1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Host communication command constants for ChromeOS EC 4 * 5 * Copyright (C) 2012 Google, Inc 6 * 7 * NOTE: This file is auto-generated from ChromeOS EC Open Source code from 8 * https://chromium.googlesource.com/chromiumos/platform/ec/+/master/include/ec_commands.h 9 */ 10 11 /* Host communication command constants for Chrome EC */ 12 13 #ifndef __CROS_EC_COMMANDS_H 14 #define __CROS_EC_COMMANDS_H 15 16 17 18 19 #define BUILD_ASSERT(_cond) 20 21 /* 22 * Current version of this protocol 23 * 24 * TODO(crosbug.com/p/11223): This is effectively useless; protocol is 25 * determined in other ways. Remove this once the kernel code no longer 26 * depends on it. 27 */ 28 #define EC_PROTO_VERSION 0x00000002 29 30 /* Command version mask */ 31 #define EC_VER_MASK(version) BIT(version) 32 33 /* I/O addresses for ACPI commands */ 34 #define EC_LPC_ADDR_ACPI_DATA 0x62 35 #define EC_LPC_ADDR_ACPI_CMD 0x66 36 37 /* I/O addresses for host command */ 38 #define EC_LPC_ADDR_HOST_DATA 0x200 39 #define EC_LPC_ADDR_HOST_CMD 0x204 40 41 /* I/O addresses for host command args and params */ 42 /* Protocol version 2 */ 43 #define EC_LPC_ADDR_HOST_ARGS 0x800 /* And 0x801, 0x802, 0x803 */ 44 #define EC_LPC_ADDR_HOST_PARAM 0x804 /* For version 2 params; size is 45 * EC_PROTO2_MAX_PARAM_SIZE 46 */ 47 /* Protocol version 3 */ 48 #define EC_LPC_ADDR_HOST_PACKET 0x800 /* Offset of version 3 packet */ 49 #define EC_LPC_HOST_PACKET_SIZE 0x100 /* Max size of version 3 packet */ 50 51 /* 52 * The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff 53 * and they tell the kernel that so we have to think of it as two parts. 54 */ 55 #define EC_HOST_CMD_REGION0 0x800 56 #define EC_HOST_CMD_REGION1 0x880 57 #define EC_HOST_CMD_REGION_SIZE 0x80 58 59 /* EC command register bit functions */ 60 #define EC_LPC_CMDR_DATA BIT(0) /* Data ready for host to read */ 61 #define EC_LPC_CMDR_PENDING BIT(1) /* Write pending to EC */ 62 #define EC_LPC_CMDR_BUSY BIT(2) /* EC is busy processing a command */ 63 #define EC_LPC_CMDR_CMD BIT(3) /* Last host write was a command */ 64 #define EC_LPC_CMDR_ACPI_BRST BIT(4) /* Burst mode (not used) */ 65 #define EC_LPC_CMDR_SCI BIT(5) /* SCI event is pending */ 66 #define EC_LPC_CMDR_SMI BIT(6) /* SMI event is pending */ 67 68 #define EC_LPC_ADDR_MEMMAP 0x900 69 #define EC_MEMMAP_SIZE 255 /* ACPI IO buffer max is 255 bytes */ 70 #define EC_MEMMAP_TEXT_MAX 8 /* Size of a string in the memory map */ 71 72 /* The offset address of each type of data in mapped memory. */ 73 #define EC_MEMMAP_TEMP_SENSOR 0x00 /* Temp sensors 0x00 - 0x0f */ 74 #define EC_MEMMAP_FAN 0x10 /* Fan speeds 0x10 - 0x17 */ 75 #define EC_MEMMAP_TEMP_SENSOR_B 0x18 /* More temp sensors 0x18 - 0x1f */ 76 #define EC_MEMMAP_ID 0x20 /* 0x20 == 'E', 0x21 == 'C' */ 77 #define EC_MEMMAP_ID_VERSION 0x22 /* Version of data in 0x20 - 0x2f */ 78 #define EC_MEMMAP_THERMAL_VERSION 0x23 /* Version of data in 0x00 - 0x1f */ 79 #define EC_MEMMAP_BATTERY_VERSION 0x24 /* Version of data in 0x40 - 0x7f */ 80 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */ 81 #define EC_MEMMAP_EVENTS_VERSION 0x26 /* Version of data in 0x34 - 0x3f */ 82 #define EC_MEMMAP_HOST_CMD_FLAGS 0x27 /* Host cmd interface flags (8 bits) */ 83 /* Unused 0x28 - 0x2f */ 84 #define EC_MEMMAP_SWITCHES 0x30 /* 8 bits */ 85 /* Unused 0x31 - 0x33 */ 86 #define EC_MEMMAP_HOST_EVENTS 0x34 /* 64 bits */ 87 /* Battery values are all 32 bits, unless otherwise noted. */ 88 #define EC_MEMMAP_BATT_VOLT 0x40 /* Battery Present Voltage */ 89 #define EC_MEMMAP_BATT_RATE 0x44 /* Battery Present Rate */ 90 #define EC_MEMMAP_BATT_CAP 0x48 /* Battery Remaining Capacity */ 91 #define EC_MEMMAP_BATT_FLAG 0x4c /* Battery State, see below (8-bit) */ 92 #define EC_MEMMAP_BATT_COUNT 0x4d /* Battery Count (8-bit) */ 93 #define EC_MEMMAP_BATT_INDEX 0x4e /* Current Battery Data Index (8-bit) */ 94 /* Unused 0x4f */ 95 #define EC_MEMMAP_BATT_DCAP 0x50 /* Battery Design Capacity */ 96 #define EC_MEMMAP_BATT_DVLT 0x54 /* Battery Design Voltage */ 97 #define EC_MEMMAP_BATT_LFCC 0x58 /* Battery Last Full Charge Capacity */ 98 #define EC_MEMMAP_BATT_CCNT 0x5c /* Battery Cycle Count */ 99 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */ 100 #define EC_MEMMAP_BATT_MFGR 0x60 /* Battery Manufacturer String */ 101 #define EC_MEMMAP_BATT_MODEL 0x68 /* Battery Model Number String */ 102 #define EC_MEMMAP_BATT_SERIAL 0x70 /* Battery Serial Number String */ 103 #define EC_MEMMAP_BATT_TYPE 0x78 /* Battery Type String */ 104 #define EC_MEMMAP_ALS 0x80 /* ALS readings in lux (2 X 16 bits) */ 105 /* Unused 0x84 - 0x8f */ 106 #define EC_MEMMAP_ACC_STATUS 0x90 /* Accelerometer status (8 bits )*/ 107 /* Unused 0x91 */ 108 #define EC_MEMMAP_ACC_DATA 0x92 /* Accelerometers data 0x92 - 0x9f */ 109 /* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */ 110 /* 0x94 - 0x99: 1st Accelerometer */ 111 /* 0x9a - 0x9f: 2nd Accelerometer */ 112 #define EC_MEMMAP_GYRO_DATA 0xa0 /* Gyroscope data 0xa0 - 0xa5 */ 113 /* Unused 0xa6 - 0xdf */ 114 115 /* 116 * ACPI is unable to access memory mapped data at or above this offset due to 117 * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe 118 * which might be needed by ACPI. 119 */ 120 #define EC_MEMMAP_NO_ACPI 0xe0 121 122 /* Define the format of the accelerometer mapped memory status byte. */ 123 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK 0x0f 124 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT BIT(4) 125 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT BIT(7) 126 127 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */ 128 #define EC_TEMP_SENSOR_ENTRIES 16 129 /* 130 * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B. 131 * 132 * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2. 133 */ 134 #define EC_TEMP_SENSOR_B_ENTRIES 8 135 136 /* Special values for mapped temperature sensors */ 137 #define EC_TEMP_SENSOR_NOT_PRESENT 0xff 138 #define EC_TEMP_SENSOR_ERROR 0xfe 139 #define EC_TEMP_SENSOR_NOT_POWERED 0xfd 140 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc 141 /* 142 * The offset of temperature value stored in mapped memory. This allows 143 * reporting a temperature range of 200K to 454K = -73C to 181C. 144 */ 145 #define EC_TEMP_SENSOR_OFFSET 200 146 147 /* 148 * Number of ALS readings at EC_MEMMAP_ALS 149 */ 150 #define EC_ALS_ENTRIES 2 151 152 /* 153 * The default value a temperature sensor will return when it is present but 154 * has not been read this boot. This is a reasonable number to avoid 155 * triggering alarms on the host. 156 */ 157 #define EC_TEMP_SENSOR_DEFAULT (296 - EC_TEMP_SENSOR_OFFSET) 158 159 #define EC_FAN_SPEED_ENTRIES 4 /* Number of fans at EC_MEMMAP_FAN */ 160 #define EC_FAN_SPEED_NOT_PRESENT 0xffff /* Entry not present */ 161 #define EC_FAN_SPEED_STALLED 0xfffe /* Fan stalled */ 162 163 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */ 164 #define EC_BATT_FLAG_AC_PRESENT 0x01 165 #define EC_BATT_FLAG_BATT_PRESENT 0x02 166 #define EC_BATT_FLAG_DISCHARGING 0x04 167 #define EC_BATT_FLAG_CHARGING 0x08 168 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10 169 /* Set if some of the static/dynamic data is invalid (or outdated). */ 170 #define EC_BATT_FLAG_INVALID_DATA 0x20 171 172 /* Switch flags at EC_MEMMAP_SWITCHES */ 173 #define EC_SWITCH_LID_OPEN 0x01 174 #define EC_SWITCH_POWER_BUTTON_PRESSED 0x02 175 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04 176 /* Was recovery requested via keyboard; now unused. */ 177 #define EC_SWITCH_IGNORE1 0x08 178 /* Recovery requested via dedicated signal (from servo board) */ 179 #define EC_SWITCH_DEDICATED_RECOVERY 0x10 180 /* Was fake developer mode switch; now unused. Remove in next refactor. */ 181 #define EC_SWITCH_IGNORE0 0x20 182 183 /* Host command interface flags */ 184 /* Host command interface supports LPC args (LPC interface only) */ 185 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED 0x01 186 /* Host command interface supports version 3 protocol */ 187 #define EC_HOST_CMD_FLAG_VERSION_3 0x02 188 189 /* Wireless switch flags */ 190 #define EC_WIRELESS_SWITCH_ALL ~0x00 /* All flags */ 191 #define EC_WIRELESS_SWITCH_WLAN 0x01 /* WLAN radio */ 192 #define EC_WIRELESS_SWITCH_BLUETOOTH 0x02 /* Bluetooth radio */ 193 #define EC_WIRELESS_SWITCH_WWAN 0x04 /* WWAN power */ 194 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08 /* WLAN power */ 195 196 /*****************************************************************************/ 197 /* 198 * ACPI commands 199 * 200 * These are valid ONLY on the ACPI command/data port. 201 */ 202 203 /* 204 * ACPI Read Embedded Controller 205 * 206 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*). 207 * 208 * Use the following sequence: 209 * 210 * - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD 211 * - Wait for EC_LPC_CMDR_PENDING bit to clear 212 * - Write address to EC_LPC_ADDR_ACPI_DATA 213 * - Wait for EC_LPC_CMDR_DATA bit to set 214 * - Read value from EC_LPC_ADDR_ACPI_DATA 215 */ 216 #define EC_CMD_ACPI_READ 0x0080 217 218 /* 219 * ACPI Write Embedded Controller 220 * 221 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*). 222 * 223 * Use the following sequence: 224 * 225 * - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD 226 * - Wait for EC_LPC_CMDR_PENDING bit to clear 227 * - Write address to EC_LPC_ADDR_ACPI_DATA 228 * - Wait for EC_LPC_CMDR_PENDING bit to clear 229 * - Write value to EC_LPC_ADDR_ACPI_DATA 230 */ 231 #define EC_CMD_ACPI_WRITE 0x0081 232 233 /* 234 * ACPI Burst Enable Embedded Controller 235 * 236 * This enables burst mode on the EC to allow the host to issue several 237 * commands back-to-back. While in this mode, writes to mapped multi-byte 238 * data are locked out to ensure data consistency. 239 */ 240 #define EC_CMD_ACPI_BURST_ENABLE 0x0082 241 242 /* 243 * ACPI Burst Disable Embedded Controller 244 * 245 * This disables burst mode on the EC and stops preventing EC writes to mapped 246 * multi-byte data. 247 */ 248 #define EC_CMD_ACPI_BURST_DISABLE 0x0083 249 250 /* 251 * ACPI Query Embedded Controller 252 * 253 * This clears the lowest-order bit in the currently pending host events, and 254 * sets the result code to the 1-based index of the bit (event 0x00000001 = 1, 255 * event 0x80000000 = 32), or 0 if no event was pending. 256 */ 257 #define EC_CMD_ACPI_QUERY_EVENT 0x0084 258 259 /* Valid addresses in ACPI memory space, for read/write commands */ 260 261 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */ 262 #define EC_ACPI_MEM_VERSION 0x00 263 /* 264 * Test location; writing value here updates test compliment byte to (0xff - 265 * value). 266 */ 267 #define EC_ACPI_MEM_TEST 0x01 268 /* Test compliment; writes here are ignored. */ 269 #define EC_ACPI_MEM_TEST_COMPLIMENT 0x02 270 271 /* Keyboard backlight brightness percent (0 - 100) */ 272 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03 273 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */ 274 #define EC_ACPI_MEM_FAN_DUTY 0x04 275 276 /* 277 * DPTF temp thresholds. Any of the EC's temp sensors can have up to two 278 * independent thresholds attached to them. The current value of the ID 279 * register determines which sensor is affected by the THRESHOLD and COMMIT 280 * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme 281 * as the memory-mapped sensors. The COMMIT register applies those settings. 282 * 283 * The spec does not mandate any way to read back the threshold settings 284 * themselves, but when a threshold is crossed the AP needs a way to determine 285 * which sensor(s) are responsible. Each reading of the ID register clears and 286 * returns one sensor ID that has crossed one of its threshold (in either 287 * direction) since the last read. A value of 0xFF means "no new thresholds 288 * have tripped". Setting or enabling the thresholds for a sensor will clear 289 * the unread event count for that sensor. 290 */ 291 #define EC_ACPI_MEM_TEMP_ID 0x05 292 #define EC_ACPI_MEM_TEMP_THRESHOLD 0x06 293 #define EC_ACPI_MEM_TEMP_COMMIT 0x07 294 /* 295 * Here are the bits for the COMMIT register: 296 * bit 0 selects the threshold index for the chosen sensor (0/1) 297 * bit 1 enables/disables the selected threshold (0 = off, 1 = on) 298 * Each write to the commit register affects one threshold. 299 */ 300 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK BIT(0) 301 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK BIT(1) 302 /* 303 * Example: 304 * 305 * Set the thresholds for sensor 2 to 50 C and 60 C: 306 * write 2 to [0x05] -- select temp sensor 2 307 * write 0x7b to [0x06] -- C_TO_K(50) - EC_TEMP_SENSOR_OFFSET 308 * write 0x2 to [0x07] -- enable threshold 0 with this value 309 * write 0x85 to [0x06] -- C_TO_K(60) - EC_TEMP_SENSOR_OFFSET 310 * write 0x3 to [0x07] -- enable threshold 1 with this value 311 * 312 * Disable the 60 C threshold, leaving the 50 C threshold unchanged: 313 * write 2 to [0x05] -- select temp sensor 2 314 * write 0x1 to [0x07] -- disable threshold 1 315 */ 316 317 /* DPTF battery charging current limit */ 318 #define EC_ACPI_MEM_CHARGING_LIMIT 0x08 319 320 /* Charging limit is specified in 64 mA steps */ 321 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA 64 322 /* Value to disable DPTF battery charging limit */ 323 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED 0xff 324 325 /* 326 * Report device orientation 327 * Bits Definition 328 * 3:1 Device DPTF Profile Number (DDPN) 329 * 0 = Reserved for backward compatibility (indicates no valid 330 * profile number. Host should fall back to using TBMD). 331 * 1..7 = DPTF Profile number to indicate to host which table needs 332 * to be loaded. 333 * 0 Tablet Mode Device Indicator (TBMD) 334 */ 335 #define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09 336 #define EC_ACPI_MEM_TBMD_SHIFT 0 337 #define EC_ACPI_MEM_TBMD_MASK 0x1 338 #define EC_ACPI_MEM_DDPN_SHIFT 1 339 #define EC_ACPI_MEM_DDPN_MASK 0x7 340 341 /* 342 * Report device features. Uses the same format as the host command, except: 343 * 344 * bit 0 (EC_FEATURE_LIMITED) changes meaning from "EC code has a limited set 345 * of features", which is of limited interest when the system is already 346 * interpreting ACPI bytecode, to "EC_FEATURES[0-7] is not supported". Since 347 * these are supported, it defaults to 0. 348 * This allows detecting the presence of this field since older versions of 349 * the EC codebase would simply return 0xff to that unknown address. Check 350 * FEATURES0 != 0xff (or FEATURES0[0] == 0) to make sure that the other bits 351 * are valid. 352 */ 353 #define EC_ACPI_MEM_DEVICE_FEATURES0 0x0a 354 #define EC_ACPI_MEM_DEVICE_FEATURES1 0x0b 355 #define EC_ACPI_MEM_DEVICE_FEATURES2 0x0c 356 #define EC_ACPI_MEM_DEVICE_FEATURES3 0x0d 357 #define EC_ACPI_MEM_DEVICE_FEATURES4 0x0e 358 #define EC_ACPI_MEM_DEVICE_FEATURES5 0x0f 359 #define EC_ACPI_MEM_DEVICE_FEATURES6 0x10 360 #define EC_ACPI_MEM_DEVICE_FEATURES7 0x11 361 362 #define EC_ACPI_MEM_BATTERY_INDEX 0x12 363 364 /* 365 * USB Port Power. Each bit indicates whether the corresponding USB ports' power 366 * is enabled (1) or disabled (0). 367 * bit 0 USB port ID 0 368 * ... 369 * bit 7 USB port ID 7 370 */ 371 #define EC_ACPI_MEM_USB_PORT_POWER 0x13 372 373 /* 374 * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf. This data 375 * is read-only from the AP. Added in EC_ACPI_MEM_VERSION 2. 376 */ 377 #define EC_ACPI_MEM_MAPPED_BEGIN 0x20 378 #define EC_ACPI_MEM_MAPPED_SIZE 0xe0 379 380 /* Current version of ACPI memory address space */ 381 #define EC_ACPI_MEM_VERSION_CURRENT 2 382 383 384 /* 385 * This header file is used in coreboot both in C and ACPI code. The ACPI code 386 * is pre-processed to handle constants but the ASL compiler is unable to 387 * handle actual C code so keep it separate. 388 */ 389 390 391 /* 392 * Attributes for EC request and response packets. Just defining __packed 393 * results in inefficient assembly code on ARM, if the structure is actually 394 * 32-bit aligned, as it should be for all buffers. 395 * 396 * Be very careful when adding these to existing structures. They will round 397 * up the structure size to the specified boundary. 398 * 399 * Also be very careful to make that if a structure is included in some other 400 * parent structure that the alignment will still be true given the packing of 401 * the parent structure. This is particularly important if the sub-structure 402 * will be passed as a pointer to another function, since that function will 403 * not know about the misaligment caused by the parent structure's packing. 404 * 405 * Also be very careful using __packed - particularly when nesting non-packed 406 * structures inside packed ones. In fact, DO NOT use __packed directly; 407 * always use one of these attributes. 408 * 409 * Once everything is annotated properly, the following search strings should 410 * not return ANY matches in this file other than right here: 411 * 412 * "__packed" - generates inefficient code; all sub-structs must also be packed 413 * 414 * "struct [^_]" - all structs should be annotated, except for structs that are 415 * members of other structs/unions (and their original declarations should be 416 * annotated). 417 */ 418 419 /* 420 * Packed structures make no assumption about alignment, so they do inefficient 421 * byte-wise reads. 422 */ 423 #define __ec_align1 __packed 424 #define __ec_align2 __packed 425 #define __ec_align4 __packed 426 #define __ec_align_size1 __packed 427 #define __ec_align_offset1 __packed 428 #define __ec_align_offset2 __packed 429 #define __ec_todo_packed __packed 430 #define __ec_todo_unpacked 431 432 433 /* LPC command status byte masks */ 434 /* EC has written a byte in the data register and host hasn't read it yet */ 435 #define EC_LPC_STATUS_TO_HOST 0x01 436 /* Host has written a command/data byte and the EC hasn't read it yet */ 437 #define EC_LPC_STATUS_FROM_HOST 0x02 438 /* EC is processing a command */ 439 #define EC_LPC_STATUS_PROCESSING 0x04 440 /* Last write to EC was a command, not data */ 441 #define EC_LPC_STATUS_LAST_CMD 0x08 442 /* EC is in burst mode */ 443 #define EC_LPC_STATUS_BURST_MODE 0x10 444 /* SCI event is pending (requesting SCI query) */ 445 #define EC_LPC_STATUS_SCI_PENDING 0x20 446 /* SMI event is pending (requesting SMI query) */ 447 #define EC_LPC_STATUS_SMI_PENDING 0x40 448 /* (reserved) */ 449 #define EC_LPC_STATUS_RESERVED 0x80 450 451 /* 452 * EC is busy. This covers both the EC processing a command, and the host has 453 * written a new command but the EC hasn't picked it up yet. 454 */ 455 #define EC_LPC_STATUS_BUSY_MASK \ 456 (EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING) 457 458 /* 459 * Host command response codes (16-bit). Note that response codes should be 460 * stored in a uint16_t rather than directly in a value of this type. 461 */ 462 enum ec_status { 463 EC_RES_SUCCESS = 0, 464 EC_RES_INVALID_COMMAND = 1, 465 EC_RES_ERROR = 2, 466 EC_RES_INVALID_PARAM = 3, 467 EC_RES_ACCESS_DENIED = 4, 468 EC_RES_INVALID_RESPONSE = 5, 469 EC_RES_INVALID_VERSION = 6, 470 EC_RES_INVALID_CHECKSUM = 7, 471 EC_RES_IN_PROGRESS = 8, /* Accepted, command in progress */ 472 EC_RES_UNAVAILABLE = 9, /* No response available */ 473 EC_RES_TIMEOUT = 10, /* We got a timeout */ 474 EC_RES_OVERFLOW = 11, /* Table / data overflow */ 475 EC_RES_INVALID_HEADER = 12, /* Header contains invalid data */ 476 EC_RES_REQUEST_TRUNCATED = 13, /* Didn't get the entire request */ 477 EC_RES_RESPONSE_TOO_BIG = 14, /* Response was too big to handle */ 478 EC_RES_BUS_ERROR = 15, /* Communications bus error */ 479 EC_RES_BUSY = 16, /* Up but too busy. Should retry */ 480 EC_RES_INVALID_HEADER_VERSION = 17, /* Header version invalid */ 481 EC_RES_INVALID_HEADER_CRC = 18, /* Header CRC invalid */ 482 EC_RES_INVALID_DATA_CRC = 19, /* Data CRC invalid */ 483 EC_RES_DUP_UNAVAILABLE = 20, /* Can't resend response */ 484 }; 485 486 /* 487 * Host event codes. Note these are 1-based, not 0-based, because ACPI query 488 * EC command uses code 0 to mean "no event pending". We explicitly specify 489 * each value in the enum listing so they won't change if we delete/insert an 490 * item or rearrange the list (it needs to be stable across platforms, not 491 * just within a single compiled instance). 492 */ 493 enum host_event_code { 494 EC_HOST_EVENT_LID_CLOSED = 1, 495 EC_HOST_EVENT_LID_OPEN = 2, 496 EC_HOST_EVENT_POWER_BUTTON = 3, 497 EC_HOST_EVENT_AC_CONNECTED = 4, 498 EC_HOST_EVENT_AC_DISCONNECTED = 5, 499 EC_HOST_EVENT_BATTERY_LOW = 6, 500 EC_HOST_EVENT_BATTERY_CRITICAL = 7, 501 EC_HOST_EVENT_BATTERY = 8, 502 EC_HOST_EVENT_THERMAL_THRESHOLD = 9, 503 /* Event generated by a device attached to the EC */ 504 EC_HOST_EVENT_DEVICE = 10, 505 EC_HOST_EVENT_THERMAL = 11, 506 EC_HOST_EVENT_USB_CHARGER = 12, 507 EC_HOST_EVENT_KEY_PRESSED = 13, 508 /* 509 * EC has finished initializing the host interface. The host can check 510 * for this event following sending a EC_CMD_REBOOT_EC command to 511 * determine when the EC is ready to accept subsequent commands. 512 */ 513 EC_HOST_EVENT_INTERFACE_READY = 14, 514 /* Keyboard recovery combo has been pressed */ 515 EC_HOST_EVENT_KEYBOARD_RECOVERY = 15, 516 517 /* Shutdown due to thermal overload */ 518 EC_HOST_EVENT_THERMAL_SHUTDOWN = 16, 519 /* Shutdown due to battery level too low */ 520 EC_HOST_EVENT_BATTERY_SHUTDOWN = 17, 521 522 /* Suggest that the AP throttle itself */ 523 EC_HOST_EVENT_THROTTLE_START = 18, 524 /* Suggest that the AP resume normal speed */ 525 EC_HOST_EVENT_THROTTLE_STOP = 19, 526 527 /* Hang detect logic detected a hang and host event timeout expired */ 528 EC_HOST_EVENT_HANG_DETECT = 20, 529 /* Hang detect logic detected a hang and warm rebooted the AP */ 530 EC_HOST_EVENT_HANG_REBOOT = 21, 531 532 /* PD MCU triggering host event */ 533 EC_HOST_EVENT_PD_MCU = 22, 534 535 /* Battery Status flags have changed */ 536 EC_HOST_EVENT_BATTERY_STATUS = 23, 537 538 /* EC encountered a panic, triggering a reset */ 539 EC_HOST_EVENT_PANIC = 24, 540 541 /* Keyboard fastboot combo has been pressed */ 542 EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25, 543 544 /* EC RTC event occurred */ 545 EC_HOST_EVENT_RTC = 26, 546 547 /* Emulate MKBP event */ 548 EC_HOST_EVENT_MKBP = 27, 549 550 /* EC desires to change state of host-controlled USB mux */ 551 EC_HOST_EVENT_USB_MUX = 28, 552 553 /* TABLET/LAPTOP mode or detachable base attach/detach event */ 554 EC_HOST_EVENT_MODE_CHANGE = 29, 555 556 /* Keyboard recovery combo with hardware reinitialization */ 557 EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30, 558 559 /* 560 * The high bit of the event mask is not used as a host event code. If 561 * it reads back as set, then the entire event mask should be 562 * considered invalid by the host. This can happen when reading the 563 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is 564 * not initialized on the EC, or improperly configured on the host. 565 */ 566 EC_HOST_EVENT_INVALID = 32 567 }; 568 /* Host event mask */ 569 #define EC_HOST_EVENT_MASK(event_code) BIT_ULL((event_code) - 1) 570 571 /** 572 * struct ec_lpc_host_args - Arguments at EC_LPC_ADDR_HOST_ARGS 573 * @flags: The host argument flags. 574 * @command_version: Command version. 575 * @data_size: The length of data. 576 * @checksum: Checksum; sum of command + flags + command_version + data_size + 577 * all params/response data bytes. 578 */ 579 struct ec_lpc_host_args { 580 uint8_t flags; 581 uint8_t command_version; 582 uint8_t data_size; 583 uint8_t checksum; 584 } __ec_align4; 585 586 /* Flags for ec_lpc_host_args.flags */ 587 /* 588 * Args are from host. Data area at EC_LPC_ADDR_HOST_PARAM contains command 589 * params. 