• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the UDP module.
8  *
9  * Version:	@(#)udp.h	1.0.2	05/07/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *
14  * Fixes:
15  *		Alan Cox	: Turned on udp checksums. I don't want to
16  *				  chase 'memory corruption' bugs that aren't!
17  */
18 #ifndef _UDP_H
19 #define _UDP_H
20 
21 #include <linux/list.h>
22 #include <linux/bug.h>
23 #include <net/inet_sock.h>
24 #include <net/sock.h>
25 #include <net/snmp.h>
26 #include <net/ip.h>
27 #include <linux/ipv6.h>
28 #include <linux/seq_file.h>
29 #include <linux/poll.h>
30 
31 /**
32  *	struct udp_skb_cb  -  UDP(-Lite) private variables
33  *
34  *	@header:      private variables used by IPv4/IPv6
35  *	@cscov:       checksum coverage length (UDP-Lite only)
36  *	@partial_cov: if set indicates partial csum coverage
37  */
38 struct udp_skb_cb {
39 	union {
40 		struct inet_skb_parm	h4;
41 #if IS_ENABLED(CONFIG_IPV6)
42 		struct inet6_skb_parm	h6;
43 #endif
44 	} header;
45 	__u16		cscov;
46 	__u8		partial_cov;
47 };
48 #define UDP_SKB_CB(__skb)	((struct udp_skb_cb *)((__skb)->cb))
49 
50 /**
51  *	struct udp_hslot - UDP hash slot
52  *
53  *	@head:	head of list of sockets
54  *	@count:	number of sockets in 'head' list
55  *	@lock:	spinlock protecting changes to head/count
56  */
57 struct udp_hslot {
58 	struct hlist_head	head;
59 	int			count;
60 	spinlock_t		lock;
61 } __attribute__((aligned(2 * sizeof(long))));
62 
63 /**
64  *	struct udp_table - UDP table
65  *
66  *	@hash:	hash table, sockets are hashed on (local port)
67  *	@hash2:	hash table, sockets are hashed on (local port, local address)
68  *	@mask:	number of slots in hash tables, minus 1
69  *	@log:	log2(number of slots in hash table)
70  */
71 struct udp_table {
72 	struct udp_hslot	*hash;
73 	struct udp_hslot	*hash2;
74 	unsigned int		mask;
75 	unsigned int		log;
76 };
77 extern struct udp_table udp_table;
78 void udp_table_init(struct udp_table *, const char *);
udp_hashslot(struct udp_table * table,struct net * net,unsigned int num)79 static inline struct udp_hslot *udp_hashslot(struct udp_table *table,
80 					     struct net *net, unsigned int num)
81 {
82 	return &table->hash[udp_hashfn(net, num, table->mask)];
83 }
84 /*
85  * For secondary hash, net_hash_mix() is performed before calling
86  * udp_hashslot2(), this explains difference with udp_hashslot()
87  */
udp_hashslot2(struct udp_table * table,unsigned int hash)88 static inline struct udp_hslot *udp_hashslot2(struct udp_table *table,
89 					      unsigned int hash)
90 {
91 	return &table->hash2[hash & table->mask];
92 }
93 
94 extern struct proto udp_prot;
95 
96 extern atomic_long_t udp_memory_allocated;
97 
98 /* sysctl variables for udp */
99 extern long sysctl_udp_mem[3];
100 extern int sysctl_udp_rmem_min;
101 extern int sysctl_udp_wmem_min;
102 
103 struct sk_buff;
104 
105 /*
106  *	Generic checksumming routines for UDP(-Lite) v4 and v6
107  */
__udp_lib_checksum_complete(struct sk_buff * skb)108 static inline __sum16 __udp_lib_checksum_complete(struct sk_buff *skb)
109 {
110 	return (UDP_SKB_CB(skb)->cscov == skb->len ?
