1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (c) 2014-2017 Oracle. All rights reserved.
4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the BSD-type
10 * license below:
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 *
19 * Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials provided
22 * with the distribution.
23 *
24 * Neither the name of the Network Appliance, Inc. nor the names of
25 * its contributors may be used to endorse or promote products
26 * derived from this software without specific prior written
27 * permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*
43 * verbs.c
44 *
45 * Encapsulates the major functions managing:
46 * o adapters
47 * o endpoints
48 * o connections
49 * o buffer memory
50 */
51
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 #include <linux/log2.h>
57
58 #include <asm-generic/barrier.h>
59 #include <asm/bitops.h>
60
61 #include <rdma/ib_cm.h>
62
63 #include "xprt_rdma.h"
64 #include <trace/events/rpcrdma.h>
65
66 /*
67 * Globals/Macros
68 */
69
70 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
71 # define RPCDBG_FACILITY RPCDBG_TRANS
72 #endif
73
74 /*
75 * internal functions
76 */
77 static void rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc);
78 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt);
79 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt);
80 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
81 static void rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf);
82 static struct rpcrdma_regbuf *
83 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
84 gfp_t flags);
85 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
86 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
87
88 /* Wait for outstanding transport work to finish. ib_drain_qp
89 * handles the drains in the wrong order for us, so open code
90 * them here.
91 */
rpcrdma_xprt_drain(struct rpcrdma_xprt * r_xprt)92 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
93 {
94 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
95
96 /* Flush Receives, then wait for deferred Reply work
97 * to complete.
98 */
99 ib_drain_rq(ia->ri_id->qp);
100
101 /* Deferred Reply processing might have scheduled
102 * local invalidations.
103 */
104 ib_drain_sq(ia->ri_id->qp);
105 }
106
107 /**
108 * rpcrdma_qp_event_handler - Handle one QP event (error notification)
109 * @event: details of the event
110 * @context: ep that owns QP where event occurred
111 *
112 * Called from the RDMA provider (device driver) possibly in an interrupt
113 * context.
114 */
115 static void
rpcrdma_qp_event_handler(struct ib_event * event,void * context)116 rpcrdma_qp_event_handler(struct ib_event *event, void *context)
117 {
118 struct rpcrdma_ep *ep = context;
119 struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt,
120 rx_ep);
121
122 trace_xprtrdma_qp_event(r_xprt, event);
123 }
124
125 /**
126 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
127 * @cq: completion queue (ignored)
128 * @wc: completed WR
129 *
130 */
131 static void
rpcrdma_wc_send(struct ib_cq * cq,struct ib_wc * wc)132 rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
133 {
134 struct ib_cqe *cqe = wc->wr_cqe;
135 struct rpcrdma_sendctx *sc =
136 container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
137
138 /* WARNING: Only wr_cqe and status are reliable at this point */
139 trace_xprtrdma_wc_send(sc, wc);
140 rpcrdma_sendctx_put_locked(sc);
141 }
142
143 /**
144 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
145 * @cq: completion queue (ignored)
146 * @wc: completed WR
147 *
148 */
149 static void
rpcrdma_wc_receive(struct ib_cq * cq,struct ib_wc * wc)150 rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
151 {
152 struct ib_cqe *cqe = wc->wr_cqe;
153 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
154 rr_cqe);
155 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
156
157 /* WARNING: Only wr_cqe and status are reliable at this point */
158 trace_xprtrdma_wc_receive(wc);
159 --r_xprt->rx_ep.rep_receive_count;
160 if (wc->status != IB_WC_SUCCESS)
161 goto out_flushed;
162
163 /* status == SUCCESS means all fields in wc are trustworthy */
164 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
165 rep->rr_wc_flags = wc->wc_flags;
166 rep->rr_inv_rkey = wc->ex.invalidate_rkey;
167
168 ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
169 rdmab_addr(rep->rr_rdmabuf),
170 wc->byte_len, DMA_FROM_DEVICE);
171
172 rpcrdma_reply_handler(rep);
173 return;
174
175 out_flushed:
176 rpcrdma_recv_buffer_put(rep);
177 }
178
179 static void
rpcrdma_update_connect_private(struct rpcrdma_xprt * r_xprt,struct rdma_conn_param * param)180 rpcrdma_update_connect_private(struct rpcrdma_xprt *r_xprt,
181 struct rdma_conn_param *param)
182 {
183 const struct rpcrdma_connect_private *pmsg = param->private_data;
184 unsigned int rsize, wsize;
185
186 /* Default settings for RPC-over-RDMA Version One */
187 r_xprt->rx_ia.ri_implicit_roundup = xprt_rdma_pad_optimize;
188 rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
189 wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
190
191 if (pmsg &&
192 pmsg->cp_magic == rpcrdma_cmp_magic &&
193 pmsg->cp_version == RPCRDMA_CMP_VERSION) {
194 r_xprt->rx_ia.ri_implicit_roundup = true;
195 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
196 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
197 }
198
199 if (rsize < r_xprt->rx_ep.rep_inline_recv)
200 r_xprt->rx_ep.rep_inline_recv = rsize;
201 if (wsize < r_xprt->rx_ep.rep_inline_send)
202 r_xprt->rx_ep.rep_inline_send = wsize;
203 dprintk("RPC: %s: max send %u, max recv %u\n", __func__,
204 r_xprt->rx_ep.rep_inline_send,
205 r_xprt->rx_ep.rep_inline_recv);
206 rpcrdma_set_max_header_sizes(r_xprt);
207 }
208
209 /**
210 * rpcrdma_cm_event_handler - Handle RDMA CM events
211 * @id: rdma_cm_id on which an event has occurred
212 * @event: details of the event
213 *
214 * Called with @id's mutex held. Returns 1 if caller should
215 * destroy @id, otherwise 0.