590 * 591 * If EC gets a command and this flag is not set, this is an old-style command. 592 * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with 593 * unknown length. EC must respond with an old-style response (that is, 594 * without setting EC_HOST_ARGS_FLAG_TO_HOST). 595 */ 596 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01 597 /* 598 * Args are from EC. Data area at EC_LPC_ADDR_HOST_PARAM contains response. 599 * 600 * If EC responds to a command and this flag is not set, this is an old-style 601 * response. Command version is 0 and response data from EC is at 602 * EC_LPC_ADDR_OLD_PARAM with unknown length. 603 */ 604 #define EC_HOST_ARGS_FLAG_TO_HOST 0x02 605 606 /*****************************************************************************/ 607 /* 608 * Byte codes returned by EC over SPI interface. 609 * 610 * These can be used by the AP to debug the EC interface, and to determine 611 * when the EC is not in a state where it will ever get around to responding 612 * to the AP. 613 * 614 * Example of sequence of bytes read from EC for a current good transfer: 615 * 1. - - AP asserts chip select (CS#) 616 * 2. EC_SPI_OLD_READY - AP sends first byte(s) of request 617 * 3. - - EC starts handling CS# interrupt 618 * 4. EC_SPI_RECEIVING - AP sends remaining byte(s) of request 619 * 5. EC_SPI_PROCESSING - EC starts processing request; AP is clocking in 620 * bytes looking for EC_SPI_FRAME_START 621 * 6. - - EC finishes processing and sets up response 622 * 7. EC_SPI_FRAME_START - AP reads frame byte 623 * 8. (response packet) - AP reads response packet 624 * 9. EC_SPI_PAST_END - Any additional bytes read by AP 625 * 10 - - AP deasserts chip select 626 * 11 - - EC processes CS# interrupt and sets up DMA for 627 * next request 628 * 629 * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than 630 * the following byte values: 631 * EC_SPI_OLD_READY 632 * EC_SPI_RX_READY 633 * EC_SPI_RECEIVING 634 * EC_SPI_PROCESSING 635 * 636 * Then the EC found an error in the request, or was not ready for the request 637 * and lost data. The AP should give up waiting for EC_SPI_FRAME_START, 638 * because the EC is unable to tell when the AP is done sending its request. 639 */ 640 641 /* 642 * Framing byte which precedes a response packet from the EC. After sending a 643 * request, the AP will clock in bytes until it sees the framing byte, then 644 * clock in the response packet. 645 */ 646 #define EC_SPI_FRAME_START 0xec 647 648 /* 649 * Padding bytes which are clocked out after the end of a response packet. 650 */ 651 #define EC_SPI_PAST_END 0xed 652 653 /* 654 * EC is ready to receive, and has ignored the byte sent by the AP. EC expects 655 * that the AP will send a valid packet header (starting with 656 * EC_COMMAND_PROTOCOL_3) in the next 32 bytes. 657 */ 658 #define EC_SPI_RX_READY 0xf8 659 660 /* 661 * EC has started receiving the request from the AP, but hasn't started 662 * processing it yet. 663 */ 664 #define EC_SPI_RECEIVING 0xf9 665 666 /* EC has received the entire request from the AP and is processing it. */ 667 #define EC_SPI_PROCESSING 0xfa 668 669 /* 670 * EC received bad data from the AP, such as a packet header with an invalid 671 * length. EC will ignore all data until chip select deasserts. 672 */ 673 #define EC_SPI_RX_BAD_DATA 0xfb 674 675 /* 676 * EC received data from the AP before it was ready. That is, the AP asserted 677 * chip select and started clocking data before the EC was ready to receive it. 678 * EC will ignore all data until chip select deasserts. 679 */ 680 #define EC_SPI_NOT_READY 0xfc 681 682 /* 683 * EC was ready to receive a request from the AP. EC has treated the byte sent 684 * by the AP as part of a request packet, or (for old-style ECs) is processing 685 * a fully received packet but is not ready to respond yet. 686 */ 687 #define EC_SPI_OLD_READY 0xfd 688 689 /*****************************************************************************/ 690 691 /* 692 * Protocol version 2 for I2C and SPI send a request this way: 693 * 694 * 0 EC_CMD_VERSION0 + (command version) 695 * 1 Command number 696 * 2 Length of params = N 697 * 3..N+2 Params, if any 698 * N+3 8-bit checksum of bytes 0..N+2 699 * 700 * The corresponding response is: 701 * 702 * 0 Result code (EC_RES_*) 703 * 1 Length of params = M 704 * 2..M+1 Params, if any 705 * M+2 8-bit checksum of bytes 0..M+1 706 */ 707 #define EC_PROTO2_REQUEST_HEADER_BYTES 3 708 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1 709 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES + \ 710 EC_PROTO2_REQUEST_TRAILER_BYTES) 711 712 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2 713 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1 714 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES + \ 715 EC_PROTO2_RESPONSE_TRAILER_BYTES) 716 717 /* Parameter length was limited by the LPC interface */ 718 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc 719 720 /* Maximum request and response packet sizes for protocol version 2 */ 721 #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD + \ 722 EC_PROTO2_MAX_PARAM_SIZE) 723 #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD + \ 724 EC_PROTO2_MAX_PARAM_SIZE) 725 726 /*****************************************************************************/ 727 728 /* 729 * Value written to legacy command port / prefix byte to indicate protocol 730 * 3+ structs are being used. Usage is bus-dependent. 731 */ 732 #define EC_COMMAND_PROTOCOL_3 0xda 733 734 #define EC_HOST_REQUEST_VERSION 3 735 736 /** 737 * struct ec_host_request - Version 3 request from host. 738 * @struct_version: Should be 3. The EC will return EC_RES_INVALID_HEADER if it 739 * receives a header with a version it doesn't know how to 740 * parse. 741 * @checksum: Checksum of request and data; sum of all bytes including checksum 742 * should total to 0. 743 * @command: Command to send (EC_CMD_...) 744 * @command_version: Command version. 745 * @reserved: Unused byte in current protocol version; set to 0. 746 * @data_len: Length of data which follows this header. 747 */ 748 struct ec_host_request { 749 uint8_t struct_version; 750 uint8_t checksum; 751 uint16_t command; 752 uint8_t command_version; 753 uint8_t reserved; 754 uint16_t data_len; 755 } __ec_align4; 756 757 #define EC_HOST_RESPONSE_VERSION 3 758 759 /** 760 * struct ec_host_response - Version 3 response from EC. 761 * @struct_version: Struct version (=3). 762 * @checksum: Checksum of response and data; sum of all bytes including 763 * checksum should total to 0. 764 * @result: EC's response to the command (separate from communication failure) 765 * @data_len: Length of data which follows this header. 766 * @reserved: Unused bytes in current protocol version; set to 0. 767 */ 768 struct ec_host_response { 769 uint8_t struct_version; 770 uint8_t checksum; 771 uint16_t result; 772 uint16_t data_len; 773 uint16_t reserved; 774 } __ec_align4; 775 776 /*****************************************************************************/ 777 778 /* 779 * Host command protocol V4. 780 * 781 * Packets always start with a request or response header. They are followed 782 * by data_len bytes of data. If the data_crc_present flag is set, the data 783 * bytes are followed by a CRC-8 of that data, using using x^8 + x^2 + x + 1 784 * polynomial. 785 * 786 * Host algorithm when sending a request q: 787 * 788 * 101) tries_left=(some value, e.g. 3); 789 * 102) q.seq_num++ 790 * 103) q.seq_dup=0 791 * 104) Calculate q.header_crc. 792 * 105) Send request q to EC. 793 * 106) Wait for response r. Go to 201 if received or 301 if timeout. 794 * 795 * 201) If r.struct_version != 4, go to 301. 796 * 202) If r.header_crc mismatches calculated CRC for r header, go to 301. 797 * 203) If r.data_crc_present and r.data_crc mismatches, go to 301. 798 * 204) If r.seq_num != q.seq_num, go to 301. 799 * 205) If r.seq_dup == q.seq_dup, return success. 800 * 207) If r.seq_dup == 1, go to 301. 801 * 208) Return error. 802 * 803 * 301) If --tries_left <= 0, return error. 804 * 302) If q.seq_dup == 1, go to 105. 805 * 303) q.seq_dup = 1 806 * 304) Go to 104. 807 * 808 * EC algorithm when receiving a request q. 809 * EC has response buffer r, error buffer e. 810 * 811 * 101) If q.struct_version != 4, set e.result = EC_RES_INVALID_HEADER_VERSION 812 * and go to 301 813 * 102) If q.header_crc mismatches calculated CRC, set e.result = 814 * EC_RES_INVALID_HEADER_CRC and go to 301 815 * 103) If q.data_crc_present, calculate data CRC. If that mismatches the CRC 816 * byte at the end of the packet, set e.result = EC_RES_INVALID_DATA_CRC 817 * and go to 301. 818 * 104) If q.seq_dup == 0, go to 201. 819 * 105) If q.seq_num != r.seq_num, go to 201. 820 * 106) If q.seq_dup == r.seq_dup, go to 205, else go to 203. 821 * 822 * 201) Process request q into response r. 823 * 202) r.seq_num = q.seq_num 824 * 203) r.seq_dup = q.seq_dup 825 * 204) Calculate r.header_crc 826 * 205) If r.data_len > 0 and data is no longer available, set e.result = 827 * EC_RES_DUP_UNAVAILABLE and go to 301. 828 * 206) Send response r. 829 * 830 * 301) e.seq_num = q.seq_num 831 * 302) e.seq_dup = q.seq_dup 832 * 303) Calculate e.header_crc. 833 * 304) Send error response e. 834 */ 835 836 /* Version 4 request from host */ 837 struct ec_host_request4 { 838 /* 839 * bits 0-3: struct_version: Structure version (=4) 840 * bit 4: is_response: Is response (=0) 841 * bits 5-6: seq_num: Sequence number 842 * bit 7: seq_dup: Sequence duplicate flag 843 */ 844 uint8_t fields0; 845 846 /* 847 * bits 0-4: command_version: Command version 848 * bits 5-6: Reserved (set 0, ignore on read) 849 * bit 7: data_crc_present: Is data CRC present after data 850 */ 851 uint8_t fields1; 852 853 /* Command code (EC_CMD_*) */ 854 uint16_t command; 855 856 /* Length of data which follows this header (not including data CRC) */ 857 uint16_t data_len; 858 859 /* Reserved (set 0, ignore on read) */ 860 uint8_t reserved; 861 862 /* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */ 863 uint8_t header_crc; 864 } __ec_align4; 865 866 /* Version 4 response from EC */ 867 struct ec_host_response4 { 868 /* 869 * bits 0-3: struct_version: Structure version (=4) 870 * bit 4: is_response: Is response (=1) 871 * bits 5-6: seq_num: Sequence number 872 * bit 7: seq_dup: Sequence duplicate flag 873 */ 874 uint8_t fields0; 875 876 /* 877 * bits 0-6: Reserved (set 0, ignore on read) 878 * bit 7: data_crc_present: Is data CRC present after data 879 */ 880 uint8_t fields1; 881 882 /* Result code (EC_RES_*) */ 883 uint16_t result; 884 885 /* Length of data which follows this header (not including data CRC) */ 886 uint16_t data_len; 887 888 /* Reserved (set 0, ignore on read) */ 889 uint8_t reserved; 890 891 /* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */ 892 uint8_t header_crc; 893 } __ec_align4; 894 895 /* Fields in fields0 byte */ 896 #define EC_PACKET4_0_STRUCT_VERSION_MASK 0x0f 897 #define EC_PACKET4_0_IS_RESPONSE_MASK 0x10 898 #define EC_PACKET4_0_SEQ_NUM_SHIFT 5 899 #define EC_PACKET4_0_SEQ_NUM_MASK 0x60 900 #define EC_PACKET4_0_SEQ_DUP_MASK 0x80 901 902 /* Fields in fields1 byte */ 903 #define EC_PACKET4_1_COMMAND_VERSION_MASK 0x1f /* (request only) */ 904 #define EC_PACKET4_1_DATA_CRC_PRESENT_MASK 0x80 905 906 /*****************************************************************************/ 907 /* 908 * Notes on commands: 909 * 910 * Each command is an 16-bit command value. Commands which take params or 911 * return response data specify structures for that data. If no structure is 912 * specified, the command does not input or output data, respectively. 913 * Parameter/response length is implicit in the structs. Some underlying 914 * communication protocols (I2C, SPI) may add length or checksum headers, but 915 * those are implementation-dependent and not defined here. 916 * 917 * All commands MUST be #defined to be 4-digit UPPER CASE hex values 918 * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work. 919 */ 920 921 /*****************************************************************************/ 922 /* General / test commands */ 923 924 /* 925 * Get protocol version, used to deal with non-backward compatible protocol 926 * changes. 927 */ 928 #define EC_CMD_PROTO_VERSION 0x0000 929 930 /** 931 * struct ec_response_proto_version - Response to the proto version command. 932 * @version: The protocol version. 933 */ 934 struct ec_response_proto_version { 935 uint32_t version; 936 } __ec_align4; 937 938 /* 939 * Hello. This is a simple command to test the EC is responsive to 940 * commands. 941 */ 942 #define EC_CMD_HELLO 0x0001 943 944 /** 945 * struct ec_params_hello - Parameters to the hello command. 946 * @in_data: Pass anything here. 947 */ 948 struct ec_params_hello { 949 uint32_t in_data; 950 } __ec_align4; 951 952 /** 953 * struct ec_response_hello - Response to the hello command. 954 * @out_data: Output will be in_data + 0x01020304. 955 */ 956 struct ec_response_hello { 957 uint32_t out_data; 958 } __ec_align4; 959 960 /* Get version number */ 961 #define EC_CMD_GET_VERSION 0x0002 962 963 enum ec_current_image { 964 EC_IMAGE_UNKNOWN = 0, 965 EC_IMAGE_RO, 966 EC_IMAGE_RW 967 }; 968 969 /** 970 * struct ec_response_get_version - Response to the get version command. 971 * @version_string_ro: Null-terminated RO firmware version string. 972 * @version_string_rw: Null-terminated RW firmware version string. 973 * @reserved: Unused bytes; was previously RW-B firmware version string. 974 * @current_image: One of ec_current_image. 975 */ 976 struct ec_response_get_version { 977 char version_string_ro[32]; 978 char version_string_rw[32]; 979 char reserved[32]; 980 uint32_t current_image; 981 } __ec_align4; 982 983 /* Read test */ 984 #define EC_CMD_READ_TEST 0x0003 985 986 /** 987 * struct ec_params_read_test - Parameters for the read test command. 988 * @offset: Starting value for read buffer. 989 * @size: Size to read in bytes. 990 */ 991 struct ec_params_read_test { 992 uint32_t offset; 993 uint32_t size; 994 } __ec_align4; 995 996 /** 997 * struct ec_response_read_test - Response to the read test command. 998 * @data: Data returned by the read test command. 999 */ 1000 struct ec_response_read_test { 1001 uint32_t data[32]; 1002 } __ec_align4; 1003 1004 /* 1005 * Get build information 1006 * 1007 * Response is null-terminated string. 1008 */ 1009 #define EC_CMD_GET_BUILD_INFO 0x0004 1010 1011 /* Get chip info */ 1012 #define EC_CMD_GET_CHIP_INFO 0x0005 1013 1014 /** 1015 * struct ec_response_get_chip_info - Response to the get chip info command. 1016 * @vendor: Null-terminated string for chip vendor. 1017 * @name: Null-terminated string for chip name. 1018 * @revision: Null-terminated string for chip mask version. 1019 */ 1020 struct ec_response_get_chip_info { 1021 char vendor[32]; 1022 char name[32]; 1023 char revision[32]; 1024 } __ec_align4; 1025 1026 /* Get board HW version */ 1027 #define EC_CMD_GET_BOARD_VERSION 0x0006 1028 1029 /** 1030 * struct ec_response_board_version - Response to the board version command. 1031 * @board_version: A monotonously incrementing number. 1032 */ 1033 struct ec_response_board_version { 1034 uint16_t board_version; 1035 } __ec_align2; 1036 1037 /* 1038 * Read memory-mapped data. 1039 * 1040 * This is an alternate interface to memory-mapped data for bus protocols 1041 * which don't support direct-mapped memory - I2C, SPI, etc. 1042 * 1043 * Response is params.size bytes of data. 1044 */ 1045 #define EC_CMD_READ_MEMMAP 0x0007 1046 1047 /** 1048 * struct ec_params_read_memmap - Parameters for the read memory map command. 1049 * @offset: Offset in memmap (EC_MEMMAP_*). 1050 * @size: Size to read in bytes. 1051 */ 1052 struct ec_params_read_memmap { 1053 uint8_t offset; 1054 uint8_t size; 1055 } __ec_align1; 1056 1057 /* Read versions supported for a command */ 1058 #define EC_CMD_GET_CMD_VERSIONS 0x0008 1059 1060 /** 1061 * struct ec_params_get_cmd_versions - Parameters for the get command versions. 1062 * @cmd: Command to check. 1063 */ 1064 struct ec_params_get_cmd_versions { 1065 uint8_t cmd; 1066 } __ec_align1; 1067 1068 /** 1069 * struct ec_params_get_cmd_versions_v1 - Parameters for the get command 1070 * versions (v1) 1071 * @cmd: Command to check. 1072 */ 1073 struct ec_params_get_cmd_versions_v1 { 1074 uint16_t cmd; 1075 } __ec_align2; 1076 1077 /** 1078 * struct ec_response_get_cmd_version - Response to the get command versions. 1079 * @version_mask: Mask of supported versions; use EC_VER_MASK() to compare with 1080 * a desired version. 1081 */ 1082 struct ec_response_get_cmd_versions { 1083 uint32_t version_mask; 1084 } __ec_align4; 1085 1086 /* 1087 * Check EC communications status (busy). This is needed on i2c/spi but not 1088 * on lpc since it has its own out-of-band busy indicator. 1089 * 1090 * lpc must read the status from the command register. Attempting this on 1091 * lpc will overwrite the args/parameter space and corrupt its data. 1092 */ 1093 #define EC_CMD_GET_COMMS_STATUS 0x0009 1094 1095 /* Avoid using ec_status which is for return values */ 1096 enum ec_comms_status { 1097 EC_COMMS_STATUS_PROCESSING = BIT(0), /* Processing cmd */ 1098 }; 1099 1100 /** 1101 * struct ec_response_get_comms_status - Response to the get comms status 1102 * command. 1103 * @flags: Mask of enum ec_comms_status. 1104 */ 1105 struct ec_response_get_comms_status { 1106 uint32_t flags; /* Mask of enum ec_comms_status */ 1107 } __ec_align4; 1108 1109 /* Fake a variety of responses, purely for testing purposes. */ 1110 #define EC_CMD_TEST_PROTOCOL 0x000A 1111 1112 /* Tell the EC what to send back to us. */ 1113 struct ec_params_test_protocol { 1114 uint32_t ec_result; 1115 uint32_t ret_len; 1116 uint8_t buf[32]; 1117 } __ec_align4; 1118 1119 /* Here it comes... */ 1120 struct ec_response_test_protocol { 1121 uint8_t buf[32]; 1122 } __ec_align4; 1123 1124 /* Get protocol information */ 1125 #define EC_CMD_GET_PROTOCOL_INFO 0x000B 1126 1127 /* Flags for ec_response_get_protocol_info.flags */ 1128 /* EC_RES_IN_PROGRESS may be returned if a command is slow */ 1129 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED BIT(0) 1130 1131 /** 1132 * struct ec_response_get_protocol_info - Response to the get protocol info. 1133 * @protocol_versions: Bitmask of protocol versions supported (1 << n means 1134 * version n). 1135 * @max_request_packet_size: Maximum request packet size in bytes. 1136 * @max_response_packet_size: Maximum response packet size in bytes. 1137 * @flags: see EC_PROTOCOL_INFO_* 1138 */ 1139 struct ec_response_get_protocol_info { 1140 /* Fields which exist if at least protocol version 3 supported */ 1141 uint32_t protocol_versions; 1142 uint16_t max_request_packet_size; 1143 uint16_t max_response_packet_size; 1144 uint32_t flags; 1145 } __ec_align4; 1146 1147 1148 /*****************************************************************************/ 1149 /* Get/Set miscellaneous values */ 1150 1151 /* The upper byte of .flags tells what to do (nothing means "get") */ 1152 #define EC_GSV_SET 0x80000000 1153 1154 /* 1155 * The lower three bytes of .flags identifies the parameter, if that has 1156 * meaning for an individual command. 1157 */ 1158 #define EC_GSV_PARAM_MASK 0x00ffffff 1159 1160 struct ec_params_get_set_value { 1161 uint32_t flags; 1162 uint32_t value; 1163 } __ec_align4; 1164 1165 struct ec_response_get_set_value { 1166 uint32_t flags; 1167 uint32_t value; 1168 } __ec_align4; 1169 1170 /* More than one command can use these structs to get/set parameters. */ 1171 #define EC_CMD_GSV_PAUSE_IN_S5 0x000C 1172 1173 /*****************************************************************************/ 1174 /* List the features supported by the firmware */ 1175 #define EC_CMD_GET_FEATURES 0x000D 1176 1177 /* Supported features */ 1178 enum ec_feature_code { 1179 /* 1180 * This image contains a limited set of features. Another image 1181 * in RW partition may support more features. 1182 */ 1183 EC_FEATURE_LIMITED = 0, 1184 /* 1185 * Commands for probing/reading/writing/erasing the flash in the 1186 * EC are present. 1187 */ 1188 EC_FEATURE_FLASH = 1, 1189 /* 1190 * Can control the fan speed directly. 1191 */ 1192 EC_FEATURE_PWM_FAN = 2, 1193 /* 1194 * Can control the intensity of the keyboard backlight. 1195 */ 1196 EC_FEATURE_PWM_KEYB = 3, 1197 /* 1198 * Support Google lightbar, introduced on Pixel. 1199 */ 1200 EC_FEATURE_LIGHTBAR = 4, 1201 /* Control of LEDs */ 1202 EC_FEATURE_LED = 5, 1203 /* Exposes an interface to control gyro and sensors. 1204 * The host goes through the EC to access these sensors. 1205 * In addition, the EC may provide composite sensors, like lid angle. 1206 */ 1207 EC_FEATURE_MOTION_SENSE = 6, 1208 /* The keyboard is controlled by the EC */ 1209 EC_FEATURE_KEYB = 7, 1210 /* The AP can use part of the EC flash as persistent storage. */ 1211 EC_FEATURE_PSTORE = 8, 1212 /* The EC monitors BIOS port 80h, and can return POST codes. */ 1213 EC_FEATURE_PORT80 = 9, 1214 /* 1215 * Thermal management: include TMP specific commands. 1216 * Higher level than direct fan control. 1217 */ 1218 EC_FEATURE_THERMAL = 10, 1219 /* Can switch the screen backlight on/off */ 1220 EC_FEATURE_BKLIGHT_SWITCH = 11, 1221 /* Can switch the wifi module on/off */ 1222 EC_FEATURE_WIFI_SWITCH = 12, 1223 /* Monitor host events, through for example SMI or SCI */ 1224 EC_FEATURE_HOST_EVENTS = 13, 1225 /* The EC exposes GPIO commands to control/monitor connected devices. */ 1226 EC_FEATURE_GPIO = 14, 1227 /* The EC can send i2c messages to downstream devices. */ 1228 EC_FEATURE_I2C = 15, 1229 /* Command to control charger are included */ 1230 EC_FEATURE_CHARGER = 16, 1231 /* Simple battery support. */ 1232 EC_FEATURE_BATTERY = 17, 1233 /* 1234 * Support Smart battery protocol 1235 * (Common Smart Battery System Interface Specification) 1236 */ 1237 EC_FEATURE_SMART_BATTERY = 18, 1238 /* EC can detect when the host hangs. */ 1239 EC_FEATURE_HANG_DETECT = 19, 1240 /* Report power information, for pit only */ 1241 EC_FEATURE_PMU = 20, 1242 /* Another Cros EC device is present downstream of this one */ 1243 EC_FEATURE_SUB_MCU = 21, 1244 /* Support USB Power delivery (PD) commands */ 1245 EC_FEATURE_USB_PD = 22, 1246 /* Control USB multiplexer, for audio through USB port for instance. */ 1247 EC_FEATURE_USB_MUX = 23, 1248 /* Motion Sensor code has an internal software FIFO */ 1249 EC_FEATURE_MOTION_SENSE_FIFO = 24, 1250 /* Support temporary secure vstore */ 1251 EC_FEATURE_VSTORE = 25, 1252 /* EC decides on USB-C SS mux state, muxes configured by host */ 1253 EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26, 1254 /* EC has RTC feature that can be controlled by host commands */ 1255 EC_FEATURE_RTC = 27, 1256 /* The MCU exposes a Fingerprint sensor */ 1257 EC_FEATURE_FINGERPRINT = 28, 1258 /* The MCU exposes a Touchpad */ 1259 EC_FEATURE_TOUCHPAD = 29, 1260 /* The MCU has RWSIG task enabled */ 1261 EC_FEATURE_RWSIG = 30, 1262 /* EC has device events support */ 1263 EC_FEATURE_DEVICE_EVENT = 31, 1264 /* EC supports the unified wake masks for LPC/eSPI systems */ 1265 EC_FEATURE_UNIFIED_WAKE_MASKS = 32, 1266 /* EC supports 64-bit host events */ 1267 EC_FEATURE_HOST_EVENT64 = 33, 1268 /* EC runs code in RAM (not in place, a.k.a. XIP) */ 1269 EC_FEATURE_EXEC_IN_RAM = 34, 1270 /* EC supports CEC commands */ 1271 EC_FEATURE_CEC = 35, 1272 /* EC supports tight sensor timestamping. */ 1273 EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS = 36, 1274 /* 1275 * EC supports tablet mode detection aligned to Chrome and allows 1276 * setting of threshold by host command using 1277 * MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. 