• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84 
85 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
86 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
87 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
88 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
89 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
90 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
91 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
92 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
95 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
101 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
102 
103 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
107 
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110 
111 #define REXMIT_NONE	0 /* no loss recovery to do */
112 #define REXMIT_LOST	1 /* retransmit packets marked lost */
113 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
114 
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
117 
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 			     void (*cad)(struct sock *sk, u32 ack_seq))
120 {
121 	icsk->icsk_clean_acked = cad;
122 	static_branch_deferred_inc(&clean_acked_data_enabled);
123 }
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125 
clean_acked_data_disable(struct inet_connection_sock * icsk)126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
127 {
128 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
129 	icsk->icsk_clean_acked = NULL;
130 }
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132 
clean_acked_data_flush(void)133 void clean_acked_data_flush(void)
134 {
135 	static_key_deferred_flush(&clean_acked_data_enabled);
136 }
137 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
138 #endif
139 
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)140 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
141 			     unsigned int len)
142 {
143 	static bool __once __read_mostly;
144 
145 	if (!__once) {
146 		struct net_device *dev;
147 
148 		__once = true;
149 
150 		rcu_read_lock();
151 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
152 		if (!dev || len >= dev->mtu)
153 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
154 				dev ? dev->name : "Unknown driver");
155 		rcu_read_unlock();
156 	}
157 }
158 
159 /* Adapt the MSS value used to make delayed ack decision to the
160  * real world.
161  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)162 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
166 	unsigned int len;
167 
168 	icsk->icsk_ack.last_seg_size = 0;
169 
170 	/* skb->len may jitter because of SACKs, even if peer
171 	 * sends good full-sized frames.
172 	 */
173 	len = skb_shinfo(skb)->gso_size ? : skb->len;
174 	if (len >= icsk->icsk_ack.rcv_mss) {
175 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
176 					       tcp_sk(sk)->advmss);
177 		/* Account for possibly-removed options */
178 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
179 				   MAX_TCP_OPTION_SPACE))
180 			tcp_gro_dev_warn(sk, skb, len);
181 	} else {
182 		/* Otherwise, we make more careful check taking into account,
183 		 * that SACKs block is variable.
184 		 *
185 		 * "len" is invariant segment length, including TCP header.
186 		 */
187 		len += skb->data - skb_transport_header(skb);
188 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
189 		    /* If PSH is not set, packet should be
190 		     * full sized, provided peer TCP is not badly broken.
191 		     * This observation (if it is correct 8)) allows
192 		     * to handle super-low mtu links fairly.
193 		     */
194 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
195 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
196 			/* Subtract also invariant (if peer is RFC compliant),
197 			 * tcp header plus fixed timestamp option length.
198 			 * Resulting "len" is MSS free of SACK jitter.
199 			 */
200 			len -= tcp_sk(sk)->tcp_header_len;
201 			icsk->icsk_ack.last_seg_size = len;
202 			if (len == lss) {
203 				icsk->icsk_ack.rcv_mss = len;
204 				return;
205 			}
206 		}
207 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
208 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
209 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
210 	}
211 }
212 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)213 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
214 {
215 	struct inet_connection_sock *icsk = inet_csk(sk);
216 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
217 
218 	if (quickacks == 0)
219 		quickacks = 2;
220 	quickacks = min(quickacks, max_quickacks);
221 	if (quickacks > icsk->icsk_ack.quick)
222 		icsk->icsk_ack.quick = quickacks;
223 }
224 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)225 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
226 {
227 	struct inet_connection_sock *icsk = inet_csk(sk);
228 
229 	tcp_incr_quickack(sk, max_quickacks);
230 	inet_csk_exit_pingpong_mode(sk);
231 	icsk->icsk_ack.ato = TCP_ATO_MIN;
232 }
233 EXPORT_SYMBOL(tcp_enter_quickack_mode);
234 
235 /* Send ACKs quickly, if "quick" count is not exhausted
236  * and the session is not interactive.
237  */
238 
tcp_in_quickack_mode(struct sock * sk)239 static bool tcp_in_quickack_mode(struct sock *sk)
240 {
241 	const struct inet_connection_sock *icsk = inet_csk(sk);
242 	const struct dst_entry *dst = __sk_dst_get(sk);
243 
244 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
245 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
246 }
247 
tcp_ecn_queue_cwr(struct tcp_sock * tp)248 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
249 {
250 	if (tp->ecn_flags & TCP_ECN_OK)
251 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
252 }
253 
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)254 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
255 {
256 	if (tcp_hdr(skb)->cwr) {
257 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
258 
259 		/* If the sender is telling us it has entered CWR, then its
260 		 * cwnd may be very low (even just 1 packet), so we should ACK
261 		 * immediately.
262 		 */
263 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
264 	}
265 }
266 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)267 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
268 {
269 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
270 }
271 
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)272 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
273 {
274 	struct tcp_sock *tp = tcp_sk(sk);
275 
276 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
277 	case INET_ECN_NOT_ECT:
278 		/* Funny extension: if ECT is not set on a segment,
279 		 * and we already seen ECT on a previous segment,
280 		 * it is probably a retransmit.
281 		 */
282 		if (tp->ecn_flags & TCP_ECN_SEEN)
283 			tcp_enter_quickack_mode(sk, 2);
284 		break;
285 	case INET_ECN_CE:
286 		if (tcp_ca_needs_ecn(sk))
287 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
288 
289 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
290 			/* Better not delay acks, sender can have a very low cwnd */
291 			tcp_enter_quickack_mode(sk, 2);
292 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
293 		}
294 		tp->ecn_flags |= TCP_ECN_SEEN;
295 		break;
296 	default:
297 		if (tcp_ca_needs_ecn(sk))
298 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
299 		tp->ecn_flags |= TCP_ECN_SEEN;
300 		break;
301 	}
302 }
303 
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)304 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
305 {
306 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
307 		__tcp_ecn_check_ce(sk, skb);
308 }
309 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)310 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
311 {
312 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
313 		tp->ecn_flags &= ~TCP_ECN_OK;
314 }
315 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)316 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
317 {
318 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
319 		tp->ecn_flags &= ~TCP_ECN_OK;
320 }
321 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)322 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
323 {
324 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
325 		return true;
326 	return false;
327 }
328 
329 /* Buffer size and advertised window tuning.
330  *
331  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
332  */
333 
tcp_sndbuf_expand(struct sock * sk)334 static void tcp_sndbuf_expand(struct sock *sk)
335 {
336 	const struct tcp_sock *tp = tcp_sk(sk);
337 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
338 	int sndmem, per_mss;
339 	u32 nr_segs;
340 
341 	/* Worst case is non GSO/TSO : each frame consumes one skb
342 	 * and skb->head is kmalloced using power of two area of memory
343 	 */
344 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
345 		  MAX_TCP_HEADER +
346 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
347 
348 	per_mss = roundup_pow_of_two(per_mss) +
349 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
350 
351 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
352 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
353 
354 	/* Fast Recovery (RFC 5681 3.2) :
355 	 * Cubic needs 1.7 factor, rounded to 2 to include
356 	 * extra cushion (application might react slowly to EPOLLOUT)
357 	 */
358 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
359 	sndmem *= nr_segs * per_mss;
360 
361 	if (sk->sk_sndbuf < sndmem)
362 		WRITE_ONCE(sk->sk_sndbuf,
363 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
364 }
365 
366 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
367  *
368  * All tcp_full_space() is split to two parts: "network" buffer, allocated
369  * forward and advertised in receiver window (tp->rcv_wnd) and
370  * "application buffer", required to isolate scheduling/application
371  * latencies from network.
372  * window_clamp is maximal advertised window. It can be less than
373  * tcp_full_space(), in this case tcp_full_space() - window_clamp
374  * is reserved for "application" buffer. The less window_clamp is
375  * the smoother our behaviour from viewpoint of network, but the lower
376  * throughput and the higher sensitivity of the connection to losses. 8)
377  *
378  * rcv_ssthresh is more strict window_clamp used at "slow start"
379  * phase to predict further behaviour of this connection.
380  * It is used for two goals:
381  * - to enforce header prediction at sender, even when application
382  *   requires some significant "application buffer". It is check #1.
383  * - to prevent pruning of receive queue because of misprediction
384  *   of receiver window. Check #2.
385  *
386  * The scheme does not work when sender sends good segments opening
387  * window and then starts to feed us spaghetti. But it should work
388  * in common situations. Otherwise, we have to rely on queue collapsing.
389  */
390 
391 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb)392 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
393 {
394 	struct tcp_sock *tp = tcp_sk(sk);
395 	/* Optimize this! */
396 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
397 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
398 
399 	while (tp->rcv_ssthresh <= window) {
400 		if (truesize <= skb->len)
401 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
402 
403 		truesize >>= 1;
404 		window >>= 1;
405 	}
406 	return 0;
407 }
408 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb)409 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
410 {
411 	struct tcp_sock *tp = tcp_sk(sk);
412 	int room;
413 
414 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
415 
416 	/* Check #1 */
417 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
418 		int incr;
419 
420 		/* Check #2. Increase window, if skb with such overhead
421 		 * will fit to rcvbuf in future.
422 		 */
423 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
424 			incr = 2 * tp->advmss;
425 		else
426 			incr = __tcp_grow_window(sk, skb);
427 
428 		if (incr) {
429 			incr = max_t(int, incr, 2 * skb->len);
430 			tp->rcv_ssthresh += min(room, incr);
431 			inet_csk(sk)->icsk_ack.quick |= 1;
432 		}
433 	}
434 }
435 
436 /* 3. Try to fixup all. It is made immediately after connection enters
437  *    established state.
438  */
tcp_init_buffer_space(struct sock * sk)439 void tcp_init_buffer_space(struct sock *sk)
440 {
441 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
442 	struct tcp_sock *tp = tcp_sk(sk);
443 	int maxwin;
444 
445 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
446 		tcp_sndbuf_expand(sk);
447 
448 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
449 	tcp_mstamp_refresh(tp);
450 	tp->rcvq_space.time = tp->tcp_mstamp;
451 	tp->rcvq_space.seq = tp->copied_seq;
452 
453 	maxwin = tcp_full_space(sk);
454 
455 	if (tp->window_clamp >= maxwin) {
456 		tp->window_clamp = maxwin;
457 
458 		if (tcp_app_win && maxwin > 4 * tp->advmss)
459 			tp->window_clamp = max(maxwin -
460 					       (maxwin >> tcp_app_win),
461 					       4 * tp->advmss);
462 	}
463 
464 	/* Force reservation of one segment. */
465 	if (tcp_app_win &&
466 	    tp->window_clamp > 2 * tp->advmss &&
467 	    tp->window_clamp + tp->advmss > maxwin)
468 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
469 
470 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
471 	tp->snd_cwnd_stamp = tcp_jiffies32;
472 }
473 
474 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)475 static void tcp_clamp_window(struct sock *sk)
476 {
477 	struct tcp_sock *tp = tcp_sk(sk);
478 	struct inet_connection_sock *icsk = inet_csk(sk);
479 	struct net *net = sock_net(sk);
480 
481 	icsk->icsk_ack.quick = 0;
482 
483 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
484 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
485 	    !tcp_under_memory_pressure(sk) &&
486 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
487 		WRITE_ONCE(sk->sk_rcvbuf,
488 			   min(atomic_read(&sk->sk_rmem_alloc),
489 			       net->ipv4.sysctl_tcp_rmem[2]));
490 	}
491 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
492 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
493 }
494 
495 /* Initialize RCV_MSS value.
496  * RCV_MSS is an our guess about MSS used by the peer.
497  * We haven't any direct information about the MSS.
498  * It's better to underestimate the RCV_MSS rather than overestimate.
499  * Overestimations make us ACKing less frequently than needed.
500  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
501  */
tcp_initialize_rcv_mss(struct sock * sk)502 void tcp_initialize_rcv_mss(struct sock *sk)
503 {
504 	const struct tcp_sock *tp = tcp_sk(sk);
505 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
506 
507 	hint = min(hint, tp->rcv_wnd / 2);
508 	hint = min(hint, TCP_MSS_DEFAULT);
509 	hint = max(hint, TCP_MIN_MSS);
510 
511 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
512 }
513 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
514 
515 /* Receiver "autotuning" code.
516  *
517  * The algorithm for RTT estimation w/o timestamps is based on
518  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
519  * <http://public.lanl.gov/radiant/pubs.html#DRS>
520  *
521  * More detail on this code can be found at
522  * <http://staff.psc.edu/jheffner/>,
523  * though this reference is out of date.  A new paper
524  * is pending.
525  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)526 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
527 {
528 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
529 	long m = sample;
530 
531 	if (new_sample != 0) {
532 		/* If we sample in larger samples in the non-timestamp
533 		 * case, we could grossly overestimate the RTT especially
534 		 * with chatty applications or bulk transfer apps which
535 		 * are stalled on filesystem I/O.
536 		 *
537 		 * Also, since we are only going for a minimum in the
538 		 * non-timestamp case, we do not smooth things out
539 		 * else with timestamps disabled convergence takes too
540 		 * long.
541 		 */
542 		if (!win_dep) {
543 			m -= (new_sample >> 3);
544 			new_sample += m;
545 		} else {
546 			m <<= 3;
547 			if (m < new_sample)
548 				new_sample = m;
549 		}
550 	} else {
551 		/* No previous measure. */
552 		new_sample = m << 3;
553 	}
554 
555 	tp->rcv_rtt_est.rtt_us = new_sample;
556 }
557 
tcp_rcv_rtt_measure(struct tcp_sock * tp)558 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
559 {
560 	u32 delta_us;
561 
562 	if (tp->rcv_rtt_est.time == 0)
563 		goto new_measure;
564 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
565 		return;
566 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
567 	if (!delta_us)
568 		delta_us = 1;
569 	tcp_rcv_rtt_update(tp, delta_us, 1);
570 
571 new_measure:
572 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
573 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
574 }
575 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)576 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
577 					  const struct sk_buff *skb)
578 {
579 	struct tcp_sock *tp = tcp_sk(sk);
580 
581 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
582 		return;
583 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
584 
585 	if (TCP_SKB_CB(skb)->end_seq -
586 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
587 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
588 		u32 delta_us;
589 
590 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
591 			if (!delta)
592 				delta = 1;
593 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
594 			tcp_rcv_rtt_update(tp, delta_us, 0);
595 		}
596 	}
597 }
598 
599 /*
600  * This function should be called every time data is copied to user space.
601  * It calculates the appropriate TCP receive buffer space.
602  */
tcp_rcv_space_adjust(struct sock * sk)603 void tcp_rcv_space_adjust(struct sock *sk)
604 {
605 	struct tcp_sock *tp = tcp_sk(sk);
606 	u32 copied;
607 	int time;
608 
609 	trace_tcp_rcv_space_adjust(sk);
610 
611 	tcp_mstamp_refresh(tp);
612 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
613 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
614 		return;
615 
616 	/* Number of bytes copied to user in last RTT */
617 	copied = tp->copied_seq - tp->rcvq_space.seq;
618 	if (copied <= tp->rcvq_space.space)
619 		goto new_measure;
620 
621 	/* A bit of theory :
622 	 * copied = bytes received in previous RTT, our base window
623 	 * To cope with packet losses, we need a 2x factor
624 	 * To cope with slow start, and sender growing its cwin by 100 %
625 	 * every RTT, we need a 4x factor, because the ACK we are sending
626 	 * now is for the next RTT, not the current one :
627 	 * <prev RTT . ><current RTT .. ><next RTT .... >
628 	 */
629 
630 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
631 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
632 		int rcvmem, rcvbuf;
633 		u64 rcvwin, grow;
634 
635 		/* minimal window to cope with packet losses, assuming
636 		 * steady state. Add some cushion because of small variations.
637 		 */
638 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
639 
640 		/* Accommodate for sender rate increase (eg. slow start) */
641 		grow = rcvwin * (copied - tp->rcvq_space.space);
642 		do_div(grow, tp->rcvq_space.space);
643 		rcvwin += (grow << 1);
644 
645 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
646 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
647 			rcvmem += 128;
648 
649 		do_div(rcvwin, tp->advmss);
650 		rcvbuf = min_t(u64, rcvwin * rcvmem,
651 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
652 		if (rcvbuf > sk->sk_rcvbuf) {
653 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
654 
655 			/* Make the window clamp follow along.  */
656 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
657 		}
658 	}
659 	tp->rcvq_space.space = copied;
660 
661 new_measure:
662 	tp->rcvq_space.seq = tp->copied_seq;
663 	tp->rcvq_space.time = tp->tcp_mstamp;
664 }
665 
666 /* There is something which you must keep in mind when you analyze the
667  * behavior of the tp->ato delayed ack timeout interval.  When a
668  * connection starts up, we want to ack as quickly as possible.  The
669  * problem is that "good" TCP's do slow start at the beginning of data
670  * transmission.  The means that until we send the first few ACK's the
671  * sender will sit on his end and only queue most of his data, because
672  * he can only send snd_cwnd unacked packets at any given time.  For
673  * each ACK we send, he increments snd_cwnd and transmits more of his
674  * queue.  -DaveM
675  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)676 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
677 {
678 	struct tcp_sock *tp = tcp_sk(sk);
679 	struct inet_connection_sock *icsk = inet_csk(sk);
680 	u32 now;
681 
682 	inet_csk_schedule_ack(sk);
683 
684 	tcp_measure_rcv_mss(sk, skb);
685 
686 	tcp_rcv_rtt_measure(tp);
687 
688 	now = tcp_jiffies32;
689 
690 	if (!icsk->icsk_ack.ato) {
691 		/* The _first_ data packet received, initialize
692 		 * delayed ACK engine.
693 		 */
694 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
695 		icsk->icsk_ack.ato = TCP_ATO_MIN;
696 	} else {
697 		int m = now - icsk->icsk_ack.lrcvtime;
698 
699 		if (m <= TCP_ATO_MIN / 2) {
700 			/* The fastest case is the first. */
701 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
702 		} else if (m < icsk->icsk_ack.ato) {
703 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
704 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
705 				icsk->icsk_ack.ato = icsk->icsk_rto;
706 		} else if (m > icsk->icsk_rto) {
707 			/* Too long gap. Apparently sender failed to
708 			 * restart window, so that we send ACKs quickly.
709 			 */
710 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
711 			sk_mem_reclaim(sk);
712 		}
713 	}
714 	icsk->icsk_ack.lrcvtime = now;
715 
716 	tcp_ecn_check_ce(sk, skb);
717 
718 	if (skb->len >= 128)
719 		tcp_grow_window(sk, skb);
720 }
721 
722 /* Called to compute a smoothed rtt estimate. The data fed to this
723  * routine either comes from timestamps, or from segments that were
724  * known _not_ to have been retransmitted [see Karn/Partridge
725  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
726  * piece by Van Jacobson.
727  * NOTE: the next three routines used to be one big routine.
728  * To save cycles in the RFC 1323 implementation it was better to break
729  * it up into three procedures. -- erics
730  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)731 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
732 {
733 	struct tcp_sock *tp = tcp_sk(sk);
734 	long m = mrtt_us; /* RTT */
735 	u32 srtt = tp->srtt_us;
736 
737 	/*	The following amusing code comes from Jacobson's
738 	 *	article in SIGCOMM '88.  Note that rtt and mdev
739 	 *	are scaled versions of rtt and mean deviation.
740 	 *	This is designed to be as fast as possible
741 	 *	m stands for "measurement".
742 	 *
743 	 *	On a 1990 paper the rto value is changed to:
744 	 *	RTO = rtt + 4 * mdev
745 	 *
746 	 * Funny. This algorithm seems to be very broken.
747 	 * These formulae increase RTO, when it should be decreased, increase
748 	 * too slowly, when it should be increased quickly, decrease too quickly
749 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
750 	 * does not matter how to _calculate_ it. Seems, it was trap
751 	 * that VJ failed to avoid. 8)
752 	 */
753 	if (srtt != 0) {
754 		m -= (srtt >> 3);	/* m is now error in rtt est */
755 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
756 		if (m < 0) {
757 			m = -m;		/* m is now abs(error) */
758 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
759 			/* This is similar to one of Eifel findings.
760 			 * Eifel blocks mdev updates when rtt decreases.
761 			 * This solution is a bit different: we use finer gain
762 			 * for mdev in this case (alpha*beta).
763 			 * Like Eifel it also prevents growth of rto,
764 			 * but also it limits too fast rto decreases,
765 			 * happening in pure Eifel.
766 			 */
767 			if (m > 0)
768 				m >>= 3;
769 		} else {
770 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
771 		}
772 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
773 		if (tp->mdev_us > tp->mdev_max_us) {
774 			tp->mdev_max_us = tp->mdev_us;
775 			if (tp->mdev_max_us > tp->rttvar_us)
776 				tp->rttvar_us = tp->mdev_max_us;
777 		}
778 		if (after(tp->snd_una, tp->rtt_seq)) {
779 			if (tp->mdev_max_us < tp->rttvar_us)
780 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
781 			tp->rtt_seq = tp->snd_nxt;
782 			tp->mdev_max_us = tcp_rto_min_us(sk);
783 
784 			tcp_bpf_rtt(sk);
785 		}
786 	} else {
787 		/* no previous measure. */
788 		srtt = m << 3;		/* take the measured time to be rtt */
789 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
790 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
791 		tp->mdev_max_us = tp->rttvar_us;
792 		tp->rtt_seq = tp->snd_nxt;
793 
794 		tcp_bpf_rtt(sk);
795 	}
796 	tp->srtt_us = max(1U, srtt);
797 }
798 
tcp_update_pacing_rate(struct sock * sk)799 static void tcp_update_pacing_rate(struct sock *sk)
800 {
801 	const struct tcp_sock *tp = tcp_sk(sk);
802 	u64 rate;
803 
804 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
805 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
806 
807 	/* current rate is (cwnd * mss) / srtt
808 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
809 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
810 	 *
811 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
812 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
813 	 *	 end of slow start and should slow down.
814 	 */
815 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
816 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
817 	else
818 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
819 
820 	rate *= max(tp->snd_cwnd, tp->packets_out);
821 
822 	if (likely(tp->srtt_us))
823 		do_div(rate, tp->srtt_us);
824 
825 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
826 	 * without any lock. We want to make sure compiler wont store
827 	 * intermediate values in this location.
828 	 */
829 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
830 					     sk->sk_max_pacing_rate));
831 }
832 
833 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
834  * routine referred to above.
835  */
tcp_set_rto(struct sock * sk)836 static void tcp_set_rto(struct sock *sk)
837 {
838 	const struct tcp_sock *tp = tcp_sk(sk);
839 	/* Old crap is replaced with new one. 8)
840 	 *
841 	 * More seriously:
842 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
843 	 *    It cannot be less due to utterly erratic ACK generation made
844 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
845 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
846 	 *    is invisible. Actually, Linux-2.4 also generates erratic
847 	 *    ACKs in some circumstances.
848 	 */
849 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
850 
851 	/* 2. Fixups made earlier cannot be right.
852 	 *    If we do not estimate RTO correctly without them,
853 	 *    all the algo is pure shit and should be replaced
854 	 *    with correct one. It is exactly, which we pretend to do.
855 	 */
856 
857 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
858 	 * guarantees that rto is higher.
859 	 */
860 	tcp_bound_rto(sk);
861 }
862 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)863 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
864 {
865 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
866 
867 	if (!cwnd)
868 		cwnd = TCP_INIT_CWND;
869 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
870 }
871 
872 /* Take a notice that peer is sending D-SACKs */
tcp_dsack_seen(struct tcp_sock * tp)873 static void tcp_dsack_seen(struct tcp_sock *tp)
874 {
875 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
876 	tp->rack.dsack_seen = 1;
877 	tp->dsack_dups++;
878 }
879 
880 /* It's reordering when higher sequence was delivered (i.e. sacked) before
881  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
882  * distance is approximated in full-mss packet distance ("reordering").
883  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)884 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
885 				      const int ts)
886 {
887 	struct tcp_sock *tp = tcp_sk(sk);
888 	const u32 mss = tp->mss_cache;
889 	u32 fack, metric;
890 
891 	fack = tcp_highest_sack_seq(tp);
892 	if (!before(low_seq, fack))
893 		return;
894 
895 	metric = fack - low_seq;
896 	if ((metric > tp->reordering * mss) && mss) {
897 #if FASTRETRANS_DEBUG > 1
898 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
899 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
900 			 tp->reordering,
901 			 0,
902 			 tp->sacked_out,
903 			 tp->undo_marker ? tp->undo_retrans : 0);
904 #endif
905 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
906 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
907 	}
908 
909 	/* This exciting event is worth to be remembered. 8) */
910 	tp->reord_seen++;
911 	NET_INC_STATS(sock_net(sk),
912 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
913 }
914 
915 /* This must be called before lost_out is incremented */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)916 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
917 {
918 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
919 	    (tp->retransmit_skb_hint &&
920 	     before(TCP_SKB_CB(skb)->seq,
921 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
922 		tp->retransmit_skb_hint = skb;
923 }
924 
925 /* Sum the number of packets on the wire we have marked as lost.
926  * There are two cases we care about here:
927  * a) Packet hasn't been marked lost (nor retransmitted),
928  *    and this is the first loss.
929  * b) Packet has been marked both lost and retransmitted,
930  *    and this means we think it was lost again.
931  */
tcp_sum_lost(struct tcp_sock * tp,struct sk_buff * skb)932 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
933 {
934 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
935 
936 	if (!(sacked & TCPCB_LOST) ||
937 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
938 		tp->lost += tcp_skb_pcount(skb);
939 }
940 
tcp_skb_mark_lost(struct tcp_sock * tp,struct sk_buff * skb)941 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
942 {
943 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
944 		tcp_verify_retransmit_hint(tp, skb);
945 
946 		tp->lost_out += tcp_skb_pcount(skb);
947 		tcp_sum_lost(tp, skb);
948 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
949 	}
950 }
951 
tcp_skb_mark_lost_uncond_verify(struct tcp_sock * tp,struct sk_buff * skb)952 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
953 {
954 	tcp_verify_retransmit_hint(tp, skb);
955 
956 	tcp_sum_lost(tp, skb);
957 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
958 		tp->lost_out += tcp_skb_pcount(skb);
959 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
960 	}
961 }
962 
963 /* This procedure tags the retransmission queue when SACKs arrive.