216 */
217 static int
rpcrdma_cm_event_handler(struct rdma_cm_id * id,struct rdma_cm_event * event)218 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
219 {
220 struct rpcrdma_xprt *r_xprt = id->context;
221 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
222 struct rpcrdma_ep *ep = &r_xprt->rx_ep;
223 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
224
225 might_sleep();
226
227 trace_xprtrdma_cm_event(r_xprt, event);
228 switch (event->event) {
229 case RDMA_CM_EVENT_ADDR_RESOLVED:
230 case RDMA_CM_EVENT_ROUTE_RESOLVED:
231 ia->ri_async_rc = 0;
232 complete(&ia->ri_done);
233 return 0;
234 case RDMA_CM_EVENT_ADDR_ERROR:
235 ia->ri_async_rc = -EPROTO;
236 complete(&ia->ri_done);
237 return 0;
238 case RDMA_CM_EVENT_ROUTE_ERROR:
239 ia->ri_async_rc = -ENETUNREACH;
240 complete(&ia->ri_done);
241 return 0;
242 case RDMA_CM_EVENT_DEVICE_REMOVAL:
243 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
244 pr_info("rpcrdma: removing device %s for %s:%s\n",
245 ia->ri_id->device->name,
246 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt));
247 #endif
248 init_completion(&ia->ri_remove_done);
249 set_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags);
250 ep->rep_connected = -ENODEV;
251 xprt_force_disconnect(xprt);
252 wait_for_completion(&ia->ri_remove_done);
253
254 ia->ri_id = NULL;
255 /* Return 1 to ensure the core destroys the id. */
256 return 1;
257 case RDMA_CM_EVENT_ESTABLISHED:
258 ++xprt->connect_cookie;
259 ep->rep_connected = 1;
260 rpcrdma_update_connect_private(r_xprt, &event->param.conn);
261 wake_up_all(&ep->rep_connect_wait);
262 break;
263 case RDMA_CM_EVENT_CONNECT_ERROR:
264 ep->rep_connected = -ENOTCONN;
265 goto disconnected;
266 case RDMA_CM_EVENT_UNREACHABLE:
267 ep->rep_connected = -ENETUNREACH;
268 goto disconnected;
269 case RDMA_CM_EVENT_REJECTED:
270 dprintk("rpcrdma: connection to %s:%s rejected: %s\n",
271 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt),
272 rdma_reject_msg(id, event->status));
273 ep->rep_connected = -ECONNREFUSED;
274 if (event->status == IB_CM_REJ_STALE_CONN)
275 ep->rep_connected = -EAGAIN;
276 goto disconnected;
277 case RDMA_CM_EVENT_DISCONNECTED:
278 ep->rep_connected = -ECONNABORTED;
279 disconnected:
280 xprt_force_disconnect(xprt);
281 wake_up_all(&ep->rep_connect_wait);
282 break;
283 default:
284 break;
285 }
286
287 dprintk("RPC: %s: %s:%s on %s/frwr: %s\n", __func__,
288 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt),
289 ia->ri_id->device->name, rdma_event_msg(event->event));
290 return 0;
291 }
292
293 static struct rdma_cm_id *
rpcrdma_create_id(struct rpcrdma_xprt * xprt,struct rpcrdma_ia * ia)294 rpcrdma_create_id(struct rpcrdma_xprt *xprt, struct rpcrdma_ia *ia)
295 {
296 unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
297 struct rdma_cm_id *id;
298 int rc;
299
300 trace_xprtrdma_conn_start(xprt);
301
302 init_completion(&ia->ri_done);
303
304 id = rdma_create_id(xprt->rx_xprt.xprt_net, rpcrdma_cm_event_handler,
305 xprt, RDMA_PS_TCP, IB_QPT_RC);
306 if (IS_ERR(id))
307 return id;
308
309 ia->ri_async_rc = -ETIMEDOUT;
310 rc = rdma_resolve_addr(id, NULL,
311 (struct sockaddr *)&xprt->rx_xprt.addr,
312 RDMA_RESOLVE_TIMEOUT);
313 if (rc)
314 goto out;
315 rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout);
316 if (rc < 0) {
317 trace_xprtrdma_conn_tout(xprt);
318 goto out;
319 }
320
321 rc = ia->ri_async_rc;
322 if (rc)
323 goto out;
324
325 ia->ri_async_rc = -ETIMEDOUT;
326 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
327 if (rc)
328 goto out;
329 rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout);
330 if (rc < 0) {
331 trace_xprtrdma_conn_tout(xprt);
332 goto out;
333 }
334 rc = ia->ri_async_rc;
335 if (rc)
336 goto out;
337
338 return id;
339
340 out:
341 rdma_destroy_id(id);
342 return ERR_PTR(rc);
343 }
344
345 /*
346 * Exported functions.
347 */
348
349 /**
350 * rpcrdma_ia_open - Open and initialize an Interface Adapter.
351 * @xprt: transport with IA to (re)initialize
352 *
353 * Returns 0 on success, negative errno if an appropriate
354 * Interface Adapter could not be found and opened.
355 */
356 int
rpcrdma_ia_open(struct rpcrdma_xprt * xprt)357 rpcrdma_ia_open(struct rpcrdma_xprt *xprt)
358 {
359 struct rpcrdma_ia *ia = &xprt->rx_ia;
360 int rc;
361
362 ia->ri_id = rpcrdma_create_id(xprt, ia);
363 if (IS_ERR(ia->ri_id)) {
364 rc = PTR_ERR(ia->ri_id);
365 goto out_err;
366 }
367
368 ia->ri_pd = ib_alloc_pd(ia->ri_id->device, 0);
369 if (IS_ERR(ia->ri_pd)) {
370 rc = PTR_ERR(ia->ri_pd);
371 pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc);
372 goto out_err;
373 }
374
375 switch (xprt_rdma_memreg_strategy) {
376 case RPCRDMA_FRWR:
377 if (frwr_is_supported(ia->ri_id->device))
378 break;
379 /*FALLTHROUGH*/
380 default:
381 pr_err("rpcrdma: Device %s does not support memreg mode %d\n",
382 ia->ri_id->device->name, xprt_rdma_memreg_strategy);
383 rc = -EINVAL;
384 goto out_err;
385 }
386
387 return 0;
388
389 out_err:
390 rpcrdma_ia_close(ia);
391 return rc;
392 }
393
394 /**
395 * rpcrdma_ia_remove - Handle device driver unload
396 * @ia: interface adapter being removed
397 *
398 * Divest transport H/W resources associated with this adapter,
399 * but allow it to be restored later.
400 */
401 void
rpcrdma_ia_remove(struct rpcrdma_ia * ia)402 rpcrdma_ia_remove(struct rpcrdma_ia *ia)
403 {
404 struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt,
405 rx_ia);
406 struct rpcrdma_ep *ep = &r_xprt->rx_ep;
407 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
408 struct rpcrdma_req *req;
409
410 cancel_work_sync(&buf->rb_refresh_worker);
411
412 /* This is similar to rpcrdma_ep_destroy, but:
413 * - Don't cancel the connect worker.
414 * - Don't call rpcrdma_ep_disconnect, which waits
415 * for another conn upcall, which will deadlock.
416 * - rdma_disconnect is unneeded, the underlying
417 * connection is already gone.
418 */
419 if (ia->ri_id->qp) {
420 rpcrdma_xprt_drain(r_xprt);
421 rdma_destroy_qp(ia->ri_id);
422 ia->ri_id->qp = NULL;
423 }
424 ib_free_cq(ep->rep_attr.recv_cq);
425 ep->rep_attr.recv_cq = NULL;
426 ib_free_cq(ep->rep_attr.send_cq);
427 ep->rep_attr.send_cq = NULL;
428
429 /* The ULP is responsible for ensuring all DMA
430 * mappings and MRs are gone.