1278 */ 1279 EC_FEATURE_REFINED_TABLET_MODE_HYSTERESIS = 37, 1280 /* EC supports audio codec. */ 1281 EC_FEATURE_AUDIO_CODEC = 38, 1282 /* The MCU is a System Companion Processor (SCP). */ 1283 EC_FEATURE_SCP = 39, 1284 /* The MCU is an Integrated Sensor Hub */ 1285 EC_FEATURE_ISH = 40, 1286 }; 1287 1288 #define EC_FEATURE_MASK_0(event_code) BIT(event_code % 32) 1289 #define EC_FEATURE_MASK_1(event_code) BIT(event_code - 32) 1290 1291 struct ec_response_get_features { 1292 uint32_t flags[2]; 1293 } __ec_align4; 1294 1295 /*****************************************************************************/ 1296 /* Get the board's SKU ID from EC */ 1297 #define EC_CMD_GET_SKU_ID 0x000E 1298 1299 /* Set SKU ID from AP */ 1300 #define EC_CMD_SET_SKU_ID 0x000F 1301 1302 struct ec_sku_id_info { 1303 uint32_t sku_id; 1304 } __ec_align4; 1305 1306 /*****************************************************************************/ 1307 /* Flash commands */ 1308 1309 /* Get flash info */ 1310 #define EC_CMD_FLASH_INFO 0x0010 1311 #define EC_VER_FLASH_INFO 2 1312 1313 /** 1314 * struct ec_response_flash_info - Response to the flash info command. 1315 * @flash_size: Usable flash size in bytes. 1316 * @write_block_size: Write block size. Write offset and size must be a 1317 * multiple of this. 1318 * @erase_block_size: Erase block size. Erase offset and size must be a 1319 * multiple of this. 1320 * @protect_block_size: Protection block size. Protection offset and size 1321 * must be a multiple of this. 1322 * 1323 * Version 0 returns these fields. 1324 */ 1325 struct ec_response_flash_info { 1326 uint32_t flash_size; 1327 uint32_t write_block_size; 1328 uint32_t erase_block_size; 1329 uint32_t protect_block_size; 1330 } __ec_align4; 1331 1332 /* 1333 * Flags for version 1+ flash info command 1334 * EC flash erases bits to 0 instead of 1. 1335 */ 1336 #define EC_FLASH_INFO_ERASE_TO_0 BIT(0) 1337 1338 /* 1339 * Flash must be selected for read/write/erase operations to succeed. This may 1340 * be necessary on a chip where write/erase can be corrupted by other board 1341 * activity, or where the chip needs to enable some sort of programming voltage, 1342 * or where the read/write/erase operations require cleanly suspending other 1343 * chip functionality. 1344 */ 1345 #define EC_FLASH_INFO_SELECT_REQUIRED BIT(1) 1346 1347 /** 1348 * struct ec_response_flash_info_1 - Response to the flash info v1 command. 1349 * @flash_size: Usable flash size in bytes. 1350 * @write_block_size: Write block size. Write offset and size must be a 1351 * multiple of this. 1352 * @erase_block_size: Erase block size. Erase offset and size must be a 1353 * multiple of this. 1354 * @protect_block_size: Protection block size. Protection offset and size 1355 * must be a multiple of this. 1356 * @write_ideal_size: Ideal write size in bytes. Writes will be fastest if 1357 * size is exactly this and offset is a multiple of this. 1358 * For example, an EC may have a write buffer which can do 1359 * half-page operations if data is aligned, and a slower 1360 * word-at-a-time write mode. 1361 * @flags: Flags; see EC_FLASH_INFO_* 1362 * 1363 * Version 1 returns the same initial fields as version 0, with additional 1364 * fields following. 1365 * 1366 * gcc anonymous structs don't seem to get along with the __packed directive; 1367 * if they did we'd define the version 0 structure as a sub-structure of this 1368 * one. 1369 * 1370 * Version 2 supports flash banks of different sizes: 1371 * The caller specified the number of banks it has preallocated 1372 * (num_banks_desc) 1373 * The EC returns the number of banks describing the flash memory. 1374 * It adds banks descriptions up to num_banks_desc. 1375 */ 1376 struct ec_response_flash_info_1 { 1377 /* Version 0 fields; see above for description */ 1378 uint32_t flash_size; 1379 uint32_t write_block_size; 1380 uint32_t erase_block_size; 1381 uint32_t protect_block_size; 1382 1383 /* Version 1 adds these fields: */ 1384 uint32_t write_ideal_size; 1385 uint32_t flags; 1386 } __ec_align4; 1387 1388 struct ec_params_flash_info_2 { 1389 /* Number of banks to describe */ 1390 uint16_t num_banks_desc; 1391 /* Reserved; set 0; ignore on read */ 1392 uint8_t reserved[2]; 1393 } __ec_align4; 1394 1395 struct ec_flash_bank { 1396 /* Number of sector is in this bank. */ 1397 uint16_t count; 1398 /* Size in power of 2 of each sector (8 --> 256 bytes) */ 1399 uint8_t size_exp; 1400 /* Minimal write size for the sectors in this bank */ 1401 uint8_t write_size_exp; 1402 /* Erase size for the sectors in this bank */ 1403 uint8_t erase_size_exp; 1404 /* Size for write protection, usually identical to erase size. */ 1405 uint8_t protect_size_exp; 1406 /* Reserved; set 0; ignore on read */ 1407 uint8_t reserved[2]; 1408 }; 1409 1410 struct ec_response_flash_info_2 { 1411 /* Total flash in the EC. */ 1412 uint32_t flash_size; 1413 /* Flags; see EC_FLASH_INFO_* */ 1414 uint32_t flags; 1415 /* Maximum size to use to send data to write to the EC. */ 1416 uint32_t write_ideal_size; 1417 /* Number of banks present in the EC. */ 1418 uint16_t num_banks_total; 1419 /* Number of banks described in banks array. */ 1420 uint16_t num_banks_desc; 1421 struct ec_flash_bank banks[0]; 1422 } __ec_align4; 1423 1424 /* 1425 * Read flash 1426 * 1427 * Response is params.size bytes of data. 1428 */ 1429 #define EC_CMD_FLASH_READ 0x0011 1430 1431 /** 1432 * struct ec_params_flash_read - Parameters for the flash read command. 1433 * @offset: Byte offset to read. 1434 * @size: Size to read in bytes. 1435 */ 1436 struct ec_params_flash_read { 1437 uint32_t offset; 1438 uint32_t size; 1439 } __ec_align4; 1440 1441 /* Write flash */ 1442 #define EC_CMD_FLASH_WRITE 0x0012 1443 #define EC_VER_FLASH_WRITE 1 1444 1445 /* Version 0 of the flash command supported only 64 bytes of data */ 1446 #define EC_FLASH_WRITE_VER0_SIZE 64 1447 1448 /** 1449 * struct ec_params_flash_write - Parameters for the flash write command. 1450 * @offset: Byte offset to write. 1451 * @size: Size to write in bytes. 1452 */ 1453 struct ec_params_flash_write { 1454 uint32_t offset; 1455 uint32_t size; 1456 /* Followed by data to write */ 1457 } __ec_align4; 1458 1459 /* Erase flash */ 1460 #define EC_CMD_FLASH_ERASE 0x0013 1461 1462 /** 1463 * struct ec_params_flash_erase - Parameters for the flash erase command, v0. 1464 * @offset: Byte offset to erase. 1465 * @size: Size to erase in bytes. 1466 */ 1467 struct ec_params_flash_erase { 1468 uint32_t offset; 1469 uint32_t size; 1470 } __ec_align4; 1471 1472 /* 1473 * v1 add async erase: 1474 * subcommands can returns: 1475 * EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below). 1476 * EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary. 1477 * EC_RES_ERROR : other errors. 1478 * EC_RES_BUSY : an existing erase operation is in progress. 1479 * EC_RES_ACCESS_DENIED: Trying to erase running image. 1480 * 1481 * When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just 1482 * properly queued. The user must call ERASE_GET_RESULT subcommand to get 1483 * the proper result. 1484 * When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send 1485 * ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC. 1486 * ERASE_GET_RESULT command may timeout on EC where flash access is not 1487 * permitted while erasing. (For instance, STM32F4). 1488 */ 1489 enum ec_flash_erase_cmd { 1490 FLASH_ERASE_SECTOR, /* Erase and wait for result */ 1491 FLASH_ERASE_SECTOR_ASYNC, /* Erase and return immediately. */ 1492 FLASH_ERASE_GET_RESULT, /* Ask for last erase result */ 1493 }; 1494 1495 /** 1496 * struct ec_params_flash_erase_v1 - Parameters for the flash erase command, v1. 1497 * @cmd: One of ec_flash_erase_cmd. 1498 * @reserved: Pad byte; currently always contains 0. 1499 * @flag: No flags defined yet; set to 0. 1500 * @params: Same as v0 parameters. 1501 */ 1502 struct ec_params_flash_erase_v1 { 1503 uint8_t cmd; 1504 uint8_t reserved; 1505 uint16_t flag; 1506 struct ec_params_flash_erase params; 1507 } __ec_align4; 1508 1509 /* 1510 * Get/set flash protection. 1511 * 1512 * If mask!=0, sets/clear the requested bits of flags. Depending on the 1513 * firmware write protect GPIO, not all flags will take effect immediately; 1514 * some flags require a subsequent hard reset to take effect. Check the 1515 * returned flags bits to see what actually happened. 1516 * 1517 * If mask=0, simply returns the current flags state. 1518 */ 1519 #define EC_CMD_FLASH_PROTECT 0x0015 1520 #define EC_VER_FLASH_PROTECT 1 /* Command version 1 */ 1521 1522 /* Flags for flash protection */ 1523 /* RO flash code protected when the EC boots */ 1524 #define EC_FLASH_PROTECT_RO_AT_BOOT BIT(0) 1525 /* 1526 * RO flash code protected now. If this bit is set, at-boot status cannot 1527 * be changed. 1528 */ 1529 #define EC_FLASH_PROTECT_RO_NOW BIT(1) 1530 /* Entire flash code protected now, until reboot. */ 1531 #define EC_FLASH_PROTECT_ALL_NOW BIT(2) 1532 /* Flash write protect GPIO is asserted now */ 1533 #define EC_FLASH_PROTECT_GPIO_ASSERTED BIT(3) 1534 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */ 1535 #define EC_FLASH_PROTECT_ERROR_STUCK BIT(4) 1536 /* 1537 * Error - flash protection is in inconsistent state. At least one bank of 1538 * flash which should be protected is not protected. Usually fixed by 1539 * re-requesting the desired flags, or by a hard reset if that fails. 1540 */ 1541 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT BIT(5) 1542 /* Entire flash code protected when the EC boots */ 1543 #define EC_FLASH_PROTECT_ALL_AT_BOOT BIT(6) 1544 /* RW flash code protected when the EC boots */ 1545 #define EC_FLASH_PROTECT_RW_AT_BOOT BIT(7) 1546 /* RW flash code protected now. */ 1547 #define EC_FLASH_PROTECT_RW_NOW BIT(8) 1548 /* Rollback information flash region protected when the EC boots */ 1549 #define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT BIT(9) 1550 /* Rollback information flash region protected now */ 1551 #define EC_FLASH_PROTECT_ROLLBACK_NOW BIT(10) 1552 1553 1554 /** 1555 * struct ec_params_flash_protect - Parameters for the flash protect command. 1556 * @mask: Bits in flags to apply. 1557 * @flags: New flags to apply. 1558 */ 1559 struct ec_params_flash_protect { 1560 uint32_t mask; 1561 uint32_t flags; 1562 } __ec_align4; 1563 1564 /** 1565 * struct ec_response_flash_protect - Response to the flash protect command. 1566 * @flags: Current value of flash protect flags. 1567 * @valid_flags: Flags which are valid on this platform. This allows the 1568 * caller to distinguish between flags which aren't set vs. flags 1569 * which can't be set on this platform. 1570 * @writable_flags: Flags which can be changed given the current protection 1571 * state. 1572 */ 1573 struct ec_response_flash_protect { 1574 uint32_t flags; 1575 uint32_t valid_flags; 1576 uint32_t writable_flags; 1577 } __ec_align4; 1578 1579 /* 1580 * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash 1581 * write protect. These commands may be reused with version > 0. 1582 */ 1583 1584 /* Get the region offset/size */ 1585 #define EC_CMD_FLASH_REGION_INFO 0x0016 1586 #define EC_VER_FLASH_REGION_INFO 1 1587 1588 enum ec_flash_region { 1589 /* Region which holds read-only EC image */ 1590 EC_FLASH_REGION_RO = 0, 1591 /* 1592 * Region which holds active RW image. 'Active' is different from 1593 * 'running'. Active means 'scheduled-to-run'. Since RO image always 1594 * scheduled to run, active/non-active applies only to RW images (for 1595 * the same reason 'update' applies only to RW images. It's a state of 1596 * an image on a flash. Running image can be RO, RW_A, RW_B but active 1597 * image can only be RW_A or RW_B. In recovery mode, an active RW image 1598 * doesn't enter 'running' state but it's still active on a flash. 1599 */ 1600 EC_FLASH_REGION_ACTIVE, 1601 /* 1602 * Region which should be write-protected in the factory (a superset of 1603 * EC_FLASH_REGION_RO) 1604 */ 1605 EC_FLASH_REGION_WP_RO, 1606 /* Region which holds updatable (non-active) RW image */ 1607 EC_FLASH_REGION_UPDATE, 1608 /* Number of regions */ 1609 EC_FLASH_REGION_COUNT, 1610 }; 1611 /* 1612 * 'RW' is vague if there are multiple RW images; we mean the active one, 1613 * so the old constant is deprecated. 1614 */ 1615 #define EC_FLASH_REGION_RW EC_FLASH_REGION_ACTIVE 1616 1617 /** 1618 * struct ec_params_flash_region_info - Parameters for the flash region info 1619 * command. 1620 * @region: Flash region; see EC_FLASH_REGION_* 1621 */ 1622 struct ec_params_flash_region_info { 1623 uint32_t region; 1624 } __ec_align4; 1625 1626 struct ec_response_flash_region_info { 1627 uint32_t offset; 1628 uint32_t size; 1629 } __ec_align4; 1630 1631 /* Read/write VbNvContext */ 1632 #define EC_CMD_VBNV_CONTEXT 0x0017 1633 #define EC_VER_VBNV_CONTEXT 1 1634 #define EC_VBNV_BLOCK_SIZE 16 1635 1636 enum ec_vbnvcontext_op { 1637 EC_VBNV_CONTEXT_OP_READ, 1638 EC_VBNV_CONTEXT_OP_WRITE, 1639 }; 1640 1641 struct ec_params_vbnvcontext { 1642 uint32_t op; 1643 uint8_t block[EC_VBNV_BLOCK_SIZE]; 1644 } __ec_align4; 1645 1646 struct ec_response_vbnvcontext { 1647 uint8_t block[EC_VBNV_BLOCK_SIZE]; 1648 } __ec_align4; 1649 1650 1651 /* Get SPI flash information */ 1652 #define EC_CMD_FLASH_SPI_INFO 0x0018 1653 1654 struct ec_response_flash_spi_info { 1655 /* JEDEC info from command 0x9F (manufacturer, memory type, size) */ 1656 uint8_t jedec[3]; 1657 1658 /* Pad byte; currently always contains 0 */ 1659 uint8_t reserved0; 1660 1661 /* Manufacturer / device ID from command 0x90 */ 1662 uint8_t mfr_dev_id[2]; 1663 1664 /* Status registers from command 0x05 and 0x35 */ 1665 uint8_t sr1, sr2; 1666 } __ec_align1; 1667 1668 1669 /* Select flash during flash operations */ 1670 #define EC_CMD_FLASH_SELECT 0x0019 1671 1672 /** 1673 * struct ec_params_flash_select - Parameters for the flash select command. 1674 * @select: 1 to select flash, 0 to deselect flash 1675 */ 1676 struct ec_params_flash_select { 1677 uint8_t select; 1678 } __ec_align4; 1679 1680 1681 /*****************************************************************************/ 1682 /* PWM commands */ 1683 1684 /* Get fan target RPM */ 1685 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020 1686 1687 struct ec_response_pwm_get_fan_rpm { 1688 uint32_t rpm; 1689 } __ec_align4; 1690 1691 /* Set target fan RPM */ 1692 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021 1693 1694 /* Version 0 of input params */ 1695 struct ec_params_pwm_set_fan_target_rpm_v0 { 1696 uint32_t rpm; 1697 } __ec_align4; 1698 1699 /* Version 1 of input params */ 1700 struct ec_params_pwm_set_fan_target_rpm_v1 { 1701 uint32_t rpm; 1702 uint8_t fan_idx; 1703 } __ec_align_size1; 1704 1705 /* Get keyboard backlight */ 1706 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */ 1707 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022 1708 1709 struct ec_response_pwm_get_keyboard_backlight { 1710 uint8_t percent; 1711 uint8_t enabled; 1712 } __ec_align1; 1713 1714 /* Set keyboard backlight */ 1715 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */ 1716 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023 1717 1718 struct ec_params_pwm_set_keyboard_backlight { 1719 uint8_t percent; 1720 } __ec_align1; 1721 1722 /* Set target fan PWM duty cycle */ 1723 #define EC_CMD_PWM_SET_FAN_DUTY 0x0024 1724 1725 /* Version 0 of input params */ 1726 struct ec_params_pwm_set_fan_duty_v0 { 1727 uint32_t percent; 1728 } __ec_align4; 1729 1730 /* Version 1 of input params */ 1731 struct ec_params_pwm_set_fan_duty_v1 { 1732 uint32_t percent; 1733 uint8_t fan_idx; 1734 } __ec_align_size1; 1735 1736 #define EC_CMD_PWM_SET_DUTY 0x0025 1737 /* 16 bit duty cycle, 0xffff = 100% */ 1738 #define EC_PWM_MAX_DUTY 0xffff 1739 1740 enum ec_pwm_type { 1741 /* All types, indexed by board-specific enum pwm_channel */ 1742 EC_PWM_TYPE_GENERIC = 0, 1743 /* Keyboard backlight */ 1744 EC_PWM_TYPE_KB_LIGHT, 1745 /* Display backlight */ 1746 EC_PWM_TYPE_DISPLAY_LIGHT, 1747 EC_PWM_TYPE_COUNT, 1748 }; 1749 1750 struct ec_params_pwm_set_duty { 1751 uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */ 1752 uint8_t pwm_type; /* ec_pwm_type */ 1753 uint8_t index; /* Type-specific index, or 0 if unique */ 1754 } __ec_align4; 1755 1756 #define EC_CMD_PWM_GET_DUTY 0x0026 1757 1758 struct ec_params_pwm_get_duty { 1759 uint8_t pwm_type; /* ec_pwm_type */ 1760 uint8_t index; /* Type-specific index, or 0 if unique */ 1761 } __ec_align1; 1762 1763 struct ec_response_pwm_get_duty { 1764 uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */ 1765 } __ec_align2; 1766 1767 /*****************************************************************************/ 1768 /* 1769 * Lightbar commands. This looks worse than it is. Since we only use one HOST 1770 * command to say "talk to the lightbar", we put the "and tell it to do X" part 1771 * into a subcommand. We'll make separate structs for subcommands with 1772 * different input args, so that we know how much to expect. 1773 */ 1774 #define EC_CMD_LIGHTBAR_CMD 0x0028 1775 1776 struct rgb_s { 1777 uint8_t r, g, b; 1778 } __ec_todo_unpacked; 1779 1780 #define LB_BATTERY_LEVELS 4 1781 1782 /* 1783 * List of tweakable parameters. NOTE: It's __packed so it can be sent in a 1784 * host command, but the alignment is the same regardless. Keep it that way. 1785 */ 1786 struct lightbar_params_v0 { 1787 /* Timing */ 1788 int32_t google_ramp_up; 1789 int32_t google_ramp_down; 1790 int32_t s3s0_ramp_up; 1791 int32_t s0_tick_delay[2]; /* AC=0/1 */ 1792 int32_t s0a_tick_delay[2]; /* AC=0/1 */ 1793 int32_t s0s3_ramp_down; 1794 int32_t s3_sleep_for; 1795 int32_t s3_ramp_up; 1796 int32_t s3_ramp_down; 1797 1798 /* Oscillation */ 1799 uint8_t new_s0; 1800 uint8_t osc_min[2]; /* AC=0/1 */ 1801 uint8_t osc_max[2]; /* AC=0/1 */ 1802 uint8_t w_ofs[2]; /* AC=0/1 */ 1803 1804 /* Brightness limits based on the backlight and AC. */ 1805 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */ 1806 uint8_t bright_bl_on_min[2]; /* AC=0/1 */ 1807 uint8_t bright_bl_on_max[2]; /* AC=0/1 */ 1808 1809 /* Battery level thresholds */ 1810 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1]; 1811 1812 /* Map [AC][battery_level] to color index */ 1813 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */ 1814 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */ 1815 1816 /* Color palette */ 1817 struct rgb_s color[8]; /* 0-3 are Google colors */ 1818 } __ec_todo_packed; 1819 1820 struct lightbar_params_v1 { 1821 /* Timing */ 1822 int32_t google_ramp_up; 1823 int32_t google_ramp_down; 1824 int32_t s3s0_ramp_up; 1825 int32_t s0_tick_delay[2]; /* AC=0/1 */ 1826 int32_t s0a_tick_delay[2]; /* AC=0/1 */ 1827 int32_t s0s3_ramp_down; 1828 int32_t s3_sleep_for; 1829 int32_t s3_ramp_up; 1830 int32_t s3_ramp_down; 1831 int32_t s5_ramp_up; 1832 int32_t s5_ramp_down; 1833 int32_t tap_tick_delay; 1834 int32_t tap_gate_delay; 1835 int32_t tap_display_time; 1836 1837 /* Tap-for-battery params */ 1838 uint8_t tap_pct_red; 1839 uint8_t tap_pct_green; 1840 uint8_t tap_seg_min_on; 1841 uint8_t tap_seg_max_on; 1842 uint8_t tap_seg_osc; 1843 uint8_t tap_idx[3]; 1844 1845 /* Oscillation */ 1846 uint8_t osc_min[2]; /* AC=0/1 */ 1847 uint8_t osc_max[2]; /* AC=0/1 */ 1848 uint8_t w_ofs[2]; /* AC=0/1 */ 1849 1850 /* Brightness limits based on the backlight and AC. */ 1851 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */ 1852 uint8_t bright_bl_on_min[2]; /* AC=0/1 */ 1853 uint8_t bright_bl_on_max[2]; /* AC=0/1 */ 1854 1855 /* Battery level thresholds */ 1856 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1]; 1857 1858 /* Map [AC][battery_level] to color index */ 1859 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */ 1860 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */ 1861 1862 /* s5: single color pulse on inhibited power-up */ 1863 uint8_t s5_idx; 1864 1865 /* Color palette */ 1866 struct rgb_s color[8]; /* 0-3 are Google colors */ 1867 } __ec_todo_packed; 1868 1869 /* Lightbar command params v2 1870 * crbug.com/467716 1871 * 1872 * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by 1873 * logical groups to make it more manageable ( < 120 bytes). 1874 * 1875 * NOTE: Each of these groups must be less than 120 bytes. 