1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
11 */
12 #ifndef _ASM_IO_H
13 #define _ASM_IO_H
14
15 #define ARCH_HAS_IOREMAP_WC
16
17 #include <linux/compiler.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/irqflags.h>
21
22 #include <asm/addrspace.h>
23 #include <asm/barrier.h>
24 #include <asm/bug.h>
25 #include <asm/byteorder.h>
26 #include <asm/cpu.h>
27 #include <asm/cpu-features.h>
28 #include <asm-generic/iomap.h>
29 #include <asm/page.h>
30 #include <asm/pgtable-bits.h>
31 #include <asm/processor.h>
32 #include <asm/string.h>
33
34 #include <ioremap.h>
35 #include <mangle-port.h>
36
37 /*
38 * Raw operations are never swapped in software. OTOH values that raw
39 * operations are working on may or may not have been swapped by the bus
40 * hardware. An example use would be for flash memory that's used for
41 * execute in place.
42 */
43 # define __raw_ioswabb(a, x) (x)
44 # define __raw_ioswabw(a, x) (x)
45 # define __raw_ioswabl(a, x) (x)
46 # define __raw_ioswabq(a, x) (x)
47 # define ____raw_ioswabq(a, x) (x)
48
49 # define __relaxed_ioswabb ioswabb
50 # define __relaxed_ioswabw ioswabw
51 # define __relaxed_ioswabl ioswabl
52 # define __relaxed_ioswabq ioswabq
53
54 /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
55
56 #define IO_SPACE_LIMIT 0xffff
57
58 /*
59 * On MIPS I/O ports are memory mapped, so we access them using normal
60 * load/store instructions. mips_io_port_base is the virtual address to
61 * which all ports are being mapped. For sake of efficiency some code
62 * assumes that this is an address that can be loaded with a single lui
63 * instruction, so the lower 16 bits must be zero. Should be true on
64 * on any sane architecture; generic code does not use this assumption.
65 */
66 extern unsigned long mips_io_port_base;
67
set_io_port_base(unsigned long base)68 static inline void set_io_port_base(unsigned long base)
69 {
70 mips_io_port_base = base;
71 }
72
73 /*
74 * Provide the necessary definitions for generic iomap. We make use of
75 * mips_io_port_base for iomap(), but we don't reserve any low addresses for
76 * use with I/O ports.
77 */
78
79 #define HAVE_ARCH_PIO_SIZE
80 #define PIO_OFFSET mips_io_port_base
81 #define PIO_MASK IO_SPACE_LIMIT
82 #define PIO_RESERVED 0x0UL
83
84 /*
85 * Enforce in-order execution of data I/O. In the MIPS architecture
86 * these are equivalent to corresponding platform-specific memory
87 * barriers defined in <asm/barrier.h>. API pinched from PowerPC,
88 * with sync additionally defined.
89 */
90 #define iobarrier_rw() mb()
91 #define iobarrier_r() rmb()
92 #define iobarrier_w() wmb()
93 #define iobarrier_sync() iob()
94
95 /*
96 * virt_to_phys - map virtual addresses to physical
97 * @address: address to remap
98 *
99 * The returned physical address is the physical (CPU) mapping for
100 * the memory address given. It is only valid to use this function on
101 * addresses directly mapped or allocated via kmalloc.
102 *
103 * This function does not give bus mappings for DMA transfers. In
104 * almost all conceivable cases a device driver should not be using
105 * this function
106 */
virt_to_phys(volatile const void * address)107 static inline unsigned long virt_to_phys(volatile const void *address)
108 {
109 return __pa(address);
110 }
111
112 /*
113 * phys_to_virt - map physical address to virtual
114 * @address: address to remap
115 *
116 * The returned virtual address is a current CPU mapping for
117 * the memory address given. It is only valid to use this function on
118 * addresses that have a kernel mapping
119 *
120 * This function does not handle bus mappings for DMA transfers. In
121 * almost all conceivable cases a device driver should not be using
122 * this function
123 */
phys_to_virt(unsigned long address)124 static inline void * phys_to_virt(unsigned long address)
125 {
126 return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
127 }
128
129 /*
130 * ISA I/O bus memory addresses are 1:1 with the physical address.