964  *
965  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
966  * Packets in queue with these bits set are counted in variables
967  * sacked_out, retrans_out and lost_out, correspondingly.
968  *
969  * Valid combinations are:
970  * Tag  InFlight	Description
971  * 0	1		- orig segment is in flight.
972  * S	0		- nothing flies, orig reached receiver.
973  * L	0		- nothing flies, orig lost by net.
974  * R	2		- both orig and retransmit are in flight.
975  * L|R	1		- orig is lost, retransmit is in flight.
976  * S|R  1		- orig reached receiver, retrans is still in flight.
977  * (L|S|R is logically valid, it could occur when L|R is sacked,
978  *  but it is equivalent to plain S and code short-curcuits it to S.
979  *  L|S is logically invalid, it would mean -1 packet in flight 8))
980  *
981  * These 6 states form finite state machine, controlled by the following events:
982  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
983  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
984  * 3. Loss detection event of two flavors:
985  *	A. Scoreboard estimator decided the packet is lost.
986  *	   A'. Reno "three dupacks" marks head of queue lost.
987  *	B. SACK arrives sacking SND.NXT at the moment, when the
988  *	   segment was retransmitted.
989  * 4. D-SACK added new rule: D-SACK changes any tag to S.
990  *
991  * It is pleasant to note, that state diagram turns out to be commutative,
992  * so that we are allowed not to be bothered by order of our actions,
993  * when multiple events arrive simultaneously. (see the function below).
994  *
995  * Reordering detection.
996  * --------------------
997  * Reordering metric is maximal distance, which a packet can be displaced
998  * in packet stream. With SACKs we can estimate it:
999  *
1000  * 1. SACK fills old hole and the corresponding segment was not
1001  *    ever retransmitted -> reordering. Alas, we cannot use it
1002  *    when segment was retransmitted.
1003  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1004  *    for retransmitted and already SACKed segment -> reordering..
1005  * Both of these heuristics are not used in Loss state, when we cannot
1006  * account for retransmits accurately.
1007  *
1008  * SACK block validation.
1009  * ----------------------
1010  *
1011  * SACK block range validation checks that the received SACK block fits to
1012  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1013  * Note that SND.UNA is not included to the range though being valid because
1014  * it means that the receiver is rather inconsistent with itself reporting
1015  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1016  * perfectly valid, however, in light of RFC2018 which explicitly states
1017  * that "SACK block MUST reflect the newest segment.  Even if the newest
1018  * segment is going to be discarded ...", not that it looks very clever
1019  * in case of head skb. Due to potentional receiver driven attacks, we
1020  * choose to avoid immediate execution of a walk in write queue due to
1021  * reneging and defer head skb's loss recovery to standard loss recovery
1022  * procedure that will eventually trigger (nothing forbids us doing this).
1023  *
1024  * Implements also blockage to start_seq wrap-around. Problem lies in the
1025  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1026  * there's no guarantee that it will be before snd_nxt (n). The problem
1027  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1028  * wrap (s_w):
1029  *
1030  *         <- outs wnd ->                          <- wrapzone ->
1031  *         u     e      n                         u_w   e_w  s n_w
1032  *         |     |      |                          |     |   |  |
1033  * |<------------+------+----- TCP seqno space --------------+---------->|
1034  * ...-- <2^31 ->|                                           |<--------...
1035  * ...---- >2^31 ------>|                                    |<--------...
1036  *
1037  * Current code wouldn't be vulnerable but it's better still to discard such
1038  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1039  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1040  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1041  * equal to the ideal case (infinite seqno space without wrap caused issues).
1042  *
1043  * With D-SACK the lower bound is extended to cover sequence space below
1044  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1045  * again, D-SACK block must not to go across snd_una (for the same reason as
1046  * for the normal SACK blocks, explained above). But there all simplicity
1047  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1048  * fully below undo_marker they do not affect behavior in anyway and can
1049  * therefore be safely ignored. In rare cases (which are more or less
1050  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1051  * fragmentation and packet reordering past skb's retransmission. To consider
1052  * them correctly, the acceptable range must be extended even more though
1053  * the exact amount is rather hard to quantify. However, tp->max_window can
1054  * be used as an exaggerated estimate.
1055  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1056 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1057 				   u32 start_seq, u32 end_seq)
1058 {
1059 	/* Too far in future, or reversed (interpretation is ambiguous) */
1060 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1061 		return false;
1062 
1063 	/* Nasty start_seq wrap-around check (see comments above) */
1064 	if (!before(start_seq, tp->snd_nxt))
1065 		return false;
1066 
1067 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1068 	 * start_seq == snd_una is non-sensical (see comments above)
1069 	 */
1070 	if (after(start_seq, tp->snd_una))
1071 		return true;
1072 
1073 	if (!is_dsack || !tp->undo_marker)
1074 		return false;
1075 
1076 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1077 	if (after(end_seq, tp->snd_una))
1078 		return false;
1079 
1080 	if (!before(start_seq, tp->undo_marker))
1081 		return true;
1082 
1083 	/* Too old */
1084 	if (!after(end_seq, tp->undo_marker))
1085 		return false;
1086 
1087 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1088 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1089 	 */
1090 	return !before(start_seq, end_seq - tp->max_window);
1091 }
1092 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una)1093 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1094 			    struct tcp_sack_block_wire *sp, int num_sacks,
1095 			    u32 prior_snd_una)
1096 {
1097 	struct tcp_sock *tp = tcp_sk(sk);
1098 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1099 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1100 	bool dup_sack = false;
1101 
1102 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1103 		dup_sack = true;
1104 		tcp_dsack_seen(tp);
1105 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1106 	} else if (num_sacks > 1) {
1107 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1108 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1109 
1110 		if (!after(end_seq_0, end_seq_1) &&
1111 		    !before(start_seq_0, start_seq_1)) {
1112 			dup_sack = true;
1113 			tcp_dsack_seen(tp);
1114 			NET_INC_STATS(sock_net(sk),
1115 					LINUX_MIB_TCPDSACKOFORECV);
1116 		}
1117 	}
1118 
1119 	/* D-SACK for already forgotten data... Do dumb counting. */
1120 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1121 	    !after(end_seq_0, prior_snd_una) &&
1122 	    after(end_seq_0, tp->undo_marker))
1123 		tp->undo_retrans--;
1124 
1125 	return dup_sack;
1126 }
1127 
1128 struct tcp_sacktag_state {
1129 	u32	reord;
1130 	/* Timestamps for earliest and latest never-retransmitted segment
1131 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1132 	 * but congestion control should still get an accurate delay signal.
1133 	 */
1134 	u64	first_sackt;
1135 	u64	last_sackt;
1136 	struct rate_sample *rate;
1137 	int	flag;
1138 	unsigned int mss_now;
1139 };
1140 
1141 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1142  * the incoming SACK may not exactly match but we can find smaller MSS
1143  * aligned portion of it that matches. Therefore we might need to fragment
1144  * which may fail and creates some hassle (caller must handle error case
1145  * returns).
1146  *
1147  * FIXME: this could be merged to shift decision code
1148  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1149 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1150 				  u32 start_seq, u32 end_seq)
1151 {
1152 	int err;
1153 	bool in_sack;
1154 	unsigned int pkt_len;
1155 	unsigned int mss;
1156 
1157 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1158 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1159 
1160 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1161 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1162 		mss = tcp_skb_mss(skb);
1163 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1164 
1165 		if (!in_sack) {
1166 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1167 			if (pkt_len < mss)
1168 				pkt_len = mss;
1169 		} else {
1170 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1171 			if (pkt_len < mss)
1172 				return -EINVAL;
1173 		}
1174 
1175 		/* Round if necessary so that SACKs cover only full MSSes
1176 		 * and/or the remaining small portion (if present)
1177 		 */
1178 		if (pkt_len > mss) {
1179 			unsigned int new_len = (pkt_len / mss) * mss;
1180 			if (!in_sack && new_len < pkt_len)
1181 				new_len += mss;
1182 			pkt_len = new_len;
1183 		}
1184 
1185 		if (pkt_len >= skb->len && !in_sack)
1186 			return 0;
1187 
1188 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1189 				   pkt_len, mss, GFP_ATOMIC);
1190 		if (err < 0)
1191 			return err;
1192 	}
1193 
1194 	return in_sack;
1195 }
1196 
1197 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1198 static u8 tcp_sacktag_one(struct sock *sk,
1199 			  struct tcp_sacktag_state *state, u8 sacked,
1200 			  u32 start_seq, u32 end_seq,
1201 			  int dup_sack, int pcount,
1202 			  u64 xmit_time)
1203 {
1204 	struct tcp_sock *tp = tcp_sk(sk);
1205 
1206 	/* Account D-SACK for retransmitted packet. */
1207 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1208 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1209 		    after(end_seq, tp->undo_marker))
1210 			tp->undo_retrans--;
1211 		if ((sacked & TCPCB_SACKED_ACKED) &&
1212 		    before(start_seq, state->reord))
1213 				state->reord = start_seq;
1214 	}
1215 
1216 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1217 	if (!after(end_seq, tp->snd_una))
1218 		return sacked;
1219 
1220 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1221 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1222 
1223 		if (sacked & TCPCB_SACKED_RETRANS) {
1224 			/* If the segment is not tagged as lost,
1225 			 * we do not clear RETRANS, believing
1226 			 * that retransmission is still in flight.
1227 			 */
1228 			if (sacked & TCPCB_LOST) {
1229 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1230 				tp->lost_out -= pcount;
1231 				tp->retrans_out -= pcount;
1232 			}
1233 		} else {
1234 			if (!(sacked & TCPCB_RETRANS)) {
1235 				/* New sack for not retransmitted frame,
1236 				 * which was in hole. It is reordering.
1237 				 */
1238 				if (before(start_seq,
1239 					   tcp_highest_sack_seq(tp)) &&
1240 				    before(start_seq, state->reord))
1241 					state->reord = start_seq;
1242 
1243 				if (!after(end_seq, tp->high_seq))
1244 					state->flag |= FLAG_ORIG_SACK_ACKED;
1245 				if (state->first_sackt == 0)
1246 					state->first_sackt = xmit_time;
1247 				state->last_sackt = xmit_time;
1248 			}
1249 
1250 			if (sacked & TCPCB_LOST) {
1251 				sacked &= ~TCPCB_LOST;
1252 				tp->lost_out -= pcount;
1253 			}
1254 		}
1255 
1256 		sacked |= TCPCB_SACKED_ACKED;
1257 		state->flag |= FLAG_DATA_SACKED;
1258 		tp->sacked_out += pcount;
1259 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1260 
1261 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1262 		if (tp->lost_skb_hint &&
1263 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1264 			tp->lost_cnt_hint += pcount;
1265 	}
1266 
1267 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1268 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1269 	 * are accounted above as well.
1270 	 */
1271 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1272 		sacked &= ~TCPCB_SACKED_RETRANS;
1273 		tp->retrans_out -= pcount;
1274 	}
1275 
1276 	return sacked;
1277 }
1278 
1279 /* Shift newly-SACKed bytes from this skb to the immediately previous
1280  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1281  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1282 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1283 			    struct sk_buff *skb,
1284 			    struct tcp_sacktag_state *state,
1285 			    unsigned int pcount, int shifted, int mss,
1286 			    bool dup_sack)
1287 {
1288 	struct tcp_sock *tp = tcp_sk(sk);
1289 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1290 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1291 
1292 	BUG_ON(!pcount);
1293 
1294 	/* Adjust counters and hints for the newly sacked sequence
1295 	 * range but discard the return value since prev is already
1296 	 * marked. We must tag the range first because the seq
1297 	 * advancement below implicitly advances
1298 	 * tcp_highest_sack_seq() when skb is highest_sack.
1299 	 */
1300 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1301 			start_seq, end_seq, dup_sack, pcount,
1302 			tcp_skb_timestamp_us(skb));
1303 	tcp_rate_skb_delivered(sk, skb, state->rate);
1304 
1305 	if (skb == tp->lost_skb_hint)
1306 		tp->lost_cnt_hint += pcount;
1307 
1308 	TCP_SKB_CB(prev)->end_seq += shifted;
1309 	TCP_SKB_CB(skb)->seq += shifted;
1310 
1311 	tcp_skb_pcount_add(prev, pcount);
1312 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1313 	tcp_skb_pcount_add(skb, -pcount);
1314 
1315 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1316 	 * in theory this shouldn't be necessary but as long as DSACK
1317 	 * code can come after this skb later on it's better to keep
1318 	 * setting gso_size to something.
1319 	 */
1320 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1321 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1322 
1323 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1324 	if (tcp_skb_pcount(skb) <= 1)
1325 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1326 
1327 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1328 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1329 
1330 	if (skb->len > 0) {
1331 		BUG_ON(!tcp_skb_pcount(skb));
1332 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1333 		return false;
1334 	}
1335 
1336 	/* Whole SKB was eaten :-) */
1337 
1338 	if (skb == tp->retransmit_skb_hint)
1339 		tp->retransmit_skb_hint = prev;
1340 	if (skb == tp->lost_skb_hint) {
1341 		tp->lost_skb_hint = prev;
1342 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1343 	}
1344 
1345 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1346 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1347 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1348 		TCP_SKB_CB(prev)->end_seq++;
1349 
1350 	if (skb == tcp_highest_sack(sk))
1351 		tcp_advance_highest_sack(sk, skb);
1352 
1353 	tcp_skb_collapse_tstamp(prev, skb);
1354 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1355 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1356 
1357 	tcp_rtx_queue_unlink_and_free(skb, sk);
1358 
1359 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1360 
1361 	return true;
1362 }
1363 
1364 /* I wish gso_size would have a bit more sane initialization than
1365  * something-or-zero which complicates things
1366  */
tcp_skb_seglen(const struct sk_buff * skb)1367 static int tcp_skb_seglen(const struct sk_buff *skb)
1368 {
1369 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1370 }
1371 
1372 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1373 static int skb_can_shift(const struct sk_buff *skb)
1374 {
1375 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1376 }
1377 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1378 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1379 		  int pcount, int shiftlen)
1380 {
1381 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1382 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1383 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1384 	 * even if current MSS is bigger.
1385 	 */
1386 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1387 		return 0;
1388 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1389 		return 0;
1390 	return skb_shift(to, from, shiftlen);
1391 }
1392 
1393 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1394  * skb.
1395  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1396 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1397 					  struct tcp_sacktag_state *state,
1398 					  u32 start_seq, u32 end_seq,
1399 					  bool dup_sack)
1400 {
1401 	struct tcp_sock *tp = tcp_sk(sk);
1402 	struct sk_buff *prev;
1403 	int mss;
1404 	int pcount = 0;
1405 	int len;
1406 	int in_sack;
1407 
1408 	/* Normally R but no L won't result in plain S */
1409 	if (!dup_sack &&
1410 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1411 		goto fallback;
1412 	if (!skb_can_shift(skb))
1413 		goto fallback;
1414 	/* This frame is about to be dropped (was ACKed). */
1415 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1416 		goto fallback;
1417 
1418 	/* Can only happen with delayed DSACK + discard craziness */
1419 	prev = skb_rb_prev(skb);
1420 	if (!prev)
1421 		goto fallback;
1422 
1423 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1424 		goto fallback;
1425 
1426 	if (!tcp_skb_can_collapse_to(prev))
1427 		goto fallback;
1428 
1429 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1430 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1431 
1432 	if (in_sack) {
1433 		len = skb->len;
1434 		pcount = tcp_skb_pcount(skb);
1435 		mss = tcp_skb_seglen(skb);
1436 
1437 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1438 		 * drop this restriction as unnecessary
1439 		 */
1440 		if (mss != tcp_skb_seglen(prev))
1441 			goto fallback;
1442 	} else {
1443 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1444 			goto noop;
1445 		/* CHECKME: This is non-MSS split case only?, this will
1446 		 * cause skipped skbs due to advancing loop btw, original
1447 		 * has that feature too
1448 		 */
1449 		if (tcp_skb_pcount(skb) <= 1)
1450 			goto noop;
1451 
1452 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1453 		if (!in_sack) {
1454 			/* TODO: head merge to next could be attempted here
1455 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1456 			 * though it might not be worth of the additional hassle
1457 			 *
1458 			 * ...we can probably just fallback to what was done
1459 			 * previously. We could try merging non-SACKed ones
1460 			 * as well but it probably isn't going to buy off
1461 			 * because later SACKs might again split them, and
1462 			 * it would make skb timestamp tracking considerably
1463 			 * harder problem.
1464 			 */
1465 			goto fallback;
1466 		}
1467 
1468 		len = end_seq - TCP_SKB_CB(skb)->seq;
1469 		BUG_ON(len < 0);
1470 		BUG_ON(len > skb->len);
1471 
1472 		/* MSS boundaries should be honoured or else pcount will
1473 		 * severely break even though it makes things bit trickier.
1474 		 * Optimize common case to avoid most of the divides
1475 		 */
1476 		mss = tcp_skb_mss(skb);
1477 
1478 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1479 		 * drop this restriction as unnecessary
1480 		 */
1481 		if (mss != tcp_skb_seglen(prev))
1482 			goto fallback;
1483 
1484 		if (len == mss) {
1485 			pcount = 1;
1486 		} else if (len < mss) {
1487 			goto noop;
1488 		} else {
1489 			pcount = len / mss;
1490 			len = pcount * mss;
1491 		}
1492 	}
1493 
1494 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1495 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1496 		goto fallback;
1497 
1498 	if (!tcp_skb_shift(prev, skb, pcount, len))
1499 		goto fallback;
1500 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1501 		goto out;
1502 
1503 	/* Hole filled allows collapsing with the next as well, this is very
1504 	 * useful when hole on every nth skb pattern happens
1505 	 */
1506 	skb = skb_rb_next(prev);
1507 	if (!skb)
1508 		goto out;
1509 
1510 	if (!skb_can_shift(skb) ||
1511 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1512 	    (mss != tcp_skb_seglen(skb)))
1513 		goto out;
1514 
1515 	len = skb->len;
1516 	pcount = tcp_skb_pcount(skb);
1517 	if (tcp_skb_shift(prev, skb, pcount, len))
1518 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1519 				len, mss, 0);
1520 
1521 out:
1522 	return prev;
1523 
1524 noop:
1525 	return skb;
1526 
1527 fallback:
1528 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1529 	return NULL;
1530 }
1531 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1532 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1533 					struct tcp_sack_block *next_dup,
1534 					struct tcp_sacktag_state *state,
1535 					u32 start_seq, u32 end_seq,
1536 					bool dup_sack_in)
1537 {
1538 	struct tcp_sock *tp = tcp_sk(sk);
1539 	struct sk_buff *tmp;
1540 
1541 	skb_rbtree_walk_from(skb) {
1542 		int in_sack = 0;
1543 		bool dup_sack = dup_sack_in;
1544 
1545 		/* queue is in-order => we can short-circuit the walk early */
1546 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1547 			break;
1548 
1549 		if (next_dup  &&
1550 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1551 			in_sack = tcp_match_skb_to_sack(sk, skb,
1552 							next_dup->start_seq,
1553 							next_dup->end_seq);
1554 			if (in_sack > 0)
1555 				dup_sack = true;
1556 		}
1557 
1558 		/* skb reference here is a bit tricky to get right, since
1559 		 * shifting can eat and free both this skb and the next,
1560 		 * so not even _safe variant of the loop is enough.
1561 		 */
1562 		if (in_sack <= 0) {
1563 			tmp = tcp_shift_skb_data(sk, skb, state,
1564 						 start_seq, end_seq, dup_sack);
1565 			if (tmp) {
1566 				if (tmp != skb) {
1567 					skb = tmp;
1568 					continue;
1569 				}
1570 
1571 				in_sack = 0;
1572 			} else {
1573 				in_sack = tcp_match_skb_to_sack(sk, skb,
1574 								start_seq,
1575 								end_seq);
1576 			}
1577 		}
1578 
1579 		if (unlikely(in_sack < 0))
1580 			break;
1581 
1582 		if (in_sack) {
1583 			TCP_SKB_CB(skb)->sacked =
1584 				tcp_sacktag_one(sk,
1585 						state,
1586 						TCP_SKB_CB(skb)->sacked,
1587 						TCP_SKB_CB(skb)->seq,
1588 						TCP_SKB_CB(skb)->end_seq,
1589 						dup_sack,
1590 						tcp_skb_pcount(skb),
1591 						tcp_skb_timestamp_us(skb));
1592 			tcp_rate_skb_delivered(sk, skb, state->rate);
1593 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1594 				list_del_init(&skb->tcp_tsorted_anchor);
1595 
1596 			if (!before(TCP_SKB_CB(skb)->seq,
1597 				    tcp_highest_sack_seq(tp)))
1598 				tcp_advance_highest_sack(sk, skb);
1599 		}
1600 	}
1601 	return skb;
1602 }
1603 
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1604 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1605 {
1606 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1607 	struct sk_buff *skb;
1608 
1609 	while (*p) {
1610 		parent = *p;
1611 		skb = rb_to_skb(parent);
1612 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1613 			p = &parent->rb_left;
1614 			continue;
1615 		}
1616 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1617 			p = &parent->rb_right;
1618 			continue;
1619 		}
1620 		return skb;
1621 	}
1622 	return NULL;
1623 }
1624 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1625 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1626 					u32 skip_to_seq)
1627 {
1628 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1629 		return skb;
1630 
1631 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1632 }
1633 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1634 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1635 						struct sock *sk,
1636 						struct tcp_sack_block *next_dup,
1637 						struct tcp_sacktag_state *state,
1638 						u32 skip_to_seq)
1639 {
1640 	if (!next_dup)
1641 		return skb;
1642 
1643 	if (before(next_dup->start_seq, skip_to_seq)) {
1644 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1645 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1646 				       next_dup->start_seq, next_dup->end_seq,
1647 				       1);
1648 	}
1649 
1650 	return skb;
1651 }
1652 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1653 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1654 {
1655 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1656 }
1657 
1658 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1659 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1660 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1661 {
1662 	struct tcp_sock *tp = tcp_sk(sk);
1663 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1664 				    TCP_SKB_CB(ack_skb)->sacked);
1665 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1666 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1667 	struct tcp_sack_block *cache;
1668 	struct sk_buff *skb;
1669 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1670 	int used_sacks;
1671 	bool found_dup_sack = false;
1672 	int i, j;
1673 	int first_sack_index;
1674 
1675 	state->flag = 0;
1676 	state->reord = tp->snd_nxt;
1677 
1678 	if (!tp->sacked_out)
1679 		tcp_highest_sack_reset(sk);
1680 
1681 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1682 					 num_sacks, prior_snd_una);
1683 	if (found_dup_sack) {
1684 		state->flag |= FLAG_DSACKING_ACK;
1685 		tp->delivered++; /* A spurious retransmission is delivered */
1686 	}
1687 
1688 	/* Eliminate too old ACKs, but take into
1689 	 * account more or less fresh ones, they can
1690 	 * contain valid SACK info.
1691 	 */
1692 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1693 		return 0;
1694 
1695 	if (!tp->packets_out)
1696 		goto out;
1697 
1698 	used_sacks = 0;
1699 	first_sack_index = 0;
1700 	for (i = 0; i < num_sacks; i++) {
1701 		bool dup_sack = !i && found_dup_sack;
1702 
1703 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1704 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1705 
1706 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1707 					    sp[used_sacks].start_seq,
1708 					    sp[used_sacks].end_seq)) {
1709 			int mib_idx;
1710 
1711 			if (dup_sack) {
1712 				if (!tp->undo_marker)
1713 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1714 				else
1715 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1716 			} else {
1717 				/* Don't count olds caused by ACK reordering */
1718 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1719 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1720 					continue;
1721 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1722 			}
1723 
1724 			NET_INC_STATS(sock_net(sk), mib_idx);
1725 			if (i == 0)
1726 				first_sack_index = -1;
1727 			continue;
1728 		}
1729 
1730 		/* Ignore very old stuff early */
1731 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1732 			if (i == 0)
1733 				first_sack_index = -1;
1734 			continue;
1735 		}
1736 
1737 		used_sacks++;
1738 	}
1739 
1740 	/* order SACK blocks to allow in order walk of the retrans queue */
1741 	for (i = used_sacks - 1; i > 0; i--) {
1742 		for (j = 0; j < i; j++) {
1743 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1744 				swap(sp[j], sp[j + 1]);
1745 
1746 				/* Track where the first SACK block goes to */
1747 				if (j == first_sack_index)
1748 					first_sack_index = j + 1;
1749 			}
1750 		}
1751 	}
1752 
1753 	state->mss_now = tcp_current_mss(sk);
1754 	skb = NULL;
1755 	i = 0;
1756 
1757 	if (!tp->sacked_out) {
1758 		/* It's already past, so skip checking against it */
1759 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1760 	} else {
1761 		cache = tp->recv_sack_cache;
1762 		/* Skip empty blocks in at head of the cache */
1763 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1764 		       !cache->end_seq)
1765 			cache++;
1766 	}
1767 
1768 	while (i < used_sacks) {
1769 		u32 start_seq = sp[i].start_seq;
1770 		u32 end_seq = sp[i].end_seq;
1771 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1772 		struct tcp_sack_block *next_dup = NULL;
1773 
1774 		if (found_dup_sack && ((i + 1) == first_sack_index))
1775 			next_dup = &sp[i + 1];
1776 
1777 		/* Skip too early cached blocks */
1778 		while (tcp_sack_cache_ok(tp, cache) &&
1779 		       !before(start_seq, cache->end_seq))
1780 			cache++;
1781 
1782 		/* Can skip some work by looking recv_sack_cache? */
1783 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1784 		    after(end_seq, cache->start_seq)) {
1785 
1786 			/* Head todo? */
1787 			if (before(start_seq, cache->start_seq)) {
1788 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1789 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1790 						       state,
1791 						       start_seq,
1792 						       cache->start_seq,
1793 						       dup_sack);
1794 			}
1795 
1796 			/* Rest of the block already fully processed? */
1797 			if (!after(end_seq, cache->end_seq))
1798 				goto advance_sp;
1799 
1800 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1801 						       state,
1802 						       cache->end_seq);
1803 
1804 			/* ...tail remains todo... */
1805 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1806 				/* ...but better entrypoint exists! */
1807 				skb = tcp_highest_sack(sk);
1808 				if (!skb)
1809 					break;
1810 				cache++;
1811 				goto walk;
1812 			}
1813 
1814 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1815 			/* Check overlap against next cached too (past this one already) */
1816 			cache++;
1817 			continue;
1818 		}
1819 
1820 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1821 			skb = tcp_highest_sack(sk);
1822 			if (!skb)
1823 				break;
1824 		}
1825 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1826 
1827 walk:
1828 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1829 				       start_seq, end_seq, dup_sack);
1830 
1831 advance_sp:
1832 		i++;
1833 	}
1834 
1835 	/* Clear the head of the cache sack blocks so we can skip it next time */
1836 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1837 		tp->recv_sack_cache[i].start_seq = 0;
1838 		tp->recv_sack_cache[i].end_seq = 0;
1839 	}
1840 	for (j = 0; j < used_sacks; j++)
1841 		tp->recv_sack_cache[i++] = sp[j];
1842 
1843 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1844 		tcp_check_sack_reordering(sk, state->reord, 0);
1845 
1846 	tcp_verify_left_out(tp);
1847 out:
1848 
1849 #if FASTRETRANS_DEBUG > 0
1850 	WARN_ON((int)tp->sacked_out < 0);
1851 	WARN_ON((int)tp->lost_out < 0);
1852 	WARN_ON((int)tp->retrans_out < 0);
1853 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1854 #endif
1855 	return state->flag;
1856 }
1857 
1858 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1859  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1860  */
tcp_limit_reno_sacked(struct tcp_sock * tp)1861 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1862 {
1863 	u32 holes;
1864 
1865 	holes = max(tp->lost_out, 1U);
1866 	holes = min(holes, tp->packets_out);
1867 
1868 	if ((tp->sacked_out + holes) > tp->packets_out) {
1869 		tp->sacked_out = tp->packets_out - holes;
1870 		return true;
1871 	}
1872 	return false;
1873 }
1874 
1875 /* If we receive more dupacks than we expected counting segments
1876  * in assumption of absent reordering, interpret this as reordering.
