1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
86
87 #include "internal.h"
88
89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
97
98 /*
99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100 * inode->i_private (with i_mutex making sure that it has only one user at
101 * a time): we would prefer not to enlarge the shmem inode just for that.
102 */
103 struct shmem_falloc {
104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105 pgoff_t start; /* start of range currently being fallocated */
106 pgoff_t next; /* the next page offset to be fallocated */
107 pgoff_t nr_falloced; /* how many new pages have been fallocated */
108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
109 };
110
111 struct shmem_options {
112 unsigned long long blocks;
113 unsigned long long inodes;
114 struct mempolicy *mpol;
115 kuid_t uid;
116 kgid_t gid;
117 umode_t mode;
118 int huge;
119 int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 };
124
125 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)126 static unsigned long shmem_default_max_blocks(void)
127 {
128 return totalram_pages() / 2;
129 }
130
shmem_default_max_inodes(void)131 static unsigned long shmem_default_max_inodes(void)
132 {
133 unsigned long nr_pages = totalram_pages();
134
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147 struct page **pagep, enum sgp_type sgp,
148 gfp_t gfp, struct vm_area_struct *vma,
149 struct vm_fault *vmf, vm_fault_t *fault_type);
150
shmem_getpage(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp)151 int shmem_getpage(struct inode *inode, pgoff_t index,
152 struct page **pagep, enum sgp_type sgp)
153 {
154 return shmem_getpage_gfp(inode, index, pagep, sgp,
155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156 }
157
SHMEM_SB(struct super_block * sb)158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159 {
160 return sb->s_fs_info;
161 }
162
163 /*
164 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165 * for shared memory and for shared anonymous (/dev/zero) mappings
166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167 * consistent with the pre-accounting of private mappings ...
168 */
shmem_acct_size(unsigned long flags,loff_t size)169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
170 {
171 return (flags & VM_NORESERVE) ?
172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173 }
174
shmem_unacct_size(unsigned long flags,loff_t size)175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176 {
177 if (!(flags & VM_NORESERVE))
178 vm_unacct_memory(VM_ACCT(size));
179 }
180
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)181 static inline int shmem_reacct_size(unsigned long flags,
182 loff_t oldsize, loff_t newsize)
183 {
184 if (!(flags & VM_NORESERVE)) {
185 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 return security_vm_enough_memory_mm(current->mm,
187 VM_ACCT(newsize) - VM_ACCT(oldsize));
188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190 }
191 return 0;
192 }
193
194 /*
195 * ... whereas tmpfs objects are accounted incrementally as
196 * pages are allocated, in order to allow large sparse files.
197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199 */
shmem_acct_block(unsigned long flags,long pages)200 static inline int shmem_acct_block(unsigned long flags, long pages)
201 {
202 if (!(flags & VM_NORESERVE))
203 return 0;
204
205 return security_vm_enough_memory_mm(current->mm,
206 pages * VM_ACCT(PAGE_SIZE));
207 }
208
shmem_unacct_blocks(unsigned long flags,long pages)209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211 if (flags & VM_NORESERVE)
212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213 }
214
shmem_inode_acct_block(struct inode * inode,long pages)215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216 {
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220 if (shmem_acct_block(info->flags, pages))
221 return false;
222
223 if (sbinfo->max_blocks) {
224 if (percpu_counter_compare(&sbinfo->used_blocks,
225 sbinfo->max_blocks - pages) > 0)
226 goto unacct;
227 percpu_counter_add(&sbinfo->used_blocks, pages);
228 }
229
230 return true;
231
232 unacct:
233 shmem_unacct_blocks(info->flags, pages);
234 return false;
235 }
236
shmem_inode_unacct_blocks(struct inode * inode,long pages)237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238 {
239 struct shmem_inode_info *info = SHMEM_I(inode);
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241
242 if (sbinfo->max_blocks)
243 percpu_counter_sub(&sbinfo->used_blocks, pages);
244 shmem_unacct_blocks(info->flags, pages);
245 }
246
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
255
vma_is_shmem(struct vm_area_struct * vma)256 bool vma_is_shmem(struct vm_area_struct *vma)
257 {
258 return vma->vm_ops == &shmem_vm_ops;
259 }
260
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
263
shmem_reserve_inode(struct super_block * sb)264 static int shmem_reserve_inode(struct super_block *sb)
265 {
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 if (!sbinfo->free_inodes) {
270 spin_unlock(&sbinfo->stat_lock);
271 return -ENOSPC;
272 }
273 sbinfo->free_inodes--;
274 spin_unlock(&sbinfo->stat_lock);
275 }
276 return 0;
277 }
278
shmem_free_inode(struct super_block * sb)279 static void shmem_free_inode(struct super_block *sb)
280 {
281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 if (sbinfo->max_inodes) {
283 spin_lock(&sbinfo->stat_lock);
284 sbinfo->free_inodes++;
285 spin_unlock(&sbinfo->stat_lock);
286 }
287 }
288
289 /**
290 * shmem_recalc_inode - recalculate the block usage of an inode
291 * @inode: inode to recalc
292 *
293 * We have to calculate the free blocks since the mm can drop
294 * undirtied hole pages behind our back.
295 *
296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298 *
299 * It has to be called with the spinlock held.
300 */
shmem_recalc_inode(struct inode * inode)301 static void shmem_recalc_inode(struct inode *inode)
302 {
303 struct shmem_inode_info *info = SHMEM_I(inode);
304 long freed;
305
306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307 if (freed > 0) {
308 info->alloced -= freed;
309 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310 shmem_inode_unacct_blocks(inode, freed);
311 }
312 }
313
shmem_charge(struct inode * inode,long pages)314 bool shmem_charge(struct inode *inode, long pages)
315 {
316 struct shmem_inode_info *info = SHMEM_I(inode);
317 unsigned long flags;
318
319 if (!shmem_inode_acct_block(inode, pages))
320 return false;
321
322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 inode->i_mapping->nrpages += pages;
324
325 spin_lock_irqsave(&info->lock, flags);
326 info->alloced += pages;
327 inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 shmem_recalc_inode(inode);
329 spin_unlock_irqrestore(&info->lock, flags);
330
331 return true;
332 }
333
shmem_uncharge(struct inode * inode,long pages)334 void shmem_uncharge(struct inode *inode, long pages)
335 {
336 struct shmem_inode_info *info = SHMEM_I(inode);
337 unsigned long flags;
338
339 /* nrpages adjustment done by __delete_from_page_cache() or caller */
340
341 spin_lock_irqsave(&info->lock, flags);
342 info->alloced -= pages;
343 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 shmem_recalc_inode(inode);
345 spin_unlock_irqrestore(&info->lock, flags);
346
347 shmem_inode_unacct_blocks(inode, pages);
348 }
349
350 /*
351 * Replace item expected in xarray by a new item, while holding xa_lock.
352 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)353 static int shmem_replace_entry(struct address_space *mapping,
354 pgoff_t index, void *expected, void *replacement)
355 {
356 XA_STATE(xas, &mapping->i_pages, index);
357 void *item;
358
359 VM_BUG_ON(!expected);
360 VM_BUG_ON(!replacement);
361 item = xas_load(&xas);
362 if (item != expected)
363 return -ENOENT;
364 xas_store(&xas, replacement);
365 return 0;
366 }
367
368 /*
369 * Sometimes, before we decide whether to proceed or to fail, we must check
370 * that an entry was not already brought back from swap by a racing thread.
371 *
372 * Checking page is not enough: by the time a SwapCache page is locked, it
373 * might be reused, and again be SwapCache, using the same swap as before.
374 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)375 static bool shmem_confirm_swap(struct address_space *mapping,
376 pgoff_t index, swp_entry_t swap)
377 {
378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
379 }
380
381 /*
382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383 *
384 * SHMEM_HUGE_NEVER:
385 * disables huge pages for the mount;
386 * SHMEM_HUGE_ALWAYS:
387 * enables huge pages for the mount;
388 * SHMEM_HUGE_WITHIN_SIZE:
389 * only allocate huge pages if the page will be fully within i_size,
390 * also respect fadvise()/madvise() hints;
391 * SHMEM_HUGE_ADVISE:
392 * only allocate huge pages if requested with fadvise()/madvise();
393 */
394
395 #define SHMEM_HUGE_NEVER 0
396 #define SHMEM_HUGE_ALWAYS 1
397 #define SHMEM_HUGE_WITHIN_SIZE 2
398 #define SHMEM_HUGE_ADVISE 3
399
400 /*
401 * Special values.
402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403 *
404 * SHMEM_HUGE_DENY:
405 * disables huge on shm_mnt and all mounts, for emergency use;
406 * SHMEM_HUGE_FORCE:
407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408 *
409 */
410 #define SHMEM_HUGE_DENY (-1)
411 #define SHMEM_HUGE_FORCE (-2)
412
413 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
415
416 static int shmem_huge __read_mostly;
417
418 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)419 static int shmem_parse_huge(const char *str)
420 {
421 if (!strcmp(str, "never"))
422 return SHMEM_HUGE_NEVER;
423 if (!strcmp(str, "always"))
424 return SHMEM_HUGE_ALWAYS;
425 if (!strcmp(str, "within_size"))
426 return SHMEM_HUGE_WITHIN_SIZE;
427 if (!strcmp(str, "advise"))
428 return SHMEM_HUGE_ADVISE;
429 if (!strcmp(str, "deny"))
430 return SHMEM_HUGE_DENY;
431 if (!strcmp(str, "force"))
432 return SHMEM_HUGE_FORCE;
433 return -EINVAL;
434 }
435 #endif
436
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)438 static const char *shmem_format_huge(int huge)
439 {
440 switch (huge) {
441 case SHMEM_HUGE_NEVER:
442 return "never";
443 case SHMEM_HUGE_ALWAYS:
444 return "always";
445 case SHMEM_HUGE_WITHIN_SIZE:
446 return "within_size";
447 case SHMEM_HUGE_ADVISE:
448 return "advise";
449 case SHMEM_HUGE_DENY:
450 return "deny";
451 case SHMEM_HUGE_FORCE:
452 return "force";
453 default:
454 VM_BUG_ON(1);
455 return "bad_val";
456 }
457 }
458 #endif
459
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 struct shrink_control *sc, unsigned long nr_to_split)
462 {
463 LIST_HEAD(list), *pos, *next;
464 LIST_HEAD(to_remove);
465 struct inode *inode;
466 struct shmem_inode_info *info;
467 struct page *page;
468 unsigned long batch = sc ? sc->nr_to_scan : 128;
469 int removed = 0, split = 0;
470
471 if (list_empty(&sbinfo->shrinklist))
472 return SHRINK_STOP;
473
474 spin_lock(&sbinfo->shrinklist_lock);
475 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477
478 /* pin the inode */
479 inode = igrab(&info->vfs_inode);
480
481 /* inode is about to be evicted */
482 if (!inode) {
483 list_del_init(&info->shrinklist);
484 removed++;
485 goto next;
486 }
487
488 /* Check if there's anything to gain */
489 if (round_up(inode->i_size, PAGE_SIZE) ==
490 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491 list_move(&info->shrinklist, &to_remove);
492 removed++;
493 goto next;
494 }
495
496 list_move(&info->shrinklist, &list);
497 next:
498 if (!--batch)
499 break;
500 }
501 spin_unlock(&sbinfo->shrinklist_lock);
502
503 list_for_each_safe(pos, next, &to_remove) {
504 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505 inode = &info->vfs_inode;
506 list_del_init(&info->shrinklist);
507 iput(inode);
508 }
509
510 list_for_each_safe(pos, next, &list) {
511 int ret;
512
513 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514 inode = &info->vfs_inode;
515
516 if (nr_to_split && split >= nr_to_split)
517 goto leave;
518
519 page = find_get_page(inode->i_mapping,
520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521 if (!page)
522 goto drop;
523
524 /* No huge page at the end of the file: nothing to split */
525 if (!PageTransHuge(page)) {
526 put_page(page);
527 goto drop;
528 }
529
530 /*
531 * Leave the inode on the list if we failed to lock
532 * the page at this time.
533 *
534 * Waiting for the lock may lead to deadlock in the
535 * reclaim path.
536 */
537 if (!trylock_page(page)) {
538 put_page(page);
539 goto leave;
540 }
541
542 ret = split_huge_page(page);
543 unlock_page(page);
544 put_page(page);
545
546 /* If split failed leave the inode on the list */
547 if (ret)
548 goto leave;
549
550 split++;
551 drop:
552 list_del_init(&info->shrinklist);
553 removed++;
554 leave:
555 iput(inode);
556 }
557
558 spin_lock(&sbinfo->shrinklist_lock);
559 list_splice_tail(&list, &sbinfo->shrinklist);
560 sbinfo->shrinklist_len -= removed;
561 spin_unlock(&sbinfo->shrinklist_lock);
562
563 return split;
564 }
565
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)566 static long shmem_unused_huge_scan(struct super_block *sb,
567 struct shrink_control *sc)
568 {
569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
570
571 if (!READ_ONCE(sbinfo->shrinklist_len))
572 return SHRINK_STOP;
573
574 return shmem_unused_huge_shrink(sbinfo, sc, 0);
575 }
576
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)577 static long shmem_unused_huge_count(struct super_block *sb,
578 struct shrink_control *sc)
579 {
580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581 return READ_ONCE(sbinfo->shrinklist_len);
582 }
583 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
584
585 #define shmem_huge SHMEM_HUGE_DENY
586
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588 struct shrink_control *sc, unsigned long nr_to_split)
589 {
590 return 0;
591 }
592 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
593
is_huge_enabled(struct shmem_sb_info * sbinfo)594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
595 {
596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598 shmem_huge != SHMEM_HUGE_DENY)
599 return true;
600 return false;
601 }
602
603 /*
604 * Like add_to_page_cache_locked, but error if expected item has gone.
605 */
shmem_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp)606 static int shmem_add_to_page_cache(struct page *page,
607 struct address_space *mapping,
608 pgoff_t index, void *expected, gfp_t gfp)
609 {
610 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
611 unsigned long i = 0;
612 unsigned long nr = compound_nr(page);
613
614 VM_BUG_ON_PAGE(PageTail(page), page);
615 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
616 VM_BUG_ON_PAGE(!PageLocked(page), page);
617 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
618 VM_BUG_ON(expected && PageTransHuge(page));
619
620 page_ref_add(page, nr);
621 page->mapping = mapping;
622 page->index = index;
623
624 do {
625 void *entry;
626 xas_lock_irq(&xas);
627 entry = xas_find_conflict(&xas);
628 if (entry != expected)
629 xas_set_err(&xas, -EEXIST);
630 xas_create_range(&xas);
631 if (xas_error(&xas))
632 goto unlock;
633 next:
634 xas_store(&xas, page);
635 if (++i < nr) {
636 xas_next(&xas);
637 goto next;
638 }
639 if (PageTransHuge(page)) {
640 count_vm_event(THP_FILE_ALLOC);
641 __inc_node_page_state(page, NR_SHMEM_THPS);
642 }
643 mapping->nrpages += nr;
644 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
645 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
646 unlock:
647 xas_unlock_irq(&xas);
648 } while (xas_nomem(&xas, gfp));
649
650 if (xas_error(&xas)) {
651 page->mapping = NULL;
652 page_ref_sub(page, nr);
653 return xas_error(&xas);
654 }
655
656 return 0;
657 }
658
659 /*
660 * Like delete_from_page_cache, but substitutes swap for page.
661 */
shmem_delete_from_page_cache(struct page * page,void * radswap)662 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
663 {
664 struct address_space *mapping = page->mapping;
665 int error;
666
667 VM_BUG_ON_PAGE(PageCompound(page), page);
668
669 xa_lock_irq(&mapping->i_pages);
670 error = shmem_replace_entry(mapping, page->index, page, radswap);
671 page->mapping = NULL;
672 mapping->nrpages--;
673 __dec_node_page_state(page, NR_FILE_PAGES);
674 __dec_node_page_state(page, NR_SHMEM);
675 xa_unlock_irq(&mapping->i_pages);
676 put_page(page);
677 BUG_ON(error);
678 }
679
680 /*
681 * Remove swap entry from page cache, free the swap and its page cache.