131 */
isa_virt_to_bus(volatile void * address)132 static inline unsigned long isa_virt_to_bus(volatile void *address)
133 {
134 return virt_to_phys(address);
135 }
136
isa_bus_to_virt(unsigned long address)137 static inline void *isa_bus_to_virt(unsigned long address)
138 {
139 return phys_to_virt(address);
140 }
141
142 /*
143 * However PCI ones are not necessarily 1:1 and therefore these interfaces
144 * are forbidden in portable PCI drivers.
145 *
146 * Allow them for x86 for legacy drivers, though.
147 */
148 #define virt_to_bus virt_to_phys
149 #define bus_to_virt phys_to_virt
150
151 /*
152 * Change "struct page" to physical address.
153 */
154 #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
155
156 extern void __iomem * __ioremap(phys_addr_t offset, phys_addr_t size, unsigned long flags);
157 extern void __iounmap(const volatile void __iomem *addr);
158
__ioremap_mode(phys_addr_t offset,unsigned long size,unsigned long flags)159 static inline void __iomem * __ioremap_mode(phys_addr_t offset, unsigned long size,
160 unsigned long flags)
161 {
162 void __iomem *addr = plat_ioremap(offset, size, flags);
163
164 if (addr)
165 return addr;
166
167 #define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL))
168
169 if (cpu_has_64bit_addresses) {
170 u64 base = UNCAC_BASE;
171
172 /*
173 * R10000 supports a 2 bit uncached attribute therefore
174 * UNCAC_BASE may not equal IO_BASE.
175 */
176 if (flags == _CACHE_UNCACHED)
177 base = (u64) IO_BASE;
178 return (void __iomem *) (unsigned long) (base + offset);
179 } else if (__builtin_constant_p(offset) &&
180 __builtin_constant_p(size) && __builtin_constant_p(flags)) {
181 phys_addr_t phys_addr, last_addr;
182
183 phys_addr = fixup_bigphys_addr(offset, size);
184
185 /* Don't allow wraparound or zero size. */
186 last_addr = phys_addr + size - 1;
187 if (!size || last_addr < phys_addr)
188 return NULL;
189
190 /*
191 * Map uncached objects in the low 512MB of address
192 * space using KSEG1.
193 */
194 if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
195 flags == _CACHE_UNCACHED)
196 return (void __iomem *)
197 (unsigned long)CKSEG1ADDR(phys_addr);
198 }
199
200 return __ioremap(offset, size, flags);
201
202 #undef __IS_LOW512
203 }
204
205 /*
206 * ioremap_prot - map bus memory into CPU space
207 * @offset: bus address of the memory
208 * @size: size of the resource to map
209
210 * ioremap_prot gives the caller control over cache coherency attributes (CCA)
211 */
ioremap_prot(phys_addr_t offset,unsigned long size,unsigned long prot_val)212 static inline void __iomem *ioremap_prot(phys_addr_t offset,
213 unsigned long size, unsigned long prot_val) {
214 return __ioremap_mode(offset, size, prot_val & _CACHE_MASK);
215 }
216
217 /*
218 * ioremap - map bus memory into CPU space
219 * @offset: bus address of the memory
220 * @size: size of the resource to map
221 *
222 * ioremap performs a platform specific sequence of operations to
223 * make bus memory CPU accessible via the readb/readw/readl/writeb/
224 * writew/writel functions and the other mmio helpers. The returned
225 * address is not guaranteed to be usable directly as a virtual
226 * address.
227 */
228 #define ioremap(offset, size) \
229 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
230
231 /*
232 * ioremap_nocache - map bus memory into CPU space
233 * @offset: bus address of the memory
234 * @size: size of the resource to map
235 *
236 * ioremap_nocache performs a platform specific sequence of operations to
237 * make bus memory CPU accessible via the readb/readw/readl/writeb/
238 * writew/writel functions and the other mmio helpers. The returned
239 * address is not guaranteed to be usable directly as a virtual
240 * address.
241 *
242 * This version of ioremap ensures that the memory is marked uncachable
243 * on the CPU as well as honouring existing caching rules from things like
244 * the PCI bus. Note that there are other caches and buffers on many
245 * busses. In particular driver authors should read up on PCI writes
246 *
247 * It's useful if some control registers are in such an area and
248 * write combining or read caching is not desirable:
249 */
250 #define ioremap_nocache(offset, size) \
251 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
252 #define ioremap_uc ioremap_nocache
253
254 /*
255 * ioremap_cache - map bus memory into CPU space
256 * @offset: bus address of the memory
257 * @size: size of the resource to map
258 *
259 * ioremap_cache performs a platform specific sequence of operations to
260 * make bus memory CPU accessible via the readb/readw/readl/writeb/
261 * writew/writel functions and the other mmio helpers. The returned
262 * address is not guaranteed to be usable directly as a virtual
263 * address.