1877  * The only another reason could be bug in receiver TCP.
1878  */
tcp_check_reno_reordering(struct sock * sk,const int addend)1879 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1880 {
1881 	struct tcp_sock *tp = tcp_sk(sk);
1882 
1883 	if (!tcp_limit_reno_sacked(tp))
1884 		return;
1885 
1886 	tp->reordering = min_t(u32, tp->packets_out + addend,
1887 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1888 	tp->reord_seen++;
1889 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1890 }
1891 
1892 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1893 
tcp_add_reno_sack(struct sock * sk,int num_dupack)1894 static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1895 {
1896 	if (num_dupack) {
1897 		struct tcp_sock *tp = tcp_sk(sk);
1898 		u32 prior_sacked = tp->sacked_out;
1899 		s32 delivered;
1900 
1901 		tp->sacked_out += num_dupack;
1902 		tcp_check_reno_reordering(sk, 0);
1903 		delivered = tp->sacked_out - prior_sacked;
1904 		if (delivered > 0)
1905 			tp->delivered += delivered;
1906 		tcp_verify_left_out(tp);
1907 	}
1908 }
1909 
1910 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1911 
tcp_remove_reno_sacks(struct sock * sk,int acked)1912 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1913 {
1914 	struct tcp_sock *tp = tcp_sk(sk);
1915 
1916 	if (acked > 0) {
1917 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1918 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1919 		if (acked - 1 >= tp->sacked_out)
1920 			tp->sacked_out = 0;
1921 		else
1922 			tp->sacked_out -= acked - 1;
1923 	}
1924 	tcp_check_reno_reordering(sk, acked);
1925 	tcp_verify_left_out(tp);
1926 }
1927 
tcp_reset_reno_sack(struct tcp_sock * tp)1928 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1929 {
1930 	tp->sacked_out = 0;
1931 }
1932 
tcp_clear_retrans(struct tcp_sock * tp)1933 void tcp_clear_retrans(struct tcp_sock *tp)
1934 {
1935 	tp->retrans_out = 0;
1936 	tp->lost_out = 0;
1937 	tp->undo_marker = 0;
1938 	tp->undo_retrans = -1;
1939 	tp->sacked_out = 0;
1940 }
1941 
tcp_init_undo(struct tcp_sock * tp)1942 static inline void tcp_init_undo(struct tcp_sock *tp)
1943 {
1944 	tp->undo_marker = tp->snd_una;
1945 	/* Retransmission still in flight may cause DSACKs later. */
1946 	tp->undo_retrans = tp->retrans_out ? : -1;
1947 }
1948 
tcp_is_rack(const struct sock * sk)1949 static bool tcp_is_rack(const struct sock *sk)
1950 {
1951 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1952 }
1953 
1954 /* If we detect SACK reneging, forget all SACK information
1955  * and reset tags completely, otherwise preserve SACKs. If receiver
1956  * dropped its ofo queue, we will know this due to reneging detection.
1957  */
tcp_timeout_mark_lost(struct sock * sk)1958 static void tcp_timeout_mark_lost(struct sock *sk)
1959 {
1960 	struct tcp_sock *tp = tcp_sk(sk);
1961 	struct sk_buff *skb, *head;
1962 	bool is_reneg;			/* is receiver reneging on SACKs? */
1963 
1964 	head = tcp_rtx_queue_head(sk);
1965 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1966 	if (is_reneg) {
1967 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1968 		tp->sacked_out = 0;
1969 		/* Mark SACK reneging until we recover from this loss event. */
1970 		tp->is_sack_reneg = 1;
1971 	} else if (tcp_is_reno(tp)) {
1972 		tcp_reset_reno_sack(tp);
1973 	}
1974 
1975 	skb = head;
1976 	skb_rbtree_walk_from(skb) {
1977 		if (is_reneg)
1978 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1979 		else if (tcp_is_rack(sk) && skb != head &&
1980 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1981 			continue; /* Don't mark recently sent ones lost yet */
1982 		tcp_mark_skb_lost(sk, skb);
1983 	}
1984 	tcp_verify_left_out(tp);
1985 	tcp_clear_all_retrans_hints(tp);
1986 }
1987 
1988 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)1989 void tcp_enter_loss(struct sock *sk)
1990 {
1991 	const struct inet_connection_sock *icsk = inet_csk(sk);
1992 	struct tcp_sock *tp = tcp_sk(sk);
1993 	struct net *net = sock_net(sk);
1994 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1995 
1996 	tcp_timeout_mark_lost(sk);
1997 
1998 	/* Reduce ssthresh if it has not yet been made inside this window. */
1999 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2000 	    !after(tp->high_seq, tp->snd_una) ||
2001 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2002 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2003 		tp->prior_cwnd = tp->snd_cwnd;
2004 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2005 		tcp_ca_event(sk, CA_EVENT_LOSS);
2006 		tcp_init_undo(tp);
2007 	}
2008 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2009 	tp->snd_cwnd_cnt   = 0;
2010 	tp->snd_cwnd_stamp = tcp_jiffies32;
2011 
2012 	/* Timeout in disordered state after receiving substantial DUPACKs
2013 	 * suggests that the degree of reordering is over-estimated.
2014 	 */
2015 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2016 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2017 		tp->reordering = min_t(unsigned int, tp->reordering,
2018 				       net->ipv4.sysctl_tcp_reordering);
2019 	tcp_set_ca_state(sk, TCP_CA_Loss);
2020 	tp->high_seq = tp->snd_nxt;
2021 	tcp_ecn_queue_cwr(tp);
2022 
2023 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2024 	 * loss recovery is underway except recurring timeout(s) on
2025 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2026 	 */
2027 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2028 		   (new_recovery || icsk->icsk_retransmits) &&
2029 		   !inet_csk(sk)->icsk_mtup.probe_size;
2030 }
2031 
2032 /* If ACK arrived pointing to a remembered SACK, it means that our
2033  * remembered SACKs do not reflect real state of receiver i.e.
2034  * receiver _host_ is heavily congested (or buggy).
2035  *
2036  * To avoid big spurious retransmission bursts due to transient SACK
2037  * scoreboard oddities that look like reneging, we give the receiver a
2038  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2039  * restore sanity to the SACK scoreboard. If the apparent reneging
2040  * persists until this RTO then we'll clear the SACK scoreboard.
2041  */
tcp_check_sack_reneging(struct sock * sk,int flag)2042 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2043 {
2044 	if (flag & FLAG_SACK_RENEGING) {
2045 		struct tcp_sock *tp = tcp_sk(sk);
2046 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2047 					  msecs_to_jiffies(10));
2048 
2049 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2050 					  delay, TCP_RTO_MAX);
2051 		return true;
2052 	}
2053 	return false;
2054 }
2055 
2056 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2057  * counter when SACK is enabled (without SACK, sacked_out is used for
2058  * that purpose).
2059  *
2060  * With reordering, holes may still be in flight, so RFC3517 recovery
2061  * uses pure sacked_out (total number of SACKed segments) even though
2062  * it violates the RFC that uses duplicate ACKs, often these are equal
2063  * but when e.g. out-of-window ACKs or packet duplication occurs,
2064  * they differ. Since neither occurs due to loss, TCP should really
2065  * ignore them.
2066  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2067 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2068 {
2069 	return tp->sacked_out + 1;
2070 }
2071 
2072 /* Linux NewReno/SACK/ECN state machine.
2073  * --------------------------------------
2074  *
2075  * "Open"	Normal state, no dubious events, fast path.
2076  * "Disorder"   In all the respects it is "Open",
2077  *		but requires a bit more attention. It is entered when
2078  *		we see some SACKs or dupacks. It is split of "Open"
2079  *		mainly to move some processing from fast path to slow one.
2080  * "CWR"	CWND was reduced due to some Congestion Notification event.
2081  *		It can be ECN, ICMP source quench, local device congestion.
2082  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2083  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2084  *
2085  * tcp_fastretrans_alert() is entered:
2086  * - each incoming ACK, if state is not "Open"
2087  * - when arrived ACK is unusual, namely:
2088  *	* SACK
2089  *	* Duplicate ACK.
2090  *	* ECN ECE.
2091  *
2092  * Counting packets in flight is pretty simple.
2093  *
2094  *	in_flight = packets_out - left_out + retrans_out
2095  *
2096  *	packets_out is SND.NXT-SND.UNA counted in packets.
2097  *
2098  *	retrans_out is number of retransmitted segments.
2099  *
2100  *	left_out is number of segments left network, but not ACKed yet.
2101  *
2102  *		left_out = sacked_out + lost_out
2103  *
2104  *     sacked_out: Packets, which arrived to receiver out of order
2105  *		   and hence not ACKed. With SACKs this number is simply
2106  *		   amount of SACKed data. Even without SACKs
2107  *		   it is easy to give pretty reliable estimate of this number,
2108  *		   counting duplicate ACKs.
2109  *
2110  *       lost_out: Packets lost by network. TCP has no explicit
2111  *		   "loss notification" feedback from network (for now).
2112  *		   It means that this number can be only _guessed_.
2113  *		   Actually, it is the heuristics to predict lossage that
2114  *		   distinguishes different algorithms.
2115  *
2116  *	F.e. after RTO, when all the queue is considered as lost,
2117  *	lost_out = packets_out and in_flight = retrans_out.
2118  *
2119  *		Essentially, we have now a few algorithms detecting
2120  *		lost packets.
2121  *
2122  *		If the receiver supports SACK:
2123  *
2124  *		RFC6675/3517: It is the conventional algorithm. A packet is
2125  *		considered lost if the number of higher sequence packets
2126  *		SACKed is greater than or equal the DUPACK thoreshold
2127  *		(reordering). This is implemented in tcp_mark_head_lost and
2128  *		tcp_update_scoreboard.
2129  *
2130  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2131  *		(2017-) that checks timing instead of counting DUPACKs.
2132  *		Essentially a packet is considered lost if it's not S/ACKed
2133  *		after RTT + reordering_window, where both metrics are
2134  *		dynamically measured and adjusted. This is implemented in
2135  *		tcp_rack_mark_lost.
2136  *
2137  *		If the receiver does not support SACK:
2138  *
2139  *		NewReno (RFC6582): in Recovery we assume that one segment
2140  *		is lost (classic Reno). While we are in Recovery and
2141  *		a partial ACK arrives, we assume that one more packet
2142  *		is lost (NewReno). This heuristics are the same in NewReno
2143  *		and SACK.
2144  *
2145  * Really tricky (and requiring careful tuning) part of algorithm
2146  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2147  * The first determines the moment _when_ we should reduce CWND and,
2148  * hence, slow down forward transmission. In fact, it determines the moment
2149  * when we decide that hole is caused by loss, rather than by a reorder.
2150  *
2151  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2152  * holes, caused by lost packets.
2153  *
2154  * And the most logically complicated part of algorithm is undo
2155  * heuristics. We detect false retransmits due to both too early
2156  * fast retransmit (reordering) and underestimated RTO, analyzing
2157  * timestamps and D-SACKs. When we detect that some segments were
2158  * retransmitted by mistake and CWND reduction was wrong, we undo
2159  * window reduction and abort recovery phase. This logic is hidden
2160  * inside several functions named tcp_try_undo_<something>.
2161  */
2162 
2163 /* This function decides, when we should leave Disordered state
2164  * and enter Recovery phase, reducing congestion window.
2165  *
2166  * Main question: may we further continue forward transmission
2167  * with the same cwnd?
2168  */
tcp_time_to_recover(struct sock * sk,int flag)2169 static bool tcp_time_to_recover(struct sock *sk, int flag)
2170 {
2171 	struct tcp_sock *tp = tcp_sk(sk);
2172 
2173 	/* Trick#1: The loss is proven. */
2174 	if (tp->lost_out)
2175 		return true;
2176 
2177 	/* Not-A-Trick#2 : Classic rule... */
2178 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2179 		return true;
2180 
2181 	return false;
2182 }
2183 
2184 /* Detect loss in event "A" above by marking head of queue up as lost.
2185  * For non-SACK(Reno) senders, the first "packets" number of segments
2186  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2187  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2188  * the maximum SACKed segments to pass before reaching this limit.
2189  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2190 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2191 {
2192 	struct tcp_sock *tp = tcp_sk(sk);
2193 	struct sk_buff *skb;
2194 	int cnt, oldcnt, lost;
2195 	unsigned int mss;
2196 	/* Use SACK to deduce losses of new sequences sent during recovery */
2197 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2198 
2199 	WARN_ON(packets > tp->packets_out);
2200 	skb = tp->lost_skb_hint;
2201 	if (skb) {
2202 		/* Head already handled? */
2203 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2204 			return;
2205 		cnt = tp->lost_cnt_hint;
2206 	} else {
2207 		skb = tcp_rtx_queue_head(sk);
2208 		cnt = 0;
2209 	}
2210 
2211 	skb_rbtree_walk_from(skb) {
2212 		/* TODO: do this better */
2213 		/* this is not the most efficient way to do this... */
2214 		tp->lost_skb_hint = skb;
2215 		tp->lost_cnt_hint = cnt;
2216 
2217 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2218 			break;
2219 
2220 		oldcnt = cnt;
2221 		if (tcp_is_reno(tp) ||
2222 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2223 			cnt += tcp_skb_pcount(skb);
2224 
2225 		if (cnt > packets) {
2226 			if (tcp_is_sack(tp) ||
2227 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2228 			    (oldcnt >= packets))
2229 				break;
2230 
2231 			mss = tcp_skb_mss(skb);
2232 			/* If needed, chop off the prefix to mark as lost. */
2233 			lost = (packets - oldcnt) * mss;
2234 			if (lost < skb->len &&
2235 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2236 					 lost, mss, GFP_ATOMIC) < 0)
2237 				break;
2238 			cnt = packets;
2239 		}
2240 
2241 		tcp_skb_mark_lost(tp, skb);
2242 
2243 		if (mark_head)
2244 			break;
2245 	}
2246 	tcp_verify_left_out(tp);
2247 }
2248 
2249 /* Account newly detected lost packet(s) */
2250 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2251 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2252 {
2253 	struct tcp_sock *tp = tcp_sk(sk);
2254 
2255 	if (tcp_is_sack(tp)) {
2256 		int sacked_upto = tp->sacked_out - tp->reordering;
2257 		if (sacked_upto >= 0)
2258 			tcp_mark_head_lost(sk, sacked_upto, 0);
2259 		else if (fast_rexmit)
2260 			tcp_mark_head_lost(sk, 1, 1);
2261 	}
2262 }
2263 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2264 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2265 {
2266 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2267 	       before(tp->rx_opt.rcv_tsecr, when);
2268 }
2269 
2270 /* skb is spurious retransmitted if the returned timestamp echo
2271  * reply is prior to the skb transmission time
2272  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2273 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2274 				     const struct sk_buff *skb)
2275 {
2276 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2277 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2278 }
2279 
2280 /* Nothing was retransmitted or returned timestamp is less
2281  * than timestamp of the first retransmission.
2282  */
tcp_packet_delayed(const struct tcp_sock * tp)2283 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2284 {
2285 	return tp->retrans_stamp &&
2286 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2287 }
2288 
2289 /* Undo procedures. */
2290 
2291 /* We can clear retrans_stamp when there are no retransmissions in the
2292  * window. It would seem that it is trivially available for us in
2293  * tp->retrans_out, however, that kind of assumptions doesn't consider
2294  * what will happen if errors occur when sending retransmission for the
2295  * second time. ...It could the that such segment has only
2296  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2297  * the head skb is enough except for some reneging corner cases that
2298  * are not worth the effort.
2299  *
2300  * Main reason for all this complexity is the fact that connection dying
2301  * time now depends on the validity of the retrans_stamp, in particular,
2302  * that successive retransmissions of a segment must not advance
2303  * retrans_stamp under any conditions.
2304  */
tcp_any_retrans_done(const struct sock * sk)2305 static bool tcp_any_retrans_done(const struct sock *sk)
2306 {
2307 	const struct tcp_sock *tp = tcp_sk(sk);
2308 	struct sk_buff *skb;
2309 
2310 	if (tp->retrans_out)
2311 		return true;
2312 
2313 	skb = tcp_rtx_queue_head(sk);
2314 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2315 		return true;
2316 
2317 	return false;
2318 }
2319 
DBGUNDO(struct sock * sk,const char * msg)2320 static void DBGUNDO(struct sock *sk, const char *msg)
2321 {
2322 #if FASTRETRANS_DEBUG > 1
2323 	struct tcp_sock *tp = tcp_sk(sk);
2324 	struct inet_sock *inet = inet_sk(sk);
2325 
2326 	if (sk->sk_family == AF_INET) {
2327 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2328 			 msg,
2329 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2330 			 tp->snd_cwnd, tcp_left_out(tp),
2331 			 tp->snd_ssthresh, tp->prior_ssthresh,
2332 			 tp->packets_out);
2333 	}
2334 #if IS_ENABLED(CONFIG_IPV6)
2335 	else if (sk->sk_family == AF_INET6) {
2336 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2337 			 msg,
2338 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2339 			 tp->snd_cwnd, tcp_left_out(tp),
2340 			 tp->snd_ssthresh, tp->prior_ssthresh,
2341 			 tp->packets_out);
2342 	}
2343 #endif
2344 #endif
2345 }
2346 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2347 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2348 {
2349 	struct tcp_sock *tp = tcp_sk(sk);
2350 
2351 	if (unmark_loss) {
2352 		struct sk_buff *skb;
2353 
2354 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2355 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2356 		}
2357 		tp->lost_out = 0;
2358 		tcp_clear_all_retrans_hints(tp);
2359 	}
2360 
2361 	if (tp->prior_ssthresh) {
2362 		const struct inet_connection_sock *icsk = inet_csk(sk);
2363 
2364 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2365 
2366 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2367 			tp->snd_ssthresh = tp->prior_ssthresh;
2368 			tcp_ecn_withdraw_cwr(tp);
2369 		}
2370 	}
2371 	tp->snd_cwnd_stamp = tcp_jiffies32;
2372 	tp->undo_marker = 0;
2373 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2374 }
2375 
tcp_may_undo(const struct tcp_sock * tp)2376 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2377 {
2378 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2379 }
2380 
2381 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2382 static bool tcp_try_undo_recovery(struct sock *sk)
2383 {
2384 	struct tcp_sock *tp = tcp_sk(sk);
2385 
2386 	if (tcp_may_undo(tp)) {
2387 		int mib_idx;
2388 
2389 		/* Happy end! We did not retransmit anything
2390 		 * or our original transmission succeeded.
2391 		 */
2392 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2393 		tcp_undo_cwnd_reduction(sk, false);
2394 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2395 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2396 		else
2397 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2398 
2399 		NET_INC_STATS(sock_net(sk), mib_idx);
2400 	} else if (tp->rack.reo_wnd_persist) {
2401 		tp->rack.reo_wnd_persist--;
2402 	}
2403 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2404 		/* Hold old state until something *above* high_seq
2405 		 * is ACKed. For Reno it is MUST to prevent false
2406 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2407 		if (!tcp_any_retrans_done(sk))
2408 			tp->retrans_stamp = 0;
2409 		return true;
2410 	}
2411 	tcp_set_ca_state(sk, TCP_CA_Open);
2412 	tp->is_sack_reneg = 0;
2413 	return false;
2414 }
2415 
2416 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2417 static bool tcp_try_undo_dsack(struct sock *sk)
2418 {
2419 	struct tcp_sock *tp = tcp_sk(sk);
2420 
2421 	if (tp->undo_marker && !tp->undo_retrans) {
2422 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2423 					       tp->rack.reo_wnd_persist + 1);
2424 		DBGUNDO(sk, "D-SACK");
2425 		tcp_undo_cwnd_reduction(sk, false);
2426 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2427 		return true;
2428 	}
2429 	return false;
2430 }
2431 
2432 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2433 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2434 {
2435 	struct tcp_sock *tp = tcp_sk(sk);
2436 
2437 	if (frto_undo || tcp_may_undo(tp)) {
2438 		tcp_undo_cwnd_reduction(sk, true);
2439 
2440 		DBGUNDO(sk, "partial loss");
2441 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2442 		if (frto_undo)
2443 			NET_INC_STATS(sock_net(sk),
2444 					LINUX_MIB_TCPSPURIOUSRTOS);
2445 		inet_csk(sk)->icsk_retransmits = 0;
2446 		if (frto_undo || tcp_is_sack(tp)) {
2447 			tcp_set_ca_state(sk, TCP_CA_Open);
2448 			tp->is_sack_reneg = 0;
2449 		}
2450 		return true;
2451 	}
2452 	return false;
2453 }
2454 
2455 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2456  * It computes the number of packets to send (sndcnt) based on packets newly
2457  * delivered:
2458  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2459  *	cwnd reductions across a full RTT.
2460  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2461  *      But when the retransmits are acked without further losses, PRR
2462  *      slow starts cwnd up to ssthresh to speed up the recovery.
2463  */
tcp_init_cwnd_reduction(struct sock * sk)2464 static void tcp_init_cwnd_reduction(struct sock *sk)
2465 {
2466 	struct tcp_sock *tp = tcp_sk(sk);
2467 
2468 	tp->high_seq = tp->snd_nxt;
2469 	tp->tlp_high_seq = 0;
2470 	tp->snd_cwnd_cnt = 0;
2471 	tp->prior_cwnd = tp->snd_cwnd;
2472 	tp->prr_delivered = 0;
2473 	tp->prr_out = 0;
2474 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2475 	tcp_ecn_queue_cwr(tp);
2476 }
2477 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int flag)2478 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2479 {
2480 	struct tcp_sock *tp = tcp_sk(sk);
2481 	int sndcnt = 0;
2482 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2483 
2484 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2485 		return;
2486 
2487 	tp->prr_delivered += newly_acked_sacked;
2488 	if (delta < 0) {
2489 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2490 			       tp->prior_cwnd - 1;
2491 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2492 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2493 		   FLAG_RETRANS_DATA_ACKED) {
2494 		sndcnt = min_t(int, delta,
2495 			       max_t(int, tp->prr_delivered - tp->prr_out,
2496 				     newly_acked_sacked) + 1);
2497 	} else {
2498 		sndcnt = min(delta, newly_acked_sacked);
2499 	}
2500 	/* Force a fast retransmit upon entering fast recovery */
2501 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2502 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2503 }
2504 
tcp_end_cwnd_reduction(struct sock * sk)2505 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2506 {
2507 	struct tcp_sock *tp = tcp_sk(sk);
2508 
2509 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2510 		return;
2511 
2512 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2513 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2514 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2515 		tp->snd_cwnd = tp->snd_ssthresh;
2516 		tp->snd_cwnd_stamp = tcp_jiffies32;
2517 	}
2518 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2519 }
2520 
2521 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2522 void tcp_enter_cwr(struct sock *sk)
2523 {
2524 	struct tcp_sock *tp = tcp_sk(sk);
2525 
2526 	tp->prior_ssthresh = 0;
2527 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2528 		tp->undo_marker = 0;
2529 		tcp_init_cwnd_reduction(sk);
2530 		tcp_set_ca_state(sk, TCP_CA_CWR);
2531 	}
2532 }
2533 EXPORT_SYMBOL(tcp_enter_cwr);
2534 
tcp_try_keep_open(struct sock * sk)2535 static void tcp_try_keep_open(struct sock *sk)
2536 {
2537 	struct tcp_sock *tp = tcp_sk(sk);
2538 	int state = TCP_CA_Open;
2539 
2540 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2541 		state = TCP_CA_Disorder;
2542 
2543 	if (inet_csk(sk)->icsk_ca_state != state) {
2544 		tcp_set_ca_state(sk, state);
2545 		tp->high_seq = tp->snd_nxt;
2546 	}
2547 }
2548 
tcp_try_to_open(struct sock * sk,int flag)2549 static void tcp_try_to_open(struct sock *sk, int flag)
2550 {
2551 	struct tcp_sock *tp = tcp_sk(sk);
2552 
2553 	tcp_verify_left_out(tp);
2554 
2555 	if (!tcp_any_retrans_done(sk))
2556 		tp->retrans_stamp = 0;
2557 
2558 	if (flag & FLAG_ECE)
2559 		tcp_enter_cwr(sk);
2560 
2561 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2562 		tcp_try_keep_open(sk);
2563 	}
2564 }
2565 
tcp_mtup_probe_failed(struct sock * sk)2566 static void tcp_mtup_probe_failed(struct sock *sk)
2567 {
2568 	struct inet_connection_sock *icsk = inet_csk(sk);
2569 
2570 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2571 	icsk->icsk_mtup.probe_size = 0;
2572 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2573 }
2574 
tcp_mtup_probe_success(struct sock * sk)2575 static void tcp_mtup_probe_success(struct sock *sk)
2576 {
2577 	struct tcp_sock *tp = tcp_sk(sk);
2578 	struct inet_connection_sock *icsk = inet_csk(sk);
2579 
2580 	/* FIXME: breaks with very large cwnd */
2581 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2582 	tp->snd_cwnd = tp->snd_cwnd *
2583 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2584 		       icsk->icsk_mtup.probe_size;
2585 	tp->snd_cwnd_cnt = 0;
2586 	tp->snd_cwnd_stamp = tcp_jiffies32;
2587 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2588 
2589 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2590 	icsk->icsk_mtup.probe_size = 0;
2591 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2592 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2593 }
2594 
2595 /* Do a simple retransmit without using the backoff mechanisms in
2596  * tcp_timer. This is used for path mtu discovery.