682 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)683 static int shmem_free_swap(struct address_space *mapping,
684 pgoff_t index, void *radswap)
685 {
686 void *old;
687
688 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
689 if (old != radswap)
690 return -ENOENT;
691 free_swap_and_cache(radix_to_swp_entry(radswap));
692 return 0;
693 }
694
695 /*
696 * Determine (in bytes) how many of the shmem object's pages mapped by the
697 * given offsets are swapped out.
698 *
699 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
700 * as long as the inode doesn't go away and racy results are not a problem.
701 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)702 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
703 pgoff_t start, pgoff_t end)
704 {
705 XA_STATE(xas, &mapping->i_pages, start);
706 struct page *page;
707 unsigned long swapped = 0;
708
709 rcu_read_lock();
710 xas_for_each(&xas, page, end - 1) {
711 if (xas_retry(&xas, page))
712 continue;
713 if (xa_is_value(page))
714 swapped++;
715
716 if (need_resched()) {
717 xas_pause(&xas);
718 cond_resched_rcu();
719 }
720 }
721
722 rcu_read_unlock();
723
724 return swapped << PAGE_SHIFT;
725 }
726
727 /*
728 * Determine (in bytes) how many of the shmem object's pages mapped by the
729 * given vma is swapped out.
730 *
731 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
732 * as long as the inode doesn't go away and racy results are not a problem.
733 */
shmem_swap_usage(struct vm_area_struct * vma)734 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
735 {
736 struct inode *inode = file_inode(vma->vm_file);
737 struct shmem_inode_info *info = SHMEM_I(inode);
738 struct address_space *mapping = inode->i_mapping;
739 unsigned long swapped;
740
741 /* Be careful as we don't hold info->lock */
742 swapped = READ_ONCE(info->swapped);
743
744 /*
745 * The easier cases are when the shmem object has nothing in swap, or
746 * the vma maps it whole. Then we can simply use the stats that we
747 * already track.
748 */
749 if (!swapped)
750 return 0;
751
752 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
753 return swapped << PAGE_SHIFT;
754
755 /* Here comes the more involved part */
756 return shmem_partial_swap_usage(mapping,
757 linear_page_index(vma, vma->vm_start),
758 linear_page_index(vma, vma->vm_end));
759 }
760
761 /*
762 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
763 */
shmem_unlock_mapping(struct address_space * mapping)764 void shmem_unlock_mapping(struct address_space *mapping)
765 {
766 struct pagevec pvec;
767 pgoff_t indices[PAGEVEC_SIZE];
768 pgoff_t index = 0;
769
770 pagevec_init(&pvec);
771 /*
772 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
773 */
774 while (!mapping_unevictable(mapping)) {
775 /*
776 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
777 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
778 */
779 pvec.nr = find_get_entries(mapping, index,
780 PAGEVEC_SIZE, pvec.pages, indices);
781 if (!pvec.nr)
782 break;
783 index = indices[pvec.nr - 1] + 1;
784 pagevec_remove_exceptionals(&pvec);
785 check_move_unevictable_pages(&pvec);
786 pagevec_release(&pvec);
787 cond_resched();
788 }
789 }
790
791 /*
792 * Remove range of pages and swap entries from page cache, and free them.
793 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
794 */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)795 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
796 bool unfalloc)
797 {
798 struct address_space *mapping = inode->i_mapping;
799 struct shmem_inode_info *info = SHMEM_I(inode);
800 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
801 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
802 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
803 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
804 struct pagevec pvec;
805 pgoff_t indices[PAGEVEC_SIZE];
806 long nr_swaps_freed = 0;
807 pgoff_t index;
808 int i;
809
810 if (lend == -1)
811 end = -1; /* unsigned, so actually very big */
812
813 pagevec_init(&pvec);
814 index = start;
815 while (index < end) {
816 pvec.nr = find_get_entries(mapping, index,
817 min(end - index, (pgoff_t)PAGEVEC_SIZE),
818 pvec.pages, indices);
819 if (!pvec.nr)
820 break;
821 for (i = 0; i < pagevec_count(&pvec); i++) {
822 struct page *page = pvec.pages[i];
823
824 index = indices[i];
825 if (index >= end)
826 break;
827
828 if (xa_is_value(page)) {
829 if (unfalloc)
830 continue;
831 nr_swaps_freed += !shmem_free_swap(mapping,
832 index, page);
833 continue;
834 }
835
836 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
837
838 if (!trylock_page(page))
839 continue;
840
841 if (PageTransTail(page)) {
842 /* Middle of THP: zero out the page */
843 clear_highpage(page);
844 unlock_page(page);
845 continue;
846 } else if (PageTransHuge(page)) {
847 if (index == round_down(end, HPAGE_PMD_NR)) {
848 /*
849 * Range ends in the middle of THP:
850 * zero out the page
851 */
852 clear_highpage(page);
853 unlock_page(page);
854 continue;
855 }
856 index += HPAGE_PMD_NR - 1;
857 i += HPAGE_PMD_NR - 1;
858 }
859
860 if (!unfalloc || !PageUptodate(page)) {
861 VM_BUG_ON_PAGE(PageTail(page), page);
862 if (page_mapping(page) == mapping) {
863 VM_BUG_ON_PAGE(PageWriteback(page), page);
864 truncate_inode_page(mapping, page);
865 }
866 }
867 unlock_page(page);
868 }
869 pagevec_remove_exceptionals(&pvec);
870 pagevec_release(&pvec);
871 cond_resched();
872 index++;
873 }
874
875 if (partial_start) {
876 struct page *page = NULL;
877 shmem_getpage(inode, start - 1, &page, SGP_READ);
878 if (page) {
879 unsigned int top = PAGE_SIZE;
880 if (start > end) {
881 top = partial_end;
882 partial_end = 0;
883 }
884 zero_user_segment(page, partial_start, top);
885 set_page_dirty(page);
886 unlock_page(page);
887 put_page(page);
888 }
889 }
890 if (partial_end) {
891 struct page *page = NULL;
892 shmem_getpage(inode, end, &page, SGP_READ);
893 if (page) {
894 zero_user_segment(page, 0, partial_end);
895 set_page_dirty(page);
896 unlock_page(page);
897 put_page(page);
898 }
899 }
900 if (start >= end)
901 return;
902
903 index = start;
904 while (index < end) {
905 cond_resched();
906
907 pvec.nr = find_get_entries(mapping, index,
908 min(end - index, (pgoff_t)PAGEVEC_SIZE),
909 pvec.pages, indices);
910 if (!pvec.nr) {
911 /* If all gone or hole-punch or unfalloc, we're done */
912 if (index == start || end != -1)
913 break;
914 /* But if truncating, restart to make sure all gone */
915 index = start;
916 continue;
917 }
918 for (i = 0; i < pagevec_count(&pvec); i++) {
919 struct page *page = pvec.pages[i];
920
921 index = indices[i];
922 if (index >= end)
923 break;
924
925 if (xa_is_value(page)) {
926 if (unfalloc)
927 continue;
928 if (shmem_free_swap(mapping, index, page)) {
929 /* Swap was replaced by page: retry */
930 index--;
931 break;
932 }
933 nr_swaps_freed++;
934 continue;
935 }
936
937 lock_page(page);
938
939 if (PageTransTail(page)) {
940 /* Middle of THP: zero out the page */
941 clear_highpage(page);
942 unlock_page(page);
943 /*
944 * Partial thp truncate due 'start' in middle
945 * of THP: don't need to look on these pages
946 * again on !pvec.nr restart.
947 */
948 if (index != round_down(end, HPAGE_PMD_NR))
949 start++;
950 continue;
951 } else if (PageTransHuge(page)) {
952 if (index == round_down(end, HPAGE_PMD_NR)) {
953 /*
954 * Range ends in the middle of THP:
955 * zero out the page
956 */
957 clear_highpage(page);
958 unlock_page(page);
959 continue;
960 }
961 index += HPAGE_PMD_NR - 1;
962 i += HPAGE_PMD_NR - 1;
963 }
964
965 if (!unfalloc || !PageUptodate(page)) {
966 VM_BUG_ON_PAGE(PageTail(page), page);
967 if (page_mapping(page) == mapping) {
968 VM_BUG_ON_PAGE(PageWriteback(page), page);
969 truncate_inode_page(mapping, page);
970 } else {
971 /* Page was replaced by swap: retry */
972 unlock_page(page);
973 index--;
974 break;
975 }
976 }
977 unlock_page(page);
978 }
979 pagevec_remove_exceptionals(&pvec);
980 pagevec_release(&pvec);
981 index++;
982 }
983
984 spin_lock_irq(&info->lock);
985 info->swapped -= nr_swaps_freed;
986 shmem_recalc_inode(inode);
987 spin_unlock_irq(&info->lock);
988 }
989
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)990 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
991 {
992 shmem_undo_range(inode, lstart, lend, false);
993 inode->i_ctime = inode->i_mtime = current_time(inode);
994 }
995 EXPORT_SYMBOL_GPL(shmem_truncate_range);
996
shmem_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)997 static int shmem_getattr(const struct path *path, struct kstat *stat,
998 u32 request_mask, unsigned int query_flags)
999 {
1000 struct inode *inode = path->dentry->d_inode;
1001 struct shmem_inode_info *info = SHMEM_I(inode);
1002 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1003
1004 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1005 spin_lock_irq(&info->lock);
1006 shmem_recalc_inode(inode);
1007 spin_unlock_irq(&info->lock);
1008 }
1009 generic_fillattr(inode, stat);
1010
1011 if (is_huge_enabled(sb_info))
1012 stat->blksize = HPAGE_PMD_SIZE;
1013
1014 return 0;
1015 }
1016
shmem_setattr(struct dentry * dentry,struct iattr * attr)1017 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1018 {
1019 struct inode *inode = d_inode(dentry);
1020 struct shmem_inode_info *info = SHMEM_I(inode);
1021 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1022 int error;
1023
1024 error = setattr_prepare(dentry, attr);
1025 if (error)
1026 return error;
1027
1028 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1029 loff_t oldsize = inode->i_size;
1030 loff_t newsize = attr->ia_size;
1031
1032 /* protected by i_mutex */
1033 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1034 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1035 return -EPERM;
1036
1037 if (newsize != oldsize) {
1038 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1039 oldsize, newsize);
1040 if (error)
1041 return error;
1042 i_size_write(inode, newsize);
1043 inode->i_ctime = inode->i_mtime = current_time(inode);
1044 }
1045 if (newsize <= oldsize) {
1046 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1047 if (oldsize > holebegin)
1048 unmap_mapping_range(inode->i_mapping,
1049 holebegin, 0, 1);
1050 if (info->alloced)
1051 shmem_truncate_range(inode,
1052 newsize, (loff_t)-1);
1053 /* unmap again to remove racily COWed private pages */
1054 if (oldsize > holebegin)
1055 unmap_mapping_range(inode->i_mapping,
1056 holebegin, 0, 1);
1057
1058 /*
1059 * Part of the huge page can be beyond i_size: subject
1060 * to shrink under memory pressure.
1061 */
1062 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1063 spin_lock(&sbinfo->shrinklist_lock);
1064 /*
1065 * _careful to defend against unlocked access to
1066 * ->shrink_list in shmem_unused_huge_shrink()
1067 */
1068 if (list_empty_careful(&info->shrinklist)) {
1069 list_add_tail(&info->shrinklist,
1070 &sbinfo->shrinklist);
1071 sbinfo->shrinklist_len++;
1072 }
1073 spin_unlock(&sbinfo->shrinklist_lock);
1074 }
1075 }
1076 }
1077
1078 setattr_copy(inode, attr);
1079 if (attr->ia_valid & ATTR_MODE)
1080 error = posix_acl_chmod(inode, inode->i_mode);
1081 return error;
1082 }
1083
shmem_evict_inode(struct inode * inode)1084 static void shmem_evict_inode(struct inode *inode)
1085 {
1086 struct shmem_inode_info *info = SHMEM_I(inode);
1087 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1088
1089 if (inode->i_mapping->a_ops == &shmem_aops) {
1090 shmem_unacct_size(info->flags, inode->i_size);
1091 inode->i_size = 0;
1092 shmem_truncate_range(inode, 0, (loff_t)-1);
1093 if (!list_empty(&info->shrinklist)) {
1094 spin_lock(&sbinfo->shrinklist_lock);
1095 if (!list_empty(&info->shrinklist)) {
1096 list_del_init(&info->shrinklist);
1097 sbinfo->shrinklist_len--;
1098 }
1099 spin_unlock(&sbinfo->shrinklist_lock);
1100 }
1101 while (!list_empty(&info->swaplist)) {
1102 /* Wait while shmem_unuse() is scanning this inode... */
1103 wait_var_event(&info->stop_eviction,
1104 !atomic_read(&info->stop_eviction));
1105 mutex_lock(&shmem_swaplist_mutex);
1106 /* ...but beware of the race if we peeked too early */
1107 if (!atomic_read(&info->stop_eviction))
1108 list_del_init(&info->swaplist);
1109 mutex_unlock(&shmem_swaplist_mutex);
1110 }
1111 }
1112
1113 simple_xattrs_free(&info->xattrs);
1114 WARN_ON(inode->i_blocks);
1115 shmem_free_inode(inode->i_sb);
1116 clear_inode(inode);
1117 }
1118
1119 extern struct swap_info_struct *swap_info[];
1120
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,unsigned int nr_entries,struct page ** entries,pgoff_t * indices,unsigned int type,bool frontswap)1121 static int shmem_find_swap_entries(struct address_space *mapping,
1122 pgoff_t start, unsigned int nr_entries,
1123 struct page **entries, pgoff_t *indices,
1124 unsigned int type, bool frontswap)
1125 {
1126 XA_STATE(xas, &mapping->i_pages, start);
1127 struct page *page;
1128 swp_entry_t entry;
1129 unsigned int ret = 0;
1130
1131 if (!nr_entries)
1132 return 0;
1133
1134 rcu_read_lock();
1135 xas_for_each(&xas, page, ULONG_MAX) {
1136 if (xas_retry(&xas, page))
1137 continue;
1138
1139 if (!xa_is_value(page))
1140 continue;
1141
1142 entry = radix_to_swp_entry(page);
1143 if (swp_type(entry) != type)
1144 continue;
1145 if (frontswap &&
1146 !frontswap_test(swap_info[type], swp_offset(entry)))
1147 continue;
1148
1149 indices[ret] = xas.xa_index;
1150 entries[ret] = page;
1151
1152 if (need_resched()) {
1153 xas_pause(&xas);
1154 cond_resched_rcu();
1155 }
1156 if (++ret == nr_entries)
1157 break;
1158 }
1159 rcu_read_unlock();
1160
1161 return ret;
1162 }
1163
1164 /*
1165 * Move the swapped pages for an inode to page cache. Returns the count
1166 * of pages swapped in, or the error in case of failure.
1167 */
shmem_unuse_swap_entries(struct inode * inode,struct pagevec pvec,pgoff_t * indices)1168 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1169 pgoff_t *indices)
1170 {
1171 int i = 0;
1172 int ret = 0;
1173 int error = 0;
1174 struct address_space *mapping = inode->i_mapping;
1175
1176 for (i = 0; i < pvec.nr; i++) {
1177 struct page *page = pvec.pages[i];
1178
1179 if (!xa_is_value(page))
1180 continue;
1181 error = shmem_swapin_page(inode, indices[i],
1182 &page, SGP_CACHE,
1183 mapping_gfp_mask(mapping),
1184 NULL, NULL);
1185 if (error == 0) {
1186 unlock_page(page);
1187 put_page(page);
1188 ret++;
1189 }
1190 if (error == -ENOMEM)
1191 break;
1192 error = 0;
1193 }
1194 return error ? error : ret;
1195 }
1196
1197 /*
1198 * If swap found in inode, free it and move page from swapcache to filecache.