1876 */ 1877 1878 struct lightbar_params_v2_timing { 1879 /* Timing */ 1880 int32_t google_ramp_up; 1881 int32_t google_ramp_down; 1882 int32_t s3s0_ramp_up; 1883 int32_t s0_tick_delay[2]; /* AC=0/1 */ 1884 int32_t s0a_tick_delay[2]; /* AC=0/1 */ 1885 int32_t s0s3_ramp_down; 1886 int32_t s3_sleep_for; 1887 int32_t s3_ramp_up; 1888 int32_t s3_ramp_down; 1889 int32_t s5_ramp_up; 1890 int32_t s5_ramp_down; 1891 int32_t tap_tick_delay; 1892 int32_t tap_gate_delay; 1893 int32_t tap_display_time; 1894 } __ec_todo_packed; 1895 1896 struct lightbar_params_v2_tap { 1897 /* Tap-for-battery params */ 1898 uint8_t tap_pct_red; 1899 uint8_t tap_pct_green; 1900 uint8_t tap_seg_min_on; 1901 uint8_t tap_seg_max_on; 1902 uint8_t tap_seg_osc; 1903 uint8_t tap_idx[3]; 1904 } __ec_todo_packed; 1905 1906 struct lightbar_params_v2_oscillation { 1907 /* Oscillation */ 1908 uint8_t osc_min[2]; /* AC=0/1 */ 1909 uint8_t osc_max[2]; /* AC=0/1 */ 1910 uint8_t w_ofs[2]; /* AC=0/1 */ 1911 } __ec_todo_packed; 1912 1913 struct lightbar_params_v2_brightness { 1914 /* Brightness limits based on the backlight and AC. */ 1915 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */ 1916 uint8_t bright_bl_on_min[2]; /* AC=0/1 */ 1917 uint8_t bright_bl_on_max[2]; /* AC=0/1 */ 1918 } __ec_todo_packed; 1919 1920 struct lightbar_params_v2_thresholds { 1921 /* Battery level thresholds */ 1922 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1]; 1923 } __ec_todo_packed; 1924 1925 struct lightbar_params_v2_colors { 1926 /* Map [AC][battery_level] to color index */ 1927 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */ 1928 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */ 1929 1930 /* s5: single color pulse on inhibited power-up */ 1931 uint8_t s5_idx; 1932 1933 /* Color palette */ 1934 struct rgb_s color[8]; /* 0-3 are Google colors */ 1935 } __ec_todo_packed; 1936 1937 /* Lightbar program. */ 1938 #define EC_LB_PROG_LEN 192 1939 struct lightbar_program { 1940 uint8_t size; 1941 uint8_t data[EC_LB_PROG_LEN]; 1942 } __ec_todo_unpacked; 1943 1944 struct ec_params_lightbar { 1945 uint8_t cmd; /* Command (see enum lightbar_command) */ 1946 union { 1947 /* 1948 * The following commands have no args: 1949 * 1950 * dump, off, on, init, get_seq, get_params_v0, get_params_v1, 1951 * version, get_brightness, get_demo, suspend, resume, 1952 * get_params_v2_timing, get_params_v2_tap, get_params_v2_osc, 1953 * get_params_v2_bright, get_params_v2_thlds, 1954 * get_params_v2_colors 1955 * 1956 * Don't use an empty struct, because C++ hates that. 1957 */ 1958 1959 struct __ec_todo_unpacked { 1960 uint8_t num; 1961 } set_brightness, seq, demo; 1962 1963 struct __ec_todo_unpacked { 1964 uint8_t ctrl, reg, value; 1965 } reg; 1966 1967 struct __ec_todo_unpacked { 1968 uint8_t led, red, green, blue; 1969 } set_rgb; 1970 1971 struct __ec_todo_unpacked { 1972 uint8_t led; 1973 } get_rgb; 1974 1975 struct __ec_todo_unpacked { 1976 uint8_t enable; 1977 } manual_suspend_ctrl; 1978 1979 struct lightbar_params_v0 set_params_v0; 1980 struct lightbar_params_v1 set_params_v1; 1981 1982 struct lightbar_params_v2_timing set_v2par_timing; 1983 struct lightbar_params_v2_tap set_v2par_tap; 1984 struct lightbar_params_v2_oscillation set_v2par_osc; 1985 struct lightbar_params_v2_brightness set_v2par_bright; 1986 struct lightbar_params_v2_thresholds set_v2par_thlds; 1987 struct lightbar_params_v2_colors set_v2par_colors; 1988 1989 struct lightbar_program set_program; 1990 }; 1991 } __ec_todo_packed; 1992 1993 struct ec_response_lightbar { 1994 union { 1995 struct __ec_todo_unpacked { 1996 struct __ec_todo_unpacked { 1997 uint8_t reg; 1998 uint8_t ic0; 1999 uint8_t ic1; 2000 } vals[23]; 2001 } dump; 2002 2003 struct __ec_todo_unpacked { 2004 uint8_t num; 2005 } get_seq, get_brightness, get_demo; 2006 2007 struct lightbar_params_v0 get_params_v0; 2008 struct lightbar_params_v1 get_params_v1; 2009 2010 2011 struct lightbar_params_v2_timing get_params_v2_timing; 2012 struct lightbar_params_v2_tap get_params_v2_tap; 2013 struct lightbar_params_v2_oscillation get_params_v2_osc; 2014 struct lightbar_params_v2_brightness get_params_v2_bright; 2015 struct lightbar_params_v2_thresholds get_params_v2_thlds; 2016 struct lightbar_params_v2_colors get_params_v2_colors; 2017 2018 struct __ec_todo_unpacked { 2019 uint32_t num; 2020 uint32_t flags; 2021 } version; 2022 2023 struct __ec_todo_unpacked { 2024 uint8_t red, green, blue; 2025 } get_rgb; 2026 2027 /* 2028 * The following commands have no response: 2029 * 2030 * off, on, init, set_brightness, seq, reg, set_rgb, demo, 2031 * set_params_v0, set_params_v1, set_program, 2032 * manual_suspend_ctrl, suspend, resume, set_v2par_timing, 2033 * set_v2par_tap, set_v2par_osc, set_v2par_bright, 2034 * set_v2par_thlds, set_v2par_colors 2035 */ 2036 }; 2037 } __ec_todo_packed; 2038 2039 /* Lightbar commands */ 2040 enum lightbar_command { 2041 LIGHTBAR_CMD_DUMP = 0, 2042 LIGHTBAR_CMD_OFF = 1, 2043 LIGHTBAR_CMD_ON = 2, 2044 LIGHTBAR_CMD_INIT = 3, 2045 LIGHTBAR_CMD_SET_BRIGHTNESS = 4, 2046 LIGHTBAR_CMD_SEQ = 5, 2047 LIGHTBAR_CMD_REG = 6, 2048 LIGHTBAR_CMD_SET_RGB = 7, 2049 LIGHTBAR_CMD_GET_SEQ = 8, 2050 LIGHTBAR_CMD_DEMO = 9, 2051 LIGHTBAR_CMD_GET_PARAMS_V0 = 10, 2052 LIGHTBAR_CMD_SET_PARAMS_V0 = 11, 2053 LIGHTBAR_CMD_VERSION = 12, 2054 LIGHTBAR_CMD_GET_BRIGHTNESS = 13, 2055 LIGHTBAR_CMD_GET_RGB = 14, 2056 LIGHTBAR_CMD_GET_DEMO = 15, 2057 LIGHTBAR_CMD_GET_PARAMS_V1 = 16, 2058 LIGHTBAR_CMD_SET_PARAMS_V1 = 17, 2059 LIGHTBAR_CMD_SET_PROGRAM = 18, 2060 LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19, 2061 LIGHTBAR_CMD_SUSPEND = 20, 2062 LIGHTBAR_CMD_RESUME = 21, 2063 LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22, 2064 LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23, 2065 LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24, 2066 LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25, 2067 LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26, 2068 LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27, 2069 LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28, 2070 LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29, 2071 LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30, 2072 LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31, 2073 LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32, 2074 LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33, 2075 LIGHTBAR_NUM_CMDS 2076 }; 2077 2078 /*****************************************************************************/ 2079 /* LED control commands */ 2080 2081 #define EC_CMD_LED_CONTROL 0x0029 2082 2083 enum ec_led_id { 2084 /* LED to indicate battery state of charge */ 2085 EC_LED_ID_BATTERY_LED = 0, 2086 /* 2087 * LED to indicate system power state (on or in suspend). 2088 * May be on power button or on C-panel. 2089 */ 2090 EC_LED_ID_POWER_LED, 2091 /* LED on power adapter or its plug */ 2092 EC_LED_ID_ADAPTER_LED, 2093 /* LED to indicate left side */ 2094 EC_LED_ID_LEFT_LED, 2095 /* LED to indicate right side */ 2096 EC_LED_ID_RIGHT_LED, 2097 /* LED to indicate recovery mode with HW_REINIT */ 2098 EC_LED_ID_RECOVERY_HW_REINIT_LED, 2099 /* LED to indicate sysrq debug mode. */ 2100 EC_LED_ID_SYSRQ_DEBUG_LED, 2101 2102 EC_LED_ID_COUNT 2103 }; 2104 2105 /* LED control flags */ 2106 #define EC_LED_FLAGS_QUERY BIT(0) /* Query LED capability only */ 2107 #define EC_LED_FLAGS_AUTO BIT(1) /* Switch LED back to automatic control */ 2108 2109 enum ec_led_colors { 2110 EC_LED_COLOR_RED = 0, 2111 EC_LED_COLOR_GREEN, 2112 EC_LED_COLOR_BLUE, 2113 EC_LED_COLOR_YELLOW, 2114 EC_LED_COLOR_WHITE, 2115 EC_LED_COLOR_AMBER, 2116 2117 EC_LED_COLOR_COUNT 2118 }; 2119 2120 struct ec_params_led_control { 2121 uint8_t led_id; /* Which LED to control */ 2122 uint8_t flags; /* Control flags */ 2123 2124 uint8_t brightness[EC_LED_COLOR_COUNT]; 2125 } __ec_align1; 2126 2127 struct ec_response_led_control { 2128 /* 2129 * Available brightness value range. 2130 * 2131 * Range 0 means color channel not present. 2132 * Range 1 means on/off control. 2133 * Other values means the LED is control by PWM. 2134 */ 2135 uint8_t brightness_range[EC_LED_COLOR_COUNT]; 2136 } __ec_align1; 2137 2138 /*****************************************************************************/ 2139 /* Verified boot commands */ 2140 2141 /* 2142 * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be 2143 * reused for other purposes with version > 0. 2144 */ 2145 2146 /* Verified boot hash command */ 2147 #define EC_CMD_VBOOT_HASH 0x002A 2148 2149 struct ec_params_vboot_hash { 2150 uint8_t cmd; /* enum ec_vboot_hash_cmd */ 2151 uint8_t hash_type; /* enum ec_vboot_hash_type */ 2152 uint8_t nonce_size; /* Nonce size; may be 0 */ 2153 uint8_t reserved0; /* Reserved; set 0 */ 2154 uint32_t offset; /* Offset in flash to hash */ 2155 uint32_t size; /* Number of bytes to hash */ 2156 uint8_t nonce_data[64]; /* Nonce data; ignored if nonce_size=0 */ 2157 } __ec_align4; 2158 2159 struct ec_response_vboot_hash { 2160 uint8_t status; /* enum ec_vboot_hash_status */ 2161 uint8_t hash_type; /* enum ec_vboot_hash_type */ 2162 uint8_t digest_size; /* Size of hash digest in bytes */ 2163 uint8_t reserved0; /* Ignore; will be 0 */ 2164 uint32_t offset; /* Offset in flash which was hashed */ 2165 uint32_t size; /* Number of bytes hashed */ 2166 uint8_t hash_digest[64]; /* Hash digest data */ 2167 } __ec_align4; 2168 2169 enum ec_vboot_hash_cmd { 2170 EC_VBOOT_HASH_GET = 0, /* Get current hash status */ 2171 EC_VBOOT_HASH_ABORT = 1, /* Abort calculating current hash */ 2172 EC_VBOOT_HASH_START = 2, /* Start computing a new hash */ 2173 EC_VBOOT_HASH_RECALC = 3, /* Synchronously compute a new hash */ 2174 }; 2175 2176 enum ec_vboot_hash_type { 2177 EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */ 2178 }; 2179 2180 enum ec_vboot_hash_status { 2181 EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */ 2182 EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */ 2183 EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */ 2184 }; 2185 2186 /* 2187 * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC. 2188 * If one of these is specified, the EC will automatically update offset and 2189 * size to the correct values for the specified image (RO or RW). 2190 */ 2191 #define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe 2192 #define EC_VBOOT_HASH_OFFSET_ACTIVE 0xfffffffd 2193 #define EC_VBOOT_HASH_OFFSET_UPDATE 0xfffffffc 2194 2195 /* 2196 * 'RW' is vague if there are multiple RW images; we mean the active one, 2197 * so the old constant is deprecated. 2198 */ 2199 #define EC_VBOOT_HASH_OFFSET_RW EC_VBOOT_HASH_OFFSET_ACTIVE 2200 2201 /*****************************************************************************/ 2202 /* 2203 * Motion sense commands. We'll make separate structs for sub-commands with 2204 * different input args, so that we know how much to expect. 2205 */ 2206 #define EC_CMD_MOTION_SENSE_CMD 0x002B 2207 2208 /* Motion sense commands */ 2209 enum motionsense_command { 2210 /* 2211 * Dump command returns all motion sensor data including motion sense 2212 * module flags and individual sensor flags. 2213 */ 2214 MOTIONSENSE_CMD_DUMP = 0, 2215 2216 /* 2217 * Info command returns data describing the details of a given sensor, 2218 * including enum motionsensor_type, enum motionsensor_location, and 2219 * enum motionsensor_chip. 2220 */ 2221 MOTIONSENSE_CMD_INFO = 1, 2222 2223 /* 2224 * EC Rate command is a setter/getter command for the EC sampling rate 2225 * in milliseconds. 2226 * It is per sensor, the EC run sample task at the minimum of all 2227 * sensors EC_RATE. 2228 * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR 2229 * to collect all the sensor samples. 2230 * For sensor with hardware FIFO, EC_RATE is used as the maximal delay 2231 * to process of all motion sensors in milliseconds. 2232 */ 2233 MOTIONSENSE_CMD_EC_RATE = 2, 2234 2235 /* 2236 * Sensor ODR command is a setter/getter command for the output data 2237 * rate of a specific motion sensor in millihertz. 2238 */ 2239 MOTIONSENSE_CMD_SENSOR_ODR = 3, 2240 2241 /* 2242 * Sensor range command is a setter/getter command for the range of 2243 * a specified motion sensor in +/-G's or +/- deg/s. 2244 */ 2245 MOTIONSENSE_CMD_SENSOR_RANGE = 4, 2246 2247 /* 2248 * Setter/getter command for the keyboard wake angle. When the lid 2249 * angle is greater than this value, keyboard wake is disabled in S3, 2250 * and when the lid angle goes less than this value, keyboard wake is 2251 * enabled. Note, the lid angle measurement is an approximate, 2252 * un-calibrated value, hence the wake angle isn't exact. 2253 */ 2254 MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5, 2255 2256 /* 2257 * Returns a single sensor data. 2258 */ 2259 MOTIONSENSE_CMD_DATA = 6, 2260 2261 /* 2262 * Return sensor fifo info. 2263 */ 2264 MOTIONSENSE_CMD_FIFO_INFO = 7, 2265 2266 /* 2267 * Insert a flush element in the fifo and return sensor fifo info. 2268 * The host can use that element to synchronize its operation. 2269 */ 2270 MOTIONSENSE_CMD_FIFO_FLUSH = 8, 2271 2272 /* 2273 * Return a portion of the fifo. 2274 */ 2275 MOTIONSENSE_CMD_FIFO_READ = 9, 2276 2277 /* 2278 * Perform low level calibration. 2279 * On sensors that support it, ask to do offset calibration. 2280 */ 2281 MOTIONSENSE_CMD_PERFORM_CALIB = 10, 2282 2283 /* 2284 * Sensor Offset command is a setter/getter command for the offset 2285 * used for calibration. 2286 * The offsets can be calculated by the host, or via 2287 * PERFORM_CALIB command. 2288 */ 2289 MOTIONSENSE_CMD_SENSOR_OFFSET = 11, 2290 2291 /* 2292 * List available activities for a MOTION sensor. 2293 * Indicates if they are enabled or disabled. 2294 */ 2295 MOTIONSENSE_CMD_LIST_ACTIVITIES = 12, 2296 2297 /* 2298 * Activity management 2299 * Enable/Disable activity recognition. 2300 */ 2301 MOTIONSENSE_CMD_SET_ACTIVITY = 13, 2302 2303 /* 2304 * Lid Angle 2305 */ 2306 MOTIONSENSE_CMD_LID_ANGLE = 14, 2307 2308 /* 2309 * Allow the FIFO to trigger interrupt via MKBP events. 2310 * By default the FIFO does not send interrupt to process the FIFO 2311 * until the AP is ready or it is coming from a wakeup sensor. 2312 */ 2313 MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15, 2314 2315 /* 2316 * Spoof the readings of the sensors. The spoofed readings can be set 2317 * to arbitrary values, or will lock to the last read actual values. 2318 */ 2319 MOTIONSENSE_CMD_SPOOF = 16, 2320 2321 /* Set lid angle for tablet mode detection. */ 2322 MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE = 17, 2323 2324 /* 2325 * Sensor Scale command is a setter/getter command for the calibration 2326 * scale. 2327 */ 2328 MOTIONSENSE_CMD_SENSOR_SCALE = 18, 2329 2330 /* Number of motionsense sub-commands. */ 2331 MOTIONSENSE_NUM_CMDS 2332 }; 2333 2334 /* List of motion sensor types. */ 2335 enum motionsensor_type { 2336 MOTIONSENSE_TYPE_ACCEL = 0, 2337 MOTIONSENSE_TYPE_GYRO = 1, 2338 MOTIONSENSE_TYPE_MAG = 2, 2339 MOTIONSENSE_TYPE_PROX = 3, 2340 MOTIONSENSE_TYPE_LIGHT = 4, 2341 MOTIONSENSE_TYPE_ACTIVITY = 5, 2342 MOTIONSENSE_TYPE_BARO = 6, 2343 MOTIONSENSE_TYPE_SYNC = 7, 2344 MOTIONSENSE_TYPE_MAX, 2345 }; 2346 2347 /* List of motion sensor locations. */ 2348 enum motionsensor_location { 2349 MOTIONSENSE_LOC_BASE = 0, 2350 MOTIONSENSE_LOC_LID = 1, 2351 MOTIONSENSE_LOC_CAMERA = 2, 2352 MOTIONSENSE_LOC_MAX, 2353 }; 2354 2355 /* List of motion sensor chips. */ 2356 enum motionsensor_chip { 2357 MOTIONSENSE_CHIP_KXCJ9 = 0, 2358 MOTIONSENSE_CHIP_LSM6DS0 = 1, 2359 MOTIONSENSE_CHIP_BMI160 = 2, 2360 MOTIONSENSE_CHIP_SI1141 = 3, 2361 MOTIONSENSE_CHIP_SI1142 = 4, 2362 MOTIONSENSE_CHIP_SI1143 = 5, 2363 MOTIONSENSE_CHIP_KX022 = 6, 2364 MOTIONSENSE_CHIP_L3GD20H = 7, 2365 MOTIONSENSE_CHIP_BMA255 = 8, 2366 MOTIONSENSE_CHIP_BMP280 = 9, 2367 MOTIONSENSE_CHIP_OPT3001 = 10, 2368 MOTIONSENSE_CHIP_BH1730 = 11, 2369 MOTIONSENSE_CHIP_GPIO = 12, 2370 MOTIONSENSE_CHIP_LIS2DH = 13, 2371 MOTIONSENSE_CHIP_LSM6DSM = 14, 2372 MOTIONSENSE_CHIP_LIS2DE = 15, 2373 MOTIONSENSE_CHIP_LIS2MDL = 16, 2374 MOTIONSENSE_CHIP_LSM6DS3 = 17, 2375 MOTIONSENSE_CHIP_LSM6DSO = 18, 2376 MOTIONSENSE_CHIP_LNG2DM = 19, 2377 MOTIONSENSE_CHIP_MAX, 2378 }; 2379 2380 /* List of orientation positions */ 2381 enum motionsensor_orientation { 2382 MOTIONSENSE_ORIENTATION_LANDSCAPE = 0, 2383 MOTIONSENSE_ORIENTATION_PORTRAIT = 1, 2384 MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_PORTRAIT = 2, 2385 MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_LANDSCAPE = 3, 2386 MOTIONSENSE_ORIENTATION_UNKNOWN = 4, 2387 }; 2388 2389 struct ec_response_motion_sensor_data { 2390 /* Flags for each sensor. */ 2391 uint8_t flags; 2392 /* Sensor number the data comes from. */ 2393 uint8_t sensor_num; 2394 /* Each sensor is up to 3-axis. */ 2395 union { 2396 int16_t data[3]; 2397 struct __ec_todo_packed { 2398 uint16_t reserved; 2399 uint32_t timestamp; 2400 }; 2401 struct __ec_todo_unpacked { 2402 uint8_t activity; /* motionsensor_activity */ 2403 uint8_t state; 2404 int16_t add_info[2]; 2405 }; 2406 }; 2407 } __ec_todo_packed; 2408 2409 /* Note: used in ec_response_get_next_data */ 2410 struct ec_response_motion_sense_fifo_info { 2411 /* Size of the fifo */ 2412 uint16_t size; 2413 /* Amount of space used in the fifo */ 2414 uint16_t count; 2415 /* Timestamp recorded in us. 2416 * aka accurate timestamp when host event was triggered. 2417 */ 2418 uint32_t timestamp; 2419 /* Total amount of vector lost */ 2420 uint16_t total_lost; 2421 /* Lost events since the last fifo_info, per sensors */ 2422 uint16_t lost[0]; 2423 } __ec_todo_packed; 2424 2425 struct ec_response_motion_sense_fifo_data { 2426 uint32_t number_data; 2427 struct ec_response_motion_sensor_data data[0]; 2428 } __ec_todo_packed; 2429 2430 /* List supported activity recognition */ 2431 enum motionsensor_activity { 2432 MOTIONSENSE_ACTIVITY_RESERVED = 0, 2433 MOTIONSENSE_ACTIVITY_SIG_MOTION = 1, 2434 MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2, 2435 MOTIONSENSE_ACTIVITY_ORIENTATION = 3, 2436 }; 2437 2438 struct ec_motion_sense_activity { 2439 uint8_t sensor_num; 2440 uint8_t activity; /* one of enum motionsensor_activity */ 2441 uint8_t enable; /* 1: enable, 0: disable */ 2442 uint8_t reserved; 2443 uint16_t parameters[3]; /* activity dependent parameters */ 2444 } __ec_todo_unpacked; 2445 2446 /* Module flag masks used for the dump sub-command. */ 2447 #define MOTIONSENSE_MODULE_FLAG_ACTIVE BIT(0) 2448 2449 /* Sensor flag masks used for the dump sub-command. */ 2450 #define MOTIONSENSE_SENSOR_FLAG_PRESENT BIT(0) 2451 2452 /* 2453 * Flush entry for synchronization. 2454 * data contains time stamp 2455 */ 2456 #define MOTIONSENSE_SENSOR_FLAG_FLUSH BIT(0) 2457 #define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP BIT(1) 2458 #define MOTIONSENSE_SENSOR_FLAG_WAKEUP BIT(2) 2459 #define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE BIT(3) 2460 #define MOTIONSENSE_SENSOR_FLAG_ODR BIT(4) 2461 2462 /* 2463 * Send this value for the data element to only perform a read. If you 2464 * send any other value, the EC will interpret it as data to set and will 2465 * return the actual value set. 2466 */ 2467 #define EC_MOTION_SENSE_NO_VALUE -1 2468 2469 #define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000 2470 2471 /* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */ 2472 /* Set Calibration information */ 2473 #define MOTION_SENSE_SET_OFFSET BIT(0) 2474 2475 /* Default Scale value, factor 1. */ 2476 #define MOTION_SENSE_DEFAULT_SCALE BIT(15) 2477 2478 #define LID_ANGLE_UNRELIABLE 500 2479 2480 enum motionsense_spoof_mode { 2481 /* Disable spoof mode. */ 2482 MOTIONSENSE_SPOOF_MODE_DISABLE = 0, 2483 2484 /* Enable spoof mode, but use provided component values. */ 2485 MOTIONSENSE_SPOOF_MODE_CUSTOM, 2486 2487 /* Enable spoof mode, but use the current sensor values. */ 2488 MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT, 2489 2490 /* Query the current spoof mode status for the sensor. */ 2491 MOTIONSENSE_SPOOF_MODE_QUERY, 2492 }; 2493 2494 struct ec_params_motion_sense { 2495 uint8_t cmd; 2496 union { 2497 /* Used for MOTIONSENSE_CMD_DUMP. */ 2498 struct __ec_todo_unpacked { 2499 /* 2500 * Maximal number of sensor the host is expecting. 2501 * 0 means the host is only interested in the number 2502 * of sensors controlled by the EC. 2503 */ 2504 uint8_t max_sensor_count; 2505 } dump; 2506 2507 /* 2508 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE. 2509 */ 2510 struct __ec_todo_unpacked { 2511 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. 2512 * kb_wake_angle: angle to wakup AP. 2513 */ 2514 int16_t data; 2515 } kb_wake_angle; 2516 2517 /* 2518 * Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA 2519 * and MOTIONSENSE_CMD_PERFORM_CALIB. 2520 */ 2521 struct __ec_todo_unpacked { 2522 uint8_t sensor_num; 2523 } info, info_3, data, fifo_flush, perform_calib, 2524 list_activities; 2525 2526 /* 2527 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR 2528 * and MOTIONSENSE_CMD_SENSOR_RANGE. 2529 */ 2530 struct __ec_todo_unpacked { 2531 uint8_t sensor_num; 2532 2533 /* Rounding flag, true for round-up, false for down. */ 2534 uint8_t roundup; 2535 2536 uint16_t reserved; 2537 2538 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */ 2539 int32_t data; 2540 } ec_rate, sensor_odr, sensor_range; 2541 2542 /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */ 2543 struct __ec_todo_packed { 2544 uint8_t sensor_num; 2545 2546 /* 2547 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set 2548 * the calibration information in the EC. 2549 * If unset, just retrieve calibration information. 2550 */ 2551 uint16_t flags; 2552 2553 /* 2554 * Temperature at calibration, in units of 0.01 C 2555 * 0x8000: invalid / unknown. 2556 * 0x0: 0C 2557 * 0x7fff: +327.67C 2558 */ 2559 int16_t temp; 2560 2561 /* 2562 * Offset for calibration. 2563 * Unit: 2564 * Accelerometer: 1/1024 g 2565 * Gyro: 1/1024 deg/s 2566 * Compass: 1/16 uT 2567 */ 2568 int16_t offset[3]; 2569 } sensor_offset; 2570 2571 /* Used for MOTIONSENSE_CMD_SENSOR_SCALE */ 2572 struct __ec_todo_packed { 2573 uint8_t sensor_num; 2574 2575 /* 2576 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set 2577 * the calibration information in the EC. 2578 * If unset, just retrieve calibration information. 2579 */ 2580 uint16_t flags; 2581 2582 /* 2583 * Temperature at calibration, in units of 0.01 C 2584 * 0x8000: invalid / unknown. 2585 * 0x0: 0C 2586 * 0x7fff: +327.67C 2587 */ 2588 int16_t temp; 2589 2590 /* 2591 * Scale for calibration: 2592 * By default scale is 1, it is encoded on 16bits: 2593 * 1 = BIT(15) 2594 * ~2 = 0xFFFF 2595 * ~0 = 0. 2596 */ 2597 uint16_t scale[3]; 2598 } sensor_scale; 2599 2600 2601 /* Used for MOTIONSENSE_CMD_FIFO_INFO */ 2602 /* (no params) */ 2603 2604 /* Used for MOTIONSENSE_CMD_FIFO_READ */ 2605 struct __ec_todo_unpacked { 2606 /* 2607 * Number of expected vector to return. 2608 * EC may return less or 0 if none available. 2609 */ 2610 uint32_t max_data_vector; 2611 } fifo_read; 2612 2613 struct ec_motion_sense_activity set_activity; 2614 2615 /* Used for MOTIONSENSE_CMD_LID_ANGLE */ 2616 /* (no params) */ 2617 2618 /* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */ 2619 struct __ec_todo_unpacked { 2620 /* 2621 * 1: enable, 0 disable fifo, 2622 * EC_MOTION_SENSE_NO_VALUE return value. 2623 */ 2624 int8_t enable; 2625 } fifo_int_enable; 2626 2627 /* Used for MOTIONSENSE_CMD_SPOOF */ 2628 struct __ec_todo_packed { 2629 uint8_t sensor_id; 2630 2631 /* See enum motionsense_spoof_mode. */ 2632 uint8_t spoof_enable; 2633 2634 /* Ignored, used for alignment. */ 2635 uint8_t reserved; 2636 2637 /* Individual component values to spoof. */ 2638 int16_t components[3]; 2639 } spoof; 2640 2641 /* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */ 2642 struct __ec_todo_unpacked { 2643 /* 2644 * Lid angle threshold for switching between tablet and 2645 * clamshell mode. 2646 */ 2647 int16_t lid_angle; 2648 2649 /* 2650 * Hysteresis degree to prevent fluctuations between 2651 * clamshell and tablet mode if lid angle keeps 2652 * changing around the threshold. Lid motion driver will 2653 * use lid_angle + hys_degree to trigger tablet mode and 2654 * lid_angle - hys_degree to trigger clamshell mode. 2655 */ 2656 int16_t hys_degree; 2657 } tablet_mode_threshold; 2658 }; 2659 } __ec_todo_packed; 2660 2661 struct ec_response_motion_sense { 2662 union { 2663 /* Used for MOTIONSENSE_CMD_DUMP */ 2664 struct __ec_todo_unpacked { 2665 /* Flags representing the motion sensor module. */ 2666 uint8_t module_flags; 2667 2668 /* Number of sensors managed directly by the EC. */ 2669 uint8_t sensor_count; 2670 2671 /* 2672 * Sensor data is truncated if response_max is too small 2673 * for holding all the data. 2674 */ 2675 struct ec_response_motion_sensor_data sensor[0]; 2676 } dump; 2677 2678 /* Used for MOTIONSENSE_CMD_INFO. */ 2679 struct __ec_todo_unpacked { 2680 /* Should be element of enum motionsensor_type. */ 2681 uint8_t type; 2682 2683 /* Should be element of enum motionsensor_location. */ 2684 uint8_t location; 2685 2686 /* Should be element of enum motionsensor_chip. */ 2687 uint8_t chip; 2688 } info; 2689 2690 /* Used for MOTIONSENSE_CMD_INFO version 3 */ 2691 struct __ec_todo_unpacked { 2692 /* Should be element of enum motionsensor_type. */ 2693 uint8_t type; 2694 2695 /* Should be element of enum motionsensor_location. */ 2696 uint8_t location; 2697 2698 /* Should be element of enum motionsensor_chip. */ 2699 uint8_t chip; 2700 2701 /* Minimum sensor sampling frequency */ 2702 uint32_t min_frequency; 2703 2704 /* Maximum sensor sampling frequency */ 2705 uint32_t max_frequency; 2706 2707 /* Max number of sensor events that could be in fifo */ 2708 uint32_t fifo_max_event_count; 2709 } info_3; 2710 2711 /* Used for MOTIONSENSE_CMD_DATA */ 2712 struct ec_response_motion_sensor_data data; 2713 2714 /* 2715 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR, 2716 * MOTIONSENSE_CMD_SENSOR_RANGE, 2717 * MOTIONSENSE_CMD_KB_WAKE_ANGLE, 2718 * MOTIONSENSE_CMD_FIFO_INT_ENABLE and 2719 * MOTIONSENSE_CMD_SPOOF. 2720 */ 2721 struct __ec_todo_unpacked { 2722 /* Current value of the parameter queried. */ 2723 int32_t ret; 2724 } ec_rate, sensor_odr, sensor_range, kb_wake_angle, 2725 fifo_int_enable, spoof; 2726 2727 /* 2728 * Used for MOTIONSENSE_CMD_SENSOR_OFFSET, 2729 * PERFORM_CALIB. 