2597  * The socket is already locked here.
2598  */
tcp_simple_retransmit(struct sock * sk)2599 void tcp_simple_retransmit(struct sock *sk)
2600 {
2601 	const struct inet_connection_sock *icsk = inet_csk(sk);
2602 	struct tcp_sock *tp = tcp_sk(sk);
2603 	struct sk_buff *skb;
2604 	unsigned int mss = tcp_current_mss(sk);
2605 
2606 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2607 		if (tcp_skb_seglen(skb) > mss &&
2608 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2609 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2610 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2611 				tp->retrans_out -= tcp_skb_pcount(skb);
2612 			}
2613 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2614 		}
2615 	}
2616 
2617 	tcp_clear_retrans_hints_partial(tp);
2618 
2619 	if (!tp->lost_out)
2620 		return;
2621 
2622 	if (tcp_is_reno(tp))
2623 		tcp_limit_reno_sacked(tp);
2624 
2625 	tcp_verify_left_out(tp);
2626 
2627 	/* Don't muck with the congestion window here.
2628 	 * Reason is that we do not increase amount of _data_
2629 	 * in network, but units changed and effective
2630 	 * cwnd/ssthresh really reduced now.
2631 	 */
2632 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2633 		tp->high_seq = tp->snd_nxt;
2634 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2635 		tp->prior_ssthresh = 0;
2636 		tp->undo_marker = 0;
2637 		tcp_set_ca_state(sk, TCP_CA_Loss);
2638 	}
2639 	tcp_xmit_retransmit_queue(sk);
2640 }
2641 EXPORT_SYMBOL(tcp_simple_retransmit);
2642 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2643 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2644 {
2645 	struct tcp_sock *tp = tcp_sk(sk);
2646 	int mib_idx;
2647 
2648 	if (tcp_is_reno(tp))
2649 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2650 	else
2651 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2652 
2653 	NET_INC_STATS(sock_net(sk), mib_idx);
2654 
2655 	tp->prior_ssthresh = 0;
2656 	tcp_init_undo(tp);
2657 
2658 	if (!tcp_in_cwnd_reduction(sk)) {
2659 		if (!ece_ack)
2660 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2661 		tcp_init_cwnd_reduction(sk);
2662 	}
2663 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2664 }
2665 
2666 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2667  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2668  */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2669 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2670 			     int *rexmit)
2671 {
2672 	struct tcp_sock *tp = tcp_sk(sk);
2673 	bool recovered = !before(tp->snd_una, tp->high_seq);
2674 
2675 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2676 	    tcp_try_undo_loss(sk, false))
2677 		return;
2678 
2679 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2680 		/* Step 3.b. A timeout is spurious if not all data are
2681 		 * lost, i.e., never-retransmitted data are (s)acked.
2682 		 */
2683 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2684 		    tcp_try_undo_loss(sk, true))
2685 			return;
2686 
2687 		if (after(tp->snd_nxt, tp->high_seq)) {
2688 			if (flag & FLAG_DATA_SACKED || num_dupack)
2689 				tp->frto = 0; /* Step 3.a. loss was real */
2690 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2691 			tp->high_seq = tp->snd_nxt;
2692 			/* Step 2.b. Try send new data (but deferred until cwnd
2693 			 * is updated in tcp_ack()). Otherwise fall back to
2694 			 * the conventional recovery.
2695 			 */
2696 			if (!tcp_write_queue_empty(sk) &&
2697 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2698 				*rexmit = REXMIT_NEW;
2699 				return;
2700 			}
2701 			tp->frto = 0;
2702 		}
2703 	}
2704 
2705 	if (recovered) {
2706 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2707 		tcp_try_undo_recovery(sk);
2708 		return;
2709 	}
2710 	if (tcp_is_reno(tp)) {
2711 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2712 		 * delivered. Lower inflight to clock out (re)tranmissions.
2713 		 */
2714 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2715 			tcp_add_reno_sack(sk, num_dupack);
2716 		else if (flag & FLAG_SND_UNA_ADVANCED)
2717 			tcp_reset_reno_sack(tp);
2718 	}
2719 	*rexmit = REXMIT_LOST;
2720 }
2721 
2722 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una)2723 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2724 {
2725 	struct tcp_sock *tp = tcp_sk(sk);
2726 
2727 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2728 		/* Plain luck! Hole if filled with delayed
2729 		 * packet, rather than with a retransmit. Check reordering.
2730 		 */
2731 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2732 
2733 		/* We are getting evidence that the reordering degree is higher
2734 		 * than we realized. If there are no retransmits out then we
2735 		 * can undo. Otherwise we clock out new packets but do not
2736 		 * mark more packets lost or retransmit more.
2737 		 */
2738 		if (tp->retrans_out)
2739 			return true;
2740 
2741 		if (!tcp_any_retrans_done(sk))
2742 			tp->retrans_stamp = 0;
2743 
2744 		DBGUNDO(sk, "partial recovery");
2745 		tcp_undo_cwnd_reduction(sk, true);
2746 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2747 		tcp_try_keep_open(sk);
2748 		return true;
2749 	}
2750 	return false;
2751 }
2752 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2753 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2754 {
2755 	struct tcp_sock *tp = tcp_sk(sk);
2756 
2757 	if (tcp_rtx_queue_empty(sk))
2758 		return;
2759 
2760 	if (unlikely(tcp_is_reno(tp))) {
2761 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2762 	} else if (tcp_is_rack(sk)) {
2763 		u32 prior_retrans = tp->retrans_out;
2764 
2765 		tcp_rack_mark_lost(sk);
2766 		if (prior_retrans > tp->retrans_out)
2767 			*ack_flag |= FLAG_LOST_RETRANS;
2768 	}
2769 }
2770 
tcp_force_fast_retransmit(struct sock * sk)2771 static bool tcp_force_fast_retransmit(struct sock *sk)
2772 {
2773 	struct tcp_sock *tp = tcp_sk(sk);
2774 
2775 	return after(tcp_highest_sack_seq(tp),
2776 		     tp->snd_una + tp->reordering * tp->mss_cache);
2777 }
2778 
2779 /* Process an event, which can update packets-in-flight not trivially.
2780  * Main goal of this function is to calculate new estimate for left_out,
2781  * taking into account both packets sitting in receiver's buffer and
2782  * packets lost by network.
2783  *
2784  * Besides that it updates the congestion state when packet loss or ECN
2785  * is detected. But it does not reduce the cwnd, it is done by the
2786  * congestion control later.
2787  *
2788  * It does _not_ decide what to send, it is made in function
2789  * tcp_xmit_retransmit_queue().
2790  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2791 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2792 				  int num_dupack, int *ack_flag, int *rexmit)
2793 {
2794 	struct inet_connection_sock *icsk = inet_csk(sk);
2795 	struct tcp_sock *tp = tcp_sk(sk);
2796 	int fast_rexmit = 0, flag = *ack_flag;
2797 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2798 				      tcp_force_fast_retransmit(sk));
2799 
2800 	if (!tp->packets_out && tp->sacked_out)
2801 		tp->sacked_out = 0;
2802 
2803 	/* Now state machine starts.
2804 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2805 	if (flag & FLAG_ECE)
2806 		tp->prior_ssthresh = 0;
2807 
2808 	/* B. In all the states check for reneging SACKs. */
2809 	if (tcp_check_sack_reneging(sk, flag))
2810 		return;
2811 
2812 	/* C. Check consistency of the current state. */
2813 	tcp_verify_left_out(tp);
2814 
2815 	/* D. Check state exit conditions. State can be terminated
2816 	 *    when high_seq is ACKed. */
2817 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2818 		WARN_ON(tp->retrans_out != 0);
2819 		tp->retrans_stamp = 0;
2820 	} else if (!before(tp->snd_una, tp->high_seq)) {
2821 		switch (icsk->icsk_ca_state) {
2822 		case TCP_CA_CWR:
2823 			/* CWR is to be held something *above* high_seq
2824 			 * is ACKed for CWR bit to reach receiver. */
2825 			if (tp->snd_una != tp->high_seq) {
2826 				tcp_end_cwnd_reduction(sk);
2827 				tcp_set_ca_state(sk, TCP_CA_Open);
2828 			}
2829 			break;
2830 
2831 		case TCP_CA_Recovery:
2832 			if (tcp_is_reno(tp))
2833 				tcp_reset_reno_sack(tp);
2834 			if (tcp_try_undo_recovery(sk))
2835 				return;
2836 			tcp_end_cwnd_reduction(sk);
2837 			break;
2838 		}
2839 	}
2840 
2841 	/* E. Process state. */
2842 	switch (icsk->icsk_ca_state) {
2843 	case TCP_CA_Recovery:
2844 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2845 			if (tcp_is_reno(tp))
2846 				tcp_add_reno_sack(sk, num_dupack);
2847 		} else {
2848 			if (tcp_try_undo_partial(sk, prior_snd_una))
2849 				return;
2850 			/* Partial ACK arrived. Force fast retransmit. */
2851 			do_lost = tcp_is_reno(tp) ||
2852 				  tcp_force_fast_retransmit(sk);
2853 		}
2854 		if (tcp_try_undo_dsack(sk)) {
2855 			tcp_try_keep_open(sk);
2856 			return;
2857 		}
2858 		tcp_identify_packet_loss(sk, ack_flag);
2859 		break;
2860 	case TCP_CA_Loss:
2861 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2862 		tcp_identify_packet_loss(sk, ack_flag);
2863 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2864 		      (*ack_flag & FLAG_LOST_RETRANS)))
2865 			return;
2866 		/* Change state if cwnd is undone or retransmits are lost */
2867 		/* fall through */
2868 	default:
2869 		if (tcp_is_reno(tp)) {
2870 			if (flag & FLAG_SND_UNA_ADVANCED)
2871 				tcp_reset_reno_sack(tp);
2872 			tcp_add_reno_sack(sk, num_dupack);
2873 		}
2874 
2875 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2876 			tcp_try_undo_dsack(sk);
2877 
2878 		tcp_identify_packet_loss(sk, ack_flag);
2879 		if (!tcp_time_to_recover(sk, flag)) {
2880 			tcp_try_to_open(sk, flag);
2881 			return;
2882 		}
2883 
2884 		/* MTU probe failure: don't reduce cwnd */
2885 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2886 		    icsk->icsk_mtup.probe_size &&
2887 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2888 			tcp_mtup_probe_failed(sk);
2889 			/* Restores the reduction we did in tcp_mtup_probe() */
2890 			tp->snd_cwnd++;
2891 			tcp_simple_retransmit(sk);
2892 			return;
2893 		}
2894 
2895 		/* Otherwise enter Recovery state */
2896 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2897 		fast_rexmit = 1;
2898 	}
2899 
2900 	if (!tcp_is_rack(sk) && do_lost)
2901 		tcp_update_scoreboard(sk, fast_rexmit);
2902 	*rexmit = REXMIT_LOST;
2903 }
2904 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)2905 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2906 {
2907 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2908 	struct tcp_sock *tp = tcp_sk(sk);
2909 
2910 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2911 		/* If the remote keeps returning delayed ACKs, eventually
2912 		 * the min filter would pick it up and overestimate the
2913 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2914 		 */
2915 		return;
2916 	}
2917 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2918 			   rtt_us ? : jiffies_to_usecs(1));
2919 }
2920 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)2921 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2922 			       long seq_rtt_us, long sack_rtt_us,
2923 			       long ca_rtt_us, struct rate_sample *rs)
2924 {
2925 	const struct tcp_sock *tp = tcp_sk(sk);
2926 
2927 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2928 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2929 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2930 	 * is acked (RFC6298).
2931 	 */
2932 	if (seq_rtt_us < 0)
2933 		seq_rtt_us = sack_rtt_us;
2934 
2935 	/* RTTM Rule: A TSecr value received in a segment is used to
2936 	 * update the averaged RTT measurement only if the segment
2937 	 * acknowledges some new data, i.e., only if it advances the
2938 	 * left edge of the send window.
2939 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2940 	 */
2941 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2942 	    flag & FLAG_ACKED) {
2943 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2944 
2945 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2946 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2947 			ca_rtt_us = seq_rtt_us;
2948 		}
2949 	}
2950 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2951 	if (seq_rtt_us < 0)
2952 		return false;
2953 
2954 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2955 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2956 	 * values will be skipped with the seq_rtt_us < 0 check above.
2957 	 */
2958 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2959 	tcp_rtt_estimator(sk, seq_rtt_us);
2960 	tcp_set_rto(sk);
2961 
2962 	/* RFC6298: only reset backoff on valid RTT measurement. */
2963 	inet_csk(sk)->icsk_backoff = 0;
2964 	return true;
2965 }
2966 
2967 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)2968 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2969 {
2970 	struct rate_sample rs;
2971 	long rtt_us = -1L;
2972 
2973 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2974 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2975 
2976 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2977 }
2978 
2979 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)2980 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2981 {
2982 	const struct inet_connection_sock *icsk = inet_csk(sk);
2983 
2984 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2985 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2986 }
2987 
2988 /* Restart timer after forward progress on connection.
2989  * RFC2988 recommends to restart timer to now+rto.
2990  */
tcp_rearm_rto(struct sock * sk)2991 void tcp_rearm_rto(struct sock *sk)
2992 {
2993 	const struct inet_connection_sock *icsk = inet_csk(sk);
2994 	struct tcp_sock *tp = tcp_sk(sk);
2995 
2996 	/* If the retrans timer is currently being used by Fast Open
2997 	 * for SYN-ACK retrans purpose, stay put.
2998 	 */
2999 	if (rcu_access_pointer(tp->fastopen_rsk))
3000 		return;
3001 
3002 	if (!tp->packets_out) {
3003 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3004 	} else {
3005 		u32 rto = inet_csk(sk)->icsk_rto;
3006 		/* Offset the time elapsed after installing regular RTO */
3007 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3008 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3009 			s64 delta_us = tcp_rto_delta_us(sk);
3010 			/* delta_us may not be positive if the socket is locked
3011 			 * when the retrans timer fires and is rescheduled.
3012 			 */
3013 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3014 		}
3015 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3016 				     TCP_RTO_MAX, tcp_rtx_queue_head(sk));
3017 	}
3018 }
3019 
3020 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3021 static void tcp_set_xmit_timer(struct sock *sk)
3022 {
3023 	if (!tcp_schedule_loss_probe(sk, true))
3024 		tcp_rearm_rto(sk);
3025 }
3026 
3027 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3028 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3029 {
3030 	struct tcp_sock *tp = tcp_sk(sk);
3031 	u32 packets_acked;
3032 
3033 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3034 
3035 	packets_acked = tcp_skb_pcount(skb);
3036 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3037 		return 0;
3038 	packets_acked -= tcp_skb_pcount(skb);
3039 
3040 	if (packets_acked) {
3041 		BUG_ON(tcp_skb_pcount(skb) == 0);
3042 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3043 	}
3044 
3045 	return packets_acked;
3046 }
3047 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3048 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3049 			   u32 prior_snd_una)
3050 {
3051 	const struct skb_shared_info *shinfo;
3052 
3053 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3054 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3055 		return;
3056 
3057 	shinfo = skb_shinfo(skb);
3058 	if (!before(shinfo->tskey, prior_snd_una) &&
3059 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3060 		tcp_skb_tsorted_save(skb) {
3061 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3062 		} tcp_skb_tsorted_restore(skb);
3063 	}
3064 }
3065 
3066 /* Remove acknowledged frames from the retransmission queue. If our packet
3067  * is before the ack sequence we can discard it as it's confirmed to have
3068  * arrived at the other end.
3069  */
tcp_clean_rtx_queue(struct sock * sk,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack)3070 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3071 			       u32 prior_snd_una,
3072 			       struct tcp_sacktag_state *sack)
3073 {
3074 	const struct inet_connection_sock *icsk = inet_csk(sk);
3075 	u64 first_ackt, last_ackt;
3076 	struct tcp_sock *tp = tcp_sk(sk);
3077 	u32 prior_sacked = tp->sacked_out;
3078 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3079 	struct sk_buff *skb, *next;
3080 	bool fully_acked = true;
3081 	long sack_rtt_us = -1L;
3082 	long seq_rtt_us = -1L;
3083 	long ca_rtt_us = -1L;
3084 	u32 pkts_acked = 0;
3085 	u32 last_in_flight = 0;
3086 	bool rtt_update;
3087 	int flag = 0;
3088 
3089 	first_ackt = 0;
3090 
3091 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3092 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3093 		const u32 start_seq = scb->seq;
3094 		u8 sacked = scb->sacked;
3095 		u32 acked_pcount;
3096 
3097 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3098 
3099 		/* Determine how many packets and what bytes were acked, tso and else */
3100 		if (after(scb->end_seq, tp->snd_una)) {
3101 			if (tcp_skb_pcount(skb) == 1 ||
3102 			    !after(tp->snd_una, scb->seq))
3103 				break;
3104 
3105 			acked_pcount = tcp_tso_acked(sk, skb);
3106 			if (!acked_pcount)
3107 				break;
3108 			fully_acked = false;
3109 		} else {
3110 			acked_pcount = tcp_skb_pcount(skb);
3111 		}
3112 
3113 		if (unlikely(sacked & TCPCB_RETRANS)) {
3114 			if (sacked & TCPCB_SACKED_RETRANS)
3115 				tp->retrans_out -= acked_pcount;
3116 			flag |= FLAG_RETRANS_DATA_ACKED;
3117 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3118 			last_ackt = tcp_skb_timestamp_us(skb);
3119 			WARN_ON_ONCE(last_ackt == 0);
3120 			if (!first_ackt)
3121 				first_ackt = last_ackt;
3122 
3123 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3124 			if (before(start_seq, reord))
3125 				reord = start_seq;
3126 			if (!after(scb->end_seq, tp->high_seq))
3127 				flag |= FLAG_ORIG_SACK_ACKED;
3128 		}
3129 
3130 		if (sacked & TCPCB_SACKED_ACKED) {
3131 			tp->sacked_out -= acked_pcount;
3132 		} else if (tcp_is_sack(tp)) {
3133 			tp->delivered += acked_pcount;
3134 			if (!tcp_skb_spurious_retrans(tp, skb))
3135 				tcp_rack_advance(tp, sacked, scb->end_seq,
3136 						 tcp_skb_timestamp_us(skb));
3137 		}
3138 		if (sacked & TCPCB_LOST)
3139 			tp->lost_out -= acked_pcount;
3140 
3141 		tp->packets_out -= acked_pcount;
3142 		pkts_acked += acked_pcount;
3143 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3144 
3145 		/* Initial outgoing SYN's get put onto the write_queue
3146 		 * just like anything else we transmit.  It is not
3147 		 * true data, and if we misinform our callers that
3148 		 * this ACK acks real data, we will erroneously exit
3149 		 * connection startup slow start one packet too
3150 		 * quickly.  This is severely frowned upon behavior.
3151 		 */
3152 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3153 			flag |= FLAG_DATA_ACKED;
3154 		} else {
3155 			flag |= FLAG_SYN_ACKED;
3156 			tp->retrans_stamp = 0;
3157 		}
3158 
3159 		if (!fully_acked)
3160 			break;
3161 
3162 		next = skb_rb_next(skb);
3163 		if (unlikely(skb == tp->retransmit_skb_hint))
3164 			tp->retransmit_skb_hint = NULL;
3165 		if (unlikely(skb == tp->lost_skb_hint))
3166 			tp->lost_skb_hint = NULL;
3167 		tcp_highest_sack_replace(sk, skb, next);
3168 		tcp_rtx_queue_unlink_and_free(skb, sk);
3169 	}
3170 
3171 	if (!skb)
3172 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3173 
3174 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3175 		tp->snd_up = tp->snd_una;
3176 
3177 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3178 		flag |= FLAG_SACK_RENEGING;
3179 
3180 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3181 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3182 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3183 
3184 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3185 		    last_in_flight && !prior_sacked && fully_acked &&
3186 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3187 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3188 			/* Conservatively mark a delayed ACK. It's typically
3189 			 * from a lone runt packet over the round trip to
3190 			 * a receiver w/o out-of-order or CE events.
3191 			 */
3192 			flag |= FLAG_ACK_MAYBE_DELAYED;
3193 		}
3194 	}
3195 	if (sack->first_sackt) {
3196 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3197 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3198 	}
3199 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3200 					ca_rtt_us, sack->rate);
3201 
3202 	if (flag & FLAG_ACKED) {
3203 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3204 		if (unlikely(icsk->icsk_mtup.probe_size &&
3205 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3206 			tcp_mtup_probe_success(sk);
3207 		}
3208 
3209 		if (tcp_is_reno(tp)) {
3210 			tcp_remove_reno_sacks(sk, pkts_acked);
3211 
3212 			/* If any of the cumulatively ACKed segments was
3213 			 * retransmitted, non-SACK case cannot confirm that
3214 			 * progress was due to original transmission due to
3215 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3216 			 * the packets may have been never retransmitted.
3217 			 */
3218 			if (flag & FLAG_RETRANS_DATA_ACKED)
3219 				flag &= ~FLAG_ORIG_SACK_ACKED;
3220 		} else {
3221 			int delta;
3222 
3223 			/* Non-retransmitted hole got filled? That's reordering */
3224 			if (before(reord, prior_fack))
3225 				tcp_check_sack_reordering(sk, reord, 0);
3226 
3227 			delta = prior_sacked - tp->sacked_out;
3228 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3229 		}
3230 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3231 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3232 						    tcp_skb_timestamp_us(skb))) {
3233 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3234 		 * after when the head was last (re)transmitted. Otherwise the
3235 		 * timeout may continue to extend in loss recovery.
3236 		 */
3237 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3238 	}
3239 
3240 	if (icsk->icsk_ca_ops->pkts_acked) {
3241 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3242 					     .rtt_us = sack->rate->rtt_us,
3243 					     .in_flight = last_in_flight };
3244 
3245 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3246 	}
3247 
3248 #if FASTRETRANS_DEBUG > 0
3249 	WARN_ON((int)tp->sacked_out < 0);
3250 	WARN_ON((int)tp->lost_out < 0);
3251 	WARN_ON((int)tp->retrans_out < 0);
3252 	if (!tp->packets_out && tcp_is_sack(tp)) {
3253 		icsk = inet_csk(sk);
3254 		if (tp->lost_out) {
3255 			pr_debug("Leak l=%u %d\n",
3256 				 tp->lost_out, icsk->icsk_ca_state);
3257 			tp->lost_out = 0;
3258 		}
3259 		if (tp->sacked_out) {
3260 			pr_debug("Leak s=%u %d\n",
3261 				 tp->sacked_out, icsk->icsk_ca_state);
3262 			tp->sacked_out = 0;
3263 		}
3264 		if (tp->retrans_out) {
3265 			pr_debug("Leak r=%u %d\n",
3266 				 tp->retrans_out, icsk->icsk_ca_state);
3267 			tp->retrans_out = 0;
3268 		}
3269 	}
3270 #endif
3271 	return flag;
3272 }
3273 
tcp_ack_probe(struct sock * sk)3274 static void tcp_ack_probe(struct sock *sk)
3275 {
3276 	struct inet_connection_sock *icsk = inet_csk(sk);
3277 	struct sk_buff *head = tcp_send_head(sk);
3278 	const struct tcp_sock *tp = tcp_sk(sk);
3279 
3280 	/* Was it a usable window open? */
3281 	if (!head)
3282 		return;
3283 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3284 		icsk->icsk_backoff = 0;
3285 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3286 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3287 		 * This function is not for random using!
3288 		 */
3289 	} else {
3290 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3291 
3292 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3293 				     when, TCP_RTO_MAX, NULL);
3294 	}
3295 }
3296 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3297 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3298 {
3299 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3300 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3301 }
3302 
3303 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3304 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3305 {
3306 	/* If reordering is high then always grow cwnd whenever data is
3307 	 * delivered regardless of its ordering. Otherwise stay conservative
3308 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3309 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3310 	 * cwnd in tcp_fastretrans_alert() based on more states.
3311 	 */
3312 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3313 		return flag & FLAG_FORWARD_PROGRESS;
3314 
3315 	return flag & FLAG_DATA_ACKED;
3316 }
3317 
3318 /* The "ultimate" congestion control function that aims to replace the rigid
3319  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3320  * It's called toward the end of processing an ACK with precise rate
3321  * information. All transmission or retransmission are delayed afterwards.
