1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2016 Thomas Gleixner.
4 * Copyright (C) 2016-2017 Christoph Hellwig.
5 */
6 #include <linux/interrupt.h>
7 #include <linux/kernel.h>
8 #include <linux/slab.h>
9 #include <linux/cpu.h>
10 #include <linux/sort.h>
11
irq_spread_init_one(struct cpumask * irqmsk,struct cpumask * nmsk,unsigned int cpus_per_vec)12 static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
13 unsigned int cpus_per_vec)
14 {
15 const struct cpumask *siblmsk;
16 int cpu, sibl;
17
18 for ( ; cpus_per_vec > 0; ) {
19 cpu = cpumask_first(nmsk);
20
21 /* Should not happen, but I'm too lazy to think about it */
22 if (cpu >= nr_cpu_ids)
23 return;
24
25 cpumask_clear_cpu(cpu, nmsk);
26 cpumask_set_cpu(cpu, irqmsk);
27 cpus_per_vec--;
28
29 /* If the cpu has siblings, use them first */
30 siblmsk = topology_sibling_cpumask(cpu);
31 for (sibl = -1; cpus_per_vec > 0; ) {
32 sibl = cpumask_next(sibl, siblmsk);
33 if (sibl >= nr_cpu_ids)
34 break;
35 if (!cpumask_test_and_clear_cpu(sibl, nmsk))
36 continue;
37 cpumask_set_cpu(sibl, irqmsk);
38 cpus_per_vec--;
39 }
40 }
41 }
42
alloc_node_to_cpumask(void)43 static cpumask_var_t *alloc_node_to_cpumask(void)
44 {
45 cpumask_var_t *masks;
46 int node;
47
48 masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
49 if (!masks)
50 return NULL;
51
52 for (node = 0; node < nr_node_ids; node++) {
53 if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
54 goto out_unwind;
55 }
56
57 return masks;
58
59 out_unwind:
60 while (--node >= 0)
61 free_cpumask_var(masks[node]);
62 kfree(masks);
63 return NULL;
64 }
65
free_node_to_cpumask(cpumask_var_t * masks)66 static void free_node_to_cpumask(cpumask_var_t *masks)
67 {
68 int node;
69
70 for (node = 0; node < nr_node_ids; node++)
71 free_cpumask_var(masks[node]);
72 kfree(masks);
73 }
74
build_node_to_cpumask(cpumask_var_t * masks)75 static void build_node_to_cpumask(cpumask_var_t *masks)
76 {
77 int cpu;
78
79 for_each_possible_cpu(cpu)
80 cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
81 }
82
get_nodes_in_cpumask(cpumask_var_t * node_to_cpumask,const struct cpumask * mask,nodemask_t * nodemsk)83 static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
84 const struct cpumask *mask, nodemask_t *nodemsk)
85 {
86 int n, nodes = 0;
87
88 /* Calculate the number of nodes in the supplied affinity mask */
89 for_each_node(n) {
90 if (cpumask_intersects(mask, node_to_cpumask[n])) {
91 node_set(n, *nodemsk);
92 nodes++;
93 }
94 }
95 return nodes;
96 }
97
98 struct node_vectors {
99 unsigned id;
100
101 union {
102 unsigned nvectors;
103 unsigned ncpus;
104 };
105 };
106
ncpus_cmp_func(const void * l,const void * r)107 static int ncpus_cmp_func(const void *l, const void *r)
108 {
109 const struct node_vectors *ln = l;
110 const struct node_vectors *rn = r;
111
112 return ln->ncpus - rn->ncpus;
113 }
114
115 /*
116 * Allocate vector number for each node, so that for each node:
117 *
118 * 1) the allocated number is >= 1
119 *
120 * 2) the allocated numbver is <= active CPU number of this node
121 *
122 * The actual allocated total vectors may be less than @numvecs when
123 * active total CPU number is less than @numvecs.
124 *
125 * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
126 * for each node.
