1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84
85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
91 #define FLAG_ECE 0x40 /* ECE in this ACK */
92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
102
103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
107
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110
111 #define REXMIT_NONE 0 /* no loss recovery to do */
112 #define REXMIT_LOST 1 /* retransmit packets marked lost */
113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
114
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
117
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 void (*cad)(struct sock *sk, u32 ack_seq))
120 {
121 icsk->icsk_clean_acked = cad;
122 static_branch_deferred_inc(&clean_acked_data_enabled);
123 }
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125
clean_acked_data_disable(struct inet_connection_sock * icsk)126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
127 {
128 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
129 icsk->icsk_clean_acked = NULL;
130 }
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132
clean_acked_data_flush(void)133 void clean_acked_data_flush(void)
134 {
135 static_key_deferred_flush(&clean_acked_data_enabled);
136 }
137 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
138 #endif
139
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)140 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
141 unsigned int len)
142 {
143 static bool __once __read_mostly;
144
145 if (!__once) {
146 struct net_device *dev;
147
148 __once = true;
149
150 rcu_read_lock();
151 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
152 if (!dev || len >= dev->mtu)
153 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
154 dev ? dev->name : "Unknown driver");
155 rcu_read_unlock();
156 }
157 }
158
159 /* Adapt the MSS value used to make delayed ack decision to the
160 * real world.
161 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)162 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
163 {
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const unsigned int lss = icsk->icsk_ack.last_seg_size;
166 unsigned int len;
167
168 icsk->icsk_ack.last_seg_size = 0;
169
170 /* skb->len may jitter because of SACKs, even if peer
171 * sends good full-sized frames.
172 */
173 len = skb_shinfo(skb)->gso_size ? : skb->len;
174 if (len >= icsk->icsk_ack.rcv_mss) {
175 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
176 tcp_sk(sk)->advmss);
177 /* Account for possibly-removed options */
178 if (unlikely(len > icsk->icsk_ack.rcv_mss +
179 MAX_TCP_OPTION_SPACE))
180 tcp_gro_dev_warn(sk, skb, len);
181 } else {
182 /* Otherwise, we make more careful check taking into account,
183 * that SACKs block is variable.
184 *
185 * "len" is invariant segment length, including TCP header.
186 */
187 len += skb->data - skb_transport_header(skb);
188 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
189 /* If PSH is not set, packet should be
190 * full sized, provided peer TCP is not badly broken.
191 * This observation (if it is correct 8)) allows
192 * to handle super-low mtu links fairly.
193 */
194 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
195 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
196 /* Subtract also invariant (if peer is RFC compliant),
197 * tcp header plus fixed timestamp option length.
198 * Resulting "len" is MSS free of SACK jitter.
199 */
200 len -= tcp_sk(sk)->tcp_header_len;
201 icsk->icsk_ack.last_seg_size = len;
202 if (len == lss) {
203 icsk->icsk_ack.rcv_mss = len;
204 return;
205 }
206 }
207 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
208 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
209 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
210 }
211 }
212
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)213 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
214 {
215 struct inet_connection_sock *icsk = inet_csk(sk);
216 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
217
218 if (quickacks == 0)
219 quickacks = 2;
220 quickacks = min(quickacks, max_quickacks);
221 if (quickacks > icsk->icsk_ack.quick)
222 icsk->icsk_ack.quick = quickacks;
223 }
224
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)225 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
226 {
227 struct inet_connection_sock *icsk = inet_csk(sk);
228
229 tcp_incr_quickack(sk, max_quickacks);
230 inet_csk_exit_pingpong_mode(sk);
231 icsk->icsk_ack.ato = TCP_ATO_MIN;
232 }
233 EXPORT_SYMBOL(tcp_enter_quickack_mode);
234
235 /* Send ACKs quickly, if "quick" count is not exhausted
236 * and the session is not interactive.
237 */
238
tcp_in_quickack_mode(struct sock * sk)239 static bool tcp_in_quickack_mode(struct sock *sk)
240 {
241 const struct inet_connection_sock *icsk = inet_csk(sk);
242 const struct dst_entry *dst = __sk_dst_get(sk);
243
244 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
245 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
246 }
247
tcp_ecn_queue_cwr(struct tcp_sock * tp)248 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
249 {
250 if (tp->ecn_flags & TCP_ECN_OK)
251 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
252 }
253
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)254 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
255 {
256 if (tcp_hdr(skb)->cwr) {
257 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
258
259 /* If the sender is telling us it has entered CWR, then its
260 * cwnd may be very low (even just 1 packet), so we should ACK
261 * immediately.
262 */
263 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
264 }
265 }
266
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)267 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
268 {
269 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
270 }
271
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)272 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
273 {
274 struct tcp_sock *tp = tcp_sk(sk);
275
276 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
277 case INET_ECN_NOT_ECT:
278 /* Funny extension: if ECT is not set on a segment,
279 * and we already seen ECT on a previous segment,
280 * it is probably a retransmit.
281 */
282 if (tp->ecn_flags & TCP_ECN_SEEN)
283 tcp_enter_quickack_mode(sk, 2);
284 break;
285 case INET_ECN_CE:
286 if (tcp_ca_needs_ecn(sk))
287 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
288
289 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
290 /* Better not delay acks, sender can have a very low cwnd */
291 tcp_enter_quickack_mode(sk, 2);
292 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
293 }
294 tp->ecn_flags |= TCP_ECN_SEEN;
295 break;
296 default:
297 if (tcp_ca_needs_ecn(sk))
298 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
299 tp->ecn_flags |= TCP_ECN_SEEN;
300 break;
301 }
302 }
303
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)304 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
305 {
306 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
307 __tcp_ecn_check_ce(sk, skb);
308 }
309
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)310 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
311 {
312 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
313 tp->ecn_flags &= ~TCP_ECN_OK;
314 }
315
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)316 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
317 {
318 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
319 tp->ecn_flags &= ~TCP_ECN_OK;
320 }
321
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)322 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
323 {
324 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
325 return true;
326 return false;
327 }
328
329 /* Buffer size and advertised window tuning.
330 *
331 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
332 */
333
tcp_sndbuf_expand(struct sock * sk)334 static void tcp_sndbuf_expand(struct sock *sk)
335 {
336 const struct tcp_sock *tp = tcp_sk(sk);
337 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
338 int sndmem, per_mss;
339 u32 nr_segs;
340
341 /* Worst case is non GSO/TSO : each frame consumes one skb
342 * and skb->head is kmalloced using power of two area of memory
343 */
344 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
345 MAX_TCP_HEADER +
346 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
347
348 per_mss = roundup_pow_of_two(per_mss) +
349 SKB_DATA_ALIGN(sizeof(struct sk_buff));
350
351 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
352 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
353
354 /* Fast Recovery (RFC 5681 3.2) :
355 * Cubic needs 1.7 factor, rounded to 2 to include
356 * extra cushion (application might react slowly to EPOLLOUT)
357 */
358 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
359 sndmem *= nr_segs * per_mss;
360
361 if (sk->sk_sndbuf < sndmem)
362 WRITE_ONCE(sk->sk_sndbuf,
363 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
364 }
365
366 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
367 *
368 * All tcp_full_space() is split to two parts: "network" buffer, allocated
369 * forward and advertised in receiver window (tp->rcv_wnd) and
370 * "application buffer", required to isolate scheduling/application
371 * latencies from network.
372 * window_clamp is maximal advertised window. It can be less than
373 * tcp_full_space(), in this case tcp_full_space() - window_clamp
374 * is reserved for "application" buffer. The less window_clamp is
375 * the smoother our behaviour from viewpoint of network, but the lower
376 * throughput and the higher sensitivity of the connection to losses. 8)
377 *
378 * rcv_ssthresh is more strict window_clamp used at "slow start"
379 * phase to predict further behaviour of this connection.
380 * It is used for two goals:
381 * - to enforce header prediction at sender, even when application
382 * requires some significant "application buffer". It is check #1.
383 * - to prevent pruning of receive queue because of misprediction
384 * of receiver window. Check #2.
385 *
386 * The scheme does not work when sender sends good segments opening
387 * window and then starts to feed us spaghetti. But it should work
388 * in common situations. Otherwise, we have to rely on queue collapsing.
389 */
390
391 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb)392 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
393 {
394 struct tcp_sock *tp = tcp_sk(sk);
395 /* Optimize this! */
396 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
397 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
398
399 while (tp->rcv_ssthresh <= window) {
400 if (truesize <= skb->len)
401 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
402
403 truesize >>= 1;
404 window >>= 1;
405 }
406 return 0;
407 }
408
tcp_grow_window(struct sock * sk,const struct sk_buff * skb)409 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
410 {
411 struct tcp_sock *tp = tcp_sk(sk);
412 int room;
413
414 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
415
416 /* Check #1 */
417 if (room > 0 && !tcp_under_memory_pressure(sk)) {
418 int incr;
419
420 /* Check #2. Increase window, if skb with such overhead
421 * will fit to rcvbuf in future.
422 */
423 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
424 incr = 2 * tp->advmss;
425 else
426 incr = __tcp_grow_window(sk, skb);
427
428 if (incr) {
429 incr = max_t(int, incr, 2 * skb->len);
430 tp->rcv_ssthresh += min(room, incr);
431 inet_csk(sk)->icsk_ack.quick |= 1;
432 }
433 }
434 }
435
436 /* 3. Try to fixup all. It is made immediately after connection enters
437 * established state.
438 */
tcp_init_buffer_space(struct sock * sk)439 void tcp_init_buffer_space(struct sock *sk)
440 {
441 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
442 struct tcp_sock *tp = tcp_sk(sk);
443 int maxwin;
444
445 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
446 tcp_sndbuf_expand(sk);
447
448 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
449 tcp_mstamp_refresh(tp);
450 tp->rcvq_space.time = tp->tcp_mstamp;
451 tp->rcvq_space.seq = tp->copied_seq;
452
453 maxwin = tcp_full_space(sk);
454
455 if (tp->window_clamp >= maxwin) {
456 tp->window_clamp = maxwin;
457
458 if (tcp_app_win && maxwin > 4 * tp->advmss)
459 tp->window_clamp = max(maxwin -
460 (maxwin >> tcp_app_win),
461 4 * tp->advmss);
462 }
463
464 /* Force reservation of one segment. */
465 if (tcp_app_win &&
466 tp->window_clamp > 2 * tp->advmss &&
467 tp->window_clamp + tp->advmss > maxwin)
468 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
469
470 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
471 tp->snd_cwnd_stamp = tcp_jiffies32;
472 }
473
474 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)475 static void tcp_clamp_window(struct sock *sk)
476 {
477 struct tcp_sock *tp = tcp_sk(sk);
478 struct inet_connection_sock *icsk = inet_csk(sk);
479 struct net *net = sock_net(sk);
480
481 icsk->icsk_ack.quick = 0;
482
483 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
484 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
485 !tcp_under_memory_pressure(sk) &&
486 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
487 WRITE_ONCE(sk->sk_rcvbuf,
488 min(atomic_read(&sk->sk_rmem_alloc),
489 net->ipv4.sysctl_tcp_rmem[2]));
490 }
491 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
492 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
493 }
494
495 /* Initialize RCV_MSS value.
496 * RCV_MSS is an our guess about MSS used by the peer.
497 * We haven't any direct information about the MSS.
498 * It's better to underestimate the RCV_MSS rather than overestimate.
499 * Overestimations make us ACKing less frequently than needed.
500 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
501 */
tcp_initialize_rcv_mss(struct sock * sk)502 void tcp_initialize_rcv_mss(struct sock *sk)
503 {
504 const struct tcp_sock *tp = tcp_sk(sk);
505 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
506
507 hint = min(hint, tp->rcv_wnd / 2);
508 hint = min(hint, TCP_MSS_DEFAULT);
509 hint = max(hint, TCP_MIN_MSS);
510
511 inet_csk(sk)->icsk_ack.rcv_mss = hint;
512 }
513 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
514
515 /* Receiver "autotuning" code.
516 *
517 * The algorithm for RTT estimation w/o timestamps is based on
518 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
519 * <http://public.lanl.gov/radiant/pubs.html#DRS>
520 *
521 * More detail on this code can be found at
522 * <http://staff.psc.edu/jheffner/>,
523 * though this reference is out of date. A new paper
524 * is pending.
525 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)526 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
527 {
528 u32 new_sample = tp->rcv_rtt_est.rtt_us;
529 long m = sample;
530
531 if (new_sample != 0) {
532 /* If we sample in larger samples in the non-timestamp
533 * case, we could grossly overestimate the RTT especially
534 * with chatty applications or bulk transfer apps which
535 * are stalled on filesystem I/O.
536 *
537 * Also, since we are only going for a minimum in the
538 * non-timestamp case, we do not smooth things out
539 * else with timestamps disabled convergence takes too
540 * long.
541 */
542 if (!win_dep) {
543 m -= (new_sample >> 3);
544 new_sample += m;
545 } else {
546 m <<= 3;
547 if (m < new_sample)
548 new_sample = m;
549 }
550 } else {
551 /* No previous measure. */
552 new_sample = m << 3;
553 }
554
555 tp->rcv_rtt_est.rtt_us = new_sample;
556 }
557
tcp_rcv_rtt_measure(struct tcp_sock * tp)558 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
559 {
560 u32 delta_us;
561
562 if (tp->rcv_rtt_est.time == 0)
563 goto new_measure;
564 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
565 return;
566 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
567 if (!delta_us)
568 delta_us = 1;
569 tcp_rcv_rtt_update(tp, delta_us, 1);
570
571 new_measure:
572 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
573 tp->rcv_rtt_est.time = tp->tcp_mstamp;
574 }
575
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)576 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
577 const struct sk_buff *skb)
578 {
579 struct tcp_sock *tp = tcp_sk(sk);
580
581 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
582 return;
583 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
584
585 if (TCP_SKB_CB(skb)->end_seq -
586 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
587 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
588 u32 delta_us;
589
590 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
591 if (!delta)
592 delta = 1;
593 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
594 tcp_rcv_rtt_update(tp, delta_us, 0);
595 }
596 }
597 }
598
599 /*
600 * This function should be called every time data is copied to user space.
601 * It calculates the appropriate TCP receive buffer space.
602 */
tcp_rcv_space_adjust(struct sock * sk)603 void tcp_rcv_space_adjust(struct sock *sk)
604 {
605 struct tcp_sock *tp = tcp_sk(sk);
606 u32 copied;
607 int time;
608
609 trace_tcp_rcv_space_adjust(sk);
610
611 tcp_mstamp_refresh(tp);
612 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
613 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
614 return;
615
616 /* Number of bytes copied to user in last RTT */
617 copied = tp->copied_seq - tp->rcvq_space.seq;
618 if (copied <= tp->rcvq_space.space)
619 goto new_measure;
620
621 /* A bit of theory :
622 * copied = bytes received in previous RTT, our base window
623 * To cope with packet losses, we need a 2x factor
624 * To cope with slow start, and sender growing its cwin by 100 %
625 * every RTT, we need a 4x factor, because the ACK we are sending
626 * now is for the next RTT, not the current one :
627 * <prev RTT . ><current RTT .. ><next RTT .... >
628 */
629
630 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
631 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
632 int rcvmem, rcvbuf;
633 u64 rcvwin, grow;
634
635 /* minimal window to cope with packet losses, assuming
636 * steady state. Add some cushion because of small variations.
637 */
638 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
639
640 /* Accommodate for sender rate increase (eg. slow start) */
641 grow = rcvwin * (copied - tp->rcvq_space.space);
642 do_div(grow, tp->rcvq_space.space);
643 rcvwin += (grow << 1);
644
645 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
646 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
647 rcvmem += 128;
648
649 do_div(rcvwin, tp->advmss);
650 rcvbuf = min_t(u64, rcvwin * rcvmem,
651 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
652 if (rcvbuf > sk->sk_rcvbuf) {
653 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
654
655 /* Make the window clamp follow along. */
656 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
657 }
658 }
659 tp->rcvq_space.space = copied;
660
661 new_measure:
662 tp->rcvq_space.seq = tp->copied_seq;
663 tp->rcvq_space.time = tp->tcp_mstamp;
664 }
665
666 /* There is something which you must keep in mind when you analyze the
667 * behavior of the tp->ato delayed ack timeout interval. When a
668 * connection starts up, we want to ack as quickly as possible. The
669 * problem is that "good" TCP's do slow start at the beginning of data
670 * transmission. The means that until we send the first few ACK's the
671 * sender will sit on his end and only queue most of his data, because
672 * he can only send snd_cwnd unacked packets at any given time. For
673 * each ACK we send, he increments snd_cwnd and transmits more of his
674 * queue. -DaveM
675 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)676 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
677 {
678 struct tcp_sock *tp = tcp_sk(sk);
679 struct inet_connection_sock *icsk = inet_csk(sk);
680 u32 now;
681
682 inet_csk_schedule_ack(sk);
683
684 tcp_measure_rcv_mss(sk, skb);
685
686 tcp_rcv_rtt_measure(tp);
687
688 now = tcp_jiffies32;
689
690 if (!icsk->icsk_ack.ato) {
691 /* The _first_ data packet received, initialize
692 * delayed ACK engine.
693 */
694 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
695 icsk->icsk_ack.ato = TCP_ATO_MIN;
696 } else {
697 int m = now - icsk->icsk_ack.lrcvtime;
698
699 if (m <= TCP_ATO_MIN / 2) {
700 /* The fastest case is the first. */
701 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
702 } else if (m < icsk->icsk_ack.ato) {
703 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
704 if (icsk->icsk_ack.ato > icsk->icsk_rto)
705 icsk->icsk_ack.ato = icsk->icsk_rto;
706 } else if (m > icsk->icsk_rto) {
707 /* Too long gap. Apparently sender failed to
708 * restart window, so that we send ACKs quickly.
709 */
710 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
711 sk_mem_reclaim(sk);
712 }
713 }
714 icsk->icsk_ack.lrcvtime = now;
715
716 tcp_ecn_check_ce(sk, skb);
717
718 if (skb->len >= 128)
719 tcp_grow_window(sk, skb);
720 }
721
722 /* Called to compute a smoothed rtt estimate. The data fed to this
723 * routine either comes from timestamps, or from segments that were
724 * known _not_ to have been retransmitted [see Karn/Partridge
725 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
726 * piece by Van Jacobson.
727 * NOTE: the next three routines used to be one big routine.
728 * To save cycles in the RFC 1323 implementation it was better to break
729 * it up into three procedures. -- erics
730 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)731 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
732 {
733 struct tcp_sock *tp = tcp_sk(sk);
734 long m = mrtt_us; /* RTT */
735 u32 srtt = tp->srtt_us;
736
737 /* The following amusing code comes from Jacobson's
738 * article in SIGCOMM '88. Note that rtt and mdev
739 * are scaled versions of rtt and mean deviation.
740 * This is designed to be as fast as possible
741 * m stands for "measurement".
742 *
743 * On a 1990 paper the rto value is changed to:
744 * RTO = rtt + 4 * mdev
745 *
746 * Funny. This algorithm seems to be very broken.
747 * These formulae increase RTO, when it should be decreased, increase
748 * too slowly, when it should be increased quickly, decrease too quickly
749 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
750 * does not matter how to _calculate_ it. Seems, it was trap
751 * that VJ failed to avoid. 8)
752 */
753 if (srtt != 0) {
754 m -= (srtt >> 3); /* m is now error in rtt est */
755 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
756 if (m < 0) {
757 m = -m; /* m is now abs(error) */
758 m -= (tp->mdev_us >> 2); /* similar update on mdev */
759 /* This is similar to one of Eifel findings.
760 * Eifel blocks mdev updates when rtt decreases.
761 * This solution is a bit different: we use finer gain
762 * for mdev in this case (alpha*beta).
763 * Like Eifel it also prevents growth of rto,
764 * but also it limits too fast rto decreases,
765 * happening in pure Eifel.
766 */
767 if (m > 0)
768 m >>= 3;
769 } else {
770 m -= (tp->mdev_us >> 2); /* similar update on mdev */
771 }
772 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
773 if (tp->mdev_us > tp->mdev_max_us) {
774 tp->mdev_max_us = tp->mdev_us;
775 if (tp->mdev_max_us > tp->rttvar_us)
776 tp->rttvar_us = tp->mdev_max_us;
777 }
778 if (after(tp->snd_una, tp->rtt_seq)) {
779 if (tp->mdev_max_us < tp->rttvar_us)
780 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
781 tp->rtt_seq = tp->snd_nxt;
782 tp->mdev_max_us = tcp_rto_min_us(sk);
783
784 tcp_bpf_rtt(sk);
785 }
786 } else {
787 /* no previous measure. */
788 srtt = m << 3; /* take the measured time to be rtt */
789 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
790 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
791 tp->mdev_max_us = tp->rttvar_us;
792 tp->rtt_seq = tp->snd_nxt;
793
794 tcp_bpf_rtt(sk);
795 }
796 tp->srtt_us = max(1U, srtt);
797 }
798
tcp_update_pacing_rate(struct sock * sk)799 static void tcp_update_pacing_rate(struct sock *sk)
800 {
801 const struct tcp_sock *tp = tcp_sk(sk);
802 u64 rate;
803
804 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
805 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
806
807 /* current rate is (cwnd * mss) / srtt
808 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
809 * In Congestion Avoidance phase, set it to 120 % the current rate.
810 *
811 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
812 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
813 * end of slow start and should slow down.
814 */
815 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
816 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
817 else
818 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
819
820 rate *= max(tp->snd_cwnd, tp->packets_out);
821
822 if (likely(tp->srtt_us))
823 do_div(rate, tp->srtt_us);
824
825 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
826 * without any lock. We want to make sure compiler wont store
827 * intermediate values in this location.
828 */
829 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
830 sk->sk_max_pacing_rate));
831 }
832
833 /* Calculate rto without backoff. This is the second half of Van Jacobson's
834 * routine referred to above.
835 */
tcp_set_rto(struct sock * sk)836 static void tcp_set_rto(struct sock *sk)
837 {
838 const struct tcp_sock *tp = tcp_sk(sk);
839 /* Old crap is replaced with new one. 8)
840 *
841 * More seriously:
842 * 1. If rtt variance happened to be less 50msec, it is hallucination.
843 * It cannot be less due to utterly erratic ACK generation made
844 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
845 * to do with delayed acks, because at cwnd>2 true delack timeout
846 * is invisible. Actually, Linux-2.4 also generates erratic
847 * ACKs in some circumstances.
848 */
849 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
850
851 /* 2. Fixups made earlier cannot be right.
852 * If we do not estimate RTO correctly without them,
853 * all the algo is pure shit and should be replaced
854 * with correct one. It is exactly, which we pretend to do.
855 */
856
857 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
858 * guarantees that rto is higher.
859 */
860 tcp_bound_rto(sk);
861 }
862
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)863 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
864 {
865 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
866
867 if (!cwnd)
868 cwnd = TCP_INIT_CWND;
869 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
870 }
871
872 /* Take a notice that peer is sending D-SACKs */
tcp_dsack_seen(struct tcp_sock * tp)873 static void tcp_dsack_seen(struct tcp_sock *tp)
874 {
875 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
876 tp->rack.dsack_seen = 1;
877 tp->dsack_dups++;
878 }
879
880 /* It's reordering when higher sequence was delivered (i.e. sacked) before
881 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
882 * distance is approximated in full-mss packet distance ("reordering").
883 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)884 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
885 const int ts)
886 {
887 struct tcp_sock *tp = tcp_sk(sk);
888 const u32 mss = tp->mss_cache;
889 u32 fack, metric;
890
891 fack = tcp_highest_sack_seq(tp);
892 if (!before(low_seq, fack))
893 return;
894
895 metric = fack - low_seq;
896 if ((metric > tp->reordering * mss) && mss) {
897 #if FASTRETRANS_DEBUG > 1
898 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
899 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
900 tp->reordering,
901 0,
902 tp->sacked_out,
903 tp->undo_marker ? tp->undo_retrans : 0);
904 #endif
905 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
906 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
907 }
908
909 /* This exciting event is worth to be remembered. 8) */
910 tp->reord_seen++;
911 NET_INC_STATS(sock_net(sk),
912 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
913 }
914
915 /* This must be called before lost_out is incremented */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)916 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
917 {
918 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
919 (tp->retransmit_skb_hint &&
920 before(TCP_SKB_CB(skb)->seq,
921 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
922 tp->retransmit_skb_hint = skb;
923 }
924
925 /* Sum the number of packets on the wire we have marked as lost.
926 * There are two cases we care about here:
927 * a) Packet hasn't been marked lost (nor retransmitted),
928 * and this is the first loss.
929 * b) Packet has been marked both lost and retransmitted,
930 * and this means we think it was lost again.
931 */
tcp_sum_lost(struct tcp_sock * tp,struct sk_buff * skb)932 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
933 {
934 __u8 sacked = TCP_SKB_CB(skb)->sacked;
935
936 if (!(sacked & TCPCB_LOST) ||
937 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
938 tp->lost += tcp_skb_pcount(skb);
939 }
940
tcp_skb_mark_lost(struct tcp_sock * tp,struct sk_buff * skb)941 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
942 {
943 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
944 tcp_verify_retransmit_hint(tp, skb);
945
946 tp->lost_out += tcp_skb_pcount(skb);
947 tcp_sum_lost(tp, skb);
948 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
949 }
950 }
951
tcp_skb_mark_lost_uncond_verify(struct tcp_sock * tp,struct sk_buff * skb)952 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
953 {
954 tcp_verify_retransmit_hint(tp, skb);
955
956 tcp_sum_lost(tp, skb);
957 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
958 tp->lost_out += tcp_skb_pcount(skb);
959 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
960 }
961 }
962
963 /* This procedure tags the retransmission queue when SACKs arrive.