3322  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3323 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3324 			     int flag, const struct rate_sample *rs)
3325 {
3326 	const struct inet_connection_sock *icsk = inet_csk(sk);
3327 
3328 	if (icsk->icsk_ca_ops->cong_control) {
3329 		icsk->icsk_ca_ops->cong_control(sk, rs);
3330 		return;
3331 	}
3332 
3333 	if (tcp_in_cwnd_reduction(sk)) {
3334 		/* Reduce cwnd if state mandates */
3335 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3336 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3337 		/* Advance cwnd if state allows */
3338 		tcp_cong_avoid(sk, ack, acked_sacked);
3339 	}
3340 	tcp_update_pacing_rate(sk);
3341 }
3342 
3343 /* Check that window update is acceptable.
3344  * The function assumes that snd_una<=ack<=snd_next.
3345  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3346 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3347 					const u32 ack, const u32 ack_seq,
3348 					const u32 nwin)
3349 {
3350 	return	after(ack, tp->snd_una) ||
3351 		after(ack_seq, tp->snd_wl1) ||
3352 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3353 }
3354 
3355 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3356 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3357 {
3358 	u32 delta = ack - tp->snd_una;
3359 
3360 	sock_owned_by_me((struct sock *)tp);
3361 	tp->bytes_acked += delta;
3362 	tp->snd_una = ack;
3363 }
3364 
3365 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3366 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3367 {
3368 	u32 delta = seq - tp->rcv_nxt;
3369 
3370 	sock_owned_by_me((struct sock *)tp);
3371 	tp->bytes_received += delta;
3372 	WRITE_ONCE(tp->rcv_nxt, seq);
3373 }
3374 
3375 /* Update our send window.
3376  *
3377  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3378  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3379  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3380 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3381 				 u32 ack_seq)
3382 {
3383 	struct tcp_sock *tp = tcp_sk(sk);
3384 	int flag = 0;
3385 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3386 
3387 	if (likely(!tcp_hdr(skb)->syn))
3388 		nwin <<= tp->rx_opt.snd_wscale;
3389 
3390 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3391 		flag |= FLAG_WIN_UPDATE;
3392 		tcp_update_wl(tp, ack_seq);
3393 
3394 		if (tp->snd_wnd != nwin) {
3395 			tp->snd_wnd = nwin;
3396 
3397 			/* Note, it is the only place, where
3398 			 * fast path is recovered for sending TCP.
3399 			 */
3400 			tp->pred_flags = 0;
3401 			tcp_fast_path_check(sk);
3402 
3403 			if (!tcp_write_queue_empty(sk))
3404 				tcp_slow_start_after_idle_check(sk);
3405 
3406 			if (nwin > tp->max_window) {
3407 				tp->max_window = nwin;
3408 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3409 			}
3410 		}
3411 	}
3412 
3413 	tcp_snd_una_update(tp, ack);
3414 
3415 	return flag;
3416 }
3417 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3418 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3419 				   u32 *last_oow_ack_time)
3420 {
3421 	if (*last_oow_ack_time) {
3422 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3423 
3424 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3425 			NET_INC_STATS(net, mib_idx);
3426 			return true;	/* rate-limited: don't send yet! */
3427 		}
3428 	}
3429 
3430 	*last_oow_ack_time = tcp_jiffies32;
3431 
3432 	return false;	/* not rate-limited: go ahead, send dupack now! */
3433 }
3434 
3435 /* Return true if we're currently rate-limiting out-of-window ACKs and
3436  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3437  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3438  * attacks that send repeated SYNs or ACKs for the same connection. To
3439  * do this, we do not send a duplicate SYNACK or ACK if the remote
3440  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3441  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3442 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3443 			  int mib_idx, u32 *last_oow_ack_time)
3444 {
3445 	/* Data packets without SYNs are not likely part of an ACK loop. */
3446 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3447 	    !tcp_hdr(skb)->syn)
3448 		return false;
3449 
3450 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3451 }
3452 
3453 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3454 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3455 {
3456 	/* unprotected vars, we dont care of overwrites */
3457 	static u32 challenge_timestamp;
3458 	static unsigned int challenge_count;
3459 	struct tcp_sock *tp = tcp_sk(sk);
3460 	struct net *net = sock_net(sk);
3461 	u32 count, now;
3462 
3463 	/* First check our per-socket dupack rate limit. */
3464 	if (__tcp_oow_rate_limited(net,
3465 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3466 				   &tp->last_oow_ack_time))
3467 		return;
3468 
3469 	/* Then check host-wide RFC 5961 rate limit. */
3470 	now = jiffies / HZ;
3471 	if (now != challenge_timestamp) {
3472 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3473 		u32 half = (ack_limit + 1) >> 1;
3474 
3475 		challenge_timestamp = now;
3476 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3477 	}
3478 	count = READ_ONCE(challenge_count);
3479 	if (count > 0) {
3480 		WRITE_ONCE(challenge_count, count - 1);
3481 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3482 		tcp_send_ack(sk);
3483 	}
3484 }
3485 
tcp_store_ts_recent(struct tcp_sock * tp)3486 static void tcp_store_ts_recent(struct tcp_sock *tp)
3487 {
3488 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3489 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3490 }
3491 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3492 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3493 {
3494 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3495 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3496 		 * extra check below makes sure this can only happen
3497 		 * for pure ACK frames.  -DaveM
3498 		 *
3499 		 * Not only, also it occurs for expired timestamps.
3500 		 */
3501 
3502 		if (tcp_paws_check(&tp->rx_opt, 0))
3503 			tcp_store_ts_recent(tp);
3504 	}
3505 }
3506 
3507 /* This routine deals with acks during a TLP episode.
3508  * We mark the end of a TLP episode on receiving TLP dupack or when
3509  * ack is after tlp_high_seq.
3510  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3511  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3512 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3513 {
3514 	struct tcp_sock *tp = tcp_sk(sk);
3515 
3516 	if (before(ack, tp->tlp_high_seq))
3517 		return;
3518 
3519 	if (flag & FLAG_DSACKING_ACK) {
3520 		/* This DSACK means original and TLP probe arrived; no loss */
3521 		tp->tlp_high_seq = 0;
3522 	} else if (after(ack, tp->tlp_high_seq)) {
3523 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3524 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3525 		 */
3526 		tcp_init_cwnd_reduction(sk);
3527 		tcp_set_ca_state(sk, TCP_CA_CWR);
3528 		tcp_end_cwnd_reduction(sk);
3529 		tcp_try_keep_open(sk);
3530 		NET_INC_STATS(sock_net(sk),
3531 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3532 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3533 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3534 		/* Pure dupack: original and TLP probe arrived; no loss */
3535 		tp->tlp_high_seq = 0;
3536 	}
3537 }
3538 
tcp_in_ack_event(struct sock * sk,u32 flags)3539 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3540 {
3541 	const struct inet_connection_sock *icsk = inet_csk(sk);
3542 
3543 	if (icsk->icsk_ca_ops->in_ack_event)
3544 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3545 }
3546 
3547 /* Congestion control has updated the cwnd already. So if we're in
3548  * loss recovery then now we do any new sends (for FRTO) or
3549  * retransmits (for CA_Loss or CA_recovery) that make sense.
3550  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3551 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3552 {
3553 	struct tcp_sock *tp = tcp_sk(sk);
3554 
3555 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3556 		return;
3557 
3558 	if (unlikely(rexmit == 2)) {
3559 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3560 					  TCP_NAGLE_OFF);
3561 		if (after(tp->snd_nxt, tp->high_seq))
3562 			return;
3563 		tp->frto = 0;
3564 	}
3565 	tcp_xmit_retransmit_queue(sk);
3566 }
3567 
3568 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3569 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3570 {
3571 	const struct net *net = sock_net(sk);
3572 	struct tcp_sock *tp = tcp_sk(sk);
3573 	u32 delivered;
3574 
3575 	delivered = tp->delivered - prior_delivered;
3576 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3577 	if (flag & FLAG_ECE) {
3578 		tp->delivered_ce += delivered;
3579 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3580 	}
3581 	return delivered;
3582 }
3583 
3584 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3585 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3586 {
3587 	struct inet_connection_sock *icsk = inet_csk(sk);
3588 	struct tcp_sock *tp = tcp_sk(sk);
3589 	struct tcp_sacktag_state sack_state;
3590 	struct rate_sample rs = { .prior_delivered = 0 };
3591 	u32 prior_snd_una = tp->snd_una;
3592 	bool is_sack_reneg = tp->is_sack_reneg;
3593 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3594 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3595 	int num_dupack = 0;
3596 	int prior_packets = tp->packets_out;
3597 	u32 delivered = tp->delivered;
3598 	u32 lost = tp->lost;
3599 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3600 	u32 prior_fack;
3601 
3602 	sack_state.first_sackt = 0;
3603 	sack_state.rate = &rs;
3604 
3605 	/* We very likely will need to access rtx queue. */
3606 	prefetch(sk->tcp_rtx_queue.rb_node);
3607 
3608 	/* If the ack is older than previous acks
3609 	 * then we can probably ignore it.
3610 	 */
3611 	if (before(ack, prior_snd_una)) {
3612 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3613 		if (before(ack, prior_snd_una - tp->max_window)) {
3614 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3615 				tcp_send_challenge_ack(sk, skb);
3616 			return -1;
3617 		}
3618 		goto old_ack;
3619 	}
3620 
3621 	/* If the ack includes data we haven't sent yet, discard
3622 	 * this segment (RFC793 Section 3.9).
3623 	 */
3624 	if (after(ack, tp->snd_nxt))
3625 		return -1;
3626 
3627 	if (after(ack, prior_snd_una)) {
3628 		flag |= FLAG_SND_UNA_ADVANCED;
3629 		icsk->icsk_retransmits = 0;
3630 
3631 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3632 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3633 			if (icsk->icsk_clean_acked)
3634 				icsk->icsk_clean_acked(sk, ack);
3635 #endif
3636 	}
3637 
3638 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3639 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3640 
3641 	/* ts_recent update must be made after we are sure that the packet
3642 	 * is in window.
3643 	 */
3644 	if (flag & FLAG_UPDATE_TS_RECENT)
3645 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3646 
3647 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3648 	    FLAG_SND_UNA_ADVANCED) {
3649 		/* Window is constant, pure forward advance.
3650 		 * No more checks are required.
3651 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3652 		 */
3653 		tcp_update_wl(tp, ack_seq);
3654 		tcp_snd_una_update(tp, ack);
3655 		flag |= FLAG_WIN_UPDATE;
3656 
3657 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3658 
3659 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3660 	} else {
3661 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3662 
3663 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3664 			flag |= FLAG_DATA;
3665 		else
3666 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3667 
3668 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3669 
3670 		if (TCP_SKB_CB(skb)->sacked)
3671 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3672 							&sack_state);
3673 
3674 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3675 			flag |= FLAG_ECE;
3676 			ack_ev_flags |= CA_ACK_ECE;
3677 		}
3678 
3679 		if (flag & FLAG_WIN_UPDATE)
3680 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3681 
3682 		tcp_in_ack_event(sk, ack_ev_flags);
3683 	}
3684 
3685 	/* We passed data and got it acked, remove any soft error
3686 	 * log. Something worked...
3687 	 */
3688 	sk->sk_err_soft = 0;
3689 	icsk->icsk_probes_out = 0;
3690 	tp->rcv_tstamp = tcp_jiffies32;
3691 	if (!prior_packets)
3692 		goto no_queue;
3693 
3694 	/* See if we can take anything off of the retransmit queue. */
3695 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3696 
3697 	tcp_rack_update_reo_wnd(sk, &rs);
3698 
3699 	if (tp->tlp_high_seq)
3700 		tcp_process_tlp_ack(sk, ack, flag);
3701 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3702 	if (flag & FLAG_SET_XMIT_TIMER)
3703 		tcp_set_xmit_timer(sk);
3704 
3705 	if (tcp_ack_is_dubious(sk, flag)) {
3706 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3707 			num_dupack = 1;
3708 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3709 			if (!(flag & FLAG_DATA))
3710 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3711 		}
3712 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3713 				      &rexmit);
3714 	}
3715 
3716 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3717 		sk_dst_confirm(sk);
3718 
3719 	delivered = tcp_newly_delivered(sk, delivered, flag);
3720 	lost = tp->lost - lost;			/* freshly marked lost */
3721 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3722 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3723 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3724 	tcp_xmit_recovery(sk, rexmit);
3725 	return 1;
3726 
3727 no_queue:
3728 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3729 	if (flag & FLAG_DSACKING_ACK) {
3730 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3731 				      &rexmit);
3732 		tcp_newly_delivered(sk, delivered, flag);
3733 	}
3734 	/* If this ack opens up a zero window, clear backoff.  It was
3735 	 * being used to time the probes, and is probably far higher than
3736 	 * it needs to be for normal retransmission.
3737 	 */
3738 	tcp_ack_probe(sk);
3739 
3740 	if (tp->tlp_high_seq)
3741 		tcp_process_tlp_ack(sk, ack, flag);
3742 	return 1;
3743 
3744 old_ack:
3745 	/* If data was SACKed, tag it and see if we should send more data.
3746 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3747 	 */
3748 	if (TCP_SKB_CB(skb)->sacked) {
3749 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3750 						&sack_state);
3751 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3752 				      &rexmit);
3753 		tcp_newly_delivered(sk, delivered, flag);
3754 		tcp_xmit_recovery(sk, rexmit);
3755 	}
3756 
3757 	return 0;
3758 }
3759 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3760 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3761 				      bool syn, struct tcp_fastopen_cookie *foc,
3762 				      bool exp_opt)
3763 {
3764 	/* Valid only in SYN or SYN-ACK with an even length.  */
3765 	if (!foc || !syn || len < 0 || (len & 1))
3766 		return;
3767 
3768 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3769 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3770 		memcpy(foc->val, cookie, len);
3771 	else if (len != 0)
3772 		len = -1;
3773 	foc->len = len;
3774 	foc->exp = exp_opt;
3775 }
3776 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3777 static void smc_parse_options(const struct tcphdr *th,
3778 			      struct tcp_options_received *opt_rx,
3779 			      const unsigned char *ptr,
3780 			      int opsize)
3781 {
3782 #if IS_ENABLED(CONFIG_SMC)
3783 	if (static_branch_unlikely(&tcp_have_smc)) {
3784 		if (th->syn && !(opsize & 1) &&
3785 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3786 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3787 			opt_rx->smc_ok = 1;
3788 	}
3789 #endif
3790 }
3791 
3792 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3793  * value on success.
3794  */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)3795 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3796 {
3797 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3798 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3799 	u16 mss = 0;
3800 
3801 	while (length > 0) {
3802 		int opcode = *ptr++;
3803 		int opsize;
3804 
3805 		switch (opcode) {
3806 		case TCPOPT_EOL:
3807 			return mss;
3808 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3809 			length--;
3810 			continue;
3811 		default:
3812 			if (length < 2)
3813 				return mss;
3814 			opsize = *ptr++;
3815 			if (opsize < 2) /* "silly options" */
3816 				return mss;
3817 			if (opsize > length)
3818 				return mss;	/* fail on partial options */
3819 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3820 				u16 in_mss = get_unaligned_be16(ptr);
3821 
3822 				if (in_mss) {
3823 					if (user_mss && user_mss < in_mss)
3824 						in_mss = user_mss;
3825 					mss = in_mss;
3826 				}
3827 			}
3828 			ptr += opsize - 2;
3829 			length -= opsize;
3830 		}
3831 	}
3832 	return mss;
3833 }
3834 
3835 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3836  * But, this can also be called on packets in the established flow when
3837  * the fast version below fails.
3838  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)3839 void tcp_parse_options(const struct net *net,
3840 		       const struct sk_buff *skb,
3841 		       struct tcp_options_received *opt_rx, int estab,
3842 		       struct tcp_fastopen_cookie *foc)
3843 {
3844 	const unsigned char *ptr;
3845 	const struct tcphdr *th = tcp_hdr(skb);
3846 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3847 
3848 	ptr = (const unsigned char *)(th + 1);
3849 	opt_rx->saw_tstamp = 0;
3850 
3851 	while (length > 0) {
3852 		int opcode = *ptr++;
3853 		int opsize;
3854 
3855 		switch (opcode) {
3856 		case TCPOPT_EOL:
3857 			return;
3858 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3859 			length--;
3860 			continue;
3861 		default:
3862 			if (length < 2)
3863 				return;
3864 			opsize = *ptr++;
3865 			if (opsize < 2) /* "silly options" */
3866 				return;
3867 			if (opsize > length)
3868 				return;	/* don't parse partial options */
3869 			switch (opcode) {
3870 			case TCPOPT_MSS:
3871 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3872 					u16 in_mss = get_unaligned_be16(ptr);
3873 					if (in_mss) {
3874 						if (opt_rx->user_mss &&
3875 						    opt_rx->user_mss < in_mss)
3876 							in_mss = opt_rx->user_mss;
3877 						opt_rx->mss_clamp = in_mss;
3878 					}
3879 				}
3880 				break;
3881 			case TCPOPT_WINDOW:
3882 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3883 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3884 					__u8 snd_wscale = *(__u8 *)ptr;
3885 					opt_rx->wscale_ok = 1;
3886 					if (snd_wscale > TCP_MAX_WSCALE) {
3887 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3888 								     __func__,
3889 								     snd_wscale,
3890 								     TCP_MAX_WSCALE);
3891 						snd_wscale = TCP_MAX_WSCALE;
3892 					}
3893 					opt_rx->snd_wscale = snd_wscale;
3894 				}
3895 				break;
3896 			case TCPOPT_TIMESTAMP:
3897 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3898 				    ((estab && opt_rx->tstamp_ok) ||
3899 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3900 					opt_rx->saw_tstamp = 1;
3901 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3902 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3903 				}
3904 				break;
3905 			case TCPOPT_SACK_PERM:
3906 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3907 				    !estab && net->ipv4.sysctl_tcp_sack) {
3908 					opt_rx->sack_ok = TCP_SACK_SEEN;
3909 					tcp_sack_reset(opt_rx);
3910 				}
3911 				break;
3912 
3913 			case TCPOPT_SACK:
3914 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3915 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3916 				   opt_rx->sack_ok) {
3917 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3918 				}
3919 				break;
3920 #ifdef CONFIG_TCP_MD5SIG
3921 			case TCPOPT_MD5SIG:
3922 				/*
3923 				 * The MD5 Hash has already been
3924 				 * checked (see tcp_v{4,6}_do_rcv()).
3925 				 */
3926 				break;
3927 #endif
3928 			case TCPOPT_FASTOPEN:
3929 				tcp_parse_fastopen_option(
3930 					opsize - TCPOLEN_FASTOPEN_BASE,
3931 					ptr, th->syn, foc, false);
3932 				break;
3933 
3934 			case TCPOPT_EXP:
3935 				/* Fast Open option shares code 254 using a
3936 				 * 16 bits magic number.
3937 				 */
3938 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3939 				    get_unaligned_be16(ptr) ==
3940 				    TCPOPT_FASTOPEN_MAGIC)
3941 					tcp_parse_fastopen_option(opsize -
3942 						TCPOLEN_EXP_FASTOPEN_BASE,
3943 						ptr + 2, th->syn, foc, true);
3944 				else
3945 					smc_parse_options(th, opt_rx, ptr,
3946 							  opsize);
3947 				break;
3948 
3949 			}
3950 			ptr += opsize-2;
3951 			length -= opsize;
3952 		}
3953 	}
3954 }
3955 EXPORT_SYMBOL(tcp_parse_options);
3956 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)3957 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3958 {
3959 	const __be32 *ptr = (const __be32 *)(th + 1);
3960 
3961 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3962 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3963 		tp->rx_opt.saw_tstamp = 1;
3964 		++ptr;
3965 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3966 		++ptr;
3967 		if (*ptr)
3968 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3969 		else
3970 			tp->rx_opt.rcv_tsecr = 0;
3971 		return true;
3972 	}
3973 	return false;
3974 }
3975 
3976 /* Fast parse options. This hopes to only see timestamps.
3977  * If it is wrong it falls back on tcp_parse_options().
3978  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)3979 static bool tcp_fast_parse_options(const struct net *net,
3980 				   const struct sk_buff *skb,
3981 				   const struct tcphdr *th, struct tcp_sock *tp)
3982 {
3983 	/* In the spirit of fast parsing, compare doff directly to constant
3984 	 * values.  Because equality is used, short doff can be ignored here.
3985 	 */
3986 	if (th->doff == (sizeof(*th) / 4)) {
3987 		tp->rx_opt.saw_tstamp = 0;
3988 		return false;
3989 	} else if (tp->rx_opt.tstamp_ok &&
3990 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3991 		if (tcp_parse_aligned_timestamp(tp, th))
3992 			return true;
3993 	}
3994 
3995 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3996 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3997 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3998 
3999 	return true;
4000 }
4001 
4002 #ifdef CONFIG_TCP_MD5SIG
4003 /*
4004  * Parse MD5 Signature option
4005  */
tcp_parse_md5sig_option(const struct tcphdr * th)4006 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4007 {
4008 	int length = (th->doff << 2) - sizeof(*th);
4009 	const u8 *ptr = (const u8 *)(th + 1);
4010 
4011 	/* If not enough data remaining, we can short cut */
4012 	while (length >= TCPOLEN_MD5SIG) {
4013 		int opcode = *ptr++;
4014 		int opsize;
4015 
4016 		switch (opcode) {
4017 		case TCPOPT_EOL:
4018 			return NULL;
4019 		case TCPOPT_NOP:
4020 			length--;
4021 			continue;
4022 		default:
4023 			opsize = *ptr++;
4024 			if (opsize < 2 || opsize > length)
4025 				return NULL;
4026 			if (opcode == TCPOPT_MD5SIG)
4027 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4028 		}
4029 		ptr += opsize - 2;
4030 		length -= opsize;
4031 	}
4032 	return NULL;
4033 }
4034 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4035 #endif
4036 
4037 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4038  *
4039  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4040  * it can pass through stack. So, the following predicate verifies that
4041  * this segment is not used for anything but congestion avoidance or
4042  * fast retransmit. Moreover, we even are able to eliminate most of such
4043  * second order effects, if we apply some small "replay" window (~RTO)
4044  * to timestamp space.
4045  *
4046  * All these measures still do not guarantee that we reject wrapped ACKs
4047  * on networks with high bandwidth, when sequence space is recycled fastly,
4048  * but it guarantees that such events will be very rare and do not affect
4049  * connection seriously. This doesn't look nice, but alas, PAWS is really
4050  * buggy extension.
4051  *
4052  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4053  * states that events when retransmit arrives after original data are rare.
4054  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4055  * the biggest problem on large power networks even with minor reordering.
4056  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4057  * up to bandwidth of 18Gigabit/sec. 8) ]
4058  */
4059 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4060 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4061 {
4062 	const struct tcp_sock *tp = tcp_sk(sk);
4063 	const struct tcphdr *th = tcp_hdr(skb);
4064 	u32 seq = TCP_SKB_CB(skb)->seq;
4065 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4066 
4067 	return (/* 1. Pure ACK with correct sequence number. */
4068 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4069 
4070 		/* 2. ... and duplicate ACK. */
4071 		ack == tp->snd_una &&
4072 
4073 		/* 3. ... and does not update window. */
4074 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4075 
4076 		/* 4. ... and sits in replay window. */
4077 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4078 }
4079 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4080 static inline bool tcp_paws_discard(const struct sock *sk,
4081 				   const struct sk_buff *skb)
4082 {
4083 	const struct tcp_sock *tp = tcp_sk(sk);
4084 
4085 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4086 	       !tcp_disordered_ack(sk, skb);
4087 }
4088 
4089 /* Check segment sequence number for validity.
4090  *
4091  * Segment controls are considered valid, if the segment
4092  * fits to the window after truncation to the window. Acceptability
4093  * of data (and SYN, FIN, of course) is checked separately.
4094  * See tcp_data_queue(), for example.
4095  *
4096  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4097  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4098  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4099  * (borrowed from freebsd)
4100  */
4101 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4102 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4103 {
4104 	return	!before(end_seq, tp->rcv_wup) &&
4105 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4106 }
4107 
4108 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4109 void tcp_reset(struct sock *sk)
4110 {
4111 	trace_tcp_receive_reset(sk);
4112 
4113 	/* We want the right error as BSD sees it (and indeed as we do). */
4114 	switch (sk->sk_state) {
4115 	case TCP_SYN_SENT:
4116 		sk->sk_err = ECONNREFUSED;
4117 		break;
4118 	case TCP_CLOSE_WAIT:
4119 		sk->sk_err = EPIPE;
4120 		break;
4121 	case TCP_CLOSE:
4122 		return;
4123 	default:
4124 		sk->sk_err = ECONNRESET;
4125 	}
4126 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4127 	smp_wmb();
4128 
4129 	tcp_write_queue_purge(sk);
4130 	tcp_done(sk);
4131 
4132 	if (!sock_flag(sk, SOCK_DEAD))
4133 		sk->sk_error_report(sk);
4134 }
4135 
4136 /*
4137  * 	Process the FIN bit. This now behaves as it is supposed to work
4138  *	and the FIN takes effect when it is validly part of sequence
4139  *	space. Not before when we get holes.
4140  *
4141  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4142  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4143  *	TIME-WAIT)
4144  *
4145  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4146  *	close and we go into CLOSING (and later onto TIME-WAIT)
4147  *
4148  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4149  */
tcp_fin(struct sock * sk)4150 void tcp_fin(struct sock *sk)
4151 {
4152 	struct tcp_sock *tp = tcp_sk(sk);
4153 
4154 	inet_csk_schedule_ack(sk);
4155 
4156 	sk->sk_shutdown |= RCV_SHUTDOWN;
4157 	sock_set_flag(sk, SOCK_DONE);
4158 
4159 	switch (sk->sk_state) {
4160 	case TCP_SYN_RECV:
4161 	case TCP_ESTABLISHED:
4162 		/* Move to CLOSE_WAIT */
4163 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4164 		inet_csk_enter_pingpong_mode(sk);
4165 		break;
4166 
4167 	case TCP_CLOSE_WAIT:
4168 	case TCP_CLOSING:
4169 		/* Received a retransmission of the FIN, do
4170 		 * nothing.