1199 */
shmem_unuse_inode(struct inode * inode,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1200 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1201 bool frontswap, unsigned long *fs_pages_to_unuse)
1202 {
1203 struct address_space *mapping = inode->i_mapping;
1204 pgoff_t start = 0;
1205 struct pagevec pvec;
1206 pgoff_t indices[PAGEVEC_SIZE];
1207 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1208 int ret = 0;
1209
1210 pagevec_init(&pvec);
1211 do {
1212 unsigned int nr_entries = PAGEVEC_SIZE;
1213
1214 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1215 nr_entries = *fs_pages_to_unuse;
1216
1217 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1218 pvec.pages, indices,
1219 type, frontswap);
1220 if (pvec.nr == 0) {
1221 ret = 0;
1222 break;
1223 }
1224
1225 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1226 if (ret < 0)
1227 break;
1228
1229 if (frontswap_partial) {
1230 *fs_pages_to_unuse -= ret;
1231 if (*fs_pages_to_unuse == 0) {
1232 ret = FRONTSWAP_PAGES_UNUSED;
1233 break;
1234 }
1235 }
1236
1237 start = indices[pvec.nr - 1];
1238 } while (true);
1239
1240 return ret;
1241 }
1242
1243 /*
1244 * Read all the shared memory data that resides in the swap
1245 * device 'type' back into memory, so the swap device can be
1246 * unused.
1247 */
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1248 int shmem_unuse(unsigned int type, bool frontswap,
1249 unsigned long *fs_pages_to_unuse)
1250 {
1251 struct shmem_inode_info *info, *next;
1252 int error = 0;
1253
1254 if (list_empty(&shmem_swaplist))
1255 return 0;
1256
1257 mutex_lock(&shmem_swaplist_mutex);
1258 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1259 if (!info->swapped) {
1260 list_del_init(&info->swaplist);
1261 continue;
1262 }
1263 /*
1264 * Drop the swaplist mutex while searching the inode for swap;
1265 * but before doing so, make sure shmem_evict_inode() will not
1266 * remove placeholder inode from swaplist, nor let it be freed
1267 * (igrab() would protect from unlink, but not from unmount).
1268 */
1269 atomic_inc(&info->stop_eviction);
1270 mutex_unlock(&shmem_swaplist_mutex);
1271
1272 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1273 fs_pages_to_unuse);
1274 cond_resched();
1275
1276 mutex_lock(&shmem_swaplist_mutex);
1277 next = list_next_entry(info, swaplist);
1278 if (!info->swapped)
1279 list_del_init(&info->swaplist);
1280 if (atomic_dec_and_test(&info->stop_eviction))
1281 wake_up_var(&info->stop_eviction);
1282 if (error)
1283 break;
1284 }
1285 mutex_unlock(&shmem_swaplist_mutex);
1286
1287 return error;
1288 }
1289
1290 /*
1291 * Move the page from the page cache to the swap cache.
1292 */
shmem_writepage(struct page * page,struct writeback_control * wbc)1293 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1294 {
1295 struct shmem_inode_info *info;
1296 struct address_space *mapping;
1297 struct inode *inode;
1298 swp_entry_t swap;
1299 pgoff_t index;
1300
1301 VM_BUG_ON_PAGE(PageCompound(page), page);
1302 BUG_ON(!PageLocked(page));
1303 mapping = page->mapping;
1304 index = page->index;
1305 inode = mapping->host;
1306 info = SHMEM_I(inode);
1307 if (info->flags & VM_LOCKED)
1308 goto redirty;
1309 if (!total_swap_pages)
1310 goto redirty;
1311
1312 /*
1313 * Our capabilities prevent regular writeback or sync from ever calling
1314 * shmem_writepage; but a stacking filesystem might use ->writepage of
1315 * its underlying filesystem, in which case tmpfs should write out to
1316 * swap only in response to memory pressure, and not for the writeback
1317 * threads or sync.
1318 */
1319 if (!wbc->for_reclaim) {
1320 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1321 goto redirty;
1322 }
1323
1324 /*
1325 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1326 * value into swapfile.c, the only way we can correctly account for a
1327 * fallocated page arriving here is now to initialize it and write it.
1328 *
1329 * That's okay for a page already fallocated earlier, but if we have
1330 * not yet completed the fallocation, then (a) we want to keep track
1331 * of this page in case we have to undo it, and (b) it may not be a
1332 * good idea to continue anyway, once we're pushing into swap. So
1333 * reactivate the page, and let shmem_fallocate() quit when too many.
1334 */
1335 if (!PageUptodate(page)) {
1336 if (inode->i_private) {
1337 struct shmem_falloc *shmem_falloc;
1338 spin_lock(&inode->i_lock);
1339 shmem_falloc = inode->i_private;
1340 if (shmem_falloc &&
1341 !shmem_falloc->waitq &&
1342 index >= shmem_falloc->start &&
1343 index < shmem_falloc->next)
1344 shmem_falloc->nr_unswapped++;
1345 else
1346 shmem_falloc = NULL;
1347 spin_unlock(&inode->i_lock);
1348 if (shmem_falloc)
1349 goto redirty;
1350 }
1351 clear_highpage(page);
1352 flush_dcache_page(page);
1353 SetPageUptodate(page);
1354 }
1355
1356 swap = get_swap_page(page);
1357 if (!swap.val)
1358 goto redirty;
1359
1360 /*
1361 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1362 * if it's not already there. Do it now before the page is
1363 * moved to swap cache, when its pagelock no longer protects
1364 * the inode from eviction. But don't unlock the mutex until
1365 * we've incremented swapped, because shmem_unuse_inode() will
1366 * prune a !swapped inode from the swaplist under this mutex.
1367 */
1368 mutex_lock(&shmem_swaplist_mutex);
1369 if (list_empty(&info->swaplist))
1370 list_add(&info->swaplist, &shmem_swaplist);
1371
1372 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1373 spin_lock_irq(&info->lock);
1374 shmem_recalc_inode(inode);
1375 info->swapped++;
1376 spin_unlock_irq(&info->lock);
1377
1378 swap_shmem_alloc(swap);
1379 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1380
1381 mutex_unlock(&shmem_swaplist_mutex);
1382 BUG_ON(page_mapped(page));
1383 swap_writepage(page, wbc);
1384 return 0;
1385 }
1386
1387 mutex_unlock(&shmem_swaplist_mutex);
1388 put_swap_page(page, swap);
1389 redirty:
1390 set_page_dirty(page);
1391 if (wbc->for_reclaim)
1392 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1393 unlock_page(page);
1394 return 0;
1395 }
1396
1397 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1398 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1399 {
1400 char buffer[64];
1401
1402 if (!mpol || mpol->mode == MPOL_DEFAULT)
1403 return; /* show nothing */
1404
1405 mpol_to_str(buffer, sizeof(buffer), mpol);
1406
1407 seq_printf(seq, ",mpol=%s", buffer);
1408 }
1409
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1410 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1411 {
1412 struct mempolicy *mpol = NULL;
1413 if (sbinfo->mpol) {
1414 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1415 mpol = sbinfo->mpol;
1416 mpol_get(mpol);
1417 spin_unlock(&sbinfo->stat_lock);
1418 }
1419 return mpol;
1420 }
1421 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1422 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1423 {
1424 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1425 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1426 {
1427 return NULL;
1428 }
1429 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1430 #ifndef CONFIG_NUMA
1431 #define vm_policy vm_private_data
1432 #endif
1433
shmem_pseudo_vma_init(struct vm_area_struct * vma,struct shmem_inode_info * info,pgoff_t index)1434 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1435 struct shmem_inode_info *info, pgoff_t index)
1436 {
1437 /* Create a pseudo vma that just contains the policy */
1438 vma_init(vma, NULL);
1439 /* Bias interleave by inode number to distribute better across nodes */
1440 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1441 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1442 }
1443
shmem_pseudo_vma_destroy(struct vm_area_struct * vma)1444 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1445 {
1446 /* Drop reference taken by mpol_shared_policy_lookup() */
1447 mpol_cond_put(vma->vm_policy);
1448 }
1449
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1450 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1451 struct shmem_inode_info *info, pgoff_t index)
1452 {
1453 struct vm_area_struct pvma;
1454 struct page *page;
1455 struct vm_fault vmf;
1456
1457 shmem_pseudo_vma_init(&pvma, info, index);
1458 vmf.vma = &pvma;
1459 vmf.address = 0;
1460 page = swap_cluster_readahead(swap, gfp, &vmf);
1461 shmem_pseudo_vma_destroy(&pvma);
1462
1463 return page;
1464 }
1465
shmem_alloc_hugepage(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1466 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1467 struct shmem_inode_info *info, pgoff_t index)
1468 {
1469 struct vm_area_struct pvma;
1470 struct address_space *mapping = info->vfs_inode.i_mapping;
1471 pgoff_t hindex;
1472 struct page *page;
1473
1474 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1475 return NULL;
1476
1477 hindex = round_down(index, HPAGE_PMD_NR);
1478 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1479 XA_PRESENT))
1480 return NULL;
1481
1482 shmem_pseudo_vma_init(&pvma, info, hindex);
1483 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1484 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1485 shmem_pseudo_vma_destroy(&pvma);
1486 if (page)
1487 prep_transhuge_page(page);
1488 return page;
1489 }
1490
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1491 static struct page *shmem_alloc_page(gfp_t gfp,
1492 struct shmem_inode_info *info, pgoff_t index)
1493 {
1494 struct vm_area_struct pvma;
1495 struct page *page;
1496
1497 shmem_pseudo_vma_init(&pvma, info, index);
1498 page = alloc_page_vma(gfp, &pvma, 0);
1499 shmem_pseudo_vma_destroy(&pvma);
1500
1501 return page;
1502 }
1503
shmem_alloc_and_acct_page(gfp_t gfp,struct inode * inode,pgoff_t index,bool huge)1504 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1505 struct inode *inode,
1506 pgoff_t index, bool huge)
1507 {
1508 struct shmem_inode_info *info = SHMEM_I(inode);
1509 struct page *page;
1510 int nr;
1511 int err = -ENOSPC;
1512
1513 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1514 huge = false;
1515 nr = huge ? HPAGE_PMD_NR : 1;
1516
1517 if (!shmem_inode_acct_block(inode, nr))
1518 goto failed;
1519
1520 if (huge)
1521 page = shmem_alloc_hugepage(gfp, info, index);
1522 else
1523 page = shmem_alloc_page(gfp, info, index);
1524 if (page) {
1525 __SetPageLocked(page);
1526 __SetPageSwapBacked(page);
1527 return page;
1528 }
1529
1530 err = -ENOMEM;
1531 shmem_inode_unacct_blocks(inode, nr);
1532 failed:
1533 return ERR_PTR(err);
1534 }
1535
1536 /*
1537 * When a page is moved from swapcache to shmem filecache (either by the
1538 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1539 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1540 * ignorance of the mapping it belongs to. If that mapping has special
1541 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1542 * we may need to copy to a suitable page before moving to filecache.
1543 *
1544 * In a future release, this may well be extended to respect cpuset and
1545 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1546 * but for now it is a simple matter of zone.
1547 */
shmem_should_replace_page(struct page * page,gfp_t gfp)1548 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1549 {
1550 return page_zonenum(page) > gfp_zone(gfp);
1551 }
1552
shmem_replace_page(struct page ** pagep,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1553 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1554 struct shmem_inode_info *info, pgoff_t index)
1555 {
1556 struct page *oldpage, *newpage;
1557 struct address_space *swap_mapping;
1558 swp_entry_t entry;
1559 pgoff_t swap_index;
1560 int error;
1561
1562 oldpage = *pagep;
1563 entry.val = page_private(oldpage);
1564 swap_index = swp_offset(entry);
1565 swap_mapping = page_mapping(oldpage);
1566
1567 /*
1568 * We have arrived here because our zones are constrained, so don't
1569 * limit chance of success by further cpuset and node constraints.
1570 */
1571 gfp &= ~GFP_CONSTRAINT_MASK;
1572 newpage = shmem_alloc_page(gfp, info, index);
1573 if (!newpage)
1574 return -ENOMEM;
1575
1576 get_page(newpage);
1577 copy_highpage(newpage, oldpage);
1578 flush_dcache_page(newpage);
1579
1580 __SetPageLocked(newpage);
1581 __SetPageSwapBacked(newpage);
1582 SetPageUptodate(newpage);
1583 set_page_private(newpage, entry.val);
1584 SetPageSwapCache(newpage);
1585
1586 /*
1587 * Our caller will very soon move newpage out of swapcache, but it's
1588 * a nice clean interface for us to replace oldpage by newpage there.
1589 */
1590 xa_lock_irq(&swap_mapping->i_pages);
1591 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1592 if (!error) {
1593 __inc_node_page_state(newpage, NR_FILE_PAGES);
1594 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1595 }
1596 xa_unlock_irq(&swap_mapping->i_pages);
1597
1598 if (unlikely(error)) {
1599 /*
1600 * Is this possible? I think not, now that our callers check
1601 * both PageSwapCache and page_private after getting page lock;
1602 * but be defensive. Reverse old to newpage for clear and free.
1603 */
1604 oldpage = newpage;
1605 } else {
1606 mem_cgroup_migrate(oldpage, newpage);
1607 lru_cache_add_anon(newpage);
1608 *pagep = newpage;
1609 }
1610
1611 ClearPageSwapCache(oldpage);
1612 set_page_private(oldpage, 0);
1613
1614 unlock_page(oldpage);
1615 put_page(oldpage);
1616 put_page(oldpage);
1617 return error;
1618 }
1619
1620 /*
1621 * Swap in the page pointed to by *pagep.
1622 * Caller has to make sure that *pagep contains a valid swapped page.
1623 * Returns 0 and the page in pagep if success. On failure, returns the
1624 * the error code and NULL in *pagep.
1625 */
shmem_swapin_page(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)1626 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1627 struct page **pagep, enum sgp_type sgp,
1628 gfp_t gfp, struct vm_area_struct *vma,
1629 vm_fault_t *fault_type)
1630 {
1631 struct address_space *mapping = inode->i_mapping;
1632 struct shmem_inode_info *info = SHMEM_I(inode);
1633 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1634 struct mem_cgroup *memcg;
1635 struct page *page;
1636 swp_entry_t swap;
1637 int error;
1638
1639 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1640 swap = radix_to_swp_entry(*pagep);
1641 *pagep = NULL;
1642
1643 /* Look it up and read it in.. */
1644 page = lookup_swap_cache(swap, NULL, 0);
1645 if (!page) {
1646 /* Or update major stats only when swapin succeeds?? */
1647 if (fault_type) {
1648 *fault_type |= VM_FAULT_MAJOR;
1649 count_vm_event(PGMAJFAULT);
1650 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1651 }
1652 /* Here we actually start the io */
1653 page = shmem_swapin(swap, gfp, info, index);
1654 if (!page) {
1655 error = -ENOMEM;
1656 goto failed;
1657 }
1658 }
1659
1660 /* We have to do this with page locked to prevent races */
1661 lock_page(page);
1662 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1663 !shmem_confirm_swap(mapping, index, swap)) {
1664 error = -EEXIST;
1665 goto unlock;
1666 }
1667 if (!PageUptodate(page)) {
1668 error = -EIO;
1669 goto failed;
1670 }
1671 wait_on_page_writeback(page);
1672
1673 if (shmem_should_replace_page(page, gfp)) {
1674 error = shmem_replace_page(&page, gfp, info, index);
1675 if (error)
1676 goto failed;
1677 }
1678
1679 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1680 false);
1681 if (!error) {
1682 error = shmem_add_to_page_cache(page, mapping, index,
1683 swp_to_radix_entry(swap), gfp);
1684 /*
1685 * We already confirmed swap under page lock, and make
1686 * no memory allocation here, so usually no possibility
1687 * of error; but free_swap_and_cache() only trylocks a
1688 * page, so it is just possible that the entry has been
1689 * truncated or holepunched since swap was confirmed.
1690 * shmem_undo_range() will have done some of the
1691 * unaccounting, now delete_from_swap_cache() will do
1692 * the rest.