111 		__skb_checksum_complete(skb) :
112 		__skb_checksum_complete_head(skb, UDP_SKB_CB(skb)->cscov));
113 }
114 
udp_lib_checksum_complete(struct sk_buff * skb)115 static inline int udp_lib_checksum_complete(struct sk_buff *skb)
116 {
117 	return !skb_csum_unnecessary(skb) &&
118 		__udp_lib_checksum_complete(skb);
119 }
120 
121 /**
122  * 	udp_csum_outgoing  -  compute UDPv4/v6 checksum over fragments
123  * 	@sk: 	socket we are writing to
124  * 	@skb: 	sk_buff containing the filled-in UDP header
125  * 	        (checksum field must be zeroed out)
126  */
udp_csum_outgoing(struct sock * sk,struct sk_buff * skb)127 static inline __wsum udp_csum_outgoing(struct sock *sk, struct sk_buff *skb)
128 {
129 	__wsum csum = csum_partial(skb_transport_header(skb),
130 				   sizeof(struct udphdr), 0);
131 	skb_queue_walk(&sk->sk_write_queue, skb) {
132 		csum = csum_add(csum, skb->csum);
133 	}
134 	return csum;
135 }
136 
udp_csum(struct sk_buff * skb)137 static inline __wsum udp_csum(struct sk_buff *skb)
138 {
139 	__wsum csum = csum_partial(skb_transport_header(skb),
140 				   sizeof(struct udphdr), skb->csum);
141 
142 	for (skb = skb_shinfo(skb)->frag_list; skb; skb = skb->next) {
143 		csum = csum_add(csum, skb->csum);
144 	}
145 	return csum;
146 }
147 
udp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)148 static inline __sum16 udp_v4_check(int len, __be32 saddr,
149 				   __be32 daddr, __wsum base)
150 {
151 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_UDP, base);
152 }
153 
154 void udp_set_csum(bool nocheck, struct sk_buff *skb,
155 		  __be32 saddr, __be32 daddr, int len);
156 
udp_csum_pull_header(struct sk_buff * skb)157 static inline void udp_csum_pull_header(struct sk_buff *skb)
158 {
159 	if (!skb->csum_valid && skb->ip_summed == CHECKSUM_NONE)
160 		skb->csum = csum_partial(skb->data, sizeof(struct udphdr),
161 					 skb->csum);
162 	skb_pull_rcsum(skb, sizeof(struct udphdr));
163 	UDP_SKB_CB(skb)->cscov -= sizeof(struct udphdr);
164 }
165 
166 typedef struct sock *(*udp_lookup_t)(struct sk_buff *skb, __be16 sport,
167 				     __be16 dport);
168 
169 struct sk_buff *udp_gro_receive(struct list_head *head, struct sk_buff *skb,
170 				struct udphdr *uh, udp_lookup_t lookup);
171 int udp_gro_complete(struct sk_buff *skb, int nhoff, udp_lookup_t lookup);
172 
173 struct sk_buff *__udp_gso_segment(struct sk_buff *gso_skb,
174 				  netdev_features_t features);
175 
udp_gro_udphdr(struct sk_buff * skb)176 static inline struct udphdr *udp_gro_udphdr(struct sk_buff *skb)
177 {
178 	struct udphdr *uh;
179 	unsigned int hlen, off;
180 
181 	off  = skb_gro_offset(skb);
182 	hlen = off + sizeof(*uh);
183 	uh   = skb_gro_header_fast(skb, off);
184 	if (skb_gro_header_hard(skb, hlen))
185 		uh = skb_gro_header_slow(skb, hlen, off);
186 
187 	return uh;
188 }
189 
190 /* hash routines shared between UDPv4/6 and UDP-Litev4/6 */
udp_lib_hash(struct sock * sk)191 static inline int udp_lib_hash(struct sock *sk)
192 {
193 	BUG();
194 	return 0;
195 }
196 
197 void udp_lib_unhash(struct sock *sk);
198 void udp_lib_rehash(struct sock *sk, u16 new_hash);
199 
udp_lib_close(struct sock * sk,long timeout)200 static inline void udp_lib_close(struct sock *sk, long timeout)
201 {
202 	sk_common_release(sk);
203 }
204 
205 int udp_lib_get_port(struct sock *sk, unsigned short snum,
206 		     unsigned int hash2_nulladdr);
207 
208 u32 udp_flow_hashrnd(void);
209 
udp_flow_src_port(struct net * net,struct sk_buff * skb,int min,int max,bool use_eth)210 static inline __be16 udp_flow_src_port(struct net *net, struct sk_buff *skb,
211 				       int min, int max, bool use_eth)
212 {
213 	u32 hash;
214 
215 	if (min >= max) {
216 		/* Use default range */
217 		inet_get_local_port_range(net, &min, &max);
218 	}
219 
220 	hash = skb_get_hash(skb);
221 	if (unlikely(!hash)) {
222 		if (use_eth) {
223 			/* Can't find a normal hash, caller has indicated an
224 			 * Ethernet packet so use that to compute a hash.