964 *
965 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
966 * Packets in queue with these bits set are counted in variables
967 * sacked_out, retrans_out and lost_out, correspondingly.
968 *
969 * Valid combinations are:
970 * Tag InFlight Description
971 * 0 1 - orig segment is in flight.
972 * S 0 - nothing flies, orig reached receiver.
973 * L 0 - nothing flies, orig lost by net.
974 * R 2 - both orig and retransmit are in flight.
975 * L|R 1 - orig is lost, retransmit is in flight.
976 * S|R 1 - orig reached receiver, retrans is still in flight.
977 * (L|S|R is logically valid, it could occur when L|R is sacked,
978 * but it is equivalent to plain S and code short-curcuits it to S.
979 * L|S is logically invalid, it would mean -1 packet in flight 8))
980 *
981 * These 6 states form finite state machine, controlled by the following events:
982 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
983 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
984 * 3. Loss detection event of two flavors:
985 * A. Scoreboard estimator decided the packet is lost.
986 * A'. Reno "three dupacks" marks head of queue lost.
987 * B. SACK arrives sacking SND.NXT at the moment, when the
988 * segment was retransmitted.
989 * 4. D-SACK added new rule: D-SACK changes any tag to S.
990 *
991 * It is pleasant to note, that state diagram turns out to be commutative,
992 * so that we are allowed not to be bothered by order of our actions,
993 * when multiple events arrive simultaneously. (see the function below).
994 *
995 * Reordering detection.
996 * --------------------
997 * Reordering metric is maximal distance, which a packet can be displaced
998 * in packet stream. With SACKs we can estimate it:
999 *
1000 * 1. SACK fills old hole and the corresponding segment was not
1001 * ever retransmitted -> reordering. Alas, we cannot use it
1002 * when segment was retransmitted.
1003 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1004 * for retransmitted and already SACKed segment -> reordering..
1005 * Both of these heuristics are not used in Loss state, when we cannot
1006 * account for retransmits accurately.
1007 *
1008 * SACK block validation.
1009 * ----------------------
1010 *
1011 * SACK block range validation checks that the received SACK block fits to
1012 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1013 * Note that SND.UNA is not included to the range though being valid because
1014 * it means that the receiver is rather inconsistent with itself reporting
1015 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1016 * perfectly valid, however, in light of RFC2018 which explicitly states
1017 * that "SACK block MUST reflect the newest segment. Even if the newest
1018 * segment is going to be discarded ...", not that it looks very clever
1019 * in case of head skb. Due to potentional receiver driven attacks, we
1020 * choose to avoid immediate execution of a walk in write queue due to
1021 * reneging and defer head skb's loss recovery to standard loss recovery
1022 * procedure that will eventually trigger (nothing forbids us doing this).
1023 *
1024 * Implements also blockage to start_seq wrap-around. Problem lies in the
1025 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1026 * there's no guarantee that it will be before snd_nxt (n). The problem
1027 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1028 * wrap (s_w):
1029 *
1030 * <- outs wnd -> <- wrapzone ->
1031 * u e n u_w e_w s n_w
1032 * | | | | | | |
1033 * |<------------+------+----- TCP seqno space --------------+---------->|
1034 * ...-- <2^31 ->| |<--------...
1035 * ...---- >2^31 ------>| |<--------...
1036 *
1037 * Current code wouldn't be vulnerable but it's better still to discard such
1038 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1039 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1040 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1041 * equal to the ideal case (infinite seqno space without wrap caused issues).
1042 *
1043 * With D-SACK the lower bound is extended to cover sequence space below
1044 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1045 * again, D-SACK block must not to go across snd_una (for the same reason as
1046 * for the normal SACK blocks, explained above). But there all simplicity
1047 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1048 * fully below undo_marker they do not affect behavior in anyway and can
1049 * therefore be safely ignored. In rare cases (which are more or less
1050 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1051 * fragmentation and packet reordering past skb's retransmission. To consider
1052 * them correctly, the acceptable range must be extended even more though
1053 * the exact amount is rather hard to quantify. However, tp->max_window can
1054 * be used as an exaggerated estimate.
1055 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1056 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1057 u32 start_seq, u32 end_seq)
1058 {
1059 /* Too far in future, or reversed (interpretation is ambiguous) */
1060 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1061 return false;
1062
1063 /* Nasty start_seq wrap-around check (see comments above) */
1064 if (!before(start_seq, tp->snd_nxt))
1065 return false;
1066
1067 /* In outstanding window? ...This is valid exit for D-SACKs too.
1068 * start_seq == snd_una is non-sensical (see comments above)
1069 */
1070 if (after(start_seq, tp->snd_una))
1071 return true;
1072
1073 if (!is_dsack || !tp->undo_marker)
1074 return false;
1075
1076 /* ...Then it's D-SACK, and must reside below snd_una completely */
1077 if (after(end_seq, tp->snd_una))
1078 return false;
1079
1080 if (!before(start_seq, tp->undo_marker))
1081 return true;
1082
1083 /* Too old */
1084 if (!after(end_seq, tp->undo_marker))
1085 return false;
1086
1087 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1088 * start_seq < undo_marker and end_seq >= undo_marker.
1089 */
1090 return !before(start_seq, end_seq - tp->max_window);
1091 }
1092
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una)1093 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1094 struct tcp_sack_block_wire *sp, int num_sacks,
1095 u32 prior_snd_una)
1096 {
1097 struct tcp_sock *tp = tcp_sk(sk);
1098 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1099 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1100 bool dup_sack = false;
1101
1102 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1103 dup_sack = true;
1104 tcp_dsack_seen(tp);
1105 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1106 } else if (num_sacks > 1) {
1107 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1108 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1109
1110 if (!after(end_seq_0, end_seq_1) &&
1111 !before(start_seq_0, start_seq_1)) {
1112 dup_sack = true;
1113 tcp_dsack_seen(tp);
1114 NET_INC_STATS(sock_net(sk),
1115 LINUX_MIB_TCPDSACKOFORECV);
1116 }
1117 }
1118
1119 /* D-SACK for already forgotten data... Do dumb counting. */
1120 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1121 !after(end_seq_0, prior_snd_una) &&
1122 after(end_seq_0, tp->undo_marker))
1123 tp->undo_retrans--;
1124
1125 return dup_sack;
1126 }
1127
1128 struct tcp_sacktag_state {
1129 u32 reord;
1130 /* Timestamps for earliest and latest never-retransmitted segment
1131 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1132 * but congestion control should still get an accurate delay signal.
1133 */
1134 u64 first_sackt;
1135 u64 last_sackt;
1136 struct rate_sample *rate;
1137 int flag;
1138 unsigned int mss_now;
1139 };
1140
1141 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1142 * the incoming SACK may not exactly match but we can find smaller MSS
1143 * aligned portion of it that matches. Therefore we might need to fragment
1144 * which may fail and creates some hassle (caller must handle error case
1145 * returns).
1146 *
1147 * FIXME: this could be merged to shift decision code
1148 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1149 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1150 u32 start_seq, u32 end_seq)
1151 {
1152 int err;
1153 bool in_sack;
1154 unsigned int pkt_len;
1155 unsigned int mss;
1156
1157 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1158 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1159
1160 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1161 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1162 mss = tcp_skb_mss(skb);
1163 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1164
1165 if (!in_sack) {
1166 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1167 if (pkt_len < mss)
1168 pkt_len = mss;
1169 } else {
1170 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1171 if (pkt_len < mss)
1172 return -EINVAL;
1173 }
1174
1175 /* Round if necessary so that SACKs cover only full MSSes
1176 * and/or the remaining small portion (if present)
1177 */
1178 if (pkt_len > mss) {
1179 unsigned int new_len = (pkt_len / mss) * mss;
1180 if (!in_sack && new_len < pkt_len)
1181 new_len += mss;
1182 pkt_len = new_len;
1183 }
1184
1185 if (pkt_len >= skb->len && !in_sack)
1186 return 0;
1187
1188 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1189 pkt_len, mss, GFP_ATOMIC);
1190 if (err < 0)
1191 return err;
1192 }
1193
1194 return in_sack;
1195 }
1196
1197 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1198 static u8 tcp_sacktag_one(struct sock *sk,
1199 struct tcp_sacktag_state *state, u8 sacked,
1200 u32 start_seq, u32 end_seq,
1201 int dup_sack, int pcount,
1202 u64 xmit_time)
1203 {
1204 struct tcp_sock *tp = tcp_sk(sk);
1205
1206 /* Account D-SACK for retransmitted packet. */
1207 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1208 if (tp->undo_marker && tp->undo_retrans > 0 &&
1209 after(end_seq, tp->undo_marker))
1210 tp->undo_retrans--;
1211 if ((sacked & TCPCB_SACKED_ACKED) &&
1212 before(start_seq, state->reord))
1213 state->reord = start_seq;
1214 }
1215
1216 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1217 if (!after(end_seq, tp->snd_una))
1218 return sacked;
1219
1220 if (!(sacked & TCPCB_SACKED_ACKED)) {
1221 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1222
1223 if (sacked & TCPCB_SACKED_RETRANS) {
1224 /* If the segment is not tagged as lost,
1225 * we do not clear RETRANS, believing
1226 * that retransmission is still in flight.
1227 */
1228 if (sacked & TCPCB_LOST) {
1229 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1230 tp->lost_out -= pcount;
1231 tp->retrans_out -= pcount;
1232 }
1233 } else {
1234 if (!(sacked & TCPCB_RETRANS)) {
1235 /* New sack for not retransmitted frame,
1236 * which was in hole. It is reordering.
1237 */
1238 if (before(start_seq,
1239 tcp_highest_sack_seq(tp)) &&
1240 before(start_seq, state->reord))
1241 state->reord = start_seq;
1242
1243 if (!after(end_seq, tp->high_seq))
1244 state->flag |= FLAG_ORIG_SACK_ACKED;
1245 if (state->first_sackt == 0)
1246 state->first_sackt = xmit_time;
1247 state->last_sackt = xmit_time;
1248 }
1249
1250 if (sacked & TCPCB_LOST) {
1251 sacked &= ~TCPCB_LOST;
1252 tp->lost_out -= pcount;
1253 }
1254 }
1255
1256 sacked |= TCPCB_SACKED_ACKED;
1257 state->flag |= FLAG_DATA_SACKED;
1258 tp->sacked_out += pcount;
1259 tp->delivered += pcount; /* Out-of-order packets delivered */
1260
1261 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1262 if (tp->lost_skb_hint &&
1263 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1264 tp->lost_cnt_hint += pcount;
1265 }
1266
1267 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1268 * frames and clear it. undo_retrans is decreased above, L|R frames
1269 * are accounted above as well.
1270 */
1271 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1272 sacked &= ~TCPCB_SACKED_RETRANS;
1273 tp->retrans_out -= pcount;
1274 }
1275
1276 return sacked;
1277 }
1278
1279 /* Shift newly-SACKed bytes from this skb to the immediately previous
1280 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1281 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1282 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1283 struct sk_buff *skb,
1284 struct tcp_sacktag_state *state,
1285 unsigned int pcount, int shifted, int mss,
1286 bool dup_sack)
1287 {
1288 struct tcp_sock *tp = tcp_sk(sk);
1289 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1290 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1291
1292 BUG_ON(!pcount);
1293
1294 /* Adjust counters and hints for the newly sacked sequence
1295 * range but discard the return value since prev is already
1296 * marked. We must tag the range first because the seq
1297 * advancement below implicitly advances
1298 * tcp_highest_sack_seq() when skb is highest_sack.
1299 */
1300 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1301 start_seq, end_seq, dup_sack, pcount,
1302 tcp_skb_timestamp_us(skb));
1303 tcp_rate_skb_delivered(sk, skb, state->rate);
1304
1305 if (skb == tp->lost_skb_hint)
1306 tp->lost_cnt_hint += pcount;
1307
1308 TCP_SKB_CB(prev)->end_seq += shifted;
1309 TCP_SKB_CB(skb)->seq += shifted;
1310
1311 tcp_skb_pcount_add(prev, pcount);
1312 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1313 tcp_skb_pcount_add(skb, -pcount);
1314
1315 /* When we're adding to gso_segs == 1, gso_size will be zero,
1316 * in theory this shouldn't be necessary but as long as DSACK
1317 * code can come after this skb later on it's better to keep
1318 * setting gso_size to something.
1319 */
1320 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1321 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1322
1323 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1324 if (tcp_skb_pcount(skb) <= 1)
1325 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1326
1327 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1328 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1329
1330 if (skb->len > 0) {
1331 BUG_ON(!tcp_skb_pcount(skb));
1332 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1333 return false;
1334 }
1335
1336 /* Whole SKB was eaten :-) */
1337
1338 if (skb == tp->retransmit_skb_hint)
1339 tp->retransmit_skb_hint = prev;
1340 if (skb == tp->lost_skb_hint) {
1341 tp->lost_skb_hint = prev;
1342 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1343 }
1344
1345 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1346 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1347 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1348 TCP_SKB_CB(prev)->end_seq++;
1349
1350 if (skb == tcp_highest_sack(sk))
1351 tcp_advance_highest_sack(sk, skb);
1352
1353 tcp_skb_collapse_tstamp(prev, skb);
1354 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1355 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1356
1357 tcp_rtx_queue_unlink_and_free(skb, sk);
1358
1359 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1360
1361 return true;
1362 }
1363
1364 /* I wish gso_size would have a bit more sane initialization than
1365 * something-or-zero which complicates things
1366 */
tcp_skb_seglen(const struct sk_buff * skb)1367 static int tcp_skb_seglen(const struct sk_buff *skb)
1368 {
1369 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1370 }
1371
1372 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1373 static int skb_can_shift(const struct sk_buff *skb)
1374 {
1375 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1376 }
1377
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1378 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1379 int pcount, int shiftlen)
1380 {
1381 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1382 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1383 * to make sure not storing more than 65535 * 8 bytes per skb,
1384 * even if current MSS is bigger.
1385 */
1386 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1387 return 0;
1388 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1389 return 0;
1390 return skb_shift(to, from, shiftlen);
1391 }
1392
1393 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1394 * skb.
1395 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1396 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1397 struct tcp_sacktag_state *state,
1398 u32 start_seq, u32 end_seq,
1399 bool dup_sack)
1400 {
1401 struct tcp_sock *tp = tcp_sk(sk);
1402 struct sk_buff *prev;
1403 int mss;
1404 int pcount = 0;
1405 int len;
1406 int in_sack;
1407
1408 /* Normally R but no L won't result in plain S */
1409 if (!dup_sack &&
1410 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1411 goto fallback;
1412 if (!skb_can_shift(skb))
1413 goto fallback;
1414 /* This frame is about to be dropped (was ACKed). */
1415 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1416 goto fallback;
1417
1418 /* Can only happen with delayed DSACK + discard craziness */
1419 prev = skb_rb_prev(skb);
1420 if (!prev)
1421 goto fallback;
1422
1423 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1424 goto fallback;
1425
1426 if (!tcp_skb_can_collapse_to(prev))
1427 goto fallback;
1428
1429 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1430 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1431
1432 if (in_sack) {
1433 len = skb->len;
1434 pcount = tcp_skb_pcount(skb);
1435 mss = tcp_skb_seglen(skb);
1436
1437 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1438 * drop this restriction as unnecessary
1439 */
1440 if (mss != tcp_skb_seglen(prev))
1441 goto fallback;
1442 } else {
1443 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1444 goto noop;
1445 /* CHECKME: This is non-MSS split case only?, this will
1446 * cause skipped skbs due to advancing loop btw, original
1447 * has that feature too
1448 */
1449 if (tcp_skb_pcount(skb) <= 1)
1450 goto noop;
1451
1452 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1453 if (!in_sack) {
1454 /* TODO: head merge to next could be attempted here
1455 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1456 * though it might not be worth of the additional hassle
1457 *
1458 * ...we can probably just fallback to what was done
1459 * previously. We could try merging non-SACKed ones
1460 * as well but it probably isn't going to buy off
1461 * because later SACKs might again split them, and
1462 * it would make skb timestamp tracking considerably
1463 * harder problem.
1464 */
1465 goto fallback;
1466 }
1467
1468 len = end_seq - TCP_SKB_CB(skb)->seq;
1469 BUG_ON(len < 0);
1470 BUG_ON(len > skb->len);
1471
1472 /* MSS boundaries should be honoured or else pcount will
1473 * severely break even though it makes things bit trickier.
1474 * Optimize common case to avoid most of the divides
1475 */
1476 mss = tcp_skb_mss(skb);
1477
1478 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1479 * drop this restriction as unnecessary
1480 */
1481 if (mss != tcp_skb_seglen(prev))
1482 goto fallback;
1483
1484 if (len == mss) {
1485 pcount = 1;
1486 } else if (len < mss) {
1487 goto noop;
1488 } else {
1489 pcount = len / mss;
1490 len = pcount * mss;
1491 }
1492 }
1493
1494 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1495 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1496 goto fallback;
1497
1498 if (!tcp_skb_shift(prev, skb, pcount, len))
1499 goto fallback;
1500 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1501 goto out;
1502
1503 /* Hole filled allows collapsing with the next as well, this is very
1504 * useful when hole on every nth skb pattern happens
1505 */
1506 skb = skb_rb_next(prev);
1507 if (!skb)
1508 goto out;
1509
1510 if (!skb_can_shift(skb) ||
1511 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1512 (mss != tcp_skb_seglen(skb)))
1513 goto out;
1514
1515 len = skb->len;
1516 pcount = tcp_skb_pcount(skb);
1517 if (tcp_skb_shift(prev, skb, pcount, len))
1518 tcp_shifted_skb(sk, prev, skb, state, pcount,
1519 len, mss, 0);
1520
1521 out:
1522 return prev;
1523
1524 noop:
1525 return skb;
1526
1527 fallback:
1528 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1529 return NULL;
1530 }
1531
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1532 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1533 struct tcp_sack_block *next_dup,
1534 struct tcp_sacktag_state *state,
1535 u32 start_seq, u32 end_seq,
1536 bool dup_sack_in)
1537 {
1538 struct tcp_sock *tp = tcp_sk(sk);
1539 struct sk_buff *tmp;
1540
1541 skb_rbtree_walk_from(skb) {
1542 int in_sack = 0;
1543 bool dup_sack = dup_sack_in;
1544
1545 /* queue is in-order => we can short-circuit the walk early */
1546 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1547 break;
1548
1549 if (next_dup &&
1550 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1551 in_sack = tcp_match_skb_to_sack(sk, skb,
1552 next_dup->start_seq,
1553 next_dup->end_seq);
1554 if (in_sack > 0)
1555 dup_sack = true;
1556 }
1557
1558 /* skb reference here is a bit tricky to get right, since
1559 * shifting can eat and free both this skb and the next,
1560 * so not even _safe variant of the loop is enough.
1561 */
1562 if (in_sack <= 0) {
1563 tmp = tcp_shift_skb_data(sk, skb, state,
1564 start_seq, end_seq, dup_sack);
1565 if (tmp) {
1566 if (tmp != skb) {
1567 skb = tmp;
1568 continue;
1569 }
1570
1571 in_sack = 0;
1572 } else {
1573 in_sack = tcp_match_skb_to_sack(sk, skb,
1574 start_seq,
1575 end_seq);
1576 }
1577 }
1578
1579 if (unlikely(in_sack < 0))
1580 break;
1581
1582 if (in_sack) {
1583 TCP_SKB_CB(skb)->sacked =
1584 tcp_sacktag_one(sk,
1585 state,
1586 TCP_SKB_CB(skb)->sacked,
1587 TCP_SKB_CB(skb)->seq,
1588 TCP_SKB_CB(skb)->end_seq,
1589 dup_sack,
1590 tcp_skb_pcount(skb),
1591 tcp_skb_timestamp_us(skb));
1592 tcp_rate_skb_delivered(sk, skb, state->rate);
1593 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1594 list_del_init(&skb->tcp_tsorted_anchor);
1595
1596 if (!before(TCP_SKB_CB(skb)->seq,
1597 tcp_highest_sack_seq(tp)))
1598 tcp_advance_highest_sack(sk, skb);
1599 }
1600 }
1601 return skb;
1602 }
1603
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1604 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1605 {
1606 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1607 struct sk_buff *skb;
1608
1609 while (*p) {
1610 parent = *p;
1611 skb = rb_to_skb(parent);
1612 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1613 p = &parent->rb_left;
1614 continue;
1615 }
1616 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1617 p = &parent->rb_right;
1618 continue;
1619 }
1620 return skb;
1621 }
1622 return NULL;
1623 }
1624
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1625 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1626 u32 skip_to_seq)
1627 {
1628 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1629 return skb;
1630
1631 return tcp_sacktag_bsearch(sk, skip_to_seq);
1632 }
1633
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1634 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1635 struct sock *sk,
1636 struct tcp_sack_block *next_dup,
1637 struct tcp_sacktag_state *state,
1638 u32 skip_to_seq)
1639 {
1640 if (!next_dup)
1641 return skb;
1642
1643 if (before(next_dup->start_seq, skip_to_seq)) {
1644 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1645 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1646 next_dup->start_seq, next_dup->end_seq,
1647 1);
1648 }
1649
1650 return skb;
1651 }
1652
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1653 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1654 {
1655 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1656 }
1657
1658 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1659 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1660 u32 prior_snd_una, struct tcp_sacktag_state *state)
1661 {
1662 struct tcp_sock *tp = tcp_sk(sk);
1663 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1664 TCP_SKB_CB(ack_skb)->sacked);
1665 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1666 struct tcp_sack_block sp[TCP_NUM_SACKS];
1667 struct tcp_sack_block *cache;
1668 struct sk_buff *skb;
1669 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1670 int used_sacks;
1671 bool found_dup_sack = false;
1672 int i, j;
1673 int first_sack_index;
1674
1675 state->flag = 0;
1676 state->reord = tp->snd_nxt;
1677
1678 if (!tp->sacked_out)
1679 tcp_highest_sack_reset(sk);
1680
1681 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1682 num_sacks, prior_snd_una);
1683 if (found_dup_sack) {
1684 state->flag |= FLAG_DSACKING_ACK;
1685 tp->delivered++; /* A spurious retransmission is delivered */
1686 }
1687
1688 /* Eliminate too old ACKs, but take into
1689 * account more or less fresh ones, they can
1690 * contain valid SACK info.
1691 */
1692 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1693 return 0;
1694
1695 if (!tp->packets_out)
1696 goto out;
1697
1698 used_sacks = 0;
1699 first_sack_index = 0;
1700 for (i = 0; i < num_sacks; i++) {
1701 bool dup_sack = !i && found_dup_sack;
1702
1703 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1704 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1705
1706 if (!tcp_is_sackblock_valid(tp, dup_sack,
1707 sp[used_sacks].start_seq,
1708 sp[used_sacks].end_seq)) {
1709 int mib_idx;
1710
1711 if (dup_sack) {
1712 if (!tp->undo_marker)
1713 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1714 else
1715 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1716 } else {
1717 /* Don't count olds caused by ACK reordering */
1718 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1719 !after(sp[used_sacks].end_seq, tp->snd_una))
1720 continue;
1721 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1722 }
1723
1724 NET_INC_STATS(sock_net(sk), mib_idx);
1725 if (i == 0)
1726 first_sack_index = -1;
1727 continue;
1728 }
1729
1730 /* Ignore very old stuff early */
1731 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1732 if (i == 0)
1733 first_sack_index = -1;
1734 continue;
1735 }
1736
1737 used_sacks++;
1738 }
1739
1740 /* order SACK blocks to allow in order walk of the retrans queue */
1741 for (i = used_sacks - 1; i > 0; i--) {
1742 for (j = 0; j < i; j++) {
1743 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1744 swap(sp[j], sp[j + 1]);
1745
1746 /* Track where the first SACK block goes to */
1747 if (j == first_sack_index)
1748 first_sack_index = j + 1;
1749 }
1750 }
1751 }
1752
1753 state->mss_now = tcp_current_mss(sk);
1754 skb = NULL;
1755 i = 0;
1756
1757 if (!tp->sacked_out) {
1758 /* It's already past, so skip checking against it */
1759 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1760 } else {
1761 cache = tp->recv_sack_cache;
1762 /* Skip empty blocks in at head of the cache */
1763 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1764 !cache->end_seq)
1765 cache++;
1766 }
1767
1768 while (i < used_sacks) {
1769 u32 start_seq = sp[i].start_seq;
1770 u32 end_seq = sp[i].end_seq;
1771 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1772 struct tcp_sack_block *next_dup = NULL;
1773
1774 if (found_dup_sack && ((i + 1) == first_sack_index))
1775 next_dup = &sp[i + 1];
1776
1777 /* Skip too early cached blocks */
1778 while (tcp_sack_cache_ok(tp, cache) &&
1779 !before(start_seq, cache->end_seq))
1780 cache++;
1781
1782 /* Can skip some work by looking recv_sack_cache? */
1783 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1784 after(end_seq, cache->start_seq)) {
1785
1786 /* Head todo? */
1787 if (before(start_seq, cache->start_seq)) {
1788 skb = tcp_sacktag_skip(skb, sk, start_seq);
1789 skb = tcp_sacktag_walk(skb, sk, next_dup,
1790 state,
1791 start_seq,
1792 cache->start_seq,
1793 dup_sack);
1794 }
1795
1796 /* Rest of the block already fully processed? */
1797 if (!after(end_seq, cache->end_seq))
1798 goto advance_sp;
1799
1800 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1801 state,
1802 cache->end_seq);
1803
1804 /* ...tail remains todo... */
1805 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1806 /* ...but better entrypoint exists! */
1807 skb = tcp_highest_sack(sk);
1808 if (!skb)
1809 break;
1810 cache++;
1811 goto walk;
1812 }
1813
1814 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1815 /* Check overlap against next cached too (past this one already) */
1816 cache++;
1817 continue;
1818 }
1819
1820 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1821 skb = tcp_highest_sack(sk);
1822 if (!skb)
1823 break;
1824 }
1825 skb = tcp_sacktag_skip(skb, sk, start_seq);
1826
1827 walk:
1828 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1829 start_seq, end_seq, dup_sack);
1830
1831 advance_sp:
1832 i++;
1833 }
1834
1835 /* Clear the head of the cache sack blocks so we can skip it next time */
1836 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1837 tp->recv_sack_cache[i].start_seq = 0;
1838 tp->recv_sack_cache[i].end_seq = 0;
1839 }
1840 for (j = 0; j < used_sacks; j++)
1841 tp->recv_sack_cache[i++] = sp[j];
1842
1843 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1844 tcp_check_sack_reordering(sk, state->reord, 0);
1845
1846 tcp_verify_left_out(tp);
1847 out:
1848
1849 #if FASTRETRANS_DEBUG > 0
1850 WARN_ON((int)tp->sacked_out < 0);
1851 WARN_ON((int)tp->lost_out < 0);
1852 WARN_ON((int)tp->retrans_out < 0);
1853 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1854 #endif
1855 return state->flag;
1856 }
1857
1858 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1859 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1860 */
tcp_limit_reno_sacked(struct tcp_sock * tp)1861 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1862 {
1863 u32 holes;
1864
1865 holes = max(tp->lost_out, 1U);
1866 holes = min(holes, tp->packets_out);
1867
1868 if ((tp->sacked_out + holes) > tp->packets_out) {
1869 tp->sacked_out = tp->packets_out - holes;
1870 return true;
1871 }
1872 return false;
1873 }
1874
1875 /* If we receive more dupacks than we expected counting segments
1876 * in assumption of absent reordering, interpret this as reordering.
