
1386
1387 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base +
1388 ichdr->freemap[mapindex].size);
1389 entry->hashval = cpu_to_be32(args->hashval);
1390 entry->flags = tmp ? XFS_ATTR_LOCAL : 0;
1391 entry->flags |= XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
1392 if (args->op_flags & XFS_DA_OP_RENAME) {
1393 entry->flags |= XFS_ATTR_INCOMPLETE;
1394 if ((args->blkno2 == args->blkno) &&
1395 (args->index2 <= args->index)) {
1396 args->index2++;
1397 }
1398 }
1399 xfs_trans_log_buf(args->trans, bp,
1400 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
1401 ASSERT((args->index == 0) ||
1402 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
1403 ASSERT((args->index == ichdr->count - 1) ||
1404 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
1405
1406 /*
1407 * For "remote" attribute values, simply note that we need to
1408 * allocate space for the "remote" value. We can't actually
1409 * allocate the extents in this transaction, and we can't decide
1410 * which blocks they should be as we might allocate more blocks
1411 * as part of this transaction (a split operation for example).
1412 */
1413 if (entry->flags & XFS_ATTR_LOCAL) {
1414 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
1415 name_loc->namelen = args->namelen;
1416 name_loc->valuelen = cpu_to_be16(args->valuelen);
1417 memcpy((char *)name_loc->nameval, args->name, args->namelen);
1418 memcpy((char *)&name_loc->nameval[args->namelen], args->value,
1419 be16_to_cpu(name_loc->valuelen));
1420 } else {
1421 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
1422 name_rmt->namelen = args->namelen;
1423 memcpy((char *)name_rmt->name, args->name, args->namelen);
1424 entry->flags |= XFS_ATTR_INCOMPLETE;
1425 /* just in case */
1426 name_rmt->valuelen = 0;
1427 name_rmt->valueblk = 0;
1428 args->rmtblkno = 1;
1429 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen);
1430 args->rmtvaluelen = args->valuelen;
1431 }
1432 xfs_trans_log_buf(args->trans, bp,
1433 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
1434 xfs_attr_leaf_entsize(leaf, args->index)));
1435
1436 /*
1437 * Update the control info for this leaf node
1438 */
1439 if (be16_to_cpu(entry->nameidx) < ichdr->firstused)
1440 ichdr->firstused = be16_to_cpu(entry->nameidx);
1441
1442 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t)
1443 + xfs_attr3_leaf_hdr_size(leaf));
1444 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t)
1445 + xfs_attr3_leaf_hdr_size(leaf);
1446
1447 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
1448 if (ichdr->freemap[i].base == tmp) {
1449 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t);
1450 ichdr->freemap[i].size -= sizeof(xfs_attr_leaf_entry_t);
1451 }
1452 }
1453 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index);
1454 return 0;
1455 }
1456
1457 /*
1458 * Garbage collect a leaf attribute list block by copying it to a new buffer.
1459 */
1460 STATIC void
xfs_attr3_leaf_compact(struct xfs_da_args * args,struct xfs_attr3_icleaf_hdr * ichdr_dst,struct xfs_buf * bp)1461 xfs_attr3_leaf_compact(
1462 struct xfs_da_args *args,
1463 struct xfs_attr3_icleaf_hdr *ichdr_dst,
1464 struct xfs_buf *bp)
1465 {
1466 struct xfs_attr_leafblock *leaf_src;
1467 struct xfs_attr_leafblock *leaf_dst;
1468 struct xfs_attr3_icleaf_hdr ichdr_src;
1469 struct xfs_trans *trans = args->trans;
1470 char *tmpbuffer;
1471
1472 trace_xfs_attr_leaf_compact(args);
1473
1474 tmpbuffer = kmem_alloc(args->geo->blksize, 0);
1475 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1476 memset(bp->b_addr, 0, args->geo->blksize);
1477 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer;
1478 leaf_dst = bp->b_addr;
1479
1480 /*
1481 * Copy the on-disk header back into the destination buffer to ensure
1482 * all the information in the header that is not part of the incore
1483 * header structure is preserved.
1484 */
1485 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src));
1486
1487 /* Initialise the incore headers */
1488 ichdr_src = *ichdr_dst; /* struct copy */
1489 ichdr_dst->firstused = args->geo->blksize;
1490 ichdr_dst->usedbytes = 0;
1491 ichdr_dst->count = 0;
1492 ichdr_dst->holes = 0;
1493 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src);
1494 ichdr_dst->freemap[0].size = ichdr_dst->firstused -
1495 ichdr_dst->freemap[0].base;
1496
1497 /* write the header back to initialise the underlying buffer */
1498 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst);
1499
1500 /*
1501 * Copy all entry's in the same (sorted) order,
1502 * but allocate name/value pairs packed and in sequence.
1503 */
1504 xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0,
1505 leaf_dst, ichdr_dst, 0, ichdr_src.count);
1506 /*
1507 * this logs the entire buffer, but the caller must write the header
1508 * back to the buffer when it is finished modifying it.
1509 */
1510 xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1);
1511
1512 kmem_free(tmpbuffer);
1513 }
1514
1515 /*
1516 * Compare two leaf blocks "order".
1517 * Return 0 unless leaf2 should go before leaf1.
1518 */
1519 static int
xfs_attr3_leaf_order(struct xfs_buf * leaf1_bp,struct xfs_attr3_icleaf_hdr * leaf1hdr,struct xfs_buf * leaf2_bp,struct xfs_attr3_icleaf_hdr * leaf2hdr)1520 xfs_attr3_leaf_order(
1521 struct xfs_buf *leaf1_bp,
1522 struct xfs_attr3_icleaf_hdr *leaf1hdr,
1523 struct xfs_buf *leaf2_bp,
1524 struct xfs_attr3_icleaf_hdr *leaf2hdr)
1525 {
1526 struct xfs_attr_leaf_entry *entries1;
1527 struct xfs_attr_leaf_entry *entries2;
1528
1529 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr);
1530 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr);
1531 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 &&
1532 ((be32_to_cpu(entries2[0].hashval) <
1533 be32_to_cpu(entries1[0].hashval)) ||
1534 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) <
1535 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) {
1536 return 1;
1537 }
1538 return 0;
1539 }
1540
1541 int
xfs_attr_leaf_order(struct xfs_buf * leaf1_bp,struct xfs_buf * leaf2_bp)1542 xfs_attr_leaf_order(
1543 struct xfs_buf *leaf1_bp,
1544 struct xfs_buf *leaf2_bp)
1545 {
1546 struct xfs_attr3_icleaf_hdr ichdr1;
1547 struct xfs_attr3_icleaf_hdr ichdr2;
1548 struct xfs_mount *mp = leaf1_bp->b_mount;
1549
1550 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr);
1551 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr);
1552 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2);
1553 }
1554
1555 /*
1556 * Redistribute the attribute list entries between two leaf nodes,
1557 * taking into account the size of the new entry.