1693 */
1694 if (error) {
1695 mem_cgroup_cancel_charge(page, memcg, false);
1696 delete_from_swap_cache(page);
1697 }
1698 }
1699 if (error)
1700 goto failed;
1701
1702 mem_cgroup_commit_charge(page, memcg, true, false);
1703
1704 spin_lock_irq(&info->lock);
1705 info->swapped--;
1706 shmem_recalc_inode(inode);
1707 spin_unlock_irq(&info->lock);
1708
1709 if (sgp == SGP_WRITE)
1710 mark_page_accessed(page);
1711
1712 delete_from_swap_cache(page);
1713 set_page_dirty(page);
1714 swap_free(swap);
1715
1716 *pagep = page;
1717 return 0;
1718 failed:
1719 if (!shmem_confirm_swap(mapping, index, swap))
1720 error = -EEXIST;
1721 unlock:
1722 if (page) {
1723 unlock_page(page);
1724 put_page(page);
1725 }
1726
1727 return error;
1728 }
1729
1730 /*
1731 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1732 *
1733 * If we allocate a new one we do not mark it dirty. That's up to the
1734 * vm. If we swap it in we mark it dirty since we also free the swap
1735 * entry since a page cannot live in both the swap and page cache.
1736 *
1737 * vmf and fault_type are only supplied by shmem_fault:
1738 * otherwise they are NULL.
1739 */
shmem_getpage_gfp(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,struct vm_fault * vmf,vm_fault_t * fault_type)1740 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1741 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1742 struct vm_area_struct *vma, struct vm_fault *vmf,
1743 vm_fault_t *fault_type)
1744 {
1745 struct address_space *mapping = inode->i_mapping;
1746 struct shmem_inode_info *info = SHMEM_I(inode);
1747 struct shmem_sb_info *sbinfo;
1748 struct mm_struct *charge_mm;
1749 struct mem_cgroup *memcg;
1750 struct page *page;
1751 enum sgp_type sgp_huge = sgp;
1752 pgoff_t hindex = index;
1753 int error;
1754 int once = 0;
1755 int alloced = 0;
1756
1757 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1758 return -EFBIG;
1759 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1760 sgp = SGP_CACHE;
1761 repeat:
1762 if (sgp <= SGP_CACHE &&
1763 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1764 return -EINVAL;
1765 }
1766
1767 sbinfo = SHMEM_SB(inode->i_sb);
1768 charge_mm = vma ? vma->vm_mm : current->mm;
1769
1770 page = find_lock_entry(mapping, index);
1771 if (xa_is_value(page)) {
1772 error = shmem_swapin_page(inode, index, &page,
1773 sgp, gfp, vma, fault_type);
1774 if (error == -EEXIST)
1775 goto repeat;
1776
1777 *pagep = page;
1778 return error;
1779 }
1780
1781 if (page && sgp == SGP_WRITE)
1782 mark_page_accessed(page);
1783
1784 /* fallocated page? */
1785 if (page && !PageUptodate(page)) {
1786 if (sgp != SGP_READ)
1787 goto clear;
1788 unlock_page(page);
1789 put_page(page);
1790 page = NULL;
1791 }
1792 if (page || sgp == SGP_READ) {
1793 *pagep = page;
1794 return 0;
1795 }
1796
1797 /*
1798 * Fast cache lookup did not find it:
1799 * bring it back from swap or allocate.
1800 */
1801
1802 if (vma && userfaultfd_missing(vma)) {
1803 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1804 return 0;
1805 }
1806
1807 /* shmem_symlink() */
1808 if (mapping->a_ops != &shmem_aops)
1809 goto alloc_nohuge;
1810 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1811 goto alloc_nohuge;
1812 if (shmem_huge == SHMEM_HUGE_FORCE)
1813 goto alloc_huge;
1814 switch (sbinfo->huge) {
1815 loff_t i_size;
1816 pgoff_t off;
1817 case SHMEM_HUGE_NEVER:
1818 goto alloc_nohuge;
1819 case SHMEM_HUGE_WITHIN_SIZE:
1820 off = round_up(index, HPAGE_PMD_NR);
1821 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1822 if (i_size >= HPAGE_PMD_SIZE &&
1823 i_size >> PAGE_SHIFT >= off)
1824 goto alloc_huge;
1825 /* fallthrough */
1826 case SHMEM_HUGE_ADVISE:
1827 if (sgp_huge == SGP_HUGE)
1828 goto alloc_huge;
1829 /* TODO: implement fadvise() hints */
1830 goto alloc_nohuge;
1831 }
1832
1833 alloc_huge:
1834 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1835 if (IS_ERR(page)) {
1836 alloc_nohuge:
1837 page = shmem_alloc_and_acct_page(gfp, inode,
1838 index, false);
1839 }
1840 if (IS_ERR(page)) {
1841 int retry = 5;
1842
1843 error = PTR_ERR(page);
1844 page = NULL;
1845 if (error != -ENOSPC)
1846 goto unlock;
1847 /*
1848 * Try to reclaim some space by splitting a huge page
1849 * beyond i_size on the filesystem.
1850 */
1851 while (retry--) {
1852 int ret;
1853
1854 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1855 if (ret == SHRINK_STOP)
1856 break;
1857 if (ret)
1858 goto alloc_nohuge;
1859 }
1860 goto unlock;
1861 }
1862
1863 if (PageTransHuge(page))
1864 hindex = round_down(index, HPAGE_PMD_NR);
1865 else
1866 hindex = index;
1867
1868 if (sgp == SGP_WRITE)
1869 __SetPageReferenced(page);
1870
1871 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1872 PageTransHuge(page));
1873 if (error)
1874 goto unacct;
1875 error = shmem_add_to_page_cache(page, mapping, hindex,
1876 NULL, gfp & GFP_RECLAIM_MASK);
1877 if (error) {
1878 mem_cgroup_cancel_charge(page, memcg,
1879 PageTransHuge(page));
1880 goto unacct;
1881 }
1882 mem_cgroup_commit_charge(page, memcg, false,
1883 PageTransHuge(page));
1884 lru_cache_add_anon(page);
1885
1886 spin_lock_irq(&info->lock);
1887 info->alloced += compound_nr(page);
1888 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1889 shmem_recalc_inode(inode);
1890 spin_unlock_irq(&info->lock);
1891 alloced = true;
1892
1893 if (PageTransHuge(page) &&
1894 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1895 hindex + HPAGE_PMD_NR - 1) {
1896 /*
1897 * Part of the huge page is beyond i_size: subject
1898 * to shrink under memory pressure.
1899 */
1900 spin_lock(&sbinfo->shrinklist_lock);
1901 /*
1902 * _careful to defend against unlocked access to
1903 * ->shrink_list in shmem_unused_huge_shrink()
1904 */
1905 if (list_empty_careful(&info->shrinklist)) {
1906 list_add_tail(&info->shrinklist,
1907 &sbinfo->shrinklist);
1908 sbinfo->shrinklist_len++;
1909 }
1910 spin_unlock(&sbinfo->shrinklist_lock);
1911 }
1912
1913 /*
1914 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1915 */
1916 if (sgp == SGP_FALLOC)
1917 sgp = SGP_WRITE;
1918 clear:
1919 /*
1920 * Let SGP_WRITE caller clear ends if write does not fill page;
1921 * but SGP_FALLOC on a page fallocated earlier must initialize
1922 * it now, lest undo on failure cancel our earlier guarantee.
1923 */
1924 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1925 struct page *head = compound_head(page);
1926 int i;
1927
1928 for (i = 0; i < compound_nr(head); i++) {
1929 clear_highpage(head + i);
1930 flush_dcache_page(head + i);
1931 }
1932 SetPageUptodate(head);
1933 }
1934
1935 /* Perhaps the file has been truncated since we checked */
1936 if (sgp <= SGP_CACHE &&
1937 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1938 if (alloced) {
1939 ClearPageDirty(page);
1940 delete_from_page_cache(page);
1941 spin_lock_irq(&info->lock);
1942 shmem_recalc_inode(inode);
1943 spin_unlock_irq(&info->lock);
1944 }
1945 error = -EINVAL;
1946 goto unlock;
1947 }
1948 *pagep = page + index - hindex;
1949 return 0;
1950
1951 /*
1952 * Error recovery.
1953 */
1954 unacct:
1955 shmem_inode_unacct_blocks(inode, compound_nr(page));
1956
1957 if (PageTransHuge(page)) {
1958 unlock_page(page);
1959 put_page(page);
1960 goto alloc_nohuge;
1961 }
1962 unlock:
1963 if (page) {
1964 unlock_page(page);
1965 put_page(page);
1966 }
1967 if (error == -ENOSPC && !once++) {
1968 spin_lock_irq(&info->lock);
1969 shmem_recalc_inode(inode);
1970 spin_unlock_irq(&info->lock);
1971 goto repeat;
1972 }
1973 if (error == -EEXIST)
1974 goto repeat;
1975 return error;
1976 }
1977
1978 /*
1979 * This is like autoremove_wake_function, but it removes the wait queue
1980 * entry unconditionally - even if something else had already woken the
1981 * target.
1982 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1983 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1984 {
1985 int ret = default_wake_function(wait, mode, sync, key);
1986 list_del_init(&wait->entry);
1987 return ret;
1988 }
1989
shmem_fault(struct vm_fault * vmf)1990 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1991 {
1992 struct vm_area_struct *vma = vmf->vma;
1993 struct inode *inode = file_inode(vma->vm_file);
1994 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1995 enum sgp_type sgp;
1996 int err;
1997 vm_fault_t ret = VM_FAULT_LOCKED;
1998
1999 /*
2000 * Trinity finds that probing a hole which tmpfs is punching can
2001 * prevent the hole-punch from ever completing: which in turn
2002 * locks writers out with its hold on i_mutex. So refrain from
2003 * faulting pages into the hole while it's being punched. Although
2004 * shmem_undo_range() does remove the additions, it may be unable to
2005 * keep up, as each new page needs its own unmap_mapping_range() call,
2006 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2007 *
2008 * It does not matter if we sometimes reach this check just before the
2009 * hole-punch begins, so that one fault then races with the punch:
2010 * we just need to make racing faults a rare case.
2011 *
2012 * The implementation below would be much simpler if we just used a
2013 * standard mutex or completion: but we cannot take i_mutex in fault,
2014 * and bloating every shmem inode for this unlikely case would be sad.
2015 */
2016 if (unlikely(inode->i_private)) {
2017 struct shmem_falloc *shmem_falloc;
2018
2019 spin_lock(&inode->i_lock);
2020 shmem_falloc = inode->i_private;
2021 if (shmem_falloc &&
2022 shmem_falloc->waitq &&
2023 vmf->pgoff >= shmem_falloc->start &&
2024 vmf->pgoff < shmem_falloc->next) {
2025 struct file *fpin;
2026 wait_queue_head_t *shmem_falloc_waitq;
2027 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2028
2029 ret = VM_FAULT_NOPAGE;
2030 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2031 if (fpin)
2032 ret = VM_FAULT_RETRY;
2033
2034 shmem_falloc_waitq = shmem_falloc->waitq;
2035 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2036 TASK_UNINTERRUPTIBLE);
2037 spin_unlock(&inode->i_lock);
2038 schedule();
2039
2040 /*
2041 * shmem_falloc_waitq points into the shmem_fallocate()
2042 * stack of the hole-punching task: shmem_falloc_waitq
2043 * is usually invalid by the time we reach here, but
2044 * finish_wait() does not dereference it in that case;
2045 * though i_lock needed lest racing with wake_up_all().
2046 */
2047 spin_lock(&inode->i_lock);
2048 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2049 spin_unlock(&inode->i_lock);
2050
2051 if (fpin)
2052 fput(fpin);
2053 return ret;
2054 }
2055 spin_unlock(&inode->i_lock);
2056 }
2057
2058 sgp = SGP_CACHE;
2059
2060 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2061 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2062 sgp = SGP_NOHUGE;
2063 else if (vma->vm_flags & VM_HUGEPAGE)
2064 sgp = SGP_HUGE;
2065
2066 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2067 gfp, vma, vmf, &ret);
2068 if (err)
2069 return vmf_error(err);
2070 return ret;
2071 }
2072
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2073 unsigned long shmem_get_unmapped_area(struct file *file,
2074 unsigned long uaddr, unsigned long len,
2075 unsigned long pgoff, unsigned long flags)
2076 {
2077 unsigned long (*get_area)(struct file *,
2078 unsigned long, unsigned long, unsigned long, unsigned long);
2079 unsigned long addr;
2080 unsigned long offset;
2081 unsigned long inflated_len;
2082 unsigned long inflated_addr;
2083 unsigned long inflated_offset;
2084
2085 if (len > TASK_SIZE)
2086 return -ENOMEM;
2087
2088 get_area = current->mm->get_unmapped_area;
2089 addr = get_area(file, uaddr, len, pgoff, flags);
2090
2091 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2092 return addr;
2093 if (IS_ERR_VALUE(addr))
2094 return addr;
2095 if (addr & ~PAGE_MASK)
2096 return addr;
2097 if (addr > TASK_SIZE - len)
2098 return addr;
2099
2100 if (shmem_huge == SHMEM_HUGE_DENY)
2101 return addr;
2102 if (len < HPAGE_PMD_SIZE)
2103 return addr;
2104 if (flags & MAP_FIXED)
2105 return addr;
2106 /*
2107 * Our priority is to support MAP_SHARED mapped hugely;
2108 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2109 * But if caller specified an address hint and we allocated area there
2110 * successfully, respect that as before.
2111 */
2112 if (uaddr == addr)
2113 return addr;
2114
2115 if (shmem_huge != SHMEM_HUGE_FORCE) {
2116 struct super_block *sb;
2117
2118 if (file) {
2119 VM_BUG_ON(file->f_op != &shmem_file_operations);
2120 sb = file_inode(file)->i_sb;
2121 } else {
2122 /*
2123 * Called directly from mm/mmap.c, or drivers/char/mem.c
2124 * for "/dev/zero", to create a shared anonymous object.
2125 */
2126 if (IS_ERR(shm_mnt))
2127 return addr;
2128 sb = shm_mnt->mnt_sb;
2129 }
2130 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2131 return addr;
2132 }
2133
2134 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2135 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2136 return addr;
2137 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2138 return addr;
2139
2140 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2141 if (inflated_len > TASK_SIZE)
2142 return addr;
2143 if (inflated_len < len)
2144 return addr;
2145
2146 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2147 if (IS_ERR_VALUE(inflated_addr))
2148 return addr;
2149 if (inflated_addr & ~PAGE_MASK)
2150 return addr;
2151
2152 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2153 inflated_addr += offset - inflated_offset;
2154 if (inflated_offset > offset)
2155 inflated_addr += HPAGE_PMD_SIZE;
2156
2157 if (inflated_addr > TASK_SIZE - len)
2158 return addr;
2159 return inflated_addr;
2160 }
2161
2162 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2163 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2164 {
2165 struct inode *inode = file_inode(vma->vm_file);
2166 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2167 }
2168
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)2169 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2170 unsigned long addr)
2171 {
2172 struct inode *inode = file_inode(vma->vm_file);
2173 pgoff_t index;
2174
2175 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2176 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2177 }
2178 #endif
2179
shmem_lock(struct file * file,int lock,struct user_struct * user)2180 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2181 {
2182 struct inode *inode = file_inode(file);
2183 struct shmem_inode_info *info = SHMEM_I(inode);
2184 int retval = -ENOMEM;
2185
2186 spin_lock_irq(&info->lock);
2187 if (lock && !(info->flags & VM_LOCKED)) {
2188 if (!user_shm_lock(inode->i_size, user))
2189 goto out_nomem;
2190 info->flags |= VM_LOCKED;
2191 mapping_set_unevictable(file->f_mapping);
2192 }
2193 if (!lock && (info->flags & VM_LOCKED) && user) {
2194 user_shm_unlock(inode->i_size, user);
2195 info->flags &= ~VM_LOCKED;
2196 mapping_clear_unevictable(file->f_mapping);
2197 }
2198 retval = 0;
2199
2200 out_nomem:
2201 spin_unlock_irq(&info->lock);
2202 return retval;
2203 }
2204
shmem_mmap(struct file * file,struct vm_area_struct * vma)2205 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2206 {
2207 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2208
2209 if (info->seals & F_SEAL_FUTURE_WRITE) {
2210 /*
2211 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2212 * "future write" seal active.