1877 * The only another reason could be bug in receiver TCP.
1878 */
tcp_check_reno_reordering(struct sock * sk,const int addend)1879 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1880 {
1881 struct tcp_sock *tp = tcp_sk(sk);
1882
1883 if (!tcp_limit_reno_sacked(tp))
1884 return;
1885
1886 tp->reordering = min_t(u32, tp->packets_out + addend,
1887 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1888 tp->reord_seen++;
1889 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1890 }
1891
1892 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1893
tcp_add_reno_sack(struct sock * sk,int num_dupack)1894 static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1895 {
1896 if (num_dupack) {
1897 struct tcp_sock *tp = tcp_sk(sk);
1898 u32 prior_sacked = tp->sacked_out;
1899 s32 delivered;
1900
1901 tp->sacked_out += num_dupack;
1902 tcp_check_reno_reordering(sk, 0);
1903 delivered = tp->sacked_out - prior_sacked;
1904 if (delivered > 0)
1905 tp->delivered += delivered;
1906 tcp_verify_left_out(tp);
1907 }
1908 }
1909
1910 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1911
tcp_remove_reno_sacks(struct sock * sk,int acked)1912 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1913 {
1914 struct tcp_sock *tp = tcp_sk(sk);
1915
1916 if (acked > 0) {
1917 /* One ACK acked hole. The rest eat duplicate ACKs. */
1918 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1919 if (acked - 1 >= tp->sacked_out)
1920 tp->sacked_out = 0;
1921 else
1922 tp->sacked_out -= acked - 1;
1923 }
1924 tcp_check_reno_reordering(sk, acked);
1925 tcp_verify_left_out(tp);
1926 }
1927
tcp_reset_reno_sack(struct tcp_sock * tp)1928 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1929 {
1930 tp->sacked_out = 0;
1931 }
1932
tcp_clear_retrans(struct tcp_sock * tp)1933 void tcp_clear_retrans(struct tcp_sock *tp)
1934 {
1935 tp->retrans_out = 0;
1936 tp->lost_out = 0;
1937 tp->undo_marker = 0;
1938 tp->undo_retrans = -1;
1939 tp->sacked_out = 0;
1940 }
1941
tcp_init_undo(struct tcp_sock * tp)1942 static inline void tcp_init_undo(struct tcp_sock *tp)
1943 {
1944 tp->undo_marker = tp->snd_una;
1945 /* Retransmission still in flight may cause DSACKs later. */
1946 tp->undo_retrans = tp->retrans_out ? : -1;
1947 }
1948
tcp_is_rack(const struct sock * sk)1949 static bool tcp_is_rack(const struct sock *sk)
1950 {
1951 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1952 }
1953
1954 /* If we detect SACK reneging, forget all SACK information
1955 * and reset tags completely, otherwise preserve SACKs. If receiver
1956 * dropped its ofo queue, we will know this due to reneging detection.
1957 */
tcp_timeout_mark_lost(struct sock * sk)1958 static void tcp_timeout_mark_lost(struct sock *sk)
1959 {
1960 struct tcp_sock *tp = tcp_sk(sk);
1961 struct sk_buff *skb, *head;
1962 bool is_reneg; /* is receiver reneging on SACKs? */
1963
1964 head = tcp_rtx_queue_head(sk);
1965 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1966 if (is_reneg) {
1967 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1968 tp->sacked_out = 0;
1969 /* Mark SACK reneging until we recover from this loss event. */
1970 tp->is_sack_reneg = 1;
1971 } else if (tcp_is_reno(tp)) {
1972 tcp_reset_reno_sack(tp);
1973 }
1974
1975 skb = head;
1976 skb_rbtree_walk_from(skb) {
1977 if (is_reneg)
1978 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1979 else if (tcp_is_rack(sk) && skb != head &&
1980 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1981 continue; /* Don't mark recently sent ones lost yet */
1982 tcp_mark_skb_lost(sk, skb);
1983 }
1984 tcp_verify_left_out(tp);
1985 tcp_clear_all_retrans_hints(tp);
1986 }
1987
1988 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)1989 void tcp_enter_loss(struct sock *sk)
1990 {
1991 const struct inet_connection_sock *icsk = inet_csk(sk);
1992 struct tcp_sock *tp = tcp_sk(sk);
1993 struct net *net = sock_net(sk);
1994 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1995
1996 tcp_timeout_mark_lost(sk);
1997
1998 /* Reduce ssthresh if it has not yet been made inside this window. */
1999 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2000 !after(tp->high_seq, tp->snd_una) ||
2001 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2002 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2003 tp->prior_cwnd = tp->snd_cwnd;
2004 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2005 tcp_ca_event(sk, CA_EVENT_LOSS);
2006 tcp_init_undo(tp);
2007 }
2008 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
2009 tp->snd_cwnd_cnt = 0;
2010 tp->snd_cwnd_stamp = tcp_jiffies32;
2011
2012 /* Timeout in disordered state after receiving substantial DUPACKs
2013 * suggests that the degree of reordering is over-estimated.
2014 */
2015 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2016 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2017 tp->reordering = min_t(unsigned int, tp->reordering,
2018 net->ipv4.sysctl_tcp_reordering);
2019 tcp_set_ca_state(sk, TCP_CA_Loss);
2020 tp->high_seq = tp->snd_nxt;
2021 tcp_ecn_queue_cwr(tp);
2022
2023 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2024 * loss recovery is underway except recurring timeout(s) on
2025 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2026 */
2027 tp->frto = net->ipv4.sysctl_tcp_frto &&
2028 (new_recovery || icsk->icsk_retransmits) &&
2029 !inet_csk(sk)->icsk_mtup.probe_size;
2030 }
2031
2032 /* If ACK arrived pointing to a remembered SACK, it means that our
2033 * remembered SACKs do not reflect real state of receiver i.e.
2034 * receiver _host_ is heavily congested (or buggy).
2035 *
2036 * To avoid big spurious retransmission bursts due to transient SACK
2037 * scoreboard oddities that look like reneging, we give the receiver a
2038 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2039 * restore sanity to the SACK scoreboard. If the apparent reneging
2040 * persists until this RTO then we'll clear the SACK scoreboard.
2041 */
tcp_check_sack_reneging(struct sock * sk,int flag)2042 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2043 {
2044 if (flag & FLAG_SACK_RENEGING) {
2045 struct tcp_sock *tp = tcp_sk(sk);
2046 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2047 msecs_to_jiffies(10));
2048
2049 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2050 delay, TCP_RTO_MAX);
2051 return true;
2052 }
2053 return false;
2054 }
2055
2056 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2057 * counter when SACK is enabled (without SACK, sacked_out is used for
2058 * that purpose).
2059 *
2060 * With reordering, holes may still be in flight, so RFC3517 recovery
2061 * uses pure sacked_out (total number of SACKed segments) even though
2062 * it violates the RFC that uses duplicate ACKs, often these are equal
2063 * but when e.g. out-of-window ACKs or packet duplication occurs,
2064 * they differ. Since neither occurs due to loss, TCP should really
2065 * ignore them.
2066 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2067 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2068 {
2069 return tp->sacked_out + 1;
2070 }
2071
2072 /* Linux NewReno/SACK/ECN state machine.
2073 * --------------------------------------
2074 *
2075 * "Open" Normal state, no dubious events, fast path.
2076 * "Disorder" In all the respects it is "Open",
2077 * but requires a bit more attention. It is entered when
2078 * we see some SACKs or dupacks. It is split of "Open"
2079 * mainly to move some processing from fast path to slow one.
2080 * "CWR" CWND was reduced due to some Congestion Notification event.
2081 * It can be ECN, ICMP source quench, local device congestion.
2082 * "Recovery" CWND was reduced, we are fast-retransmitting.
2083 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2084 *
2085 * tcp_fastretrans_alert() is entered:
2086 * - each incoming ACK, if state is not "Open"
2087 * - when arrived ACK is unusual, namely:
2088 * * SACK
2089 * * Duplicate ACK.
2090 * * ECN ECE.
2091 *
2092 * Counting packets in flight is pretty simple.
2093 *
2094 * in_flight = packets_out - left_out + retrans_out
2095 *
2096 * packets_out is SND.NXT-SND.UNA counted in packets.
2097 *
2098 * retrans_out is number of retransmitted segments.
2099 *
2100 * left_out is number of segments left network, but not ACKed yet.
2101 *
2102 * left_out = sacked_out + lost_out
2103 *
2104 * sacked_out: Packets, which arrived to receiver out of order
2105 * and hence not ACKed. With SACKs this number is simply
2106 * amount of SACKed data. Even without SACKs
2107 * it is easy to give pretty reliable estimate of this number,
2108 * counting duplicate ACKs.
2109 *
2110 * lost_out: Packets lost by network. TCP has no explicit
2111 * "loss notification" feedback from network (for now).
2112 * It means that this number can be only _guessed_.
2113 * Actually, it is the heuristics to predict lossage that
2114 * distinguishes different algorithms.
2115 *
2116 * F.e. after RTO, when all the queue is considered as lost,
2117 * lost_out = packets_out and in_flight = retrans_out.
2118 *
2119 * Essentially, we have now a few algorithms detecting
2120 * lost packets.
2121 *
2122 * If the receiver supports SACK:
2123 *
2124 * RFC6675/3517: It is the conventional algorithm. A packet is
2125 * considered lost if the number of higher sequence packets
2126 * SACKed is greater than or equal the DUPACK thoreshold
2127 * (reordering). This is implemented in tcp_mark_head_lost and
2128 * tcp_update_scoreboard.
2129 *
2130 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2131 * (2017-) that checks timing instead of counting DUPACKs.
2132 * Essentially a packet is considered lost if it's not S/ACKed
2133 * after RTT + reordering_window, where both metrics are
2134 * dynamically measured and adjusted. This is implemented in
2135 * tcp_rack_mark_lost.
2136 *
2137 * If the receiver does not support SACK:
2138 *
2139 * NewReno (RFC6582): in Recovery we assume that one segment
2140 * is lost (classic Reno). While we are in Recovery and
2141 * a partial ACK arrives, we assume that one more packet
2142 * is lost (NewReno). This heuristics are the same in NewReno
2143 * and SACK.
2144 *
2145 * Really tricky (and requiring careful tuning) part of algorithm
2146 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2147 * The first determines the moment _when_ we should reduce CWND and,
2148 * hence, slow down forward transmission. In fact, it determines the moment
2149 * when we decide that hole is caused by loss, rather than by a reorder.
2150 *
2151 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2152 * holes, caused by lost packets.
2153 *
2154 * And the most logically complicated part of algorithm is undo
2155 * heuristics. We detect false retransmits due to both too early
2156 * fast retransmit (reordering) and underestimated RTO, analyzing
2157 * timestamps and D-SACKs. When we detect that some segments were
2158 * retransmitted by mistake and CWND reduction was wrong, we undo
2159 * window reduction and abort recovery phase. This logic is hidden
2160 * inside several functions named tcp_try_undo_<something>.
2161 */
2162
2163 /* This function decides, when we should leave Disordered state
2164 * and enter Recovery phase, reducing congestion window.
2165 *
2166 * Main question: may we further continue forward transmission
2167 * with the same cwnd?
2168 */
tcp_time_to_recover(struct sock * sk,int flag)2169 static bool tcp_time_to_recover(struct sock *sk, int flag)
2170 {
2171 struct tcp_sock *tp = tcp_sk(sk);
2172
2173 /* Trick#1: The loss is proven. */
2174 if (tp->lost_out)
2175 return true;
2176
2177 /* Not-A-Trick#2 : Classic rule... */
2178 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2179 return true;
2180
2181 return false;
2182 }
2183
2184 /* Detect loss in event "A" above by marking head of queue up as lost.
2185 * For non-SACK(Reno) senders, the first "packets" number of segments
2186 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2187 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2188 * the maximum SACKed segments to pass before reaching this limit.
2189 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2190 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2191 {
2192 struct tcp_sock *tp = tcp_sk(sk);
2193 struct sk_buff *skb;
2194 int cnt, oldcnt, lost;
2195 unsigned int mss;
2196 /* Use SACK to deduce losses of new sequences sent during recovery */
2197 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2198
2199 WARN_ON(packets > tp->packets_out);
2200 skb = tp->lost_skb_hint;
2201 if (skb) {
2202 /* Head already handled? */
2203 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2204 return;
2205 cnt = tp->lost_cnt_hint;
2206 } else {
2207 skb = tcp_rtx_queue_head(sk);
2208 cnt = 0;
2209 }
2210
2211 skb_rbtree_walk_from(skb) {
2212 /* TODO: do this better */
2213 /* this is not the most efficient way to do this... */
2214 tp->lost_skb_hint = skb;
2215 tp->lost_cnt_hint = cnt;
2216
2217 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2218 break;
2219
2220 oldcnt = cnt;
2221 if (tcp_is_reno(tp) ||
2222 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2223 cnt += tcp_skb_pcount(skb);
2224
2225 if (cnt > packets) {
2226 if (tcp_is_sack(tp) ||
2227 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2228 (oldcnt >= packets))
2229 break;
2230
2231 mss = tcp_skb_mss(skb);
2232 /* If needed, chop off the prefix to mark as lost. */
2233 lost = (packets - oldcnt) * mss;
2234 if (lost < skb->len &&
2235 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2236 lost, mss, GFP_ATOMIC) < 0)
2237 break;
2238 cnt = packets;
2239 }
2240
2241 tcp_skb_mark_lost(tp, skb);
2242
2243 if (mark_head)
2244 break;
2245 }
2246 tcp_verify_left_out(tp);
2247 }
2248
2249 /* Account newly detected lost packet(s) */
2250
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2251 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2252 {
2253 struct tcp_sock *tp = tcp_sk(sk);
2254
2255 if (tcp_is_sack(tp)) {
2256 int sacked_upto = tp->sacked_out - tp->reordering;
2257 if (sacked_upto >= 0)
2258 tcp_mark_head_lost(sk, sacked_upto, 0);
2259 else if (fast_rexmit)
2260 tcp_mark_head_lost(sk, 1, 1);
2261 }
2262 }
2263
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2264 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2265 {
2266 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2267 before(tp->rx_opt.rcv_tsecr, when);
2268 }
2269
2270 /* skb is spurious retransmitted if the returned timestamp echo
2271 * reply is prior to the skb transmission time
2272 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2273 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2274 const struct sk_buff *skb)
2275 {
2276 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2277 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2278 }
2279
2280 /* Nothing was retransmitted or returned timestamp is less
2281 * than timestamp of the first retransmission.
2282 */
tcp_packet_delayed(const struct tcp_sock * tp)2283 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2284 {
2285 return tp->retrans_stamp &&
2286 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2287 }
2288
2289 /* Undo procedures. */
2290
2291 /* We can clear retrans_stamp when there are no retransmissions in the
2292 * window. It would seem that it is trivially available for us in
2293 * tp->retrans_out, however, that kind of assumptions doesn't consider
2294 * what will happen if errors occur when sending retransmission for the
2295 * second time. ...It could the that such segment has only
2296 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2297 * the head skb is enough except for some reneging corner cases that
2298 * are not worth the effort.
2299 *
2300 * Main reason for all this complexity is the fact that connection dying
2301 * time now depends on the validity of the retrans_stamp, in particular,
2302 * that successive retransmissions of a segment must not advance
2303 * retrans_stamp under any conditions.
2304 */
tcp_any_retrans_done(const struct sock * sk)2305 static bool tcp_any_retrans_done(const struct sock *sk)
2306 {
2307 const struct tcp_sock *tp = tcp_sk(sk);
2308 struct sk_buff *skb;
2309
2310 if (tp->retrans_out)
2311 return true;
2312
2313 skb = tcp_rtx_queue_head(sk);
2314 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2315 return true;
2316
2317 return false;
2318 }
2319
DBGUNDO(struct sock * sk,const char * msg)2320 static void DBGUNDO(struct sock *sk, const char *msg)
2321 {
2322 #if FASTRETRANS_DEBUG > 1
2323 struct tcp_sock *tp = tcp_sk(sk);
2324 struct inet_sock *inet = inet_sk(sk);
2325
2326 if (sk->sk_family == AF_INET) {
2327 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2328 msg,
2329 &inet->inet_daddr, ntohs(inet->inet_dport),
2330 tp->snd_cwnd, tcp_left_out(tp),
2331 tp->snd_ssthresh, tp->prior_ssthresh,
2332 tp->packets_out);
2333 }
2334 #if IS_ENABLED(CONFIG_IPV6)
2335 else if (sk->sk_family == AF_INET6) {
2336 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2337 msg,
2338 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2339 tp->snd_cwnd, tcp_left_out(tp),
2340 tp->snd_ssthresh, tp->prior_ssthresh,
2341 tp->packets_out);
2342 }
2343 #endif
2344 #endif
2345 }
2346
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2347 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2348 {
2349 struct tcp_sock *tp = tcp_sk(sk);
2350
2351 if (unmark_loss) {
2352 struct sk_buff *skb;
2353
2354 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2355 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2356 }
2357 tp->lost_out = 0;
2358 tcp_clear_all_retrans_hints(tp);
2359 }
2360
2361 if (tp->prior_ssthresh) {
2362 const struct inet_connection_sock *icsk = inet_csk(sk);
2363
2364 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2365
2366 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2367 tp->snd_ssthresh = tp->prior_ssthresh;
2368 tcp_ecn_withdraw_cwr(tp);
2369 }
2370 }
2371 tp->snd_cwnd_stamp = tcp_jiffies32;
2372 tp->undo_marker = 0;
2373 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2374 }
2375
tcp_may_undo(const struct tcp_sock * tp)2376 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2377 {
2378 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2379 }
2380
2381 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2382 static bool tcp_try_undo_recovery(struct sock *sk)
2383 {
2384 struct tcp_sock *tp = tcp_sk(sk);
2385
2386 if (tcp_may_undo(tp)) {
2387 int mib_idx;
2388
2389 /* Happy end! We did not retransmit anything
2390 * or our original transmission succeeded.
2391 */
2392 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2393 tcp_undo_cwnd_reduction(sk, false);
2394 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2395 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2396 else
2397 mib_idx = LINUX_MIB_TCPFULLUNDO;
2398
2399 NET_INC_STATS(sock_net(sk), mib_idx);
2400 } else if (tp->rack.reo_wnd_persist) {
2401 tp->rack.reo_wnd_persist--;
2402 }
2403 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2404 /* Hold old state until something *above* high_seq
2405 * is ACKed. For Reno it is MUST to prevent false
2406 * fast retransmits (RFC2582). SACK TCP is safe. */
2407 if (!tcp_any_retrans_done(sk))
2408 tp->retrans_stamp = 0;
2409 return true;
2410 }
2411 tcp_set_ca_state(sk, TCP_CA_Open);
2412 tp->is_sack_reneg = 0;
2413 return false;
2414 }
2415
2416 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2417 static bool tcp_try_undo_dsack(struct sock *sk)
2418 {
2419 struct tcp_sock *tp = tcp_sk(sk);
2420
2421 if (tp->undo_marker && !tp->undo_retrans) {
2422 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2423 tp->rack.reo_wnd_persist + 1);
2424 DBGUNDO(sk, "D-SACK");
2425 tcp_undo_cwnd_reduction(sk, false);
2426 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2427 return true;
2428 }
2429 return false;
2430 }
2431
2432 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2433 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2434 {
2435 struct tcp_sock *tp = tcp_sk(sk);
2436
2437 if (frto_undo || tcp_may_undo(tp)) {
2438 tcp_undo_cwnd_reduction(sk, true);
2439
2440 DBGUNDO(sk, "partial loss");
2441 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2442 if (frto_undo)
2443 NET_INC_STATS(sock_net(sk),
2444 LINUX_MIB_TCPSPURIOUSRTOS);
2445 inet_csk(sk)->icsk_retransmits = 0;
2446 if (frto_undo || tcp_is_sack(tp)) {
2447 tcp_set_ca_state(sk, TCP_CA_Open);
2448 tp->is_sack_reneg = 0;
2449 }
2450 return true;
2451 }
2452 return false;
2453 }
2454
2455 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2456 * It computes the number of packets to send (sndcnt) based on packets newly
2457 * delivered:
2458 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2459 * cwnd reductions across a full RTT.
2460 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2461 * But when the retransmits are acked without further losses, PRR
2462 * slow starts cwnd up to ssthresh to speed up the recovery.
2463 */
tcp_init_cwnd_reduction(struct sock * sk)2464 static void tcp_init_cwnd_reduction(struct sock *sk)
2465 {
2466 struct tcp_sock *tp = tcp_sk(sk);
2467
2468 tp->high_seq = tp->snd_nxt;
2469 tp->tlp_high_seq = 0;
2470 tp->snd_cwnd_cnt = 0;
2471 tp->prior_cwnd = tp->snd_cwnd;
2472 tp->prr_delivered = 0;
2473 tp->prr_out = 0;
2474 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2475 tcp_ecn_queue_cwr(tp);
2476 }
2477
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int flag)2478 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2479 {
2480 struct tcp_sock *tp = tcp_sk(sk);
2481 int sndcnt = 0;
2482 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2483
2484 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2485 return;
2486
2487 tp->prr_delivered += newly_acked_sacked;
2488 if (delta < 0) {
2489 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2490 tp->prior_cwnd - 1;
2491 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2492 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2493 FLAG_RETRANS_DATA_ACKED) {
2494 sndcnt = min_t(int, delta,
2495 max_t(int, tp->prr_delivered - tp->prr_out,
2496 newly_acked_sacked) + 1);
2497 } else {
2498 sndcnt = min(delta, newly_acked_sacked);
2499 }
2500 /* Force a fast retransmit upon entering fast recovery */
2501 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2502 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2503 }
2504
tcp_end_cwnd_reduction(struct sock * sk)2505 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2506 {
2507 struct tcp_sock *tp = tcp_sk(sk);
2508
2509 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2510 return;
2511
2512 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2513 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2514 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2515 tp->snd_cwnd = tp->snd_ssthresh;
2516 tp->snd_cwnd_stamp = tcp_jiffies32;
2517 }
2518 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2519 }
2520
2521 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2522 void tcp_enter_cwr(struct sock *sk)
2523 {
2524 struct tcp_sock *tp = tcp_sk(sk);
2525
2526 tp->prior_ssthresh = 0;
2527 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2528 tp->undo_marker = 0;
2529 tcp_init_cwnd_reduction(sk);
2530 tcp_set_ca_state(sk, TCP_CA_CWR);
2531 }
2532 }
2533 EXPORT_SYMBOL(tcp_enter_cwr);
2534
tcp_try_keep_open(struct sock * sk)2535 static void tcp_try_keep_open(struct sock *sk)
2536 {
2537 struct tcp_sock *tp = tcp_sk(sk);
2538 int state = TCP_CA_Open;
2539
2540 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2541 state = TCP_CA_Disorder;
2542
2543 if (inet_csk(sk)->icsk_ca_state != state) {
2544 tcp_set_ca_state(sk, state);
2545 tp->high_seq = tp->snd_nxt;
2546 }
2547 }
2548
tcp_try_to_open(struct sock * sk,int flag)2549 static void tcp_try_to_open(struct sock *sk, int flag)
2550 {
2551 struct tcp_sock *tp = tcp_sk(sk);
2552
2553 tcp_verify_left_out(tp);
2554
2555 if (!tcp_any_retrans_done(sk))
2556 tp->retrans_stamp = 0;
2557
2558 if (flag & FLAG_ECE)
2559 tcp_enter_cwr(sk);
2560
2561 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2562 tcp_try_keep_open(sk);
2563 }
2564 }
2565
tcp_mtup_probe_failed(struct sock * sk)2566 static void tcp_mtup_probe_failed(struct sock *sk)
2567 {
2568 struct inet_connection_sock *icsk = inet_csk(sk);
2569
2570 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2571 icsk->icsk_mtup.probe_size = 0;
2572 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2573 }
2574
tcp_mtup_probe_success(struct sock * sk)2575 static void tcp_mtup_probe_success(struct sock *sk)
2576 {
2577 struct tcp_sock *tp = tcp_sk(sk);
2578 struct inet_connection_sock *icsk = inet_csk(sk);
2579
2580 /* FIXME: breaks with very large cwnd */
2581 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2582 tp->snd_cwnd = tp->snd_cwnd *
2583 tcp_mss_to_mtu(sk, tp->mss_cache) /
2584 icsk->icsk_mtup.probe_size;
2585 tp->snd_cwnd_cnt = 0;
2586 tp->snd_cwnd_stamp = tcp_jiffies32;
2587 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2588
2589 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2590 icsk->icsk_mtup.probe_size = 0;
2591 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2592 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2593 }
2594
2595 /* Do a simple retransmit without using the backoff mechanisms in
2596 * tcp_timer. This is used for path mtu discovery.