1558 *
1559 * NOTE: if new block is empty, then it will get the upper half of the
1560 * old block. At present, all (one) callers pass in an empty second block.
1561 *
1562 * This code adjusts the args->index/blkno and args->index2/blkno2 fields
1563 * to match what it is doing in splitting the attribute leaf block. Those
1564 * values are used in "atomic rename" operations on attributes. Note that
1565 * the "new" and "old" values can end up in different blocks.
1566 */
1567 STATIC void
xfs_attr3_leaf_rebalance(struct xfs_da_state * state,struct xfs_da_state_blk * blk1,struct xfs_da_state_blk * blk2)1568 xfs_attr3_leaf_rebalance(
1569 struct xfs_da_state *state,
1570 struct xfs_da_state_blk *blk1,
1571 struct xfs_da_state_blk *blk2)
1572 {
1573 struct xfs_da_args *args;
1574 struct xfs_attr_leafblock *leaf1;
1575 struct xfs_attr_leafblock *leaf2;
1576 struct xfs_attr3_icleaf_hdr ichdr1;
1577 struct xfs_attr3_icleaf_hdr ichdr2;
1578 struct xfs_attr_leaf_entry *entries1;
1579 struct xfs_attr_leaf_entry *entries2;
1580 int count;
1581 int totallen;
1582 int max;
1583 int space;
1584 int swap;
1585
1586 /*
1587 * Set up environment.
1588 */
1589 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
1590 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
1591 leaf1 = blk1->bp->b_addr;
1592 leaf2 = blk2->bp->b_addr;
1593 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1);
1594 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2);
1595 ASSERT(ichdr2.count == 0);
1596 args = state->args;
1597
1598 trace_xfs_attr_leaf_rebalance(args);
1599
1600 /*
1601 * Check ordering of blocks, reverse if it makes things simpler.
1602 *
1603 * NOTE: Given that all (current) callers pass in an empty
1604 * second block, this code should never set "swap".
1605 */
1606 swap = 0;
1607 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) {
1608 swap(blk1, blk2);
1609
1610 /* swap structures rather than reconverting them */
1611 swap(ichdr1, ichdr2);
1612
1613 leaf1 = blk1->bp->b_addr;
1614 leaf2 = blk2->bp->b_addr;
1615 swap = 1;
1616 }
1617
1618 /*
1619 * Examine entries until we reduce the absolute difference in
1620 * byte usage between the two blocks to a minimum. Then get
1621 * the direction to copy and the number of elements to move.
1622 *
1623 * "inleaf" is true if the new entry should be inserted into blk1.
1624 * If "swap" is also true, then reverse the sense of "inleaf".
1625 */
1626 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1,
1627 blk2, &ichdr2,
1628 &count, &totallen);
1629 if (swap)
1630 state->inleaf = !state->inleaf;
1631
1632 /*
1633 * Move any entries required from leaf to leaf:
1634 */
1635 if (count < ichdr1.count) {
1636 /*
1637 * Figure the total bytes to be added to the destination leaf.
1638 */
1639 /* number entries being moved */
1640 count = ichdr1.count - count;
1641 space = ichdr1.usedbytes - totallen;
1642 space += count * sizeof(xfs_attr_leaf_entry_t);
1643
1644 /*
1645 * leaf2 is the destination, compact it if it looks tight.
1646 */
1647 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1648 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t);
1649 if (space > max)
1650 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp);
1651
1652 /*
1653 * Move high entries from leaf1 to low end of leaf2.
1654 */
1655 xfs_attr3_leaf_moveents(args, leaf1, &ichdr1,
1656 ichdr1.count - count, leaf2, &ichdr2, 0, count);
1657
1658 } else if (count > ichdr1.count) {
1659 /*
1660 * I assert that since all callers pass in an empty
1661 * second buffer, this code should never execute.
1662 */
1663 ASSERT(0);
1664
1665 /*
1666 * Figure the total bytes to be added to the destination leaf.
1667 */
1668 /* number entries being moved */
1669 count -= ichdr1.count;
1670 space = totallen - ichdr1.usedbytes;
1671 space += count * sizeof(xfs_attr_leaf_entry_t);
1672
1673 /*
1674 * leaf1 is the destination, compact it if it looks tight.
1675 */
1676 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1677 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t);
1678 if (space > max)
1679 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp);
1680
1681 /*
1682 * Move low entries from leaf2 to high end of leaf1.
1683 */
1684 xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1,
1685 ichdr1.count, count);
1686 }
1687
1688 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1);
1689 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2);
1690 xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1);
1691 xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1);
1692
1693 /*
1694 * Copy out last hashval in each block for B-tree code.
1695 */
1696 entries1 = xfs_attr3_leaf_entryp(leaf1);
1697 entries2 = xfs_attr3_leaf_entryp(leaf2);
1698 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval);
1699 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval);
1700
1701 /*
1702 * Adjust the expected index for insertion.
1703 * NOTE: this code depends on the (current) situation that the
1704 * second block was originally empty.
1705 *
1706 * If the insertion point moved to the 2nd block, we must adjust
1707 * the index. We must also track the entry just following the
1708 * new entry for use in an "atomic rename" operation, that entry
1709 * is always the "old" entry and the "new" entry is what we are
1710 * inserting. The index/blkno fields refer to the "old" entry,
1711 * while the index2/blkno2 fields refer to the "new" entry.
1712 */
1713 if (blk1->index > ichdr1.count) {
1714 ASSERT(state->inleaf == 0);
1715 blk2->index = blk1->index - ichdr1.count;
1716 args->index = args->index2 = blk2->index;
1717 args->blkno = args->blkno2 = blk2->blkno;
1718 } else if (blk1->index == ichdr1.count) {
1719 if (state->inleaf) {
1720 args->index = blk1->index;
1721 args->blkno = blk1->blkno;
1722 args->index2 = 0;
1723 args->blkno2 = blk2->blkno;
1724 } else {
1725 /*
1726 * On a double leaf split, the original attr location
1727 * is already stored in blkno2/index2, so don't
1728 * overwrite it overwise we corrupt the tree.
1729 */
1730 blk2->index = blk1->index - ichdr1.count;
1731 args->index = blk2->index;
1732 args->blkno = blk2->blkno;
1733 if (!state->extravalid) {
1734 /*
1735 * set the new attr location to match the old
1736 * one and let the higher level split code
1737 * decide where in the leaf to place it.