2213 */
2214 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2215 return -EPERM;
2216
2217 /*
2218 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2219 * MAP_SHARED and read-only, take care to not allow mprotect to
2220 * revert protections on such mappings. Do this only for shared
2221 * mappings. For private mappings, don't need to mask
2222 * VM_MAYWRITE as we still want them to be COW-writable.
2223 */
2224 if (vma->vm_flags & VM_SHARED)
2225 vma->vm_flags &= ~(VM_MAYWRITE);
2226 }
2227
2228 file_accessed(file);
2229 vma->vm_ops = &shmem_vm_ops;
2230 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2231 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2232 (vma->vm_end & HPAGE_PMD_MASK)) {
2233 khugepaged_enter(vma, vma->vm_flags);
2234 }
2235 return 0;
2236 }
2237
shmem_get_inode(struct super_block * sb,const struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2238 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2239 umode_t mode, dev_t dev, unsigned long flags)
2240 {
2241 struct inode *inode;
2242 struct shmem_inode_info *info;
2243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2244
2245 if (shmem_reserve_inode(sb))
2246 return NULL;
2247
2248 inode = new_inode(sb);
2249 if (inode) {
2250 inode->i_ino = get_next_ino();
2251 inode_init_owner(inode, dir, mode);
2252 inode->i_blocks = 0;
2253 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2254 inode->i_generation = prandom_u32();
2255 info = SHMEM_I(inode);
2256 memset(info, 0, (char *)inode - (char *)info);
2257 spin_lock_init(&info->lock);
2258 atomic_set(&info->stop_eviction, 0);
2259 info->seals = F_SEAL_SEAL;
2260 info->flags = flags & VM_NORESERVE;
2261 INIT_LIST_HEAD(&info->shrinklist);
2262 INIT_LIST_HEAD(&info->swaplist);
2263 simple_xattrs_init(&info->xattrs);
2264 cache_no_acl(inode);
2265
2266 switch (mode & S_IFMT) {
2267 default:
2268 inode->i_op = &shmem_special_inode_operations;
2269 init_special_inode(inode, mode, dev);
2270 break;
2271 case S_IFREG:
2272 inode->i_mapping->a_ops = &shmem_aops;
2273 inode->i_op = &shmem_inode_operations;
2274 inode->i_fop = &shmem_file_operations;
2275 mpol_shared_policy_init(&info->policy,
2276 shmem_get_sbmpol(sbinfo));
2277 break;
2278 case S_IFDIR:
2279 inc_nlink(inode);
2280 /* Some things misbehave if size == 0 on a directory */
2281 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2282 inode->i_op = &shmem_dir_inode_operations;
2283 inode->i_fop = &simple_dir_operations;
2284 break;
2285 case S_IFLNK:
2286 /*
2287 * Must not load anything in the rbtree,
2288 * mpol_free_shared_policy will not be called.
2289 */
2290 mpol_shared_policy_init(&info->policy, NULL);
2291 break;
2292 }
2293
2294 lockdep_annotate_inode_mutex_key(inode);
2295 } else
2296 shmem_free_inode(sb);
2297 return inode;
2298 }
2299
shmem_mapping(struct address_space * mapping)2300 bool shmem_mapping(struct address_space *mapping)
2301 {
2302 return mapping->a_ops == &shmem_aops;
2303 }
2304
shmem_mfill_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,bool zeropage,struct page ** pagep)2305 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2306 pmd_t *dst_pmd,
2307 struct vm_area_struct *dst_vma,
2308 unsigned long dst_addr,
2309 unsigned long src_addr,
2310 bool zeropage,
2311 struct page **pagep)
2312 {
2313 struct inode *inode = file_inode(dst_vma->vm_file);
2314 struct shmem_inode_info *info = SHMEM_I(inode);
2315 struct address_space *mapping = inode->i_mapping;
2316 gfp_t gfp = mapping_gfp_mask(mapping);
2317 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2318 struct mem_cgroup *memcg;
2319 spinlock_t *ptl;
2320 void *page_kaddr;
2321 struct page *page;
2322 pte_t _dst_pte, *dst_pte;
2323 int ret;
2324 pgoff_t offset, max_off;
2325
2326 ret = -ENOMEM;
2327 if (!shmem_inode_acct_block(inode, 1))
2328 goto out;
2329
2330 if (!*pagep) {
2331 page = shmem_alloc_page(gfp, info, pgoff);
2332 if (!page)
2333 goto out_unacct_blocks;
2334
2335 if (!zeropage) { /* mcopy_atomic */
2336 page_kaddr = kmap_atomic(page);
2337 ret = copy_from_user(page_kaddr,
2338 (const void __user *)src_addr,
2339 PAGE_SIZE);
2340 kunmap_atomic(page_kaddr);
2341
2342 /* fallback to copy_from_user outside mmap_sem */
2343 if (unlikely(ret)) {
2344 *pagep = page;
2345 shmem_inode_unacct_blocks(inode, 1);
2346 /* don't free the page */
2347 return -ENOENT;
2348 }
2349 } else { /* mfill_zeropage_atomic */
2350 clear_highpage(page);
2351 }
2352 } else {
2353 page = *pagep;
2354 *pagep = NULL;
2355 }
2356
2357 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2358 __SetPageLocked(page);
2359 __SetPageSwapBacked(page);
2360 __SetPageUptodate(page);
2361
2362 ret = -EFAULT;
2363 offset = linear_page_index(dst_vma, dst_addr);
2364 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2365 if (unlikely(offset >= max_off))
2366 goto out_release;
2367
2368 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2369 if (ret)
2370 goto out_release;
2371
2372 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2373 gfp & GFP_RECLAIM_MASK);
2374 if (ret)
2375 goto out_release_uncharge;
2376
2377 mem_cgroup_commit_charge(page, memcg, false, false);
2378
2379 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2380 if (dst_vma->vm_flags & VM_WRITE)
2381 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2382 else {
2383 /*
2384 * We don't set the pte dirty if the vma has no
2385 * VM_WRITE permission, so mark the page dirty or it
2386 * could be freed from under us. We could do it
2387 * unconditionally before unlock_page(), but doing it
2388 * only if VM_WRITE is not set is faster.
2389 */
2390 set_page_dirty(page);
2391 }
2392
2393 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2394
2395 ret = -EFAULT;
2396 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2397 if (unlikely(offset >= max_off))
2398 goto out_release_uncharge_unlock;
2399
2400 ret = -EEXIST;
2401 if (!pte_none(*dst_pte))
2402 goto out_release_uncharge_unlock;
2403
2404 lru_cache_add_anon(page);
2405
2406 spin_lock(&info->lock);
2407 info->alloced++;
2408 inode->i_blocks += BLOCKS_PER_PAGE;
2409 shmem_recalc_inode(inode);
2410 spin_unlock(&info->lock);
2411
2412 inc_mm_counter(dst_mm, mm_counter_file(page));
2413 page_add_file_rmap(page, false);
2414 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2415
2416 /* No need to invalidate - it was non-present before */
2417 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2418 pte_unmap_unlock(dst_pte, ptl);
2419 unlock_page(page);
2420 ret = 0;
2421 out:
2422 return ret;
2423 out_release_uncharge_unlock:
2424 pte_unmap_unlock(dst_pte, ptl);
2425 ClearPageDirty(page);
2426 delete_from_page_cache(page);
2427 out_release_uncharge:
2428 mem_cgroup_cancel_charge(page, memcg, false);
2429 out_release:
2430 unlock_page(page);
2431 put_page(page);
2432 out_unacct_blocks:
2433 shmem_inode_unacct_blocks(inode, 1);
2434 goto out;
2435 }
2436
shmem_mcopy_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,struct page ** pagep)2437 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2438 pmd_t *dst_pmd,
2439 struct vm_area_struct *dst_vma,
2440 unsigned long dst_addr,
2441 unsigned long src_addr,
2442 struct page **pagep)
2443 {
2444 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2445 dst_addr, src_addr, false, pagep);
2446 }
2447
shmem_mfill_zeropage_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr)2448 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2449 pmd_t *dst_pmd,
2450 struct vm_area_struct *dst_vma,
2451 unsigned long dst_addr)
2452 {
2453 struct page *page = NULL;
2454
2455 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2456 dst_addr, 0, true, &page);
2457 }
2458
2459 #ifdef CONFIG_TMPFS
2460 static const struct inode_operations shmem_symlink_inode_operations;
2461 static const struct inode_operations shmem_short_symlink_operations;
2462
2463 #ifdef CONFIG_TMPFS_XATTR
2464 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2465 #else
2466 #define shmem_initxattrs NULL
2467 #endif
2468
2469 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2470 shmem_write_begin(struct file *file, struct address_space *mapping,
2471 loff_t pos, unsigned len, unsigned flags,
2472 struct page **pagep, void **fsdata)
2473 {
2474 struct inode *inode = mapping->host;
2475 struct shmem_inode_info *info = SHMEM_I(inode);
2476 pgoff_t index = pos >> PAGE_SHIFT;
2477
2478 /* i_mutex is held by caller */
2479 if (unlikely(info->seals & (F_SEAL_GROW |
2480 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2481 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2482 return -EPERM;
2483 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2484 return -EPERM;
2485 }
2486
2487 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2488 }
2489
2490 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2491 shmem_write_end(struct file *file, struct address_space *mapping,
2492 loff_t pos, unsigned len, unsigned copied,
2493 struct page *page, void *fsdata)
2494 {
2495 struct inode *inode = mapping->host;
2496
2497 if (pos + copied > inode->i_size)
2498 i_size_write(inode, pos + copied);
2499
2500 if (!PageUptodate(page)) {
2501 struct page *head = compound_head(page);
2502 if (PageTransCompound(page)) {
2503 int i;
2504
2505 for (i = 0; i < HPAGE_PMD_NR; i++) {
2506 if (head + i == page)
2507 continue;
2508 clear_highpage(head + i);
2509 flush_dcache_page(head + i);
2510 }
2511 }
2512 if (copied < PAGE_SIZE) {
2513 unsigned from = pos & (PAGE_SIZE - 1);
2514 zero_user_segments(page, 0, from,
2515 from + copied, PAGE_SIZE);
2516 }
2517 SetPageUptodate(head);
2518 }
2519 set_page_dirty(page);
2520 unlock_page(page);
2521 put_page(page);
2522
2523 return copied;
2524 }
2525
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2526 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2527 {
2528 struct file *file = iocb->ki_filp;
2529 struct inode *inode = file_inode(file);
2530 struct address_space *mapping = inode->i_mapping;
2531 pgoff_t index;
2532 unsigned long offset;
2533 enum sgp_type sgp = SGP_READ;
2534 int error = 0;
2535 ssize_t retval = 0;
2536 loff_t *ppos = &iocb->ki_pos;
2537
2538 /*
2539 * Might this read be for a stacking filesystem? Then when reading
2540 * holes of a sparse file, we actually need to allocate those pages,
2541 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2542 */
2543 if (!iter_is_iovec(to))
2544 sgp = SGP_CACHE;
2545
2546 index = *ppos >> PAGE_SHIFT;
2547 offset = *ppos & ~PAGE_MASK;
2548
2549 for (;;) {
2550 struct page *page = NULL;
2551 pgoff_t end_index;
2552 unsigned long nr, ret;
2553 loff_t i_size = i_size_read(inode);
2554
2555 end_index = i_size >> PAGE_SHIFT;
2556 if (index > end_index)
2557 break;
2558 if (index == end_index) {
2559 nr = i_size & ~PAGE_MASK;
2560 if (nr <= offset)
2561 break;
2562 }
2563
2564 error = shmem_getpage(inode, index, &page, sgp);
2565 if (error) {
2566 if (error == -EINVAL)
2567 error = 0;
2568 break;
2569 }
2570 if (page) {
2571 if (sgp == SGP_CACHE)
2572 set_page_dirty(page);
2573 unlock_page(page);
2574 }
2575
2576 /*
2577 * We must evaluate after, since reads (unlike writes)
2578 * are called without i_mutex protection against truncate
2579 */
2580 nr = PAGE_SIZE;
2581 i_size = i_size_read(inode);
2582 end_index = i_size >> PAGE_SHIFT;
2583 if (index == end_index) {
2584 nr = i_size & ~PAGE_MASK;
2585 if (nr <= offset) {
2586 if (page)
2587 put_page(page);
2588 break;
2589 }
2590 }
2591 nr -= offset;
2592
2593 if (page) {
2594 /*
2595 * If users can be writing to this page using arbitrary
2596 * virtual addresses, take care about potential aliasing
2597 * before reading the page on the kernel side.
2598 */
2599 if (mapping_writably_mapped(mapping))
2600 flush_dcache_page(page);
2601 /*
2602 * Mark the page accessed if we read the beginning.
2603 */
2604 if (!offset)
2605 mark_page_accessed(page);
2606 } else {
2607 page = ZERO_PAGE(0);
2608 get_page(page);
2609 }
2610
2611 /*
2612 * Ok, we have the page, and it's up-to-date, so
2613 * now we can copy it to user space...
2614 */
2615 ret = copy_page_to_iter(page, offset, nr, to);
2616 retval += ret;
2617 offset += ret;
2618 index += offset >> PAGE_SHIFT;
2619 offset &= ~PAGE_MASK;
2620
2621 put_page(page);
2622 if (!iov_iter_count(to))
2623 break;
2624 if (ret < nr) {
2625 error = -EFAULT;
2626 break;
2627 }
2628 cond_resched();
2629 }
2630
2631 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2632 file_accessed(file);
2633 return retval ? retval : error;
2634 }
2635
2636 /*
2637 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2638 */
shmem_seek_hole_data(struct address_space * mapping,pgoff_t index,pgoff_t end,int whence)2639 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2640 pgoff_t index, pgoff_t end, int whence)
2641 {
2642 struct page *page;
2643 struct pagevec pvec;
2644 pgoff_t indices[PAGEVEC_SIZE];
2645 bool done = false;
2646 int i;
2647
2648 pagevec_init(&pvec);
2649 pvec.nr = 1; /* start small: we may be there already */
2650 while (!done) {
2651 pvec.nr = find_get_entries(mapping, index,
2652 pvec.nr, pvec.pages, indices);
2653 if (!pvec.nr) {
2654 if (whence == SEEK_DATA)
2655 index = end;
2656 break;
2657 }
2658 for (i = 0; i < pvec.nr; i++, index++) {
2659 if (index < indices[i]) {
2660 if (whence == SEEK_HOLE) {
2661 done = true;
2662 break;
2663 }
2664 index = indices[i];
2665 }
2666 page = pvec.pages[i];
2667 if (page && !xa_is_value(page)) {
2668 if (!PageUptodate(page))
2669 page = NULL;
2670 }
2671 if (index >= end ||
2672 (page && whence == SEEK_DATA) ||
2673 (!page && whence == SEEK_HOLE)) {
2674 done = true;
2675 break;
2676 }
2677 }
2678 pagevec_remove_exceptionals(&pvec);
2679 pagevec_release(&pvec);
2680 pvec.nr = PAGEVEC_SIZE;
2681 cond_resched();
2682 }
2683 return index;
2684 }
2685
shmem_file_llseek(struct file * file,loff_t offset,int whence)2686 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2687 {
2688 struct address_space *mapping = file->f_mapping;
2689 struct inode *inode = mapping->host;
2690 pgoff_t start, end;
2691 loff_t new_offset;
2692
2693 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2694 return generic_file_llseek_size(file, offset, whence,
2695 MAX_LFS_FILESIZE, i_size_read(inode));
2696 inode_lock(inode);
2697 /* We're holding i_mutex so we can access i_size directly */
2698
2699 if (offset < 0 || offset >= inode->i_size)
2700 offset = -ENXIO;
2701 else {
2702 start = offset >> PAGE_SHIFT;
2703 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2704 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2705 new_offset <<= PAGE_SHIFT;
2706 if (new_offset > offset) {
2707 if (new_offset < inode->i_size)
2708 offset = new_offset;
2709 else if (whence == SEEK_DATA)
2710 offset = -ENXIO;
2711 else
2712 offset = inode->i_size;
2713 }
2714 }
2715
2716 if (offset >= 0)
2717 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2718 inode_unlock(inode);
2719 return offset;
2720 }
2721
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2722 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2723 loff_t len)
2724 {
2725 struct inode *inode = file_inode(file);
2726 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2727 struct shmem_inode_info *info = SHMEM_I(inode);
2728 struct shmem_falloc shmem_falloc;
2729 pgoff_t start, index, end;
2730 int error;
2731
2732 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2733 return -EOPNOTSUPP;
2734
2735 inode_lock(inode);
2736
2737 if (mode & FALLOC_FL_PUNCH_HOLE) {
2738 struct address_space *mapping = file->f_mapping;
2739 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2740 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2741 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2742
2743 /* protected by i_mutex */
2744 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2745 error = -EPERM;
2746 goto out;
2747 }
2748
2749 shmem_falloc.waitq = &shmem_falloc_waitq;
2750 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2751 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2752 spin_lock(&inode->i_lock);
2753 inode->i_private = &shmem_falloc;
2754 spin_unlock(&inode->i_lock);
2755
2756 if ((u64)unmap_end > (u64)unmap_start)
2757 unmap_mapping_range(mapping, unmap_start,
2758 1 + unmap_end - unmap_start, 0);
2759 shmem_truncate_range(inode, offset, offset + len - 1);
2760 /* No need to unmap again: hole-punching leaves COWed pages */
2761
2762 spin_lock(&inode->i_lock);
2763 inode->i_private = NULL;
2764 wake_up_all(&shmem_falloc_waitq);
2765 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2766 spin_unlock(&inode->i_lock);
2767 error = 0;
2768 goto out;
2769 }
2770
2771 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2772 error = inode_newsize_ok(inode, offset + len);
2773 if (error)
2774 goto out;
2775
2776 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2777 error = -EPERM;
2778 goto out;
2779 }
2780
2781 start = offset >> PAGE_SHIFT;
2782 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2783 /* Try to avoid a swapstorm if len is impossible to satisfy */
2784 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2785 error = -ENOSPC;
2786 goto out;
2787 }
2788
2789 shmem_falloc.waitq = NULL;
2790 shmem_falloc.start = start;
2791 shmem_falloc.next = start;
2792 shmem_falloc.nr_falloced = 0;
2793 shmem_falloc.nr_unswapped = 0;
2794 spin_lock(&inode->i_lock);
2795 inode->i_private = &shmem_falloc;
2796 spin_unlock(&inode->i_lock);
2797
2798 for (index = start; index < end; index++) {
2799 struct page *page;
2800
2801 /*
2802 * Good, the fallocate(2) manpage permits EINTR: we may have
2803 * been interrupted because we are using up too much memory.
