• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994, 1995 Waldorf GmbH
7  * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
10  *	Author: Maciej W. Rozycki <macro@mips.com>
11  */
12 #ifndef _ASM_IO_H
13 #define _ASM_IO_H
14 
15 #define ARCH_HAS_IOREMAP_WC
16 
17 #include <linux/compiler.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/irqflags.h>
21 
22 #include <asm/addrspace.h>
23 #include <asm/barrier.h>
24 #include <asm/bug.h>
25 #include <asm/byteorder.h>
26 #include <asm/cpu.h>
27 #include <asm/cpu-features.h>
28 #include <asm-generic/iomap.h>
29 #include <asm/page.h>
30 #include <asm/pgtable-bits.h>
31 #include <asm/processor.h>
32 #include <asm/string.h>
33 
34 #include <ioremap.h>
35 #include <mangle-port.h>
36 
37 /*
38  * Raw operations are never swapped in software.  OTOH values that raw
39  * operations are working on may or may not have been swapped by the bus
40  * hardware.  An example use would be for flash memory that's used for
41  * execute in place.
42  */
43 # define __raw_ioswabb(a, x)	(x)
44 # define __raw_ioswabw(a, x)	(x)
45 # define __raw_ioswabl(a, x)	(x)
46 # define __raw_ioswabq(a, x)	(x)
47 # define ____raw_ioswabq(a, x)	(x)
48 
49 # define __relaxed_ioswabb ioswabb
50 # define __relaxed_ioswabw ioswabw
51 # define __relaxed_ioswabl ioswabl
52 # define __relaxed_ioswabq ioswabq
53 
54 /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
55 
56 #define IO_SPACE_LIMIT 0xffff
57 
58 /*
59  * On MIPS I/O ports are memory mapped, so we access them using normal
60  * load/store instructions. mips_io_port_base is the virtual address to
61  * which all ports are being mapped.  For sake of efficiency some code
62  * assumes that this is an address that can be loaded with a single lui
63  * instruction, so the lower 16 bits must be zero.  Should be true on
64  * on any sane architecture; generic code does not use this assumption.
65  */
66 extern unsigned long mips_io_port_base;
67 
set_io_port_base(unsigned long base)68 static inline void set_io_port_base(unsigned long base)
69 {
70 	mips_io_port_base = base;
71 }
72 
73 /*
74  * Provide the necessary definitions for generic iomap. We make use of
75  * mips_io_port_base for iomap(), but we don't reserve any low addresses for
76  * use with I/O ports.
77  */
78 
79 #define HAVE_ARCH_PIO_SIZE
80 #define PIO_OFFSET	mips_io_port_base
81 #define PIO_MASK	IO_SPACE_LIMIT
82 #define PIO_RESERVED	0x0UL
83 
84 /*
85  * Enforce in-order execution of data I/O.  In the MIPS architecture
86  * these are equivalent to corresponding platform-specific memory
87  * barriers defined in <asm/barrier.h>.  API pinched from PowerPC,
88  * with sync additionally defined.
89  */
90 #define iobarrier_rw() mb()
91 #define iobarrier_r() rmb()
92 #define iobarrier_w() wmb()
93 #define iobarrier_sync() iob()
94 
95 /*
96  *     virt_to_phys    -       map virtual addresses to physical
97  *     @address: address to remap
98  *
99  *     The returned physical address is the physical (CPU) mapping for
100  *     the memory address given. It is only valid to use this function on
101  *     addresses directly mapped or allocated via kmalloc.
102  *
103  *     This function does not give bus mappings for DMA transfers. In
104  *     almost all conceivable cases a device driver should not be using
105  *     this function
106  */
virt_to_phys(volatile const void * address)107 static inline unsigned long virt_to_phys(volatile const void *address)
108 {
109 	return __pa(address);
110 }
111 
112 /*
113  *     phys_to_virt    -       map physical address to virtual
114  *     @address: address to remap
115  *
116  *     The returned virtual address is a current CPU mapping for
117  *     the memory address given. It is only valid to use this function on
118  *     addresses that have a kernel mapping
119  *
120  *     This function does not handle bus mappings for DMA transfers. In
121  *     almost all conceivable cases a device driver should not be using
122  *     this function
123  */
phys_to_virt(unsigned long address)124 static inline void * phys_to_virt(unsigned long address)
125 {
126 	return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
127 }
128 
129 /*
130  * ISA I/O bus memory addresses are 1:1 with the physical address.