2597 * The socket is already locked here.
2598 */
tcp_simple_retransmit(struct sock * sk)2599 void tcp_simple_retransmit(struct sock *sk)
2600 {
2601 const struct inet_connection_sock *icsk = inet_csk(sk);
2602 struct tcp_sock *tp = tcp_sk(sk);
2603 struct sk_buff *skb;
2604 unsigned int mss = tcp_current_mss(sk);
2605
2606 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2607 if (tcp_skb_seglen(skb) > mss &&
2608 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2609 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2610 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2611 tp->retrans_out -= tcp_skb_pcount(skb);
2612 }
2613 tcp_skb_mark_lost_uncond_verify(tp, skb);
2614 }
2615 }
2616
2617 tcp_clear_retrans_hints_partial(tp);
2618
2619 if (!tp->lost_out)
2620 return;
2621
2622 if (tcp_is_reno(tp))
2623 tcp_limit_reno_sacked(tp);
2624
2625 tcp_verify_left_out(tp);
2626
2627 /* Don't muck with the congestion window here.
2628 * Reason is that we do not increase amount of _data_
2629 * in network, but units changed and effective
2630 * cwnd/ssthresh really reduced now.
2631 */
2632 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2633 tp->high_seq = tp->snd_nxt;
2634 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2635 tp->prior_ssthresh = 0;
2636 tp->undo_marker = 0;
2637 tcp_set_ca_state(sk, TCP_CA_Loss);
2638 }
2639 tcp_xmit_retransmit_queue(sk);
2640 }
2641 EXPORT_SYMBOL(tcp_simple_retransmit);
2642
tcp_enter_recovery(struct sock * sk,bool ece_ack)2643 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2644 {
2645 struct tcp_sock *tp = tcp_sk(sk);
2646 int mib_idx;
2647
2648 if (tcp_is_reno(tp))
2649 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2650 else
2651 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2652
2653 NET_INC_STATS(sock_net(sk), mib_idx);
2654
2655 tp->prior_ssthresh = 0;
2656 tcp_init_undo(tp);
2657
2658 if (!tcp_in_cwnd_reduction(sk)) {
2659 if (!ece_ack)
2660 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2661 tcp_init_cwnd_reduction(sk);
2662 }
2663 tcp_set_ca_state(sk, TCP_CA_Recovery);
2664 }
2665
2666 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2667 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2668 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2669 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2670 int *rexmit)
2671 {
2672 struct tcp_sock *tp = tcp_sk(sk);
2673 bool recovered = !before(tp->snd_una, tp->high_seq);
2674
2675 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2676 tcp_try_undo_loss(sk, false))
2677 return;
2678
2679 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2680 /* Step 3.b. A timeout is spurious if not all data are
2681 * lost, i.e., never-retransmitted data are (s)acked.
2682 */
2683 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2684 tcp_try_undo_loss(sk, true))
2685 return;
2686
2687 if (after(tp->snd_nxt, tp->high_seq)) {
2688 if (flag & FLAG_DATA_SACKED || num_dupack)
2689 tp->frto = 0; /* Step 3.a. loss was real */
2690 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2691 tp->high_seq = tp->snd_nxt;
2692 /* Step 2.b. Try send new data (but deferred until cwnd
2693 * is updated in tcp_ack()). Otherwise fall back to
2694 * the conventional recovery.
2695 */
2696 if (!tcp_write_queue_empty(sk) &&
2697 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2698 *rexmit = REXMIT_NEW;
2699 return;
2700 }
2701 tp->frto = 0;
2702 }
2703 }
2704
2705 if (recovered) {
2706 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2707 tcp_try_undo_recovery(sk);
2708 return;
2709 }
2710 if (tcp_is_reno(tp)) {
2711 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2712 * delivered. Lower inflight to clock out (re)tranmissions.
2713 */
2714 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2715 tcp_add_reno_sack(sk, num_dupack);
2716 else if (flag & FLAG_SND_UNA_ADVANCED)
2717 tcp_reset_reno_sack(tp);
2718 }
2719 *rexmit = REXMIT_LOST;
2720 }
2721
2722 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una)2723 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2724 {
2725 struct tcp_sock *tp = tcp_sk(sk);
2726
2727 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2728 /* Plain luck! Hole if filled with delayed
2729 * packet, rather than with a retransmit. Check reordering.
2730 */
2731 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2732
2733 /* We are getting evidence that the reordering degree is higher
2734 * than we realized. If there are no retransmits out then we
2735 * can undo. Otherwise we clock out new packets but do not
2736 * mark more packets lost or retransmit more.
2737 */
2738 if (tp->retrans_out)
2739 return true;
2740
2741 if (!tcp_any_retrans_done(sk))
2742 tp->retrans_stamp = 0;
2743
2744 DBGUNDO(sk, "partial recovery");
2745 tcp_undo_cwnd_reduction(sk, true);
2746 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2747 tcp_try_keep_open(sk);
2748 return true;
2749 }
2750 return false;
2751 }
2752
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2753 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2754 {
2755 struct tcp_sock *tp = tcp_sk(sk);
2756
2757 if (tcp_rtx_queue_empty(sk))
2758 return;
2759
2760 if (unlikely(tcp_is_reno(tp))) {
2761 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2762 } else if (tcp_is_rack(sk)) {
2763 u32 prior_retrans = tp->retrans_out;
2764
2765 tcp_rack_mark_lost(sk);
2766 if (prior_retrans > tp->retrans_out)
2767 *ack_flag |= FLAG_LOST_RETRANS;
2768 }
2769 }
2770
tcp_force_fast_retransmit(struct sock * sk)2771 static bool tcp_force_fast_retransmit(struct sock *sk)
2772 {
2773 struct tcp_sock *tp = tcp_sk(sk);
2774
2775 return after(tcp_highest_sack_seq(tp),
2776 tp->snd_una + tp->reordering * tp->mss_cache);
2777 }
2778
2779 /* Process an event, which can update packets-in-flight not trivially.
2780 * Main goal of this function is to calculate new estimate for left_out,
2781 * taking into account both packets sitting in receiver's buffer and
2782 * packets lost by network.
2783 *
2784 * Besides that it updates the congestion state when packet loss or ECN
2785 * is detected. But it does not reduce the cwnd, it is done by the
2786 * congestion control later.
2787 *
2788 * It does _not_ decide what to send, it is made in function
2789 * tcp_xmit_retransmit_queue().
2790 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2791 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2792 int num_dupack, int *ack_flag, int *rexmit)
2793 {
2794 struct inet_connection_sock *icsk = inet_csk(sk);
2795 struct tcp_sock *tp = tcp_sk(sk);
2796 int fast_rexmit = 0, flag = *ack_flag;
2797 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2798 tcp_force_fast_retransmit(sk));
2799
2800 if (!tp->packets_out && tp->sacked_out)
2801 tp->sacked_out = 0;
2802
2803 /* Now state machine starts.
2804 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2805 if (flag & FLAG_ECE)
2806 tp->prior_ssthresh = 0;
2807
2808 /* B. In all the states check for reneging SACKs. */
2809 if (tcp_check_sack_reneging(sk, flag))
2810 return;
2811
2812 /* C. Check consistency of the current state. */
2813 tcp_verify_left_out(tp);
2814
2815 /* D. Check state exit conditions. State can be terminated
2816 * when high_seq is ACKed. */
2817 if (icsk->icsk_ca_state == TCP_CA_Open) {
2818 WARN_ON(tp->retrans_out != 0);
2819 tp->retrans_stamp = 0;
2820 } else if (!before(tp->snd_una, tp->high_seq)) {
2821 switch (icsk->icsk_ca_state) {
2822 case TCP_CA_CWR:
2823 /* CWR is to be held something *above* high_seq
2824 * is ACKed for CWR bit to reach receiver. */
2825 if (tp->snd_una != tp->high_seq) {
2826 tcp_end_cwnd_reduction(sk);
2827 tcp_set_ca_state(sk, TCP_CA_Open);
2828 }
2829 break;
2830
2831 case TCP_CA_Recovery:
2832 if (tcp_is_reno(tp))
2833 tcp_reset_reno_sack(tp);
2834 if (tcp_try_undo_recovery(sk))
2835 return;
2836 tcp_end_cwnd_reduction(sk);
2837 break;
2838 }
2839 }
2840
2841 /* E. Process state. */
2842 switch (icsk->icsk_ca_state) {
2843 case TCP_CA_Recovery:
2844 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2845 if (tcp_is_reno(tp))
2846 tcp_add_reno_sack(sk, num_dupack);
2847 } else {
2848 if (tcp_try_undo_partial(sk, prior_snd_una))
2849 return;
2850 /* Partial ACK arrived. Force fast retransmit. */
2851 do_lost = tcp_is_reno(tp) ||
2852 tcp_force_fast_retransmit(sk);
2853 }
2854 if (tcp_try_undo_dsack(sk)) {
2855 tcp_try_keep_open(sk);
2856 return;
2857 }
2858 tcp_identify_packet_loss(sk, ack_flag);
2859 break;
2860 case TCP_CA_Loss:
2861 tcp_process_loss(sk, flag, num_dupack, rexmit);
2862 tcp_identify_packet_loss(sk, ack_flag);
2863 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2864 (*ack_flag & FLAG_LOST_RETRANS)))
2865 return;
2866 /* Change state if cwnd is undone or retransmits are lost */
2867 /* fall through */
2868 default:
2869 if (tcp_is_reno(tp)) {
2870 if (flag & FLAG_SND_UNA_ADVANCED)
2871 tcp_reset_reno_sack(tp);
2872 tcp_add_reno_sack(sk, num_dupack);
2873 }
2874
2875 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2876 tcp_try_undo_dsack(sk);
2877
2878 tcp_identify_packet_loss(sk, ack_flag);
2879 if (!tcp_time_to_recover(sk, flag)) {
2880 tcp_try_to_open(sk, flag);
2881 return;
2882 }
2883
2884 /* MTU probe failure: don't reduce cwnd */
2885 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2886 icsk->icsk_mtup.probe_size &&
2887 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2888 tcp_mtup_probe_failed(sk);
2889 /* Restores the reduction we did in tcp_mtup_probe() */
2890 tp->snd_cwnd++;
2891 tcp_simple_retransmit(sk);
2892 return;
2893 }
2894
2895 /* Otherwise enter Recovery state */
2896 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2897 fast_rexmit = 1;
2898 }
2899
2900 if (!tcp_is_rack(sk) && do_lost)
2901 tcp_update_scoreboard(sk, fast_rexmit);
2902 *rexmit = REXMIT_LOST;
2903 }
2904
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)2905 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2906 {
2907 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2908 struct tcp_sock *tp = tcp_sk(sk);
2909
2910 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2911 /* If the remote keeps returning delayed ACKs, eventually
2912 * the min filter would pick it up and overestimate the
2913 * prop. delay when it expires. Skip suspected delayed ACKs.
2914 */
2915 return;
2916 }
2917 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2918 rtt_us ? : jiffies_to_usecs(1));
2919 }
2920
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)2921 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2922 long seq_rtt_us, long sack_rtt_us,
2923 long ca_rtt_us, struct rate_sample *rs)
2924 {
2925 const struct tcp_sock *tp = tcp_sk(sk);
2926
2927 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2928 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2929 * Karn's algorithm forbids taking RTT if some retransmitted data
2930 * is acked (RFC6298).
2931 */
2932 if (seq_rtt_us < 0)
2933 seq_rtt_us = sack_rtt_us;
2934
2935 /* RTTM Rule: A TSecr value received in a segment is used to
2936 * update the averaged RTT measurement only if the segment
2937 * acknowledges some new data, i.e., only if it advances the
2938 * left edge of the send window.
2939 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2940 */
2941 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2942 flag & FLAG_ACKED) {
2943 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2944
2945 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2946 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2947 ca_rtt_us = seq_rtt_us;
2948 }
2949 }
2950 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2951 if (seq_rtt_us < 0)
2952 return false;
2953
2954 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2955 * always taken together with ACK, SACK, or TS-opts. Any negative
2956 * values will be skipped with the seq_rtt_us < 0 check above.
2957 */
2958 tcp_update_rtt_min(sk, ca_rtt_us, flag);
2959 tcp_rtt_estimator(sk, seq_rtt_us);
2960 tcp_set_rto(sk);
2961
2962 /* RFC6298: only reset backoff on valid RTT measurement. */
2963 inet_csk(sk)->icsk_backoff = 0;
2964 return true;
2965 }
2966
2967 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)2968 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2969 {
2970 struct rate_sample rs;
2971 long rtt_us = -1L;
2972
2973 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2974 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2975
2976 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2977 }
2978
2979
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)2980 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2981 {
2982 const struct inet_connection_sock *icsk = inet_csk(sk);
2983
2984 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2985 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2986 }
2987
2988 /* Restart timer after forward progress on connection.
2989 * RFC2988 recommends to restart timer to now+rto.
2990 */
tcp_rearm_rto(struct sock * sk)2991 void tcp_rearm_rto(struct sock *sk)
2992 {
2993 const struct inet_connection_sock *icsk = inet_csk(sk);
2994 struct tcp_sock *tp = tcp_sk(sk);
2995
2996 /* If the retrans timer is currently being used by Fast Open
2997 * for SYN-ACK retrans purpose, stay put.
2998 */
2999 if (rcu_access_pointer(tp->fastopen_rsk))
3000 return;
3001
3002 if (!tp->packets_out) {
3003 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3004 } else {
3005 u32 rto = inet_csk(sk)->icsk_rto;
3006 /* Offset the time elapsed after installing regular RTO */
3007 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3008 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3009 s64 delta_us = tcp_rto_delta_us(sk);
3010 /* delta_us may not be positive if the socket is locked
3011 * when the retrans timer fires and is rescheduled.
3012 */
3013 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3014 }
3015 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3016 TCP_RTO_MAX, tcp_rtx_queue_head(sk));
3017 }
3018 }
3019
3020 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3021 static void tcp_set_xmit_timer(struct sock *sk)
3022 {
3023 if (!tcp_schedule_loss_probe(sk, true))
3024 tcp_rearm_rto(sk);
3025 }
3026
3027 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3028 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3029 {
3030 struct tcp_sock *tp = tcp_sk(sk);
3031 u32 packets_acked;
3032
3033 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3034
3035 packets_acked = tcp_skb_pcount(skb);
3036 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3037 return 0;
3038 packets_acked -= tcp_skb_pcount(skb);
3039
3040 if (packets_acked) {
3041 BUG_ON(tcp_skb_pcount(skb) == 0);
3042 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3043 }
3044
3045 return packets_acked;
3046 }
3047
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3048 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3049 u32 prior_snd_una)
3050 {
3051 const struct skb_shared_info *shinfo;
3052
3053 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3054 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3055 return;
3056
3057 shinfo = skb_shinfo(skb);
3058 if (!before(shinfo->tskey, prior_snd_una) &&
3059 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3060 tcp_skb_tsorted_save(skb) {
3061 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3062 } tcp_skb_tsorted_restore(skb);
3063 }
3064 }
3065
3066 /* Remove acknowledged frames from the retransmission queue. If our packet
3067 * is before the ack sequence we can discard it as it's confirmed to have
3068 * arrived at the other end.
3069 */
tcp_clean_rtx_queue(struct sock * sk,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack)3070 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3071 u32 prior_snd_una,
3072 struct tcp_sacktag_state *sack)
3073 {
3074 const struct inet_connection_sock *icsk = inet_csk(sk);
3075 u64 first_ackt, last_ackt;
3076 struct tcp_sock *tp = tcp_sk(sk);
3077 u32 prior_sacked = tp->sacked_out;
3078 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3079 struct sk_buff *skb, *next;
3080 bool fully_acked = true;
3081 long sack_rtt_us = -1L;
3082 long seq_rtt_us = -1L;
3083 long ca_rtt_us = -1L;
3084 u32 pkts_acked = 0;
3085 u32 last_in_flight = 0;
3086 bool rtt_update;
3087 int flag = 0;
3088
3089 first_ackt = 0;
3090
3091 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3092 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3093 const u32 start_seq = scb->seq;
3094 u8 sacked = scb->sacked;
3095 u32 acked_pcount;
3096
3097 tcp_ack_tstamp(sk, skb, prior_snd_una);
3098
3099 /* Determine how many packets and what bytes were acked, tso and else */
3100 if (after(scb->end_seq, tp->snd_una)) {
3101 if (tcp_skb_pcount(skb) == 1 ||
3102 !after(tp->snd_una, scb->seq))
3103 break;
3104
3105 acked_pcount = tcp_tso_acked(sk, skb);
3106 if (!acked_pcount)
3107 break;
3108 fully_acked = false;
3109 } else {
3110 acked_pcount = tcp_skb_pcount(skb);
3111 }
3112
3113 if (unlikely(sacked & TCPCB_RETRANS)) {
3114 if (sacked & TCPCB_SACKED_RETRANS)
3115 tp->retrans_out -= acked_pcount;
3116 flag |= FLAG_RETRANS_DATA_ACKED;
3117 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3118 last_ackt = tcp_skb_timestamp_us(skb);
3119 WARN_ON_ONCE(last_ackt == 0);
3120 if (!first_ackt)
3121 first_ackt = last_ackt;
3122
3123 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3124 if (before(start_seq, reord))
3125 reord = start_seq;
3126 if (!after(scb->end_seq, tp->high_seq))
3127 flag |= FLAG_ORIG_SACK_ACKED;
3128 }
3129
3130 if (sacked & TCPCB_SACKED_ACKED) {
3131 tp->sacked_out -= acked_pcount;
3132 } else if (tcp_is_sack(tp)) {
3133 tp->delivered += acked_pcount;
3134 if (!tcp_skb_spurious_retrans(tp, skb))
3135 tcp_rack_advance(tp, sacked, scb->end_seq,
3136 tcp_skb_timestamp_us(skb));
3137 }
3138 if (sacked & TCPCB_LOST)
3139 tp->lost_out -= acked_pcount;
3140
3141 tp->packets_out -= acked_pcount;
3142 pkts_acked += acked_pcount;
3143 tcp_rate_skb_delivered(sk, skb, sack->rate);
3144
3145 /* Initial outgoing SYN's get put onto the write_queue
3146 * just like anything else we transmit. It is not
3147 * true data, and if we misinform our callers that
3148 * this ACK acks real data, we will erroneously exit
3149 * connection startup slow start one packet too
3150 * quickly. This is severely frowned upon behavior.
3151 */
3152 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3153 flag |= FLAG_DATA_ACKED;
3154 } else {
3155 flag |= FLAG_SYN_ACKED;
3156 tp->retrans_stamp = 0;
3157 }
3158
3159 if (!fully_acked)
3160 break;
3161
3162 next = skb_rb_next(skb);
3163 if (unlikely(skb == tp->retransmit_skb_hint))
3164 tp->retransmit_skb_hint = NULL;
3165 if (unlikely(skb == tp->lost_skb_hint))
3166 tp->lost_skb_hint = NULL;
3167 tcp_highest_sack_replace(sk, skb, next);
3168 tcp_rtx_queue_unlink_and_free(skb, sk);
3169 }
3170
3171 if (!skb)
3172 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3173
3174 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3175 tp->snd_up = tp->snd_una;
3176
3177 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3178 flag |= FLAG_SACK_RENEGING;
3179
3180 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3181 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3182 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3183
3184 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3185 last_in_flight && !prior_sacked && fully_acked &&
3186 sack->rate->prior_delivered + 1 == tp->delivered &&
3187 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3188 /* Conservatively mark a delayed ACK. It's typically
3189 * from a lone runt packet over the round trip to
3190 * a receiver w/o out-of-order or CE events.
3191 */
3192 flag |= FLAG_ACK_MAYBE_DELAYED;
3193 }
3194 }
3195 if (sack->first_sackt) {
3196 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3197 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3198 }
3199 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3200 ca_rtt_us, sack->rate);
3201
3202 if (flag & FLAG_ACKED) {
3203 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3204 if (unlikely(icsk->icsk_mtup.probe_size &&
3205 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3206 tcp_mtup_probe_success(sk);
3207 }
3208
3209 if (tcp_is_reno(tp)) {
3210 tcp_remove_reno_sacks(sk, pkts_acked);
3211
3212 /* If any of the cumulatively ACKed segments was
3213 * retransmitted, non-SACK case cannot confirm that
3214 * progress was due to original transmission due to
3215 * lack of TCPCB_SACKED_ACKED bits even if some of
3216 * the packets may have been never retransmitted.
3217 */
3218 if (flag & FLAG_RETRANS_DATA_ACKED)
3219 flag &= ~FLAG_ORIG_SACK_ACKED;
3220 } else {
3221 int delta;
3222
3223 /* Non-retransmitted hole got filled? That's reordering */
3224 if (before(reord, prior_fack))
3225 tcp_check_sack_reordering(sk, reord, 0);
3226
3227 delta = prior_sacked - tp->sacked_out;
3228 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3229 }
3230 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3231 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3232 tcp_skb_timestamp_us(skb))) {
3233 /* Do not re-arm RTO if the sack RTT is measured from data sent
3234 * after when the head was last (re)transmitted. Otherwise the
3235 * timeout may continue to extend in loss recovery.
3236 */
3237 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3238 }
3239
3240 if (icsk->icsk_ca_ops->pkts_acked) {
3241 struct ack_sample sample = { .pkts_acked = pkts_acked,
3242 .rtt_us = sack->rate->rtt_us,
3243 .in_flight = last_in_flight };
3244
3245 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3246 }
3247
3248 #if FASTRETRANS_DEBUG > 0
3249 WARN_ON((int)tp->sacked_out < 0);
3250 WARN_ON((int)tp->lost_out < 0);
3251 WARN_ON((int)tp->retrans_out < 0);
3252 if (!tp->packets_out && tcp_is_sack(tp)) {
3253 icsk = inet_csk(sk);
3254 if (tp->lost_out) {
3255 pr_debug("Leak l=%u %d\n",
3256 tp->lost_out, icsk->icsk_ca_state);
3257 tp->lost_out = 0;
3258 }
3259 if (tp->sacked_out) {
3260 pr_debug("Leak s=%u %d\n",
3261 tp->sacked_out, icsk->icsk_ca_state);
3262 tp->sacked_out = 0;
3263 }
3264 if (tp->retrans_out) {
3265 pr_debug("Leak r=%u %d\n",
3266 tp->retrans_out, icsk->icsk_ca_state);
3267 tp->retrans_out = 0;
3268 }
3269 }
3270 #endif
3271 return flag;
3272 }
3273
tcp_ack_probe(struct sock * sk)3274 static void tcp_ack_probe(struct sock *sk)
3275 {
3276 struct inet_connection_sock *icsk = inet_csk(sk);
3277 struct sk_buff *head = tcp_send_head(sk);
3278 const struct tcp_sock *tp = tcp_sk(sk);
3279
3280 /* Was it a usable window open? */
3281 if (!head)
3282 return;
3283 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3284 icsk->icsk_backoff = 0;
3285 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3286 /* Socket must be waked up by subsequent tcp_data_snd_check().
3287 * This function is not for random using!
3288 */
3289 } else {
3290 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3291
3292 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3293 when, TCP_RTO_MAX, NULL);
3294 }
3295 }
3296
tcp_ack_is_dubious(const struct sock * sk,const int flag)3297 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3298 {
3299 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3300 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3301 }
3302
3303 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3304 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3305 {
3306 /* If reordering is high then always grow cwnd whenever data is
3307 * delivered regardless of its ordering. Otherwise stay conservative
3308 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3309 * new SACK or ECE mark may first advance cwnd here and later reduce
3310 * cwnd in tcp_fastretrans_alert() based on more states.