2730 */ 2731 struct __ec_todo_unpacked { 2732 int16_t temp; 2733 int16_t offset[3]; 2734 } sensor_offset, perform_calib; 2735 2736 /* Used for MOTIONSENSE_CMD_SENSOR_SCALE */ 2737 struct __ec_todo_unpacked { 2738 int16_t temp; 2739 uint16_t scale[3]; 2740 } sensor_scale; 2741 2742 struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush; 2743 2744 struct ec_response_motion_sense_fifo_data fifo_read; 2745 2746 struct __ec_todo_packed { 2747 uint16_t reserved; 2748 uint32_t enabled; 2749 uint32_t disabled; 2750 } list_activities; 2751 2752 /* No params for set activity */ 2753 2754 /* Used for MOTIONSENSE_CMD_LID_ANGLE */ 2755 struct __ec_todo_unpacked { 2756 /* 2757 * Angle between 0 and 360 degree if available, 2758 * LID_ANGLE_UNRELIABLE otherwise. 2759 */ 2760 uint16_t value; 2761 } lid_angle; 2762 2763 /* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */ 2764 struct __ec_todo_unpacked { 2765 /* 2766 * Lid angle threshold for switching between tablet and 2767 * clamshell mode. 2768 */ 2769 uint16_t lid_angle; 2770 2771 /* Hysteresis degree. */ 2772 uint16_t hys_degree; 2773 } tablet_mode_threshold; 2774 2775 }; 2776 } __ec_todo_packed; 2777 2778 /*****************************************************************************/ 2779 /* Force lid open command */ 2780 2781 /* Make lid event always open */ 2782 #define EC_CMD_FORCE_LID_OPEN 0x002C 2783 2784 struct ec_params_force_lid_open { 2785 uint8_t enabled; 2786 } __ec_align1; 2787 2788 /*****************************************************************************/ 2789 /* Configure the behavior of the power button */ 2790 #define EC_CMD_CONFIG_POWER_BUTTON 0x002D 2791 2792 enum ec_config_power_button_flags { 2793 /* Enable/Disable power button pulses for x86 devices */ 2794 EC_POWER_BUTTON_ENABLE_PULSE = BIT(0), 2795 }; 2796 2797 struct ec_params_config_power_button { 2798 /* See enum ec_config_power_button_flags */ 2799 uint8_t flags; 2800 } __ec_align1; 2801 2802 /*****************************************************************************/ 2803 /* USB charging control commands */ 2804 2805 /* Set USB port charging mode */ 2806 #define EC_CMD_USB_CHARGE_SET_MODE 0x0030 2807 2808 struct ec_params_usb_charge_set_mode { 2809 uint8_t usb_port_id; 2810 uint8_t mode:7; 2811 uint8_t inhibit_charge:1; 2812 } __ec_align1; 2813 2814 /*****************************************************************************/ 2815 /* Persistent storage for host */ 2816 2817 /* Maximum bytes that can be read/written in a single command */ 2818 #define EC_PSTORE_SIZE_MAX 64 2819 2820 /* Get persistent storage info */ 2821 #define EC_CMD_PSTORE_INFO 0x0040 2822 2823 struct ec_response_pstore_info { 2824 /* Persistent storage size, in bytes */ 2825 uint32_t pstore_size; 2826 /* Access size; read/write offset and size must be a multiple of this */ 2827 uint32_t access_size; 2828 } __ec_align4; 2829 2830 /* 2831 * Read persistent storage 2832 * 2833 * Response is params.size bytes of data. 2834 */ 2835 #define EC_CMD_PSTORE_READ 0x0041 2836 2837 struct ec_params_pstore_read { 2838 uint32_t offset; /* Byte offset to read */ 2839 uint32_t size; /* Size to read in bytes */ 2840 } __ec_align4; 2841 2842 /* Write persistent storage */ 2843 #define EC_CMD_PSTORE_WRITE 0x0042 2844 2845 struct ec_params_pstore_write { 2846 uint32_t offset; /* Byte offset to write */ 2847 uint32_t size; /* Size to write in bytes */ 2848 uint8_t data[EC_PSTORE_SIZE_MAX]; 2849 } __ec_align4; 2850 2851 /*****************************************************************************/ 2852 /* Real-time clock */ 2853 2854 /* RTC params and response structures */ 2855 struct ec_params_rtc { 2856 uint32_t time; 2857 } __ec_align4; 2858 2859 struct ec_response_rtc { 2860 uint32_t time; 2861 } __ec_align4; 2862 2863 /* These use ec_response_rtc */ 2864 #define EC_CMD_RTC_GET_VALUE 0x0044 2865 #define EC_CMD_RTC_GET_ALARM 0x0045 2866 2867 /* These all use ec_params_rtc */ 2868 #define EC_CMD_RTC_SET_VALUE 0x0046 2869 #define EC_CMD_RTC_SET_ALARM 0x0047 2870 2871 /* Pass as time param to SET_ALARM to clear the current alarm */ 2872 #define EC_RTC_ALARM_CLEAR 0 2873 2874 /*****************************************************************************/ 2875 /* Port80 log access */ 2876 2877 /* Maximum entries that can be read/written in a single command */ 2878 #define EC_PORT80_SIZE_MAX 32 2879 2880 /* Get last port80 code from previous boot */ 2881 #define EC_CMD_PORT80_LAST_BOOT 0x0048 2882 #define EC_CMD_PORT80_READ 0x0048 2883 2884 enum ec_port80_subcmd { 2885 EC_PORT80_GET_INFO = 0, 2886 EC_PORT80_READ_BUFFER, 2887 }; 2888 2889 struct ec_params_port80_read { 2890 uint16_t subcmd; 2891 union { 2892 struct __ec_todo_unpacked { 2893 uint32_t offset; 2894 uint32_t num_entries; 2895 } read_buffer; 2896 }; 2897 } __ec_todo_packed; 2898 2899 struct ec_response_port80_read { 2900 union { 2901 struct __ec_todo_unpacked { 2902 uint32_t writes; 2903 uint32_t history_size; 2904 uint32_t last_boot; 2905 } get_info; 2906 struct __ec_todo_unpacked { 2907 uint16_t codes[EC_PORT80_SIZE_MAX]; 2908 } data; 2909 }; 2910 } __ec_todo_packed; 2911 2912 struct ec_response_port80_last_boot { 2913 uint16_t code; 2914 } __ec_align2; 2915 2916 /*****************************************************************************/ 2917 /* Temporary secure storage for host verified boot use */ 2918 2919 /* Number of bytes in a vstore slot */ 2920 #define EC_VSTORE_SLOT_SIZE 64 2921 2922 /* Maximum number of vstore slots */ 2923 #define EC_VSTORE_SLOT_MAX 32 2924 2925 /* Get persistent storage info */ 2926 #define EC_CMD_VSTORE_INFO 0x0049 2927 struct ec_response_vstore_info { 2928 /* Indicates which slots are locked */ 2929 uint32_t slot_locked; 2930 /* Total number of slots available */ 2931 uint8_t slot_count; 2932 } __ec_align_size1; 2933 2934 /* 2935 * Read temporary secure storage 2936 * 2937 * Response is EC_VSTORE_SLOT_SIZE bytes of data. 2938 */ 2939 #define EC_CMD_VSTORE_READ 0x004A 2940 2941 struct ec_params_vstore_read { 2942 uint8_t slot; /* Slot to read from */ 2943 } __ec_align1; 2944 2945 struct ec_response_vstore_read { 2946 uint8_t data[EC_VSTORE_SLOT_SIZE]; 2947 } __ec_align1; 2948 2949 /* 2950 * Write temporary secure storage and lock it. 2951 */ 2952 #define EC_CMD_VSTORE_WRITE 0x004B 2953 2954 struct ec_params_vstore_write { 2955 uint8_t slot; /* Slot to write to */ 2956 uint8_t data[EC_VSTORE_SLOT_SIZE]; 2957 } __ec_align1; 2958 2959 /*****************************************************************************/ 2960 /* Thermal engine commands. Note that there are two implementations. We'll 2961 * reuse the command number, but the data and behavior is incompatible. 2962 * Version 0 is what originally shipped on Link. 2963 * Version 1 separates the CPU thermal limits from the fan control. 2964 */ 2965 2966 #define EC_CMD_THERMAL_SET_THRESHOLD 0x0050 2967 #define EC_CMD_THERMAL_GET_THRESHOLD 0x0051 2968 2969 /* The version 0 structs are opaque. You have to know what they are for 2970 * the get/set commands to make any sense. 2971 */ 2972 2973 /* Version 0 - set */ 2974 struct ec_params_thermal_set_threshold { 2975 uint8_t sensor_type; 2976 uint8_t threshold_id; 2977 uint16_t value; 2978 } __ec_align2; 2979 2980 /* Version 0 - get */ 2981 struct ec_params_thermal_get_threshold { 2982 uint8_t sensor_type; 2983 uint8_t threshold_id; 2984 } __ec_align1; 2985 2986 struct ec_response_thermal_get_threshold { 2987 uint16_t value; 2988 } __ec_align2; 2989 2990 2991 /* The version 1 structs are visible. */ 2992 enum ec_temp_thresholds { 2993 EC_TEMP_THRESH_WARN = 0, 2994 EC_TEMP_THRESH_HIGH, 2995 EC_TEMP_THRESH_HALT, 2996 2997 EC_TEMP_THRESH_COUNT 2998 }; 2999 3000 /* 3001 * Thermal configuration for one temperature sensor. Temps are in degrees K. 3002 * Zero values will be silently ignored by the thermal task. 3003 * 3004 * Set 'temp_host' value allows thermal task to trigger some event with 1 degree 3005 * hysteresis. 3006 * For example, 3007 * temp_host[EC_TEMP_THRESH_HIGH] = 300 K 3008 * temp_host_release[EC_TEMP_THRESH_HIGH] = 0 K 3009 * EC will throttle ap when temperature >= 301 K, and release throttling when 3010 * temperature <= 299 K. 3011 * 3012 * Set 'temp_host_release' value allows thermal task has a custom hysteresis. 3013 * For example, 3014 * temp_host[EC_TEMP_THRESH_HIGH] = 300 K 3015 * temp_host_release[EC_TEMP_THRESH_HIGH] = 295 K 3016 * EC will throttle ap when temperature >= 301 K, and release throttling when 3017 * temperature <= 294 K. 3018 * 3019 * Note that this structure is a sub-structure of 3020 * ec_params_thermal_set_threshold_v1, but maintains its alignment there. 3021 */ 3022 struct ec_thermal_config { 3023 uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */ 3024 uint32_t temp_host_release[EC_TEMP_THRESH_COUNT]; /* release levels */ 3025 uint32_t temp_fan_off; /* no active cooling needed */ 3026 uint32_t temp_fan_max; /* max active cooling needed */ 3027 } __ec_align4; 3028 3029 /* Version 1 - get config for one sensor. */ 3030 struct ec_params_thermal_get_threshold_v1 { 3031 uint32_t sensor_num; 3032 } __ec_align4; 3033 /* This returns a struct ec_thermal_config */ 3034 3035 /* 3036 * Version 1 - set config for one sensor. 3037 * Use read-modify-write for best results! 3038 */ 3039 struct ec_params_thermal_set_threshold_v1 { 3040 uint32_t sensor_num; 3041 struct ec_thermal_config cfg; 3042 } __ec_align4; 3043 /* This returns no data */ 3044 3045 /****************************************************************************/ 3046 3047 /* Toggle automatic fan control */ 3048 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052 3049 3050 /* Version 1 of input params */ 3051 struct ec_params_auto_fan_ctrl_v1 { 3052 uint8_t fan_idx; 3053 } __ec_align1; 3054 3055 /* Get/Set TMP006 calibration data */ 3056 #define EC_CMD_TMP006_GET_CALIBRATION 0x0053 3057 #define EC_CMD_TMP006_SET_CALIBRATION 0x0054 3058 3059 /* 3060 * The original TMP006 calibration only needed four params, but now we need 3061 * more. Since the algorithm is nothing but magic numbers anyway, we'll leave 3062 * the params opaque. The v1 "get" response will include the algorithm number 3063 * and how many params it requires. That way we can change the EC code without 3064 * needing to update this file. We can also use a different algorithm on each 3065 * sensor. 3066 */ 3067 3068 /* This is the same struct for both v0 and v1. */ 3069 struct ec_params_tmp006_get_calibration { 3070 uint8_t index; 3071 } __ec_align1; 3072 3073 /* Version 0 */ 3074 struct ec_response_tmp006_get_calibration_v0 { 3075 float s0; 3076 float b0; 3077 float b1; 3078 float b2; 3079 } __ec_align4; 3080 3081 struct ec_params_tmp006_set_calibration_v0 { 3082 uint8_t index; 3083 uint8_t reserved[3]; 3084 float s0; 3085 float b0; 3086 float b1; 3087 float b2; 3088 } __ec_align4; 3089 3090 /* Version 1 */ 3091 struct ec_response_tmp006_get_calibration_v1 { 3092 uint8_t algorithm; 3093 uint8_t num_params; 3094 uint8_t reserved[2]; 3095 float val[0]; 3096 } __ec_align4; 3097 3098 struct ec_params_tmp006_set_calibration_v1 { 3099 uint8_t index; 3100 uint8_t algorithm; 3101 uint8_t num_params; 3102 uint8_t reserved; 3103 float val[0]; 3104 } __ec_align4; 3105 3106 3107 /* Read raw TMP006 data */ 3108 #define EC_CMD_TMP006_GET_RAW 0x0055 3109 3110 struct ec_params_tmp006_get_raw { 3111 uint8_t index; 3112 } __ec_align1; 3113 3114 struct ec_response_tmp006_get_raw { 3115 int32_t t; /* In 1/100 K */ 3116 int32_t v; /* In nV */ 3117 } __ec_align4; 3118 3119 /*****************************************************************************/ 3120 /* MKBP - Matrix KeyBoard Protocol */ 3121 3122 /* 3123 * Read key state 3124 * 3125 * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for 3126 * expected response size. 3127 * 3128 * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT. If you wish 3129 * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type 3130 * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX. 3131 */ 3132 #define EC_CMD_MKBP_STATE 0x0060 3133 3134 /* 3135 * Provide information about various MKBP things. See enum ec_mkbp_info_type. 3136 */ 3137 #define EC_CMD_MKBP_INFO 0x0061 3138 3139 struct ec_response_mkbp_info { 3140 uint32_t rows; 3141 uint32_t cols; 3142 /* Formerly "switches", which was 0. */ 3143 uint8_t reserved; 3144 } __ec_align_size1; 3145 3146 struct ec_params_mkbp_info { 3147 uint8_t info_type; 3148 uint8_t event_type; 3149 } __ec_align1; 3150 3151 enum ec_mkbp_info_type { 3152 /* 3153 * Info about the keyboard matrix: number of rows and columns. 3154 * 3155 * Returns struct ec_response_mkbp_info. 3156 */ 3157 EC_MKBP_INFO_KBD = 0, 3158 3159 /* 3160 * For buttons and switches, info about which specifically are 3161 * supported. event_type must be set to one of the values in enum 3162 * ec_mkbp_event. 3163 * 3164 * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte 3165 * bitmask indicating which buttons or switches are present. See the 3166 * bit inidices below. 3167 */ 3168 EC_MKBP_INFO_SUPPORTED = 1, 3169 3170 /* 3171 * Instantaneous state of buttons and switches. 3172 * 3173 * event_type must be set to one of the values in enum ec_mkbp_event. 3174 * 3175 * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13] 3176 * indicating the current state of the keyboard matrix. 3177 * 3178 * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw 3179 * event state. 3180 * 3181 * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the 3182 * state of supported buttons. 3183 * 3184 * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the 3185 * state of supported switches. 3186 */ 3187 EC_MKBP_INFO_CURRENT = 2, 3188 }; 3189 3190 /* Simulate key press */ 3191 #define EC_CMD_MKBP_SIMULATE_KEY 0x0062 3192 3193 struct ec_params_mkbp_simulate_key { 3194 uint8_t col; 3195 uint8_t row; 3196 uint8_t pressed; 3197 } __ec_align1; 3198 3199 #define EC_CMD_GET_KEYBOARD_ID 0x0063 3200 3201 struct ec_response_keyboard_id { 3202 uint32_t keyboard_id; 3203 } __ec_align4; 3204 3205 enum keyboard_id { 3206 KEYBOARD_ID_UNSUPPORTED = 0, 3207 KEYBOARD_ID_UNREADABLE = 0xffffffff, 3208 }; 3209 3210 /* Configure keyboard scanning */ 3211 #define EC_CMD_MKBP_SET_CONFIG 0x0064 3212 #define EC_CMD_MKBP_GET_CONFIG 0x0065 3213 3214 /* flags */ 3215 enum mkbp_config_flags { 3216 EC_MKBP_FLAGS_ENABLE = 1, /* Enable keyboard scanning */ 3217 }; 3218 3219 enum mkbp_config_valid { 3220 EC_MKBP_VALID_SCAN_PERIOD = BIT(0), 3221 EC_MKBP_VALID_POLL_TIMEOUT = BIT(1), 3222 EC_MKBP_VALID_MIN_POST_SCAN_DELAY = BIT(3), 3223 EC_MKBP_VALID_OUTPUT_SETTLE = BIT(4), 3224 EC_MKBP_VALID_DEBOUNCE_DOWN = BIT(5), 3225 EC_MKBP_VALID_DEBOUNCE_UP = BIT(6), 3226 EC_MKBP_VALID_FIFO_MAX_DEPTH = BIT(7), 3227 }; 3228 3229 /* 3230 * Configuration for our key scanning algorithm. 3231 * 3232 * Note that this is used as a sub-structure of 3233 * ec_{params/response}_mkbp_get_config. 3234 */ 3235 struct ec_mkbp_config { 3236 uint32_t valid_mask; /* valid fields */ 3237 uint8_t flags; /* some flags (enum mkbp_config_flags) */ 3238 uint8_t valid_flags; /* which flags are valid */ 3239 uint16_t scan_period_us; /* period between start of scans */ 3240 /* revert to interrupt mode after no activity for this long */ 3241 uint32_t poll_timeout_us; 3242 /* 3243 * minimum post-scan relax time. Once we finish a scan we check 3244 * the time until we are due to start the next one. If this time is 3245 * shorter this field, we use this instead. 3246 */ 3247 uint16_t min_post_scan_delay_us; 3248 /* delay between setting up output and waiting for it to settle */ 3249 uint16_t output_settle_us; 3250 uint16_t debounce_down_us; /* time for debounce on key down */ 3251 uint16_t debounce_up_us; /* time for debounce on key up */ 3252 /* maximum depth to allow for fifo (0 = no keyscan output) */ 3253 uint8_t fifo_max_depth; 3254 } __ec_align_size1; 3255 3256 struct ec_params_mkbp_set_config { 3257 struct ec_mkbp_config config; 3258 } __ec_align_size1; 3259 3260 struct ec_response_mkbp_get_config { 3261 struct ec_mkbp_config config; 3262 } __ec_align_size1; 3263 3264 /* Run the key scan emulation */ 3265 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066 3266 3267 enum ec_keyscan_seq_cmd { 3268 EC_KEYSCAN_SEQ_STATUS = 0, /* Get status information */ 3269 EC_KEYSCAN_SEQ_CLEAR = 1, /* Clear sequence */ 3270 EC_KEYSCAN_SEQ_ADD = 2, /* Add item to sequence */ 3271 EC_KEYSCAN_SEQ_START = 3, /* Start running sequence */ 3272 EC_KEYSCAN_SEQ_COLLECT = 4, /* Collect sequence summary data */ 3273 }; 3274 3275 enum ec_collect_flags { 3276 /* 3277 * Indicates this scan was processed by the EC. Due to timing, some 3278 * scans may be skipped. 3279 */ 3280 EC_KEYSCAN_SEQ_FLAG_DONE = BIT(0), 3281 }; 3282 3283 struct ec_collect_item { 3284 uint8_t flags; /* some flags (enum ec_collect_flags) */ 3285 } __ec_align1; 3286 3287 struct ec_params_keyscan_seq_ctrl { 3288 uint8_t cmd; /* Command to send (enum ec_keyscan_seq_cmd) */ 3289 union { 3290 struct __ec_align1 { 3291 uint8_t active; /* still active */ 3292 uint8_t num_items; /* number of items */ 3293 /* Current item being presented */ 3294 uint8_t cur_item; 3295 } status; 3296 struct __ec_todo_unpacked { 3297 /* 3298 * Absolute time for this scan, measured from the 3299 * start of the sequence. 3300 */ 3301 uint32_t time_us; 3302 uint8_t scan[0]; /* keyscan data */ 3303 } add; 3304 struct __ec_align1 { 3305 uint8_t start_item; /* First item to return */ 3306 uint8_t num_items; /* Number of items to return */ 3307 } collect; 3308 }; 3309 } __ec_todo_packed; 3310 3311 struct ec_result_keyscan_seq_ctrl { 3312 union { 3313 struct __ec_todo_unpacked { 3314 uint8_t num_items; /* Number of items */ 3315 /* Data for each item */ 3316 struct ec_collect_item item[0]; 3317 } collect; 3318 }; 3319 } __ec_todo_packed; 3320 3321 /* 3322 * Get the next pending MKBP event. 3323 * 3324 * Returns EC_RES_UNAVAILABLE if there is no event pending. 3325 */ 3326 #define EC_CMD_GET_NEXT_EVENT 0x0067 3327 3328 #define EC_MKBP_HAS_MORE_EVENTS_SHIFT 7 3329 3330 /* 3331 * We use the most significant bit of the event type to indicate to the host 3332 * that the EC has more MKBP events available to provide. 3333 */ 3334 #define EC_MKBP_HAS_MORE_EVENTS BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT) 3335 3336 /* The mask to apply to get the raw event type */ 3337 #define EC_MKBP_EVENT_TYPE_MASK (BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT) - 1) 3338 3339 enum ec_mkbp_event { 3340 /* Keyboard matrix changed. The event data is the new matrix state. */ 3341 EC_MKBP_EVENT_KEY_MATRIX = 0, 3342 3343 /* New host event. The event data is 4 bytes of host event flags. */ 3344 EC_MKBP_EVENT_HOST_EVENT = 1, 3345 3346 /* New Sensor FIFO data. The event data is fifo_info structure. */ 3347 EC_MKBP_EVENT_SENSOR_FIFO = 2, 3348 3349 /* The state of the non-matrixed buttons have changed. */ 3350 EC_MKBP_EVENT_BUTTON = 3, 3351 3352 /* The state of the switches have changed. */ 3353 EC_MKBP_EVENT_SWITCH = 4, 3354 3355 /* New Fingerprint sensor event, the event data is fp_events bitmap. */ 3356 EC_MKBP_EVENT_FINGERPRINT = 5, 3357 3358 /* 3359 * Sysrq event: send emulated sysrq. The event data is sysrq, 3360 * corresponding to the key to be pressed. 3361 */ 3362 EC_MKBP_EVENT_SYSRQ = 6, 3363 3364 /* 3365 * New 64-bit host event. 3366 * The event data is 8 bytes of host event flags. 3367 */ 3368 EC_MKBP_EVENT_HOST_EVENT64 = 7, 3369 3370 /* Notify the AP that something happened on CEC */ 3371 EC_MKBP_EVENT_CEC_EVENT = 8, 3372 3373 /* Send an incoming CEC message to the AP */ 3374 EC_MKBP_EVENT_CEC_MESSAGE = 9, 3375 3376 /* Number of MKBP events */ 3377 EC_MKBP_EVENT_COUNT, 3378 }; 3379 BUILD_ASSERT(EC_MKBP_EVENT_COUNT <= EC_MKBP_EVENT_TYPE_MASK); 3380 3381 union __ec_align_offset1 ec_response_get_next_data { 3382 uint8_t key_matrix[13]; 3383 3384 /* Unaligned */ 3385 uint32_t host_event; 3386 uint64_t host_event64; 3387 3388 struct __ec_todo_unpacked { 3389 /* For aligning the fifo_info */ 3390 uint8_t reserved[3]; 3391 struct ec_response_motion_sense_fifo_info info; 3392 } sensor_fifo; 3393 3394 uint32_t buttons; 3395 3396 uint32_t switches; 3397 3398 uint32_t fp_events; 3399 3400 uint32_t sysrq; 3401 3402 /* CEC events from enum mkbp_cec_event */ 3403 uint32_t cec_events; 3404 }; 3405 3406 union __ec_align_offset1 ec_response_get_next_data_v1 { 3407 uint8_t key_matrix[16]; 3408 3409 /* Unaligned */ 3410 uint32_t host_event; 3411 uint64_t host_event64; 3412 3413 struct __ec_todo_unpacked { 3414 /* For aligning the fifo_info */ 3415 uint8_t reserved[3]; 3416 struct ec_response_motion_sense_fifo_info info; 3417 } sensor_fifo; 3418 3419 uint32_t buttons; 3420 3421 uint32_t switches; 3422 3423 uint32_t fp_events; 3424 3425 uint32_t sysrq; 3426 3427 /* CEC events from enum mkbp_cec_event */ 3428 uint32_t cec_events; 3429 3430 uint8_t cec_message[16]; 3431 }; 3432 BUILD_ASSERT(sizeof(union ec_response_get_next_data_v1) == 16); 3433 3434 struct ec_response_get_next_event { 3435 uint8_t event_type; 3436 /* Followed by event data if any */ 3437 union ec_response_get_next_data data; 3438 } __ec_align1; 3439 3440 struct ec_response_get_next_event_v1 { 3441 uint8_t event_type; 3442 /* Followed by event data if any */ 3443 union ec_response_get_next_data_v1 data; 3444 } __ec_align1; 3445 3446 /* Bit indices for buttons and switches.*/ 3447 /* Buttons */ 3448 #define EC_MKBP_POWER_BUTTON 0 3449 #define EC_MKBP_VOL_UP 1 3450 #define EC_MKBP_VOL_DOWN 2 3451 #define EC_MKBP_RECOVERY 3 3452 3453 /* Switches */ 3454 #define EC_MKBP_LID_OPEN 0 3455 #define EC_MKBP_TABLET_MODE 1 3456 #define EC_MKBP_BASE_ATTACHED 2 3457 3458 /* Run keyboard factory test scanning */ 3459 #define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068 3460 3461 struct ec_response_keyboard_factory_test { 3462 uint16_t shorted; /* Keyboard pins are shorted */ 3463 } __ec_align2; 3464 3465 /* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */ 3466 #define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF) 3467 #define EC_MKBP_FP_ERRCODE(fp_events) ((fp_events) & 0x0000000F) 3468 #define EC_MKBP_FP_ENROLL_PROGRESS_OFFSET 4 3469 #define EC_MKBP_FP_ENROLL_PROGRESS(fpe) (((fpe) & 0x00000FF0) \ 3470 >> EC_MKBP_FP_ENROLL_PROGRESS_OFFSET) 3471 #define EC_MKBP_FP_MATCH_IDX_OFFSET 12 3472 #define EC_MKBP_FP_MATCH_IDX_MASK 0x0000F000 3473 #define EC_MKBP_FP_MATCH_IDX(fpe) (((fpe) & EC_MKBP_FP_MATCH_IDX_MASK) \ 3474 >> EC_MKBP_FP_MATCH_IDX_OFFSET) 3475 #define EC_MKBP_FP_ENROLL BIT(27) 3476 #define EC_MKBP_FP_MATCH BIT(28) 3477 #define EC_MKBP_FP_FINGER_DOWN BIT(29) 3478 #define EC_MKBP_FP_FINGER_UP BIT(30) 3479 #define EC_MKBP_FP_IMAGE_READY BIT(31) 3480 /* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_ENROLL is set */ 3481 #define EC_MKBP_FP_ERR_ENROLL_OK 0 3482 #define EC_MKBP_FP_ERR_ENROLL_LOW_QUALITY 1 3483 #define EC_MKBP_FP_ERR_ENROLL_IMMOBILE 2 3484 #define EC_MKBP_FP_ERR_ENROLL_LOW_COVERAGE 3 3485 #define EC_MKBP_FP_ERR_ENROLL_INTERNAL 5 3486 /* Can be used to detect if image was usable for enrollment or not. */ 3487 #define EC_MKBP_FP_ERR_ENROLL_PROBLEM_MASK 1 3488 /* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_MATCH is set */ 3489 #define EC_MKBP_FP_ERR_MATCH_NO 0 3490 #define EC_MKBP_FP_ERR_MATCH_NO_INTERNAL 6 3491 #define EC_MKBP_FP_ERR_MATCH_NO_TEMPLATES 7 3492 #define EC_MKBP_FP_ERR_MATCH_NO_LOW_QUALITY 2 3493 #define EC_MKBP_FP_ERR_MATCH_NO_LOW_COVERAGE 4 3494 #define EC_MKBP_FP_ERR_MATCH_YES 1 3495 #define EC_MKBP_FP_ERR_MATCH_YES_UPDATED 3 3496 #define EC_MKBP_FP_ERR_MATCH_YES_UPDATE_FAILED 5 3497 3498 3499 /*****************************************************************************/ 3500 /* Temperature sensor commands */ 3501 3502 /* Read temperature sensor info */ 3503 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070 3504 3505 struct ec_params_temp_sensor_get_info { 3506 uint8_t id; 3507 } __ec_align1; 3508 3509 struct ec_response_temp_sensor_get_info { 3510 char sensor_name[32]; 3511 uint8_t sensor_type; 3512 } __ec_align1; 3513 3514 /*****************************************************************************/ 3515 3516 /* 3517 * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI 3518 * commands accidentally sent to the wrong interface. See the ACPI section 3519 * below. 