1738 */
1739 args->index2 = blk2->index;
1740 args->blkno2 = blk2->blkno;
1741 }
1742 }
1743 } else {
1744 ASSERT(state->inleaf == 1);
1745 args->index = args->index2 = blk1->index;
1746 args->blkno = args->blkno2 = blk1->blkno;
1747 }
1748 }
1749
1750 /*
1751 * Examine entries until we reduce the absolute difference in
1752 * byte usage between the two blocks to a minimum.
1753 * GROT: Is this really necessary? With other than a 512 byte blocksize,
1754 * GROT: there will always be enough room in either block for a new entry.
1755 * GROT: Do a double-split for this case?
1756 */
1757 STATIC int
xfs_attr3_leaf_figure_balance(struct xfs_da_state * state,struct xfs_da_state_blk * blk1,struct xfs_attr3_icleaf_hdr * ichdr1,struct xfs_da_state_blk * blk2,struct xfs_attr3_icleaf_hdr * ichdr2,int * countarg,int * usedbytesarg)1758 xfs_attr3_leaf_figure_balance(
1759 struct xfs_da_state *state,
1760 struct xfs_da_state_blk *blk1,
1761 struct xfs_attr3_icleaf_hdr *ichdr1,
1762 struct xfs_da_state_blk *blk2,
1763 struct xfs_attr3_icleaf_hdr *ichdr2,
1764 int *countarg,
1765 int *usedbytesarg)
1766 {
1767 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr;
1768 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr;
1769 struct xfs_attr_leaf_entry *entry;
1770 int count;
1771 int max;
1772 int index;
1773 int totallen = 0;
1774 int half;
1775 int lastdelta;
1776 int foundit = 0;
1777 int tmp;
1778
1779 /*
1780 * Examine entries until we reduce the absolute difference in
1781 * byte usage between the two blocks to a minimum.
1782 */
1783 max = ichdr1->count + ichdr2->count;
1784 half = (max + 1) * sizeof(*entry);
1785 half += ichdr1->usedbytes + ichdr2->usedbytes +
1786 xfs_attr_leaf_newentsize(state->args, NULL);
1787 half /= 2;
1788 lastdelta = state->args->geo->blksize;
1789 entry = xfs_attr3_leaf_entryp(leaf1);
1790 for (count = index = 0; count < max; entry++, index++, count++) {
1791
1792 #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A))
1793 /*
1794 * The new entry is in the first block, account for it.
1795 */
1796 if (count == blk1->index) {
1797 tmp = totallen + sizeof(*entry) +
1798 xfs_attr_leaf_newentsize(state->args, NULL);
1799 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1800 break;
1801 lastdelta = XFS_ATTR_ABS(half - tmp);
1802 totallen = tmp;
1803 foundit = 1;
1804 }
1805
1806 /*
1807 * Wrap around into the second block if necessary.
1808 */
1809 if (count == ichdr1->count) {
1810 leaf1 = leaf2;
1811 entry = xfs_attr3_leaf_entryp(leaf1);
1812 index = 0;
1813 }
1814
1815 /*
1816 * Figure out if next leaf entry would be too much.
1817 */
1818 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
1819 index);
1820 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1821 break;
1822 lastdelta = XFS_ATTR_ABS(half - tmp);
1823 totallen = tmp;
1824 #undef XFS_ATTR_ABS
1825 }
1826
1827 /*
1828 * Calculate the number of usedbytes that will end up in lower block.
1829 * If new entry not in lower block, fix up the count.
1830 */
1831 totallen -= count * sizeof(*entry);
1832 if (foundit) {
1833 totallen -= sizeof(*entry) +
1834 xfs_attr_leaf_newentsize(state->args, NULL);
1835 }
1836
1837 *countarg = count;
1838 *usedbytesarg = totallen;
1839 return foundit;
1840 }
1841
1842 /*========================================================================
1843 * Routines used for shrinking the Btree.
1844 *========================================================================*/
1845
1846 /*
1847 * Check a leaf block and its neighbors to see if the block should be
1848 * collapsed into one or the other neighbor. Always keep the block
1849 * with the smaller block number.
1850 * If the current block is over 50% full, don't try to join it, return 0.
1851 * If the block is empty, fill in the state structure and return 2.
1852 * If it can be collapsed, fill in the state structure and return 1.
1853 * If nothing can be done, return 0.
1854 *
1855 * GROT: allow for INCOMPLETE entries in calculation.
1856 */
1857 int
xfs_attr3_leaf_toosmall(struct xfs_da_state * state,int * action)1858 xfs_attr3_leaf_toosmall(
1859 struct xfs_da_state *state,
1860 int *action)
1861 {
1862 struct xfs_attr_leafblock *leaf;
1863 struct xfs_da_state_blk *blk;
1864 struct xfs_attr3_icleaf_hdr ichdr;
1865 struct xfs_buf *bp;
1866 xfs_dablk_t blkno;
1867 int bytes;
1868 int forward;
1869 int error;
1870 int retval;
1871 int i;
1872
1873 trace_xfs_attr_leaf_toosmall(state->args);
1874
1875 /*
1876 * Check for the degenerate case of the block being over 50% full.
1877 * If so, it's not worth even looking to see if we might be able
1878 * to coalesce with a sibling.
1879 */
1880 blk = &state->path.blk[ state->path.active-1 ];
1881 leaf = blk->bp->b_addr;
1882 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf);
1883 bytes = xfs_attr3_leaf_hdr_size(leaf) +
1884 ichdr.count * sizeof(xfs_attr_leaf_entry_t) +
1885 ichdr.usedbytes;
1886 if (bytes > (state->args->geo->blksize >> 1)) {
1887 *action = 0; /* blk over 50%, don't try to join */
1888 return 0;
1889 }
1890
1891 /*
1892 * Check for the degenerate case of the block being empty.
1893 * If the block is empty, we'll simply delete it, no need to
1894 * coalesce it with a sibling block. We choose (arbitrarily)
1895 * to merge with the forward block unless it is NULL.
1896 */
1897 if (ichdr.count == 0) {
1898 /*
1899 * Make altpath point to the block we want to keep and
1900 * path point to the block we want to drop (this one).
1901 */
1902 forward = (ichdr.forw != 0);
1903 memcpy(&state->altpath, &state->path, sizeof(state->path));
1904 error = xfs_da3_path_shift(state, &state->altpath, forward,
1905 0, &retval);
1906 if (error)
1907 return error;
1908 if (retval) {
1909 *action = 0;
1910 } else {
1911 *action = 2;
1912 }
1913 return 0;
1914 }
1915
1916 /*
1917 * Examine each sibling block to see if we can coalesce with
1918 * at least 25% free space to spare. We need to figure out
1919 * whether to merge with the forward or the backward block.