4171 		 */
4172 		break;
4173 	case TCP_LAST_ACK:
4174 		/* RFC793: Remain in the LAST-ACK state. */
4175 		break;
4176 
4177 	case TCP_FIN_WAIT1:
4178 		/* This case occurs when a simultaneous close
4179 		 * happens, we must ack the received FIN and
4180 		 * enter the CLOSING state.
4181 		 */
4182 		tcp_send_ack(sk);
4183 		tcp_set_state(sk, TCP_CLOSING);
4184 		break;
4185 	case TCP_FIN_WAIT2:
4186 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4187 		tcp_send_ack(sk);
4188 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4189 		break;
4190 	default:
4191 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4192 		 * cases we should never reach this piece of code.
4193 		 */
4194 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4195 		       __func__, sk->sk_state);
4196 		break;
4197 	}
4198 
4199 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4200 	 * Probably, we should reset in this case. For now drop them.
4201 	 */
4202 	skb_rbtree_purge(&tp->out_of_order_queue);
4203 	if (tcp_is_sack(tp))
4204 		tcp_sack_reset(&tp->rx_opt);
4205 	sk_mem_reclaim(sk);
4206 
4207 	if (!sock_flag(sk, SOCK_DEAD)) {
4208 		sk->sk_state_change(sk);
4209 
4210 		/* Do not send POLL_HUP for half duplex close. */
4211 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4212 		    sk->sk_state == TCP_CLOSE)
4213 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4214 		else
4215 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4216 	}
4217 }
4218 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4219 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4220 				  u32 end_seq)
4221 {
4222 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4223 		if (before(seq, sp->start_seq))
4224 			sp->start_seq = seq;
4225 		if (after(end_seq, sp->end_seq))
4226 			sp->end_seq = end_seq;
4227 		return true;
4228 	}
4229 	return false;
4230 }
4231 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4232 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4233 {
4234 	struct tcp_sock *tp = tcp_sk(sk);
4235 
4236 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4237 		int mib_idx;
4238 
4239 		if (before(seq, tp->rcv_nxt))
4240 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4241 		else
4242 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4243 
4244 		NET_INC_STATS(sock_net(sk), mib_idx);
4245 
4246 		tp->rx_opt.dsack = 1;
4247 		tp->duplicate_sack[0].start_seq = seq;
4248 		tp->duplicate_sack[0].end_seq = end_seq;
4249 	}
4250 }
4251 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4252 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4253 {
4254 	struct tcp_sock *tp = tcp_sk(sk);
4255 
4256 	if (!tp->rx_opt.dsack)
4257 		tcp_dsack_set(sk, seq, end_seq);
4258 	else
4259 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4260 }
4261 
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4262 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4263 {
4264 	/* When the ACK path fails or drops most ACKs, the sender would
4265 	 * timeout and spuriously retransmit the same segment repeatedly.
4266 	 * The receiver remembers and reflects via DSACKs. Leverage the
4267 	 * DSACK state and change the txhash to re-route speculatively.
4268 	 */
4269 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4270 		sk_rethink_txhash(sk);
4271 }
4272 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4273 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4274 {
4275 	struct tcp_sock *tp = tcp_sk(sk);
4276 
4277 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4278 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4279 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4280 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4281 
4282 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4283 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4284 
4285 			tcp_rcv_spurious_retrans(sk, skb);
4286 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4287 				end_seq = tp->rcv_nxt;
4288 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4289 		}
4290 	}
4291 
4292 	tcp_send_ack(sk);
4293 }
4294 
4295 /* These routines update the SACK block as out-of-order packets arrive or
4296  * in-order packets close up the sequence space.
4297  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4298 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4299 {
4300 	int this_sack;
4301 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4302 	struct tcp_sack_block *swalk = sp + 1;
4303 
4304 	/* See if the recent change to the first SACK eats into
4305 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4306 	 */
4307 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4308 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4309 			int i;
4310 
4311 			/* Zap SWALK, by moving every further SACK up by one slot.
4312 			 * Decrease num_sacks.
4313 			 */
4314 			tp->rx_opt.num_sacks--;
4315 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4316 				sp[i] = sp[i + 1];
4317 			continue;
4318 		}
4319 		this_sack++, swalk++;
4320 	}
4321 }
4322 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4323 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4324 {
4325 	struct tcp_sock *tp = tcp_sk(sk);
4326 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4327 	int cur_sacks = tp->rx_opt.num_sacks;
4328 	int this_sack;
4329 
4330 	if (!cur_sacks)
4331 		goto new_sack;
4332 
4333 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4334 		if (tcp_sack_extend(sp, seq, end_seq)) {
4335 			/* Rotate this_sack to the first one. */
4336 			for (; this_sack > 0; this_sack--, sp--)
4337 				swap(*sp, *(sp - 1));
4338 			if (cur_sacks > 1)
4339 				tcp_sack_maybe_coalesce(tp);
4340 			return;
4341 		}
4342 	}
4343 
4344 	/* Could not find an adjacent existing SACK, build a new one,
4345 	 * put it at the front, and shift everyone else down.  We
4346 	 * always know there is at least one SACK present already here.
4347 	 *
4348 	 * If the sack array is full, forget about the last one.
4349 	 */
4350 	if (this_sack >= TCP_NUM_SACKS) {
4351 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4352 			tcp_send_ack(sk);
4353 		this_sack--;
4354 		tp->rx_opt.num_sacks--;
4355 		sp--;
4356 	}
4357 	for (; this_sack > 0; this_sack--, sp--)
4358 		*sp = *(sp - 1);
4359 
4360 new_sack:
4361 	/* Build the new head SACK, and we're done. */
4362 	sp->start_seq = seq;
4363 	sp->end_seq = end_seq;
4364 	tp->rx_opt.num_sacks++;
4365 }
4366 
4367 /* RCV.NXT advances, some SACKs should be eaten. */
4368 
tcp_sack_remove(struct tcp_sock * tp)4369 static void tcp_sack_remove(struct tcp_sock *tp)
4370 {
4371 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4372 	int num_sacks = tp->rx_opt.num_sacks;
4373 	int this_sack;
4374 
4375 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4376 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4377 		tp->rx_opt.num_sacks = 0;
4378 		return;
4379 	}
4380 
4381 	for (this_sack = 0; this_sack < num_sacks;) {
4382 		/* Check if the start of the sack is covered by RCV.NXT. */
4383 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4384 			int i;
4385 
4386 			/* RCV.NXT must cover all the block! */
4387 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4388 
4389 			/* Zap this SACK, by moving forward any other SACKS. */
4390 			for (i = this_sack+1; i < num_sacks; i++)
4391 				tp->selective_acks[i-1] = tp->selective_acks[i];
4392 			num_sacks--;
4393 			continue;
4394 		}
4395 		this_sack++;
4396 		sp++;
4397 	}
4398 	tp->rx_opt.num_sacks = num_sacks;
4399 }
4400 
4401 /**
4402  * tcp_try_coalesce - try to merge skb to prior one
4403  * @sk: socket
4404  * @dest: destination queue
4405  * @to: prior buffer
4406  * @from: buffer to add in queue
4407  * @fragstolen: pointer to boolean
4408  *
4409  * Before queueing skb @from after @to, try to merge them
4410  * to reduce overall memory use and queue lengths, if cost is small.
4411  * Packets in ofo or receive queues can stay a long time.
4412  * Better try to coalesce them right now to avoid future collapses.
4413  * Returns true if caller should free @from instead of queueing it
4414  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4415 static bool tcp_try_coalesce(struct sock *sk,
4416 			     struct sk_buff *to,
4417 			     struct sk_buff *from,
4418 			     bool *fragstolen)
4419 {
4420 	int delta;
4421 
4422 	*fragstolen = false;
4423 
4424 	/* Its possible this segment overlaps with prior segment in queue */
4425 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4426 		return false;
4427 
4428 #ifdef CONFIG_TLS_DEVICE
4429 	if (from->decrypted != to->decrypted)
4430 		return false;
4431 #endif
4432 
4433 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4434 		return false;
4435 
4436 	atomic_add(delta, &sk->sk_rmem_alloc);
4437 	sk_mem_charge(sk, delta);
4438 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4439 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4440 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4441 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4442 
4443 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4444 		TCP_SKB_CB(to)->has_rxtstamp = true;
4445 		to->tstamp = from->tstamp;
4446 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4447 	}
4448 
4449 	return true;
4450 }
4451 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4452 static bool tcp_ooo_try_coalesce(struct sock *sk,
4453 			     struct sk_buff *to,
4454 			     struct sk_buff *from,
4455 			     bool *fragstolen)
4456 {
4457 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4458 
4459 	/* In case tcp_drop() is called later, update to->gso_segs */
4460 	if (res) {
4461 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4462 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4463 
4464 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4465 	}
4466 	return res;
4467 }
4468 
tcp_drop(struct sock * sk,struct sk_buff * skb)4469 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4470 {
4471 	sk_drops_add(sk, skb);
4472 	__kfree_skb(skb);
4473 }
4474 
4475 /* This one checks to see if we can put data from the
4476  * out_of_order queue into the receive_queue.
4477  */
tcp_ofo_queue(struct sock * sk)4478 static void tcp_ofo_queue(struct sock *sk)
4479 {
4480 	struct tcp_sock *tp = tcp_sk(sk);
4481 	__u32 dsack_high = tp->rcv_nxt;
4482 	bool fin, fragstolen, eaten;
4483 	struct sk_buff *skb, *tail;
4484 	struct rb_node *p;
4485 
4486 	p = rb_first(&tp->out_of_order_queue);
4487 	while (p) {
4488 		skb = rb_to_skb(p);
4489 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4490 			break;
4491 
4492 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4493 			__u32 dsack = dsack_high;
4494 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4495 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4496 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4497 		}
4498 		p = rb_next(p);
4499 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4500 
4501 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4502 			tcp_drop(sk, skb);
4503 			continue;
4504 		}
4505 
4506 		tail = skb_peek_tail(&sk->sk_receive_queue);
4507 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4508 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4509 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4510 		if (!eaten)
4511 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4512 		else
4513 			kfree_skb_partial(skb, fragstolen);
4514 
4515 		if (unlikely(fin)) {
4516 			tcp_fin(sk);
4517 			/* tcp_fin() purges tp->out_of_order_queue,
4518 			 * so we must end this loop right now.
4519 			 */
4520 			break;
4521 		}
4522 	}
4523 }
4524 
4525 static bool tcp_prune_ofo_queue(struct sock *sk);
4526 static int tcp_prune_queue(struct sock *sk);
4527 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4528 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4529 				 unsigned int size)
4530 {
4531 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4532 	    !sk_rmem_schedule(sk, skb, size)) {
4533 
4534 		if (tcp_prune_queue(sk) < 0)
4535 			return -1;
4536 
4537 		while (!sk_rmem_schedule(sk, skb, size)) {
4538 			if (!tcp_prune_ofo_queue(sk))
4539 				return -1;
4540 		}
4541 	}
4542 	return 0;
4543 }
4544 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4545 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4546 {
4547 	struct tcp_sock *tp = tcp_sk(sk);
4548 	struct rb_node **p, *parent;
4549 	struct sk_buff *skb1;
4550 	u32 seq, end_seq;
4551 	bool fragstolen;
4552 
4553 	tcp_ecn_check_ce(sk, skb);
4554 
4555 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4556 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4557 		tcp_drop(sk, skb);
4558 		return;
4559 	}
4560 
4561 	/* Disable header prediction. */
4562 	tp->pred_flags = 0;
4563 	inet_csk_schedule_ack(sk);
4564 
4565 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4566 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4567 	seq = TCP_SKB_CB(skb)->seq;
4568 	end_seq = TCP_SKB_CB(skb)->end_seq;
4569 
4570 	p = &tp->out_of_order_queue.rb_node;
4571 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4572 		/* Initial out of order segment, build 1 SACK. */
4573 		if (tcp_is_sack(tp)) {
4574 			tp->rx_opt.num_sacks = 1;
4575 			tp->selective_acks[0].start_seq = seq;
4576 			tp->selective_acks[0].end_seq = end_seq;
4577 		}
4578 		rb_link_node(&skb->rbnode, NULL, p);
4579 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4580 		tp->ooo_last_skb = skb;
4581 		goto end;
4582 	}
4583 
4584 	/* In the typical case, we are adding an skb to the end of the list.
4585 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4586 	 */
4587 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4588 				 skb, &fragstolen)) {
4589 coalesce_done:
4590 		tcp_grow_window(sk, skb);
4591 		kfree_skb_partial(skb, fragstolen);
4592 		skb = NULL;
4593 		goto add_sack;
4594 	}
4595 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4596 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4597 		parent = &tp->ooo_last_skb->rbnode;
4598 		p = &parent->rb_right;
4599 		goto insert;
4600 	}
4601 
4602 	/* Find place to insert this segment. Handle overlaps on the way. */
4603 	parent = NULL;
4604 	while (*p) {
4605 		parent = *p;
4606 		skb1 = rb_to_skb(parent);
4607 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4608 			p = &parent->rb_left;
4609 			continue;
4610 		}
4611 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4612 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4613 				/* All the bits are present. Drop. */
4614 				NET_INC_STATS(sock_net(sk),
4615 					      LINUX_MIB_TCPOFOMERGE);
4616 				tcp_drop(sk, skb);
4617 				skb = NULL;
4618 				tcp_dsack_set(sk, seq, end_seq);
4619 				goto add_sack;
4620 			}
4621 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4622 				/* Partial overlap. */
4623 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4624 			} else {
4625 				/* skb's seq == skb1's seq and skb covers skb1.
4626 				 * Replace skb1 with skb.
4627 				 */
4628 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4629 						&tp->out_of_order_queue);
4630 				tcp_dsack_extend(sk,
4631 						 TCP_SKB_CB(skb1)->seq,
4632 						 TCP_SKB_CB(skb1)->end_seq);
4633 				NET_INC_STATS(sock_net(sk),
4634 					      LINUX_MIB_TCPOFOMERGE);
4635 				tcp_drop(sk, skb1);
4636 				goto merge_right;
4637 			}
4638 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4639 						skb, &fragstolen)) {
4640 			goto coalesce_done;
4641 		}
4642 		p = &parent->rb_right;
4643 	}
4644 insert:
4645 	/* Insert segment into RB tree. */
4646 	rb_link_node(&skb->rbnode, parent, p);
4647 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4648 
4649 merge_right:
4650 	/* Remove other segments covered by skb. */
4651 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4652 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4653 			break;
4654 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4655 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4656 					 end_seq);
4657 			break;
4658 		}
4659 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4660 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4661 				 TCP_SKB_CB(skb1)->end_seq);
4662 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4663 		tcp_drop(sk, skb1);
4664 	}
4665 	/* If there is no skb after us, we are the last_skb ! */
4666 	if (!skb1)
4667 		tp->ooo_last_skb = skb;
4668 
4669 add_sack:
4670 	if (tcp_is_sack(tp))
4671 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4672 end:
4673 	if (skb) {
4674 		tcp_grow_window(sk, skb);
4675 		skb_condense(skb);
4676 		skb_set_owner_r(skb, sk);
4677 	}
4678 }
4679 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4680 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4681 				      bool *fragstolen)
4682 {
4683 	int eaten;
4684 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4685 
4686 	eaten = (tail &&
4687 		 tcp_try_coalesce(sk, tail,
4688 				  skb, fragstolen)) ? 1 : 0;
4689 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4690 	if (!eaten) {
4691 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4692 		skb_set_owner_r(skb, sk);
4693 	}
4694 	return eaten;
4695 }
4696 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4697 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4698 {
4699 	struct sk_buff *skb;
4700 	int err = -ENOMEM;
4701 	int data_len = 0;
4702 	bool fragstolen;
4703 
4704 	if (size == 0)
4705 		return 0;
4706 
4707 	if (size > PAGE_SIZE) {
4708 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4709 
4710 		data_len = npages << PAGE_SHIFT;
4711 		size = data_len + (size & ~PAGE_MASK);
4712 	}
4713 	skb = alloc_skb_with_frags(size - data_len, data_len,
4714 				   PAGE_ALLOC_COSTLY_ORDER,
4715 				   &err, sk->sk_allocation);
4716 	if (!skb)
4717 		goto err;
4718 
4719 	skb_put(skb, size - data_len);
4720 	skb->data_len = data_len;
4721 	skb->len = size;
4722 
4723 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4724 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4725 		goto err_free;
4726 	}
4727 
4728 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4729 	if (err)
4730 		goto err_free;
4731 
4732 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4733 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4734 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4735 
4736 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4737 		WARN_ON_ONCE(fragstolen); /* should not happen */
4738 		__kfree_skb(skb);
4739 	}
4740 	return size;
4741 
4742 err_free:
4743 	kfree_skb(skb);
4744 err:
4745 	return err;
4746 
4747 }
4748 
tcp_data_ready(struct sock * sk)4749 void tcp_data_ready(struct sock *sk)
4750 {
4751 	const struct tcp_sock *tp = tcp_sk(sk);
4752 	int avail = tp->rcv_nxt - tp->copied_seq;
4753 
4754 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4755 		return;
4756 
4757 	sk->sk_data_ready(sk);
4758 }
4759 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4760 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4761 {
4762 	struct tcp_sock *tp = tcp_sk(sk);
4763 	bool fragstolen;
4764 	int eaten;
4765 
4766 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4767 		__kfree_skb(skb);
4768 		return;
4769 	}
4770 	skb_dst_drop(skb);
4771 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4772 
4773 	tcp_ecn_accept_cwr(sk, skb);
4774 
4775 	tp->rx_opt.dsack = 0;
4776 
4777 	/*  Queue data for delivery to the user.
4778 	 *  Packets in sequence go to the receive queue.
4779 	 *  Out of sequence packets to the out_of_order_queue.
4780 	 */
4781 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4782 		if (tcp_receive_window(tp) == 0) {
4783 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4784 			goto out_of_window;
4785 		}
4786 
4787 		/* Ok. In sequence. In window. */
4788 queue_and_out:
4789 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4790 			sk_forced_mem_schedule(sk, skb->truesize);
4791 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4792 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4793 			goto drop;
4794 		}
4795 
4796 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4797 		if (skb->len)
4798 			tcp_event_data_recv(sk, skb);
4799 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4800 			tcp_fin(sk);
4801 
4802 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4803 			tcp_ofo_queue(sk);
4804 
4805 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4806 			 * gap in queue is filled.
4807 			 */
4808 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4809 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4810 		}
4811 
4812 		if (tp->rx_opt.num_sacks)
4813 			tcp_sack_remove(tp);
4814 
4815 		tcp_fast_path_check(sk);
4816 
4817 		if (eaten > 0)
4818 			kfree_skb_partial(skb, fragstolen);
4819 		if (!sock_flag(sk, SOCK_DEAD))
4820 			tcp_data_ready(sk);
4821 		return;
4822 	}
4823 
4824 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4825 		tcp_rcv_spurious_retrans(sk, skb);
4826 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4827 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4828 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4829 
4830 out_of_window:
4831 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4832 		inet_csk_schedule_ack(sk);
4833 drop:
4834 		tcp_drop(sk, skb);
4835 		return;
4836 	}
4837 
4838 	/* Out of window. F.e. zero window probe. */
4839 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4840 		goto out_of_window;
4841 
4842 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4843 		/* Partial packet, seq < rcv_next < end_seq */
4844 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4845 
4846 		/* If window is closed, drop tail of packet. But after
4847 		 * remembering D-SACK for its head made in previous line.
4848 		 */
4849 		if (!tcp_receive_window(tp)) {
4850 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4851 			goto out_of_window;
4852 		}
4853 		goto queue_and_out;
4854 	}
4855 
4856 	tcp_data_queue_ofo(sk, skb);
4857 }
4858 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)4859 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4860 {
4861 	if (list)
4862 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4863 
4864 	return skb_rb_next(skb);
4865 }
4866 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)4867 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4868 					struct sk_buff_head *list,
4869 					struct rb_root *root)
4870 {
4871 	struct sk_buff *next = tcp_skb_next(skb, list);
4872 
4873 	if (list)
4874 		__skb_unlink(skb, list);
4875 	else
4876 		rb_erase(&skb->rbnode, root);
4877 
4878 	__kfree_skb(skb);
4879 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4880 
4881 	return next;
4882 }
4883 
4884 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)4885 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4886 {
4887 	struct rb_node **p = &root->rb_node;
4888 	struct rb_node *parent = NULL;
4889 	struct sk_buff *skb1;
4890 
4891 	while (*p) {
4892 		parent = *p;
4893 		skb1 = rb_to_skb(parent);
4894 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4895 			p = &parent->rb_left;
4896 		else
4897 			p = &parent->rb_right;
4898 	}
4899 	rb_link_node(&skb->rbnode, parent, p);
4900 	rb_insert_color(&skb->rbnode, root);
4901 }
4902 
4903 /* Collapse contiguous sequence of skbs head..tail with
4904  * sequence numbers start..end.
4905  *
4906  * If tail is NULL, this means until the end of the queue.
4907  *
4908  * Segments with FIN/SYN are not collapsed (only because this
4909  * simplifies code)
4910  */
4911 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)4912 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4913 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4914 {
4915 	struct sk_buff *skb = head, *n;
4916 	struct sk_buff_head tmp;
4917 	bool end_of_skbs;
4918 
4919 	/* First, check that queue is collapsible and find
4920 	 * the point where collapsing can be useful.
4921 	 */
4922 restart:
4923 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4924 		n = tcp_skb_next(skb, list);
4925 
4926 		/* No new bits? It is possible on ofo queue. */
4927 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4928 			skb = tcp_collapse_one(sk, skb, list, root);
4929 			if (!skb)
4930 				break;
4931 			goto restart;
4932 		}
4933 
4934 		/* The first skb to collapse is:
4935 		 * - not SYN/FIN and
4936 		 * - bloated or contains data before "start" or
4937 		 *   overlaps to the next one.
4938 		 */
4939 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4940 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4941 		     before(TCP_SKB_CB(skb)->seq, start))) {
4942 			end_of_skbs = false;
4943 			break;
4944 		}
4945 
4946 		if (n && n != tail &&
4947 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4948 			end_of_skbs = false;
4949 			break;
4950 		}
4951 
4952 		/* Decided to skip this, advance start seq. */
4953 		start = TCP_SKB_CB(skb)->end_seq;
4954 	}
4955 	if (end_of_skbs ||
4956 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4957 		return;
4958 
4959 	__skb_queue_head_init(&tmp);
4960 
4961 	while (before(start, end)) {
4962 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4963 		struct sk_buff *nskb;
4964 
4965 		nskb = alloc_skb(copy, GFP_ATOMIC);
4966 		if (!nskb)
4967 			break;
4968 
4969 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4970 #ifdef CONFIG_TLS_DEVICE
4971 		nskb->decrypted = skb->decrypted;
4972 #endif
4973 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4974 		if (list)
4975 			__skb_queue_before(list, skb, nskb);
4976 		else
4977 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4978 		skb_set_owner_r(nskb, sk);
4979 
4980 		/* Copy data, releasing collapsed skbs. */
4981 		while (copy > 0) {
4982 			int offset = start - TCP_SKB_CB(skb)->seq;
4983 			int size = TCP_SKB_CB(skb)->end_seq - start;
4984 
4985 			BUG_ON(offset < 0);
4986 			if (size > 0) {
4987 				size = min(copy, size);
4988 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4989 					BUG();
4990 				TCP_SKB_CB(nskb)->end_seq += size;
4991 				copy -= size;
4992 				start += size;
4993 			}
4994 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4995 				skb = tcp_collapse_one(sk, skb, list, root);
4996 				if (!skb ||
4997 				    skb == tail ||
4998 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4999 					goto end;
5000 #ifdef CONFIG_TLS_DEVICE
5001 				if (skb->decrypted != nskb->decrypted)
5002 					goto end;
5003 #endif
5004 			}
5005 		}
5006 	}
5007 end:
5008 	skb_queue_walk_safe(&tmp, skb, n)
5009 		tcp_rbtree_insert(root, skb);
5010 }
5011 
5012 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5013  * and tcp_collapse() them until all the queue is collapsed.
5014  */
tcp_collapse_ofo_queue(struct sock * sk)5015 static void tcp_collapse_ofo_queue(struct sock *sk)
5016 {
5017 	struct tcp_sock *tp = tcp_sk(sk);
5018 	u32 range_truesize, sum_tiny = 0;
5019 	struct sk_buff *skb, *head;
5020 	u32 start, end;
5021 
5022 	skb = skb_rb_first(&tp->out_of_order_queue);
5023 new_range:
5024 	if (!skb) {
5025 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5026 		return;
5027 	}
5028 	start = TCP_SKB_CB(skb)->seq;
5029 	end = TCP_SKB_CB(skb)->end_seq;
5030 	range_truesize = skb->truesize;
5031 
5032 	for (head = skb;;) {
5033 		skb = skb_rb_next(skb);
5034 
5035 		/* Range is terminated when we see a gap or when
5036 		 * we are at the queue end.
5037 		 */
5038 		if (!skb ||
5039 		    after(TCP_SKB_CB(skb)->seq, end) ||
5040 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5041 			/* Do not attempt collapsing tiny skbs */
5042 			if (range_truesize != head->truesize ||
5043 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5044 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5045 					     head, skb, start, end);
5046 			} else {
5047 				sum_tiny += range_truesize;
5048 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5049 					return;
5050 			}
5051 			goto new_range;
5052 		}
5053 
5054 		range_truesize += skb->truesize;
5055 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5056 			start = TCP_SKB_CB(skb)->seq;
5057 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5058 			end = TCP_SKB_CB(skb)->end_seq;
5059 	}
5060 }
5061 
5062 /*
5063  * Clean the out-of-order queue to make room.
5064  * We drop high sequences packets to :
5065  * 1) Let a chance for holes to be filled.
5066  * 2) not add too big latencies if thousands of packets sit there.
5067  *    (But if application shrinks SO_RCVBUF, we could still end up
5068  *     freeing whole queue here)
5069  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5070  *
5071  * Return true if queue has shrunk.