431 */
432 rpcrdma_reps_unmap(r_xprt);
433 list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
434 rpcrdma_regbuf_dma_unmap(req->rl_rdmabuf);
435 rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
436 rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
437 }
438 rpcrdma_mrs_destroy(buf);
439 ib_dealloc_pd(ia->ri_pd);
440 ia->ri_pd = NULL;
441
442 /* Allow waiters to continue */
443 complete(&ia->ri_remove_done);
444
445 trace_xprtrdma_remove(r_xprt);
446 }
447
448 /**
449 * rpcrdma_ia_close - Clean up/close an IA.
450 * @ia: interface adapter to close
451 *
452 */
453 void
rpcrdma_ia_close(struct rpcrdma_ia * ia)454 rpcrdma_ia_close(struct rpcrdma_ia *ia)
455 {
456 if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) {
457 if (ia->ri_id->qp)
458 rdma_destroy_qp(ia->ri_id);
459 rdma_destroy_id(ia->ri_id);
460 }
461 ia->ri_id = NULL;
462
463 /* If the pd is still busy, xprtrdma missed freeing a resource */
464 if (ia->ri_pd && !IS_ERR(ia->ri_pd))
465 ib_dealloc_pd(ia->ri_pd);
466 ia->ri_pd = NULL;
467 }
468
469 /**
470 * rpcrdma_ep_create - Create unconnected endpoint
471 * @r_xprt: transport to instantiate
472 *
473 * Returns zero on success, or a negative errno.
474 */
rpcrdma_ep_create(struct rpcrdma_xprt * r_xprt)475 int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
476 {
477 struct rpcrdma_ep *ep = &r_xprt->rx_ep;
478 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
479 struct rpcrdma_connect_private *pmsg = &ep->rep_cm_private;
480 struct ib_cq *sendcq, *recvcq;
481 unsigned int max_sge;
482 int rc;
483
484 ep->rep_max_requests = xprt_rdma_slot_table_entries;
485 ep->rep_inline_send = xprt_rdma_max_inline_write;
486 ep->rep_inline_recv = xprt_rdma_max_inline_read;
487
488 max_sge = min_t(unsigned int, ia->ri_id->device->attrs.max_send_sge,
489 RPCRDMA_MAX_SEND_SGES);
490 if (max_sge < RPCRDMA_MIN_SEND_SGES) {
491 pr_warn("rpcrdma: HCA provides only %d send SGEs\n", max_sge);
492 return -ENOMEM;
493 }
494 ia->ri_max_send_sges = max_sge;
495
496 rc = frwr_open(ia, ep);
497 if (rc)
498 return rc;
499
500 ep->rep_attr.event_handler = rpcrdma_qp_event_handler;
501 ep->rep_attr.qp_context = ep;
502 ep->rep_attr.srq = NULL;
503 ep->rep_attr.cap.max_send_sge = max_sge;
504 ep->rep_attr.cap.max_recv_sge = 1;
505 ep->rep_attr.cap.max_inline_data = 0;
506 ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
507 ep->rep_attr.qp_type = IB_QPT_RC;
508 ep->rep_attr.port_num = ~0;
509
510 dprintk("RPC: %s: requested max: dtos: send %d recv %d; "
511 "iovs: send %d recv %d\n",
512 __func__,
513 ep->rep_attr.cap.max_send_wr,
514 ep->rep_attr.cap.max_recv_wr,
515 ep->rep_attr.cap.max_send_sge,
516 ep->rep_attr.cap.max_recv_sge);
517
518 ep->rep_send_batch = ep->rep_max_requests >> 3;
519 ep->rep_send_count = ep->rep_send_batch;
520 init_waitqueue_head(&ep->rep_connect_wait);
521 ep->rep_receive_count = 0;
522
523 sendcq = ib_alloc_cq_any(ia->ri_id->device, NULL,
524 ep->rep_attr.cap.max_send_wr + 1,
525 IB_POLL_WORKQUEUE);
526 if (IS_ERR(sendcq)) {
527 rc = PTR_ERR(sendcq);
528 goto out1;
529 }
530
531 recvcq = ib_alloc_cq_any(ia->ri_id->device, NULL,
532 ep->rep_attr.cap.max_recv_wr + 1,
533 IB_POLL_WORKQUEUE);
534 if (IS_ERR(recvcq)) {
535 rc = PTR_ERR(recvcq);
536 goto out2;
537 }
538
539 ep->rep_attr.send_cq = sendcq;
540 ep->rep_attr.recv_cq = recvcq;
541
542 /* Initialize cma parameters */
543 memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma));
544
545 /* Prepare RDMA-CM private message */
546 pmsg->cp_magic = rpcrdma_cmp_magic;
547 pmsg->cp_version = RPCRDMA_CMP_VERSION;
548 pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
549 pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->rep_inline_send);
550 pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->rep_inline_recv);
551 ep->rep_remote_cma.private_data = pmsg;
552 ep->rep_remote_cma.private_data_len = sizeof(*pmsg);
553
554 /* Client offers RDMA Read but does not initiate */
555 ep->rep_remote_cma.initiator_depth = 0;
556 ep->rep_remote_cma.responder_resources =
557 min_t(int, U8_MAX, ia->ri_id->device->attrs.max_qp_rd_atom);
558
559 /* Limit transport retries so client can detect server
560 * GID changes quickly. RPC layer handles re-establishing
561 * transport connection and retransmission.
562 */
563 ep->rep_remote_cma.retry_count = 6;
564
565 /* RPC-over-RDMA handles its own flow control. In addition,
566 * make all RNR NAKs visible so we know that RPC-over-RDMA
567 * flow control is working correctly (no NAKs should be seen).
568 */
569 ep->rep_remote_cma.flow_control = 0;
570 ep->rep_remote_cma.rnr_retry_count = 0;
571
572 return 0;
573
574 out2:
575 ib_free_cq(sendcq);
576 out1:
577 return rc;
578 }
579
580 /**
581 * rpcrdma_ep_destroy - Disconnect and destroy endpoint.
582 * @r_xprt: transport instance to shut down
583 *
584 */
rpcrdma_ep_destroy(struct rpcrdma_xprt * r_xprt)585 void rpcrdma_ep_destroy(struct rpcrdma_xprt *r_xprt)
586 {
587 struct rpcrdma_ep *ep = &r_xprt->rx_ep;
588 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
589
590 if (ia->ri_id && ia->ri_id->qp) {
591 rpcrdma_ep_disconnect(ep, ia);
592 rdma_destroy_qp(ia->ri_id);
593 ia->ri_id->qp = NULL;
594 }
595
596 if (ep->rep_attr.recv_cq)
597 ib_free_cq(ep->rep_attr.recv_cq);
598 if (ep->rep_attr.send_cq)
599 ib_free_cq(ep->rep_attr.send_cq);
600 }
601
602 /* Re-establish a connection after a device removal event.