264 *
265 * This version of ioremap ensures that the memory is marked cachable by
266 * the CPU. Also enables full write-combining. Useful for some
267 * memory-like regions on I/O busses.
268 */
269 #define ioremap_cache(offset, size) \
270 __ioremap_mode((offset), (size), _page_cachable_default)
271
272 /*
273 * ioremap_wc - map bus memory into CPU space
274 * @offset: bus address of the memory
275 * @size: size of the resource to map
276 *
277 * ioremap_wc performs a platform specific sequence of operations to
278 * make bus memory CPU accessible via the readb/readw/readl/writeb/
279 * writew/writel functions and the other mmio helpers. The returned
280 * address is not guaranteed to be usable directly as a virtual
281 * address.
282 *
283 * This version of ioremap ensures that the memory is marked uncachable
284 * but accelerated by means of write-combining feature. It is specifically
285 * useful for PCIe prefetchable windows, which may vastly improve a
286 * communications performance. If it was determined on boot stage, what
287 * CPU CCA doesn't support UCA, the method shall fall-back to the
288 * _CACHE_UNCACHED option (see cpu_probe() method).
289 */
290 #define ioremap_wc(offset, size) \
291 __ioremap_mode((offset), (size), boot_cpu_data.writecombine)
292
iounmap(const volatile void __iomem * addr)293 static inline void iounmap(const volatile void __iomem *addr)
294 {
295 if (plat_iounmap(addr))
296 return;
297
298 #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
299
300 if (cpu_has_64bit_addresses ||
301 (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
302 return;
303
304 __iounmap(addr);
305
306 #undef __IS_KSEG1
307 }
308
309 #if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_CPU_LOONGSON3)
310 #define war_io_reorder_wmb() wmb()
311 #else
312 #define war_io_reorder_wmb() barrier()
313 #endif
314
315 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq) \
316 \
317 static inline void pfx##write##bwlq(type val, \
318 volatile void __iomem *mem) \
319 { \
320 volatile type *__mem; \
321 type __val; \
322 \
323 if (barrier) \
324 iobarrier_rw(); \
325 else \
326 war_io_reorder_wmb(); \
327 \
328 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
329 \
330 __val = pfx##ioswab##bwlq(__mem, val); \
331 \
332 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
333 *__mem = __val; \
334 else if (cpu_has_64bits) { \
335 unsigned long __flags; \
336 type __tmp; \
337 \
338 if (irq) \
339 local_irq_save(__flags); \
340 __asm__ __volatile__( \
341 ".set push" "\t\t# __writeq""\n\t" \
342 ".set arch=r4000" "\n\t" \
343 "dsll32 %L0, %L0, 0" "\n\t" \
344 "dsrl32 %L0, %L0, 0" "\n\t" \
345 "dsll32 %M0, %M0, 0" "\n\t" \
346 "or %L0, %L0, %M0" "\n\t" \
347 "sd %L0, %2" "\n\t" \
348 ".set pop" "\n" \
349 : "=r" (__tmp) \
350 : "0" (__val), "m" (*__mem)); \
351 if (irq) \
352 local_irq_restore(__flags); \
353 } else \
354 BUG(); \
355 } \
356 \
357 static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
358 { \
359 volatile type *__mem; \
360 type __val; \
361 \
362 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
363 \
364 if (barrier) \
365 iobarrier_rw(); \
366 \
367 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
368 __val = *__mem; \
369 else if (cpu_has_64bits) { \
370 unsigned long __flags; \
371 \
372 if (irq) \
373 local_irq_save(__flags); \
374 __asm__ __volatile__( \
375 ".set push" "\t\t# __readq" "\n\t" \
376 ".set arch=r4000" "\n\t" \
377 "ld %L0, %1" "\n\t" \
378 "dsra32 %M0, %L0, 0" "\n\t" \
379 "sll %L0, %L0, 0" "\n\t" \
380 ".set pop" "\n" \
381 : "=r" (__val) \
382 : "m" (*__mem)); \
383 if (irq) \
384 local_irq_restore(__flags); \
385 } else { \
386 __val = 0; \
387 BUG(); \
388 } \
389 \
390 /* prevent prefetching of coherent DMA data prematurely */ \
391 if (!relax) \
392 rmb(); \
393 return pfx##ioswab##bwlq(__mem, __val); \
394 }
395
396 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax, p) \
397 \