225 			 */
226 			hash = jhash(skb->data, 2 * ETH_ALEN,
227 				     (__force u32) skb->protocol);
228 		} else {
229 			/* Can't derive any sort of hash for the packet, set
230 			 * to some consistent random value.
231 			 */
232 			hash = udp_flow_hashrnd();
233 		}
234 	}
235 
236 	/* Since this is being sent on the wire obfuscate hash a bit
237 	 * to minimize possbility that any useful information to an
238 	 * attacker is leaked. Only upper 16 bits are relevant in the
239 	 * computation for 16 bit port value.
240 	 */
241 	hash ^= hash << 16;
242 
243 	return htons((((u64) hash * (max - min)) >> 32) + min);
244 }
245 
udp_rqueue_get(struct sock * sk)246 static inline int udp_rqueue_get(struct sock *sk)
247 {
248 	return sk_rmem_alloc_get(sk) - READ_ONCE(udp_sk(sk)->forward_deficit);
249 }
250 
udp_sk_bound_dev_eq(struct net * net,int bound_dev_if,int dif,int sdif)251 static inline bool udp_sk_bound_dev_eq(struct net *net, int bound_dev_if,
252 				       int dif, int sdif)
253 {
254 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
255 	return inet_bound_dev_eq(!!net->ipv4.sysctl_udp_l3mdev_accept,
256 				 bound_dev_if, dif, sdif);
257 #else
258 	return inet_bound_dev_eq(true, bound_dev_if, dif, sdif);
259 #endif
260 }
261 
262 /* net/ipv4/udp.c */
263 void udp_destruct_sock(struct sock *sk);
264 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len);
265 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb);
266 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb);
267 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
268 			       int noblock, int *off, int *err);
skb_recv_udp(struct sock * sk,unsigned int flags,int noblock,int * err)269 static inline struct sk_buff *skb_recv_udp(struct sock *sk, unsigned int flags,
270 					   int noblock, int *err)
271 {
272 	int off = 0;
273 
274 	return __skb_recv_udp(sk, flags, noblock, &off, err);
275 }
276 
277 int udp_v4_early_demux(struct sk_buff *skb);
278 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst);
279 int udp_get_port(struct sock *sk, unsigned short snum,
280 		 int (*saddr_cmp)(const struct sock *,
281 				  const struct sock *));
282 int udp_err(struct sk_buff *, u32);
283 int udp_abort(struct sock *sk, int err);
284 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len);
285 int udp_push_pending_frames(struct sock *sk);
286 void udp_flush_pending_frames(struct sock *sk);
287 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size);
288 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst);
289 int udp_rcv(struct sk_buff *skb);
290 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg);
291 int udp_init_sock(struct sock *sk);
292 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
293 int __udp_disconnect(struct sock *sk, int flags);
294 int udp_disconnect(struct sock *sk, int flags);
295 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait);
296 struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
297 				       netdev_features_t features,
298 				       bool is_ipv6);
299 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
300 		       char __user *optval, int __user *optlen);
301 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
302 		       char __user *optval, unsigned int optlen,
303 		       int (*push_pending_frames)(struct sock *));
304 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