603 * Unlike a normal reconnection, a fresh PD and a new set
604 * of MRs and buffers is needed.
605 */
rpcrdma_ep_recreate_xprt(struct rpcrdma_xprt * r_xprt,struct ib_qp_init_attr * qp_init_attr)606 static int rpcrdma_ep_recreate_xprt(struct rpcrdma_xprt *r_xprt,
607 struct ib_qp_init_attr *qp_init_attr)
608 {
609 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
610 struct rpcrdma_ep *ep = &r_xprt->rx_ep;
611 int rc, err;
612
613 trace_xprtrdma_reinsert(r_xprt);
614
615 rc = -EHOSTUNREACH;
616 if (rpcrdma_ia_open(r_xprt))
617 goto out1;
618
619 rc = -ENOMEM;
620 err = rpcrdma_ep_create(r_xprt);
621 if (err) {
622 pr_err("rpcrdma: rpcrdma_ep_create returned %d\n", err);
623 goto out2;
624 }
625 memcpy(qp_init_attr, &ep->rep_attr, sizeof(*qp_init_attr));
626
627 rc = -ENETUNREACH;
628 err = rdma_create_qp(ia->ri_id, ia->ri_pd, qp_init_attr);
629 if (err) {
630 pr_err("rpcrdma: rdma_create_qp returned %d\n", err);
631 goto out3;
632 }
633
634 rpcrdma_mrs_create(r_xprt);
635 return 0;
636
637 out3:
638 rpcrdma_ep_destroy(r_xprt);
639 out2:
640 rpcrdma_ia_close(ia);
641 out1:
642 return rc;
643 }
644
rpcrdma_ep_reconnect(struct rpcrdma_xprt * r_xprt,struct ib_qp_init_attr * qp_init_attr)645 static int rpcrdma_ep_reconnect(struct rpcrdma_xprt *r_xprt,
646 struct ib_qp_init_attr *qp_init_attr)
647 {
648 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
649 struct rdma_cm_id *id, *old;
650 int err, rc;
651
652 trace_xprtrdma_reconnect(r_xprt);
653
654 rpcrdma_ep_disconnect(&r_xprt->rx_ep, ia);
655
656 rc = -EHOSTUNREACH;
657 id = rpcrdma_create_id(r_xprt, ia);
658 if (IS_ERR(id))
659 goto out;
660
661 /* As long as the new ID points to the same device as the
662 * old ID, we can reuse the transport's existing PD and all
663 * previously allocated MRs. Also, the same device means
664 * the transport's previous DMA mappings are still valid.
665 *
666 * This is a sanity check only. There should be no way these
667 * point to two different devices here.
668 */
669 old = id;
670 rc = -ENETUNREACH;
671 if (ia->ri_id->device != id->device) {
672 pr_err("rpcrdma: can't reconnect on different device!\n");
673 goto out_destroy;
674 }
675
676 err = rdma_create_qp(id, ia->ri_pd, qp_init_attr);
677 if (err)
678 goto out_destroy;
679
680 /* Atomically replace the transport's ID and QP. */
681 rc = 0;
682 old = ia->ri_id;
683 ia->ri_id = id;
684 rdma_destroy_qp(old);
685
686 out_destroy:
687 rdma_destroy_id(old);
688 out:
689 return rc;
690 }
691
692 /*
693 * Connect unconnected endpoint.
694 */
695 int
rpcrdma_ep_connect(struct rpcrdma_ep * ep,struct rpcrdma_ia * ia)696 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
697 {
698 struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt,
699 rx_ia);
700 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
701 struct ib_qp_init_attr qp_init_attr;
702 int rc;
703
704 retry:
705 memcpy(&qp_init_attr, &ep->rep_attr, sizeof(qp_init_attr));
706 switch (ep->rep_connected) {
707 case 0:
708 dprintk("RPC: %s: connecting...\n", __func__);
709 rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &qp_init_attr);
710 if (rc) {
711 rc = -ENETUNREACH;
712 goto out_noupdate;
713 }
714 break;
715 case -ENODEV:
716 rc = rpcrdma_ep_recreate_xprt(r_xprt, &qp_init_attr);
717 if (rc)
718 goto out_noupdate;
719 break;
720 default:
721 rc = rpcrdma_ep_reconnect(r_xprt, &qp_init_attr);
722 if (rc)
723 goto out;
724 }
725
726 ep->rep_connected = 0;
727 xprt_clear_connected(xprt);
728
729 rpcrdma_post_recvs(r_xprt, true);
730
731 rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma);
732 if (rc)
733 goto out;
734
735 if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
736 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
737 wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0);
738 if (ep->rep_connected <= 0) {
739 if (ep->rep_connected == -EAGAIN)
740 goto retry;
741 rc = ep->rep_connected;
742 goto out;
743 }
744
745 dprintk("RPC: %s: connected\n", __func__);
746
747 out:
748 if (rc)
749 ep->rep_connected = rc;
750
751 out_noupdate:
752 return rc;
753 }
754
755 /**
756 * rpcrdma_ep_disconnect - Disconnect underlying transport
757 * @ep: endpoint to disconnect
758 * @ia: associated interface adapter
759 *
760 * This is separate from destroy to facilitate the ability
761 * to reconnect without recreating the endpoint.
762 *
763 * This call is not reentrant, and must not be made in parallel
764 * on the same endpoint.
765 */
766 void
rpcrdma_ep_disconnect(struct rpcrdma_ep * ep,struct rpcrdma_ia * ia)767 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
768 {
769 struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt,
770 rx_ep);
771 int rc;
772
773 /* returns without wait if ID is not connected */
774 rc = rdma_disconnect(ia->ri_id);
775 if (!rc)
776 wait_event_interruptible(ep->rep_connect_wait,
777 ep->rep_connected != 1);
778 else
779 ep->rep_connected = rc;
780 trace_xprtrdma_disconnect(r_xprt, rc);
781
782 rpcrdma_xprt_drain(r_xprt);
783 rpcrdma_reqs_reset(r_xprt);
784 }
785
786 /* Fixed-size circular FIFO queue. This implementation is wait-free and
787 * lock-free.
788 *
789 * Consumer is the code path that posts Sends. This path dequeues a
790 * sendctx for use by a Send operation. Multiple consumer threads
791 * are serialized by the RPC transport lock, which allows only one
792 * ->send_request call at a time.
793 *
794 * Producer is the code path that handles Send completions. This path
795 * enqueues a sendctx that has been completed. Multiple producer
796 * threads are serialized by the ib_poll_cq() function.
797 */
798
799 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
800 * queue activity, and rpcrdma_xprt_drain has flushed all remaining
801 * Send requests.