3311 */
3312 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3313 return flag & FLAG_FORWARD_PROGRESS;
3314
3315 return flag & FLAG_DATA_ACKED;
3316 }
3317
3318 /* The "ultimate" congestion control function that aims to replace the rigid
3319 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3320 * It's called toward the end of processing an ACK with precise rate
3321 * information. All transmission or retransmission are delayed afterwards.
3322 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3323 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3324 int flag, const struct rate_sample *rs)
3325 {
3326 const struct inet_connection_sock *icsk = inet_csk(sk);
3327
3328 if (icsk->icsk_ca_ops->cong_control) {
3329 icsk->icsk_ca_ops->cong_control(sk, rs);
3330 return;
3331 }
3332
3333 if (tcp_in_cwnd_reduction(sk)) {
3334 /* Reduce cwnd if state mandates */
3335 tcp_cwnd_reduction(sk, acked_sacked, flag);
3336 } else if (tcp_may_raise_cwnd(sk, flag)) {
3337 /* Advance cwnd if state allows */
3338 tcp_cong_avoid(sk, ack, acked_sacked);
3339 }
3340 tcp_update_pacing_rate(sk);
3341 }
3342
3343 /* Check that window update is acceptable.
3344 * The function assumes that snd_una<=ack<=snd_next.
3345 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3346 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3347 const u32 ack, const u32 ack_seq,
3348 const u32 nwin)
3349 {
3350 return after(ack, tp->snd_una) ||
3351 after(ack_seq, tp->snd_wl1) ||
3352 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3353 }
3354
3355 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3356 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3357 {
3358 u32 delta = ack - tp->snd_una;
3359
3360 sock_owned_by_me((struct sock *)tp);
3361 tp->bytes_acked += delta;
3362 tp->snd_una = ack;
3363 }
3364
3365 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3366 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3367 {
3368 u32 delta = seq - tp->rcv_nxt;
3369
3370 sock_owned_by_me((struct sock *)tp);
3371 tp->bytes_received += delta;
3372 WRITE_ONCE(tp->rcv_nxt, seq);
3373 }
3374
3375 /* Update our send window.
3376 *
3377 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3378 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3379 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3380 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3381 u32 ack_seq)
3382 {
3383 struct tcp_sock *tp = tcp_sk(sk);
3384 int flag = 0;
3385 u32 nwin = ntohs(tcp_hdr(skb)->window);
3386
3387 if (likely(!tcp_hdr(skb)->syn))
3388 nwin <<= tp->rx_opt.snd_wscale;
3389
3390 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3391 flag |= FLAG_WIN_UPDATE;
3392 tcp_update_wl(tp, ack_seq);
3393
3394 if (tp->snd_wnd != nwin) {
3395 tp->snd_wnd = nwin;
3396
3397 /* Note, it is the only place, where
3398 * fast path is recovered for sending TCP.
3399 */
3400 tp->pred_flags = 0;
3401 tcp_fast_path_check(sk);
3402
3403 if (!tcp_write_queue_empty(sk))
3404 tcp_slow_start_after_idle_check(sk);
3405
3406 if (nwin > tp->max_window) {
3407 tp->max_window = nwin;
3408 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3409 }
3410 }
3411 }
3412
3413 tcp_snd_una_update(tp, ack);
3414
3415 return flag;
3416 }
3417
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3418 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3419 u32 *last_oow_ack_time)
3420 {
3421 if (*last_oow_ack_time) {
3422 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3423
3424 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3425 NET_INC_STATS(net, mib_idx);
3426 return true; /* rate-limited: don't send yet! */
3427 }
3428 }
3429
3430 *last_oow_ack_time = tcp_jiffies32;
3431
3432 return false; /* not rate-limited: go ahead, send dupack now! */
3433 }
3434
3435 /* Return true if we're currently rate-limiting out-of-window ACKs and
3436 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3437 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3438 * attacks that send repeated SYNs or ACKs for the same connection. To
3439 * do this, we do not send a duplicate SYNACK or ACK if the remote
3440 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3441 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3442 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3443 int mib_idx, u32 *last_oow_ack_time)
3444 {
3445 /* Data packets without SYNs are not likely part of an ACK loop. */
3446 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3447 !tcp_hdr(skb)->syn)
3448 return false;
3449
3450 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3451 }
3452
3453 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3454 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3455 {
3456 /* unprotected vars, we dont care of overwrites */
3457 static u32 challenge_timestamp;
3458 static unsigned int challenge_count;
3459 struct tcp_sock *tp = tcp_sk(sk);
3460 struct net *net = sock_net(sk);
3461 u32 count, now;
3462
3463 /* First check our per-socket dupack rate limit. */
3464 if (__tcp_oow_rate_limited(net,
3465 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3466 &tp->last_oow_ack_time))
3467 return;
3468
3469 /* Then check host-wide RFC 5961 rate limit. */
3470 now = jiffies / HZ;
3471 if (now != challenge_timestamp) {
3472 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3473 u32 half = (ack_limit + 1) >> 1;
3474
3475 challenge_timestamp = now;
3476 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3477 }
3478 count = READ_ONCE(challenge_count);
3479 if (count > 0) {
3480 WRITE_ONCE(challenge_count, count - 1);
3481 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3482 tcp_send_ack(sk);
3483 }
3484 }
3485
tcp_store_ts_recent(struct tcp_sock * tp)3486 static void tcp_store_ts_recent(struct tcp_sock *tp)
3487 {
3488 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3489 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3490 }
3491
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3492 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3493 {
3494 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3495 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3496 * extra check below makes sure this can only happen
3497 * for pure ACK frames. -DaveM
3498 *
3499 * Not only, also it occurs for expired timestamps.
3500 */
3501
3502 if (tcp_paws_check(&tp->rx_opt, 0))
3503 tcp_store_ts_recent(tp);
3504 }
3505 }
3506
3507 /* This routine deals with acks during a TLP episode.
3508 * We mark the end of a TLP episode on receiving TLP dupack or when
3509 * ack is after tlp_high_seq.
3510 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3511 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3512 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3513 {
3514 struct tcp_sock *tp = tcp_sk(sk);
3515
3516 if (before(ack, tp->tlp_high_seq))
3517 return;
3518
3519 if (flag & FLAG_DSACKING_ACK) {
3520 /* This DSACK means original and TLP probe arrived; no loss */
3521 tp->tlp_high_seq = 0;
3522 } else if (after(ack, tp->tlp_high_seq)) {
3523 /* ACK advances: there was a loss, so reduce cwnd. Reset
3524 * tlp_high_seq in tcp_init_cwnd_reduction()
3525 */
3526 tcp_init_cwnd_reduction(sk);
3527 tcp_set_ca_state(sk, TCP_CA_CWR);
3528 tcp_end_cwnd_reduction(sk);
3529 tcp_try_keep_open(sk);
3530 NET_INC_STATS(sock_net(sk),
3531 LINUX_MIB_TCPLOSSPROBERECOVERY);
3532 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3533 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3534 /* Pure dupack: original and TLP probe arrived; no loss */
3535 tp->tlp_high_seq = 0;
3536 }
3537 }
3538
tcp_in_ack_event(struct sock * sk,u32 flags)3539 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3540 {
3541 const struct inet_connection_sock *icsk = inet_csk(sk);
3542
3543 if (icsk->icsk_ca_ops->in_ack_event)
3544 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3545 }
3546
3547 /* Congestion control has updated the cwnd already. So if we're in
3548 * loss recovery then now we do any new sends (for FRTO) or
3549 * retransmits (for CA_Loss or CA_recovery) that make sense.
3550 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3551 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3552 {
3553 struct tcp_sock *tp = tcp_sk(sk);
3554
3555 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3556 return;
3557
3558 if (unlikely(rexmit == 2)) {
3559 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3560 TCP_NAGLE_OFF);
3561 if (after(tp->snd_nxt, tp->high_seq))
3562 return;
3563 tp->frto = 0;
3564 }
3565 tcp_xmit_retransmit_queue(sk);
3566 }
3567
3568 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3569 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3570 {
3571 const struct net *net = sock_net(sk);
3572 struct tcp_sock *tp = tcp_sk(sk);
3573 u32 delivered;
3574
3575 delivered = tp->delivered - prior_delivered;
3576 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3577 if (flag & FLAG_ECE) {
3578 tp->delivered_ce += delivered;
3579 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3580 }
3581 return delivered;
3582 }
3583
3584 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3585 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3586 {
3587 struct inet_connection_sock *icsk = inet_csk(sk);
3588 struct tcp_sock *tp = tcp_sk(sk);
3589 struct tcp_sacktag_state sack_state;
3590 struct rate_sample rs = { .prior_delivered = 0 };
3591 u32 prior_snd_una = tp->snd_una;
3592 bool is_sack_reneg = tp->is_sack_reneg;
3593 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3594 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3595 int num_dupack = 0;
3596 int prior_packets = tp->packets_out;
3597 u32 delivered = tp->delivered;
3598 u32 lost = tp->lost;
3599 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3600 u32 prior_fack;
3601
3602 sack_state.first_sackt = 0;
3603 sack_state.rate = &rs;
3604
3605 /* We very likely will need to access rtx queue. */
3606 prefetch(sk->tcp_rtx_queue.rb_node);
3607
3608 /* If the ack is older than previous acks
3609 * then we can probably ignore it.
3610 */
3611 if (before(ack, prior_snd_una)) {
3612 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3613 if (before(ack, prior_snd_una - tp->max_window)) {
3614 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3615 tcp_send_challenge_ack(sk, skb);
3616 return -1;
3617 }
3618 goto old_ack;
3619 }
3620
3621 /* If the ack includes data we haven't sent yet, discard
3622 * this segment (RFC793 Section 3.9).
3623 */
3624 if (after(ack, tp->snd_nxt))
3625 return -1;
3626
3627 if (after(ack, prior_snd_una)) {
3628 flag |= FLAG_SND_UNA_ADVANCED;
3629 icsk->icsk_retransmits = 0;
3630
3631 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3632 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3633 if (icsk->icsk_clean_acked)
3634 icsk->icsk_clean_acked(sk, ack);
3635 #endif
3636 }
3637
3638 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3639 rs.prior_in_flight = tcp_packets_in_flight(tp);
3640
3641 /* ts_recent update must be made after we are sure that the packet
3642 * is in window.
3643 */
3644 if (flag & FLAG_UPDATE_TS_RECENT)
3645 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3646
3647 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3648 FLAG_SND_UNA_ADVANCED) {
3649 /* Window is constant, pure forward advance.
3650 * No more checks are required.
3651 * Note, we use the fact that SND.UNA>=SND.WL2.
3652 */
3653 tcp_update_wl(tp, ack_seq);
3654 tcp_snd_una_update(tp, ack);
3655 flag |= FLAG_WIN_UPDATE;
3656
3657 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3658
3659 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3660 } else {
3661 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3662
3663 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3664 flag |= FLAG_DATA;
3665 else
3666 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3667
3668 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3669
3670 if (TCP_SKB_CB(skb)->sacked)
3671 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3672 &sack_state);
3673
3674 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3675 flag |= FLAG_ECE;
3676 ack_ev_flags |= CA_ACK_ECE;
3677 }
3678
3679 if (flag & FLAG_WIN_UPDATE)
3680 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3681
3682 tcp_in_ack_event(sk, ack_ev_flags);
3683 }
3684
3685 /* We passed data and got it acked, remove any soft error
3686 * log. Something worked...
3687 */
3688 sk->sk_err_soft = 0;
3689 icsk->icsk_probes_out = 0;
3690 tp->rcv_tstamp = tcp_jiffies32;
3691 if (!prior_packets)
3692 goto no_queue;
3693
3694 /* See if we can take anything off of the retransmit queue. */
3695 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3696
3697 tcp_rack_update_reo_wnd(sk, &rs);
3698
3699 if (tp->tlp_high_seq)
3700 tcp_process_tlp_ack(sk, ack, flag);
3701 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3702 if (flag & FLAG_SET_XMIT_TIMER)
3703 tcp_set_xmit_timer(sk);
3704
3705 if (tcp_ack_is_dubious(sk, flag)) {
3706 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3707 num_dupack = 1;
3708 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3709 if (!(flag & FLAG_DATA))
3710 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3711 }
3712 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3713 &rexmit);
3714 }
3715
3716 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3717 sk_dst_confirm(sk);
3718
3719 delivered = tcp_newly_delivered(sk, delivered, flag);
3720 lost = tp->lost - lost; /* freshly marked lost */
3721 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3722 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3723 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3724 tcp_xmit_recovery(sk, rexmit);
3725 return 1;
3726
3727 no_queue:
3728 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3729 if (flag & FLAG_DSACKING_ACK) {
3730 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3731 &rexmit);
3732 tcp_newly_delivered(sk, delivered, flag);
3733 }
3734 /* If this ack opens up a zero window, clear backoff. It was
3735 * being used to time the probes, and is probably far higher than
3736 * it needs to be for normal retransmission.
3737 */
3738 tcp_ack_probe(sk);
3739
3740 if (tp->tlp_high_seq)
3741 tcp_process_tlp_ack(sk, ack, flag);
3742 return 1;
3743
3744 old_ack:
3745 /* If data was SACKed, tag it and see if we should send more data.
3746 * If data was DSACKed, see if we can undo a cwnd reduction.
3747 */
3748 if (TCP_SKB_CB(skb)->sacked) {
3749 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3750 &sack_state);
3751 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3752 &rexmit);
3753 tcp_newly_delivered(sk, delivered, flag);
3754 tcp_xmit_recovery(sk, rexmit);
3755 }
3756
3757 return 0;
3758 }
3759
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3760 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3761 bool syn, struct tcp_fastopen_cookie *foc,
3762 bool exp_opt)
3763 {
3764 /* Valid only in SYN or SYN-ACK with an even length. */
3765 if (!foc || !syn || len < 0 || (len & 1))
3766 return;
3767
3768 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3769 len <= TCP_FASTOPEN_COOKIE_MAX)
3770 memcpy(foc->val, cookie, len);
3771 else if (len != 0)
3772 len = -1;
3773 foc->len = len;
3774 foc->exp = exp_opt;
3775 }
3776
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3777 static void smc_parse_options(const struct tcphdr *th,
3778 struct tcp_options_received *opt_rx,
3779 const unsigned char *ptr,
3780 int opsize)
3781 {
3782 #if IS_ENABLED(CONFIG_SMC)
3783 if (static_branch_unlikely(&tcp_have_smc)) {
3784 if (th->syn && !(opsize & 1) &&
3785 opsize >= TCPOLEN_EXP_SMC_BASE &&
3786 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3787 opt_rx->smc_ok = 1;
3788 }
3789 #endif
3790 }
3791
3792 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3793 * value on success.
3794 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)3795 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3796 {
3797 const unsigned char *ptr = (const unsigned char *)(th + 1);
3798 int length = (th->doff * 4) - sizeof(struct tcphdr);
3799 u16 mss = 0;
3800
3801 while (length > 0) {
3802 int opcode = *ptr++;
3803 int opsize;
3804
3805 switch (opcode) {
3806 case TCPOPT_EOL:
3807 return mss;
3808 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3809 length--;
3810 continue;
3811 default:
3812 if (length < 2)
3813 return mss;
3814 opsize = *ptr++;
3815 if (opsize < 2) /* "silly options" */
3816 return mss;
3817 if (opsize > length)
3818 return mss; /* fail on partial options */
3819 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3820 u16 in_mss = get_unaligned_be16(ptr);
3821
3822 if (in_mss) {
3823 if (user_mss && user_mss < in_mss)
3824 in_mss = user_mss;
3825 mss = in_mss;
3826 }
3827 }
3828 ptr += opsize - 2;
3829 length -= opsize;
3830 }
3831 }
3832 return mss;
3833 }
3834
3835 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3836 * But, this can also be called on packets in the established flow when
3837 * the fast version below fails.
3838 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)3839 void tcp_parse_options(const struct net *net,
3840 const struct sk_buff *skb,
3841 struct tcp_options_received *opt_rx, int estab,
3842 struct tcp_fastopen_cookie *foc)
3843 {
3844 const unsigned char *ptr;
3845 const struct tcphdr *th = tcp_hdr(skb);
3846 int length = (th->doff * 4) - sizeof(struct tcphdr);
3847
3848 ptr = (const unsigned char *)(th + 1);
3849 opt_rx->saw_tstamp = 0;
3850
3851 while (length > 0) {
3852 int opcode = *ptr++;
3853 int opsize;
3854
3855 switch (opcode) {
3856 case TCPOPT_EOL:
3857 return;
3858 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3859 length--;
3860 continue;
3861 default:
3862 if (length < 2)
3863 return;
3864 opsize = *ptr++;
3865 if (opsize < 2) /* "silly options" */
3866 return;
3867 if (opsize > length)
3868 return; /* don't parse partial options */
3869 switch (opcode) {
3870 case TCPOPT_MSS:
3871 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3872 u16 in_mss = get_unaligned_be16(ptr);
3873 if (in_mss) {
3874 if (opt_rx->user_mss &&
3875 opt_rx->user_mss < in_mss)
3876 in_mss = opt_rx->user_mss;
3877 opt_rx->mss_clamp = in_mss;
3878 }
3879 }
3880 break;
3881 case TCPOPT_WINDOW:
3882 if (opsize == TCPOLEN_WINDOW && th->syn &&
3883 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3884 __u8 snd_wscale = *(__u8 *)ptr;
3885 opt_rx->wscale_ok = 1;
3886 if (snd_wscale > TCP_MAX_WSCALE) {
3887 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3888 __func__,
3889 snd_wscale,
3890 TCP_MAX_WSCALE);
3891 snd_wscale = TCP_MAX_WSCALE;
3892 }
3893 opt_rx->snd_wscale = snd_wscale;
3894 }
3895 break;
3896 case TCPOPT_TIMESTAMP:
3897 if ((opsize == TCPOLEN_TIMESTAMP) &&
3898 ((estab && opt_rx->tstamp_ok) ||
3899 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3900 opt_rx->saw_tstamp = 1;
3901 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3902 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3903 }
3904 break;
3905 case TCPOPT_SACK_PERM:
3906 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3907 !estab && net->ipv4.sysctl_tcp_sack) {
3908 opt_rx->sack_ok = TCP_SACK_SEEN;
3909 tcp_sack_reset(opt_rx);
3910 }
3911 break;
3912
3913 case TCPOPT_SACK:
3914 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3915 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3916 opt_rx->sack_ok) {
3917 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3918 }
3919 break;
3920 #ifdef CONFIG_TCP_MD5SIG
3921 case TCPOPT_MD5SIG:
3922 /*
3923 * The MD5 Hash has already been
3924 * checked (see tcp_v{4,6}_do_rcv()).
3925 */
3926 break;
3927 #endif
3928 case TCPOPT_FASTOPEN:
3929 tcp_parse_fastopen_option(
3930 opsize - TCPOLEN_FASTOPEN_BASE,
3931 ptr, th->syn, foc, false);
3932 break;
3933
3934 case TCPOPT_EXP:
3935 /* Fast Open option shares code 254 using a
3936 * 16 bits magic number.
3937 */
3938 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3939 get_unaligned_be16(ptr) ==
3940 TCPOPT_FASTOPEN_MAGIC)
3941 tcp_parse_fastopen_option(opsize -
3942 TCPOLEN_EXP_FASTOPEN_BASE,
3943 ptr + 2, th->syn, foc, true);
3944 else
3945 smc_parse_options(th, opt_rx, ptr,
3946 opsize);
3947 break;
3948
3949 }
3950 ptr += opsize-2;
3951 length -= opsize;
3952 }
3953 }
3954 }
3955 EXPORT_SYMBOL(tcp_parse_options);
3956
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)3957 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3958 {
3959 const __be32 *ptr = (const __be32 *)(th + 1);
3960
3961 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3962 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3963 tp->rx_opt.saw_tstamp = 1;
3964 ++ptr;
3965 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3966 ++ptr;
3967 if (*ptr)
3968 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3969 else
3970 tp->rx_opt.rcv_tsecr = 0;
3971 return true;
3972 }
3973 return false;
3974 }
3975
3976 /* Fast parse options. This hopes to only see timestamps.
3977 * If it is wrong it falls back on tcp_parse_options().
3978 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)3979 static bool tcp_fast_parse_options(const struct net *net,
3980 const struct sk_buff *skb,
3981 const struct tcphdr *th, struct tcp_sock *tp)
3982 {
3983 /* In the spirit of fast parsing, compare doff directly to constant
3984 * values. Because equality is used, short doff can be ignored here.
3985 */
3986 if (th->doff == (sizeof(*th) / 4)) {
3987 tp->rx_opt.saw_tstamp = 0;
3988 return false;
3989 } else if (tp->rx_opt.tstamp_ok &&
3990 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3991 if (tcp_parse_aligned_timestamp(tp, th))
3992 return true;
3993 }
3994
3995 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3996 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3997 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3998
3999 return true;
4000 }
4001
4002 #ifdef CONFIG_TCP_MD5SIG
4003 /*
4004 * Parse MD5 Signature option
4005 */
tcp_parse_md5sig_option(const struct tcphdr * th)4006 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4007 {
4008 int length = (th->doff << 2) - sizeof(*th);
4009 const u8 *ptr = (const u8 *)(th + 1);
4010
4011 /* If not enough data remaining, we can short cut */
4012 while (length >= TCPOLEN_MD5SIG) {
4013 int opcode = *ptr++;
4014 int opsize;
4015
4016 switch (opcode) {
4017 case TCPOPT_EOL:
4018 return NULL;
4019 case TCPOPT_NOP:
4020 length--;
4021 continue;
4022 default:
4023 opsize = *ptr++;
4024 if (opsize < 2 || opsize > length)
4025 return NULL;
4026 if (opcode == TCPOPT_MD5SIG)
4027 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4028 }
4029 ptr += opsize - 2;
4030 length -= opsize;
4031 }
4032 return NULL;
4033 }
4034 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4035 #endif
4036
4037 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4038 *
4039 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4040 * it can pass through stack. So, the following predicate verifies that
4041 * this segment is not used for anything but congestion avoidance or
4042 * fast retransmit. Moreover, we even are able to eliminate most of such
4043 * second order effects, if we apply some small "replay" window (~RTO)
4044 * to timestamp space.
4045 *
4046 * All these measures still do not guarantee that we reject wrapped ACKs
4047 * on networks with high bandwidth, when sequence space is recycled fastly,
4048 * but it guarantees that such events will be very rare and do not affect
4049 * connection seriously. This doesn't look nice, but alas, PAWS is really
4050 * buggy extension.
4051 *
4052 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4053 * states that events when retransmit arrives after original data are rare.
4054 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4055 * the biggest problem on large power networks even with minor reordering.
4056 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4057 * up to bandwidth of 18Gigabit/sec. 8) ]
4058 */
4059
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4060 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4061 {
4062 const struct tcp_sock *tp = tcp_sk(sk);
4063 const struct tcphdr *th = tcp_hdr(skb);
4064 u32 seq = TCP_SKB_CB(skb)->seq;
4065 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4066
4067 return (/* 1. Pure ACK with correct sequence number. */
4068 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4069
4070 /* 2. ... and duplicate ACK. */
4071 ack == tp->snd_una &&
4072
4073 /* 3. ... and does not update window. */
4074 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4075
4076 /* 4. ... and sits in replay window. */
4077 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4078 }
4079
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4080 static inline bool tcp_paws_discard(const struct sock *sk,
4081 const struct sk_buff *skb)
4082 {
4083 const struct tcp_sock *tp = tcp_sk(sk);
4084
4085 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4086 !tcp_disordered_ack(sk, skb);
4087 }
4088
4089 /* Check segment sequence number for validity.
4090 *
4091 * Segment controls are considered valid, if the segment
4092 * fits to the window after truncation to the window. Acceptability
4093 * of data (and SYN, FIN, of course) is checked separately.
4094 * See tcp_data_queue(), for example.
4095 *
4096 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4097 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4098 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4099 * (borrowed from freebsd)
4100 */
4101
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4102 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4103 {
4104 return !before(end_seq, tp->rcv_wup) &&
4105 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4106 }
4107
4108 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4109 void tcp_reset(struct sock *sk)
4110 {
4111 trace_tcp_receive_reset(sk);
4112
4113 /* We want the right error as BSD sees it (and indeed as we do). */
4114 switch (sk->sk_state) {
4115 case TCP_SYN_SENT:
4116 sk->sk_err = ECONNREFUSED;
4117 break;
4118 case TCP_CLOSE_WAIT:
4119 sk->sk_err = EPIPE;
4120 break;
4121 case TCP_CLOSE:
4122 return;
4123 default:
4124 sk->sk_err = ECONNRESET;
4125 }
4126 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4127 smp_wmb();
4128
4129 tcp_write_queue_purge(sk);
4130 tcp_done(sk);
4131
4132 if (!sock_flag(sk, SOCK_DEAD))
4133 sk->sk_error_report(sk);
4134 }
4135
4136 /*
4137 * Process the FIN bit. This now behaves as it is supposed to work
4138 * and the FIN takes effect when it is validly part of sequence
4139 * space. Not before when we get holes.