127 */
alloc_nodes_vectors(unsigned int numvecs,cpumask_var_t * node_to_cpumask,const struct cpumask * cpu_mask,const nodemask_t nodemsk,struct cpumask * nmsk,struct node_vectors * node_vectors)128 static void alloc_nodes_vectors(unsigned int numvecs,
129 cpumask_var_t *node_to_cpumask,
130 const struct cpumask *cpu_mask,
131 const nodemask_t nodemsk,
132 struct cpumask *nmsk,
133 struct node_vectors *node_vectors)
134 {
135 unsigned n, remaining_ncpus = 0;
136
137 for (n = 0; n < nr_node_ids; n++) {
138 node_vectors[n].id = n;
139 node_vectors[n].ncpus = UINT_MAX;
140 }
141
142 for_each_node_mask(n, nodemsk) {
143 unsigned ncpus;
144
145 cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
146 ncpus = cpumask_weight(nmsk);
147
148 if (!ncpus)
149 continue;
150 remaining_ncpus += ncpus;
151 node_vectors[n].ncpus = ncpus;
152 }
153
154 numvecs = min_t(unsigned, remaining_ncpus, numvecs);
155
156 sort(node_vectors, nr_node_ids, sizeof(node_vectors[0]),
157 ncpus_cmp_func, NULL);
158
159 /*
160 * Allocate vectors for each node according to the ratio of this
161 * node's nr_cpus to remaining un-assigned ncpus. 'numvecs' is
162 * bigger than number of active numa nodes. Always start the
163 * allocation from the node with minimized nr_cpus.
164 *
165 * This way guarantees that each active node gets allocated at
166 * least one vector, and the theory is simple: over-allocation
167 * is only done when this node is assigned by one vector, so
168 * other nodes will be allocated >= 1 vector, since 'numvecs' is
169 * bigger than number of numa nodes.
170 *
171 * One perfect invariant is that number of allocated vectors for
172 * each node is <= CPU count of this node:
173 *
174 * 1) suppose there are two nodes: A and B
175 * ncpu(X) is CPU count of node X
176 * vecs(X) is the vector count allocated to node X via this
177 * algorithm
178 *
179 * ncpu(A) <= ncpu(B)
180 * ncpu(A) + ncpu(B) = N
181 * vecs(A) + vecs(B) = V
182 *
183 * vecs(A) = max(1, round_down(V * ncpu(A) / N))
184 * vecs(B) = V - vecs(A)
185 *
186 * both N and V are integer, and 2 <= V <= N, suppose
187 * V = N - delta, and 0 <= delta <= N - 2
188 *
189 * 2) obviously vecs(A) <= ncpu(A) because:
190 *
191 * if vecs(A) is 1, then vecs(A) <= ncpu(A) given
192 * ncpu(A) >= 1
193 *
194 * otherwise,
195 * vecs(A) <= V * ncpu(A) / N <= ncpu(A), given V <= N
196 *
197 * 3) prove how vecs(B) <= ncpu(B):
198 *
199 * if round_down(V * ncpu(A) / N) == 0, vecs(B) won't be
200 * over-allocated, so vecs(B) <= ncpu(B),
201 *
202 * otherwise:
203 *
204 * vecs(A) =
205 * round_down(V * ncpu(A) / N) =
206 * round_down((N - delta) * ncpu(A) / N) =
207 * round_down((N * ncpu(A) - delta * ncpu(A)) / N) >=
208 * round_down((N * ncpu(A) - delta * N) / N) =
209 * cpu(A) - delta
210 *
211 * then:
212 *
213 * vecs(A) - V >= ncpu(A) - delta - V
214 * =>
215 * V - vecs(A) <= V + delta - ncpu(A)
216 * =>
217 * vecs(B) <= N - ncpu(A)
218 * =>
219 * vecs(B) <= cpu(B)
220 *
221 * For nodes >= 3, it can be thought as one node and another big
222 * node given that is exactly what this algorithm is implemented,
223 * and we always re-calculate 'remaining_ncpus' & 'numvecs', and
224 * finally for each node X: vecs(X) <= ncpu(X).
225 *
226 */
227 for (n = 0; n < nr_node_ids; n++) {
228 unsigned nvectors, ncpus;
229
230 if (node_vectors[n].ncpus == UINT_MAX)
231 continue;
232
233 WARN_ON_ONCE(numvecs == 0);
234
235 ncpus = node_vectors[n].ncpus;
236 nvectors = max_t(unsigned, 1,
237 numvecs * ncpus / remaining_ncpus);
238 WARN_ON_ONCE(nvectors > ncpus);
239
240 node_vectors[n].nvectors = nvectors;
241
242 remaining_ncpus -= ncpus;
243 numvecs -= nvectors;
244 }
245 }
246
__irq_build_affinity_masks(unsigned int startvec,unsigned int numvecs,unsigned int firstvec,cpumask_var_t * node_to_cpumask,const struct cpumask * cpu_mask,struct cpumask * nmsk,struct irq_affinity_desc * masks)247 static int __irq_build_affinity_masks(unsigned int startvec,
248 unsigned int numvecs,
249 unsigned int firstvec,
250 cpumask_var_t *node_to_cpumask,
251 const struct cpumask *cpu_mask,
252 struct cpumask *nmsk,
253 struct irq_affinity_desc *masks)
254 {
255 unsigned int i, n, nodes, cpus_per_vec, extra_vecs, done = 0;
256 unsigned int last_affv = firstvec + numvecs;
257 unsigned int curvec = startvec;
258 nodemask_t nodemsk = NODE_MASK_NONE;
259 struct node_vectors *node_vectors;
260
261 if (!cpumask_weight(cpu_mask))
262 return 0;
263
264 nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
265
266 /*
267 * If the number of nodes in the mask is greater than or equal the
268 * number of vectors we just spread the vectors across the nodes.