1920 * We prefer coalescing with the lower numbered sibling so as
1921 * to shrink an attribute list over time.
1922 */
1923 /* start with smaller blk num */
1924 forward = ichdr.forw < ichdr.back;
1925 for (i = 0; i < 2; forward = !forward, i++) {
1926 struct xfs_attr3_icleaf_hdr ichdr2;
1927 if (forward)
1928 blkno = ichdr.forw;
1929 else
1930 blkno = ichdr.back;
1931 if (blkno == 0)
1932 continue;
1933 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp,
1934 blkno, -1, &bp);
1935 if (error)
1936 return error;
1937
1938 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr);
1939
1940 bytes = state->args->geo->blksize -
1941 (state->args->geo->blksize >> 2) -
1942 ichdr.usedbytes - ichdr2.usedbytes -
1943 ((ichdr.count + ichdr2.count) *
1944 sizeof(xfs_attr_leaf_entry_t)) -
1945 xfs_attr3_leaf_hdr_size(leaf);
1946
1947 xfs_trans_brelse(state->args->trans, bp);
1948 if (bytes >= 0)
1949 break; /* fits with at least 25% to spare */
1950 }
1951 if (i >= 2) {
1952 *action = 0;
1953 return 0;
1954 }
1955
1956 /*
1957 * Make altpath point to the block we want to keep (the lower
1958 * numbered block) and path point to the block we want to drop.
1959 */
1960 memcpy(&state->altpath, &state->path, sizeof(state->path));
1961 if (blkno < blk->blkno) {
1962 error = xfs_da3_path_shift(state, &state->altpath, forward,
1963 0, &retval);
1964 } else {
1965 error = xfs_da3_path_shift(state, &state->path, forward,
1966 0, &retval);
1967 }
1968 if (error)
1969 return error;
1970 if (retval) {
1971 *action = 0;
1972 } else {
1973 *action = 1;
1974 }
1975 return 0;
1976 }
1977
1978 /*
1979 * Remove a name from the leaf attribute list structure.
1980 *
1981 * Return 1 if leaf is less than 37% full, 0 if >= 37% full.
1982 * If two leaves are 37% full, when combined they will leave 25% free.
1983 */
1984 int
xfs_attr3_leaf_remove(struct xfs_buf * bp,struct xfs_da_args * args)1985 xfs_attr3_leaf_remove(
1986 struct xfs_buf *bp,
1987 struct xfs_da_args *args)
1988 {
1989 struct xfs_attr_leafblock *leaf;
1990 struct xfs_attr3_icleaf_hdr ichdr;
1991 struct xfs_attr_leaf_entry *entry;
1992 int before;
1993 int after;
1994 int smallest;
1995 int entsize;
1996 int tablesize;
1997 int tmp;
1998 int i;
1999
2000 trace_xfs_attr_leaf_remove(args);
2001
2002 leaf = bp->b_addr;
2003 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2004
2005 ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8);
2006 ASSERT(args->index >= 0 && args->index < ichdr.count);
2007 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) +
2008 xfs_attr3_leaf_hdr_size(leaf));
2009
2010 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2011
2012 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2013 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2014
2015 /*
2016 * Scan through free region table:
2017 * check for adjacency of free'd entry with an existing one,
2018 * find smallest free region in case we need to replace it,
2019 * adjust any map that borders the entry table,
2020 */
2021 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t)
2022 + xfs_attr3_leaf_hdr_size(leaf);
2023 tmp = ichdr.freemap[0].size;
2024 before = after = -1;
2025 smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
2026 entsize = xfs_attr_leaf_entsize(leaf, args->index);
2027 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
2028 ASSERT(ichdr.freemap[i].base < args->geo->blksize);
2029 ASSERT(ichdr.freemap[i].size < args->geo->blksize);
2030 if (ichdr.freemap[i].base == tablesize) {
2031 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t);
2032 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t);
2033 }
2034
2035 if (ichdr.freemap[i].base + ichdr.freemap[i].size ==
2036 be16_to_cpu(entry->nameidx)) {
2037 before = i;
2038 } else if (ichdr.freemap[i].base ==
2039 (be16_to_cpu(entry->nameidx) + entsize)) {
2040 after = i;
2041 } else if (ichdr.freemap[i].size < tmp) {
2042 tmp = ichdr.freemap[i].size;
2043 smallest = i;
2044 }
2045 }
2046
2047 /*
2048 * Coalesce adjacent freemap regions,
2049 * or replace the smallest region.
2050 */
2051 if ((before >= 0) || (after >= 0)) {
2052 if ((before >= 0) && (after >= 0)) {
2053 ichdr.freemap[before].size += entsize;
2054 ichdr.freemap[before].size += ichdr.freemap[after].size;
2055 ichdr.freemap[after].base = 0;
2056 ichdr.freemap[after].size = 0;
2057 } else if (before >= 0) {
2058 ichdr.freemap[before].size += entsize;
2059 } else {
2060 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx);
2061 ichdr.freemap[after].size += entsize;
2062 }
2063 } else {
2064 /*
2065 * Replace smallest region (if it is smaller than free'd entry)
2066 */
2067 if (ichdr.freemap[smallest].size < entsize) {
2068 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx);
2069 ichdr.freemap[smallest].size = entsize;
2070 }
2071 }
2072
2073 /*
2074 * Did we remove the first entry?
2075 */
2076 if (be16_to_cpu(entry->nameidx) == ichdr.firstused)
2077 smallest = 1;
2078 else
2079 smallest = 0;
2080
2081 /*
2082 * Compress the remaining entries and zero out the removed stuff.
2083 */
2084 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize);
2085 ichdr.usedbytes -= entsize;
2086 xfs_trans_log_buf(args->trans, bp,
2087 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
2088 entsize));
2089
2090 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t);
2091 memmove(entry, entry + 1, tmp);
2092 ichdr.count--;
2093 xfs_trans_log_buf(args->trans, bp,
2094 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t)));
2095
2096 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count];
2097 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t));
2098
2099 /*
2100 * If we removed the first entry, re-find the first used byte
2101 * in the name area. Note that if the entry was the "firstused",
2102 * then we don't have a "hole" in our block resulting from
2103 * removing the name.