4140 *
4141 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4142 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4143 * TIME-WAIT)
4144 *
4145 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4146 * close and we go into CLOSING (and later onto TIME-WAIT)
4147 *
4148 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4149 */
tcp_fin(struct sock * sk)4150 void tcp_fin(struct sock *sk)
4151 {
4152 struct tcp_sock *tp = tcp_sk(sk);
4153
4154 inet_csk_schedule_ack(sk);
4155
4156 sk->sk_shutdown |= RCV_SHUTDOWN;
4157 sock_set_flag(sk, SOCK_DONE);
4158
4159 switch (sk->sk_state) {
4160 case TCP_SYN_RECV:
4161 case TCP_ESTABLISHED:
4162 /* Move to CLOSE_WAIT */
4163 tcp_set_state(sk, TCP_CLOSE_WAIT);
4164 inet_csk_enter_pingpong_mode(sk);
4165 break;
4166
4167 case TCP_CLOSE_WAIT:
4168 case TCP_CLOSING:
4169 /* Received a retransmission of the FIN, do
4170 * nothing.
4171 */
4172 break;
4173 case TCP_LAST_ACK:
4174 /* RFC793: Remain in the LAST-ACK state. */
4175 break;
4176
4177 case TCP_FIN_WAIT1:
4178 /* This case occurs when a simultaneous close
4179 * happens, we must ack the received FIN and
4180 * enter the CLOSING state.
4181 */
4182 tcp_send_ack(sk);
4183 tcp_set_state(sk, TCP_CLOSING);
4184 break;
4185 case TCP_FIN_WAIT2:
4186 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4187 tcp_send_ack(sk);
4188 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4189 break;
4190 default:
4191 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4192 * cases we should never reach this piece of code.
4193 */
4194 pr_err("%s: Impossible, sk->sk_state=%d\n",
4195 __func__, sk->sk_state);
4196 break;
4197 }
4198
4199 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4200 * Probably, we should reset in this case. For now drop them.
4201 */
4202 skb_rbtree_purge(&tp->out_of_order_queue);
4203 if (tcp_is_sack(tp))
4204 tcp_sack_reset(&tp->rx_opt);
4205 sk_mem_reclaim(sk);
4206
4207 if (!sock_flag(sk, SOCK_DEAD)) {
4208 sk->sk_state_change(sk);
4209
4210 /* Do not send POLL_HUP for half duplex close. */
4211 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4212 sk->sk_state == TCP_CLOSE)
4213 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4214 else
4215 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4216 }
4217 }
4218
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4219 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4220 u32 end_seq)
4221 {
4222 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4223 if (before(seq, sp->start_seq))
4224 sp->start_seq = seq;
4225 if (after(end_seq, sp->end_seq))
4226 sp->end_seq = end_seq;
4227 return true;
4228 }
4229 return false;
4230 }
4231
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4232 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4233 {
4234 struct tcp_sock *tp = tcp_sk(sk);
4235
4236 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4237 int mib_idx;
4238
4239 if (before(seq, tp->rcv_nxt))
4240 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4241 else
4242 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4243
4244 NET_INC_STATS(sock_net(sk), mib_idx);
4245
4246 tp->rx_opt.dsack = 1;
4247 tp->duplicate_sack[0].start_seq = seq;
4248 tp->duplicate_sack[0].end_seq = end_seq;
4249 }
4250 }
4251
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4252 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4253 {
4254 struct tcp_sock *tp = tcp_sk(sk);
4255
4256 if (!tp->rx_opt.dsack)
4257 tcp_dsack_set(sk, seq, end_seq);
4258 else
4259 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4260 }
4261
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4262 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4263 {
4264 /* When the ACK path fails or drops most ACKs, the sender would
4265 * timeout and spuriously retransmit the same segment repeatedly.
4266 * The receiver remembers and reflects via DSACKs. Leverage the
4267 * DSACK state and change the txhash to re-route speculatively.
4268 */
4269 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4270 sk_rethink_txhash(sk);
4271 }
4272
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4273 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4274 {
4275 struct tcp_sock *tp = tcp_sk(sk);
4276
4277 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4278 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4279 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4280 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4281
4282 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4283 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4284
4285 tcp_rcv_spurious_retrans(sk, skb);
4286 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4287 end_seq = tp->rcv_nxt;
4288 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4289 }
4290 }
4291
4292 tcp_send_ack(sk);
4293 }
4294
4295 /* These routines update the SACK block as out-of-order packets arrive or
4296 * in-order packets close up the sequence space.
4297 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4298 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4299 {
4300 int this_sack;
4301 struct tcp_sack_block *sp = &tp->selective_acks[0];
4302 struct tcp_sack_block *swalk = sp + 1;
4303
4304 /* See if the recent change to the first SACK eats into
4305 * or hits the sequence space of other SACK blocks, if so coalesce.
4306 */
4307 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4308 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4309 int i;
4310
4311 /* Zap SWALK, by moving every further SACK up by one slot.
4312 * Decrease num_sacks.
4313 */
4314 tp->rx_opt.num_sacks--;
4315 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4316 sp[i] = sp[i + 1];
4317 continue;
4318 }
4319 this_sack++, swalk++;
4320 }
4321 }
4322
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4323 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4324 {
4325 struct tcp_sock *tp = tcp_sk(sk);
4326 struct tcp_sack_block *sp = &tp->selective_acks[0];
4327 int cur_sacks = tp->rx_opt.num_sacks;
4328 int this_sack;
4329
4330 if (!cur_sacks)
4331 goto new_sack;
4332
4333 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4334 if (tcp_sack_extend(sp, seq, end_seq)) {
4335 /* Rotate this_sack to the first one. */
4336 for (; this_sack > 0; this_sack--, sp--)
4337 swap(*sp, *(sp - 1));
4338 if (cur_sacks > 1)
4339 tcp_sack_maybe_coalesce(tp);
4340 return;
4341 }
4342 }
4343
4344 /* Could not find an adjacent existing SACK, build a new one,
4345 * put it at the front, and shift everyone else down. We
4346 * always know there is at least one SACK present already here.
4347 *
4348 * If the sack array is full, forget about the last one.
4349 */
4350 if (this_sack >= TCP_NUM_SACKS) {
4351 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4352 tcp_send_ack(sk);
4353 this_sack--;
4354 tp->rx_opt.num_sacks--;
4355 sp--;
4356 }
4357 for (; this_sack > 0; this_sack--, sp--)
4358 *sp = *(sp - 1);
4359
4360 new_sack:
4361 /* Build the new head SACK, and we're done. */
4362 sp->start_seq = seq;
4363 sp->end_seq = end_seq;
4364 tp->rx_opt.num_sacks++;
4365 }
4366
4367 /* RCV.NXT advances, some SACKs should be eaten. */
4368
tcp_sack_remove(struct tcp_sock * tp)4369 static void tcp_sack_remove(struct tcp_sock *tp)
4370 {
4371 struct tcp_sack_block *sp = &tp->selective_acks[0];
4372 int num_sacks = tp->rx_opt.num_sacks;
4373 int this_sack;
4374
4375 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4376 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4377 tp->rx_opt.num_sacks = 0;
4378 return;
4379 }
4380
4381 for (this_sack = 0; this_sack < num_sacks;) {
4382 /* Check if the start of the sack is covered by RCV.NXT. */
4383 if (!before(tp->rcv_nxt, sp->start_seq)) {
4384 int i;
4385
4386 /* RCV.NXT must cover all the block! */
4387 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4388
4389 /* Zap this SACK, by moving forward any other SACKS. */
4390 for (i = this_sack+1; i < num_sacks; i++)
4391 tp->selective_acks[i-1] = tp->selective_acks[i];
4392 num_sacks--;
4393 continue;
4394 }
4395 this_sack++;
4396 sp++;
4397 }
4398 tp->rx_opt.num_sacks = num_sacks;
4399 }
4400
4401 /**
4402 * tcp_try_coalesce - try to merge skb to prior one
4403 * @sk: socket
4404 * @dest: destination queue
4405 * @to: prior buffer
4406 * @from: buffer to add in queue
4407 * @fragstolen: pointer to boolean
4408 *
4409 * Before queueing skb @from after @to, try to merge them
4410 * to reduce overall memory use and queue lengths, if cost is small.
4411 * Packets in ofo or receive queues can stay a long time.
4412 * Better try to coalesce them right now to avoid future collapses.
4413 * Returns true if caller should free @from instead of queueing it
4414 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4415 static bool tcp_try_coalesce(struct sock *sk,
4416 struct sk_buff *to,
4417 struct sk_buff *from,
4418 bool *fragstolen)
4419 {
4420 int delta;
4421
4422 *fragstolen = false;
4423
4424 /* Its possible this segment overlaps with prior segment in queue */
4425 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4426 return false;
4427
4428 #ifdef CONFIG_TLS_DEVICE
4429 if (from->decrypted != to->decrypted)
4430 return false;
4431 #endif
4432
4433 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4434 return false;
4435
4436 atomic_add(delta, &sk->sk_rmem_alloc);
4437 sk_mem_charge(sk, delta);
4438 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4439 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4440 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4441 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4442
4443 if (TCP_SKB_CB(from)->has_rxtstamp) {
4444 TCP_SKB_CB(to)->has_rxtstamp = true;
4445 to->tstamp = from->tstamp;
4446 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4447 }
4448
4449 return true;
4450 }
4451
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4452 static bool tcp_ooo_try_coalesce(struct sock *sk,
4453 struct sk_buff *to,
4454 struct sk_buff *from,
4455 bool *fragstolen)
4456 {
4457 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4458
4459 /* In case tcp_drop() is called later, update to->gso_segs */
4460 if (res) {
4461 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4462 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4463
4464 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4465 }
4466 return res;
4467 }
4468
tcp_drop(struct sock * sk,struct sk_buff * skb)4469 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4470 {
4471 sk_drops_add(sk, skb);
4472 __kfree_skb(skb);
4473 }
4474
4475 /* This one checks to see if we can put data from the
4476 * out_of_order queue into the receive_queue.
4477 */
tcp_ofo_queue(struct sock * sk)4478 static void tcp_ofo_queue(struct sock *sk)
4479 {
4480 struct tcp_sock *tp = tcp_sk(sk);
4481 __u32 dsack_high = tp->rcv_nxt;
4482 bool fin, fragstolen, eaten;
4483 struct sk_buff *skb, *tail;
4484 struct rb_node *p;
4485
4486 p = rb_first(&tp->out_of_order_queue);
4487 while (p) {
4488 skb = rb_to_skb(p);
4489 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4490 break;
4491
4492 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4493 __u32 dsack = dsack_high;
4494 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4495 dsack_high = TCP_SKB_CB(skb)->end_seq;
4496 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4497 }
4498 p = rb_next(p);
4499 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4500
4501 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4502 tcp_drop(sk, skb);
4503 continue;
4504 }
4505
4506 tail = skb_peek_tail(&sk->sk_receive_queue);
4507 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4508 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4509 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4510 if (!eaten)
4511 __skb_queue_tail(&sk->sk_receive_queue, skb);
4512 else
4513 kfree_skb_partial(skb, fragstolen);
4514
4515 if (unlikely(fin)) {
4516 tcp_fin(sk);
4517 /* tcp_fin() purges tp->out_of_order_queue,
4518 * so we must end this loop right now.
4519 */
4520 break;
4521 }
4522 }
4523 }
4524
4525 static bool tcp_prune_ofo_queue(struct sock *sk);
4526 static int tcp_prune_queue(struct sock *sk);
4527
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4528 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4529 unsigned int size)
4530 {
4531 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4532 !sk_rmem_schedule(sk, skb, size)) {
4533
4534 if (tcp_prune_queue(sk) < 0)
4535 return -1;
4536
4537 while (!sk_rmem_schedule(sk, skb, size)) {
4538 if (!tcp_prune_ofo_queue(sk))
4539 return -1;
4540 }
4541 }
4542 return 0;
4543 }
4544
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4545 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4546 {
4547 struct tcp_sock *tp = tcp_sk(sk);
4548 struct rb_node **p, *parent;
4549 struct sk_buff *skb1;
4550 u32 seq, end_seq;
4551 bool fragstolen;
4552
4553 tcp_ecn_check_ce(sk, skb);
4554
4555 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4556 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4557 tcp_drop(sk, skb);
4558 return;
4559 }
4560
4561 /* Disable header prediction. */
4562 tp->pred_flags = 0;
4563 inet_csk_schedule_ack(sk);
4564
4565 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4566 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4567 seq = TCP_SKB_CB(skb)->seq;
4568 end_seq = TCP_SKB_CB(skb)->end_seq;
4569
4570 p = &tp->out_of_order_queue.rb_node;
4571 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4572 /* Initial out of order segment, build 1 SACK. */
4573 if (tcp_is_sack(tp)) {
4574 tp->rx_opt.num_sacks = 1;
4575 tp->selective_acks[0].start_seq = seq;
4576 tp->selective_acks[0].end_seq = end_seq;
4577 }
4578 rb_link_node(&skb->rbnode, NULL, p);
4579 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4580 tp->ooo_last_skb = skb;
4581 goto end;
4582 }
4583
4584 /* In the typical case, we are adding an skb to the end of the list.
4585 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4586 */
4587 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4588 skb, &fragstolen)) {
4589 coalesce_done:
4590 tcp_grow_window(sk, skb);
4591 kfree_skb_partial(skb, fragstolen);
4592 skb = NULL;
4593 goto add_sack;
4594 }
4595 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4596 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4597 parent = &tp->ooo_last_skb->rbnode;
4598 p = &parent->rb_right;
4599 goto insert;
4600 }
4601
4602 /* Find place to insert this segment. Handle overlaps on the way. */
4603 parent = NULL;
4604 while (*p) {
4605 parent = *p;
4606 skb1 = rb_to_skb(parent);
4607 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4608 p = &parent->rb_left;
4609 continue;
4610 }
4611 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4612 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4613 /* All the bits are present. Drop. */
4614 NET_INC_STATS(sock_net(sk),
4615 LINUX_MIB_TCPOFOMERGE);
4616 tcp_drop(sk, skb);
4617 skb = NULL;
4618 tcp_dsack_set(sk, seq, end_seq);
4619 goto add_sack;
4620 }
4621 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4622 /* Partial overlap. */
4623 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4624 } else {
4625 /* skb's seq == skb1's seq and skb covers skb1.
4626 * Replace skb1 with skb.
4627 */
4628 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4629 &tp->out_of_order_queue);
4630 tcp_dsack_extend(sk,
4631 TCP_SKB_CB(skb1)->seq,
4632 TCP_SKB_CB(skb1)->end_seq);
4633 NET_INC_STATS(sock_net(sk),
4634 LINUX_MIB_TCPOFOMERGE);
4635 tcp_drop(sk, skb1);
4636 goto merge_right;
4637 }
4638 } else if (tcp_ooo_try_coalesce(sk, skb1,
4639 skb, &fragstolen)) {
4640 goto coalesce_done;
4641 }
4642 p = &parent->rb_right;
4643 }
4644 insert:
4645 /* Insert segment into RB tree. */
4646 rb_link_node(&skb->rbnode, parent, p);
4647 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4648
4649 merge_right:
4650 /* Remove other segments covered by skb. */
4651 while ((skb1 = skb_rb_next(skb)) != NULL) {
4652 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4653 break;
4654 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4655 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4656 end_seq);
4657 break;
4658 }
4659 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4660 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4661 TCP_SKB_CB(skb1)->end_seq);
4662 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4663 tcp_drop(sk, skb1);
4664 }
4665 /* If there is no skb after us, we are the last_skb ! */
4666 if (!skb1)
4667 tp->ooo_last_skb = skb;
4668
4669 add_sack:
4670 if (tcp_is_sack(tp))
4671 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4672 end:
4673 if (skb) {
4674 tcp_grow_window(sk, skb);
4675 skb_condense(skb);
4676 skb_set_owner_r(skb, sk);
4677 }
4678 }
4679
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4680 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4681 bool *fragstolen)
4682 {
4683 int eaten;
4684 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4685
4686 eaten = (tail &&
4687 tcp_try_coalesce(sk, tail,
4688 skb, fragstolen)) ? 1 : 0;
4689 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4690 if (!eaten) {
4691 __skb_queue_tail(&sk->sk_receive_queue, skb);
4692 skb_set_owner_r(skb, sk);
4693 }
4694 return eaten;
4695 }
4696
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4697 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4698 {
4699 struct sk_buff *skb;
4700 int err = -ENOMEM;
4701 int data_len = 0;
4702 bool fragstolen;
4703
4704 if (size == 0)
4705 return 0;
4706
4707 if (size > PAGE_SIZE) {
4708 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4709
4710 data_len = npages << PAGE_SHIFT;
4711 size = data_len + (size & ~PAGE_MASK);
4712 }
4713 skb = alloc_skb_with_frags(size - data_len, data_len,
4714 PAGE_ALLOC_COSTLY_ORDER,
4715 &err, sk->sk_allocation);
4716 if (!skb)
4717 goto err;
4718
4719 skb_put(skb, size - data_len);
4720 skb->data_len = data_len;
4721 skb->len = size;
4722
4723 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4724 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4725 goto err_free;
4726 }
4727
4728 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4729 if (err)
4730 goto err_free;
4731
4732 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4733 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4734 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4735
4736 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4737 WARN_ON_ONCE(fragstolen); /* should not happen */
4738 __kfree_skb(skb);
4739 }
4740 return size;
4741
4742 err_free:
4743 kfree_skb(skb);
4744 err:
4745 return err;
4746
4747 }
4748
tcp_data_ready(struct sock * sk)4749 void tcp_data_ready(struct sock *sk)
4750 {
4751 const struct tcp_sock *tp = tcp_sk(sk);
4752 int avail = tp->rcv_nxt - tp->copied_seq;
4753
4754 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4755 return;
4756
4757 sk->sk_data_ready(sk);
4758 }
4759
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4760 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4761 {
4762 struct tcp_sock *tp = tcp_sk(sk);
4763 bool fragstolen;
4764 int eaten;
4765
4766 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4767 __kfree_skb(skb);
4768 return;
4769 }
4770 skb_dst_drop(skb);
4771 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4772
4773 tcp_ecn_accept_cwr(sk, skb);
4774
4775 tp->rx_opt.dsack = 0;
4776
4777 /* Queue data for delivery to the user.
4778 * Packets in sequence go to the receive queue.
4779 * Out of sequence packets to the out_of_order_queue.
4780 */
4781 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4782 if (tcp_receive_window(tp) == 0) {
4783 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4784 goto out_of_window;
4785 }
4786
4787 /* Ok. In sequence. In window. */
4788 queue_and_out:
4789 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4790 sk_forced_mem_schedule(sk, skb->truesize);
4791 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4792 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4793 goto drop;
4794 }
4795
4796 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4797 if (skb->len)
4798 tcp_event_data_recv(sk, skb);
4799 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4800 tcp_fin(sk);
4801
4802 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4803 tcp_ofo_queue(sk);
4804
4805 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4806 * gap in queue is filled.
4807 */
4808 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4809 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4810 }
4811
4812 if (tp->rx_opt.num_sacks)
4813 tcp_sack_remove(tp);
4814
4815 tcp_fast_path_check(sk);
4816
4817 if (eaten > 0)
4818 kfree_skb_partial(skb, fragstolen);
4819 if (!sock_flag(sk, SOCK_DEAD))
4820 tcp_data_ready(sk);
4821 return;
4822 }
4823
4824 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4825 tcp_rcv_spurious_retrans(sk, skb);
4826 /* A retransmit, 2nd most common case. Force an immediate ack. */
4827 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4828 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4829
4830 out_of_window:
4831 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4832 inet_csk_schedule_ack(sk);
4833 drop:
4834 tcp_drop(sk, skb);
4835 return;
4836 }
4837
4838 /* Out of window. F.e. zero window probe. */
4839 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4840 goto out_of_window;
4841
4842 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4843 /* Partial packet, seq < rcv_next < end_seq */
4844 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4845
4846 /* If window is closed, drop tail of packet. But after
4847 * remembering D-SACK for its head made in previous line.
4848 */
4849 if (!tcp_receive_window(tp)) {
4850 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4851 goto out_of_window;
4852 }
4853 goto queue_and_out;
4854 }
4855
4856 tcp_data_queue_ofo(sk, skb);
4857 }
4858
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)4859 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4860 {
4861 if (list)
4862 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4863
4864 return skb_rb_next(skb);
4865 }
4866
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)4867 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4868 struct sk_buff_head *list,
4869 struct rb_root *root)
4870 {
4871 struct sk_buff *next = tcp_skb_next(skb, list);
4872
4873 if (list)
4874 __skb_unlink(skb, list);
4875 else
4876 rb_erase(&skb->rbnode, root);
4877
4878 __kfree_skb(skb);
4879 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4880
4881 return next;
4882 }
4883
4884 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)4885 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4886 {
4887 struct rb_node **p = &root->rb_node;
4888 struct rb_node *parent = NULL;
4889 struct sk_buff *skb1;
4890
4891 while (*p) {
4892 parent = *p;
4893 skb1 = rb_to_skb(parent);
4894 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4895 p = &parent->rb_left;
4896 else
4897 p = &parent->rb_right;
4898 }
4899 rb_link_node(&skb->rbnode, parent, p);
4900 rb_insert_color(&skb->rbnode, root);
4901 }
4902
4903 /* Collapse contiguous sequence of skbs head..tail with
4904 * sequence numbers start..end.
4905 *
4906 * If tail is NULL, this means until the end of the queue.
4907 *
4908 * Segments with FIN/SYN are not collapsed (only because this
4909 * simplifies code)
4910 */
4911 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)4912 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4913 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4914 {
4915 struct sk_buff *skb = head, *n;
4916 struct sk_buff_head tmp;
4917 bool end_of_skbs;
4918
4919 /* First, check that queue is collapsible and find
4920 * the point where collapsing can be useful.
4921 */
4922 restart:
4923 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4924 n = tcp_skb_next(skb, list);
4925
4926 /* No new bits? It is possible on ofo queue. */
4927 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4928 skb = tcp_collapse_one(sk, skb, list, root);
4929 if (!skb)
4930 break;
4931 goto restart;
4932 }
4933
4934 /* The first skb to collapse is:
4935 * - not SYN/FIN and
4936 * - bloated or contains data before "start" or
4937 * overlaps to the next one.
4938 */
4939 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4940 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4941 before(TCP_SKB_CB(skb)->seq, start))) {
4942 end_of_skbs = false;
4943 break;
4944 }
4945
4946 if (n && n != tail &&
4947 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4948 end_of_skbs = false;
4949 break;
4950 }
4951
4952 /* Decided to skip this, advance start seq. */
4953 start = TCP_SKB_CB(skb)->end_seq;
4954 }
4955 if (end_of_skbs ||
4956 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4957 return;
4958
4959 __skb_queue_head_init(&tmp);
4960
4961 while (before(start, end)) {
4962 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4963 struct sk_buff *nskb;
4964
4965 nskb = alloc_skb(copy, GFP_ATOMIC);
4966 if (!nskb)
4967 break;
4968
4969 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4970 #ifdef CONFIG_TLS_DEVICE
4971 nskb->decrypted = skb->decrypted;
4972 #endif
4973 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4974 if (list)
4975 __skb_queue_before(list, skb, nskb);
4976 else
4977 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4978 skb_set_owner_r(nskb, sk);
4979
4980 /* Copy data, releasing collapsed skbs. */
4981 while (copy > 0) {
4982 int offset = start - TCP_SKB_CB(skb)->seq;
4983 int size = TCP_SKB_CB(skb)->end_seq - start;
4984
4985 BUG_ON(offset < 0);
4986 if (size > 0) {
4987 size = min(copy, size);
4988 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4989 BUG();
4990 TCP_SKB_CB(nskb)->end_seq += size;
4991 copy -= size;
4992 start += size;
4993 }
4994 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4995 skb = tcp_collapse_one(sk, skb, list, root);
4996 if (!skb ||
4997 skb == tail ||
4998 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4999 goto end;
5000 #ifdef CONFIG_TLS_DEVICE
5001 if (skb->decrypted != nskb->decrypted)
5002 goto end;
5003 #endif
5004 }
5005 }
5006 }
5007 end:
5008 skb_queue_walk_safe(&tmp, skb, n)
5009 tcp_rbtree_insert(root, skb);
5010 }
5011
5012 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5013 * and tcp_collapse() them until all the queue is collapsed.
5014 */
tcp_collapse_ofo_queue(struct sock * sk)5015 static void tcp_collapse_ofo_queue(struct sock *sk)
5016 {
5017 struct tcp_sock *tp = tcp_sk(sk);
5018 u32 range_truesize, sum_tiny = 0;
5019 struct sk_buff *skb, *head;
5020 u32 start, end;
5021
5022 skb = skb_rb_first(&tp->out_of_order_queue);
5023 new_range:
5024 if (!skb) {
5025 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5026 return;
5027 }
5028 start = TCP_SKB_CB(skb)->seq;
5029 end = TCP_SKB_CB(skb)->end_seq;
5030 range_truesize = skb->truesize;
5031
5032 for (head = skb;;) {
5033 skb = skb_rb_next(skb);
5034
5035 /* Range is terminated when we see a gap or when
5036 * we are at the queue end.
5037 */
5038 if (!skb ||
5039 after(TCP_SKB_CB(skb)->seq, end) ||
5040 before(TCP_SKB_CB(skb)->end_seq, start)) {
5041 /* Do not attempt collapsing tiny skbs */
5042 if (range_truesize != head->truesize ||
5043 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5044 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5045 head, skb, start, end);
5046 } else {
5047 sum_tiny += range_truesize;
5048 if (sum_tiny > sk->sk_rcvbuf >> 3)
5049 return;
5050 }
5051 goto new_range;
5052 }
5053
5054 range_truesize += skb->truesize;
5055 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5056 start = TCP_SKB_CB(skb)->seq;
5057 if (after(TCP_SKB_CB(skb)->end_seq, end))
5058 end = TCP_SKB_CB(skb)->end_seq;
5059 }
5060 }
5061
5062 /*
5063 * Clean the out-of-order queue to make room.