2804 */
2805 if (signal_pending(current))
2806 error = -EINTR;
2807 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2808 error = -ENOMEM;
2809 else
2810 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2811 if (error) {
2812 /* Remove the !PageUptodate pages we added */
2813 if (index > start) {
2814 shmem_undo_range(inode,
2815 (loff_t)start << PAGE_SHIFT,
2816 ((loff_t)index << PAGE_SHIFT) - 1, true);
2817 }
2818 goto undone;
2819 }
2820
2821 /*
2822 * Inform shmem_writepage() how far we have reached.
2823 * No need for lock or barrier: we have the page lock.
2824 */
2825 shmem_falloc.next++;
2826 if (!PageUptodate(page))
2827 shmem_falloc.nr_falloced++;
2828
2829 /*
2830 * If !PageUptodate, leave it that way so that freeable pages
2831 * can be recognized if we need to rollback on error later.
2832 * But set_page_dirty so that memory pressure will swap rather
2833 * than free the pages we are allocating (and SGP_CACHE pages
2834 * might still be clean: we now need to mark those dirty too).
2835 */
2836 set_page_dirty(page);
2837 unlock_page(page);
2838 put_page(page);
2839 cond_resched();
2840 }
2841
2842 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2843 i_size_write(inode, offset + len);
2844 inode->i_ctime = current_time(inode);
2845 undone:
2846 spin_lock(&inode->i_lock);
2847 inode->i_private = NULL;
2848 spin_unlock(&inode->i_lock);
2849 out:
2850 inode_unlock(inode);
2851 return error;
2852 }
2853
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)2854 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2855 {
2856 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2857
2858 buf->f_type = TMPFS_MAGIC;
2859 buf->f_bsize = PAGE_SIZE;
2860 buf->f_namelen = NAME_MAX;
2861 if (sbinfo->max_blocks) {
2862 buf->f_blocks = sbinfo->max_blocks;
2863 buf->f_bavail =
2864 buf->f_bfree = sbinfo->max_blocks -
2865 percpu_counter_sum(&sbinfo->used_blocks);
2866 }
2867 if (sbinfo->max_inodes) {
2868 buf->f_files = sbinfo->max_inodes;
2869 buf->f_ffree = sbinfo->free_inodes;
2870 }
2871 /* else leave those fields 0 like simple_statfs */
2872 return 0;
2873 }
2874
2875 /*
2876 * File creation. Allocate an inode, and we're done..
2877 */
2878 static int
shmem_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2879 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2880 {
2881 struct inode *inode;
2882 int error = -ENOSPC;
2883
2884 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2885 if (inode) {
2886 error = simple_acl_create(dir, inode);
2887 if (error)
2888 goto out_iput;
2889 error = security_inode_init_security(inode, dir,
2890 &dentry->d_name,
2891 shmem_initxattrs, NULL);
2892 if (error && error != -EOPNOTSUPP)
2893 goto out_iput;
2894
2895 error = 0;
2896 dir->i_size += BOGO_DIRENT_SIZE;
2897 dir->i_ctime = dir->i_mtime = current_time(dir);
2898 d_instantiate(dentry, inode);
2899 dget(dentry); /* Extra count - pin the dentry in core */
2900 }
2901 return error;
2902 out_iput:
2903 iput(inode);
2904 return error;
2905 }
2906
2907 static int
shmem_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)2908 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2909 {
2910 struct inode *inode;
2911 int error = -ENOSPC;
2912
2913 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2914 if (inode) {
2915 error = security_inode_init_security(inode, dir,
2916 NULL,
2917 shmem_initxattrs, NULL);
2918 if (error && error != -EOPNOTSUPP)
2919 goto out_iput;
2920 error = simple_acl_create(dir, inode);
2921 if (error)
2922 goto out_iput;
2923 d_tmpfile(dentry, inode);
2924 }
2925 return error;
2926 out_iput:
2927 iput(inode);
2928 return error;
2929 }
2930
shmem_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)2931 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2932 {
2933 int error;
2934
2935 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2936 return error;
2937 inc_nlink(dir);
2938 return 0;
2939 }
2940
shmem_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2941 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2942 bool excl)
2943 {
2944 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2945 }
2946
2947 /*
2948 * Link a file..
2949 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2950 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2951 {
2952 struct inode *inode = d_inode(old_dentry);
2953 int ret = 0;
2954
2955 /*
2956 * No ordinary (disk based) filesystem counts links as inodes;
2957 * but each new link needs a new dentry, pinning lowmem, and
2958 * tmpfs dentries cannot be pruned until they are unlinked.
2959 * But if an O_TMPFILE file is linked into the tmpfs, the
2960 * first link must skip that, to get the accounting right.
2961 */
2962 if (inode->i_nlink) {
2963 ret = shmem_reserve_inode(inode->i_sb);
2964 if (ret)
2965 goto out;
2966 }
2967
2968 dir->i_size += BOGO_DIRENT_SIZE;
2969 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2970 inc_nlink(inode);
2971 ihold(inode); /* New dentry reference */
2972 dget(dentry); /* Extra pinning count for the created dentry */
2973 d_instantiate(dentry, inode);
2974 out:
2975 return ret;
2976 }
2977
shmem_unlink(struct inode * dir,struct dentry * dentry)2978 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2979 {
2980 struct inode *inode = d_inode(dentry);
2981
2982 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2983 shmem_free_inode(inode->i_sb);
2984
2985 dir->i_size -= BOGO_DIRENT_SIZE;
2986 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2987 drop_nlink(inode);
2988 dput(dentry); /* Undo the count from "create" - this does all the work */
2989 return 0;
2990 }
2991
shmem_rmdir(struct inode * dir,struct dentry * dentry)2992 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2993 {
2994 if (!simple_empty(dentry))
2995 return -ENOTEMPTY;
2996
2997 drop_nlink(d_inode(dentry));
2998 drop_nlink(dir);
2999 return shmem_unlink(dir, dentry);
3000 }
3001
shmem_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3002 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3003 {
3004 bool old_is_dir = d_is_dir(old_dentry);
3005 bool new_is_dir = d_is_dir(new_dentry);
3006
3007 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3008 if (old_is_dir) {
3009 drop_nlink(old_dir);
3010 inc_nlink(new_dir);
3011 } else {
3012 drop_nlink(new_dir);
3013 inc_nlink(old_dir);
3014 }
3015 }
3016 old_dir->i_ctime = old_dir->i_mtime =
3017 new_dir->i_ctime = new_dir->i_mtime =
3018 d_inode(old_dentry)->i_ctime =
3019 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3020
3021 return 0;
3022 }
3023
shmem_whiteout(struct inode * old_dir,struct dentry * old_dentry)3024 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3025 {
3026 struct dentry *whiteout;
3027 int error;
3028
3029 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3030 if (!whiteout)
3031 return -ENOMEM;
3032
3033 error = shmem_mknod(old_dir, whiteout,
3034 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3035 dput(whiteout);
3036 if (error)
3037 return error;
3038
3039 /*
3040 * Cheat and hash the whiteout while the old dentry is still in
3041 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3042 *
3043 * d_lookup() will consistently find one of them at this point,
3044 * not sure which one, but that isn't even important.
3045 */
3046 d_rehash(whiteout);
3047 return 0;
3048 }
3049
3050 /*
3051 * The VFS layer already does all the dentry stuff for rename,
3052 * we just have to decrement the usage count for the target if
3053 * it exists so that the VFS layer correctly free's it when it
3054 * gets overwritten.
3055 */
shmem_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3056 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3057 {
3058 struct inode *inode = d_inode(old_dentry);
3059 int they_are_dirs = S_ISDIR(inode->i_mode);
3060
3061 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3062 return -EINVAL;
3063
3064 if (flags & RENAME_EXCHANGE)
3065 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3066
3067 if (!simple_empty(new_dentry))
3068 return -ENOTEMPTY;
3069
3070 if (flags & RENAME_WHITEOUT) {
3071 int error;
3072
3073 error = shmem_whiteout(old_dir, old_dentry);
3074 if (error)
3075 return error;
3076 }
3077
3078 if (d_really_is_positive(new_dentry)) {
3079 (void) shmem_unlink(new_dir, new_dentry);
3080 if (they_are_dirs) {
3081 drop_nlink(d_inode(new_dentry));
3082 drop_nlink(old_dir);
3083 }
3084 } else if (they_are_dirs) {
3085 drop_nlink(old_dir);
3086 inc_nlink(new_dir);
3087 }
3088
3089 old_dir->i_size -= BOGO_DIRENT_SIZE;
3090 new_dir->i_size += BOGO_DIRENT_SIZE;
3091 old_dir->i_ctime = old_dir->i_mtime =
3092 new_dir->i_ctime = new_dir->i_mtime =
3093 inode->i_ctime = current_time(old_dir);
3094 return 0;
3095 }
3096
shmem_symlink(struct inode * dir,struct dentry * dentry,const char * symname)3097 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3098 {
3099 int error;
3100 int len;
3101 struct inode *inode;
3102 struct page *page;
3103
3104 len = strlen(symname) + 1;
3105 if (len > PAGE_SIZE)
3106 return -ENAMETOOLONG;
3107
3108 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3109 VM_NORESERVE);
3110 if (!inode)
3111 return -ENOSPC;
3112
3113 error = security_inode_init_security(inode, dir, &dentry->d_name,
3114 shmem_initxattrs, NULL);
3115 if (error) {
3116 if (error != -EOPNOTSUPP) {
3117 iput(inode);
3118 return error;
3119 }
3120 error = 0;
3121 }
3122
3123 inode->i_size = len-1;
3124 if (len <= SHORT_SYMLINK_LEN) {
3125 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3126 if (!inode->i_link) {
3127 iput(inode);
3128 return -ENOMEM;
3129 }
3130 inode->i_op = &shmem_short_symlink_operations;
3131 } else {
3132 inode_nohighmem(inode);
3133 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3134 if (error) {
3135 iput(inode);
3136 return error;
3137 }
3138 inode->i_mapping->a_ops = &shmem_aops;
3139 inode->i_op = &shmem_symlink_inode_operations;
3140 memcpy(page_address(page), symname, len);
3141 SetPageUptodate(page);
3142 set_page_dirty(page);
3143 unlock_page(page);
3144 put_page(page);
3145 }
3146 dir->i_size += BOGO_DIRENT_SIZE;
3147 dir->i_ctime = dir->i_mtime = current_time(dir);
3148 d_instantiate(dentry, inode);
3149 dget(dentry);
3150 return 0;
3151 }
3152
shmem_put_link(void * arg)3153 static void shmem_put_link(void *arg)
3154 {
3155 mark_page_accessed(arg);
3156 put_page(arg);
3157 }
3158
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3159 static const char *shmem_get_link(struct dentry *dentry,
3160 struct inode *inode,
3161 struct delayed_call *done)
3162 {
3163 struct page *page = NULL;
3164 int error;
3165 if (!dentry) {
3166 page = find_get_page(inode->i_mapping, 0);
3167 if (!page)
3168 return ERR_PTR(-ECHILD);
3169 if (!PageUptodate(page)) {
3170 put_page(page);
3171 return ERR_PTR(-ECHILD);
3172 }
3173 } else {
3174 error = shmem_getpage(inode, 0, &page, SGP_READ);
3175 if (error)
3176 return ERR_PTR(error);
3177 unlock_page(page);
3178 }
3179 set_delayed_call(done, shmem_put_link, page);
3180 return page_address(page);
3181 }
3182
3183 #ifdef CONFIG_TMPFS_XATTR
3184 /*
3185 * Superblocks without xattr inode operations may get some security.* xattr
3186 * support from the LSM "for free". As soon as we have any other xattrs
3187 * like ACLs, we also need to implement the security.* handlers at
3188 * filesystem level, though.
3189 */
3190
3191 /*
3192 * Callback for security_inode_init_security() for acquiring xattrs.