802 */
rpcrdma_sendctxs_destroy(struct rpcrdma_buffer * buf)803 static void rpcrdma_sendctxs_destroy(struct rpcrdma_buffer *buf)
804 {
805 unsigned long i;
806
807 for (i = 0; i <= buf->rb_sc_last; i++)
808 kfree(buf->rb_sc_ctxs[i]);
809 kfree(buf->rb_sc_ctxs);
810 }
811
rpcrdma_sendctx_create(struct rpcrdma_ia * ia)812 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ia *ia)
813 {
814 struct rpcrdma_sendctx *sc;
815
816 sc = kzalloc(struct_size(sc, sc_sges, ia->ri_max_send_sges),
817 GFP_KERNEL);
818 if (!sc)
819 return NULL;
820
821 sc->sc_wr.wr_cqe = &sc->sc_cqe;
822 sc->sc_wr.sg_list = sc->sc_sges;
823 sc->sc_wr.opcode = IB_WR_SEND;
824 sc->sc_cqe.done = rpcrdma_wc_send;
825 return sc;
826 }
827
rpcrdma_sendctxs_create(struct rpcrdma_xprt * r_xprt)828 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
829 {
830 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
831 struct rpcrdma_sendctx *sc;
832 unsigned long i;
833
834 /* Maximum number of concurrent outstanding Send WRs. Capping
835 * the circular queue size stops Send Queue overflow by causing
836 * the ->send_request call to fail temporarily before too many
837 * Sends are posted.
838 */
839 i = buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS;
840 dprintk("RPC: %s: allocating %lu send_ctxs\n", __func__, i);
841 buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
842 if (!buf->rb_sc_ctxs)
843 return -ENOMEM;
844
845 buf->rb_sc_last = i - 1;
846 for (i = 0; i <= buf->rb_sc_last; i++) {
847 sc = rpcrdma_sendctx_create(&r_xprt->rx_ia);
848 if (!sc)
849 return -ENOMEM;
850
851 sc->sc_xprt = r_xprt;
852 buf->rb_sc_ctxs[i] = sc;
853 }
854
855 return 0;
856 }
857
858 /* The sendctx queue is not guaranteed to have a size that is a
859 * power of two, thus the helpers in circ_buf.h cannot be used.
860 * The other option is to use modulus (%), which can be expensive.
861 */
rpcrdma_sendctx_next(struct rpcrdma_buffer * buf,unsigned long item)862 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
863 unsigned long item)
864 {
865 return likely(item < buf->rb_sc_last) ? item + 1 : 0;
866 }
867
868 /**
869 * rpcrdma_sendctx_get_locked - Acquire a send context
870 * @r_xprt: controlling transport instance
871 *
872 * Returns pointer to a free send completion context; or NULL if
873 * the queue is empty.
874 *
875 * Usage: Called to acquire an SGE array before preparing a Send WR.
876 *
877 * The caller serializes calls to this function (per transport), and
878 * provides an effective memory barrier that flushes the new value
879 * of rb_sc_head.
880 */
rpcrdma_sendctx_get_locked(struct rpcrdma_xprt * r_xprt)881 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
882 {
883 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
884 struct rpcrdma_sendctx *sc;
885 unsigned long next_head;
886
887 next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
888
889 if (next_head == READ_ONCE(buf->rb_sc_tail))
890 goto out_emptyq;
891
892 /* ORDER: item must be accessed _before_ head is updated */
893 sc = buf->rb_sc_ctxs[next_head];
894
895 /* Releasing the lock in the caller acts as a memory
896 * barrier that flushes rb_sc_head.
897 */
898 buf->rb_sc_head = next_head;
899
900 return sc;
901
902 out_emptyq:
903 /* The queue is "empty" if there have not been enough Send
904 * completions recently. This is a sign the Send Queue is
905 * backing up. Cause the caller to pause and try again.
906 */
907 xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
908 r_xprt->rx_stats.empty_sendctx_q++;
909 return NULL;
910 }
911
912 /**
913 * rpcrdma_sendctx_put_locked - Release a send context
914 * @sc: send context to release
915 *
916 * Usage: Called from Send completion to return a sendctxt
917 * to the queue.
918 *
919 * The caller serializes calls to this function (per transport).
920 */
921 static void
rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx * sc)922 rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc)
923 {
924 struct rpcrdma_buffer *buf = &sc->sc_xprt->rx_buf;
925 unsigned long next_tail;
926
927 /* Unmap SGEs of previously completed but unsignaled
928 * Sends by walking up the queue until @sc is found.
929 */
930 next_tail = buf->rb_sc_tail;
931 do {
932 next_tail = rpcrdma_sendctx_next(buf, next_tail);
933
934 /* ORDER: item must be accessed _before_ tail is updated */
935 rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
936
937 } while (buf->rb_sc_ctxs[next_tail] != sc);
938
939 /* Paired with READ_ONCE */
940 smp_store_release(&buf->rb_sc_tail, next_tail);
941
942 xprt_write_space(&sc->sc_xprt->rx_xprt);
943 }
944
945 static void
rpcrdma_mrs_create(struct rpcrdma_xprt * r_xprt)946 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
947 {
948 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
949 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
950 unsigned int count;
951
952 for (count = 0; count < ia->ri_max_segs; count++) {
953 struct rpcrdma_mr *mr;
954 int rc;
955
956 mr = kzalloc(sizeof(*mr), GFP_NOFS);
957 if (!mr)
958 break;
959
960 rc = frwr_init_mr(ia, mr);
961 if (rc) {
962 kfree(mr);
963 break;
964 }
965
966 mr->mr_xprt = r_xprt;
967
968 spin_lock(&buf->rb_lock);
969 rpcrdma_mr_push(mr, &buf->rb_mrs);
970 list_add(&mr->mr_all, &buf->rb_all_mrs);
971 spin_unlock(&buf->rb_lock);
972 }
973
974 r_xprt->rx_stats.mrs_allocated += count;
975 trace_xprtrdma_createmrs(r_xprt, count);
976 }
977
978 static void
rpcrdma_mr_refresh_worker(struct work_struct * work)979 rpcrdma_mr_refresh_worker(struct work_struct *work)
980 {
981 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
982 rb_refresh_worker);
983 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
984 rx_buf);
985
986 rpcrdma_mrs_create(r_xprt);
987 xprt_write_space(&r_xprt->rx_xprt);
988 }
989
990 /**
991 * rpcrdma_req_create - Allocate an rpcrdma_req object
992 * @r_xprt: controlling r_xprt
993 * @size: initial size, in bytes, of send and receive buffers
994 * @flags: GFP flags passed to memory allocators
995 *
996 * Returns an allocated and fully initialized rpcrdma_req or NULL.