131  */
isa_virt_to_bus(volatile void * address)132 static inline unsigned long isa_virt_to_bus(volatile void *address)
133 {
134 	return virt_to_phys(address);
135 }
136 
isa_bus_to_virt(unsigned long address)137 static inline void *isa_bus_to_virt(unsigned long address)
138 {
139 	return phys_to_virt(address);
140 }
141 
142 /*
143  * However PCI ones are not necessarily 1:1 and therefore these interfaces
144  * are forbidden in portable PCI drivers.
145  *
146  * Allow them for x86 for legacy drivers, though.
147  */
148 #define virt_to_bus virt_to_phys
149 #define bus_to_virt phys_to_virt
150 
151 /*
152  * Change "struct page" to physical address.
153  */
154 #define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
155 
156 extern void __iomem * __ioremap(phys_addr_t offset, phys_addr_t size, unsigned long flags);
157 extern void __iounmap(const volatile void __iomem *addr);
158 
__ioremap_mode(phys_addr_t offset,unsigned long size,unsigned long flags)159 static inline void __iomem * __ioremap_mode(phys_addr_t offset, unsigned long size,
160 	unsigned long flags)
161 {
162 	void __iomem *addr = plat_ioremap(offset, size, flags);
163 
164 	if (addr)
165 		return addr;
166 
167 #define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL))
168 
169 	if (cpu_has_64bit_addresses) {
170 		u64 base = UNCAC_BASE;
171 
172 		/*
173 		 * R10000 supports a 2 bit uncached attribute therefore
174 		 * UNCAC_BASE may not equal IO_BASE.
175 		 */
176 		if (flags == _CACHE_UNCACHED)
177 			base = (u64) IO_BASE;
178 		return (void __iomem *) (unsigned long) (base + offset);
179 	} else if (__builtin_constant_p(offset) &&
180 		   __builtin_constant_p(size) && __builtin_constant_p(flags)) {
181 		phys_addr_t phys_addr, last_addr;
182 
183 		phys_addr = fixup_bigphys_addr(offset, size);
184 
185 		/* Don't allow wraparound or zero size. */
186 		last_addr = phys_addr + size - 1;
187 		if (!size || last_addr < phys_addr)
188 			return NULL;
189 
190 		/*
191 		 * Map uncached objects in the low 512MB of address
192 		 * space using KSEG1.
193 		 */
194 		if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
195 		    flags == _CACHE_UNCACHED)
196 			return (void __iomem *)
197 				(unsigned long)CKSEG1ADDR(phys_addr);
198 	}
199 
200 	return __ioremap(offset, size, flags);
201 
202 #undef __IS_LOW512
203 }
204 
205 /*
206  * ioremap_prot     -   map bus memory into CPU space
207  * @offset:    bus address of the memory
208  * @size:      size of the resource to map
209 
210  * ioremap_prot gives the caller control over cache coherency attributes (CCA)
211  */
ioremap_prot(phys_addr_t offset,unsigned long size,unsigned long prot_val)212 static inline void __iomem *ioremap_prot(phys_addr_t offset,
213 		unsigned long size, unsigned long prot_val) {
214 	return __ioremap_mode(offset, size, prot_val & _CACHE_MASK);
215 }
216 
217 /*
218  * ioremap     -   map bus memory into CPU space
219  * @offset:    bus address of the memory
220  * @size:      size of the resource to map
221  *
222  * ioremap performs a platform specific sequence of operations to
223  * make bus memory CPU accessible via the readb/readw/readl/writeb/
224  * writew/writel functions and the other mmio helpers. The returned
225  * address is not guaranteed to be usable directly as a virtual
226  * address.
227  */
228 #define ioremap(offset, size)						\
229 	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
230 
231 /*
232  * ioremap_nocache     -   map bus memory into CPU space
233  * @offset:    bus address of the memory
234  * @size:      size of the resource to map
235  *
236  * ioremap_nocache performs a platform specific sequence of operations to
237  * make bus memory CPU accessible via the readb/readw/readl/writeb/
238  * writew/writel functions and the other mmio helpers. The returned
239  * address is not guaranteed to be usable directly as a virtual
240  * address.
241  *
242  * This version of ioremap ensures that the memory is marked uncachable
243  * on the CPU as well as honouring existing caching rules from things like
244  * the PCI bus. Note that there are other caches and buffers on many
245  * busses. In particular driver authors should read up on PCI writes
246  *
247  * It's useful if some control registers are in such an area and
248  * write combining or read caching is not desirable:
249  */
250 #define ioremap_nocache(offset, size)					\
251 	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
252 #define ioremap_uc ioremap_nocache
253 
254 /*
255  * ioremap_cache -	map bus memory into CPU space
256  * @offset:	    bus address of the memory
257  * @size:	    size of the resource to map
258  *
259  * ioremap_cache performs a platform specific sequence of operations to
260  * make bus memory CPU accessible via the readb/readw/readl/writeb/
261  * writew/writel functions and the other mmio helpers. The returned
262  * address is not guaranteed to be usable directly as a virtual
263  * address.