3193 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3194 static int shmem_initxattrs(struct inode *inode,
3195 const struct xattr *xattr_array,
3196 void *fs_info)
3197 {
3198 struct shmem_inode_info *info = SHMEM_I(inode);
3199 const struct xattr *xattr;
3200 struct simple_xattr *new_xattr;
3201 size_t len;
3202
3203 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3204 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3205 if (!new_xattr)
3206 return -ENOMEM;
3207
3208 len = strlen(xattr->name) + 1;
3209 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3210 GFP_KERNEL);
3211 if (!new_xattr->name) {
3212 kfree(new_xattr);
3213 return -ENOMEM;
3214 }
3215
3216 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3217 XATTR_SECURITY_PREFIX_LEN);
3218 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3219 xattr->name, len);
3220
3221 simple_xattr_list_add(&info->xattrs, new_xattr);
3222 }
3223
3224 return 0;
3225 }
3226
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size,int flags)3227 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3228 struct dentry *unused, struct inode *inode,
3229 const char *name, void *buffer, size_t size,
3230 int flags)
3231 {
3232 struct shmem_inode_info *info = SHMEM_I(inode);
3233
3234 name = xattr_full_name(handler, name);
3235 return simple_xattr_get(&info->xattrs, name, buffer, size);
3236 }
3237
shmem_xattr_handler_set(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)3238 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3239 struct dentry *unused, struct inode *inode,
3240 const char *name, const void *value,
3241 size_t size, int flags)
3242 {
3243 struct shmem_inode_info *info = SHMEM_I(inode);
3244
3245 name = xattr_full_name(handler, name);
3246 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3247 }
3248
3249 static const struct xattr_handler shmem_security_xattr_handler = {
3250 .prefix = XATTR_SECURITY_PREFIX,
3251 .get = shmem_xattr_handler_get,
3252 .set = shmem_xattr_handler_set,
3253 };
3254
3255 static const struct xattr_handler shmem_trusted_xattr_handler = {
3256 .prefix = XATTR_TRUSTED_PREFIX,
3257 .get = shmem_xattr_handler_get,
3258 .set = shmem_xattr_handler_set,
3259 };
3260
3261 static const struct xattr_handler *shmem_xattr_handlers[] = {
3262 #ifdef CONFIG_TMPFS_POSIX_ACL
3263 &posix_acl_access_xattr_handler,
3264 &posix_acl_default_xattr_handler,
3265 #endif
3266 &shmem_security_xattr_handler,
3267 &shmem_trusted_xattr_handler,
3268 NULL
3269 };
3270
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)3271 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3272 {
3273 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3274 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3275 }
3276 #endif /* CONFIG_TMPFS_XATTR */
3277
3278 static const struct inode_operations shmem_short_symlink_operations = {
3279 .get_link = simple_get_link,
3280 #ifdef CONFIG_TMPFS_XATTR
3281 .listxattr = shmem_listxattr,
3282 #endif
3283 };
3284
3285 static const struct inode_operations shmem_symlink_inode_operations = {
3286 .get_link = shmem_get_link,
3287 #ifdef CONFIG_TMPFS_XATTR
3288 .listxattr = shmem_listxattr,
3289 #endif
3290 };
3291
shmem_get_parent(struct dentry * child)3292 static struct dentry *shmem_get_parent(struct dentry *child)
3293 {
3294 return ERR_PTR(-ESTALE);
3295 }
3296
shmem_match(struct inode * ino,void * vfh)3297 static int shmem_match(struct inode *ino, void *vfh)
3298 {
3299 __u32 *fh = vfh;
3300 __u64 inum = fh[2];
3301 inum = (inum << 32) | fh[1];
3302 return ino->i_ino == inum && fh[0] == ino->i_generation;
3303 }
3304
3305 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)3306 static struct dentry *shmem_find_alias(struct inode *inode)
3307 {
3308 struct dentry *alias = d_find_alias(inode);
3309
3310 return alias ?: d_find_any_alias(inode);
3311 }
3312
3313
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3314 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3315 struct fid *fid, int fh_len, int fh_type)
3316 {
3317 struct inode *inode;
3318 struct dentry *dentry = NULL;
3319 u64 inum;
3320
3321 if (fh_len < 3)
3322 return NULL;
3323
3324 inum = fid->raw[2];
3325 inum = (inum << 32) | fid->raw[1];
3326
3327 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3328 shmem_match, fid->raw);
3329 if (inode) {
3330 dentry = shmem_find_alias(inode);
3331 iput(inode);
3332 }
3333
3334 return dentry;
3335 }
3336
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)3337 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3338 struct inode *parent)
3339 {
3340 if (*len < 3) {
3341 *len = 3;
3342 return FILEID_INVALID;
3343 }
3344
3345 if (inode_unhashed(inode)) {
3346 /* Unfortunately insert_inode_hash is not idempotent,
3347 * so as we hash inodes here rather than at creation
3348 * time, we need a lock to ensure we only try
3349 * to do it once
3350 */
3351 static DEFINE_SPINLOCK(lock);
3352 spin_lock(&lock);
3353 if (inode_unhashed(inode))
3354 __insert_inode_hash(inode,
3355 inode->i_ino + inode->i_generation);
3356 spin_unlock(&lock);
3357 }
3358
3359 fh[0] = inode->i_generation;
3360 fh[1] = inode->i_ino;
3361 fh[2] = ((__u64)inode->i_ino) >> 32;
3362
3363 *len = 3;
3364 return 1;
3365 }
3366
3367 static const struct export_operations shmem_export_ops = {
3368 .get_parent = shmem_get_parent,
3369 .encode_fh = shmem_encode_fh,
3370 .fh_to_dentry = shmem_fh_to_dentry,
3371 };
3372
3373 enum shmem_param {
3374 Opt_gid,
3375 Opt_huge,
3376 Opt_mode,
3377 Opt_mpol,
3378 Opt_nr_blocks,
3379 Opt_nr_inodes,
3380 Opt_size,
3381 Opt_uid,
3382 };
3383
3384 static const struct fs_parameter_spec shmem_param_specs[] = {
3385 fsparam_u32 ("gid", Opt_gid),
3386 fsparam_enum ("huge", Opt_huge),
3387 fsparam_u32oct("mode", Opt_mode),
3388 fsparam_string("mpol", Opt_mpol),
3389 fsparam_string("nr_blocks", Opt_nr_blocks),
3390 fsparam_string("nr_inodes", Opt_nr_inodes),
3391 fsparam_string("size", Opt_size),
3392 fsparam_u32 ("uid", Opt_uid),
3393 {}
3394 };
3395
3396 static const struct fs_parameter_enum shmem_param_enums[] = {
3397 { Opt_huge, "never", SHMEM_HUGE_NEVER },
3398 { Opt_huge, "always", SHMEM_HUGE_ALWAYS },
3399 { Opt_huge, "within_size", SHMEM_HUGE_WITHIN_SIZE },
3400 { Opt_huge, "advise", SHMEM_HUGE_ADVISE },
3401 {}
3402 };
3403
3404 const struct fs_parameter_description shmem_fs_parameters = {
3405 .name = "tmpfs",
3406 .specs = shmem_param_specs,
3407 .enums = shmem_param_enums,
3408 };
3409
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)3410 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3411 {
3412 struct shmem_options *ctx = fc->fs_private;
3413 struct fs_parse_result result;
3414 unsigned long long size;
3415 char *rest;
3416 int opt;
3417
3418 opt = fs_parse(fc, &shmem_fs_parameters, param, &result);
3419 if (opt < 0)
3420 return opt;
3421
3422 switch (opt) {
3423 case Opt_size:
3424 size = memparse(param->string, &rest);
3425 if (*rest == '%') {
3426 size <<= PAGE_SHIFT;
3427 size *= totalram_pages();
3428 do_div(size, 100);
3429 rest++;
3430 }
3431 if (*rest)
3432 goto bad_value;
3433 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3434 ctx->seen |= SHMEM_SEEN_BLOCKS;
3435 break;
3436 case Opt_nr_blocks:
3437 ctx->blocks = memparse(param->string, &rest);
3438 if (*rest)
3439 goto bad_value;
3440 ctx->seen |= SHMEM_SEEN_BLOCKS;
3441 break;
3442 case Opt_nr_inodes:
3443 ctx->inodes = memparse(param->string, &rest);
3444 if (*rest)
3445 goto bad_value;
3446 ctx->seen |= SHMEM_SEEN_INODES;
3447 break;
3448 case Opt_mode:
3449 ctx->mode = result.uint_32 & 07777;
3450 break;
3451 case Opt_uid:
3452 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3453 if (!uid_valid(ctx->uid))
3454 goto bad_value;
3455 break;
3456 case Opt_gid:
3457 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3458 if (!gid_valid(ctx->gid))
3459 goto bad_value;
3460 break;
3461 case Opt_huge:
3462 ctx->huge = result.uint_32;
3463 if (ctx->huge != SHMEM_HUGE_NEVER &&
3464 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3465 has_transparent_hugepage()))
3466 goto unsupported_parameter;
3467 ctx->seen |= SHMEM_SEEN_HUGE;
3468 break;
3469 case Opt_mpol:
3470 if (IS_ENABLED(CONFIG_NUMA)) {
3471 mpol_put(ctx->mpol);
3472 ctx->mpol = NULL;
3473 if (mpol_parse_str(param->string, &ctx->mpol))
3474 goto bad_value;
3475 break;
3476 }
3477 goto unsupported_parameter;
3478 }
3479 return 0;
3480
3481 unsupported_parameter:
3482 return invalf(fc, "tmpfs: Unsupported parameter '%s'", param->key);
3483 bad_value:
3484 return invalf(fc, "tmpfs: Bad value for '%s'", param->key);
3485 }
3486
shmem_parse_options(struct fs_context * fc,void * data)3487 static int shmem_parse_options(struct fs_context *fc, void *data)
3488 {
3489 char *options = data;
3490
3491 if (options) {
3492 int err = security_sb_eat_lsm_opts(options, &fc->security);
3493 if (err)
3494 return err;
3495 }
3496
3497 while (options != NULL) {
3498 char *this_char = options;
3499 for (;;) {
3500 /*
3501 * NUL-terminate this option: unfortunately,
3502 * mount options form a comma-separated list,
3503 * but mpol's nodelist may also contain commas.
3504 */
3505 options = strchr(options, ',');
3506 if (options == NULL)
3507 break;
3508 options++;
3509 if (!isdigit(*options)) {
3510 options[-1] = '\0';
3511 break;
3512 }
3513 }
3514 if (*this_char) {
3515 char *value = strchr(this_char,'=');
3516 size_t len = 0;
3517 int err;
3518
3519 if (value) {
3520 *value++ = '\0';
3521 len = strlen(value);
3522 }
3523 err = vfs_parse_fs_string(fc, this_char, value, len);
3524 if (err < 0)
3525 return err;
3526 }
3527 }
3528 return 0;
3529 }
3530
3531 /*
3532 * Reconfigure a shmem filesystem.
3533 *
3534 * Note that we disallow change from limited->unlimited blocks/inodes while any
3535 * are in use; but we must separately disallow unlimited->limited, because in
3536 * that case we have no record of how much is already in use.
3537 */
shmem_reconfigure(struct fs_context * fc)3538 static int shmem_reconfigure(struct fs_context *fc)
3539 {
3540 struct shmem_options *ctx = fc->fs_private;
3541 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3542 unsigned long inodes;
3543 const char *err;
3544
3545 spin_lock(&sbinfo->stat_lock);
3546 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3547 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3548 if (!sbinfo->max_blocks) {
3549 err = "Cannot retroactively limit size";
3550 goto out;
3551 }
3552 if (percpu_counter_compare(&sbinfo->used_blocks,
3553 ctx->blocks) > 0) {
3554 err = "Too small a size for current use";
3555 goto out;
3556 }
3557 }
3558 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3559 if (!sbinfo->max_inodes) {
3560 err = "Cannot retroactively limit inodes";
3561 goto out;
3562 }
3563 if (ctx->inodes < inodes) {
3564 err = "Too few inodes for current use";
3565 goto out;
3566 }
3567 }
3568
3569 if (ctx->seen & SHMEM_SEEN_HUGE)
3570 sbinfo->huge = ctx->huge;
3571 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3572 sbinfo->max_blocks = ctx->blocks;
3573 if (ctx->seen & SHMEM_SEEN_INODES) {
3574 sbinfo->max_inodes = ctx->inodes;
3575 sbinfo->free_inodes = ctx->inodes - inodes;
3576 }
3577
3578 /*
3579 * Preserve previous mempolicy unless mpol remount option was specified.
3580 */
3581 if (ctx->mpol) {
3582 mpol_put(sbinfo->mpol);
3583 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3584 ctx->mpol = NULL;
3585 }
3586 spin_unlock(&sbinfo->stat_lock);
3587 return 0;
3588 out:
3589 spin_unlock(&sbinfo->stat_lock);
3590 return invalf(fc, "tmpfs: %s", err);
3591 }
3592
shmem_show_options(struct seq_file * seq,struct dentry * root)3593 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3594 {
3595 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3596
3597 if (sbinfo->max_blocks != shmem_default_max_blocks())
3598 seq_printf(seq, ",size=%luk",
3599 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3600 if (sbinfo->max_inodes != shmem_default_max_inodes())
3601 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3602 if (sbinfo->mode != (0777 | S_ISVTX))
3603 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3604 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3605 seq_printf(seq, ",uid=%u",
3606 from_kuid_munged(&init_user_ns, sbinfo->uid));
3607 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3608 seq_printf(seq, ",gid=%u",
3609 from_kgid_munged(&init_user_ns, sbinfo->gid));
3610 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3611 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3612 if (sbinfo->huge)
3613 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3614 #endif
3615 shmem_show_mpol(seq, sbinfo->mpol);
3616 return 0;
3617 }
3618
3619 #endif /* CONFIG_TMPFS */
3620
shmem_put_super(struct super_block * sb)3621 static void shmem_put_super(struct super_block *sb)
3622 {
3623 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3624
3625 percpu_counter_destroy(&sbinfo->used_blocks);
3626 mpol_put(sbinfo->mpol);
3627 kfree(sbinfo);
3628 sb->s_fs_info = NULL;
3629 }
3630
shmem_fill_super(struct super_block * sb,struct fs_context * fc)3631 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3632 {
3633 struct shmem_options *ctx = fc->fs_private;
3634 struct inode *inode;
3635 struct shmem_sb_info *sbinfo;
3636 int err = -ENOMEM;
3637
3638 /* Round up to L1_CACHE_BYTES to resist false sharing */
3639 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3640 L1_CACHE_BYTES), GFP_KERNEL);
3641 if (!sbinfo)
3642 return -ENOMEM;
3643
3644 sb->s_fs_info = sbinfo;
3645
3646 #ifdef CONFIG_TMPFS
3647 /*
3648 * Per default we only allow half of the physical ram per
3649 * tmpfs instance, limiting inodes to one per page of lowmem;
3650 * but the internal instance is left unlimited.