305 			     __be32 daddr, __be16 dport, int dif);
306 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
307 			       __be32 daddr, __be16 dport, int dif, int sdif,
308 			       struct udp_table *tbl, struct sk_buff *skb);
309 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
310 				 __be16 sport, __be16 dport);
311 struct sock *udp6_lib_lookup(struct net *net,
312 			     const struct in6_addr *saddr, __be16 sport,
313 			     const struct in6_addr *daddr, __be16 dport,
314 			     int dif);
315 struct sock *__udp6_lib_lookup(struct net *net,
316 			       const struct in6_addr *saddr, __be16 sport,
317 			       const struct in6_addr *daddr, __be16 dport,
318 			       int dif, int sdif, struct udp_table *tbl,
319 			       struct sk_buff *skb);
320 struct sock *udp6_lib_lookup_skb(struct sk_buff *skb,
321 				 __be16 sport, __be16 dport);
322 
323 /* UDP uses skb->dev_scratch to cache as much information as possible and avoid
324  * possibly multiple cache miss on dequeue()
325  */
326 struct udp_dev_scratch {
327 	/* skb->truesize and the stateless bit are embedded in a single field;
328 	 * do not use a bitfield since the compiler emits better/smaller code
329 	 * this way
330 	 */
331 	u32 _tsize_state;
332 
333 #if BITS_PER_LONG == 64
334 	/* len and the bit needed to compute skb_csum_unnecessary
335 	 * will be on cold cache lines at recvmsg time.
336 	 * skb->len can be stored on 16 bits since the udp header has been
337 	 * already validated and pulled.
338 	 */
339 	u16 len;
340 	bool is_linear;
341 	bool csum_unnecessary;
342 #endif
343 };
344 
udp_skb_scratch(struct sk_buff * skb)345 static inline struct udp_dev_scratch *udp_skb_scratch(struct sk_buff *skb)
346 {
347 	return (struct udp_dev_scratch *)&skb->dev_scratch;
348 }
349 
350 #if BITS_PER_LONG == 64
udp_skb_len(struct sk_buff * skb)351 static inline unsigned int udp_skb_len(struct sk_buff *skb)
352 {
353 	return udp_skb_scratch(skb)->len;
354 }
355 
udp_skb_csum_unnecessary(struct sk_buff * skb)356 static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb)
357 {
358 	return udp_skb_scratch(skb)->csum_unnecessary;
359 }
360 
udp_skb_is_linear(struct sk_buff * skb)361 static inline bool udp_skb_is_linear(struct sk_buff *skb)
362 {
363 	return udp_skb_scratch(skb)->is_linear;
364 }
365 
366 #else
udp_skb_len(struct sk_buff * skb)367 static inline unsigned int udp_skb_len(struct sk_buff *skb)
368 {
369 	return skb->len;
370 }
371 
udp_skb_csum_unnecessary(struct sk_buff * skb)372 static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb)
373 {
374 	return skb_csum_unnecessary(skb);
375 }
376 
udp_skb_is_linear(struct sk_buff * skb)377 static inline bool udp_skb_is_linear(struct sk_buff *skb)
378 {
379 	return !skb_is_nonlinear(skb);
380 }
381 #endif
382 
copy_linear_skb(struct sk_buff * skb,int len,int off,struct iov_iter * to)383 static inline int copy_linear_skb(struct sk_buff *skb, int len, int off,
384 				  struct iov_iter *to)
385 {
386 	int n;
387 
388 	n = copy_to_iter(skb->data + off, len, to);
389 	if (n == len)
390 		return 0;
391 
392 	iov_iter_revert(to, n);
393 	return -EFAULT;
394 }
395 
396 /*
397  * 	SNMP statistics for UDP and UDP-Lite
398  */
399 #define UDP_INC_STATS(net, field, is_udplite)		      do { \
400 	if (is_udplite) SNMP_INC_STATS((net)->mib.udplite_statistics, field);       \