2104 */
2105 if (smallest) {
2106 tmp = args->geo->blksize;
2107 entry = xfs_attr3_leaf_entryp(leaf);
2108 for (i = ichdr.count - 1; i >= 0; entry++, i--) {
2109 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2110 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2111
2112 if (be16_to_cpu(entry->nameidx) < tmp)
2113 tmp = be16_to_cpu(entry->nameidx);
2114 }
2115 ichdr.firstused = tmp;
2116 ASSERT(ichdr.firstused != 0);
2117 } else {
2118 ichdr.holes = 1; /* mark as needing compaction */
2119 }
2120 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
2121 xfs_trans_log_buf(args->trans, bp,
2122 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
2123 xfs_attr3_leaf_hdr_size(leaf)));
2124
2125 /*
2126 * Check if leaf is less than 50% full, caller may want to
2127 * "join" the leaf with a sibling if so.
2128 */
2129 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) +
2130 ichdr.count * sizeof(xfs_attr_leaf_entry_t);
2131
2132 return tmp < args->geo->magicpct; /* leaf is < 37% full */
2133 }
2134
2135 /*
2136 * Move all the attribute list entries from drop_leaf into save_leaf.
2137 */
2138 void
xfs_attr3_leaf_unbalance(struct xfs_da_state * state,struct xfs_da_state_blk * drop_blk,struct xfs_da_state_blk * save_blk)2139 xfs_attr3_leaf_unbalance(
2140 struct xfs_da_state *state,
2141 struct xfs_da_state_blk *drop_blk,
2142 struct xfs_da_state_blk *save_blk)
2143 {
2144 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr;
2145 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr;
2146 struct xfs_attr3_icleaf_hdr drophdr;
2147 struct xfs_attr3_icleaf_hdr savehdr;
2148 struct xfs_attr_leaf_entry *entry;
2149
2150 trace_xfs_attr_leaf_unbalance(state->args);
2151
2152 drop_leaf = drop_blk->bp->b_addr;
2153 save_leaf = save_blk->bp->b_addr;
2154 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf);
2155 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf);
2156 entry = xfs_attr3_leaf_entryp(drop_leaf);
2157
2158 /*
2159 * Save last hashval from dying block for later Btree fixup.
2160 */
2161 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval);
2162
2163 /*
2164 * Check if we need a temp buffer, or can we do it in place.
2165 * Note that we don't check "leaf" for holes because we will
2166 * always be dropping it, toosmall() decided that for us already.
2167 */
2168 if (savehdr.holes == 0) {
2169 /*
2170 * dest leaf has no holes, so we add there. May need
2171 * to make some room in the entry array.
2172 */
2173 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2174 drop_blk->bp, &drophdr)) {
2175 xfs_attr3_leaf_moveents(state->args,
2176 drop_leaf, &drophdr, 0,
2177 save_leaf, &savehdr, 0,
2178 drophdr.count);
2179 } else {
2180 xfs_attr3_leaf_moveents(state->args,
2181 drop_leaf, &drophdr, 0,
2182 save_leaf, &savehdr,
2183 savehdr.count, drophdr.count);
2184 }
2185 } else {
2186 /*
2187 * Destination has holes, so we make a temporary copy
2188 * of the leaf and add them both to that.
2189 */
2190 struct xfs_attr_leafblock *tmp_leaf;
2191 struct xfs_attr3_icleaf_hdr tmphdr;
2192
2193 tmp_leaf = kmem_zalloc(state->args->geo->blksize, 0);
2194
2195 /*
2196 * Copy the header into the temp leaf so that all the stuff
2197 * not in the incore header is present and gets copied back in
2198 * once we've moved all the entries.
2199 */
2200 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf));
2201
2202 memset(&tmphdr, 0, sizeof(tmphdr));
2203 tmphdr.magic = savehdr.magic;
2204 tmphdr.forw = savehdr.forw;
2205 tmphdr.back = savehdr.back;
2206 tmphdr.firstused = state->args->geo->blksize;
2207
2208 /* write the header to the temp buffer to initialise it */
2209 xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr);
2210
2211 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2212 drop_blk->bp, &drophdr)) {
2213 xfs_attr3_leaf_moveents(state->args,
2214 drop_leaf, &drophdr, 0,
2215 tmp_leaf, &tmphdr, 0,
2216 drophdr.count);
2217 xfs_attr3_leaf_moveents(state->args,
2218 save_leaf, &savehdr, 0,
2219 tmp_leaf, &tmphdr, tmphdr.count,
2220 savehdr.count);
2221 } else {
2222 xfs_attr3_leaf_moveents(state->args,
2223 save_leaf, &savehdr, 0,
2224 tmp_leaf, &tmphdr, 0,
2225 savehdr.count);
2226 xfs_attr3_leaf_moveents(state->args,
2227 drop_leaf, &drophdr, 0,
2228 tmp_leaf, &tmphdr, tmphdr.count,
2229 drophdr.count);
2230 }
2231 memcpy(save_leaf, tmp_leaf, state->args->geo->blksize);
2232 savehdr = tmphdr; /* struct copy */
2233 kmem_free(tmp_leaf);
2234 }
2235
2236 xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr);
2237 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0,
2238 state->args->geo->blksize - 1);
2239
2240 /*
2241 * Copy out last hashval in each block for B-tree code.
2242 */
2243 entry = xfs_attr3_leaf_entryp(save_leaf);
2244 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval);
2245 }
2246
2247 /*========================================================================
2248 * Routines used for finding things in the Btree.
2249 *========================================================================*/
2250
2251 /*
2252 * Look up a name in a leaf attribute list structure.
2253 * This is the internal routine, it uses the caller's buffer.
2254 *
2255 * Note that duplicate keys are allowed, but only check within the
2256 * current leaf node. The Btree code must check in adjacent leaf nodes.
2257 *
2258 * Return in args->index the index into the entry[] array of either
2259 * the found entry, or where the entry should have been (insert before
2260 * that entry).
2261 *
2262 * Don't change the args->value unless we find the attribute.
2263 */
2264 int
xfs_attr3_leaf_lookup_int(struct xfs_buf * bp,struct xfs_da_args * args)2265 xfs_attr3_leaf_lookup_int(
2266 struct xfs_buf *bp,
2267 struct xfs_da_args *args)
2268 {
2269 struct xfs_attr_leafblock *leaf;
2270 struct xfs_attr3_icleaf_hdr ichdr;
2271 struct xfs_attr_leaf_entry *entry;
2272 struct xfs_attr_leaf_entry *entries;
2273 struct xfs_attr_leaf_name_local *name_loc;
2274 struct xfs_attr_leaf_name_remote *name_rmt;
2275 xfs_dahash_t hashval;
2276 int probe;
2277 int span;
2278
2279 trace_xfs_attr_leaf_lookup(args);
2280
2281 leaf = bp->b_addr;
2282 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2283 entries = xfs_attr3_leaf_entryp(leaf);
2284 if (ichdr.count >= args->geo->blksize / 8)
2285 return -EFSCORRUPTED;
2286
2287 /*
2288 * Binary search. (note: small blocks will skip this loop)
2289 */
2290 hashval = args->hashval;
2291 probe = span = ichdr.count / 2;
2292 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) {
2293 span /= 2;
2294 if (be32_to_cpu(entry->hashval) < hashval)
2295 probe += span;
2296 else if (be32_to_cpu(entry->hashval) > hashval)
2297 probe -= span;
2298 else
2299 break;
2300 }
2301 if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count)))
2302 return -EFSCORRUPTED;
2303 if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval))
2304 return -EFSCORRUPTED;
2305
2306 /*
2307 * Since we may have duplicate hashval's, find the first matching
2308 * hashval in the leaf.