5064 * We drop high sequences packets to :
5065 * 1) Let a chance for holes to be filled.
5066 * 2) not add too big latencies if thousands of packets sit there.
5067 * (But if application shrinks SO_RCVBUF, we could still end up
5068 * freeing whole queue here)
5069 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5070 *
5071 * Return true if queue has shrunk.
5072 */
tcp_prune_ofo_queue(struct sock * sk)5073 static bool tcp_prune_ofo_queue(struct sock *sk)
5074 {
5075 struct tcp_sock *tp = tcp_sk(sk);
5076 struct rb_node *node, *prev;
5077 int goal;
5078
5079 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5080 return false;
5081
5082 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5083 goal = sk->sk_rcvbuf >> 3;
5084 node = &tp->ooo_last_skb->rbnode;
5085 do {
5086 prev = rb_prev(node);
5087 rb_erase(node, &tp->out_of_order_queue);
5088 goal -= rb_to_skb(node)->truesize;
5089 tcp_drop(sk, rb_to_skb(node));
5090 if (!prev || goal <= 0) {
5091 sk_mem_reclaim(sk);
5092 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5093 !tcp_under_memory_pressure(sk))
5094 break;
5095 goal = sk->sk_rcvbuf >> 3;
5096 }
5097 node = prev;
5098 } while (node);
5099 tp->ooo_last_skb = rb_to_skb(prev);
5100
5101 /* Reset SACK state. A conforming SACK implementation will
5102 * do the same at a timeout based retransmit. When a connection
5103 * is in a sad state like this, we care only about integrity
5104 * of the connection not performance.
5105 */
5106 if (tp->rx_opt.sack_ok)
5107 tcp_sack_reset(&tp->rx_opt);
5108 return true;
5109 }
5110
5111 /* Reduce allocated memory if we can, trying to get
5112 * the socket within its memory limits again.
5113 *
5114 * Return less than zero if we should start dropping frames
5115 * until the socket owning process reads some of the data
5116 * to stabilize the situation.
5117 */
tcp_prune_queue(struct sock * sk)5118 static int tcp_prune_queue(struct sock *sk)
5119 {
5120 struct tcp_sock *tp = tcp_sk(sk);
5121
5122 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5123
5124 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5125 tcp_clamp_window(sk);
5126 else if (tcp_under_memory_pressure(sk))
5127 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5128
5129 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5130 return 0;
5131
5132 tcp_collapse_ofo_queue(sk);
5133 if (!skb_queue_empty(&sk->sk_receive_queue))
5134 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5135 skb_peek(&sk->sk_receive_queue),
5136 NULL,
5137 tp->copied_seq, tp->rcv_nxt);
5138 sk_mem_reclaim(sk);
5139
5140 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5141 return 0;
5142
5143 /* Collapsing did not help, destructive actions follow.
5144 * This must not ever occur. */
5145
5146 tcp_prune_ofo_queue(sk);
5147
5148 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5149 return 0;
5150
5151 /* If we are really being abused, tell the caller to silently
5152 * drop receive data on the floor. It will get retransmitted
5153 * and hopefully then we'll have sufficient space.
5154 */
5155 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5156
5157 /* Massive buffer overcommit. */
5158 tp->pred_flags = 0;
5159 return -1;
5160 }
5161
tcp_should_expand_sndbuf(const struct sock * sk)5162 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5163 {
5164 const struct tcp_sock *tp = tcp_sk(sk);
5165
5166 /* If the user specified a specific send buffer setting, do
5167 * not modify it.
5168 */
5169 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5170 return false;
5171
5172 /* If we are under global TCP memory pressure, do not expand. */
5173 if (tcp_under_memory_pressure(sk))
5174 return false;
5175
5176 /* If we are under soft global TCP memory pressure, do not expand. */
5177 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5178 return false;
5179
5180 /* If we filled the congestion window, do not expand. */
5181 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5182 return false;
5183
5184 return true;
5185 }
5186
5187 /* When incoming ACK allowed to free some skb from write_queue,
5188 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5189 * on the exit from tcp input handler.
5190 *
5191 * PROBLEM: sndbuf expansion does not work well with largesend.
5192 */
tcp_new_space(struct sock * sk)5193 static void tcp_new_space(struct sock *sk)
5194 {
5195 struct tcp_sock *tp = tcp_sk(sk);
5196
5197 if (tcp_should_expand_sndbuf(sk)) {
5198 tcp_sndbuf_expand(sk);
5199 tp->snd_cwnd_stamp = tcp_jiffies32;
5200 }
5201
5202 sk->sk_write_space(sk);
5203 }
5204
tcp_check_space(struct sock * sk)5205 static void tcp_check_space(struct sock *sk)
5206 {
5207 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5208 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5209 /* pairs with tcp_poll() */
5210 smp_mb();
5211 if (sk->sk_socket &&
5212 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5213 tcp_new_space(sk);
5214 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5215 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5216 }
5217 }
5218 }
5219
tcp_data_snd_check(struct sock * sk)5220 static inline void tcp_data_snd_check(struct sock *sk)
5221 {
5222 tcp_push_pending_frames(sk);
5223 tcp_check_space(sk);
5224 }
5225
5226 /*
5227 * Check if sending an ack is needed.
5228 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5229 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5230 {
5231 struct tcp_sock *tp = tcp_sk(sk);
5232 unsigned long rtt, delay;
5233
5234 /* More than one full frame received... */
5235 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5236 /* ... and right edge of window advances far enough.
5237 * (tcp_recvmsg() will send ACK otherwise).
5238 * If application uses SO_RCVLOWAT, we want send ack now if
5239 * we have not received enough bytes to satisfy the condition.
5240 */
5241 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5242 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5243 /* We ACK each frame or... */
5244 tcp_in_quickack_mode(sk) ||
5245 /* Protocol state mandates a one-time immediate ACK */
5246 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5247 send_now:
5248 tcp_send_ack(sk);
5249 return;
5250 }
5251
5252 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5253 tcp_send_delayed_ack(sk);
5254 return;
5255 }
5256
5257 if (!tcp_is_sack(tp) ||
5258 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5259 goto send_now;
5260
5261 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5262 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5263 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5264 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5265 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5266 tp->compressed_ack = 0;
5267 }
5268
5269 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5270 goto send_now;
5271
5272 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5273 return;
5274
5275 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5276
5277 rtt = tp->rcv_rtt_est.rtt_us;
5278 if (tp->srtt_us && tp->srtt_us < rtt)
5279 rtt = tp->srtt_us;
5280
5281 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5282 rtt * (NSEC_PER_USEC >> 3)/20);
5283 sock_hold(sk);
5284 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5285 HRTIMER_MODE_REL_PINNED_SOFT);
5286 }
5287
tcp_ack_snd_check(struct sock * sk)5288 static inline void tcp_ack_snd_check(struct sock *sk)
5289 {
5290 if (!inet_csk_ack_scheduled(sk)) {
5291 /* We sent a data segment already. */
5292 return;
5293 }
5294 __tcp_ack_snd_check(sk, 1);
5295 }
5296
5297 /*
5298 * This routine is only called when we have urgent data
5299 * signaled. Its the 'slow' part of tcp_urg. It could be
5300 * moved inline now as tcp_urg is only called from one
5301 * place. We handle URGent data wrong. We have to - as
5302 * BSD still doesn't use the correction from RFC961.
5303 * For 1003.1g we should support a new option TCP_STDURG to permit
5304 * either form (or just set the sysctl tcp_stdurg).
5305 */
5306
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5307 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5308 {
5309 struct tcp_sock *tp = tcp_sk(sk);
5310 u32 ptr = ntohs(th->urg_ptr);
5311
5312 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5313 ptr--;
5314 ptr += ntohl(th->seq);
5315
5316 /* Ignore urgent data that we've already seen and read. */
5317 if (after(tp->copied_seq, ptr))
5318 return;
5319
5320 /* Do not replay urg ptr.
5321 *
5322 * NOTE: interesting situation not covered by specs.
5323 * Misbehaving sender may send urg ptr, pointing to segment,
5324 * which we already have in ofo queue. We are not able to fetch
5325 * such data and will stay in TCP_URG_NOTYET until will be eaten
5326 * by recvmsg(). Seems, we are not obliged to handle such wicked
5327 * situations. But it is worth to think about possibility of some
5328 * DoSes using some hypothetical application level deadlock.
5329 */
5330 if (before(ptr, tp->rcv_nxt))
5331 return;
5332
5333 /* Do we already have a newer (or duplicate) urgent pointer? */
5334 if (tp->urg_data && !after(ptr, tp->urg_seq))
5335 return;
5336
5337 /* Tell the world about our new urgent pointer. */
5338 sk_send_sigurg(sk);
5339
5340 /* We may be adding urgent data when the last byte read was
5341 * urgent. To do this requires some care. We cannot just ignore
5342 * tp->copied_seq since we would read the last urgent byte again
5343 * as data, nor can we alter copied_seq until this data arrives
5344 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5345 *
5346 * NOTE. Double Dutch. Rendering to plain English: author of comment
5347 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5348 * and expect that both A and B disappear from stream. This is _wrong_.
5349 * Though this happens in BSD with high probability, this is occasional.
5350 * Any application relying on this is buggy. Note also, that fix "works"
5351 * only in this artificial test. Insert some normal data between A and B and we will
5352 * decline of BSD again. Verdict: it is better to remove to trap
5353 * buggy users.
5354 */
5355 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5356 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5357 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5358 tp->copied_seq++;
5359 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5360 __skb_unlink(skb, &sk->sk_receive_queue);
5361 __kfree_skb(skb);
5362 }
5363 }
5364
5365 tp->urg_data = TCP_URG_NOTYET;
5366 WRITE_ONCE(tp->urg_seq, ptr);
5367
5368 /* Disable header prediction. */
5369 tp->pred_flags = 0;
5370 }
5371
5372 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5373 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5374 {
5375 struct tcp_sock *tp = tcp_sk(sk);
5376
5377 /* Check if we get a new urgent pointer - normally not. */
5378 if (th->urg)
5379 tcp_check_urg(sk, th);
5380
5381 /* Do we wait for any urgent data? - normally not... */
5382 if (tp->urg_data == TCP_URG_NOTYET) {
5383 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5384 th->syn;
5385
5386 /* Is the urgent pointer pointing into this packet? */
5387 if (ptr < skb->len) {
5388 u8 tmp;
5389 if (skb_copy_bits(skb, ptr, &tmp, 1))
5390 BUG();
5391 tp->urg_data = TCP_URG_VALID | tmp;
5392 if (!sock_flag(sk, SOCK_DEAD))
5393 sk->sk_data_ready(sk);
5394 }
5395 }
5396 }
5397
5398 /* Accept RST for rcv_nxt - 1 after a FIN.
5399 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5400 * FIN is sent followed by a RST packet. The RST is sent with the same
5401 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5402 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5403 * ACKs on the closed socket. In addition middleboxes can drop either the
5404 * challenge ACK or a subsequent RST.
5405 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5406 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5407 {
5408 struct tcp_sock *tp = tcp_sk(sk);
5409
5410 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5411 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5412 TCPF_CLOSING));
5413 }
5414
5415 /* Does PAWS and seqno based validation of an incoming segment, flags will
5416 * play significant role here.
5417 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5418 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5419 const struct tcphdr *th, int syn_inerr)
5420 {
5421 struct tcp_sock *tp = tcp_sk(sk);
5422 bool rst_seq_match = false;
5423
5424 /* RFC1323: H1. Apply PAWS check first. */
5425 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5426 tp->rx_opt.saw_tstamp &&
5427 tcp_paws_discard(sk, skb)) {
5428 if (!th->rst) {
5429 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5430 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5431 LINUX_MIB_TCPACKSKIPPEDPAWS,
5432 &tp->last_oow_ack_time))
5433 tcp_send_dupack(sk, skb);
5434 goto discard;
5435 }
5436 /* Reset is accepted even if it did not pass PAWS. */
5437 }
5438
5439 /* Step 1: check sequence number */
5440 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5441 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5442 * (RST) segments are validated by checking their SEQ-fields."
5443 * And page 69: "If an incoming segment is not acceptable,
5444 * an acknowledgment should be sent in reply (unless the RST
5445 * bit is set, if so drop the segment and return)".
5446 */
5447 if (!th->rst) {
5448 if (th->syn)
5449 goto syn_challenge;
5450 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5451 LINUX_MIB_TCPACKSKIPPEDSEQ,
5452 &tp->last_oow_ack_time))
5453 tcp_send_dupack(sk, skb);
5454 } else if (tcp_reset_check(sk, skb)) {
5455 tcp_reset(sk);
5456 }
5457 goto discard;
5458 }
5459
5460 /* Step 2: check RST bit */
5461 if (th->rst) {
5462 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5463 * FIN and SACK too if available):
5464 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5465 * the right-most SACK block,
5466 * then
5467 * RESET the connection
5468 * else
5469 * Send a challenge ACK
5470 */
5471 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5472 tcp_reset_check(sk, skb)) {
5473 rst_seq_match = true;
5474 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5475 struct tcp_sack_block *sp = &tp->selective_acks[0];
5476 int max_sack = sp[0].end_seq;
5477 int this_sack;
5478
5479 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5480 ++this_sack) {
5481 max_sack = after(sp[this_sack].end_seq,
5482 max_sack) ?
5483 sp[this_sack].end_seq : max_sack;
5484 }
5485
5486 if (TCP_SKB_CB(skb)->seq == max_sack)
5487 rst_seq_match = true;
5488 }
5489
5490 if (rst_seq_match)
5491 tcp_reset(sk);
5492 else {
5493 /* Disable TFO if RST is out-of-order
5494 * and no data has been received
5495 * for current active TFO socket
5496 */
5497 if (tp->syn_fastopen && !tp->data_segs_in &&
5498 sk->sk_state == TCP_ESTABLISHED)
5499 tcp_fastopen_active_disable(sk);
5500 tcp_send_challenge_ack(sk, skb);
5501 }
5502 goto discard;
5503 }
5504
5505 /* step 3: check security and precedence [ignored] */
5506
5507 /* step 4: Check for a SYN
5508 * RFC 5961 4.2 : Send a challenge ack
5509 */
5510 if (th->syn) {
5511 syn_challenge:
5512 if (syn_inerr)
5513 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5514 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5515 tcp_send_challenge_ack(sk, skb);
5516 goto discard;
5517 }
5518
5519 return true;
5520
5521 discard:
5522 tcp_drop(sk, skb);
5523 return false;
5524 }
5525
5526 /*
5527 * TCP receive function for the ESTABLISHED state.
5528 *
5529 * It is split into a fast path and a slow path. The fast path is
5530 * disabled when:
5531 * - A zero window was announced from us - zero window probing
5532 * is only handled properly in the slow path.
5533 * - Out of order segments arrived.
5534 * - Urgent data is expected.
5535 * - There is no buffer space left
5536 * - Unexpected TCP flags/window values/header lengths are received
5537 * (detected by checking the TCP header against pred_flags)
5538 * - Data is sent in both directions. Fast path only supports pure senders
5539 * or pure receivers (this means either the sequence number or the ack
5540 * value must stay constant)
5541 * - Unexpected TCP option.
5542 *
5543 * When these conditions are not satisfied it drops into a standard
5544 * receive procedure patterned after RFC793 to handle all cases.
5545 * The first three cases are guaranteed by proper pred_flags setting,
5546 * the rest is checked inline. Fast processing is turned on in
5547 * tcp_data_queue when everything is OK.
5548 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5549 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5550 {
5551 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5552 struct tcp_sock *tp = tcp_sk(sk);
5553 unsigned int len = skb->len;
5554
5555 /* TCP congestion window tracking */
5556 trace_tcp_probe(sk, skb);
5557
5558 tcp_mstamp_refresh(tp);
5559 if (unlikely(!sk->sk_rx_dst))
5560 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5561 /*
5562 * Header prediction.
5563 * The code loosely follows the one in the famous
5564 * "30 instruction TCP receive" Van Jacobson mail.
5565 *
5566 * Van's trick is to deposit buffers into socket queue
5567 * on a device interrupt, to call tcp_recv function
5568 * on the receive process context and checksum and copy
5569 * the buffer to user space. smart...
5570 *
5571 * Our current scheme is not silly either but we take the
5572 * extra cost of the net_bh soft interrupt processing...
5573 * We do checksum and copy also but from device to kernel.
5574 */
5575
5576 tp->rx_opt.saw_tstamp = 0;
5577
5578 /* pred_flags is 0xS?10 << 16 + snd_wnd
5579 * if header_prediction is to be made
5580 * 'S' will always be tp->tcp_header_len >> 2
5581 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5582 * turn it off (when there are holes in the receive
5583 * space for instance)
5584 * PSH flag is ignored.
5585 */
5586
5587 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5588 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5589 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5590 int tcp_header_len = tp->tcp_header_len;
5591
5592 /* Timestamp header prediction: tcp_header_len
5593 * is automatically equal to th->doff*4 due to pred_flags
5594 * match.
5595 */
5596
5597 /* Check timestamp */
5598 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5599 /* No? Slow path! */
5600 if (!tcp_parse_aligned_timestamp(tp, th))
5601 goto slow_path;
5602
5603 /* If PAWS failed, check it more carefully in slow path */
5604 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5605 goto slow_path;
5606
5607 /* DO NOT update ts_recent here, if checksum fails
5608 * and timestamp was corrupted part, it will result
5609 * in a hung connection since we will drop all
5610 * future packets due to the PAWS test.
5611 */
5612 }
5613
5614 if (len <= tcp_header_len) {
5615 /* Bulk data transfer: sender */
5616 if (len == tcp_header_len) {
5617 /* Predicted packet is in window by definition.
5618 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5619 * Hence, check seq<=rcv_wup reduces to:
5620 */
5621 if (tcp_header_len ==
5622 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5623 tp->rcv_nxt == tp->rcv_wup)
5624 tcp_store_ts_recent(tp);
5625
5626 /* We know that such packets are checksummed
5627 * on entry.
5628 */
5629 tcp_ack(sk, skb, 0);
5630 __kfree_skb(skb);
5631 tcp_data_snd_check(sk);
5632 /* When receiving pure ack in fast path, update
5633 * last ts ecr directly instead of calling
5634 * tcp_rcv_rtt_measure_ts()
5635 */
5636 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5637 return;
5638 } else { /* Header too small */
5639 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5640 goto discard;
5641 }
5642 } else {
5643 int eaten = 0;
5644 bool fragstolen = false;
5645
5646 if (tcp_checksum_complete(skb))
5647 goto csum_error;
5648
5649 if ((int)skb->truesize > sk->sk_forward_alloc)
5650 goto step5;
5651
5652 /* Predicted packet is in window by definition.
5653 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5654 * Hence, check seq<=rcv_wup reduces to:
5655 */
5656 if (tcp_header_len ==
5657 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5658 tp->rcv_nxt == tp->rcv_wup)
5659 tcp_store_ts_recent(tp);
5660
5661 tcp_rcv_rtt_measure_ts(sk, skb);
5662
5663 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5664
5665 /* Bulk data transfer: receiver */
5666 __skb_pull(skb, tcp_header_len);
5667 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5668
5669 tcp_event_data_recv(sk, skb);
5670
5671 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5672 /* Well, only one small jumplet in fast path... */
5673 tcp_ack(sk, skb, FLAG_DATA);
5674 tcp_data_snd_check(sk);
5675 if (!inet_csk_ack_scheduled(sk))
5676 goto no_ack;
5677 }
5678
5679 __tcp_ack_snd_check(sk, 0);
5680 no_ack:
5681 if (eaten)
5682 kfree_skb_partial(skb, fragstolen);
5683 tcp_data_ready(sk);
5684 return;
5685 }
5686 }
5687
5688 slow_path:
5689 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5690 goto csum_error;
5691
5692 if (!th->ack && !th->rst && !th->syn)
5693 goto discard;
5694
5695 /*
5696 * Standard slow path.
5697 */
5698
5699 if (!tcp_validate_incoming(sk, skb, th, 1))
5700 return;
5701
5702 step5:
5703 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5704 goto discard;
5705
5706 tcp_rcv_rtt_measure_ts(sk, skb);
5707
5708 /* Process urgent data. */
5709 tcp_urg(sk, skb, th);
5710
5711 /* step 7: process the segment text */
5712 tcp_data_queue(sk, skb);
5713
5714 tcp_data_snd_check(sk);
5715 tcp_ack_snd_check(sk);
5716 return;
5717
5718 csum_error:
5719 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5720 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5721
5722 discard:
5723 tcp_drop(sk, skb);
5724 }
5725 EXPORT_SYMBOL(tcp_rcv_established);
5726
tcp_init_transfer(struct sock * sk,int bpf_op)5727 void tcp_init_transfer(struct sock *sk, int bpf_op)
5728 {
5729 struct inet_connection_sock *icsk = inet_csk(sk);
5730 struct tcp_sock *tp = tcp_sk(sk);
5731
5732 tcp_mtup_init(sk);
5733 icsk->icsk_af_ops->rebuild_header(sk);
5734 tcp_init_metrics(sk);
5735
5736 /* Initialize the congestion window to start the transfer.
5737 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5738 * retransmitted. In light of RFC6298 more aggressive 1sec
5739 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5740 * retransmission has occurred.
5741 */
5742 if (tp->total_retrans > 1 && tp->undo_marker)
5743 tp->snd_cwnd = 1;
5744 else
5745 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5746 tp->snd_cwnd_stamp = tcp_jiffies32;
5747
5748 tcp_call_bpf(sk, bpf_op, 0, NULL);
5749 tcp_init_congestion_control(sk);
5750 tcp_init_buffer_space(sk);
5751 }
5752
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5753 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5754 {
5755 struct tcp_sock *tp = tcp_sk(sk);
5756 struct inet_connection_sock *icsk = inet_csk(sk);
5757
5758 tcp_set_state(sk, TCP_ESTABLISHED);
5759 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5760
5761 if (skb) {
5762 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5763 security_inet_conn_established(sk, skb);
5764 sk_mark_napi_id(sk, skb);
5765 }
5766
5767 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5768
5769 /* Prevent spurious tcp_cwnd_restart() on first data
5770 * packet.
5771 */
5772 tp->lsndtime = tcp_jiffies32;
5773
5774 if (sock_flag(sk, SOCK_KEEPOPEN))
5775 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5776
5777 if (!tp->rx_opt.snd_wscale)
5778 __tcp_fast_path_on(tp, tp->snd_wnd);
5779 else
5780 tp->pred_flags = 0;
5781 }
5782
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)5783 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5784 struct tcp_fastopen_cookie *cookie)
5785 {
5786 struct tcp_sock *tp = tcp_sk(sk);
5787 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5788 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5789 bool syn_drop = false;
5790
5791 if (mss == tp->rx_opt.user_mss) {
5792 struct tcp_options_received opt;
5793
5794 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5795 tcp_clear_options(&opt);
5796 opt.user_mss = opt.mss_clamp = 0;
5797 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5798 mss = opt.mss_clamp;
5799 }
5800
5801 if (!tp->syn_fastopen) {
5802 /* Ignore an unsolicited cookie */
5803 cookie->len = -1;
5804 } else if (tp->total_retrans) {
5805 /* SYN timed out and the SYN-ACK neither has a cookie nor
5806 * acknowledges data. Presumably the remote received only
5807 * the retransmitted (regular) SYNs: either the original
5808 * SYN-data or the corresponding SYN-ACK was dropped.
5809 */
5810 syn_drop = (cookie->len < 0 && data);
5811 } else if (cookie->len < 0 && !tp->syn_data) {
5812 /* We requested a cookie but didn't get it. If we did not use
5813 * the (old) exp opt format then try so next time (try_exp=1).
5814 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5815 */
5816 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5817 }
5818
5819 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5820
5821 if (data) { /* Retransmit unacked data in SYN */
5822 skb_rbtree_walk_from(data) {
5823 if (__tcp_retransmit_skb(sk, data, 1))
5824 break;
5825 }
5826 tcp_rearm_rto(sk);
5827 NET_INC_STATS(sock_net(sk),
5828 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5829 return true;
5830 }
5831 tp->syn_data_acked = tp->syn_data;
5832 if (tp->syn_data_acked) {
5833 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5834 /* SYN-data is counted as two separate packets in tcp_ack() */
5835 if (tp->delivered > 1)
5836 --tp->delivered;
5837 }
5838
5839 tcp_fastopen_add_skb(sk, synack);
5840
5841 return false;
5842 }
5843
smc_check_reset_syn(struct tcp_sock * tp)5844 static void smc_check_reset_syn(struct tcp_sock *tp)
5845 {
5846 #if IS_ENABLED(CONFIG_SMC)
5847 if (static_branch_unlikely(&tcp_have_smc)) {
5848 if (tp->syn_smc && !tp->rx_opt.smc_ok)
5849 tp->syn_smc = 0;
5850 }
5851 #endif
5852 }
5853
tcp_try_undo_spurious_syn(struct sock * sk)5854 static void tcp_try_undo_spurious_syn(struct sock *sk)
5855 {
5856 struct tcp_sock *tp = tcp_sk(sk);
5857 u32 syn_stamp;
5858
5859 /* undo_marker is set when SYN or SYNACK times out. The timeout is
5860 * spurious if the ACK's timestamp option echo value matches the
5861 * original SYN timestamp.