997 */
rpcrdma_req_create(struct rpcrdma_xprt * r_xprt,size_t size,gfp_t flags)998 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size,
999 gfp_t flags)
1000 {
1001 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
1002 struct rpcrdma_regbuf *rb;
1003 struct rpcrdma_req *req;
1004 size_t maxhdrsize;
1005
1006 req = kzalloc(sizeof(*req), flags);
1007 if (req == NULL)
1008 goto out1;
1009
1010 /* Compute maximum header buffer size in bytes */
1011 maxhdrsize = rpcrdma_fixed_maxsz + 3 +
1012 r_xprt->rx_ia.ri_max_segs * rpcrdma_readchunk_maxsz;
1013 maxhdrsize *= sizeof(__be32);
1014 rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize),
1015 DMA_TO_DEVICE, flags);
1016 if (!rb)
1017 goto out2;
1018 req->rl_rdmabuf = rb;
1019 xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
1020
1021 req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags);
1022 if (!req->rl_sendbuf)
1023 goto out3;
1024
1025 req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags);
1026 if (!req->rl_recvbuf)
1027 goto out4;
1028
1029 INIT_LIST_HEAD(&req->rl_free_mrs);
1030 INIT_LIST_HEAD(&req->rl_registered);
1031 spin_lock(&buffer->rb_lock);
1032 list_add(&req->rl_all, &buffer->rb_allreqs);
1033 spin_unlock(&buffer->rb_lock);
1034 return req;
1035
1036 out4:
1037 kfree(req->rl_sendbuf);
1038 out3:
1039 kfree(req->rl_rdmabuf);
1040 out2:
1041 kfree(req);
1042 out1:
1043 return NULL;
1044 }
1045
1046 /**
1047 * rpcrdma_reqs_reset - Reset all reqs owned by a transport
1048 * @r_xprt: controlling transport instance
1049 *
1050 * ASSUMPTION: the rb_allreqs list is stable for the duration,
1051 * and thus can be walked without holding rb_lock. Eg. the
1052 * caller is holding the transport send lock to exclude
1053 * device removal or disconnection.
1054 */
rpcrdma_reqs_reset(struct rpcrdma_xprt * r_xprt)1055 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt)
1056 {
1057 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1058 struct rpcrdma_req *req;
1059
1060 list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
1061 /* Credits are valid only for one connection */
1062 req->rl_slot.rq_cong = 0;
1063 }
1064 }
1065
rpcrdma_rep_create(struct rpcrdma_xprt * r_xprt,bool temp)1066 static struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt,
1067 bool temp)
1068 {
1069 struct rpcrdma_rep *rep;
1070
1071 rep = kzalloc(sizeof(*rep), GFP_KERNEL);
1072 if (rep == NULL)
1073 goto out;
1074
1075 rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep.rep_inline_recv,
1076 DMA_FROM_DEVICE, GFP_KERNEL);
1077 if (!rep->rr_rdmabuf)
1078 goto out_free;
1079
1080 xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
1081 rdmab_length(rep->rr_rdmabuf));
1082 rep->rr_cqe.done = rpcrdma_wc_receive;
1083 rep->rr_rxprt = r_xprt;
1084 rep->rr_recv_wr.next = NULL;
1085 rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
1086 rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
1087 rep->rr_recv_wr.num_sge = 1;
1088 rep->rr_temp = temp;
1089 list_add(&rep->rr_all, &r_xprt->rx_buf.rb_all_reps);
1090 return rep;
1091
1092 out_free:
1093 kfree(rep);
1094 out:
1095 return NULL;
1096 }
1097
rpcrdma_rep_destroy(struct rpcrdma_rep * rep)1098 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
1099 {
1100 list_del(&rep->rr_all);
1101 rpcrdma_regbuf_free(rep->rr_rdmabuf);
1102 kfree(rep);
1103 }
1104
rpcrdma_rep_get_locked(struct rpcrdma_buffer * buf)1105 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf)
1106 {
1107 struct llist_node *node;
1108
1109 /* Calls to llist_del_first are required to be serialized */
1110 node = llist_del_first(&buf->rb_free_reps);
1111 if (!node)
1112 return NULL;
1113 return llist_entry(node, struct rpcrdma_rep, rr_node);
1114 }
1115
rpcrdma_rep_put(struct rpcrdma_buffer * buf,struct rpcrdma_rep * rep)1116 static void rpcrdma_rep_put(struct rpcrdma_buffer *buf,
1117 struct rpcrdma_rep *rep)
1118 {
1119 llist_add(&rep->rr_node, &buf->rb_free_reps);
1120 }
1121
rpcrdma_reps_unmap(struct rpcrdma_xprt * r_xprt)1122 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt)
1123 {
1124 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1125 struct rpcrdma_rep *rep;
1126
1127 list_for_each_entry(rep, &buf->rb_all_reps, rr_all)
1128 rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
1129 }
1130
rpcrdma_reps_destroy(struct rpcrdma_buffer * buf)1131 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf)
1132 {
1133 struct rpcrdma_rep *rep;
1134
1135 while ((rep = rpcrdma_rep_get_locked(buf)) != NULL)
1136 rpcrdma_rep_destroy(rep);
1137 }
1138
1139 /**
1140 * rpcrdma_buffer_create - Create initial set of req/rep objects
1141 * @r_xprt: transport instance to (re)initialize
1142 *
1143 * Returns zero on success, otherwise a negative errno.
1144 */
rpcrdma_buffer_create(struct rpcrdma_xprt * r_xprt)1145 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1146 {
1147 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1148 int i, rc;
1149
1150 buf->rb_max_requests = r_xprt->rx_ep.rep_max_requests;
1151 buf->rb_bc_srv_max_requests = 0;
1152 spin_lock_init(&buf->rb_lock);
1153 INIT_LIST_HEAD(&buf->rb_mrs);
1154 INIT_LIST_HEAD(&buf->rb_all_mrs);
1155 INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker);
1156
1157 rpcrdma_mrs_create(r_xprt);
1158
1159 INIT_LIST_HEAD(&buf->rb_send_bufs);
1160 INIT_LIST_HEAD(&buf->rb_allreqs);
1161 INIT_LIST_HEAD(&buf->rb_all_reps);
1162
1163 rc = -ENOMEM;
1164 for (i = 0; i < buf->rb_max_requests; i++) {
1165 struct rpcrdma_req *req;
1166
1167 req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE,
1168 GFP_KERNEL);
1169 if (!req)
1170 goto out;
1171 list_add(&req->rl_list, &buf->rb_send_bufs);
1172 }
1173
1174 buf->rb_credits = 1;
1175 init_llist_head(&buf->rb_free_reps);
1176
1177 rc = rpcrdma_sendctxs_create(r_xprt);
1178 if (rc)
1179 goto out;
1180
1181 return 0;
1182 out:
1183 rpcrdma_buffer_destroy(buf);
1184 return rc;
1185 }
1186
1187 /**
1188 * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1189 * @req: unused object to be destroyed
1190 *
1191 * This function assumes that the caller prevents concurrent device
1192 * unload and transport tear-down.