269 */
270 if (numvecs <= nodes) {
271 for_each_node_mask(n, nodemsk) {
272 cpumask_or(&masks[curvec].mask, &masks[curvec].mask,
273 node_to_cpumask[n]);
274 if (++curvec == last_affv)
275 curvec = firstvec;
276 }
277 return numvecs;
278 }
279
280 node_vectors = kcalloc(nr_node_ids,
281 sizeof(struct node_vectors),
282 GFP_KERNEL);
283 if (!node_vectors)
284 return -ENOMEM;
285
286 /* allocate vector number for each node */
287 alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask,
288 nodemsk, nmsk, node_vectors);
289
290 for (i = 0; i < nr_node_ids; i++) {
291 unsigned int ncpus, v;
292 struct node_vectors *nv = &node_vectors[i];
293
294 if (nv->nvectors == UINT_MAX)
295 continue;
296
297 /* Get the cpus on this node which are in the mask */
298 cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
299 ncpus = cpumask_weight(nmsk);
300 if (!ncpus)
301 continue;
302
303 WARN_ON_ONCE(nv->nvectors > ncpus);
304
305 /* Account for rounding errors */
306 extra_vecs = ncpus - nv->nvectors * (ncpus / nv->nvectors);
307
308 /* Spread allocated vectors on CPUs of the current node */
309 for (v = 0; v < nv->nvectors; v++, curvec++) {
310 cpus_per_vec = ncpus / nv->nvectors;
311
312 /* Account for extra vectors to compensate rounding errors */
313 if (extra_vecs) {
314 cpus_per_vec++;
315 --extra_vecs;
316 }
317
318 /*
319 * wrapping has to be considered given 'startvec'
320 * may start anywhere
321 */
322 if (curvec >= last_affv)
323 curvec = firstvec;
324 irq_spread_init_one(&masks[curvec].mask, nmsk,
325 cpus_per_vec);
326 }
327 done += nv->nvectors;
328 }
329 kfree(node_vectors);
330 return done;
331 }
332
333 /*
334 * build affinity in two stages:
335 * 1) spread present CPU on these vectors
336 * 2) spread other possible CPUs on these vectors
337 */
irq_build_affinity_masks(unsigned int startvec,unsigned int numvecs,unsigned int firstvec,struct irq_affinity_desc * masks)338 static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs,
339 unsigned int firstvec,
340 struct irq_affinity_desc *masks)
341 {
342 unsigned int curvec = startvec, nr_present = 0, nr_others = 0;
343 cpumask_var_t *node_to_cpumask;
344 cpumask_var_t nmsk, npresmsk;
345 int ret = -ENOMEM;
346
347 if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
348 return ret;
349
350 if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
351 goto fail_nmsk;
352
353 node_to_cpumask = alloc_node_to_cpumask();
354 if (!node_to_cpumask)
355 goto fail_npresmsk;
356
357 /* Stabilize the cpumasks */
358 get_online_cpus();
359 build_node_to_cpumask(node_to_cpumask);
360
361 /* Spread on present CPUs starting from affd->pre_vectors */
362 ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
363 node_to_cpumask, cpu_present_mask,
364 nmsk, masks);
365 if (ret < 0)
366 goto fail_build_affinity;
367 nr_present = ret;
368
369 /*
370 * Spread on non present CPUs starting from the next vector to be
371 * handled. If the spreading of present CPUs already exhausted the
372 * vector space, assign the non present CPUs to the already spread
373 * out vectors.