3520 */ 3521 3522 /*****************************************************************************/ 3523 /* Host event commands */ 3524 3525 3526 /* Obsolete. New implementation should use EC_CMD_HOST_EVENT instead */ 3527 /* 3528 * Host event mask params and response structures, shared by all of the host 3529 * event commands below. 3530 */ 3531 struct ec_params_host_event_mask { 3532 uint32_t mask; 3533 } __ec_align4; 3534 3535 struct ec_response_host_event_mask { 3536 uint32_t mask; 3537 } __ec_align4; 3538 3539 /* These all use ec_response_host_event_mask */ 3540 #define EC_CMD_HOST_EVENT_GET_B 0x0087 3541 #define EC_CMD_HOST_EVENT_GET_SMI_MASK 0x0088 3542 #define EC_CMD_HOST_EVENT_GET_SCI_MASK 0x0089 3543 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D 3544 3545 /* These all use ec_params_host_event_mask */ 3546 #define EC_CMD_HOST_EVENT_SET_SMI_MASK 0x008A 3547 #define EC_CMD_HOST_EVENT_SET_SCI_MASK 0x008B 3548 #define EC_CMD_HOST_EVENT_CLEAR 0x008C 3549 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E 3550 #define EC_CMD_HOST_EVENT_CLEAR_B 0x008F 3551 3552 /* 3553 * Unified host event programming interface - Should be used by newer versions 3554 * of BIOS/OS to program host events and masks 3555 */ 3556 3557 struct ec_params_host_event { 3558 3559 /* Action requested by host - one of enum ec_host_event_action. */ 3560 uint8_t action; 3561 3562 /* 3563 * Mask type that the host requested the action on - one of 3564 * enum ec_host_event_mask_type. 3565 */ 3566 uint8_t mask_type; 3567 3568 /* Set to 0, ignore on read */ 3569 uint16_t reserved; 3570 3571 /* Value to be used in case of set operations. */ 3572 uint64_t value; 3573 } __ec_align4; 3574 3575 /* 3576 * Response structure returned by EC_CMD_HOST_EVENT. 3577 * Update the value on a GET request. Set to 0 on GET/CLEAR 3578 */ 3579 3580 struct ec_response_host_event { 3581 3582 /* Mask value in case of get operation */ 3583 uint64_t value; 3584 } __ec_align4; 3585 3586 enum ec_host_event_action { 3587 /* 3588 * params.value is ignored. Value of mask_type populated 3589 * in response.value 3590 */ 3591 EC_HOST_EVENT_GET, 3592 3593 /* Bits in params.value are set */ 3594 EC_HOST_EVENT_SET, 3595 3596 /* Bits in params.value are cleared */ 3597 EC_HOST_EVENT_CLEAR, 3598 }; 3599 3600 enum ec_host_event_mask_type { 3601 3602 /* Main host event copy */ 3603 EC_HOST_EVENT_MAIN, 3604 3605 /* Copy B of host events */ 3606 EC_HOST_EVENT_B, 3607 3608 /* SCI Mask */ 3609 EC_HOST_EVENT_SCI_MASK, 3610 3611 /* SMI Mask */ 3612 EC_HOST_EVENT_SMI_MASK, 3613 3614 /* Mask of events that should be always reported in hostevents */ 3615 EC_HOST_EVENT_ALWAYS_REPORT_MASK, 3616 3617 /* Active wake mask */ 3618 EC_HOST_EVENT_ACTIVE_WAKE_MASK, 3619 3620 /* Lazy wake mask for S0ix */ 3621 EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX, 3622 3623 /* Lazy wake mask for S3 */ 3624 EC_HOST_EVENT_LAZY_WAKE_MASK_S3, 3625 3626 /* Lazy wake mask for S5 */ 3627 EC_HOST_EVENT_LAZY_WAKE_MASK_S5, 3628 }; 3629 3630 #define EC_CMD_HOST_EVENT 0x00A4 3631 3632 /*****************************************************************************/ 3633 /* Switch commands */ 3634 3635 /* Enable/disable LCD backlight */ 3636 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090 3637 3638 struct ec_params_switch_enable_backlight { 3639 uint8_t enabled; 3640 } __ec_align1; 3641 3642 /* Enable/disable WLAN/Bluetooth */ 3643 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091 3644 #define EC_VER_SWITCH_ENABLE_WIRELESS 1 3645 3646 /* Version 0 params; no response */ 3647 struct ec_params_switch_enable_wireless_v0 { 3648 uint8_t enabled; 3649 } __ec_align1; 3650 3651 /* Version 1 params */ 3652 struct ec_params_switch_enable_wireless_v1 { 3653 /* Flags to enable now */ 3654 uint8_t now_flags; 3655 3656 /* Which flags to copy from now_flags */ 3657 uint8_t now_mask; 3658 3659 /* 3660 * Flags to leave enabled in S3, if they're on at the S0->S3 3661 * transition. (Other flags will be disabled by the S0->S3 3662 * transition.) 3663 */ 3664 uint8_t suspend_flags; 3665 3666 /* Which flags to copy from suspend_flags */ 3667 uint8_t suspend_mask; 3668 } __ec_align1; 3669 3670 /* Version 1 response */ 3671 struct ec_response_switch_enable_wireless_v1 { 3672 /* Flags to enable now */ 3673 uint8_t now_flags; 3674 3675 /* Flags to leave enabled in S3 */ 3676 uint8_t suspend_flags; 3677 } __ec_align1; 3678 3679 /*****************************************************************************/ 3680 /* GPIO commands. Only available on EC if write protect has been disabled. */ 3681 3682 /* Set GPIO output value */ 3683 #define EC_CMD_GPIO_SET 0x0092 3684 3685 struct ec_params_gpio_set { 3686 char name[32]; 3687 uint8_t val; 3688 } __ec_align1; 3689 3690 /* Get GPIO value */ 3691 #define EC_CMD_GPIO_GET 0x0093 3692 3693 /* Version 0 of input params and response */ 3694 struct ec_params_gpio_get { 3695 char name[32]; 3696 } __ec_align1; 3697 3698 struct ec_response_gpio_get { 3699 uint8_t val; 3700 } __ec_align1; 3701 3702 /* Version 1 of input params and response */ 3703 struct ec_params_gpio_get_v1 { 3704 uint8_t subcmd; 3705 union { 3706 struct __ec_align1 { 3707 char name[32]; 3708 } get_value_by_name; 3709 struct __ec_align1 { 3710 uint8_t index; 3711 } get_info; 3712 }; 3713 } __ec_align1; 3714 3715 struct ec_response_gpio_get_v1 { 3716 union { 3717 struct __ec_align1 { 3718 uint8_t val; 3719 } get_value_by_name, get_count; 3720 struct __ec_todo_unpacked { 3721 uint8_t val; 3722 char name[32]; 3723 uint32_t flags; 3724 } get_info; 3725 }; 3726 } __ec_todo_packed; 3727 3728 enum gpio_get_subcmd { 3729 EC_GPIO_GET_BY_NAME = 0, 3730 EC_GPIO_GET_COUNT = 1, 3731 EC_GPIO_GET_INFO = 2, 3732 }; 3733 3734 /*****************************************************************************/ 3735 /* I2C commands. Only available when flash write protect is unlocked. */ 3736 3737 /* 3738 * CAUTION: These commands are deprecated, and are not supported anymore in EC 3739 * builds >= 8398.0.0 (see crosbug.com/p/23570). 3740 * 3741 * Use EC_CMD_I2C_PASSTHRU instead. 3742 */ 3743 3744 /* Read I2C bus */ 3745 #define EC_CMD_I2C_READ 0x0094 3746 3747 struct ec_params_i2c_read { 3748 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */ 3749 uint8_t read_size; /* Either 8 or 16. */ 3750 uint8_t port; 3751 uint8_t offset; 3752 } __ec_align_size1; 3753 3754 struct ec_response_i2c_read { 3755 uint16_t data; 3756 } __ec_align2; 3757 3758 /* Write I2C bus */ 3759 #define EC_CMD_I2C_WRITE 0x0095 3760 3761 struct ec_params_i2c_write { 3762 uint16_t data; 3763 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */ 3764 uint8_t write_size; /* Either 8 or 16. */ 3765 uint8_t port; 3766 uint8_t offset; 3767 } __ec_align_size1; 3768 3769 /*****************************************************************************/ 3770 /* Charge state commands. Only available when flash write protect unlocked. */ 3771 3772 /* Force charge state machine to stop charging the battery or force it to 3773 * discharge the battery. 3774 */ 3775 #define EC_CMD_CHARGE_CONTROL 0x0096 3776 #define EC_VER_CHARGE_CONTROL 1 3777 3778 enum ec_charge_control_mode { 3779 CHARGE_CONTROL_NORMAL = 0, 3780 CHARGE_CONTROL_IDLE, 3781 CHARGE_CONTROL_DISCHARGE, 3782 }; 3783 3784 struct ec_params_charge_control { 3785 uint32_t mode; /* enum charge_control_mode */ 3786 } __ec_align4; 3787 3788 /*****************************************************************************/ 3789 3790 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */ 3791 #define EC_CMD_CONSOLE_SNAPSHOT 0x0097 3792 3793 /* 3794 * Read data from the saved snapshot. If the subcmd parameter is 3795 * CONSOLE_READ_NEXT, this will return data starting from the beginning of 3796 * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the 3797 * end of the previous snapshot. 3798 * 3799 * The params are only looked at in version >= 1 of this command. Prior 3800 * versions will just default to CONSOLE_READ_NEXT behavior. 3801 * 3802 * Response is null-terminated string. Empty string, if there is no more 3803 * remaining output. 3804 */ 3805 #define EC_CMD_CONSOLE_READ 0x0098 3806 3807 enum ec_console_read_subcmd { 3808 CONSOLE_READ_NEXT = 0, 3809 CONSOLE_READ_RECENT 3810 }; 3811 3812 struct ec_params_console_read_v1 { 3813 uint8_t subcmd; /* enum ec_console_read_subcmd */ 3814 } __ec_align1; 3815 3816 /*****************************************************************************/ 3817 3818 /* 3819 * Cut off battery power immediately or after the host has shut down. 3820 * 3821 * return EC_RES_INVALID_COMMAND if unsupported by a board/battery. 3822 * EC_RES_SUCCESS if the command was successful. 3823 * EC_RES_ERROR if the cut off command failed. 3824 */ 3825 #define EC_CMD_BATTERY_CUT_OFF 0x0099 3826 3827 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN BIT(0) 3828 3829 struct ec_params_battery_cutoff { 3830 uint8_t flags; 3831 } __ec_align1; 3832 3833 /*****************************************************************************/ 3834 /* USB port mux control. */ 3835 3836 /* 3837 * Switch USB mux or return to automatic switching. 3838 */ 3839 #define EC_CMD_USB_MUX 0x009A 3840 3841 struct ec_params_usb_mux { 3842 uint8_t mux; 3843 } __ec_align1; 3844 3845 /*****************************************************************************/ 3846 /* LDOs / FETs control. */ 3847 3848 enum ec_ldo_state { 3849 EC_LDO_STATE_OFF = 0, /* the LDO / FET is shut down */ 3850 EC_LDO_STATE_ON = 1, /* the LDO / FET is ON / providing power */ 3851 }; 3852 3853 /* 3854 * Switch on/off a LDO. 3855 */ 3856 #define EC_CMD_LDO_SET 0x009B 3857 3858 struct ec_params_ldo_set { 3859 uint8_t index; 3860 uint8_t state; 3861 } __ec_align1; 3862 3863 /* 3864 * Get LDO state. 3865 */ 3866 #define EC_CMD_LDO_GET 0x009C 3867 3868 struct ec_params_ldo_get { 3869 uint8_t index; 3870 } __ec_align1; 3871 3872 struct ec_response_ldo_get { 3873 uint8_t state; 3874 } __ec_align1; 3875 3876 /*****************************************************************************/ 3877 /* Power info. */ 3878 3879 /* 3880 * Get power info. 3881 */ 3882 #define EC_CMD_POWER_INFO 0x009D 3883 3884 struct ec_response_power_info { 3885 uint32_t usb_dev_type; 3886 uint16_t voltage_ac; 3887 uint16_t voltage_system; 3888 uint16_t current_system; 3889 uint16_t usb_current_limit; 3890 } __ec_align4; 3891 3892 /*****************************************************************************/ 3893 /* I2C passthru command */ 3894 3895 #define EC_CMD_I2C_PASSTHRU 0x009E 3896 3897 /* Read data; if not present, message is a write */ 3898 #define EC_I2C_FLAG_READ BIT(15) 3899 3900 /* Mask for address */ 3901 #define EC_I2C_ADDR_MASK 0x3ff 3902 3903 #define EC_I2C_STATUS_NAK BIT(0) /* Transfer was not acknowledged */ 3904 #define EC_I2C_STATUS_TIMEOUT BIT(1) /* Timeout during transfer */ 3905 3906 /* Any error */ 3907 #define EC_I2C_STATUS_ERROR (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT) 3908 3909 struct ec_params_i2c_passthru_msg { 3910 uint16_t addr_flags; /* I2C slave address (7 or 10 bits) and flags */ 3911 uint16_t len; /* Number of bytes to read or write */ 3912 } __ec_align2; 3913 3914 struct ec_params_i2c_passthru { 3915 uint8_t port; /* I2C port number */ 3916 uint8_t num_msgs; /* Number of messages */ 3917 struct ec_params_i2c_passthru_msg msg[]; 3918 /* Data to write for all messages is concatenated here */ 3919 } __ec_align2; 3920 3921 struct ec_response_i2c_passthru { 3922 uint8_t i2c_status; /* Status flags (EC_I2C_STATUS_...) */ 3923 uint8_t num_msgs; /* Number of messages processed */ 3924 uint8_t data[]; /* Data read by messages concatenated here */ 3925 } __ec_align1; 3926 3927 /*****************************************************************************/ 3928 /* Power button hang detect */ 3929 3930 #define EC_CMD_HANG_DETECT 0x009F 3931 3932 /* Reasons to start hang detection timer */ 3933 /* Power button pressed */ 3934 #define EC_HANG_START_ON_POWER_PRESS BIT(0) 3935 3936 /* Lid closed */ 3937 #define EC_HANG_START_ON_LID_CLOSE BIT(1) 3938 3939 /* Lid opened */ 3940 #define EC_HANG_START_ON_LID_OPEN BIT(2) 3941 3942 /* Start of AP S3->S0 transition (booting or resuming from suspend) */ 3943 #define EC_HANG_START_ON_RESUME BIT(3) 3944 3945 /* Reasons to cancel hang detection */ 3946 3947 /* Power button released */ 3948 #define EC_HANG_STOP_ON_POWER_RELEASE BIT(8) 3949 3950 /* Any host command from AP received */ 3951 #define EC_HANG_STOP_ON_HOST_COMMAND BIT(9) 3952 3953 /* Stop on end of AP S0->S3 transition (suspending or shutting down) */ 3954 #define EC_HANG_STOP_ON_SUSPEND BIT(10) 3955 3956 /* 3957 * If this flag is set, all the other fields are ignored, and the hang detect 3958 * timer is started. This provides the AP a way to start the hang timer 3959 * without reconfiguring any of the other hang detect settings. Note that 3960 * you must previously have configured the timeouts. 3961 */ 3962 #define EC_HANG_START_NOW BIT(30) 3963 3964 /* 3965 * If this flag is set, all the other fields are ignored (including 3966 * EC_HANG_START_NOW). This provides the AP a way to stop the hang timer 3967 * without reconfiguring any of the other hang detect settings. 3968 */ 3969 #define EC_HANG_STOP_NOW BIT(31) 3970 3971 struct ec_params_hang_detect { 3972 /* Flags; see EC_HANG_* */ 3973 uint32_t flags; 3974 3975 /* Timeout in msec before generating host event, if enabled */ 3976 uint16_t host_event_timeout_msec; 3977 3978 /* Timeout in msec before generating warm reboot, if enabled */ 3979 uint16_t warm_reboot_timeout_msec; 3980 } __ec_align4; 3981 3982 /*****************************************************************************/ 3983 /* Commands for battery charging */ 3984 3985 /* 3986 * This is the single catch-all host command to exchange data regarding the 3987 * charge state machine (v2 and up). 3988 */ 3989 #define EC_CMD_CHARGE_STATE 0x00A0 3990 3991 /* Subcommands for this host command */ 3992 enum charge_state_command { 3993 CHARGE_STATE_CMD_GET_STATE, 3994 CHARGE_STATE_CMD_GET_PARAM, 3995 CHARGE_STATE_CMD_SET_PARAM, 3996 CHARGE_STATE_NUM_CMDS 3997 }; 3998 3999 /* 4000 * Known param numbers are defined here. Ranges are reserved for board-specific 4001 * params, which are handled by the particular implementations. 4002 */ 4003 enum charge_state_params { 4004 CS_PARAM_CHG_VOLTAGE, /* charger voltage limit */ 4005 CS_PARAM_CHG_CURRENT, /* charger current limit */ 4006 CS_PARAM_CHG_INPUT_CURRENT, /* charger input current limit */ 4007 CS_PARAM_CHG_STATUS, /* charger-specific status */ 4008 CS_PARAM_CHG_OPTION, /* charger-specific options */ 4009 CS_PARAM_LIMIT_POWER, /* 4010 * Check if power is limited due to 4011 * low battery and / or a weak external 4012 * charger. READ ONLY. 4013 */ 4014 /* How many so far? */ 4015 CS_NUM_BASE_PARAMS, 4016 4017 /* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */ 4018 CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000, 4019 CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff, 4020 4021 /* Range for CONFIG_CHARGE_STATE_DEBUG params */ 4022 CS_PARAM_DEBUG_MIN = 0x20000, 4023 CS_PARAM_DEBUG_CTL_MODE = 0x20000, 4024 CS_PARAM_DEBUG_MANUAL_MODE, 4025 CS_PARAM_DEBUG_SEEMS_DEAD, 4026 CS_PARAM_DEBUG_SEEMS_DISCONNECTED, 4027 CS_PARAM_DEBUG_BATT_REMOVED, 4028 CS_PARAM_DEBUG_MANUAL_CURRENT, 4029 CS_PARAM_DEBUG_MANUAL_VOLTAGE, 4030 CS_PARAM_DEBUG_MAX = 0x2ffff, 4031 4032 /* Other custom param ranges go here... */ 4033 }; 4034 4035 struct ec_params_charge_state { 4036 uint8_t cmd; /* enum charge_state_command */ 4037 union { 4038 /* get_state has no args */ 4039 4040 struct __ec_todo_unpacked { 4041 uint32_t param; /* enum charge_state_param */ 4042 } get_param; 4043 4044 struct __ec_todo_unpacked { 4045 uint32_t param; /* param to set */ 4046 uint32_t value; /* value to set */ 4047 } set_param; 4048 }; 4049 } __ec_todo_packed; 4050 4051 struct ec_response_charge_state { 4052 union { 4053 struct __ec_align4 { 4054 int ac; 4055 int chg_voltage; 4056 int chg_current; 4057 int chg_input_current; 4058 int batt_state_of_charge; 4059 } get_state; 4060 4061 struct __ec_align4 { 4062 uint32_t value; 4063 } get_param; 4064 4065 /* set_param returns no args */ 4066 }; 4067 } __ec_align4; 4068 4069 4070 /* 4071 * Set maximum battery charging current. 4072 */ 4073 #define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1 4074 4075 struct ec_params_current_limit { 4076 uint32_t limit; /* in mA */ 4077 } __ec_align4; 4078 4079 /* 4080 * Set maximum external voltage / current. 4081 */ 4082 #define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2 4083 4084 /* Command v0 is used only on Spring and is obsolete + unsupported */ 4085 struct ec_params_external_power_limit_v1 { 4086 uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */ 4087 uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */ 4088 } __ec_align2; 4089 4090 #define EC_POWER_LIMIT_NONE 0xffff 4091 4092 /* 4093 * Set maximum voltage & current of a dedicated charge port 4094 */ 4095 #define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3 4096 4097 struct ec_params_dedicated_charger_limit { 4098 uint16_t current_lim; /* in mA */ 4099 uint16_t voltage_lim; /* in mV */ 4100 } __ec_align2; 4101 4102 /*****************************************************************************/ 4103 /* Hibernate/Deep Sleep Commands */ 4104 4105 /* Set the delay before going into hibernation. */ 4106 #define EC_CMD_HIBERNATION_DELAY 0x00A8 4107 4108 struct ec_params_hibernation_delay { 4109 /* 4110 * Seconds to wait in G3 before hibernate. Pass in 0 to read the 4111 * current settings without changing them. 4112 */ 4113 uint32_t seconds; 4114 } __ec_align4; 4115 4116 struct ec_response_hibernation_delay { 4117 /* 4118 * The current time in seconds in which the system has been in the G3 4119 * state. This value is reset if the EC transitions out of G3. 4120 */ 4121 uint32_t time_g3; 4122 4123 /* 4124 * The current time remaining in seconds until the EC should hibernate. 4125 * This value is also reset if the EC transitions out of G3. 4126 */ 4127 uint32_t time_remaining; 4128 4129 /* 4130 * The current time in seconds that the EC should wait in G3 before 4131 * hibernating. 4132 */ 4133 uint32_t hibernate_delay; 4134 } __ec_align4; 4135 4136 /* Inform the EC when entering a sleep state */ 4137 #define EC_CMD_HOST_SLEEP_EVENT 0x00A9 4138 4139 enum host_sleep_event { 4140 HOST_SLEEP_EVENT_S3_SUSPEND = 1, 4141 HOST_SLEEP_EVENT_S3_RESUME = 2, 4142 HOST_SLEEP_EVENT_S0IX_SUSPEND = 3, 4143 HOST_SLEEP_EVENT_S0IX_RESUME = 4, 4144 /* S3 suspend with additional enabled wake sources */ 4145 HOST_SLEEP_EVENT_S3_WAKEABLE_SUSPEND = 5, 4146 }; 4147 4148 struct ec_params_host_sleep_event { 4149 uint8_t sleep_event; 4150 } __ec_align1; 4151 4152 /* 4153 * Use a default timeout value (CONFIG_SLEEP_TIMEOUT_MS) for detecting sleep 4154 * transition failures 4155 */ 4156 #define EC_HOST_SLEEP_TIMEOUT_DEFAULT 0 4157 4158 /* Disable timeout detection for this sleep transition */ 4159 #define EC_HOST_SLEEP_TIMEOUT_INFINITE 0xFFFF 4160 4161 struct ec_params_host_sleep_event_v1 { 4162 /* The type of sleep being entered or exited. */ 4163 uint8_t sleep_event; 4164 4165 /* Padding */ 4166 uint8_t reserved; 4167 union { 4168 /* Parameters that apply for suspend messages. */ 4169 struct { 4170 /* 4171 * The timeout in milliseconds between when this message 4172 * is received and when the EC will declare sleep 4173 * transition failure if the sleep signal is not 4174 * asserted. 4175 */ 4176 uint16_t sleep_timeout_ms; 4177 } suspend_params; 4178 4179 /* No parameters for non-suspend messages. */ 4180 }; 4181 } __ec_align2; 4182 4183 /* A timeout occurred when this bit is set */ 4184 #define EC_HOST_RESUME_SLEEP_TIMEOUT 0x80000000 4185 4186 /* 4187 * The mask defining which bits correspond to the number of sleep transitions, 4188 * as well as the maximum number of suspend line transitions that will be 4189 * reported back to the host. 4190 */ 4191 #define EC_HOST_RESUME_SLEEP_TRANSITIONS_MASK 0x7FFFFFFF 4192 4193 struct ec_response_host_sleep_event_v1 { 4194 union { 4195 /* Response fields that apply for resume messages. */ 4196 struct { 4197 /* 4198 * The number of sleep power signal transitions that 4199 * occurred since the suspend message. The high bit 4200 * indicates a timeout occurred. 4201 */ 4202 uint32_t sleep_transitions; 4203 } resume_response; 4204 4205 /* No response fields for non-resume messages. */ 4206 }; 4207 } __ec_align4; 4208 4209 /*****************************************************************************/ 4210 /* Device events */ 4211 #define EC_CMD_DEVICE_EVENT 0x00AA 4212 4213 enum ec_device_event { 4214 EC_DEVICE_EVENT_TRACKPAD, 4215 EC_DEVICE_EVENT_DSP, 4216 EC_DEVICE_EVENT_WIFI, 4217 }; 4218 4219 enum ec_device_event_param { 4220 /* Get and clear pending device events */ 4221 EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS, 4222 /* Get device event mask */ 4223 EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS, 4224 /* Set device event mask */ 4225 EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS, 4226 }; 4227 4228 #define EC_DEVICE_EVENT_MASK(event_code) BIT(event_code % 32) 4229 4230 struct ec_params_device_event { 4231 uint32_t event_mask; 4232 uint8_t param; 4233 } __ec_align_size1; 4234 4235 struct ec_response_device_event { 4236 uint32_t event_mask; 4237 } __ec_align4; 4238 4239 /*****************************************************************************/ 4240 /* Smart battery pass-through */ 4241 4242 /* Get / Set 16-bit smart battery registers */ 4243 #define EC_CMD_SB_READ_WORD 0x00B0 4244 #define EC_CMD_SB_WRITE_WORD 0x00B1 4245 4246 /* Get / Set string smart battery parameters 4247 * formatted as SMBUS "block". 4248 */ 4249 #define EC_CMD_SB_READ_BLOCK 0x00B2 4250 #define EC_CMD_SB_WRITE_BLOCK 0x00B3 4251 4252 struct ec_params_sb_rd { 4253 uint8_t reg; 4254 } __ec_align1; 4255 4256 struct ec_response_sb_rd_word { 4257 uint16_t value; 4258 } __ec_align2; 4259 4260 struct ec_params_sb_wr_word { 4261 uint8_t reg; 4262 uint16_t value; 4263 } __ec_align1; 4264 4265 struct ec_response_sb_rd_block { 4266 uint8_t data[32]; 4267 } __ec_align1; 4268 4269 struct ec_params_sb_wr_block { 4270 uint8_t reg; 4271 uint16_t data[32]; 4272 } __ec_align1; 4273 4274 /*****************************************************************************/ 4275 /* Battery vendor parameters 4276 * 4277 * Get or set vendor-specific parameters in the battery. Implementations may 4278 * differ between boards or batteries. On a set operation, the response 4279 * contains the actual value set, which may be rounded or clipped from the 4280 * requested value. 