398 static inline void pfx##out##bwlq##p(type val, unsigned long port) \
399 { \
400 volatile type *__addr; \
401 type __val; \
402 \
403 if (barrier) \
404 iobarrier_rw(); \
405 else \
406 war_io_reorder_wmb(); \
407 \
408 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
409 \
410 __val = pfx##ioswab##bwlq(__addr, val); \
411 \
412 /* Really, we want this to be atomic */ \
413 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
414 \
415 *__addr = __val; \
416 } \
417 \
418 static inline type pfx##in##bwlq##p(unsigned long port) \
419 { \
420 volatile type *__addr; \
421 type __val; \
422 \
423 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
424 \
425 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
426 \
427 if (barrier) \
428 iobarrier_rw(); \
429 \
430 __val = *__addr; \
431 \
432 /* prevent prefetching of coherent DMA data prematurely */ \
433 if (!relax) \
434 rmb(); \
435 return pfx##ioswab##bwlq(__addr, __val); \
436 }
437
438 #define __BUILD_MEMORY_PFX(bus, bwlq, type, relax) \
439 \
440 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1)
441
442 #define BUILDIO_MEM(bwlq, type) \
443 \
444 __BUILD_MEMORY_PFX(__raw_, bwlq, type, 0) \
445 __BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1) \
446 __BUILD_MEMORY_PFX(__mem_, bwlq, type, 0) \
447 __BUILD_MEMORY_PFX(, bwlq, type, 0)
448
BUILDIO_MEM(b,u8)449 BUILDIO_MEM(b, u8)
450 BUILDIO_MEM(w, u16)
451 BUILDIO_MEM(l, u32)
452 #ifdef CONFIG_64BIT
453 BUILDIO_MEM(q, u64)
454 #else
455 __BUILD_MEMORY_PFX(__raw_, q, u64, 0)
456 __BUILD_MEMORY_PFX(__mem_, q, u64, 0)
457 #endif
458
459 #define __BUILD_IOPORT_PFX(bus, bwlq, type) \
460 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0,) \
461 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0, _p)
462
463 #define BUILDIO_IOPORT(bwlq, type) \
464 __BUILD_IOPORT_PFX(, bwlq, type) \
465 __BUILD_IOPORT_PFX(__mem_, bwlq, type)
466
467 BUILDIO_IOPORT(b, u8)
468 BUILDIO_IOPORT(w, u16)
469 BUILDIO_IOPORT(l, u32)
470 #ifdef CONFIG_64BIT
471 BUILDIO_IOPORT(q, u64)
472 #endif
473
474 #define __BUILDIO(bwlq, type) \
475 \
476 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0)
477
478 __BUILDIO(q, u64)
479
480 #define readb_relaxed __relaxed_readb
481 #define readw_relaxed __relaxed_readw
482 #define readl_relaxed __relaxed_readl
483 #ifdef CONFIG_64BIT
484 #define readq_relaxed __relaxed_readq
485 #endif
486
487 #define writeb_relaxed __relaxed_writeb
488 #define writew_relaxed __relaxed_writew
489 #define writel_relaxed __relaxed_writel
490 #ifdef CONFIG_64BIT
491 #define writeq_relaxed __relaxed_writeq
492 #endif
493
494 #define readb_be(addr) \
495 __raw_readb((__force unsigned *)(addr))
496 #define readw_be(addr) \
497 be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
498 #define readl_be(addr) \
499 be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
500 #define readq_be(addr) \
501 be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
502
503 #define writeb_be(val, addr) \
504 __raw_writeb((val), (__force unsigned *)(addr))
505 #define writew_be(val, addr) \
506 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
507 #define writel_be(val, addr) \
508 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
509 #define writeq_be(val, addr) \
510 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
511
512 /*
513 * Some code tests for these symbols
514 */
515 #ifdef CONFIG_64BIT
516 #define readq readq
517 #define writeq writeq
518 #endif
519
520 #define __BUILD_MEMORY_STRING(bwlq, type) \
521 \
522 static inline void writes##bwlq(volatile void __iomem *mem, \
523 const void *addr, unsigned int count) \
524 { \
525 const volatile type *__addr = addr; \
526 \
527 while (count--) { \
528 __mem_write##bwlq(*__addr, mem); \
529 __addr++; \
530 } \
531 } \
532 \
533 static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
534 unsigned int count) \
535 { \
536 volatile type *__addr = addr; \
537 \
538 while (count--) { \
539 *__addr = __mem_read##bwlq(mem); \
540 __addr++; \
541 } \