3651 */
3652 if (!(sb->s_flags & SB_KERNMOUNT)) {
3653 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3654 ctx->blocks = shmem_default_max_blocks();
3655 if (!(ctx->seen & SHMEM_SEEN_INODES))
3656 ctx->inodes = shmem_default_max_inodes();
3657 } else {
3658 sb->s_flags |= SB_NOUSER;
3659 }
3660 sb->s_export_op = &shmem_export_ops;
3661 sb->s_flags |= SB_NOSEC;
3662 #else
3663 sb->s_flags |= SB_NOUSER;
3664 #endif
3665 sbinfo->max_blocks = ctx->blocks;
3666 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3667 sbinfo->uid = ctx->uid;
3668 sbinfo->gid = ctx->gid;
3669 sbinfo->mode = ctx->mode;
3670 sbinfo->huge = ctx->huge;
3671 sbinfo->mpol = ctx->mpol;
3672 ctx->mpol = NULL;
3673
3674 spin_lock_init(&sbinfo->stat_lock);
3675 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3676 goto failed;
3677 spin_lock_init(&sbinfo->shrinklist_lock);
3678 INIT_LIST_HEAD(&sbinfo->shrinklist);
3679
3680 sb->s_maxbytes = MAX_LFS_FILESIZE;
3681 sb->s_blocksize = PAGE_SIZE;
3682 sb->s_blocksize_bits = PAGE_SHIFT;
3683 sb->s_magic = TMPFS_MAGIC;
3684 sb->s_op = &shmem_ops;
3685 sb->s_time_gran = 1;
3686 #ifdef CONFIG_TMPFS_XATTR
3687 sb->s_xattr = shmem_xattr_handlers;
3688 #endif
3689 #ifdef CONFIG_TMPFS_POSIX_ACL
3690 sb->s_flags |= SB_POSIXACL;
3691 #endif
3692 uuid_gen(&sb->s_uuid);
3693
3694 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3695 if (!inode)
3696 goto failed;
3697 inode->i_uid = sbinfo->uid;
3698 inode->i_gid = sbinfo->gid;
3699 sb->s_root = d_make_root(inode);
3700 if (!sb->s_root)
3701 goto failed;
3702 return 0;
3703
3704 failed:
3705 shmem_put_super(sb);
3706 return err;
3707 }
3708
shmem_get_tree(struct fs_context * fc)3709 static int shmem_get_tree(struct fs_context *fc)
3710 {
3711 return get_tree_nodev(fc, shmem_fill_super);
3712 }
3713
shmem_free_fc(struct fs_context * fc)3714 static void shmem_free_fc(struct fs_context *fc)
3715 {
3716 struct shmem_options *ctx = fc->fs_private;
3717
3718 if (ctx) {
3719 mpol_put(ctx->mpol);
3720 kfree(ctx);
3721 }
3722 }
3723
3724 static const struct fs_context_operations shmem_fs_context_ops = {
3725 .free = shmem_free_fc,
3726 .get_tree = shmem_get_tree,
3727 #ifdef CONFIG_TMPFS
3728 .parse_monolithic = shmem_parse_options,
3729 .parse_param = shmem_parse_one,
3730 .reconfigure = shmem_reconfigure,
3731 #endif
3732 };
3733
3734 static struct kmem_cache *shmem_inode_cachep;
3735
shmem_alloc_inode(struct super_block * sb)3736 static struct inode *shmem_alloc_inode(struct super_block *sb)
3737 {
3738 struct shmem_inode_info *info;
3739 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3740 if (!info)
3741 return NULL;
3742 return &info->vfs_inode;
3743 }
3744
shmem_free_in_core_inode(struct inode * inode)3745 static void shmem_free_in_core_inode(struct inode *inode)
3746 {
3747 if (S_ISLNK(inode->i_mode))
3748 kfree(inode->i_link);
3749 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3750 }
3751
shmem_destroy_inode(struct inode * inode)3752 static void shmem_destroy_inode(struct inode *inode)
3753 {
3754 if (S_ISREG(inode->i_mode))
3755 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3756 }
3757
shmem_init_inode(void * foo)3758 static void shmem_init_inode(void *foo)
3759 {
3760 struct shmem_inode_info *info = foo;
3761 inode_init_once(&info->vfs_inode);
3762 }
3763
shmem_init_inodecache(void)3764 static void shmem_init_inodecache(void)
3765 {
3766 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3767 sizeof(struct shmem_inode_info),
3768 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3769 }
3770
shmem_destroy_inodecache(void)3771 static void shmem_destroy_inodecache(void)
3772 {
3773 kmem_cache_destroy(shmem_inode_cachep);
3774 }
3775
3776 static const struct address_space_operations shmem_aops = {
3777 .writepage = shmem_writepage,
3778 .set_page_dirty = __set_page_dirty_no_writeback,
3779 #ifdef CONFIG_TMPFS
3780 .write_begin = shmem_write_begin,
3781 .write_end = shmem_write_end,
3782 #endif
3783 #ifdef CONFIG_MIGRATION
3784 .migratepage = migrate_page,
3785 #endif
3786 .error_remove_page = generic_error_remove_page,
3787 };
3788
3789 static const struct file_operations shmem_file_operations = {
3790 .mmap = shmem_mmap,
3791 .get_unmapped_area = shmem_get_unmapped_area,
3792 #ifdef CONFIG_TMPFS
3793 .llseek = shmem_file_llseek,
3794 .read_iter = shmem_file_read_iter,
3795 .write_iter = generic_file_write_iter,
3796 .fsync = noop_fsync,
3797 .splice_read = generic_file_splice_read,
3798 .splice_write = iter_file_splice_write,
3799 .fallocate = shmem_fallocate,
3800 #endif
3801 };
3802
3803 static const struct inode_operations shmem_inode_operations = {
3804 .getattr = shmem_getattr,
3805 .setattr = shmem_setattr,
3806 #ifdef CONFIG_TMPFS_XATTR
3807 .listxattr = shmem_listxattr,
3808 .set_acl = simple_set_acl,
3809 #endif
3810 };
3811
3812 static const struct inode_operations shmem_dir_inode_operations = {
3813 #ifdef CONFIG_TMPFS
3814 .create = shmem_create,
3815 .lookup = simple_lookup,
3816 .link = shmem_link,
3817 .unlink = shmem_unlink,
3818 .symlink = shmem_symlink,
3819 .mkdir = shmem_mkdir,
3820 .rmdir = shmem_rmdir,
3821 .mknod = shmem_mknod,
3822 .rename = shmem_rename2,
3823 .tmpfile = shmem_tmpfile,
3824 #endif
3825 #ifdef CONFIG_TMPFS_XATTR
3826 .listxattr = shmem_listxattr,
3827 #endif
3828 #ifdef CONFIG_TMPFS_POSIX_ACL
3829 .setattr = shmem_setattr,
3830 .set_acl = simple_set_acl,
3831 #endif
3832 };
3833
3834 static const struct inode_operations shmem_special_inode_operations = {
3835 #ifdef CONFIG_TMPFS_XATTR
3836 .listxattr = shmem_listxattr,
3837 #endif
3838 #ifdef CONFIG_TMPFS_POSIX_ACL
3839 .setattr = shmem_setattr,
3840 .set_acl = simple_set_acl,
3841 #endif
3842 };
3843
3844 static const struct super_operations shmem_ops = {
3845 .alloc_inode = shmem_alloc_inode,
3846 .free_inode = shmem_free_in_core_inode,
3847 .destroy_inode = shmem_destroy_inode,
3848 #ifdef CONFIG_TMPFS
3849 .statfs = shmem_statfs,
3850 .show_options = shmem_show_options,
3851 #endif
3852 .evict_inode = shmem_evict_inode,
3853 .drop_inode = generic_delete_inode,
3854 .put_super = shmem_put_super,
3855 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3856 .nr_cached_objects = shmem_unused_huge_count,
3857 .free_cached_objects = shmem_unused_huge_scan,
3858 #endif
3859 };
3860
3861 static const struct vm_operations_struct shmem_vm_ops = {
3862 .fault = shmem_fault,
3863 .map_pages = filemap_map_pages,
3864 #ifdef CONFIG_NUMA
3865 .set_policy = shmem_set_policy,
3866 .get_policy = shmem_get_policy,
3867 #endif
3868 };
3869
shmem_init_fs_context(struct fs_context * fc)3870 int shmem_init_fs_context(struct fs_context *fc)
3871 {
3872 struct shmem_options *ctx;
3873
3874 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3875 if (!ctx)
3876 return -ENOMEM;
3877
3878 ctx->mode = 0777 | S_ISVTX;
3879 ctx->uid = current_fsuid();
3880 ctx->gid = current_fsgid();
3881
3882 fc->fs_private = ctx;
3883 fc->ops = &shmem_fs_context_ops;
3884 return 0;
3885 }
3886
3887 static struct file_system_type shmem_fs_type = {
3888 .owner = THIS_MODULE,
3889 .name = "tmpfs",
3890 .init_fs_context = shmem_init_fs_context,
3891 #ifdef CONFIG_TMPFS
3892 .parameters = &shmem_fs_parameters,
3893 #endif
3894 .kill_sb = kill_litter_super,
3895 .fs_flags = FS_USERNS_MOUNT,
3896 };
3897
shmem_init(void)3898 int __init shmem_init(void)
3899 {
3900 int error;
3901
3902 shmem_init_inodecache();
3903
3904 error = register_filesystem(&shmem_fs_type);
3905 if (error) {
3906 pr_err("Could not register tmpfs\n");
3907 goto out2;
3908 }
3909
3910 shm_mnt = kern_mount(&shmem_fs_type);
3911 if (IS_ERR(shm_mnt)) {
3912 error = PTR_ERR(shm_mnt);
3913 pr_err("Could not kern_mount tmpfs\n");
3914 goto out1;
3915 }
3916
3917 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3918 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3919 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3920 else
3921 shmem_huge = 0; /* just in case it was patched */
3922 #endif
3923 return 0;
3924
3925 out1:
3926 unregister_filesystem(&shmem_fs_type);
3927 out2:
3928 shmem_destroy_inodecache();
3929 shm_mnt = ERR_PTR(error);
3930 return error;
3931 }
3932
3933 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3934 static ssize_t shmem_enabled_show(struct kobject *kobj,
3935 struct kobj_attribute *attr, char *buf)
3936 {
3937 int values[] = {
3938 SHMEM_HUGE_ALWAYS,
3939 SHMEM_HUGE_WITHIN_SIZE,
3940 SHMEM_HUGE_ADVISE,
3941 SHMEM_HUGE_NEVER,
3942 SHMEM_HUGE_DENY,
3943 SHMEM_HUGE_FORCE,
3944 };
3945 int i, count;
3946
3947 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3948 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3949
3950 count += sprintf(buf + count, fmt,
3951 shmem_format_huge(values[i]));
3952 }
3953 buf[count - 1] = '\n';
3954 return count;
3955 }
3956
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3957 static ssize_t shmem_enabled_store(struct kobject *kobj,
3958 struct kobj_attribute *attr, const char *buf, size_t count)
3959 {
3960 char tmp[16];
3961 int huge;
3962
3963 if (count + 1 > sizeof(tmp))
3964 return -EINVAL;
3965 memcpy(tmp, buf, count);
3966 tmp[count] = '\0';
3967 if (count && tmp[count - 1] == '\n')
3968 tmp[count - 1] = '\0';
3969
3970 huge = shmem_parse_huge(tmp);
3971 if (huge == -EINVAL)
3972 return -EINVAL;
3973 if (!has_transparent_hugepage() &&
3974 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3975 return -EINVAL;
3976
3977 shmem_huge = huge;
3978 if (shmem_huge > SHMEM_HUGE_DENY)
3979 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3980 return count;
3981 }
3982
3983 struct kobj_attribute shmem_enabled_attr =
3984 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3985 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3986
3987 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
shmem_huge_enabled(struct vm_area_struct * vma)3988 bool shmem_huge_enabled(struct vm_area_struct *vma)
3989 {
3990 struct inode *inode = file_inode(vma->vm_file);
3991 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3992 loff_t i_size;
3993 pgoff_t off;
3994
3995 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3996 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3997 return false;
3998 if (shmem_huge == SHMEM_HUGE_FORCE)
3999 return true;
4000 if (shmem_huge == SHMEM_HUGE_DENY)
4001 return false;
4002 switch (sbinfo->huge) {
4003 case SHMEM_HUGE_NEVER:
4004 return false;
4005 case SHMEM_HUGE_ALWAYS:
4006 return true;
4007 case SHMEM_HUGE_WITHIN_SIZE:
4008 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4009 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4010 if (i_size >= HPAGE_PMD_SIZE &&
4011 i_size >> PAGE_SHIFT >= off)
4012 return true;
4013 /* fall through */
4014 case SHMEM_HUGE_ADVISE:
4015 /* TODO: implement fadvise() hints */
4016 return (vma->vm_flags & VM_HUGEPAGE);
4017 default:
4018 VM_BUG_ON(1);
4019 return false;
4020 }
4021 }
4022 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4023
4024 #else /* !CONFIG_SHMEM */
4025
4026 /*
4027 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4028 *
4029 * This is intended for small system where the benefits of the full
4030 * shmem code (swap-backed and resource-limited) are outweighed by
4031 * their complexity. On systems without swap this code should be
4032 * effectively equivalent, but much lighter weight.
4033 */
4034
4035 static struct file_system_type shmem_fs_type = {
4036 .name = "tmpfs",
4037 .init_fs_context = ramfs_init_fs_context,
4038 .parameters = &ramfs_fs_parameters,
4039 .kill_sb = kill_litter_super,
4040 .fs_flags = FS_USERNS_MOUNT,
4041 };
4042
shmem_init(void)4043 int __init shmem_init(void)
4044 {
4045 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4046
4047 shm_mnt = kern_mount(&shmem_fs_type);
4048 BUG_ON(IS_ERR(shm_mnt));
4049
4050 return 0;
4051 }
4052
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)4053 int shmem_unuse(unsigned int type, bool frontswap,
4054 unsigned long *fs_pages_to_unuse)
4055 {
4056 return 0;
4057 }
4058
shmem_lock(struct file * file,int lock,struct user_struct * user)4059 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4060 {
4061 return 0;
4062 }
4063
shmem_unlock_mapping(struct address_space * mapping)4064 void shmem_unlock_mapping(struct address_space *mapping)
4065 {
4066 }
4067
4068 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)4069 unsigned long shmem_get_unmapped_area(struct file *file,
4070 unsigned long addr, unsigned long len,
4071 unsigned long pgoff, unsigned long flags)
4072 {
4073 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4074 }
4075 #endif
4076
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)4077 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4078 {
4079 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4080 }
4081 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4082
4083 #define shmem_vm_ops generic_file_vm_ops
4084 #define shmem_file_operations ramfs_file_operations
4085 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4086 #define shmem_acct_size(flags, size) 0
4087 #define shmem_unacct_size(flags, size) do {} while (0)
4088
4089 #endif /* CONFIG_SHMEM */
4090
4091 /* common code */
4092
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)4093 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4094 unsigned long flags, unsigned int i_flags)
4095 {
4096 struct inode *inode;
4097 struct file *res;
4098
4099 if (IS_ERR(mnt))
4100 return ERR_CAST(mnt);
4101
4102 if (size < 0 || size > MAX_LFS_FILESIZE)
4103 return ERR_PTR(-EINVAL);
4104
4105 if (shmem_acct_size(flags, size))
4106 return ERR_PTR(-ENOMEM);
4107
4108 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4109 flags);
4110 if (unlikely(!inode)) {
4111 shmem_unacct_size(flags, size);
4112 return ERR_PTR(-ENOSPC);
4113 }
4114 inode->i_flags |= i_flags;
4115 inode->i_size = size;
4116 clear_nlink(inode); /* It is unlinked */
4117 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4118 if (!IS_ERR(res))
4119 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4120 &shmem_file_operations);
4121 if (IS_ERR(res))
4122 iput(inode);
4123 return res;
4124 }
4125
4126 /**
4127 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4128 * kernel internal. There will be NO LSM permission checks against the
4129 * underlying inode. So users of this interface must do LSM checks at a
4130 * higher layer. The users are the big_key and shm implementations. LSM
4131 * checks are provided at the key or shm level rather than the inode.
4132 * @name: name for dentry (to be seen in /proc/<pid>/maps
4133 * @size: size to be set for the file
4134 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4135 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)4136 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4137 {
4138 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4139 }
4140
4141 /**
4142 * shmem_file_setup - get an unlinked file living in tmpfs
4143 * @name: name for dentry (to be seen in /proc/<pid>/maps
4144 * @size: size to be set for the file
4145 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4146 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)4147 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4148 {
4149 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4150 }
4151 EXPORT_SYMBOL_GPL(shmem_file_setup);
4152
4153 /**
4154 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4155 * @mnt: the tmpfs mount where the file will be created
4156 * @name: name for dentry (to be seen in /proc/<pid>/maps
4157 * @size: size to be set for the file
4158 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4159 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)4160 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4161 loff_t size, unsigned long flags)
4162 {
4163 return __shmem_file_setup(mnt, name, size, flags, 0);
4164 }
4165 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4166
4167 /**
4168 * shmem_zero_setup - setup a shared anonymous mapping
4169 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4170 */
shmem_zero_setup(struct vm_area_struct * vma)4171 int shmem_zero_setup(struct vm_area_struct *vma)
4172 {
4173 struct file *file;
4174 loff_t size = vma->vm_end - vma->vm_start;
4175
4176 /*
4177 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4178 * between XFS directory reading and selinux: since this file is only
4179 * accessible to the user through its mapping, use S_PRIVATE flag to
4180 * bypass file security, in the same way as shmem_kernel_file_setup().
4181 */
4182 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4183 if (IS_ERR(file))
4184 return PTR_ERR(file);
4185
4186 if (vma->vm_file)
4187 fput(vma->vm_file);
4188 vma->vm_file = file;
4189 vma->vm_ops = &shmem_vm_ops;
4190
4191 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4192 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4193 (vma->vm_end & HPAGE_PMD_MASK)) {
4194 khugepaged_enter(vma, vma->vm_flags);
4195 }
4196
4197 return 0;
4198 }
4199
4200 /**
4201 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4202 * @mapping: the page's address_space
4203 * @index: the page index
4204 * @gfp: the page allocator flags to use if allocating
4205 *
4206 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4207 * with any new page allocations done using the specified allocation flags.
4208 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4209 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4210 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4211 *
4212 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4213 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4214 */
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4215 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4216 pgoff_t index, gfp_t gfp)
4217 {
4218 #ifdef CONFIG_SHMEM
4219 struct inode *inode = mapping->host;
4220 struct page *page;
4221 int error;
4222
4223 BUG_ON(mapping->a_ops != &shmem_aops);
4224 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4225 gfp, NULL, NULL, NULL);
4226 if (error)
4227 page = ERR_PTR(error);
4228 else
4229 unlock_page(page);
4230 return page;
4231 #else
4232 /*
4233 * The tiny !SHMEM case uses ramfs without swap
4234 */
4235 return read_cache_page_gfp(mapping, index, gfp);
4236 #endif
4237 }
4238 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4239