2309 */
2310 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) {
2311 entry--;
2312 probe--;
2313 }
2314 while (probe < ichdr.count &&
2315 be32_to_cpu(entry->hashval) < hashval) {
2316 entry++;
2317 probe++;
2318 }
2319 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) {
2320 args->index = probe;
2321 return -ENOATTR;
2322 }
2323
2324 /*
2325 * Duplicate keys may be present, so search all of them for a match.
2326 */
2327 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval);
2328 entry++, probe++) {
2329 /*
2330 * GROT: Add code to remove incomplete entries.
2331 */
2332 /*
2333 * If we are looking for INCOMPLETE entries, show only those.
2334 * If we are looking for complete entries, show only those.
2335 */
2336 if ((args->flags & XFS_ATTR_INCOMPLETE) !=
2337 (entry->flags & XFS_ATTR_INCOMPLETE)) {
2338 continue;
2339 }
2340 if (entry->flags & XFS_ATTR_LOCAL) {
2341 name_loc = xfs_attr3_leaf_name_local(leaf, probe);
2342 if (name_loc->namelen != args->namelen)
2343 continue;
2344 if (memcmp(args->name, name_loc->nameval,
2345 args->namelen) != 0)
2346 continue;
2347 if (!xfs_attr_namesp_match(args->flags, entry->flags))
2348 continue;
2349 args->index = probe;
2350 return -EEXIST;
2351 } else {
2352 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe);
2353 if (name_rmt->namelen != args->namelen)
2354 continue;
2355 if (memcmp(args->name, name_rmt->name,
2356 args->namelen) != 0)
2357 continue;
2358 if (!xfs_attr_namesp_match(args->flags, entry->flags))
2359 continue;
2360 args->index = probe;
2361 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2362 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2363 args->rmtblkcnt = xfs_attr3_rmt_blocks(
2364 args->dp->i_mount,
2365 args->rmtvaluelen);
2366 return -EEXIST;
2367 }
2368 }
2369 args->index = probe;
2370 return -ENOATTR;
2371 }
2372
2373 /*
2374 * Get the value associated with an attribute name from a leaf attribute
2375 * list structure.
2376 *
2377 * If ATTR_KERNOVAL is specified, only the length needs to be returned.
2378 * Unlike a lookup, we only return an error if the attribute does not
2379 * exist or we can't retrieve the value.
2380 */
2381 int
xfs_attr3_leaf_getvalue(struct xfs_buf * bp,struct xfs_da_args * args)2382 xfs_attr3_leaf_getvalue(
2383 struct xfs_buf *bp,
2384 struct xfs_da_args *args)
2385 {
2386 struct xfs_attr_leafblock *leaf;
2387 struct xfs_attr3_icleaf_hdr ichdr;
2388 struct xfs_attr_leaf_entry *entry;
2389 struct xfs_attr_leaf_name_local *name_loc;
2390 struct xfs_attr_leaf_name_remote *name_rmt;
2391
2392 leaf = bp->b_addr;
2393 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2394 ASSERT(ichdr.count < args->geo->blksize / 8);
2395 ASSERT(args->index < ichdr.count);
2396
2397 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2398 if (entry->flags & XFS_ATTR_LOCAL) {
2399 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2400 ASSERT(name_loc->namelen == args->namelen);
2401 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
2402 return xfs_attr_copy_value(args,
2403 &name_loc->nameval[args->namelen],
2404 be16_to_cpu(name_loc->valuelen));
2405 }
2406
2407 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2408 ASSERT(name_rmt->namelen == args->namelen);
2409 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
2410 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2411 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2412 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount,
2413 args->rmtvaluelen);
2414 return xfs_attr_copy_value(args, NULL, args->rmtvaluelen);
2415 }
2416
2417 /*========================================================================
2418 * Utility routines.
2419 *========================================================================*/
2420
2421 /*
2422 * Move the indicated entries from one leaf to another.
2423 * NOTE: this routine modifies both source and destination leaves.
2424 */
2425 /*ARGSUSED*/
2426 STATIC void
xfs_attr3_leaf_moveents(struct xfs_da_args * args,struct xfs_attr_leafblock * leaf_s,struct xfs_attr3_icleaf_hdr * ichdr_s,int start_s,struct xfs_attr_leafblock * leaf_d,struct xfs_attr3_icleaf_hdr * ichdr_d,int start_d,int count)2427 xfs_attr3_leaf_moveents(
2428 struct xfs_da_args *args,
2429 struct xfs_attr_leafblock *leaf_s,
2430 struct xfs_attr3_icleaf_hdr *ichdr_s,
2431 int start_s,
2432 struct xfs_attr_leafblock *leaf_d,
2433 struct xfs_attr3_icleaf_hdr *ichdr_d,
2434 int start_d,
2435 int count)
2436 {
2437 struct xfs_attr_leaf_entry *entry_s;
2438 struct xfs_attr_leaf_entry *entry_d;
2439 int desti;
2440 int tmp;
2441 int i;
2442
2443 /*
2444 * Check for nothing to do.
2445 */
2446 if (count == 0)
2447 return;
2448
2449 /*
2450 * Set up environment.
2451 */
2452 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC ||
2453 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC);
2454 ASSERT(ichdr_s->magic == ichdr_d->magic);
2455 ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8);
2456 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s))
2457 + xfs_attr3_leaf_hdr_size(leaf_s));
2458 ASSERT(ichdr_d->count < args->geo->blksize / 8);
2459 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d))
2460 + xfs_attr3_leaf_hdr_size(leaf_d));
2461
2462 ASSERT(start_s < ichdr_s->count);
2463 ASSERT(start_d <= ichdr_d->count);
2464 ASSERT(count <= ichdr_s->count);
2465
2466
2467 /*
2468 * Move the entries in the destination leaf up to make a hole?
2469 */
2470 if (start_d < ichdr_d->count) {
2471 tmp = ichdr_d->count - start_d;
2472 tmp *= sizeof(xfs_attr_leaf_entry_t);
2473 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2474 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count];
2475 memmove(entry_d, entry_s, tmp);
2476 }
2477
2478 /*
2479 * Copy all entry's in the same (sorted) order,
2480 * but allocate attribute info packed and in sequence.