542 }
543
544 #define __BUILD_IOPORT_STRING(bwlq, type) \
545 \
546 static inline void outs##bwlq(unsigned long port, const void *addr, \
547 unsigned int count) \
548 { \
549 const volatile type *__addr = addr; \
550 \
551 while (count--) { \
552 __mem_out##bwlq(*__addr, port); \
553 __addr++; \
554 } \
555 } \
556 \
557 static inline void ins##bwlq(unsigned long port, void *addr, \
558 unsigned int count) \
559 { \
560 volatile type *__addr = addr; \
561 \
562 while (count--) { \
563 *__addr = __mem_in##bwlq(port); \
564 __addr++; \
565 } \
566 }
567
568 #define BUILDSTRING(bwlq, type) \
569 \
570 __BUILD_MEMORY_STRING(bwlq, type) \
571 __BUILD_IOPORT_STRING(bwlq, type)
572
573 BUILDSTRING(b, u8)
574 BUILDSTRING(w, u16)
575 BUILDSTRING(l, u32)
576 #ifdef CONFIG_64BIT
577 BUILDSTRING(q, u64)
578 #endif
579
580 static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
581 {
582 memset((void __force *) addr, val, count);
583 }
memcpy_fromio(void * dst,const volatile void __iomem * src,int count)584 static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
585 {
586 memcpy(dst, (void __force *) src, count);
587 }
memcpy_toio(volatile void __iomem * dst,const void * src,int count)588 static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
589 {
590 memcpy((void __force *) dst, src, count);
591 }
592
593 /*
594 * The caches on some architectures aren't dma-coherent and have need to
595 * handle this in software. There are three types of operations that
596 * can be applied to dma buffers.
597 *
598 * - dma_cache_wback_inv(start, size) makes caches and coherent by
599 * writing the content of the caches back to memory, if necessary.
600 * The function also invalidates the affected part of the caches as
601 * necessary before DMA transfers from outside to memory.
602 * - dma_cache_wback(start, size) makes caches and coherent by
603 * writing the content of the caches back to memory, if necessary.
604 * The function also invalidates the affected part of the caches as
605 * necessary before DMA transfers from outside to memory.
606 * - dma_cache_inv(start, size) invalidates the affected parts of the
607 * caches. Dirty lines of the caches may be written back or simply
608 * be discarded. This operation is necessary before dma operations
609 * to the memory.
610 *
611 * This API used to be exported; it now is for arch code internal use only.
612 */
613 #ifdef CONFIG_DMA_NONCOHERENT
614
615 extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
616 extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
617 extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
618
619 #define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
620 #define dma_cache_wback(start, size) _dma_cache_wback(start, size)
621 #define dma_cache_inv(start, size) _dma_cache_inv(start, size)
622
623 #else /* Sane hardware */
624
625 #define dma_cache_wback_inv(start,size) \
626 do { (void) (start); (void) (size); } while (0)
627 #define dma_cache_wback(start,size) \
628 do { (void) (start); (void) (size); } while (0)
629 #define dma_cache_inv(start,size) \
630 do { (void) (start); (void) (size); } while (0)
631
632 #endif /* CONFIG_DMA_NONCOHERENT */
633
634 /*
635 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
636 * Avoid interrupt mucking, just adjust the address for 4-byte access.
637 * Assume the addresses are 8-byte aligned.
638 */
639 #ifdef __MIPSEB__
640 #define __CSR_32_ADJUST 4
641 #else
642 #define __CSR_32_ADJUST 0
643 #endif
644
645 #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
646 #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
647
648 /*
649 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
650 * access
651 */
652 #define xlate_dev_mem_ptr(p) __va(p)
653
654 /*
655 * Convert a virtual cached pointer to an uncached pointer
656 */
657 #define xlate_dev_kmem_ptr(p) p
658
659 void __ioread64_copy(void *to, const void __iomem *from, size_t count);
660
661 #endif /* _ASM_IO_H */
662