5862 */
5863 syn_stamp = tp->retrans_stamp;
5864 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5865 syn_stamp == tp->rx_opt.rcv_tsecr)
5866 tp->undo_marker = 0;
5867 }
5868
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5869 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5870 const struct tcphdr *th)
5871 {
5872 struct inet_connection_sock *icsk = inet_csk(sk);
5873 struct tcp_sock *tp = tcp_sk(sk);
5874 struct tcp_fastopen_cookie foc = { .len = -1 };
5875 int saved_clamp = tp->rx_opt.mss_clamp;
5876 bool fastopen_fail;
5877
5878 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5879 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5880 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5881
5882 if (th->ack) {
5883 /* rfc793:
5884 * "If the state is SYN-SENT then
5885 * first check the ACK bit
5886 * If the ACK bit is set
5887 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5888 * a reset (unless the RST bit is set, if so drop
5889 * the segment and return)"
5890 */
5891 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5892 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5893 goto reset_and_undo;
5894
5895 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5896 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5897 tcp_time_stamp(tp))) {
5898 NET_INC_STATS(sock_net(sk),
5899 LINUX_MIB_PAWSACTIVEREJECTED);
5900 goto reset_and_undo;
5901 }
5902
5903 /* Now ACK is acceptable.
5904 *
5905 * "If the RST bit is set
5906 * If the ACK was acceptable then signal the user "error:
5907 * connection reset", drop the segment, enter CLOSED state,
5908 * delete TCB, and return."
5909 */
5910
5911 if (th->rst) {
5912 tcp_reset(sk);
5913 goto discard;
5914 }
5915
5916 /* rfc793:
5917 * "fifth, if neither of the SYN or RST bits is set then
5918 * drop the segment and return."
5919 *
5920 * See note below!
5921 * --ANK(990513)
5922 */
5923 if (!th->syn)
5924 goto discard_and_undo;
5925
5926 /* rfc793:
5927 * "If the SYN bit is on ...
5928 * are acceptable then ...
5929 * (our SYN has been ACKed), change the connection
5930 * state to ESTABLISHED..."
5931 */
5932
5933 tcp_ecn_rcv_synack(tp, th);
5934
5935 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5936 tcp_try_undo_spurious_syn(sk);
5937 tcp_ack(sk, skb, FLAG_SLOWPATH);
5938
5939 /* Ok.. it's good. Set up sequence numbers and
5940 * move to established.
5941 */
5942 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
5943 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5944
5945 /* RFC1323: The window in SYN & SYN/ACK segments is
5946 * never scaled.
5947 */
5948 tp->snd_wnd = ntohs(th->window);
5949
5950 if (!tp->rx_opt.wscale_ok) {
5951 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5952 tp->window_clamp = min(tp->window_clamp, 65535U);
5953 }
5954
5955 if (tp->rx_opt.saw_tstamp) {
5956 tp->rx_opt.tstamp_ok = 1;
5957 tp->tcp_header_len =
5958 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5959 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5960 tcp_store_ts_recent(tp);
5961 } else {
5962 tp->tcp_header_len = sizeof(struct tcphdr);
5963 }
5964
5965 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5966 tcp_initialize_rcv_mss(sk);
5967
5968 /* Remember, tcp_poll() does not lock socket!
5969 * Change state from SYN-SENT only after copied_seq
5970 * is initialized. */
5971 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
5972
5973 smc_check_reset_syn(tp);
5974
5975 smp_mb();
5976
5977 tcp_finish_connect(sk, skb);
5978
5979 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5980 tcp_rcv_fastopen_synack(sk, skb, &foc);
5981
5982 if (!sock_flag(sk, SOCK_DEAD)) {
5983 sk->sk_state_change(sk);
5984 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5985 }
5986 if (fastopen_fail)
5987 return -1;
5988 if (sk->sk_write_pending ||
5989 icsk->icsk_accept_queue.rskq_defer_accept ||
5990 inet_csk_in_pingpong_mode(sk)) {
5991 /* Save one ACK. Data will be ready after
5992 * several ticks, if write_pending is set.
5993 *
5994 * It may be deleted, but with this feature tcpdumps
5995 * look so _wonderfully_ clever, that I was not able
5996 * to stand against the temptation 8) --ANK
5997 */
5998 inet_csk_schedule_ack(sk);
5999 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6000 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6001 TCP_DELACK_MAX, TCP_RTO_MAX);
6002
6003 discard:
6004 tcp_drop(sk, skb);
6005 return 0;
6006 } else {
6007 tcp_send_ack(sk);
6008 }
6009 return -1;
6010 }
6011
6012 /* No ACK in the segment */
6013
6014 if (th->rst) {
6015 /* rfc793:
6016 * "If the RST bit is set
6017 *
6018 * Otherwise (no ACK) drop the segment and return."
6019 */
6020
6021 goto discard_and_undo;
6022 }
6023
6024 /* PAWS check. */
6025 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6026 tcp_paws_reject(&tp->rx_opt, 0))
6027 goto discard_and_undo;
6028
6029 if (th->syn) {
6030 /* We see SYN without ACK. It is attempt of
6031 * simultaneous connect with crossed SYNs.
6032 * Particularly, it can be connect to self.
6033 */
6034 tcp_set_state(sk, TCP_SYN_RECV);
6035
6036 if (tp->rx_opt.saw_tstamp) {
6037 tp->rx_opt.tstamp_ok = 1;
6038 tcp_store_ts_recent(tp);
6039 tp->tcp_header_len =
6040 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6041 } else {
6042 tp->tcp_header_len = sizeof(struct tcphdr);
6043 }
6044
6045 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6046 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6047 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6048
6049 /* RFC1323: The window in SYN & SYN/ACK segments is
6050 * never scaled.
6051 */
6052 tp->snd_wnd = ntohs(th->window);
6053 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6054 tp->max_window = tp->snd_wnd;
6055
6056 tcp_ecn_rcv_syn(tp, th);
6057
6058 tcp_mtup_init(sk);
6059 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6060 tcp_initialize_rcv_mss(sk);
6061
6062 tcp_send_synack(sk);
6063 #if 0
6064 /* Note, we could accept data and URG from this segment.
6065 * There are no obstacles to make this (except that we must
6066 * either change tcp_recvmsg() to prevent it from returning data
6067 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6068 *
6069 * However, if we ignore data in ACKless segments sometimes,
6070 * we have no reasons to accept it sometimes.
6071 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6072 * is not flawless. So, discard packet for sanity.
6073 * Uncomment this return to process the data.
6074 */
6075 return -1;
6076 #else
6077 goto discard;
6078 #endif
6079 }
6080 /* "fifth, if neither of the SYN or RST bits is set then
6081 * drop the segment and return."
6082 */
6083
6084 discard_and_undo:
6085 tcp_clear_options(&tp->rx_opt);
6086 tp->rx_opt.mss_clamp = saved_clamp;
6087 goto discard;
6088
6089 reset_and_undo:
6090 tcp_clear_options(&tp->rx_opt);
6091 tp->rx_opt.mss_clamp = saved_clamp;
6092 return 1;
6093 }
6094
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6095 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6096 {
6097 struct request_sock *req;
6098
6099 tcp_try_undo_loss(sk, false);
6100
6101 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6102 tcp_sk(sk)->retrans_stamp = 0;
6103 inet_csk(sk)->icsk_retransmits = 0;
6104
6105 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6106 * we no longer need req so release it.
6107 */
6108 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6109 lockdep_sock_is_held(sk));
6110 reqsk_fastopen_remove(sk, req, false);
6111
6112 /* Re-arm the timer because data may have been sent out.
6113 * This is similar to the regular data transmission case
6114 * when new data has just been ack'ed.
6115 *
6116 * (TFO) - we could try to be more aggressive and
6117 * retransmitting any data sooner based on when they
6118 * are sent out.
6119 */
6120 tcp_rearm_rto(sk);
6121 }
6122
6123 /*
6124 * This function implements the receiving procedure of RFC 793 for
6125 * all states except ESTABLISHED and TIME_WAIT.
6126 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6127 * address independent.
6128 */
6129
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6130 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6131 {
6132 struct tcp_sock *tp = tcp_sk(sk);
6133 struct inet_connection_sock *icsk = inet_csk(sk);
6134 const struct tcphdr *th = tcp_hdr(skb);
6135 struct request_sock *req;
6136 int queued = 0;
6137 bool acceptable;
6138
6139 switch (sk->sk_state) {
6140 case TCP_CLOSE:
6141 goto discard;
6142
6143 case TCP_LISTEN:
6144 if (th->ack)
6145 return 1;
6146
6147 if (th->rst)
6148 goto discard;
6149
6150 if (th->syn) {
6151 if (th->fin)
6152 goto discard;
6153 /* It is possible that we process SYN packets from backlog,
6154 * so we need to make sure to disable BH and RCU right there.
6155 */
6156 rcu_read_lock();
6157 local_bh_disable();
6158 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6159 local_bh_enable();
6160 rcu_read_unlock();
6161
6162 if (!acceptable)
6163 return 1;
6164 consume_skb(skb);
6165 return 0;
6166 }
6167 goto discard;
6168
6169 case TCP_SYN_SENT:
6170 tp->rx_opt.saw_tstamp = 0;
6171 tcp_mstamp_refresh(tp);
6172 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6173 if (queued >= 0)
6174 return queued;
6175
6176 /* Do step6 onward by hand. */
6177 tcp_urg(sk, skb, th);
6178 __kfree_skb(skb);
6179 tcp_data_snd_check(sk);
6180 return 0;
6181 }
6182
6183 tcp_mstamp_refresh(tp);
6184 tp->rx_opt.saw_tstamp = 0;
6185 req = rcu_dereference_protected(tp->fastopen_rsk,
6186 lockdep_sock_is_held(sk));
6187 if (req) {
6188 bool req_stolen;
6189
6190 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6191 sk->sk_state != TCP_FIN_WAIT1);
6192
6193 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6194 goto discard;
6195 }
6196
6197 if (!th->ack && !th->rst && !th->syn)
6198 goto discard;
6199
6200 if (!tcp_validate_incoming(sk, skb, th, 0))
6201 return 0;
6202
6203 /* step 5: check the ACK field */
6204 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6205 FLAG_UPDATE_TS_RECENT |
6206 FLAG_NO_CHALLENGE_ACK) > 0;
6207
6208 if (!acceptable) {
6209 if (sk->sk_state == TCP_SYN_RECV)
6210 return 1; /* send one RST */
6211 tcp_send_challenge_ack(sk, skb);
6212 goto discard;
6213 }
6214 switch (sk->sk_state) {
6215 case TCP_SYN_RECV:
6216 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6217 if (!tp->srtt_us)
6218 tcp_synack_rtt_meas(sk, req);
6219
6220 if (req) {
6221 tcp_rcv_synrecv_state_fastopen(sk);
6222 } else {
6223 tcp_try_undo_spurious_syn(sk);
6224 tp->retrans_stamp = 0;
6225 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6226 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6227 }
6228 smp_mb();
6229 tcp_set_state(sk, TCP_ESTABLISHED);
6230 sk->sk_state_change(sk);
6231
6232 /* Note, that this wakeup is only for marginal crossed SYN case.
6233 * Passively open sockets are not waked up, because
6234 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6235 */
6236 if (sk->sk_socket)
6237 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6238
6239 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6240 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6241 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6242
6243 if (tp->rx_opt.tstamp_ok)
6244 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6245
6246 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6247 tcp_update_pacing_rate(sk);
6248
6249 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6250 tp->lsndtime = tcp_jiffies32;
6251
6252 tcp_initialize_rcv_mss(sk);
6253 tcp_fast_path_on(tp);
6254 break;
6255
6256 case TCP_FIN_WAIT1: {
6257 int tmo;
6258
6259 if (req)
6260 tcp_rcv_synrecv_state_fastopen(sk);
6261
6262 if (tp->snd_una != tp->write_seq)
6263 break;
6264
6265 tcp_set_state(sk, TCP_FIN_WAIT2);
6266 sk->sk_shutdown |= SEND_SHUTDOWN;
6267
6268 sk_dst_confirm(sk);
6269
6270 if (!sock_flag(sk, SOCK_DEAD)) {
6271 /* Wake up lingering close() */
6272 sk->sk_state_change(sk);
6273 break;
6274 }
6275
6276 if (tp->linger2 < 0) {
6277 tcp_done(sk);
6278 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6279 return 1;
6280 }
6281 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6282 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6283 /* Receive out of order FIN after close() */
6284 if (tp->syn_fastopen && th->fin)
6285 tcp_fastopen_active_disable(sk);
6286 tcp_done(sk);
6287 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6288 return 1;
6289 }
6290
6291 tmo = tcp_fin_time(sk);
6292 if (tmo > TCP_TIMEWAIT_LEN) {
6293 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6294 } else if (th->fin || sock_owned_by_user(sk)) {
6295 /* Bad case. We could lose such FIN otherwise.
6296 * It is not a big problem, but it looks confusing
6297 * and not so rare event. We still can lose it now,
6298 * if it spins in bh_lock_sock(), but it is really
6299 * marginal case.
6300 */
6301 inet_csk_reset_keepalive_timer(sk, tmo);
6302 } else {
6303 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6304 goto discard;
6305 }
6306 break;
6307 }
6308
6309 case TCP_CLOSING:
6310 if (tp->snd_una == tp->write_seq) {
6311 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6312 goto discard;
6313 }
6314 break;
6315
6316 case TCP_LAST_ACK:
6317 if (tp->snd_una == tp->write_seq) {
6318 tcp_update_metrics(sk);
6319 tcp_done(sk);
6320 goto discard;
6321 }
6322 break;
6323 }
6324
6325 /* step 6: check the URG bit */
6326 tcp_urg(sk, skb, th);
6327
6328 /* step 7: process the segment text */
6329 switch (sk->sk_state) {
6330 case TCP_CLOSE_WAIT:
6331 case TCP_CLOSING:
6332 case TCP_LAST_ACK:
6333 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6334 break;
6335 /* fall through */
6336 case TCP_FIN_WAIT1:
6337 case TCP_FIN_WAIT2:
6338 /* RFC 793 says to queue data in these states,
6339 * RFC 1122 says we MUST send a reset.
6340 * BSD 4.4 also does reset.
6341 */
6342 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6343 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6344 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6345 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6346 tcp_reset(sk);
6347 return 1;
6348 }
6349 }
6350 /* Fall through */
6351 case TCP_ESTABLISHED:
6352 tcp_data_queue(sk, skb);
6353 queued = 1;
6354 break;
6355 }
6356
6357 /* tcp_data could move socket to TIME-WAIT */
6358 if (sk->sk_state != TCP_CLOSE) {
6359 tcp_data_snd_check(sk);
6360 tcp_ack_snd_check(sk);
6361 }
6362
6363 if (!queued) {
6364 discard:
6365 tcp_drop(sk, skb);
6366 }
6367 return 0;
6368 }
6369 EXPORT_SYMBOL(tcp_rcv_state_process);
6370
pr_drop_req(struct request_sock * req,__u16 port,int family)6371 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6372 {
6373 struct inet_request_sock *ireq = inet_rsk(req);
6374
6375 if (family == AF_INET)
6376 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6377 &ireq->ir_rmt_addr, port);
6378 #if IS_ENABLED(CONFIG_IPV6)
6379 else if (family == AF_INET6)
6380 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6381 &ireq->ir_v6_rmt_addr, port);
6382 #endif
6383 }
6384
6385 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6386 *
6387 * If we receive a SYN packet with these bits set, it means a
6388 * network is playing bad games with TOS bits. In order to
6389 * avoid possible false congestion notifications, we disable
6390 * TCP ECN negotiation.
6391 *
6392 * Exception: tcp_ca wants ECN. This is required for DCTCP
6393 * congestion control: Linux DCTCP asserts ECT on all packets,
6394 * including SYN, which is most optimal solution; however,
6395 * others, such as FreeBSD do not.
6396 *
6397 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6398 * set, indicating the use of a future TCP extension (such as AccECN). See
6399 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6400 * extensions.
6401 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6402 static void tcp_ecn_create_request(struct request_sock *req,
6403 const struct sk_buff *skb,
6404 const struct sock *listen_sk,
6405 const struct dst_entry *dst)
6406 {
6407 const struct tcphdr *th = tcp_hdr(skb);
6408 const struct net *net = sock_net(listen_sk);
6409 bool th_ecn = th->ece && th->cwr;
6410 bool ect, ecn_ok;
6411 u32 ecn_ok_dst;
6412
6413 if (!th_ecn)
6414 return;
6415
6416 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6417 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6418 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6419
6420 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6421 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6422 tcp_bpf_ca_needs_ecn((struct sock *)req))
6423 inet_rsk(req)->ecn_ok = 1;
6424 }
6425
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6426 static void tcp_openreq_init(struct request_sock *req,
6427 const struct tcp_options_received *rx_opt,
6428 struct sk_buff *skb, const struct sock *sk)
6429 {
6430 struct inet_request_sock *ireq = inet_rsk(req);
6431
6432 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6433 req->cookie_ts = 0;
6434 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6435 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6436 tcp_rsk(req)->snt_synack = 0;
6437 tcp_rsk(req)->last_oow_ack_time = 0;
6438 req->mss = rx_opt->mss_clamp;
6439 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6440 ireq->tstamp_ok = rx_opt->tstamp_ok;
6441 ireq->sack_ok = rx_opt->sack_ok;
6442 ireq->snd_wscale = rx_opt->snd_wscale;
6443 ireq->wscale_ok = rx_opt->wscale_ok;
6444 ireq->acked = 0;
6445 ireq->ecn_ok = 0;
6446 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6447 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6448 ireq->ir_mark = inet_request_mark(sk, skb);
6449 #if IS_ENABLED(CONFIG_SMC)
6450 ireq->smc_ok = rx_opt->smc_ok;
6451 #endif
6452 }
6453
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6454 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6455 struct sock *sk_listener,
6456 bool attach_listener)
6457 {
6458 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6459 attach_listener);
6460
6461 if (req) {
6462 struct inet_request_sock *ireq = inet_rsk(req);
6463
6464 ireq->ireq_opt = NULL;
6465 #if IS_ENABLED(CONFIG_IPV6)
6466 ireq->pktopts = NULL;
6467 #endif
6468 atomic64_set(&ireq->ir_cookie, 0);
6469 ireq->ireq_state = TCP_NEW_SYN_RECV;
6470 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6471 ireq->ireq_family = sk_listener->sk_family;
6472 }
6473
6474 return req;
6475 }
6476 EXPORT_SYMBOL(inet_reqsk_alloc);
6477
6478 /*
6479 * Return true if a syncookie should be sent
6480 */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6481 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6482 {
6483 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6484 const char *msg = "Dropping request";
6485 bool want_cookie = false;
6486 struct net *net = sock_net(sk);
6487
6488 #ifdef CONFIG_SYN_COOKIES
6489 if (net->ipv4.sysctl_tcp_syncookies) {
6490 msg = "Sending cookies";
6491 want_cookie = true;
6492 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6493 } else
6494 #endif
6495 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6496
6497 if (!queue->synflood_warned &&
6498 net->ipv4.sysctl_tcp_syncookies != 2 &&
6499 xchg(&queue->synflood_warned, 1) == 0)
6500 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6501 proto, sk->sk_num, msg);
6502
6503 return want_cookie;
6504 }
6505
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6506 static void tcp_reqsk_record_syn(const struct sock *sk,
6507 struct request_sock *req,
6508 const struct sk_buff *skb)
6509 {
6510 if (tcp_sk(sk)->save_syn) {
6511 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6512 u32 *copy;
6513
6514 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6515 if (copy) {
6516 copy[0] = len;
6517 memcpy(©[1], skb_network_header(skb), len);
6518 req->saved_syn = copy;
6519 }
6520 }
6521 }
6522
6523 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6524 * used for SYN cookie generation.
6525 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6526 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6527 const struct tcp_request_sock_ops *af_ops,
6528 struct sock *sk, struct tcphdr *th)
6529 {
6530 struct tcp_sock *tp = tcp_sk(sk);
6531 u16 mss;
6532
6533 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6534 !inet_csk_reqsk_queue_is_full(sk))
6535 return 0;
6536
6537 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6538 return 0;
6539
6540 if (sk_acceptq_is_full(sk)) {
6541 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6542 return 0;
6543 }
6544
6545 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6546 if (!mss)
6547 mss = af_ops->mss_clamp;
6548
6549 return mss;
6550 }
6551 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6552
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6553 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6554 const struct tcp_request_sock_ops *af_ops,
6555 struct sock *sk, struct sk_buff *skb)
6556 {
6557 struct tcp_fastopen_cookie foc = { .len = -1 };
6558 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6559 struct tcp_options_received tmp_opt;
6560 struct tcp_sock *tp = tcp_sk(sk);
6561 struct net *net = sock_net(sk);
6562 struct sock *fastopen_sk = NULL;
6563 struct request_sock *req;
6564 bool want_cookie = false;
6565 struct dst_entry *dst;
6566 struct flowi fl;
6567
6568 /* TW buckets are converted to open requests without
6569 * limitations, they conserve resources and peer is
6570 * evidently real one.
6571 */
6572 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6573 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6574 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6575 if (!want_cookie)
6576 goto drop;
6577 }
6578
6579 if (sk_acceptq_is_full(sk)) {
6580 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6581 goto drop;
6582 }
6583
6584 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6585 if (!req)
6586 goto drop;
6587
6588 tcp_rsk(req)->af_specific = af_ops;
6589 tcp_rsk(req)->ts_off = 0;
6590
6591 tcp_clear_options(&tmp_opt);
6592 tmp_opt.mss_clamp = af_ops->mss_clamp;
6593 tmp_opt.user_mss = tp->rx_opt.user_mss;
6594 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6595 want_cookie ? NULL : &foc);
6596
6597 if (want_cookie && !tmp_opt.saw_tstamp)
6598 tcp_clear_options(&tmp_opt);
6599
6600 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6601 tmp_opt.smc_ok = 0;
6602
6603 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6604 tcp_openreq_init(req, &tmp_opt, skb, sk);
6605 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6606
6607 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6608 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6609
6610 af_ops->init_req(req, sk, skb);
6611
6612 if (security_inet_conn_request(sk, skb, req))
6613 goto drop_and_free;
6614
6615 if (tmp_opt.tstamp_ok)
6616 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6617
6618 dst = af_ops->route_req(sk, &fl, req);
6619 if (!dst)
6620 goto drop_and_free;
6621
6622 if (!want_cookie && !isn) {
6623 /* Kill the following clause, if you dislike this way. */
6624 if (!net->ipv4.sysctl_tcp_syncookies &&
6625 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6626 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6627 !tcp_peer_is_proven(req, dst)) {
6628 /* Without syncookies last quarter of
6629 * backlog is filled with destinations,
6630 * proven to be alive.
6631 * It means that we continue to communicate
6632 * to destinations, already remembered
6633 * to the moment of synflood.
6634 */
6635 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6636 rsk_ops->family);
6637 goto drop_and_release;
6638 }
6639
6640 isn = af_ops->init_seq(skb);
6641 }
6642
6643 tcp_ecn_create_request(req, skb, sk, dst);
6644
6645 if (want_cookie) {
6646 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6647 req->cookie_ts = tmp_opt.tstamp_ok;
6648 if (!tmp_opt.tstamp_ok)
6649 inet_rsk(req)->ecn_ok = 0;
6650 }
6651
6652 tcp_rsk(req)->snt_isn = isn;
6653 tcp_rsk(req)->txhash = net_tx_rndhash();
6654 tcp_openreq_init_rwin(req, sk, dst);
6655 sk_rx_queue_set(req_to_sk(req), skb);
6656 if (!want_cookie) {
6657 tcp_reqsk_record_syn(sk, req, skb);
6658 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6659 }
6660 if (fastopen_sk) {
6661 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6662 &foc, TCP_SYNACK_FASTOPEN);
6663 /* Add the child socket directly into the accept queue */
6664 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6665 reqsk_fastopen_remove(fastopen_sk, req, false);
6666 bh_unlock_sock(fastopen_sk);
6667 sock_put(fastopen_sk);
6668 goto drop_and_free;
6669 }
6670 sk->sk_data_ready(sk);
6671 bh_unlock_sock(fastopen_sk);
6672 sock_put(fastopen_sk);
6673 } else {
6674 tcp_rsk(req)->tfo_listener = false;
6675 if (!want_cookie)
6676 inet_csk_reqsk_queue_hash_add(sk, req,
6677 tcp_timeout_init((struct sock *)req));
6678 af_ops->send_synack(sk, dst, &fl, req, &foc,
6679 !want_cookie ? TCP_SYNACK_NORMAL :
6680 TCP_SYNACK_COOKIE);
6681 if (want_cookie) {
6682 reqsk_free(req);
6683 return 0;
6684 }
6685 }
6686 reqsk_put(req);
6687 return 0;
6688
6689 drop_and_release:
6690 dst_release(dst);
6691 drop_and_free:
6692 __reqsk_free(req);
6693 drop:
6694 tcp_listendrop(sk);
6695 return 0;
6696 }
6697 EXPORT_SYMBOL(tcp_conn_request);
6698