401 	else		SNMP_INC_STATS((net)->mib.udp_statistics, field);  }  while(0)
402 #define __UDP_INC_STATS(net, field, is_udplite) 	      do { \
403 	if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_statistics, field);         \
404 	else		__SNMP_INC_STATS((net)->mib.udp_statistics, field);    }  while(0)
405 
406 #define __UDP6_INC_STATS(net, field, is_udplite)	    do { \
407 	if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_stats_in6, field);\
408 	else		__SNMP_INC_STATS((net)->mib.udp_stats_in6, field);  \
409 } while(0)
410 #define UDP6_INC_STATS(net, field, __lite)		    do { \
411 	if (__lite) SNMP_INC_STATS((net)->mib.udplite_stats_in6, field);  \
412 	else	    SNMP_INC_STATS((net)->mib.udp_stats_in6, field);      \
413 } while(0)
414 
415 #if IS_ENABLED(CONFIG_IPV6)
416 #define __UDPX_MIB(sk, ipv4)						\
417 ({									\
418 	ipv4 ? (IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics :	\
419 				 sock_net(sk)->mib.udp_statistics) :	\
420 		(IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_stats_in6 :	\
421 				 sock_net(sk)->mib.udp_stats_in6);	\
422 })
423 #else
424 #define __UDPX_MIB(sk, ipv4)						\
425 ({									\
426 	IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics :		\
427 			 sock_net(sk)->mib.udp_statistics;		\
428 })
429 #endif
430 
431 #define __UDPX_INC_STATS(sk, field) \
432 	__SNMP_INC_STATS(__UDPX_MIB(sk, (sk)->sk_family == AF_INET), field)
433 
434 #ifdef CONFIG_PROC_FS
435 struct udp_seq_afinfo {
436 	sa_family_t			family;
437 	struct udp_table		*udp_table;
438 };
439 
440 struct udp_iter_state {
441 	struct seq_net_private  p;
442 	int			bucket;
443 };
444 
445 void *udp_seq_start(struct seq_file *seq, loff_t *pos);
446 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
447 void udp_seq_stop(struct seq_file *seq, void *v);
448 
449 extern const struct seq_operations udp_seq_ops;
450 extern const struct seq_operations udp6_seq_ops;
451 
452 int udp4_proc_init(void);
453 void udp4_proc_exit(void);
454 #endif /* CONFIG_PROC_FS */
455 
456 int udpv4_offload_init(void);
457 
458 void udp_init(void);
459 
460 DECLARE_STATIC_KEY_FALSE(udp_encap_needed_key);
461 void udp_encap_enable(void);
462 #if IS_ENABLED(CONFIG_IPV6)
463 DECLARE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
464 void udpv6_encap_enable(void);
465 #endif
466 
udp_rcv_segment(struct sock * sk,struct sk_buff * skb,bool ipv4)467 static inline struct sk_buff *udp_rcv_segment(struct sock *sk,
468 					      struct sk_buff *skb, bool ipv4)
469 {
470 	netdev_features_t features = NETIF_F_SG;
471 	struct sk_buff *segs;
472 
473 	/* Avoid csum recalculation by skb_segment unless userspace explicitly
474 	 * asks for the final checksum values
475 	 */
476 	if (!inet_get_convert_csum(sk))
477 		features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
478 
479 	if (skb->pkt_type == PACKET_LOOPBACK)
480 		skb->ip_summed = CHECKSUM_PARTIAL;
481 
482 	/* the GSO CB lays after the UDP one, no need to save and restore any
483 	 * CB fragment
484 	 */
485 	segs = __skb_gso_segment(skb, features, false);
486 	if (IS_ERR_OR_NULL(segs)) {
487 		int segs_nr = skb_shinfo(skb)->gso_segs;
488 
489 		atomic_add(segs_nr, &sk->sk_drops);
490 		SNMP_ADD_STATS(__UDPX_MIB(sk, ipv4), UDP_MIB_INERRORS, segs_nr);
491 		kfree_skb(skb);
492 		return NULL;
493 	}
494 
495 	consume_skb(skb);
496 	return segs;
497 }
498 
499 #endif	/* _UDP_H */
500