2481 */
2482 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2483 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2484 desti = start_d;
2485 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
2486 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused);
2487 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
2488 #ifdef GROT
2489 /*
2490 * Code to drop INCOMPLETE entries. Difficult to use as we
2491 * may also need to change the insertion index. Code turned
2492 * off for 6.2, should be revisited later.
2493 */
2494 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
2495 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2496 ichdr_s->usedbytes -= tmp;
2497 ichdr_s->count -= 1;
2498 entry_d--; /* to compensate for ++ in loop hdr */
2499 desti--;
2500 if ((start_s + i) < offset)
2501 result++; /* insertion index adjustment */
2502 } else {
2503 #endif /* GROT */
2504 ichdr_d->firstused -= tmp;
2505 /* both on-disk, don't endian flip twice */
2506 entry_d->hashval = entry_s->hashval;
2507 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused);
2508 entry_d->flags = entry_s->flags;
2509 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
2510 <= args->geo->blksize);
2511 memmove(xfs_attr3_leaf_name(leaf_d, desti),
2512 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp);
2513 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
2514 <= args->geo->blksize);
2515 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2516 ichdr_s->usedbytes -= tmp;
2517 ichdr_d->usedbytes += tmp;
2518 ichdr_s->count -= 1;
2519 ichdr_d->count += 1;
2520 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t)
2521 + xfs_attr3_leaf_hdr_size(leaf_d);
2522 ASSERT(ichdr_d->firstused >= tmp);
2523 #ifdef GROT
2524 }
2525 #endif /* GROT */
2526 }
2527
2528 /*
2529 * Zero out the entries we just copied.
2530 */
2531 if (start_s == ichdr_s->count) {
2532 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2533 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2534 ASSERT(((char *)entry_s + tmp) <=
2535 ((char *)leaf_s + args->geo->blksize));
2536 memset(entry_s, 0, tmp);
2537 } else {
2538 /*
2539 * Move the remaining entries down to fill the hole,
2540 * then zero the entries at the top.
2541 */
2542 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t);
2543 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count];
2544 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2545 memmove(entry_d, entry_s, tmp);
2546
2547 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2548 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count];
2549 ASSERT(((char *)entry_s + tmp) <=
2550 ((char *)leaf_s + args->geo->blksize));
2551 memset(entry_s, 0, tmp);
2552 }
2553
2554 /*
2555 * Fill in the freemap information
2556 */
2557 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d);
2558 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t);
2559 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
2560 ichdr_d->freemap[1].base = 0;
2561 ichdr_d->freemap[2].base = 0;
2562 ichdr_d->freemap[1].size = 0;
2563 ichdr_d->freemap[2].size = 0;
2564 ichdr_s->holes = 1; /* leaf may not be compact */
2565 }
2566
2567 /*
2568 * Pick up the last hashvalue from a leaf block.
2569 */
2570 xfs_dahash_t
xfs_attr_leaf_lasthash(struct xfs_buf * bp,int * count)2571 xfs_attr_leaf_lasthash(
2572 struct xfs_buf *bp,
2573 int *count)
2574 {
2575 struct xfs_attr3_icleaf_hdr ichdr;
2576 struct xfs_attr_leaf_entry *entries;
2577 struct xfs_mount *mp = bp->b_mount;
2578
2579 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr);
2580 entries = xfs_attr3_leaf_entryp(bp->b_addr);
2581 if (count)
2582 *count = ichdr.count;
2583 if (!ichdr.count)
2584 return 0;
2585 return be32_to_cpu(entries[ichdr.count - 1].hashval);
2586 }
2587
2588 /*
2589 * Calculate the number of bytes used to store the indicated attribute
2590 * (whether local or remote only calculate bytes in this block).
2591 */
2592 STATIC int
xfs_attr_leaf_entsize(xfs_attr_leafblock_t * leaf,int index)2593 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
2594 {
2595 struct xfs_attr_leaf_entry *entries;
2596 xfs_attr_leaf_name_local_t *name_loc;
2597 xfs_attr_leaf_name_remote_t *name_rmt;
2598 int size;
2599
2600 entries = xfs_attr3_leaf_entryp(leaf);
2601 if (entries[index].flags & XFS_ATTR_LOCAL) {
2602 name_loc = xfs_attr3_leaf_name_local(leaf, index);
2603 size = xfs_attr_leaf_entsize_local(name_loc->namelen,
2604 be16_to_cpu(name_loc->valuelen));
2605 } else {
2606 name_rmt = xfs_attr3_leaf_name_remote(leaf, index);
2607 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
2608 }
2609 return size;
2610 }
2611
2612 /*
2613 * Calculate the number of bytes that would be required to store the new
2614 * attribute (whether local or remote only calculate bytes in this block).
2615 * This routine decides as a side effect whether the attribute will be
2616 * a "local" or a "remote" attribute.
2617 */
2618 int
xfs_attr_leaf_newentsize(struct xfs_da_args * args,int * local)2619 xfs_attr_leaf_newentsize(
2620 struct xfs_da_args *args,
2621 int *local)
2622 {
2623 int size;
2624
2625 size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen);
2626 if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) {
2627 if (local)
2628 *local = 1;
2629 return size;
2630 }
2631 if (local)
2632 *local = 0;
2633 return xfs_attr_leaf_entsize_remote(args->namelen);
2634 }
2635
2636
2637 /*========================================================================
2638 * Manage the INCOMPLETE flag in a leaf entry
2639 *========================================================================*/
2640
2641 /*
2642 * Clear the INCOMPLETE flag on an entry in a leaf block.
2643 */
2644 int
xfs_attr3_leaf_clearflag(struct xfs_da_args * args)2645 xfs_attr3_leaf_clearflag(
2646 struct xfs_da_args *args)
2647 {
2648 struct xfs_attr_leafblock *leaf;
2649 struct xfs_attr_leaf_entry *entry;
2650 struct xfs_attr_leaf_name_remote *name_rmt;
2651 struct xfs_buf *bp;
2652 int error;
2653 #ifdef DEBUG
2654 struct xfs_attr3_icleaf_hdr ichdr;
2655 xfs_attr_leaf_name_local_t *name_loc;
2656 int namelen;
2657 char *name;
2658 #endif /* DEBUG */
2659
2660 trace_xfs_attr_leaf_clearflag(args);
2661 /*
2662 * Set up the operation.