374 */
375 if (nr_present >= numvecs)
376 curvec = firstvec;
377 else
378 curvec = firstvec + nr_present;
379 cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
380 ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
381 node_to_cpumask, npresmsk, nmsk,
382 masks);
383 if (ret >= 0)
384 nr_others = ret;
385
386 fail_build_affinity:
387 put_online_cpus();
388
389 if (ret >= 0)
390 WARN_ON(nr_present + nr_others < numvecs);
391
392 free_node_to_cpumask(node_to_cpumask);
393
394 fail_npresmsk:
395 free_cpumask_var(npresmsk);
396
397 fail_nmsk:
398 free_cpumask_var(nmsk);
399 return ret < 0 ? ret : 0;
400 }
401
default_calc_sets(struct irq_affinity * affd,unsigned int affvecs)402 static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs)
403 {
404 affd->nr_sets = 1;
405 affd->set_size[0] = affvecs;
406 }
407
408 /**
409 * irq_create_affinity_masks - Create affinity masks for multiqueue spreading
410 * @nvecs: The total number of vectors
411 * @affd: Description of the affinity requirements
412 *
413 * Returns the irq_affinity_desc pointer or NULL if allocation failed.
414 */
415 struct irq_affinity_desc *
irq_create_affinity_masks(unsigned int nvecs,struct irq_affinity * affd)416 irq_create_affinity_masks(unsigned int nvecs, struct irq_affinity *affd)
417 {
418 unsigned int affvecs, curvec, usedvecs, i;
419 struct irq_affinity_desc *masks = NULL;
420
421 /*
422 * Determine the number of vectors which need interrupt affinities
423 * assigned. If the pre/post request exhausts the available vectors
424 * then nothing to do here except for invoking the calc_sets()
425 * callback so the device driver can adjust to the situation.
426 */
427 if (nvecs > affd->pre_vectors + affd->post_vectors)
428 affvecs = nvecs - affd->pre_vectors - affd->post_vectors;
429 else
430 affvecs = 0;
431
432 /*
433 * Simple invocations do not provide a calc_sets() callback. Install
434 * the generic one.
435 */
436 if (!affd->calc_sets)
437 affd->calc_sets = default_calc_sets;
438
439 /* Recalculate the sets */
440 affd->calc_sets(affd, affvecs);
441
442 if (WARN_ON_ONCE(affd->nr_sets > IRQ_AFFINITY_MAX_SETS))
443 return NULL;
444
445 /* Nothing to assign? */
446 if (!affvecs)
447 return NULL;
448
449 masks = kcalloc(nvecs, sizeof(*masks), GFP_KERNEL);
450 if (!masks)
451 return NULL;
452
453 /* Fill out vectors at the beginning that don't need affinity */
454 for (curvec = 0; curvec < affd->pre_vectors; curvec++)
455 cpumask_copy(&masks[curvec].mask, irq_default_affinity);
456
457 /*
458 * Spread on present CPUs starting from affd->pre_vectors. If we
459 * have multiple sets, build each sets affinity mask separately.
460 */
461 for (i = 0, usedvecs = 0; i < affd->nr_sets; i++) {
462 unsigned int this_vecs = affd->set_size[i];
463 int ret;
464
465 ret = irq_build_affinity_masks(curvec, this_vecs,
466 curvec, masks);
467 if (ret) {
468 kfree(masks);
469 return NULL;
470 }
471 curvec += this_vecs;
472 usedvecs += this_vecs;
473 }
474
475 /* Fill out vectors at the end that don't need affinity */
476 if (usedvecs >= affvecs)
477 curvec = affd->pre_vectors + affvecs;
478 else
479 curvec = affd->pre_vectors + usedvecs;
480 for (; curvec < nvecs; curvec++)
481 cpumask_copy(&masks[curvec].mask, irq_default_affinity);
482
483 /* Mark the managed interrupts */
484 for (i = affd->pre_vectors; i < nvecs - affd->post_vectors; i++)
485 masks[i].is_managed = 1;
486
487 return masks;
488 }
489
490 /**
491 * irq_calc_affinity_vectors - Calculate the optimal number of vectors
492 * @minvec: The minimum number of vectors available
493 * @maxvec: The maximum number of vectors available
494 * @affd: Description of the affinity requirements
495 */
irq_calc_affinity_vectors(unsigned int minvec,unsigned int maxvec,const struct irq_affinity * affd)496 unsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec,
497 const struct irq_affinity *affd)
498 {
499 unsigned int resv = affd->pre_vectors + affd->post_vectors;
500 unsigned int set_vecs;
501
502 if (resv > minvec)
503 return 0;
504
505 if (affd->calc_sets) {
506 set_vecs = maxvec - resv;
507 } else {
508 get_online_cpus();
509 set_vecs = cpumask_weight(cpu_possible_mask);
510 put_online_cpus();
511 }
512
513 return resv + min(set_vecs, maxvec - resv);
514 }
515