5072  */
tcp_prune_ofo_queue(struct sock * sk)5073 static bool tcp_prune_ofo_queue(struct sock *sk)
5074 {
5075 	struct tcp_sock *tp = tcp_sk(sk);
5076 	struct rb_node *node, *prev;
5077 	int goal;
5078 
5079 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5080 		return false;
5081 
5082 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5083 	goal = sk->sk_rcvbuf >> 3;
5084 	node = &tp->ooo_last_skb->rbnode;
5085 	do {
5086 		prev = rb_prev(node);
5087 		rb_erase(node, &tp->out_of_order_queue);
5088 		goal -= rb_to_skb(node)->truesize;
5089 		tcp_drop(sk, rb_to_skb(node));
5090 		if (!prev || goal <= 0) {
5091 			sk_mem_reclaim(sk);
5092 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5093 			    !tcp_under_memory_pressure(sk))
5094 				break;
5095 			goal = sk->sk_rcvbuf >> 3;
5096 		}
5097 		node = prev;
5098 	} while (node);
5099 	tp->ooo_last_skb = rb_to_skb(prev);
5100 
5101 	/* Reset SACK state.  A conforming SACK implementation will
5102 	 * do the same at a timeout based retransmit.  When a connection
5103 	 * is in a sad state like this, we care only about integrity
5104 	 * of the connection not performance.
5105 	 */
5106 	if (tp->rx_opt.sack_ok)
5107 		tcp_sack_reset(&tp->rx_opt);
5108 	return true;
5109 }
5110 
5111 /* Reduce allocated memory if we can, trying to get
5112  * the socket within its memory limits again.
5113  *
5114  * Return less than zero if we should start dropping frames
5115  * until the socket owning process reads some of the data
5116  * to stabilize the situation.
5117  */
tcp_prune_queue(struct sock * sk)5118 static int tcp_prune_queue(struct sock *sk)
5119 {
5120 	struct tcp_sock *tp = tcp_sk(sk);
5121 
5122 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5123 
5124 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5125 		tcp_clamp_window(sk);
5126 	else if (tcp_under_memory_pressure(sk))
5127 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5128 
5129 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5130 		return 0;
5131 
5132 	tcp_collapse_ofo_queue(sk);
5133 	if (!skb_queue_empty(&sk->sk_receive_queue))
5134 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5135 			     skb_peek(&sk->sk_receive_queue),
5136 			     NULL,
5137 			     tp->copied_seq, tp->rcv_nxt);
5138 	sk_mem_reclaim(sk);
5139 
5140 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5141 		return 0;
5142 
5143 	/* Collapsing did not help, destructive actions follow.
5144 	 * This must not ever occur. */
5145 
5146 	tcp_prune_ofo_queue(sk);
5147 
5148 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5149 		return 0;
5150 
5151 	/* If we are really being abused, tell the caller to silently
5152 	 * drop receive data on the floor.  It will get retransmitted
5153 	 * and hopefully then we'll have sufficient space.
5154 	 */
5155 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5156 
5157 	/* Massive buffer overcommit. */
5158 	tp->pred_flags = 0;
5159 	return -1;
5160 }
5161 
tcp_should_expand_sndbuf(const struct sock * sk)5162 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5163 {
5164 	const struct tcp_sock *tp = tcp_sk(sk);
5165 
5166 	/* If the user specified a specific send buffer setting, do
5167 	 * not modify it.
5168 	 */
5169 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5170 		return false;
5171 
5172 	/* If we are under global TCP memory pressure, do not expand.  */
5173 	if (tcp_under_memory_pressure(sk))
5174 		return false;
5175 
5176 	/* If we are under soft global TCP memory pressure, do not expand.  */
5177 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5178 		return false;
5179 
5180 	/* If we filled the congestion window, do not expand.  */
5181 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5182 		return false;
5183 
5184 	return true;
5185 }
5186 
5187 /* When incoming ACK allowed to free some skb from write_queue,
5188  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5189  * on the exit from tcp input handler.
5190  *
5191  * PROBLEM: sndbuf expansion does not work well with largesend.
5192  */
tcp_new_space(struct sock * sk)5193 static void tcp_new_space(struct sock *sk)
5194 {
5195 	struct tcp_sock *tp = tcp_sk(sk);
5196 
5197 	if (tcp_should_expand_sndbuf(sk)) {
5198 		tcp_sndbuf_expand(sk);
5199 		tp->snd_cwnd_stamp = tcp_jiffies32;
5200 	}
5201 
5202 	sk->sk_write_space(sk);
5203 }
5204 
tcp_check_space(struct sock * sk)5205 static void tcp_check_space(struct sock *sk)
5206 {
5207 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5208 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5209 		/* pairs with tcp_poll() */
5210 		smp_mb();
5211 		if (sk->sk_socket &&
5212 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5213 			tcp_new_space(sk);
5214 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5215 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5216 		}
5217 	}
5218 }
5219 
tcp_data_snd_check(struct sock * sk)5220 static inline void tcp_data_snd_check(struct sock *sk)
5221 {
5222 	tcp_push_pending_frames(sk);
5223 	tcp_check_space(sk);
5224 }
5225 
5226 /*
5227  * Check if sending an ack is needed.
5228  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5229 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5230 {
5231 	struct tcp_sock *tp = tcp_sk(sk);
5232 	unsigned long rtt, delay;
5233 
5234 	    /* More than one full frame received... */
5235 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5236 	     /* ... and right edge of window advances far enough.
5237 	      * (tcp_recvmsg() will send ACK otherwise).
5238 	      * If application uses SO_RCVLOWAT, we want send ack now if
5239 	      * we have not received enough bytes to satisfy the condition.
5240 	      */
5241 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5242 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5243 	    /* We ACK each frame or... */
5244 	    tcp_in_quickack_mode(sk) ||
5245 	    /* Protocol state mandates a one-time immediate ACK */
5246 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5247 send_now:
5248 		tcp_send_ack(sk);
5249 		return;
5250 	}
5251 
5252 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5253 		tcp_send_delayed_ack(sk);
5254 		return;
5255 	}
5256 
5257 	if (!tcp_is_sack(tp) ||
5258 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5259 		goto send_now;
5260 
5261 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5262 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5263 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5264 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5265 				      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5266 		tp->compressed_ack = 0;
5267 	}
5268 
5269 	if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5270 		goto send_now;
5271 
5272 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5273 		return;
5274 
5275 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5276 
5277 	rtt = tp->rcv_rtt_est.rtt_us;
5278 	if (tp->srtt_us && tp->srtt_us < rtt)
5279 		rtt = tp->srtt_us;
5280 
5281 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5282 		      rtt * (NSEC_PER_USEC >> 3)/20);
5283 	sock_hold(sk);
5284 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5285 		      HRTIMER_MODE_REL_PINNED_SOFT);
5286 }
5287 
tcp_ack_snd_check(struct sock * sk)5288 static inline void tcp_ack_snd_check(struct sock *sk)
5289 {
5290 	if (!inet_csk_ack_scheduled(sk)) {
5291 		/* We sent a data segment already. */
5292 		return;
5293 	}
5294 	__tcp_ack_snd_check(sk, 1);
5295 }
5296 
5297 /*
5298  *	This routine is only called when we have urgent data
5299  *	signaled. Its the 'slow' part of tcp_urg. It could be
5300  *	moved inline now as tcp_urg is only called from one
5301  *	place. We handle URGent data wrong. We have to - as
5302  *	BSD still doesn't use the correction from RFC961.
5303  *	For 1003.1g we should support a new option TCP_STDURG to permit
5304  *	either form (or just set the sysctl tcp_stdurg).
5305  */
5306 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5307 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5308 {
5309 	struct tcp_sock *tp = tcp_sk(sk);
5310 	u32 ptr = ntohs(th->urg_ptr);
5311 
5312 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5313 		ptr--;
5314 	ptr += ntohl(th->seq);
5315 
5316 	/* Ignore urgent data that we've already seen and read. */
5317 	if (after(tp->copied_seq, ptr))
5318 		return;
5319 
5320 	/* Do not replay urg ptr.
5321 	 *
5322 	 * NOTE: interesting situation not covered by specs.
5323 	 * Misbehaving sender may send urg ptr, pointing to segment,
5324 	 * which we already have in ofo queue. We are not able to fetch
5325 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5326 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5327 	 * situations. But it is worth to think about possibility of some
5328 	 * DoSes using some hypothetical application level deadlock.
5329 	 */
5330 	if (before(ptr, tp->rcv_nxt))
5331 		return;
5332 
5333 	/* Do we already have a newer (or duplicate) urgent pointer? */
5334 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5335 		return;
5336 
5337 	/* Tell the world about our new urgent pointer. */
5338 	sk_send_sigurg(sk);
5339 
5340 	/* We may be adding urgent data when the last byte read was
5341 	 * urgent. To do this requires some care. We cannot just ignore
5342 	 * tp->copied_seq since we would read the last urgent byte again
5343 	 * as data, nor can we alter copied_seq until this data arrives
5344 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5345 	 *
5346 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5347 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5348 	 * and expect that both A and B disappear from stream. This is _wrong_.
5349 	 * Though this happens in BSD with high probability, this is occasional.
5350 	 * Any application relying on this is buggy. Note also, that fix "works"
5351 	 * only in this artificial test. Insert some normal data between A and B and we will
5352 	 * decline of BSD again. Verdict: it is better to remove to trap
5353 	 * buggy users.
5354 	 */
5355 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5356 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5357 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5358 		tp->copied_seq++;
5359 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5360 			__skb_unlink(skb, &sk->sk_receive_queue);
5361 			__kfree_skb(skb);
5362 		}
5363 	}
5364 
5365 	tp->urg_data = TCP_URG_NOTYET;
5366 	WRITE_ONCE(tp->urg_seq, ptr);
5367 
5368 	/* Disable header prediction. */
5369 	tp->pred_flags = 0;
5370 }
5371 
5372 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5373 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5374 {
5375 	struct tcp_sock *tp = tcp_sk(sk);
5376 
5377 	/* Check if we get a new urgent pointer - normally not. */
5378 	if (th->urg)
5379 		tcp_check_urg(sk, th);
5380 
5381 	/* Do we wait for any urgent data? - normally not... */
5382 	if (tp->urg_data == TCP_URG_NOTYET) {
5383 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5384 			  th->syn;
5385 
5386 		/* Is the urgent pointer pointing into this packet? */
5387 		if (ptr < skb->len) {
5388 			u8 tmp;
5389 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5390 				BUG();
5391 			tp->urg_data = TCP_URG_VALID | tmp;
5392 			if (!sock_flag(sk, SOCK_DEAD))
5393 				sk->sk_data_ready(sk);
5394 		}
5395 	}
5396 }
5397 
5398 /* Accept RST for rcv_nxt - 1 after a FIN.
5399  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5400  * FIN is sent followed by a RST packet. The RST is sent with the same
5401  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5402  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5403  * ACKs on the closed socket. In addition middleboxes can drop either the
5404  * challenge ACK or a subsequent RST.
5405  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5406 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5407 {
5408 	struct tcp_sock *tp = tcp_sk(sk);
5409 
5410 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5411 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5412 					       TCPF_CLOSING));
5413 }
5414 
5415 /* Does PAWS and seqno based validation of an incoming segment, flags will
5416  * play significant role here.
5417  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5418 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5419 				  const struct tcphdr *th, int syn_inerr)
5420 {
5421 	struct tcp_sock *tp = tcp_sk(sk);
5422 	bool rst_seq_match = false;
5423 
5424 	/* RFC1323: H1. Apply PAWS check first. */
5425 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5426 	    tp->rx_opt.saw_tstamp &&
5427 	    tcp_paws_discard(sk, skb)) {
5428 		if (!th->rst) {
5429 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5430 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5431 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5432 						  &tp->last_oow_ack_time))
5433 				tcp_send_dupack(sk, skb);
5434 			goto discard;
5435 		}
5436 		/* Reset is accepted even if it did not pass PAWS. */
5437 	}
5438 
5439 	/* Step 1: check sequence number */
5440 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5441 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5442 		 * (RST) segments are validated by checking their SEQ-fields."
5443 		 * And page 69: "If an incoming segment is not acceptable,
5444 		 * an acknowledgment should be sent in reply (unless the RST
5445 		 * bit is set, if so drop the segment and return)".
5446 		 */
5447 		if (!th->rst) {
5448 			if (th->syn)
5449 				goto syn_challenge;
5450 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5451 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5452 						  &tp->last_oow_ack_time))
5453 				tcp_send_dupack(sk, skb);
5454 		} else if (tcp_reset_check(sk, skb)) {
5455 			tcp_reset(sk);
5456 		}
5457 		goto discard;
5458 	}
5459 
5460 	/* Step 2: check RST bit */
5461 	if (th->rst) {
5462 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5463 		 * FIN and SACK too if available):
5464 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5465 		 * the right-most SACK block,
5466 		 * then
5467 		 *     RESET the connection
5468 		 * else
5469 		 *     Send a challenge ACK
5470 		 */
5471 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5472 		    tcp_reset_check(sk, skb)) {
5473 			rst_seq_match = true;
5474 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5475 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5476 			int max_sack = sp[0].end_seq;
5477 			int this_sack;
5478 
5479 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5480 			     ++this_sack) {
5481 				max_sack = after(sp[this_sack].end_seq,
5482 						 max_sack) ?
5483 					sp[this_sack].end_seq : max_sack;
5484 			}
5485 
5486 			if (TCP_SKB_CB(skb)->seq == max_sack)
5487 				rst_seq_match = true;
5488 		}
5489 
5490 		if (rst_seq_match)
5491 			tcp_reset(sk);
5492 		else {
5493 			/* Disable TFO if RST is out-of-order
5494 			 * and no data has been received
5495 			 * for current active TFO socket
5496 			 */
5497 			if (tp->syn_fastopen && !tp->data_segs_in &&
5498 			    sk->sk_state == TCP_ESTABLISHED)
5499 				tcp_fastopen_active_disable(sk);
5500 			tcp_send_challenge_ack(sk, skb);
5501 		}
5502 		goto discard;
5503 	}
5504 
5505 	/* step 3: check security and precedence [ignored] */
5506 
5507 	/* step 4: Check for a SYN
5508 	 * RFC 5961 4.2 : Send a challenge ack
5509 	 */
5510 	if (th->syn) {
5511 syn_challenge:
5512 		if (syn_inerr)
5513 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5514 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5515 		tcp_send_challenge_ack(sk, skb);
5516 		goto discard;
5517 	}
5518 
5519 	return true;
5520 
5521 discard:
5522 	tcp_drop(sk, skb);
5523 	return false;
5524 }
5525 
5526 /*
5527  *	TCP receive function for the ESTABLISHED state.
5528  *
5529  *	It is split into a fast path and a slow path. The fast path is
5530  * 	disabled when:
5531  *	- A zero window was announced from us - zero window probing
5532  *        is only handled properly in the slow path.
5533  *	- Out of order segments arrived.
5534  *	- Urgent data is expected.
5535  *	- There is no buffer space left
5536  *	- Unexpected TCP flags/window values/header lengths are received
5537  *	  (detected by checking the TCP header against pred_flags)
5538  *	- Data is sent in both directions. Fast path only supports pure senders
5539  *	  or pure receivers (this means either the sequence number or the ack
5540  *	  value must stay constant)
5541  *	- Unexpected TCP option.
5542  *
5543  *	When these conditions are not satisfied it drops into a standard
5544  *	receive procedure patterned after RFC793 to handle all cases.
5545  *	The first three cases are guaranteed by proper pred_flags setting,
5546  *	the rest is checked inline. Fast processing is turned on in
5547  *	tcp_data_queue when everything is OK.
5548  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5549 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5550 {
5551 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5552 	struct tcp_sock *tp = tcp_sk(sk);
5553 	unsigned int len = skb->len;
5554 
5555 	/* TCP congestion window tracking */
5556 	trace_tcp_probe(sk, skb);
5557 
5558 	tcp_mstamp_refresh(tp);
5559 	if (unlikely(!sk->sk_rx_dst))
5560 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5561 	/*
5562 	 *	Header prediction.
5563 	 *	The code loosely follows the one in the famous
5564 	 *	"30 instruction TCP receive" Van Jacobson mail.
5565 	 *
5566 	 *	Van's trick is to deposit buffers into socket queue
5567 	 *	on a device interrupt, to call tcp_recv function
5568 	 *	on the receive process context and checksum and copy
5569 	 *	the buffer to user space. smart...
5570 	 *
5571 	 *	Our current scheme is not silly either but we take the
5572 	 *	extra cost of the net_bh soft interrupt processing...
5573 	 *	We do checksum and copy also but from device to kernel.
5574 	 */
5575 
5576 	tp->rx_opt.saw_tstamp = 0;
5577 
5578 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5579 	 *	if header_prediction is to be made
5580 	 *	'S' will always be tp->tcp_header_len >> 2
5581 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5582 	 *  turn it off	(when there are holes in the receive
5583 	 *	 space for instance)
5584 	 *	PSH flag is ignored.
5585 	 */
5586 
5587 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5588 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5589 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5590 		int tcp_header_len = tp->tcp_header_len;
5591 
5592 		/* Timestamp header prediction: tcp_header_len
5593 		 * is automatically equal to th->doff*4 due to pred_flags
5594 		 * match.
5595 		 */
5596 
5597 		/* Check timestamp */
5598 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5599 			/* No? Slow path! */
5600 			if (!tcp_parse_aligned_timestamp(tp, th))
5601 				goto slow_path;
5602 
5603 			/* If PAWS failed, check it more carefully in slow path */
5604 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5605 				goto slow_path;
5606 
5607 			/* DO NOT update ts_recent here, if checksum fails
5608 			 * and timestamp was corrupted part, it will result
5609 			 * in a hung connection since we will drop all
5610 			 * future packets due to the PAWS test.
5611 			 */
5612 		}
5613 
5614 		if (len <= tcp_header_len) {
5615 			/* Bulk data transfer: sender */
5616 			if (len == tcp_header_len) {
5617 				/* Predicted packet is in window by definition.
5618 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5619 				 * Hence, check seq<=rcv_wup reduces to:
5620 				 */
5621 				if (tcp_header_len ==
5622 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5623 				    tp->rcv_nxt == tp->rcv_wup)
5624 					tcp_store_ts_recent(tp);
5625 
5626 				/* We know that such packets are checksummed
5627 				 * on entry.
5628 				 */
5629 				tcp_ack(sk, skb, 0);
5630 				__kfree_skb(skb);
5631 				tcp_data_snd_check(sk);
5632 				/* When receiving pure ack in fast path, update
5633 				 * last ts ecr directly instead of calling
5634 				 * tcp_rcv_rtt_measure_ts()
5635 				 */
5636 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5637 				return;
5638 			} else { /* Header too small */
5639 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5640 				goto discard;
5641 			}
5642 		} else {
5643 			int eaten = 0;
5644 			bool fragstolen = false;
5645 
5646 			if (tcp_checksum_complete(skb))
5647 				goto csum_error;
5648 
5649 			if ((int)skb->truesize > sk->sk_forward_alloc)
5650 				goto step5;
5651 
5652 			/* Predicted packet is in window by definition.
5653 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5654 			 * Hence, check seq<=rcv_wup reduces to:
5655 			 */
5656 			if (tcp_header_len ==
5657 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5658 			    tp->rcv_nxt == tp->rcv_wup)
5659 				tcp_store_ts_recent(tp);
5660 
5661 			tcp_rcv_rtt_measure_ts(sk, skb);
5662 
5663 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5664 
5665 			/* Bulk data transfer: receiver */
5666 			__skb_pull(skb, tcp_header_len);
5667 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5668 
5669 			tcp_event_data_recv(sk, skb);
5670 
5671 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5672 				/* Well, only one small jumplet in fast path... */
5673 				tcp_ack(sk, skb, FLAG_DATA);
5674 				tcp_data_snd_check(sk);
5675 				if (!inet_csk_ack_scheduled(sk))
5676 					goto no_ack;
5677 			}
5678 
5679 			__tcp_ack_snd_check(sk, 0);
5680 no_ack:
5681 			if (eaten)
5682 				kfree_skb_partial(skb, fragstolen);
5683 			tcp_data_ready(sk);
5684 			return;
5685 		}
5686 	}
5687 
5688 slow_path:
5689 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5690 		goto csum_error;
5691 
5692 	if (!th->ack && !th->rst && !th->syn)
5693 		goto discard;
5694 
5695 	/*
5696 	 *	Standard slow path.
5697 	 */
5698 
5699 	if (!tcp_validate_incoming(sk, skb, th, 1))
5700 		return;
5701 
5702 step5:
5703 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5704 		goto discard;
5705 
5706 	tcp_rcv_rtt_measure_ts(sk, skb);
5707 
5708 	/* Process urgent data. */
5709 	tcp_urg(sk, skb, th);
5710 
5711 	/* step 7: process the segment text */
5712 	tcp_data_queue(sk, skb);
5713 
5714 	tcp_data_snd_check(sk);
5715 	tcp_ack_snd_check(sk);
5716 	return;
5717 
5718 csum_error:
5719 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5720 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5721 
5722 discard:
5723 	tcp_drop(sk, skb);
5724 }
5725 EXPORT_SYMBOL(tcp_rcv_established);
5726 
tcp_init_transfer(struct sock * sk,int bpf_op)5727 void tcp_init_transfer(struct sock *sk, int bpf_op)
5728 {
5729 	struct inet_connection_sock *icsk = inet_csk(sk);
5730 	struct tcp_sock *tp = tcp_sk(sk);
5731 
5732 	tcp_mtup_init(sk);
5733 	icsk->icsk_af_ops->rebuild_header(sk);
5734 	tcp_init_metrics(sk);
5735 
5736 	/* Initialize the congestion window to start the transfer.
5737 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5738 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5739 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5740 	 * retransmission has occurred.
5741 	 */
5742 	if (tp->total_retrans > 1 && tp->undo_marker)
5743 		tp->snd_cwnd = 1;
5744 	else
5745 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5746 	tp->snd_cwnd_stamp = tcp_jiffies32;
5747 
5748 	tcp_call_bpf(sk, bpf_op, 0, NULL);
5749 	tcp_init_congestion_control(sk);
5750 	tcp_init_buffer_space(sk);
5751 }
5752 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5753 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5754 {
5755 	struct tcp_sock *tp = tcp_sk(sk);
5756 	struct inet_connection_sock *icsk = inet_csk(sk);
5757 
5758 	tcp_set_state(sk, TCP_ESTABLISHED);
5759 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5760 
5761 	if (skb) {
5762 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5763 		security_inet_conn_established(sk, skb);
5764 		sk_mark_napi_id(sk, skb);
5765 	}
5766 
5767 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5768 
5769 	/* Prevent spurious tcp_cwnd_restart() on first data
5770 	 * packet.
5771 	 */
5772 	tp->lsndtime = tcp_jiffies32;
5773 
5774 	if (sock_flag(sk, SOCK_KEEPOPEN))
5775 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5776 
5777 	if (!tp->rx_opt.snd_wscale)
5778 		__tcp_fast_path_on(tp, tp->snd_wnd);
5779 	else
5780 		tp->pred_flags = 0;
5781 }
5782 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)5783 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5784 				    struct tcp_fastopen_cookie *cookie)
5785 {
5786 	struct tcp_sock *tp = tcp_sk(sk);
5787 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5788 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5789 	bool syn_drop = false;
5790 
5791 	if (mss == tp->rx_opt.user_mss) {
5792 		struct tcp_options_received opt;
5793 
5794 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5795 		tcp_clear_options(&opt);
5796 		opt.user_mss = opt.mss_clamp = 0;
5797 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5798 		mss = opt.mss_clamp;
5799 	}
5800 
5801 	if (!tp->syn_fastopen) {
5802 		/* Ignore an unsolicited cookie */
5803 		cookie->len = -1;
5804 	} else if (tp->total_retrans) {
5805 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5806 		 * acknowledges data. Presumably the remote received only
5807 		 * the retransmitted (regular) SYNs: either the original
5808 		 * SYN-data or the corresponding SYN-ACK was dropped.
5809 		 */
5810 		syn_drop = (cookie->len < 0 && data);
5811 	} else if (cookie->len < 0 && !tp->syn_data) {
5812 		/* We requested a cookie but didn't get it. If we did not use
5813 		 * the (old) exp opt format then try so next time (try_exp=1).
5814 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5815 		 */
5816 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5817 	}
5818 
5819 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5820 
5821 	if (data) { /* Retransmit unacked data in SYN */
5822 		skb_rbtree_walk_from(data) {
5823 			if (__tcp_retransmit_skb(sk, data, 1))
5824 				break;
5825 		}
5826 		tcp_rearm_rto(sk);
5827 		NET_INC_STATS(sock_net(sk),
5828 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5829 		return true;
5830 	}
5831 	tp->syn_data_acked = tp->syn_data;
5832 	if (tp->syn_data_acked) {
5833 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5834 		/* SYN-data is counted as two separate packets in tcp_ack() */
5835 		if (tp->delivered > 1)
5836 			--tp->delivered;
5837 	}
5838 
5839 	tcp_fastopen_add_skb(sk, synack);
5840 
5841 	return false;
5842 }
5843 
smc_check_reset_syn(struct tcp_sock * tp)5844 static void smc_check_reset_syn(struct tcp_sock *tp)
5845 {
5846 #if IS_ENABLED(CONFIG_SMC)
5847 	if (static_branch_unlikely(&tcp_have_smc)) {
5848 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5849 			tp->syn_smc = 0;
5850 	}
5851 #endif
5852 }
5853 
tcp_try_undo_spurious_syn(struct sock * sk)5854 static void tcp_try_undo_spurious_syn(struct sock *sk)
5855 {
5856 	struct tcp_sock *tp = tcp_sk(sk);
5857 	u32 syn_stamp;
5858 
5859 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
5860 	 * spurious if the ACK's timestamp option echo value matches the
5861 	 * original SYN timestamp.