1193 */
rpcrdma_req_destroy(struct rpcrdma_req * req)1194 void rpcrdma_req_destroy(struct rpcrdma_req *req)
1195 {
1196 struct rpcrdma_mr *mr;
1197
1198 list_del(&req->rl_all);
1199
1200 while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) {
1201 struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf;
1202
1203 spin_lock(&buf->rb_lock);
1204 list_del(&mr->mr_all);
1205 spin_unlock(&buf->rb_lock);
1206
1207 frwr_release_mr(mr);
1208 }
1209
1210 rpcrdma_regbuf_free(req->rl_recvbuf);
1211 rpcrdma_regbuf_free(req->rl_sendbuf);
1212 rpcrdma_regbuf_free(req->rl_rdmabuf);
1213 kfree(req);
1214 }
1215
1216 /**
1217 * rpcrdma_mrs_destroy - Release all of a transport's MRs
1218 * @buf: controlling buffer instance
1219 *
1220 * Relies on caller holding the transport send lock to protect
1221 * removing mr->mr_list from req->rl_free_mrs safely.
1222 */
rpcrdma_mrs_destroy(struct rpcrdma_buffer * buf)1223 static void rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf)
1224 {
1225 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
1226 rx_buf);
1227 struct rpcrdma_mr *mr;
1228
1229 spin_lock(&buf->rb_lock);
1230 while ((mr = list_first_entry_or_null(&buf->rb_all_mrs,
1231 struct rpcrdma_mr,
1232 mr_all)) != NULL) {
1233 list_del(&mr->mr_list);
1234 list_del(&mr->mr_all);
1235 spin_unlock(&buf->rb_lock);
1236
1237 frwr_release_mr(mr);
1238 spin_lock(&buf->rb_lock);
1239 }
1240 spin_unlock(&buf->rb_lock);
1241 r_xprt->rx_stats.mrs_allocated = 0;
1242 }
1243
1244 /**
1245 * rpcrdma_buffer_destroy - Release all hw resources
1246 * @buf: root control block for resources
1247 *
1248 * ORDERING: relies on a prior rpcrdma_xprt_drain :
1249 * - No more Send or Receive completions can occur
1250 * - All MRs, reps, and reqs are returned to their free lists
1251 */
1252 void
rpcrdma_buffer_destroy(struct rpcrdma_buffer * buf)1253 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1254 {
1255 cancel_work_sync(&buf->rb_refresh_worker);
1256
1257 rpcrdma_sendctxs_destroy(buf);
1258 rpcrdma_reps_destroy(buf);
1259
1260 while (!list_empty(&buf->rb_send_bufs)) {
1261 struct rpcrdma_req *req;
1262
1263 req = list_first_entry(&buf->rb_send_bufs,
1264 struct rpcrdma_req, rl_list);
1265 list_del(&req->rl_list);
1266 rpcrdma_req_destroy(req);
1267 }
1268
1269 rpcrdma_mrs_destroy(buf);
1270 }
1271
1272 /**
1273 * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1274 * @r_xprt: controlling transport
1275 *
1276 * Returns an initialized rpcrdma_mr or NULL if no free
1277 * rpcrdma_mr objects are available.
1278 */
1279 struct rpcrdma_mr *
rpcrdma_mr_get(struct rpcrdma_xprt * r_xprt)1280 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1281 {
1282 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1283 struct rpcrdma_mr *mr;
1284
1285 spin_lock(&buf->rb_lock);
1286 mr = rpcrdma_mr_pop(&buf->rb_mrs);
1287 spin_unlock(&buf->rb_lock);
1288 return mr;
1289 }
1290
1291 /**
1292 * rpcrdma_mr_put - DMA unmap an MR and release it
1293 * @mr: MR to release
1294 *
1295 */
rpcrdma_mr_put(struct rpcrdma_mr * mr)1296 void rpcrdma_mr_put(struct rpcrdma_mr *mr)
1297 {
1298 struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
1299
1300 if (mr->mr_dir != DMA_NONE) {
1301 trace_xprtrdma_mr_unmap(mr);
1302 ib_dma_unmap_sg(r_xprt->rx_ia.ri_id->device,
1303 mr->mr_sg, mr->mr_nents, mr->mr_dir);
1304 mr->mr_dir = DMA_NONE;
1305 }
1306
1307 rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
1308 }
1309
1310 /**
1311 * rpcrdma_buffer_get - Get a request buffer
1312 * @buffers: Buffer pool from which to obtain a buffer
1313 *
1314 * Returns a fresh rpcrdma_req, or NULL if none are available.
1315 */
1316 struct rpcrdma_req *
rpcrdma_buffer_get(struct rpcrdma_buffer * buffers)1317 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1318 {
1319 struct rpcrdma_req *req;
1320
1321 spin_lock(&buffers->rb_lock);
1322 req = list_first_entry_or_null(&buffers->rb_send_bufs,
1323 struct rpcrdma_req, rl_list);
1324 if (req)
1325 list_del_init(&req->rl_list);
1326 spin_unlock(&buffers->rb_lock);
1327 return req;
1328 }
1329
1330 /**
1331 * rpcrdma_buffer_put - Put request/reply buffers back into pool
1332 * @buffers: buffer pool
1333 * @req: object to return
1334 *
1335 */
rpcrdma_buffer_put(struct rpcrdma_buffer * buffers,struct rpcrdma_req * req)1336 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1337 {
1338 if (req->rl_reply)
1339 rpcrdma_rep_put(buffers, req->rl_reply);
1340 req->rl_reply = NULL;
1341
1342 spin_lock(&buffers->rb_lock);
1343 list_add(&req->rl_list, &buffers->rb_send_bufs);
1344 spin_unlock(&buffers->rb_lock);
1345 }
1346
1347 /**
1348 * rpcrdma_recv_buffer_put - Release rpcrdma_rep back to free list
1349 * @rep: rep to release
1350 *
1351 * Used after error conditions.
1352 */
rpcrdma_recv_buffer_put(struct rpcrdma_rep * rep)1353 void rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1354 {
1355 rpcrdma_rep_put(&rep->rr_rxprt->rx_buf, rep);
1356 }
1357
1358 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1359 *
1360 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1361 * receiving the payload of RDMA RECV operations. During Long Calls
1362 * or Replies they may be registered externally via frwr_map.