2663 */
2664 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp);
2665 if (error)
2666 return error;
2667
2668 leaf = bp->b_addr;
2669 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2670 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
2671
2672 #ifdef DEBUG
2673 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2674 ASSERT(args->index < ichdr.count);
2675 ASSERT(args->index >= 0);
2676
2677 if (entry->flags & XFS_ATTR_LOCAL) {
2678 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2679 namelen = name_loc->namelen;
2680 name = (char *)name_loc->nameval;
2681 } else {
2682 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2683 namelen = name_rmt->namelen;
2684 name = (char *)name_rmt->name;
2685 }
2686 ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
2687 ASSERT(namelen == args->namelen);
2688 ASSERT(memcmp(name, args->name, namelen) == 0);
2689 #endif /* DEBUG */
2690
2691 entry->flags &= ~XFS_ATTR_INCOMPLETE;
2692 xfs_trans_log_buf(args->trans, bp,
2693 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2694
2695 if (args->rmtblkno) {
2696 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
2697 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2698 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2699 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2700 xfs_trans_log_buf(args->trans, bp,
2701 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2702 }
2703
2704 /*
2705 * Commit the flag value change and start the next trans in series.
2706 */
2707 return xfs_trans_roll_inode(&args->trans, args->dp);
2708 }
2709
2710 /*
2711 * Set the INCOMPLETE flag on an entry in a leaf block.
2712 */
2713 int
xfs_attr3_leaf_setflag(struct xfs_da_args * args)2714 xfs_attr3_leaf_setflag(
2715 struct xfs_da_args *args)
2716 {
2717 struct xfs_attr_leafblock *leaf;
2718 struct xfs_attr_leaf_entry *entry;
2719 struct xfs_attr_leaf_name_remote *name_rmt;
2720 struct xfs_buf *bp;
2721 int error;
2722 #ifdef DEBUG
2723 struct xfs_attr3_icleaf_hdr ichdr;
2724 #endif
2725
2726 trace_xfs_attr_leaf_setflag(args);
2727
2728 /*
2729 * Set up the operation.
2730 */
2731 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp);
2732 if (error)
2733 return error;
2734
2735 leaf = bp->b_addr;
2736 #ifdef DEBUG
2737 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2738 ASSERT(args->index < ichdr.count);
2739 ASSERT(args->index >= 0);
2740 #endif
2741 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2742
2743 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
2744 entry->flags |= XFS_ATTR_INCOMPLETE;
2745 xfs_trans_log_buf(args->trans, bp,
2746 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2747 if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
2748 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2749 name_rmt->valueblk = 0;
2750 name_rmt->valuelen = 0;
2751 xfs_trans_log_buf(args->trans, bp,
2752 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2753 }
2754
2755 /*
2756 * Commit the flag value change and start the next trans in series.
2757 */
2758 return xfs_trans_roll_inode(&args->trans, args->dp);
2759 }
2760
2761 /*
2762 * In a single transaction, clear the INCOMPLETE flag on the leaf entry
2763 * given by args->blkno/index and set the INCOMPLETE flag on the leaf
2764 * entry given by args->blkno2/index2.
2765 *
2766 * Note that they could be in different blocks, or in the same block.
2767 */
2768 int
xfs_attr3_leaf_flipflags(struct xfs_da_args * args)2769 xfs_attr3_leaf_flipflags(
2770 struct xfs_da_args *args)
2771 {
2772 struct xfs_attr_leafblock *leaf1;
2773 struct xfs_attr_leafblock *leaf2;
2774 struct xfs_attr_leaf_entry *entry1;
2775 struct xfs_attr_leaf_entry *entry2;
2776 struct xfs_attr_leaf_name_remote *name_rmt;
2777 struct xfs_buf *bp1;
2778 struct xfs_buf *bp2;
2779 int error;
2780 #ifdef DEBUG
2781 struct xfs_attr3_icleaf_hdr ichdr1;
2782 struct xfs_attr3_icleaf_hdr ichdr2;
2783 xfs_attr_leaf_name_local_t *name_loc;
2784 int namelen1, namelen2;
2785 char *name1, *name2;
2786 #endif /* DEBUG */
2787
2788 trace_xfs_attr_leaf_flipflags(args);
2789
2790 /*
2791 * Read the block containing the "old" attr
2792 */
2793 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp1);
2794 if (error)
2795 return error;
2796
2797 /*
2798 * Read the block containing the "new" attr, if it is different
2799 */
2800 if (args->blkno2 != args->blkno) {
2801 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2,
2802 -1, &bp2);
2803 if (error)
2804 return error;
2805 } else {
2806 bp2 = bp1;
2807 }
2808
2809 leaf1 = bp1->b_addr;
2810 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
2811
2812 leaf2 = bp2->b_addr;
2813 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
2814
2815 #ifdef DEBUG
2816 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1);
2817 ASSERT(args->index < ichdr1.count);
2818 ASSERT(args->index >= 0);
2819
2820 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2);
2821 ASSERT(args->index2 < ichdr2.count);
2822 ASSERT(args->index2 >= 0);
2823
2824 if (entry1->flags & XFS_ATTR_LOCAL) {
2825 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
2826 namelen1 = name_loc->namelen;
2827 name1 = (char *)name_loc->nameval;
2828 } else {
2829 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2830 namelen1 = name_rmt->namelen;
2831 name1 = (char *)name_rmt->name;
2832 }
2833 if (entry2->flags & XFS_ATTR_LOCAL) {
2834 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
2835 namelen2 = name_loc->namelen;
2836 name2 = (char *)name_loc->nameval;
2837 } else {
2838 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2839 namelen2 = name_rmt->namelen;
2840 name2 = (char *)name_rmt->name;
2841 }
2842 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
2843 ASSERT(namelen1 == namelen2);
2844 ASSERT(memcmp(name1, name2, namelen1) == 0);
2845 #endif /* DEBUG */
2846
2847 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
2848 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
2849
2850 entry1->flags &= ~XFS_ATTR_INCOMPLETE;
2851 xfs_trans_log_buf(args->trans, bp1,
2852 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
2853 if (args->rmtblkno) {
2854 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
2855 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2856 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2857 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2858 xfs_trans_log_buf(args->trans, bp1,
2859 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
2860 }
2861
2862 entry2->flags |= XFS_ATTR_INCOMPLETE;
2863 xfs_trans_log_buf(args->trans, bp2,
2864 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
2865 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
2866 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2867 name_rmt->valueblk = 0;
2868 name_rmt->valuelen = 0;
2869 xfs_trans_log_buf(args->trans, bp2,
2870 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
2871 }
2872
2873 /*
2874 * Commit the flag value change and start the next trans in series.
2875 */
2876 error = xfs_trans_roll_inode(&args->trans, args->dp);
2877
2878 return error;
2879 }
2880