4281 */ 4282 4283 #define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4 4284 4285 enum ec_battery_vendor_param_mode { 4286 BATTERY_VENDOR_PARAM_MODE_GET = 0, 4287 BATTERY_VENDOR_PARAM_MODE_SET, 4288 }; 4289 4290 struct ec_params_battery_vendor_param { 4291 uint32_t param; 4292 uint32_t value; 4293 uint8_t mode; 4294 } __ec_align_size1; 4295 4296 struct ec_response_battery_vendor_param { 4297 uint32_t value; 4298 } __ec_align4; 4299 4300 /*****************************************************************************/ 4301 /* 4302 * Smart Battery Firmware Update Commands 4303 */ 4304 #define EC_CMD_SB_FW_UPDATE 0x00B5 4305 4306 enum ec_sb_fw_update_subcmd { 4307 EC_SB_FW_UPDATE_PREPARE = 0x0, 4308 EC_SB_FW_UPDATE_INFO = 0x1, /*query sb info */ 4309 EC_SB_FW_UPDATE_BEGIN = 0x2, /*check if protected */ 4310 EC_SB_FW_UPDATE_WRITE = 0x3, /*check if protected */ 4311 EC_SB_FW_UPDATE_END = 0x4, 4312 EC_SB_FW_UPDATE_STATUS = 0x5, 4313 EC_SB_FW_UPDATE_PROTECT = 0x6, 4314 EC_SB_FW_UPDATE_MAX = 0x7, 4315 }; 4316 4317 #define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32 4318 #define SB_FW_UPDATE_CMD_STATUS_SIZE 2 4319 #define SB_FW_UPDATE_CMD_INFO_SIZE 8 4320 4321 struct ec_sb_fw_update_header { 4322 uint16_t subcmd; /* enum ec_sb_fw_update_subcmd */ 4323 uint16_t fw_id; /* firmware id */ 4324 } __ec_align4; 4325 4326 struct ec_params_sb_fw_update { 4327 struct ec_sb_fw_update_header hdr; 4328 union { 4329 /* EC_SB_FW_UPDATE_PREPARE = 0x0 */ 4330 /* EC_SB_FW_UPDATE_INFO = 0x1 */ 4331 /* EC_SB_FW_UPDATE_BEGIN = 0x2 */ 4332 /* EC_SB_FW_UPDATE_END = 0x4 */ 4333 /* EC_SB_FW_UPDATE_STATUS = 0x5 */ 4334 /* EC_SB_FW_UPDATE_PROTECT = 0x6 */ 4335 /* Those have no args */ 4336 4337 /* EC_SB_FW_UPDATE_WRITE = 0x3 */ 4338 struct __ec_align4 { 4339 uint8_t data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE]; 4340 } write; 4341 }; 4342 } __ec_align4; 4343 4344 struct ec_response_sb_fw_update { 4345 union { 4346 /* EC_SB_FW_UPDATE_INFO = 0x1 */ 4347 struct __ec_align1 { 4348 uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE]; 4349 } info; 4350 4351 /* EC_SB_FW_UPDATE_STATUS = 0x5 */ 4352 struct __ec_align1 { 4353 uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE]; 4354 } status; 4355 }; 4356 } __ec_align1; 4357 4358 /* 4359 * Entering Verified Boot Mode Command 4360 * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command. 4361 * Valid Modes are: normal, developer, and recovery. 4362 */ 4363 #define EC_CMD_ENTERING_MODE 0x00B6 4364 4365 struct ec_params_entering_mode { 4366 int vboot_mode; 4367 } __ec_align4; 4368 4369 #define VBOOT_MODE_NORMAL 0 4370 #define VBOOT_MODE_DEVELOPER 1 4371 #define VBOOT_MODE_RECOVERY 2 4372 4373 /*****************************************************************************/ 4374 /* 4375 * I2C passthru protection command: Protects I2C tunnels against access on 4376 * certain addresses (board-specific). 4377 */ 4378 #define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7 4379 4380 enum ec_i2c_passthru_protect_subcmd { 4381 EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0x0, 4382 EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 0x1, 4383 }; 4384 4385 struct ec_params_i2c_passthru_protect { 4386 uint8_t subcmd; 4387 uint8_t port; /* I2C port number */ 4388 } __ec_align1; 4389 4390 struct ec_response_i2c_passthru_protect { 4391 uint8_t status; /* Status flags (0: unlocked, 1: locked) */ 4392 } __ec_align1; 4393 4394 4395 /*****************************************************************************/ 4396 /* 4397 * HDMI CEC commands 4398 * 4399 * These commands are for sending and receiving message via HDMI CEC 4400 */ 4401 4402 #define MAX_CEC_MSG_LEN 16 4403 4404 /* CEC message from the AP to be written on the CEC bus */ 4405 #define EC_CMD_CEC_WRITE_MSG 0x00B8 4406 4407 /** 4408 * struct ec_params_cec_write - Message to write to the CEC bus 4409 * @msg: message content to write to the CEC bus 4410 */ 4411 struct ec_params_cec_write { 4412 uint8_t msg[MAX_CEC_MSG_LEN]; 4413 } __ec_align1; 4414 4415 /* Set various CEC parameters */ 4416 #define EC_CMD_CEC_SET 0x00BA 4417 4418 /** 4419 * struct ec_params_cec_set - CEC parameters set 4420 * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS 4421 * @val: in case cmd is CEC_CMD_ENABLE, this field can be 0 to disable CEC 4422 * or 1 to enable CEC functionality, in case cmd is 4423 * CEC_CMD_LOGICAL_ADDRESS, this field encodes the requested logical 4424 * address between 0 and 15 or 0xff to unregister 4425 */ 4426 struct ec_params_cec_set { 4427 uint8_t cmd; /* enum cec_command */ 4428 uint8_t val; 4429 } __ec_align1; 4430 4431 /* Read various CEC parameters */ 4432 #define EC_CMD_CEC_GET 0x00BB 4433 4434 /** 4435 * struct ec_params_cec_get - CEC parameters get 4436 * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS 4437 */ 4438 struct ec_params_cec_get { 4439 uint8_t cmd; /* enum cec_command */ 4440 } __ec_align1; 4441 4442 /** 4443 * struct ec_response_cec_get - CEC parameters get response 4444 * @val: in case cmd was CEC_CMD_ENABLE, this field will 0 if CEC is 4445 * disabled or 1 if CEC functionality is enabled, 4446 * in case cmd was CEC_CMD_LOGICAL_ADDRESS, this will encode the 4447 * configured logical address between 0 and 15 or 0xff if unregistered 4448 */ 4449 struct ec_response_cec_get { 4450 uint8_t val; 4451 } __ec_align1; 4452 4453 /* CEC parameters command */ 4454 enum cec_command { 4455 /* CEC reading, writing and events enable */ 4456 CEC_CMD_ENABLE, 4457 /* CEC logical address */ 4458 CEC_CMD_LOGICAL_ADDRESS, 4459 }; 4460 4461 /* Events from CEC to AP */ 4462 enum mkbp_cec_event { 4463 /* Outgoing message was acknowledged by a follower */ 4464 EC_MKBP_CEC_SEND_OK = BIT(0), 4465 /* Outgoing message was not acknowledged */ 4466 EC_MKBP_CEC_SEND_FAILED = BIT(1), 4467 }; 4468 4469 /*****************************************************************************/ 4470 4471 /* Commands for I2S recording on audio codec. */ 4472 4473 #define EC_CMD_CODEC_I2S 0x00BC 4474 #define EC_WOV_I2S_SAMPLE_RATE 48000 4475 4476 enum ec_codec_i2s_subcmd { 4477 EC_CODEC_SET_SAMPLE_DEPTH = 0x0, 4478 EC_CODEC_SET_GAIN = 0x1, 4479 EC_CODEC_GET_GAIN = 0x2, 4480 EC_CODEC_I2S_ENABLE = 0x3, 4481 EC_CODEC_I2S_SET_CONFIG = 0x4, 4482 EC_CODEC_I2S_SET_TDM_CONFIG = 0x5, 4483 EC_CODEC_I2S_SET_BCLK = 0x6, 4484 EC_CODEC_I2S_SUBCMD_COUNT = 0x7, 4485 }; 4486 4487 enum ec_sample_depth_value { 4488 EC_CODEC_SAMPLE_DEPTH_16 = 0, 4489 EC_CODEC_SAMPLE_DEPTH_24 = 1, 4490 }; 4491 4492 enum ec_i2s_config { 4493 EC_DAI_FMT_I2S = 0, 4494 EC_DAI_FMT_RIGHT_J = 1, 4495 EC_DAI_FMT_LEFT_J = 2, 4496 EC_DAI_FMT_PCM_A = 3, 4497 EC_DAI_FMT_PCM_B = 4, 4498 EC_DAI_FMT_PCM_TDM = 5, 4499 }; 4500 4501 /* 4502 * For subcommand EC_CODEC_GET_GAIN. 4503 */ 4504 struct __ec_align1 ec_codec_i2s_gain { 4505 uint8_t left; 4506 uint8_t right; 4507 }; 4508 4509 struct __ec_todo_unpacked ec_param_codec_i2s_tdm { 4510 int16_t ch0_delay; /* 0 to 496 */ 4511 int16_t ch1_delay; /* -1 to 496 */ 4512 uint8_t adjacent_to_ch0; 4513 uint8_t adjacent_to_ch1; 4514 }; 4515 4516 struct __ec_todo_packed ec_param_codec_i2s { 4517 /* enum ec_codec_i2s_subcmd */ 4518 uint8_t cmd; 4519 union { 4520 /* 4521 * EC_CODEC_SET_SAMPLE_DEPTH 4522 * Value should be one of ec_sample_depth_value. 4523 */ 4524 uint8_t depth; 4525 4526 /* 4527 * EC_CODEC_SET_GAIN 4528 * Value should be 0~43 for both channels. 4529 */ 4530 struct ec_codec_i2s_gain gain; 4531 4532 /* 4533 * EC_CODEC_I2S_ENABLE 4534 * 1 to enable, 0 to disable. 4535 */ 4536 uint8_t i2s_enable; 4537 4538 /* 4539 * EC_CODEC_I2S_SET_CONFIG 4540 * Value should be one of ec_i2s_config. 4541 */ 4542 uint8_t i2s_config; 4543 4544 /* 4545 * EC_CODEC_I2S_SET_TDM_CONFIG 4546 * Value should be one of ec_i2s_config. 4547 */ 4548 struct ec_param_codec_i2s_tdm tdm_param; 4549 4550 /* 4551 * EC_CODEC_I2S_SET_BCLK 4552 */ 4553 uint32_t bclk; 4554 }; 4555 }; 4556 4557 4558 /*****************************************************************************/ 4559 /* System commands */ 4560 4561 /* 4562 * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't 4563 * necessarily reboot the EC. Rename to "image" or something similar? 4564 */ 4565 #define EC_CMD_REBOOT_EC 0x00D2 4566 4567 /* Command */ 4568 enum ec_reboot_cmd { 4569 EC_REBOOT_CANCEL = 0, /* Cancel a pending reboot */ 4570 EC_REBOOT_JUMP_RO = 1, /* Jump to RO without rebooting */ 4571 EC_REBOOT_JUMP_RW = 2, /* Jump to active RW without rebooting */ 4572 /* (command 3 was jump to RW-B) */ 4573 EC_REBOOT_COLD = 4, /* Cold-reboot */ 4574 EC_REBOOT_DISABLE_JUMP = 5, /* Disable jump until next reboot */ 4575 EC_REBOOT_HIBERNATE = 6, /* Hibernate EC */ 4576 EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7, /* and clears AP_OFF flag */ 4577 }; 4578 4579 /* Flags for ec_params_reboot_ec.reboot_flags */ 4580 #define EC_REBOOT_FLAG_RESERVED0 BIT(0) /* Was recovery request */ 4581 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN BIT(1) /* Reboot after AP shutdown */ 4582 #define EC_REBOOT_FLAG_SWITCH_RW_SLOT BIT(2) /* Switch RW slot */ 4583 4584 struct ec_params_reboot_ec { 4585 uint8_t cmd; /* enum ec_reboot_cmd */ 4586 uint8_t flags; /* See EC_REBOOT_FLAG_* */ 4587 } __ec_align1; 4588 4589 /* 4590 * Get information on last EC panic. 4591 * 4592 * Returns variable-length platform-dependent panic information. See panic.h 4593 * for details. 4594 */ 4595 #define EC_CMD_GET_PANIC_INFO 0x00D3 4596 4597 /*****************************************************************************/ 4598 /* 4599 * Special commands 4600 * 4601 * These do not follow the normal rules for commands. See each command for 4602 * details. 4603 */ 4604 4605 /* 4606 * Reboot NOW 4607 * 4608 * This command will work even when the EC LPC interface is busy, because the 4609 * reboot command is processed at interrupt level. Note that when the EC 4610 * reboots, the host will reboot too, so there is no response to this command. 4611 * 4612 * Use EC_CMD_REBOOT_EC to reboot the EC more politely. 4613 */ 4614 #define EC_CMD_REBOOT 0x00D1 /* Think "die" */ 4615 4616 /* 4617 * Resend last response (not supported on LPC). 4618 * 4619 * Returns EC_RES_UNAVAILABLE if there is no response available - for example, 4620 * there was no previous command, or the previous command's response was too 4621 * big to save. 4622 */ 4623 #define EC_CMD_RESEND_RESPONSE 0x00DB 4624 4625 /* 4626 * This header byte on a command indicate version 0. Any header byte less 4627 * than this means that we are talking to an old EC which doesn't support 4628 * versioning. In that case, we assume version 0. 4629 * 4630 * Header bytes greater than this indicate a later version. For example, 4631 * EC_CMD_VERSION0 + 1 means we are using version 1. 4632 * 4633 * The old EC interface must not use commands 0xdc or higher. 4634 */ 4635 #define EC_CMD_VERSION0 0x00DC 4636 4637 /*****************************************************************************/ 4638 /* 4639 * PD commands 4640 * 4641 * These commands are for PD MCU communication. 4642 */ 4643 4644 /* EC to PD MCU exchange status command */ 4645 #define EC_CMD_PD_EXCHANGE_STATUS 0x0100 4646 #define EC_VER_PD_EXCHANGE_STATUS 2 4647 4648 enum pd_charge_state { 4649 PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */ 4650 PD_CHARGE_NONE, /* No charging allowed */ 4651 PD_CHARGE_5V, /* 5V charging only */ 4652 PD_CHARGE_MAX /* Charge at max voltage */ 4653 }; 4654 4655 /* Status of EC being sent to PD */ 4656 #define EC_STATUS_HIBERNATING BIT(0) 4657 4658 struct ec_params_pd_status { 4659 uint8_t status; /* EC status */ 4660 int8_t batt_soc; /* battery state of charge */ 4661 uint8_t charge_state; /* charging state (from enum pd_charge_state) */ 4662 } __ec_align1; 4663 4664 /* Status of PD being sent back to EC */ 4665 #define PD_STATUS_HOST_EVENT BIT(0) /* Forward host event to AP */ 4666 #define PD_STATUS_IN_RW BIT(1) /* Running RW image */ 4667 #define PD_STATUS_JUMPED_TO_IMAGE BIT(2) /* Current image was jumped to */ 4668 #define PD_STATUS_TCPC_ALERT_0 BIT(3) /* Alert active in port 0 TCPC */ 4669 #define PD_STATUS_TCPC_ALERT_1 BIT(4) /* Alert active in port 1 TCPC */ 4670 #define PD_STATUS_TCPC_ALERT_2 BIT(5) /* Alert active in port 2 TCPC */ 4671 #define PD_STATUS_TCPC_ALERT_3 BIT(6) /* Alert active in port 3 TCPC */ 4672 #define PD_STATUS_EC_INT_ACTIVE (PD_STATUS_TCPC_ALERT_0 | \ 4673 PD_STATUS_TCPC_ALERT_1 | \ 4674 PD_STATUS_HOST_EVENT) 4675 struct ec_response_pd_status { 4676 uint32_t curr_lim_ma; /* input current limit */ 4677 uint16_t status; /* PD MCU status */ 4678 int8_t active_charge_port; /* active charging port */ 4679 } __ec_align_size1; 4680 4681 /* AP to PD MCU host event status command, cleared on read */ 4682 #define EC_CMD_PD_HOST_EVENT_STATUS 0x0104 4683 4684 /* PD MCU host event status bits */ 4685 #define PD_EVENT_UPDATE_DEVICE BIT(0) 4686 #define PD_EVENT_POWER_CHANGE BIT(1) 4687 #define PD_EVENT_IDENTITY_RECEIVED BIT(2) 4688 #define PD_EVENT_DATA_SWAP BIT(3) 4689 struct ec_response_host_event_status { 4690 uint32_t status; /* PD MCU host event status */ 4691 } __ec_align4; 4692 4693 /* Set USB type-C port role and muxes */ 4694 #define EC_CMD_USB_PD_CONTROL 0x0101 4695 4696 enum usb_pd_control_role { 4697 USB_PD_CTRL_ROLE_NO_CHANGE = 0, 4698 USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */ 4699 USB_PD_CTRL_ROLE_TOGGLE_OFF = 2, 4700 USB_PD_CTRL_ROLE_FORCE_SINK = 3, 4701 USB_PD_CTRL_ROLE_FORCE_SOURCE = 4, 4702 USB_PD_CTRL_ROLE_FREEZE = 5, 4703 USB_PD_CTRL_ROLE_COUNT 4704 }; 4705 4706 enum usb_pd_control_mux { 4707 USB_PD_CTRL_MUX_NO_CHANGE = 0, 4708 USB_PD_CTRL_MUX_NONE = 1, 4709 USB_PD_CTRL_MUX_USB = 2, 4710 USB_PD_CTRL_MUX_DP = 3, 4711 USB_PD_CTRL_MUX_DOCK = 4, 4712 USB_PD_CTRL_MUX_AUTO = 5, 4713 USB_PD_CTRL_MUX_COUNT 4714 }; 4715 4716 enum usb_pd_control_swap { 4717 USB_PD_CTRL_SWAP_NONE = 0, 4718 USB_PD_CTRL_SWAP_DATA = 1, 4719 USB_PD_CTRL_SWAP_POWER = 2, 4720 USB_PD_CTRL_SWAP_VCONN = 3, 4721 USB_PD_CTRL_SWAP_COUNT 4722 }; 4723 4724 struct ec_params_usb_pd_control { 4725 uint8_t port; 4726 uint8_t role; 4727 uint8_t mux; 4728 uint8_t swap; 4729 } __ec_align1; 4730 4731 #define PD_CTRL_RESP_ENABLED_COMMS BIT(0) /* Communication enabled */ 4732 #define PD_CTRL_RESP_ENABLED_CONNECTED BIT(1) /* Device connected */ 4733 #define PD_CTRL_RESP_ENABLED_PD_CAPABLE BIT(2) /* Partner is PD capable */ 4734 4735 #define PD_CTRL_RESP_ROLE_POWER BIT(0) /* 0=SNK/1=SRC */ 4736 #define PD_CTRL_RESP_ROLE_DATA BIT(1) /* 0=UFP/1=DFP */ 4737 #define PD_CTRL_RESP_ROLE_VCONN BIT(2) /* Vconn status */ 4738 #define PD_CTRL_RESP_ROLE_DR_POWER BIT(3) /* Partner is dualrole power */ 4739 #define PD_CTRL_RESP_ROLE_DR_DATA BIT(4) /* Partner is dualrole data */ 4740 #define PD_CTRL_RESP_ROLE_USB_COMM BIT(5) /* Partner USB comm capable */ 4741 #define PD_CTRL_RESP_ROLE_EXT_POWERED BIT(6) /* Partner externally powerd */ 4742 4743 struct ec_response_usb_pd_control { 4744 uint8_t enabled; 4745 uint8_t role; 4746 uint8_t polarity; 4747 uint8_t state; 4748 } __ec_align1; 4749 4750 struct ec_response_usb_pd_control_v1 { 4751 uint8_t enabled; 4752 uint8_t role; 4753 uint8_t polarity; 4754 char state[32]; 4755 } __ec_align1; 4756 4757 /* Values representing usbc PD CC state */ 4758 #define USBC_PD_CC_NONE 0 /* No accessory connected */ 4759 #define USBC_PD_CC_NO_UFP 1 /* No UFP accessory connected */ 4760 #define USBC_PD_CC_AUDIO_ACC 2 /* Audio accessory connected */ 4761 #define USBC_PD_CC_DEBUG_ACC 3 /* Debug accessory connected */ 4762 #define USBC_PD_CC_UFP_ATTACHED 4 /* UFP attached to usbc */ 4763 #define USBC_PD_CC_DFP_ATTACHED 5 /* DPF attached to usbc */ 4764 4765 struct ec_response_usb_pd_control_v2 { 4766 uint8_t enabled; 4767 uint8_t role; 4768 uint8_t polarity; 4769 char state[32]; 4770 uint8_t cc_state; /* USBC_PD_CC_*Encoded cc state */ 4771 uint8_t dp_mode; /* Current DP pin mode (MODE_DP_PIN_[A-E]) */ 4772 /* CL:1500994 Current cable type */ 4773 uint8_t reserved_cable_type; 4774 } __ec_align1; 4775 4776 #define EC_CMD_USB_PD_PORTS 0x0102 4777 4778 /* Maximum number of PD ports on a device, num_ports will be <= this */ 4779 #define EC_USB_PD_MAX_PORTS 8 4780 4781 struct ec_response_usb_pd_ports { 4782 uint8_t num_ports; 4783 } __ec_align1; 4784 4785 #define EC_CMD_USB_PD_POWER_INFO 0x0103 4786 4787 #define PD_POWER_CHARGING_PORT 0xff 4788 struct ec_params_usb_pd_power_info { 4789 uint8_t port; 4790 } __ec_align1; 4791 4792 enum usb_chg_type { 4793 USB_CHG_TYPE_NONE, 4794 USB_CHG_TYPE_PD, 4795 USB_CHG_TYPE_C, 4796 USB_CHG_TYPE_PROPRIETARY, 4797 USB_CHG_TYPE_BC12_DCP, 4798 USB_CHG_TYPE_BC12_CDP, 4799 USB_CHG_TYPE_BC12_SDP, 4800 USB_CHG_TYPE_OTHER, 4801 USB_CHG_TYPE_VBUS, 4802 USB_CHG_TYPE_UNKNOWN, 4803 USB_CHG_TYPE_DEDICATED, 4804 }; 4805 enum usb_power_roles { 4806 USB_PD_PORT_POWER_DISCONNECTED, 4807 USB_PD_PORT_POWER_SOURCE, 4808 USB_PD_PORT_POWER_SINK, 4809 USB_PD_PORT_POWER_SINK_NOT_CHARGING, 4810 }; 4811 4812 struct usb_chg_measures { 4813 uint16_t voltage_max; 4814 uint16_t voltage_now; 4815 uint16_t current_max; 4816 uint16_t current_lim; 4817 } __ec_align2; 4818 4819 struct ec_response_usb_pd_power_info { 4820 uint8_t role; 4821 uint8_t type; 4822 uint8_t dualrole; 4823 uint8_t reserved1; 4824 struct usb_chg_measures meas; 4825 uint32_t max_power; 4826 } __ec_align4; 4827 4828 4829 /* 4830 * This command will return the number of USB PD charge port + the number 4831 * of dedicated port present. 4832 * EC_CMD_USB_PD_PORTS does NOT include the dedicated ports 4833 */ 4834 #define EC_CMD_CHARGE_PORT_COUNT 0x0105 4835 struct ec_response_charge_port_count { 4836 uint8_t port_count; 4837 } __ec_align1; 4838 4839 /* Write USB-PD device FW */ 4840 #define EC_CMD_USB_PD_FW_UPDATE 0x0110 4841 4842 enum usb_pd_fw_update_cmds { 4843 USB_PD_FW_REBOOT, 4844 USB_PD_FW_FLASH_ERASE, 4845 USB_PD_FW_FLASH_WRITE, 4846 USB_PD_FW_ERASE_SIG, 4847 }; 4848 4849 struct ec_params_usb_pd_fw_update { 4850 uint16_t dev_id; 4851 uint8_t cmd; 4852 uint8_t port; 4853 uint32_t size; /* Size to write in bytes */ 4854 /* Followed by data to write */ 4855 } __ec_align4; 4856 4857 /* Write USB-PD Accessory RW_HASH table entry */ 4858 #define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111 4859 /* RW hash is first 20 bytes of SHA-256 of RW section */ 4860 #define PD_RW_HASH_SIZE 20 4861 struct ec_params_usb_pd_rw_hash_entry { 4862 uint16_t dev_id; 4863 uint8_t dev_rw_hash[PD_RW_HASH_SIZE]; 4864 uint8_t reserved; /* 4865 * For alignment of current_image 4866 * TODO(rspangler) but it's not aligned! 4867 * Should have been reserved[2]. 4868 */ 4869 uint32_t current_image; /* One of ec_current_image */ 4870 } __ec_align1; 4871 4872 /* Read USB-PD Accessory info */ 4873 #define EC_CMD_USB_PD_DEV_INFO 0x0112 4874 4875 struct ec_params_usb_pd_info_request { 4876 uint8_t port; 4877 } __ec_align1; 4878 4879 /* Read USB-PD Device discovery info */ 4880 #define EC_CMD_USB_PD_DISCOVERY 0x0113 4881 struct ec_params_usb_pd_discovery_entry { 4882 uint16_t vid; /* USB-IF VID */ 4883 uint16_t pid; /* USB-IF PID */ 4884 uint8_t ptype; /* product type (hub,periph,cable,ama) */ 4885 } __ec_align_size1; 4886 4887 /* Override default charge behavior */ 4888 #define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114 4889 4890 /* Negative port parameters have special meaning */ 4891 enum usb_pd_override_ports { 4892 OVERRIDE_DONT_CHARGE = -2, 4893 OVERRIDE_OFF = -1, 4894 /* [0, CONFIG_USB_PD_PORT_COUNT): Port# */ 4895 }; 4896 4897 struct ec_params_charge_port_override { 4898 int16_t override_port; /* Override port# */ 4899 } __ec_align2; 4900 4901 /* 4902 * Read (and delete) one entry of PD event log. 4903 * TODO(crbug.com/751742): Make this host command more generic to accommodate 4904 * future non-PD logs that use the same internal EC event_log. 4905 */ 4906 #define EC_CMD_PD_GET_LOG_ENTRY 0x0115 4907 4908 struct ec_response_pd_log { 4909 uint32_t timestamp; /* relative timestamp in milliseconds */ 4910 uint8_t type; /* event type : see PD_EVENT_xx below */ 4911 uint8_t size_port; /* [7:5] port number [4:0] payload size in bytes */ 4912 uint16_t data; /* type-defined data payload */ 4913 uint8_t payload[0]; /* optional additional data payload: 0..16 bytes */ 4914 } __ec_align4; 4915 4916 /* The timestamp is the microsecond counter shifted to get about a ms. */ 4917 #define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */ 4918 4919 #define PD_LOG_SIZE_MASK 0x1f 4920 #define PD_LOG_PORT_MASK 0xe0 4921 #define PD_LOG_PORT_SHIFT 5 4922 #define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \ 4923 ((size) & PD_LOG_SIZE_MASK)) 4924 #define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT) 4925 #define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK) 4926 4927 /* PD event log : entry types */ 4928 /* PD MCU events */ 4929 #define PD_EVENT_MCU_BASE 0x00 4930 #define PD_EVENT_MCU_CHARGE (PD_EVENT_MCU_BASE+0) 4931 #define PD_EVENT_MCU_CONNECT (PD_EVENT_MCU_BASE+1) 4932 /* Reserved for custom board event */ 4933 #define PD_EVENT_MCU_BOARD_CUSTOM (PD_EVENT_MCU_BASE+2) 4934 /* PD generic accessory events */ 4935 #define PD_EVENT_ACC_BASE 0x20 4936 #define PD_EVENT_ACC_RW_FAIL (PD_EVENT_ACC_BASE+0) 4937 #define PD_EVENT_ACC_RW_ERASE (PD_EVENT_ACC_BASE+1) 4938 /* PD power supply events */ 4939 #define PD_EVENT_PS_BASE 0x40 4940 #define PD_EVENT_PS_FAULT (PD_EVENT_PS_BASE+0) 4941 /* PD video dongles events */ 4942 #define PD_EVENT_VIDEO_BASE 0x60 4943 #define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0) 4944 #define PD_EVENT_VIDEO_CODEC (PD_EVENT_VIDEO_BASE+1) 4945 /* Returned in the "type" field, when there is no entry available */ 4946 #define PD_EVENT_NO_ENTRY 0xff 4947 4948 /* 4949 * PD_EVENT_MCU_CHARGE event definition : 4950 * the payload is "struct usb_chg_measures" 4951 * the data field contains the port state flags as defined below : 4952 */ 4953 /* Port partner is a dual role device */ 4954 #define CHARGE_FLAGS_DUAL_ROLE BIT(15) 4955 /* Port is the pending override port */ 4956 #define CHARGE_FLAGS_DELAYED_OVERRIDE BIT(14) 4957 /* Port is the override port */ 4958 #define CHARGE_FLAGS_OVERRIDE BIT(13) 4959 /* Charger type */ 4960 #define CHARGE_FLAGS_TYPE_SHIFT 3 4961 #define CHARGE_FLAGS_TYPE_MASK (0xf << CHARGE_FLAGS_TYPE_SHIFT) 4962 /* Power delivery role */ 4963 #define CHARGE_FLAGS_ROLE_MASK (7 << 0) 4964 4965 /* 4966 * PD_EVENT_PS_FAULT data field flags definition : 4967 */ 4968 #define PS_FAULT_OCP 1 4969 #define PS_FAULT_FAST_OCP 2 4970 #define PS_FAULT_OVP 3 4971 #define PS_FAULT_DISCH 4 4972 4973 /* 4974 * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info". 