5862 	 */
5863 	syn_stamp = tp->retrans_stamp;
5864 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5865 	    syn_stamp == tp->rx_opt.rcv_tsecr)
5866 		tp->undo_marker = 0;
5867 }
5868 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5869 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5870 					 const struct tcphdr *th)
5871 {
5872 	struct inet_connection_sock *icsk = inet_csk(sk);
5873 	struct tcp_sock *tp = tcp_sk(sk);
5874 	struct tcp_fastopen_cookie foc = { .len = -1 };
5875 	int saved_clamp = tp->rx_opt.mss_clamp;
5876 	bool fastopen_fail;
5877 
5878 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5879 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5880 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5881 
5882 	if (th->ack) {
5883 		/* rfc793:
5884 		 * "If the state is SYN-SENT then
5885 		 *    first check the ACK bit
5886 		 *      If the ACK bit is set
5887 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5888 		 *        a reset (unless the RST bit is set, if so drop
5889 		 *        the segment and return)"
5890 		 */
5891 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5892 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5893 			goto reset_and_undo;
5894 
5895 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5896 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5897 			     tcp_time_stamp(tp))) {
5898 			NET_INC_STATS(sock_net(sk),
5899 					LINUX_MIB_PAWSACTIVEREJECTED);
5900 			goto reset_and_undo;
5901 		}
5902 
5903 		/* Now ACK is acceptable.
5904 		 *
5905 		 * "If the RST bit is set
5906 		 *    If the ACK was acceptable then signal the user "error:
5907 		 *    connection reset", drop the segment, enter CLOSED state,
5908 		 *    delete TCB, and return."
5909 		 */
5910 
5911 		if (th->rst) {
5912 			tcp_reset(sk);
5913 			goto discard;
5914 		}
5915 
5916 		/* rfc793:
5917 		 *   "fifth, if neither of the SYN or RST bits is set then
5918 		 *    drop the segment and return."
5919 		 *
5920 		 *    See note below!
5921 		 *                                        --ANK(990513)
5922 		 */
5923 		if (!th->syn)
5924 			goto discard_and_undo;
5925 
5926 		/* rfc793:
5927 		 *   "If the SYN bit is on ...
5928 		 *    are acceptable then ...
5929 		 *    (our SYN has been ACKed), change the connection
5930 		 *    state to ESTABLISHED..."
5931 		 */
5932 
5933 		tcp_ecn_rcv_synack(tp, th);
5934 
5935 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5936 		tcp_try_undo_spurious_syn(sk);
5937 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5938 
5939 		/* Ok.. it's good. Set up sequence numbers and
5940 		 * move to established.
5941 		 */
5942 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
5943 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5944 
5945 		/* RFC1323: The window in SYN & SYN/ACK segments is
5946 		 * never scaled.
5947 		 */
5948 		tp->snd_wnd = ntohs(th->window);
5949 
5950 		if (!tp->rx_opt.wscale_ok) {
5951 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5952 			tp->window_clamp = min(tp->window_clamp, 65535U);
5953 		}
5954 
5955 		if (tp->rx_opt.saw_tstamp) {
5956 			tp->rx_opt.tstamp_ok	   = 1;
5957 			tp->tcp_header_len =
5958 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5959 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5960 			tcp_store_ts_recent(tp);
5961 		} else {
5962 			tp->tcp_header_len = sizeof(struct tcphdr);
5963 		}
5964 
5965 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5966 		tcp_initialize_rcv_mss(sk);
5967 
5968 		/* Remember, tcp_poll() does not lock socket!
5969 		 * Change state from SYN-SENT only after copied_seq
5970 		 * is initialized. */
5971 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
5972 
5973 		smc_check_reset_syn(tp);
5974 
5975 		smp_mb();
5976 
5977 		tcp_finish_connect(sk, skb);
5978 
5979 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5980 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5981 
5982 		if (!sock_flag(sk, SOCK_DEAD)) {
5983 			sk->sk_state_change(sk);
5984 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5985 		}
5986 		if (fastopen_fail)
5987 			return -1;
5988 		if (sk->sk_write_pending ||
5989 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5990 		    inet_csk_in_pingpong_mode(sk)) {
5991 			/* Save one ACK. Data will be ready after
5992 			 * several ticks, if write_pending is set.
5993 			 *
5994 			 * It may be deleted, but with this feature tcpdumps
5995 			 * look so _wonderfully_ clever, that I was not able
5996 			 * to stand against the temptation 8)     --ANK
5997 			 */
5998 			inet_csk_schedule_ack(sk);
5999 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6000 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6001 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6002 
6003 discard:
6004 			tcp_drop(sk, skb);
6005 			return 0;
6006 		} else {
6007 			tcp_send_ack(sk);
6008 		}
6009 		return -1;
6010 	}
6011 
6012 	/* No ACK in the segment */
6013 
6014 	if (th->rst) {
6015 		/* rfc793:
6016 		 * "If the RST bit is set
6017 		 *
6018 		 *      Otherwise (no ACK) drop the segment and return."
6019 		 */
6020 
6021 		goto discard_and_undo;
6022 	}
6023 
6024 	/* PAWS check. */
6025 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6026 	    tcp_paws_reject(&tp->rx_opt, 0))
6027 		goto discard_and_undo;
6028 
6029 	if (th->syn) {
6030 		/* We see SYN without ACK. It is attempt of
6031 		 * simultaneous connect with crossed SYNs.
6032 		 * Particularly, it can be connect to self.
6033 		 */
6034 		tcp_set_state(sk, TCP_SYN_RECV);
6035 
6036 		if (tp->rx_opt.saw_tstamp) {
6037 			tp->rx_opt.tstamp_ok = 1;
6038 			tcp_store_ts_recent(tp);
6039 			tp->tcp_header_len =
6040 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6041 		} else {
6042 			tp->tcp_header_len = sizeof(struct tcphdr);
6043 		}
6044 
6045 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6046 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6047 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6048 
6049 		/* RFC1323: The window in SYN & SYN/ACK segments is
6050 		 * never scaled.
6051 		 */
6052 		tp->snd_wnd    = ntohs(th->window);
6053 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6054 		tp->max_window = tp->snd_wnd;
6055 
6056 		tcp_ecn_rcv_syn(tp, th);
6057 
6058 		tcp_mtup_init(sk);
6059 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6060 		tcp_initialize_rcv_mss(sk);
6061 
6062 		tcp_send_synack(sk);
6063 #if 0
6064 		/* Note, we could accept data and URG from this segment.
6065 		 * There are no obstacles to make this (except that we must
6066 		 * either change tcp_recvmsg() to prevent it from returning data
6067 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6068 		 *
6069 		 * However, if we ignore data in ACKless segments sometimes,
6070 		 * we have no reasons to accept it sometimes.
6071 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6072 		 * is not flawless. So, discard packet for sanity.
6073 		 * Uncomment this return to process the data.
6074 		 */
6075 		return -1;
6076 #else
6077 		goto discard;
6078 #endif
6079 	}
6080 	/* "fifth, if neither of the SYN or RST bits is set then
6081 	 * drop the segment and return."
6082 	 */
6083 
6084 discard_and_undo:
6085 	tcp_clear_options(&tp->rx_opt);
6086 	tp->rx_opt.mss_clamp = saved_clamp;
6087 	goto discard;
6088 
6089 reset_and_undo:
6090 	tcp_clear_options(&tp->rx_opt);
6091 	tp->rx_opt.mss_clamp = saved_clamp;
6092 	return 1;
6093 }
6094 
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6095 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6096 {
6097 	struct request_sock *req;
6098 
6099 	tcp_try_undo_loss(sk, false);
6100 
6101 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6102 	tcp_sk(sk)->retrans_stamp = 0;
6103 	inet_csk(sk)->icsk_retransmits = 0;
6104 
6105 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6106 	 * we no longer need req so release it.
6107 	 */
6108 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6109 					lockdep_sock_is_held(sk));
6110 	reqsk_fastopen_remove(sk, req, false);
6111 
6112 	/* Re-arm the timer because data may have been sent out.
6113 	 * This is similar to the regular data transmission case
6114 	 * when new data has just been ack'ed.
6115 	 *
6116 	 * (TFO) - we could try to be more aggressive and
6117 	 * retransmitting any data sooner based on when they
6118 	 * are sent out.
6119 	 */
6120 	tcp_rearm_rto(sk);
6121 }
6122 
6123 /*
6124  *	This function implements the receiving procedure of RFC 793 for
6125  *	all states except ESTABLISHED and TIME_WAIT.
6126  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6127  *	address independent.
6128  */
6129 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6130 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6131 {
6132 	struct tcp_sock *tp = tcp_sk(sk);
6133 	struct inet_connection_sock *icsk = inet_csk(sk);
6134 	const struct tcphdr *th = tcp_hdr(skb);
6135 	struct request_sock *req;
6136 	int queued = 0;
6137 	bool acceptable;
6138 
6139 	switch (sk->sk_state) {
6140 	case TCP_CLOSE:
6141 		goto discard;
6142 
6143 	case TCP_LISTEN:
6144 		if (th->ack)
6145 			return 1;
6146 
6147 		if (th->rst)
6148 			goto discard;
6149 
6150 		if (th->syn) {
6151 			if (th->fin)
6152 				goto discard;
6153 			/* It is possible that we process SYN packets from backlog,
6154 			 * so we need to make sure to disable BH and RCU right there.
6155 			 */
6156 			rcu_read_lock();
6157 			local_bh_disable();
6158 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6159 			local_bh_enable();
6160 			rcu_read_unlock();
6161 
6162 			if (!acceptable)
6163 				return 1;
6164 			consume_skb(skb);
6165 			return 0;
6166 		}
6167 		goto discard;
6168 
6169 	case TCP_SYN_SENT:
6170 		tp->rx_opt.saw_tstamp = 0;
6171 		tcp_mstamp_refresh(tp);
6172 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6173 		if (queued >= 0)
6174 			return queued;
6175 
6176 		/* Do step6 onward by hand. */
6177 		tcp_urg(sk, skb, th);
6178 		__kfree_skb(skb);
6179 		tcp_data_snd_check(sk);
6180 		return 0;
6181 	}
6182 
6183 	tcp_mstamp_refresh(tp);
6184 	tp->rx_opt.saw_tstamp = 0;
6185 	req = rcu_dereference_protected(tp->fastopen_rsk,
6186 					lockdep_sock_is_held(sk));
6187 	if (req) {
6188 		bool req_stolen;
6189 
6190 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6191 		    sk->sk_state != TCP_FIN_WAIT1);
6192 
6193 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6194 			goto discard;
6195 	}
6196 
6197 	if (!th->ack && !th->rst && !th->syn)
6198 		goto discard;
6199 
6200 	if (!tcp_validate_incoming(sk, skb, th, 0))
6201 		return 0;
6202 
6203 	/* step 5: check the ACK field */
6204 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6205 				      FLAG_UPDATE_TS_RECENT |
6206 				      FLAG_NO_CHALLENGE_ACK) > 0;
6207 
6208 	if (!acceptable) {
6209 		if (sk->sk_state == TCP_SYN_RECV)
6210 			return 1;	/* send one RST */
6211 		tcp_send_challenge_ack(sk, skb);
6212 		goto discard;
6213 	}
6214 	switch (sk->sk_state) {
6215 	case TCP_SYN_RECV:
6216 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6217 		if (!tp->srtt_us)
6218 			tcp_synack_rtt_meas(sk, req);
6219 
6220 		if (req) {
6221 			tcp_rcv_synrecv_state_fastopen(sk);
6222 		} else {
6223 			tcp_try_undo_spurious_syn(sk);
6224 			tp->retrans_stamp = 0;
6225 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6226 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6227 		}
6228 		smp_mb();
6229 		tcp_set_state(sk, TCP_ESTABLISHED);
6230 		sk->sk_state_change(sk);
6231 
6232 		/* Note, that this wakeup is only for marginal crossed SYN case.
6233 		 * Passively open sockets are not waked up, because
6234 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6235 		 */
6236 		if (sk->sk_socket)
6237 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6238 
6239 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6240 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6241 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6242 
6243 		if (tp->rx_opt.tstamp_ok)
6244 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6245 
6246 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6247 			tcp_update_pacing_rate(sk);
6248 
6249 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6250 		tp->lsndtime = tcp_jiffies32;
6251 
6252 		tcp_initialize_rcv_mss(sk);
6253 		tcp_fast_path_on(tp);
6254 		break;
6255 
6256 	case TCP_FIN_WAIT1: {
6257 		int tmo;
6258 
6259 		if (req)
6260 			tcp_rcv_synrecv_state_fastopen(sk);
6261 
6262 		if (tp->snd_una != tp->write_seq)
6263 			break;
6264 
6265 		tcp_set_state(sk, TCP_FIN_WAIT2);
6266 		sk->sk_shutdown |= SEND_SHUTDOWN;
6267 
6268 		sk_dst_confirm(sk);
6269 
6270 		if (!sock_flag(sk, SOCK_DEAD)) {
6271 			/* Wake up lingering close() */
6272 			sk->sk_state_change(sk);
6273 			break;
6274 		}
6275 
6276 		if (tp->linger2 < 0) {
6277 			tcp_done(sk);
6278 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6279 			return 1;
6280 		}
6281 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6282 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6283 			/* Receive out of order FIN after close() */
6284 			if (tp->syn_fastopen && th->fin)
6285 				tcp_fastopen_active_disable(sk);
6286 			tcp_done(sk);
6287 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6288 			return 1;
6289 		}
6290 
6291 		tmo = tcp_fin_time(sk);
6292 		if (tmo > TCP_TIMEWAIT_LEN) {
6293 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6294 		} else if (th->fin || sock_owned_by_user(sk)) {
6295 			/* Bad case. We could lose such FIN otherwise.
6296 			 * It is not a big problem, but it looks confusing
6297 			 * and not so rare event. We still can lose it now,
6298 			 * if it spins in bh_lock_sock(), but it is really
6299 			 * marginal case.
6300 			 */
6301 			inet_csk_reset_keepalive_timer(sk, tmo);
6302 		} else {
6303 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6304 			goto discard;
6305 		}
6306 		break;
6307 	}
6308 
6309 	case TCP_CLOSING:
6310 		if (tp->snd_una == tp->write_seq) {
6311 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6312 			goto discard;
6313 		}
6314 		break;
6315 
6316 	case TCP_LAST_ACK:
6317 		if (tp->snd_una == tp->write_seq) {
6318 			tcp_update_metrics(sk);
6319 			tcp_done(sk);
6320 			goto discard;
6321 		}
6322 		break;
6323 	}
6324 
6325 	/* step 6: check the URG bit */
6326 	tcp_urg(sk, skb, th);
6327 
6328 	/* step 7: process the segment text */
6329 	switch (sk->sk_state) {
6330 	case TCP_CLOSE_WAIT:
6331 	case TCP_CLOSING:
6332 	case TCP_LAST_ACK:
6333 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6334 			break;
6335 		/* fall through */
6336 	case TCP_FIN_WAIT1:
6337 	case TCP_FIN_WAIT2:
6338 		/* RFC 793 says to queue data in these states,
6339 		 * RFC 1122 says we MUST send a reset.
6340 		 * BSD 4.4 also does reset.
6341 		 */
6342 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6343 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6344 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6345 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6346 				tcp_reset(sk);
6347 				return 1;
6348 			}
6349 		}
6350 		/* Fall through */
6351 	case TCP_ESTABLISHED:
6352 		tcp_data_queue(sk, skb);
6353 		queued = 1;
6354 		break;
6355 	}
6356 
6357 	/* tcp_data could move socket to TIME-WAIT */
6358 	if (sk->sk_state != TCP_CLOSE) {
6359 		tcp_data_snd_check(sk);
6360 		tcp_ack_snd_check(sk);
6361 	}
6362 
6363 	if (!queued) {
6364 discard:
6365 		tcp_drop(sk, skb);
6366 	}
6367 	return 0;
6368 }
6369 EXPORT_SYMBOL(tcp_rcv_state_process);
6370 
pr_drop_req(struct request_sock * req,__u16 port,int family)6371 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6372 {
6373 	struct inet_request_sock *ireq = inet_rsk(req);
6374 
6375 	if (family == AF_INET)
6376 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6377 				    &ireq->ir_rmt_addr, port);
6378 #if IS_ENABLED(CONFIG_IPV6)
6379 	else if (family == AF_INET6)
6380 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6381 				    &ireq->ir_v6_rmt_addr, port);
6382 #endif
6383 }
6384 
6385 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6386  *
6387  * If we receive a SYN packet with these bits set, it means a
6388  * network is playing bad games with TOS bits. In order to
6389  * avoid possible false congestion notifications, we disable
6390  * TCP ECN negotiation.
6391  *
6392  * Exception: tcp_ca wants ECN. This is required for DCTCP
6393  * congestion control: Linux DCTCP asserts ECT on all packets,
6394  * including SYN, which is most optimal solution; however,
6395  * others, such as FreeBSD do not.
6396  *
6397  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6398  * set, indicating the use of a future TCP extension (such as AccECN). See
6399  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6400  * extensions.
6401  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6402 static void tcp_ecn_create_request(struct request_sock *req,
6403 				   const struct sk_buff *skb,
6404 				   const struct sock *listen_sk,
6405 				   const struct dst_entry *dst)
6406 {
6407 	const struct tcphdr *th = tcp_hdr(skb);
6408 	const struct net *net = sock_net(listen_sk);
6409 	bool th_ecn = th->ece && th->cwr;
6410 	bool ect, ecn_ok;
6411 	u32 ecn_ok_dst;
6412 
6413 	if (!th_ecn)
6414 		return;
6415 
6416 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6417 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6418 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6419 
6420 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6421 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6422 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6423 		inet_rsk(req)->ecn_ok = 1;
6424 }
6425 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6426 static void tcp_openreq_init(struct request_sock *req,
6427 			     const struct tcp_options_received *rx_opt,
6428 			     struct sk_buff *skb, const struct sock *sk)
6429 {
6430 	struct inet_request_sock *ireq = inet_rsk(req);
6431 
6432 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6433 	req->cookie_ts = 0;
6434 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6435 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6436 	tcp_rsk(req)->snt_synack = 0;
6437 	tcp_rsk(req)->last_oow_ack_time = 0;
6438 	req->mss = rx_opt->mss_clamp;
6439 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6440 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6441 	ireq->sack_ok = rx_opt->sack_ok;
6442 	ireq->snd_wscale = rx_opt->snd_wscale;
6443 	ireq->wscale_ok = rx_opt->wscale_ok;
6444 	ireq->acked = 0;
6445 	ireq->ecn_ok = 0;
6446 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6447 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6448 	ireq->ir_mark = inet_request_mark(sk, skb);
6449 #if IS_ENABLED(CONFIG_SMC)
6450 	ireq->smc_ok = rx_opt->smc_ok;
6451 #endif
6452 }
6453 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6454 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6455 				      struct sock *sk_listener,
6456 				      bool attach_listener)
6457 {
6458 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6459 					       attach_listener);
6460 
6461 	if (req) {
6462 		struct inet_request_sock *ireq = inet_rsk(req);
6463 
6464 		ireq->ireq_opt = NULL;
6465 #if IS_ENABLED(CONFIG_IPV6)
6466 		ireq->pktopts = NULL;
6467 #endif
6468 		atomic64_set(&ireq->ir_cookie, 0);
6469 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6470 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6471 		ireq->ireq_family = sk_listener->sk_family;
6472 	}
6473 
6474 	return req;
6475 }
6476 EXPORT_SYMBOL(inet_reqsk_alloc);
6477 
6478 /*
6479  * Return true if a syncookie should be sent
6480  */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6481 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6482 {
6483 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6484 	const char *msg = "Dropping request";
6485 	bool want_cookie = false;
6486 	struct net *net = sock_net(sk);
6487 
6488 #ifdef CONFIG_SYN_COOKIES
6489 	if (net->ipv4.sysctl_tcp_syncookies) {
6490 		msg = "Sending cookies";
6491 		want_cookie = true;
6492 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6493 	} else
6494 #endif
6495 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6496 
6497 	if (!queue->synflood_warned &&
6498 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6499 	    xchg(&queue->synflood_warned, 1) == 0)
6500 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6501 				     proto, sk->sk_num, msg);
6502 
6503 	return want_cookie;
6504 }
6505 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6506 static void tcp_reqsk_record_syn(const struct sock *sk,
6507 				 struct request_sock *req,
6508 				 const struct sk_buff *skb)
6509 {
6510 	if (tcp_sk(sk)->save_syn) {
6511 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6512 		u32 *copy;
6513 
6514 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6515 		if (copy) {
6516 			copy[0] = len;
6517 			memcpy(&copy[1], skb_network_header(skb), len);
6518 			req->saved_syn = copy;
6519 		}
6520 	}
6521 }
6522 
6523 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6524  * used for SYN cookie generation.
6525  */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6526 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6527 			  const struct tcp_request_sock_ops *af_ops,
6528 			  struct sock *sk, struct tcphdr *th)
6529 {
6530 	struct tcp_sock *tp = tcp_sk(sk);
6531 	u16 mss;
6532 
6533 	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6534 	    !inet_csk_reqsk_queue_is_full(sk))
6535 		return 0;
6536 
6537 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6538 		return 0;
6539 
6540 	if (sk_acceptq_is_full(sk)) {
6541 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6542 		return 0;
6543 	}
6544 
6545 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6546 	if (!mss)
6547 		mss = af_ops->mss_clamp;
6548 
6549 	return mss;
6550 }
6551 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6552 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6553 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6554 		     const struct tcp_request_sock_ops *af_ops,
6555 		     struct sock *sk, struct sk_buff *skb)
6556 {
6557 	struct tcp_fastopen_cookie foc = { .len = -1 };
6558 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6559 	struct tcp_options_received tmp_opt;
6560 	struct tcp_sock *tp = tcp_sk(sk);
6561 	struct net *net = sock_net(sk);
6562 	struct sock *fastopen_sk = NULL;
6563 	struct request_sock *req;
6564 	bool want_cookie = false;
6565 	struct dst_entry *dst;
6566 	struct flowi fl;
6567 
6568 	/* TW buckets are converted to open requests without
6569 	 * limitations, they conserve resources and peer is
6570 	 * evidently real one.
6571 	 */
6572 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6573 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6574 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6575 		if (!want_cookie)
6576 			goto drop;
6577 	}
6578 
6579 	if (sk_acceptq_is_full(sk)) {
6580 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6581 		goto drop;
6582 	}
6583 
6584 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6585 	if (!req)
6586 		goto drop;
6587 
6588 	tcp_rsk(req)->af_specific = af_ops;
6589 	tcp_rsk(req)->ts_off = 0;
6590 
6591 	tcp_clear_options(&tmp_opt);
6592 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6593 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6594 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6595 			  want_cookie ? NULL : &foc);
6596 
6597 	if (want_cookie && !tmp_opt.saw_tstamp)
6598 		tcp_clear_options(&tmp_opt);
6599 
6600 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6601 		tmp_opt.smc_ok = 0;
6602 
6603 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6604 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6605 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6606 
6607 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6608 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6609 
6610 	af_ops->init_req(req, sk, skb);
6611 
6612 	if (security_inet_conn_request(sk, skb, req))
6613 		goto drop_and_free;
6614 
6615 	if (tmp_opt.tstamp_ok)
6616 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6617 
6618 	dst = af_ops->route_req(sk, &fl, req);
6619 	if (!dst)
6620 		goto drop_and_free;
6621 
6622 	if (!want_cookie && !isn) {
6623 		/* Kill the following clause, if you dislike this way. */
6624 		if (!net->ipv4.sysctl_tcp_syncookies &&
6625 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6626 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6627 		    !tcp_peer_is_proven(req, dst)) {
6628 			/* Without syncookies last quarter of
6629 			 * backlog is filled with destinations,
6630 			 * proven to be alive.
6631 			 * It means that we continue to communicate
6632 			 * to destinations, already remembered
6633 			 * to the moment of synflood.
6634 			 */
6635 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6636 				    rsk_ops->family);
6637 			goto drop_and_release;
6638 		}
6639 
6640 		isn = af_ops->init_seq(skb);
6641 	}
6642 
6643 	tcp_ecn_create_request(req, skb, sk, dst);
6644 
6645 	if (want_cookie) {
6646 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6647 		req->cookie_ts = tmp_opt.tstamp_ok;
6648 		if (!tmp_opt.tstamp_ok)
6649 			inet_rsk(req)->ecn_ok = 0;
6650 	}
6651 
6652 	tcp_rsk(req)->snt_isn = isn;
6653 	tcp_rsk(req)->txhash = net_tx_rndhash();
6654 	tcp_openreq_init_rwin(req, sk, dst);
6655 	sk_rx_queue_set(req_to_sk(req), skb);
6656 	if (!want_cookie) {
6657 		tcp_reqsk_record_syn(sk, req, skb);
6658 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6659 	}
6660 	if (fastopen_sk) {
6661 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6662 				    &foc, TCP_SYNACK_FASTOPEN);
6663 		/* Add the child socket directly into the accept queue */
6664 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6665 			reqsk_fastopen_remove(fastopen_sk, req, false);
6666 			bh_unlock_sock(fastopen_sk);
6667 			sock_put(fastopen_sk);
6668 			goto drop_and_free;
6669 		}
6670 		sk->sk_data_ready(sk);
6671 		bh_unlock_sock(fastopen_sk);
6672 		sock_put(fastopen_sk);
6673 	} else {
6674 		tcp_rsk(req)->tfo_listener = false;
6675 		if (!want_cookie)
6676 			inet_csk_reqsk_queue_hash_add(sk, req,
6677 				tcp_timeout_init((struct sock *)req));
6678 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6679 				    !want_cookie ? TCP_SYNACK_NORMAL :
6680 						   TCP_SYNACK_COOKIE);
6681 		if (want_cookie) {
6682 			reqsk_free(req);
6683 			return 0;
6684 		}
6685 	}
6686 	reqsk_put(req);
6687 	return 0;
6688 
6689 drop_and_release:
6690 	dst_release(dst);
6691 drop_and_free:
6692 	__reqsk_free(req);
6693 drop:
6694 	tcp_listendrop(sk);
6695 	return 0;
6696 }
6697 EXPORT_SYMBOL(tcp_conn_request);
6698