1363 */
1364 static struct rpcrdma_regbuf *
rpcrdma_regbuf_alloc(size_t size,enum dma_data_direction direction,gfp_t flags)1365 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
1366 gfp_t flags)
1367 {
1368 struct rpcrdma_regbuf *rb;
1369
1370 rb = kmalloc(sizeof(*rb), flags);
1371 if (!rb)
1372 return NULL;
1373 rb->rg_data = kmalloc(size, flags);
1374 if (!rb->rg_data) {
1375 kfree(rb);
1376 return NULL;
1377 }
1378
1379 rb->rg_device = NULL;
1380 rb->rg_direction = direction;
1381 rb->rg_iov.length = size;
1382 return rb;
1383 }
1384
1385 /**
1386 * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1387 * @rb: regbuf to reallocate
1388 * @size: size of buffer to be allocated, in bytes
1389 * @flags: GFP flags
1390 *
1391 * Returns true if reallocation was successful. If false is
1392 * returned, @rb is left untouched.
1393 */
rpcrdma_regbuf_realloc(struct rpcrdma_regbuf * rb,size_t size,gfp_t flags)1394 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1395 {
1396 void *buf;
1397
1398 buf = kmalloc(size, flags);
1399 if (!buf)
1400 return false;
1401
1402 rpcrdma_regbuf_dma_unmap(rb);
1403 kfree(rb->rg_data);
1404
1405 rb->rg_data = buf;
1406 rb->rg_iov.length = size;
1407 return true;
1408 }
1409
1410 /**
1411 * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1412 * @r_xprt: controlling transport instance
1413 * @rb: regbuf to be mapped
1414 *
1415 * Returns true if the buffer is now DMA mapped to @r_xprt's device
1416 */
__rpcrdma_regbuf_dma_map(struct rpcrdma_xprt * r_xprt,struct rpcrdma_regbuf * rb)1417 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1418 struct rpcrdma_regbuf *rb)
1419 {
1420 struct ib_device *device = r_xprt->rx_ia.ri_id->device;
1421
1422 if (rb->rg_direction == DMA_NONE)
1423 return false;
1424
1425 rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1426 rdmab_length(rb), rb->rg_direction);
1427 if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1428 trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1429 return false;
1430 }
1431
1432 rb->rg_device = device;
1433 rb->rg_iov.lkey = r_xprt->rx_ia.ri_pd->local_dma_lkey;
1434 return true;
1435 }
1436
rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf * rb)1437 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1438 {
1439 if (!rb)
1440 return;
1441
1442 if (!rpcrdma_regbuf_is_mapped(rb))
1443 return;
1444
1445 ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1446 rb->rg_direction);
1447 rb->rg_device = NULL;
1448 }
1449
rpcrdma_regbuf_free(struct rpcrdma_regbuf * rb)1450 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1451 {
1452 rpcrdma_regbuf_dma_unmap(rb);
1453 if (rb)
1454 kfree(rb->rg_data);
1455 kfree(rb);
1456 }
1457
1458 /**
1459 * rpcrdma_ep_post - Post WRs to a transport's Send Queue
1460 * @ia: transport's device information
1461 * @ep: transport's RDMA endpoint information
1462 * @req: rpcrdma_req containing the Send WR to post
1463 *
1464 * Returns 0 if the post was successful, otherwise -ENOTCONN
1465 * is returned.
1466 */
1467 int
rpcrdma_ep_post(struct rpcrdma_ia * ia,struct rpcrdma_ep * ep,struct rpcrdma_req * req)1468 rpcrdma_ep_post(struct rpcrdma_ia *ia,
1469 struct rpcrdma_ep *ep,
1470 struct rpcrdma_req *req)
1471 {
1472 struct ib_send_wr *send_wr = &req->rl_sendctx->sc_wr;
1473 int rc;
1474
1475 if (!ep->rep_send_count || kref_read(&req->rl_kref) > 1) {
1476 send_wr->send_flags |= IB_SEND_SIGNALED;
1477 ep->rep_send_count = ep->rep_send_batch;
1478 } else {
1479 send_wr->send_flags &= ~IB_SEND_SIGNALED;
1480 --ep->rep_send_count;
1481 }
1482
1483 rc = frwr_send(ia, req);
1484 trace_xprtrdma_post_send(req, rc);
1485 if (rc)
1486 return -ENOTCONN;
1487 return 0;
1488 }
1489
1490 /**
1491 * rpcrdma_post_recvs - Refill the Receive Queue
1492 * @r_xprt: controlling transport instance
1493 * @temp: mark Receive buffers to be deleted after use
1494 *
1495 */
rpcrdma_post_recvs(struct rpcrdma_xprt * r_xprt,bool temp)1496 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp)
1497 {
1498 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1499 struct rpcrdma_ep *ep = &r_xprt->rx_ep;
1500 struct ib_recv_wr *i, *wr, *bad_wr;
1501 struct rpcrdma_rep *rep;
1502 int needed, count, rc;
1503
1504 rc = 0;
1505 count = 0;
1506
1507 needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1);
1508 if (likely(ep->rep_receive_count > needed))
1509 goto out;
1510 needed -= ep->rep_receive_count;
1511 if (!temp)
1512 needed += RPCRDMA_MAX_RECV_BATCH;
1513
1514 /* fast path: all needed reps can be found on the free list */
1515 wr = NULL;
1516 while (needed) {
1517 rep = rpcrdma_rep_get_locked(buf);
1518 if (rep && rep->rr_temp) {
1519 rpcrdma_rep_destroy(rep);
1520 continue;
1521 }
1522 if (!rep)
1523 rep = rpcrdma_rep_create(r_xprt, temp);
1524 if (!rep)
1525 break;
1526
1527 rep->rr_recv_wr.next = wr;
1528 wr = &rep->rr_recv_wr;
1529 --needed;
1530 }
1531 if (!wr)
1532 goto out;
1533
1534 for (i = wr; i; i = i->next) {
1535 rep = container_of(i, struct rpcrdma_rep, rr_recv_wr);
1536
1537 if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf))
1538 goto release_wrs;
1539
1540 trace_xprtrdma_post_recv(rep);
1541 ++count;
1542 }
1543
1544 rc = ib_post_recv(r_xprt->rx_ia.ri_id->qp, wr,
1545 (const struct ib_recv_wr **)&bad_wr);
1546 out:
1547 trace_xprtrdma_post_recvs(r_xprt, count, rc);
1548 if (rc) {
1549 for (wr = bad_wr; wr;) {
1550 struct rpcrdma_rep *rep;
1551
1552 rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1553 wr = wr->next;
1554 rpcrdma_recv_buffer_put(rep);
1555 --count;
1556 }
1557 }
1558 ep->rep_receive_count += count;
1559 return;
1560
1561 release_wrs:
1562 for (i = wr; i;) {
1563 rep = container_of(i, struct rpcrdma_rep, rr_recv_wr);
1564 i = i->next;
1565 rpcrdma_recv_buffer_put(rep);
1566 }
1567 }
1568