4975 */ 4976 struct mcdp_version { 4977 uint8_t major; 4978 uint8_t minor; 4979 uint16_t build; 4980 } __ec_align4; 4981 4982 struct mcdp_info { 4983 uint8_t family[2]; 4984 uint8_t chipid[2]; 4985 struct mcdp_version irom; 4986 struct mcdp_version fw; 4987 } __ec_align4; 4988 4989 /* struct mcdp_info field decoding */ 4990 #define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1]) 4991 #define MCDP_FAMILY(family) ((family[0] << 8) | family[1]) 4992 4993 /* Get/Set USB-PD Alternate mode info */ 4994 #define EC_CMD_USB_PD_GET_AMODE 0x0116 4995 struct ec_params_usb_pd_get_mode_request { 4996 uint16_t svid_idx; /* SVID index to get */ 4997 uint8_t port; /* port */ 4998 } __ec_align_size1; 4999 5000 struct ec_params_usb_pd_get_mode_response { 5001 uint16_t svid; /* SVID */ 5002 uint16_t opos; /* Object Position */ 5003 uint32_t vdo[6]; /* Mode VDOs */ 5004 } __ec_align4; 5005 5006 #define EC_CMD_USB_PD_SET_AMODE 0x0117 5007 5008 enum pd_mode_cmd { 5009 PD_EXIT_MODE = 0, 5010 PD_ENTER_MODE = 1, 5011 /* Not a command. Do NOT remove. */ 5012 PD_MODE_CMD_COUNT, 5013 }; 5014 5015 struct ec_params_usb_pd_set_mode_request { 5016 uint32_t cmd; /* enum pd_mode_cmd */ 5017 uint16_t svid; /* SVID to set */ 5018 uint8_t opos; /* Object Position */ 5019 uint8_t port; /* port */ 5020 } __ec_align4; 5021 5022 /* Ask the PD MCU to record a log of a requested type */ 5023 #define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118 5024 5025 struct ec_params_pd_write_log_entry { 5026 uint8_t type; /* event type : see PD_EVENT_xx above */ 5027 uint8_t port; /* port#, or 0 for events unrelated to a given port */ 5028 } __ec_align1; 5029 5030 5031 /* Control USB-PD chip */ 5032 #define EC_CMD_PD_CONTROL 0x0119 5033 5034 enum ec_pd_control_cmd { 5035 PD_SUSPEND = 0, /* Suspend the PD chip (EC: stop talking to PD) */ 5036 PD_RESUME, /* Resume the PD chip (EC: start talking to PD) */ 5037 PD_RESET, /* Force reset the PD chip */ 5038 PD_CONTROL_DISABLE, /* Disable further calls to this command */ 5039 PD_CHIP_ON, /* Power on the PD chip */ 5040 }; 5041 5042 struct ec_params_pd_control { 5043 uint8_t chip; /* chip id */ 5044 uint8_t subcmd; 5045 } __ec_align1; 5046 5047 /* Get info about USB-C SS muxes */ 5048 #define EC_CMD_USB_PD_MUX_INFO 0x011A 5049 5050 struct ec_params_usb_pd_mux_info { 5051 uint8_t port; /* USB-C port number */ 5052 } __ec_align1; 5053 5054 /* Flags representing mux state */ 5055 #define USB_PD_MUX_USB_ENABLED BIT(0) /* USB connected */ 5056 #define USB_PD_MUX_DP_ENABLED BIT(1) /* DP connected */ 5057 #define USB_PD_MUX_POLARITY_INVERTED BIT(2) /* CC line Polarity inverted */ 5058 #define USB_PD_MUX_HPD_IRQ BIT(3) /* HPD IRQ is asserted */ 5059 #define USB_PD_MUX_HPD_LVL BIT(4) /* HPD level is asserted */ 5060 5061 struct ec_response_usb_pd_mux_info { 5062 uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */ 5063 } __ec_align1; 5064 5065 #define EC_CMD_PD_CHIP_INFO 0x011B 5066 5067 struct ec_params_pd_chip_info { 5068 uint8_t port; /* USB-C port number */ 5069 uint8_t renew; /* Force renewal */ 5070 } __ec_align1; 5071 5072 struct ec_response_pd_chip_info { 5073 uint16_t vendor_id; 5074 uint16_t product_id; 5075 uint16_t device_id; 5076 union { 5077 uint8_t fw_version_string[8]; 5078 uint64_t fw_version_number; 5079 }; 5080 } __ec_align2; 5081 5082 struct ec_response_pd_chip_info_v1 { 5083 uint16_t vendor_id; 5084 uint16_t product_id; 5085 uint16_t device_id; 5086 union { 5087 uint8_t fw_version_string[8]; 5088 uint64_t fw_version_number; 5089 }; 5090 union { 5091 uint8_t min_req_fw_version_string[8]; 5092 uint64_t min_req_fw_version_number; 5093 }; 5094 } __ec_align2; 5095 5096 /* Run RW signature verification and get status */ 5097 #define EC_CMD_RWSIG_CHECK_STATUS 0x011C 5098 5099 struct ec_response_rwsig_check_status { 5100 uint32_t status; 5101 } __ec_align4; 5102 5103 /* For controlling RWSIG task */ 5104 #define EC_CMD_RWSIG_ACTION 0x011D 5105 5106 enum rwsig_action { 5107 RWSIG_ACTION_ABORT = 0, /* Abort RWSIG and prevent jumping */ 5108 RWSIG_ACTION_CONTINUE = 1, /* Jump to RW immediately */ 5109 }; 5110 5111 struct ec_params_rwsig_action { 5112 uint32_t action; 5113 } __ec_align4; 5114 5115 /* Run verification on a slot */ 5116 #define EC_CMD_EFS_VERIFY 0x011E 5117 5118 struct ec_params_efs_verify { 5119 uint8_t region; /* enum ec_flash_region */ 5120 } __ec_align1; 5121 5122 /* 5123 * Retrieve info from Cros Board Info store. Response is based on the data 5124 * type. Integers return a uint32. Strings return a string, using the response 5125 * size to determine how big it is. 5126 */ 5127 #define EC_CMD_GET_CROS_BOARD_INFO 0x011F 5128 /* 5129 * Write info into Cros Board Info on EEPROM. Write fails if the board has 5130 * hardware write-protect enabled. 5131 */ 5132 #define EC_CMD_SET_CROS_BOARD_INFO 0x0120 5133 5134 enum cbi_data_tag { 5135 CBI_TAG_BOARD_VERSION = 0, /* uint32_t or smaller */ 5136 CBI_TAG_OEM_ID = 1, /* uint32_t or smaller */ 5137 CBI_TAG_SKU_ID = 2, /* uint32_t or smaller */ 5138 CBI_TAG_DRAM_PART_NUM = 3, /* variable length ascii, nul terminated. */ 5139 CBI_TAG_OEM_NAME = 4, /* variable length ascii, nul terminated. */ 5140 CBI_TAG_MODEL_ID = 5, /* uint32_t or smaller */ 5141 CBI_TAG_COUNT, 5142 }; 5143 5144 /* 5145 * Flags to control read operation 5146 * 5147 * RELOAD: Invalidate cache and read data from EEPROM. Useful to verify 5148 * write was successful without reboot. 5149 */ 5150 #define CBI_GET_RELOAD BIT(0) 5151 5152 struct ec_params_get_cbi { 5153 uint32_t tag; /* enum cbi_data_tag */ 5154 uint32_t flag; /* CBI_GET_* */ 5155 } __ec_align4; 5156 5157 /* 5158 * Flags to control write behavior. 5159 * 5160 * NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's 5161 * useful when writing multiple fields in a row. 5162 * INIT: Need to be set when creating a new CBI from scratch. All fields 5163 * will be initialized to zero first. 5164 */ 5165 #define CBI_SET_NO_SYNC BIT(0) 5166 #define CBI_SET_INIT BIT(1) 5167 5168 struct ec_params_set_cbi { 5169 uint32_t tag; /* enum cbi_data_tag */ 5170 uint32_t flag; /* CBI_SET_* */ 5171 uint32_t size; /* Data size */ 5172 uint8_t data[]; /* For string and raw data */ 5173 } __ec_align1; 5174 5175 /* 5176 * Information about resets of the AP by the EC and the EC's own uptime. 5177 */ 5178 #define EC_CMD_GET_UPTIME_INFO 0x0121 5179 5180 struct ec_response_uptime_info { 5181 /* 5182 * Number of milliseconds since the last EC boot. Sysjump resets 5183 * typically do not restart the EC's time_since_boot epoch. 5184 * 5185 * WARNING: The EC's sense of time is much less accurate than the AP's 5186 * sense of time, in both phase and frequency. This timebase is similar 5187 * to CLOCK_MONOTONIC_RAW, but with 1% or more frequency error. 5188 */ 5189 uint32_t time_since_ec_boot_ms; 5190 5191 /* 5192 * Number of times the AP was reset by the EC since the last EC boot. 5193 * Note that the AP may be held in reset by the EC during the initial 5194 * boot sequence, such that the very first AP boot may count as more 5195 * than one here. 5196 */ 5197 uint32_t ap_resets_since_ec_boot; 5198 5199 /* 5200 * The set of flags which describe the EC's most recent reset. See 5201 * include/system.h RESET_FLAG_* for details. 5202 */ 5203 uint32_t ec_reset_flags; 5204 5205 /* Empty log entries have both the cause and timestamp set to zero. */ 5206 struct ap_reset_log_entry { 5207 /* 5208 * See include/chipset.h: enum chipset_{reset,shutdown}_reason 5209 * for details. 5210 */ 5211 uint16_t reset_cause; 5212 5213 /* Reserved for protocol growth. */ 5214 uint16_t reserved; 5215 5216 /* 5217 * The time of the reset's assertion, in milliseconds since the 5218 * last EC boot, in the same epoch as time_since_ec_boot_ms. 5219 * Set to zero if the log entry is empty. 5220 */ 5221 uint32_t reset_time_ms; 5222 } recent_ap_reset[4]; 5223 } __ec_align4; 5224 5225 /* 5226 * Add entropy to the device secret (stored in the rollback region). 5227 * 5228 * Depending on the chip, the operation may take a long time (e.g. to erase 5229 * flash), so the commands are asynchronous. 5230 */ 5231 #define EC_CMD_ADD_ENTROPY 0x0122 5232 5233 enum add_entropy_action { 5234 /* Add entropy to the current secret. */ 5235 ADD_ENTROPY_ASYNC = 0, 5236 /* 5237 * Add entropy, and also make sure that the previous secret is erased. 5238 * (this can be implemented by adding entropy multiple times until 5239 * all rolback blocks have been overwritten). 5240 */ 5241 ADD_ENTROPY_RESET_ASYNC = 1, 5242 /* Read back result from the previous operation. */ 5243 ADD_ENTROPY_GET_RESULT = 2, 5244 }; 5245 5246 struct ec_params_rollback_add_entropy { 5247 uint8_t action; 5248 } __ec_align1; 5249 5250 /* 5251 * Perform a single read of a given ADC channel. 5252 */ 5253 #define EC_CMD_ADC_READ 0x0123 5254 5255 struct ec_params_adc_read { 5256 uint8_t adc_channel; 5257 } __ec_align1; 5258 5259 struct ec_response_adc_read { 5260 int32_t adc_value; 5261 } __ec_align4; 5262 5263 /* 5264 * Read back rollback info 5265 */ 5266 #define EC_CMD_ROLLBACK_INFO 0x0124 5267 5268 struct ec_response_rollback_info { 5269 int32_t id; /* Incrementing number to indicate which region to use. */ 5270 int32_t rollback_min_version; 5271 int32_t rw_rollback_version; 5272 } __ec_align4; 5273 5274 5275 /* Issue AP reset */ 5276 #define EC_CMD_AP_RESET 0x0125 5277 5278 /*****************************************************************************/ 5279 /* The command range 0x200-0x2FF is reserved for Rotor. */ 5280 5281 /*****************************************************************************/ 5282 /* 5283 * Reserve a range of host commands for the CR51 firmware. 5284 */ 5285 #define EC_CMD_CR51_BASE 0x0300 5286 #define EC_CMD_CR51_LAST 0x03FF 5287 5288 /*****************************************************************************/ 5289 /* Fingerprint MCU commands: range 0x0400-0x040x */ 5290 5291 /* Fingerprint SPI sensor passthru command: prototyping ONLY */ 5292 #define EC_CMD_FP_PASSTHRU 0x0400 5293 5294 #define EC_FP_FLAG_NOT_COMPLETE 0x1 5295 5296 struct ec_params_fp_passthru { 5297 uint16_t len; /* Number of bytes to write then read */ 5298 uint16_t flags; /* EC_FP_FLAG_xxx */ 5299 uint8_t data[]; /* Data to send */ 5300 } __ec_align2; 5301 5302 /* Configure the Fingerprint MCU behavior */ 5303 #define EC_CMD_FP_MODE 0x0402 5304 5305 /* Put the sensor in its lowest power mode */ 5306 #define FP_MODE_DEEPSLEEP BIT(0) 5307 /* Wait to see a finger on the sensor */ 5308 #define FP_MODE_FINGER_DOWN BIT(1) 5309 /* Poll until the finger has left the sensor */ 5310 #define FP_MODE_FINGER_UP BIT(2) 5311 /* Capture the current finger image */ 5312 #define FP_MODE_CAPTURE BIT(3) 5313 /* Finger enrollment session on-going */ 5314 #define FP_MODE_ENROLL_SESSION BIT(4) 5315 /* Enroll the current finger image */ 5316 #define FP_MODE_ENROLL_IMAGE BIT(5) 5317 /* Try to match the current finger image */ 5318 #define FP_MODE_MATCH BIT(6) 5319 /* Reset and re-initialize the sensor. */ 5320 #define FP_MODE_RESET_SENSOR BIT(7) 5321 /* special value: don't change anything just read back current mode */ 5322 #define FP_MODE_DONT_CHANGE BIT(31) 5323 5324 #define FP_VALID_MODES (FP_MODE_DEEPSLEEP | \ 5325 FP_MODE_FINGER_DOWN | \ 5326 FP_MODE_FINGER_UP | \ 5327 FP_MODE_CAPTURE | \ 5328 FP_MODE_ENROLL_SESSION | \ 5329 FP_MODE_ENROLL_IMAGE | \ 5330 FP_MODE_MATCH | \ 5331 FP_MODE_RESET_SENSOR | \ 5332 FP_MODE_DONT_CHANGE) 5333 5334 /* Capture types defined in bits [30..28] */ 5335 #define FP_MODE_CAPTURE_TYPE_SHIFT 28 5336 #define FP_MODE_CAPTURE_TYPE_MASK (0x7 << FP_MODE_CAPTURE_TYPE_SHIFT) 5337 /* 5338 * This enum must remain ordered, if you add new values you must ensure that 5339 * FP_CAPTURE_TYPE_MAX is still the last one. 5340 */ 5341 enum fp_capture_type { 5342 /* Full blown vendor-defined capture (produces 'frame_size' bytes) */ 5343 FP_CAPTURE_VENDOR_FORMAT = 0, 5344 /* Simple raw image capture (produces width x height x bpp bits) */ 5345 FP_CAPTURE_SIMPLE_IMAGE = 1, 5346 /* Self test pattern (e.g. checkerboard) */ 5347 FP_CAPTURE_PATTERN0 = 2, 5348 /* Self test pattern (e.g. inverted checkerboard) */ 5349 FP_CAPTURE_PATTERN1 = 3, 5350 /* Capture for Quality test with fixed contrast */ 5351 FP_CAPTURE_QUALITY_TEST = 4, 5352 /* Capture for pixel reset value test */ 5353 FP_CAPTURE_RESET_TEST = 5, 5354 FP_CAPTURE_TYPE_MAX, 5355 }; 5356 /* Extracts the capture type from the sensor 'mode' word */ 5357 #define FP_CAPTURE_TYPE(mode) (((mode) & FP_MODE_CAPTURE_TYPE_MASK) \ 5358 >> FP_MODE_CAPTURE_TYPE_SHIFT) 5359 5360 struct ec_params_fp_mode { 5361 uint32_t mode; /* as defined by FP_MODE_ constants */ 5362 } __ec_align4; 5363 5364 struct ec_response_fp_mode { 5365 uint32_t mode; /* as defined by FP_MODE_ constants */ 5366 } __ec_align4; 5367 5368 /* Retrieve Fingerprint sensor information */ 5369 #define EC_CMD_FP_INFO 0x0403 5370 5371 /* Number of dead pixels detected on the last maintenance */ 5372 #define FP_ERROR_DEAD_PIXELS(errors) ((errors) & 0x3FF) 5373 /* Unknown number of dead pixels detected on the last maintenance */ 5374 #define FP_ERROR_DEAD_PIXELS_UNKNOWN (0x3FF) 5375 /* No interrupt from the sensor */ 5376 #define FP_ERROR_NO_IRQ BIT(12) 5377 /* SPI communication error */ 5378 #define FP_ERROR_SPI_COMM BIT(13) 5379 /* Invalid sensor Hardware ID */ 5380 #define FP_ERROR_BAD_HWID BIT(14) 5381 /* Sensor initialization failed */ 5382 #define FP_ERROR_INIT_FAIL BIT(15) 5383 5384 struct ec_response_fp_info_v0 { 5385 /* Sensor identification */ 5386 uint32_t vendor_id; 5387 uint32_t product_id; 5388 uint32_t model_id; 5389 uint32_t version; 5390 /* Image frame characteristics */ 5391 uint32_t frame_size; 5392 uint32_t pixel_format; /* using V4L2_PIX_FMT_ */ 5393 uint16_t width; 5394 uint16_t height; 5395 uint16_t bpp; 5396 uint16_t errors; /* see FP_ERROR_ flags above */ 5397 } __ec_align4; 5398 5399 struct ec_response_fp_info { 5400 /* Sensor identification */ 5401 uint32_t vendor_id; 5402 uint32_t product_id; 5403 uint32_t model_id; 5404 uint32_t version; 5405 /* Image frame characteristics */ 5406 uint32_t frame_size; 5407 uint32_t pixel_format; /* using V4L2_PIX_FMT_ */ 5408 uint16_t width; 5409 uint16_t height; 5410 uint16_t bpp; 5411 uint16_t errors; /* see FP_ERROR_ flags above */ 5412 /* Template/finger current information */ 5413 uint32_t template_size; /* max template size in bytes */ 5414 uint16_t template_max; /* maximum number of fingers/templates */ 5415 uint16_t template_valid; /* number of valid fingers/templates */ 5416 uint32_t template_dirty; /* bitmap of templates with MCU side changes */ 5417 uint32_t template_version; /* version of the template format */ 5418 } __ec_align4; 5419 5420 /* Get the last captured finger frame or a template content */ 5421 #define EC_CMD_FP_FRAME 0x0404 5422 5423 /* constants defining the 'offset' field which also contains the frame index */ 5424 #define FP_FRAME_INDEX_SHIFT 28 5425 /* Frame buffer where the captured image is stored */ 5426 #define FP_FRAME_INDEX_RAW_IMAGE 0 5427 /* First frame buffer holding a template */ 5428 #define FP_FRAME_INDEX_TEMPLATE 1 5429 #define FP_FRAME_GET_BUFFER_INDEX(offset) ((offset) >> FP_FRAME_INDEX_SHIFT) 5430 #define FP_FRAME_OFFSET_MASK 0x0FFFFFFF 5431 5432 /* Version of the format of the encrypted templates. */ 5433 #define FP_TEMPLATE_FORMAT_VERSION 3 5434 5435 /* Constants for encryption parameters */ 5436 #define FP_CONTEXT_NONCE_BYTES 12 5437 #define FP_CONTEXT_USERID_WORDS (32 / sizeof(uint32_t)) 5438 #define FP_CONTEXT_TAG_BYTES 16 5439 #define FP_CONTEXT_SALT_BYTES 16 5440 #define FP_CONTEXT_TPM_BYTES 32 5441 5442 struct ec_fp_template_encryption_metadata { 5443 /* 5444 * Version of the structure format (N=3). 5445 */ 5446 uint16_t struct_version; 5447 /* Reserved bytes, set to 0. */ 5448 uint16_t reserved; 5449 /* 5450 * The salt is *only* ever used for key derivation. The nonce is unique, 5451 * a different one is used for every message. 5452 */ 5453 uint8_t nonce[FP_CONTEXT_NONCE_BYTES]; 5454 uint8_t salt[FP_CONTEXT_SALT_BYTES]; 5455 uint8_t tag[FP_CONTEXT_TAG_BYTES]; 5456 }; 5457 5458 struct ec_params_fp_frame { 5459 /* 5460 * The offset contains the template index or FP_FRAME_INDEX_RAW_IMAGE 5461 * in the high nibble, and the real offset within the frame in 5462 * FP_FRAME_OFFSET_MASK. 5463 */ 5464 uint32_t offset; 5465 uint32_t size; 5466 } __ec_align4; 5467 5468 /* Load a template into the MCU */ 5469 #define EC_CMD_FP_TEMPLATE 0x0405 5470 5471 /* Flag in the 'size' field indicating that the full template has been sent */ 5472 #define FP_TEMPLATE_COMMIT 0x80000000 5473 5474 struct ec_params_fp_template { 5475 uint32_t offset; 5476 uint32_t size; 5477 uint8_t data[]; 5478 } __ec_align4; 5479 5480 /* Clear the current fingerprint user context and set a new one */ 5481 #define EC_CMD_FP_CONTEXT 0x0406 5482 5483 struct ec_params_fp_context { 5484 uint32_t userid[FP_CONTEXT_USERID_WORDS]; 5485 } __ec_align4; 5486 5487 #define EC_CMD_FP_STATS 0x0407 5488 5489 #define FPSTATS_CAPTURE_INV BIT(0) 5490 #define FPSTATS_MATCHING_INV BIT(1) 5491 5492 struct ec_response_fp_stats { 5493 uint32_t capture_time_us; 5494 uint32_t matching_time_us; 5495 uint32_t overall_time_us; 5496 struct { 5497 uint32_t lo; 5498 uint32_t hi; 5499 } overall_t0; 5500 uint8_t timestamps_invalid; 5501 int8_t template_matched; 5502 } __ec_align2; 5503 5504 #define EC_CMD_FP_SEED 0x0408 5505 struct ec_params_fp_seed { 5506 /* 5507 * Version of the structure format (N=3). 5508 */ 5509 uint16_t struct_version; 5510 /* Reserved bytes, set to 0. */ 5511 uint16_t reserved; 5512 /* Seed from the TPM. */ 5513 uint8_t seed[FP_CONTEXT_TPM_BYTES]; 5514 } __ec_align4; 5515 5516 #define EC_CMD_FP_ENC_STATUS 0x0409 5517 5518 /* FP TPM seed has been set or not */ 5519 #define FP_ENC_STATUS_SEED_SET BIT(0) 5520 5521 struct ec_response_fp_encryption_status { 5522 /* Used bits in encryption engine status */ 5523 uint32_t valid_flags; 5524 /* Encryption engine status */ 5525 uint32_t status; 5526 } __ec_align4; 5527 5528 /*****************************************************************************/ 5529 /* Touchpad MCU commands: range 0x0500-0x05FF */ 5530 5531 /* Perform touchpad self test */ 5532 #define EC_CMD_TP_SELF_TEST 0x0500 5533 5534 /* Get number of frame types, and the size of each type */ 5535 #define EC_CMD_TP_FRAME_INFO 0x0501 5536 5537 struct ec_response_tp_frame_info { 5538 uint32_t n_frames; 5539 uint32_t frame_sizes[0]; 5540 } __ec_align4; 5541 5542 /* Create a snapshot of current frame readings */ 5543 #define EC_CMD_TP_FRAME_SNAPSHOT 0x0502 5544 5545 /* Read the frame */ 5546 #define EC_CMD_TP_FRAME_GET 0x0503 5547 5548 struct ec_params_tp_frame_get { 5549 uint32_t frame_index; 5550 uint32_t offset; 5551 uint32_t size; 5552 } __ec_align4; 5553 5554 /*****************************************************************************/ 5555 /* EC-EC communication commands: range 0x0600-0x06FF */ 5556 5557 #define EC_COMM_TEXT_MAX 8 5558 5559 /* 5560 * Get battery static information, i.e. information that never changes, or 5561 * very infrequently. 5562 */ 5563 #define EC_CMD_BATTERY_GET_STATIC 0x0600 5564 5565 /** 5566 * struct ec_params_battery_static_info - Battery static info parameters 5567 * @index: Battery index. 5568 */ 5569 struct ec_params_battery_static_info { 5570 uint8_t index; 5571 } __ec_align_size1; 5572 5573 /** 5574 * struct ec_response_battery_static_info - Battery static info response 5575 * @design_capacity: Battery Design Capacity (mAh) 5576 * @design_voltage: Battery Design Voltage (mV) 5577 * @manufacturer: Battery Manufacturer String 5578 * @model: Battery Model Number String 5579 * @serial: Battery Serial Number String 5580 * @type: Battery Type String 5581 * @cycle_count: Battery Cycle Count 5582 */ 5583 struct ec_response_battery_static_info { 5584 uint16_t design_capacity; 5585 uint16_t design_voltage; 5586 char manufacturer[EC_COMM_TEXT_MAX]; 5587 char model[EC_COMM_TEXT_MAX]; 5588 char serial[EC_COMM_TEXT_MAX]; 5589 char type[EC_COMM_TEXT_MAX]; 5590 /* TODO(crbug.com/795991): Consider moving to dynamic structure. */ 5591 uint32_t cycle_count; 5592 } __ec_align4; 5593 5594 /* 5595 * Get battery dynamic information, i.e. information that is likely to change 5596 * every time it is read. 5597 */ 5598 #define EC_CMD_BATTERY_GET_DYNAMIC 0x0601 5599 5600 /** 5601 * struct ec_params_battery_dynamic_info - Battery dynamic info parameters 5602 * @index: Battery index. 5603 */ 5604 struct ec_params_battery_dynamic_info { 5605 uint8_t index; 5606 } __ec_align_size1; 5607 5608 /** 5609 * struct ec_response_battery_dynamic_info - Battery dynamic info response 5610 * @actual_voltage: Battery voltage (mV) 5611 * @actual_current: Battery current (mA); negative=discharging 5612 * @remaining_capacity: Remaining capacity (mAh) 5613 * @full_capacity: Capacity (mAh, might change occasionally) 5614 * @flags: Flags, see EC_BATT_FLAG_* 5615 * @desired_voltage: Charging voltage desired by battery (mV) 5616 * @desired_current: Charging current desired by battery (mA) 5617 */ 5618 struct ec_response_battery_dynamic_info { 5619 int16_t actual_voltage; 5620 int16_t actual_current; 5621 int16_t remaining_capacity; 5622 int16_t full_capacity; 5623 int16_t flags; 5624 int16_t desired_voltage; 5625 int16_t desired_current; 5626 } __ec_align2; 5627 5628 /* 5629 * Control charger chip. Used to control charger chip on the slave. 5630 */ 5631 #define EC_CMD_CHARGER_CONTROL 0x0602 5632 5633 /** 5634 * struct ec_params_charger_control - Charger control parameters 5635 * @max_current: Charger current (mA). Positive to allow base to draw up to 5636 * max_current and (possibly) charge battery, negative to request current 5637 * from base (OTG). 5638 * @otg_voltage: Voltage (mV) to use in OTG mode, ignored if max_current is 5639 * >= 0. 5640 * @allow_charging: Allow base battery charging (only makes sense if 5641 * max_current > 0). 5642 */ 5643 struct ec_params_charger_control { 5644 int16_t max_current; 5645 uint16_t otg_voltage; 5646 uint8_t allow_charging; 5647 } __ec_align_size1; 5648 5649 /*****************************************************************************/ 5650 /* 5651 * Reserve a range of host commands for board-specific, experimental, or 5652 * special purpose features. These can be (re)used without updating this file. 5653 * 5654 * CAUTION: Don't go nuts with this. Shipping products should document ALL 5655 * their EC commands for easier development, testing, debugging, and support. 5656 * 5657 * All commands MUST be #defined to be 4-digit UPPER CASE hex values 5658 * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work. 5659 * 5660 * In your experimental code, you may want to do something like this: 5661 * 5662 * #define EC_CMD_MAGIC_FOO 0x0000 5663 * #define EC_CMD_MAGIC_BAR 0x0001 5664 * #define EC_CMD_MAGIC_HEY 0x0002 5665 * 5666 * DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler, 5667 * EC_VER_MASK(0); 5668 * 5669 * DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler, 5670 * EC_VER_MASK(0); 5671 * 5672 * DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler, 5673 * EC_VER_MASK(0); 5674 */ 5675 #define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00 5676 #define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF 5677 5678 /* 5679 * Given the private host command offset, calculate the true private host 5680 * command value. 5681 */ 5682 #define EC_PRIVATE_HOST_COMMAND_VALUE(command) \ 5683 (EC_CMD_BOARD_SPECIFIC_BASE + (command)) 5684 5685 /*****************************************************************************/ 5686 /* 5687 * Passthru commands 5688 * 5689 * Some platforms have sub-processors chained to each other. For example. 5690 * 5691 * AP <--> EC <--> PD MCU 5692 * 5693 * The top 2 bits of the command number are used to indicate which device the 5694 * command is intended for. Device 0 is always the device receiving the 5695 * command; other device mapping is board-specific. 5696 * 5697 * When a device receives a command to be passed to a sub-processor, it passes 5698 * it on with the device number set back to 0. This allows the sub-processor 5699 * to remain blissfully unaware of whether the command originated on the next 5700 * device up the chain, or was passed through from the AP. 5701 * 5702 * In the above example, if the AP wants to send command 0x0002 to the PD MCU, 5703 * AP sends command 0x4002 to the EC 5704 * EC sends command 0x0002 to the PD MCU 5705 * EC forwards PD MCU response back to the AP 5706 */ 5707 5708 /* Offset and max command number for sub-device n */ 5709 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n)) 5710 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff) 5711 5712 /*****************************************************************************/ 5713 /* 5714 * Deprecated constants. These constants have been renamed for clarity. The 5715 * meaning and size has not changed. Programs that use the old names should 5716 * switch to the new names soon, as the old names may not be carried forward 5717 * forever. 5718 */ 5719 #define EC_HOST_PARAM_SIZE EC_PROTO2_MAX_PARAM_SIZE 5720 #define EC_LPC_ADDR_OLD_PARAM EC_HOST_CMD_REGION1 5721 #define EC_OLD_PARAM_SIZE EC_HOST_CMD_REGION_SIZE 5722 5723 5724 5725 #endif /* __CROS_EC_COMMANDS_H */ 5726