264  *
265  * This version of ioremap ensures that the memory is marked cachable by
266  * the CPU.  Also enables full write-combining.	 Useful for some
267  * memory-like regions on I/O busses.
268  */
269 #define ioremap_cache(offset, size)					\
270 	__ioremap_mode((offset), (size), _page_cachable_default)
271 
272 /*
273  * ioremap_wc     -   map bus memory into CPU space
274  * @offset:    bus address of the memory
275  * @size:      size of the resource to map
276  *
277  * ioremap_wc performs a platform specific sequence of operations to
278  * make bus memory CPU accessible via the readb/readw/readl/writeb/
279  * writew/writel functions and the other mmio helpers. The returned
280  * address is not guaranteed to be usable directly as a virtual
281  * address.
282  *
283  * This version of ioremap ensures that the memory is marked uncachable
284  * but accelerated by means of write-combining feature. It is specifically
285  * useful for PCIe prefetchable windows, which may vastly improve a
286  * communications performance. If it was determined on boot stage, what
287  * CPU CCA doesn't support UCA, the method shall fall-back to the
288  * _CACHE_UNCACHED option (see cpu_probe() method).
289  */
290 #define ioremap_wc(offset, size)					\
291 	__ioremap_mode((offset), (size), boot_cpu_data.writecombine)
292 
iounmap(const volatile void __iomem * addr)293 static inline void iounmap(const volatile void __iomem *addr)
294 {
295 	if (plat_iounmap(addr))
296 		return;
297 
298 #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
299 
300 	if (cpu_has_64bit_addresses ||
301 	    (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
302 		return;
303 
304 	__iounmap(addr);
305 
306 #undef __IS_KSEG1
307 }
308 
309 #if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_CPU_LOONGSON3)
310 #define war_io_reorder_wmb()		wmb()
311 #else
312 #define war_io_reorder_wmb()		barrier()
313 #endif
314 
315 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq)	\
316 									\
317 static inline void pfx##write##bwlq(type val,				\
318 				    volatile void __iomem *mem)		\
319 {									\
320 	volatile type *__mem;						\
321 	type __val;							\
322 									\
323 	if (barrier)							\
324 		iobarrier_rw();						\
325 	else								\
326 		war_io_reorder_wmb();					\
327 									\
328 	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
329 									\
330 	__val = pfx##ioswab##bwlq(__mem, val);				\
331 									\
332 	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
333 		*__mem = __val;						\
334 	else if (cpu_has_64bits) {					\
335 		unsigned long __flags;					\
336 		type __tmp;						\
337 									\
338 		if (irq)						\
339 			local_irq_save(__flags);			\
340 		__asm__ __volatile__(					\
341 			".set	push"		"\t\t# __writeq""\n\t"	\
342 			".set	arch=r4000"			"\n\t"	\
343 			"dsll32 %L0, %L0, 0"			"\n\t"	\
344 			"dsrl32 %L0, %L0, 0"			"\n\t"	\
345 			"dsll32 %M0, %M0, 0"			"\n\t"	\
346 			"or	%L0, %L0, %M0"			"\n\t"	\
347 			"sd	%L0, %2"			"\n\t"	\
348 			".set	pop"				"\n"	\
349 			: "=r" (__tmp)					\
350 			: "0" (__val), "m" (*__mem));			\
351 		if (irq)						\
352 			local_irq_restore(__flags);			\
353 	} else								\
354 		BUG();							\
355 }									\
356 									\
357 static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
358 {									\
359 	volatile type *__mem;						\
360 	type __val;							\
361 									\
362 	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
363 									\
364 	if (barrier)							\
365 		iobarrier_rw();						\
366 									\
367 	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
368 		__val = *__mem;						\
369 	else if (cpu_has_64bits) {					\
370 		unsigned long __flags;					\
371 									\
372 		if (irq)						\
373 			local_irq_save(__flags);			\
374 		__asm__ __volatile__(					\
375 			".set	push"		"\t\t# __readq" "\n\t"	\
376 			".set	arch=r4000"			"\n\t"	\
377 			"ld	%L0, %1"			"\n\t"	\
378 			"dsra32 %M0, %L0, 0"			"\n\t"	\
379 			"sll	%L0, %L0, 0"			"\n\t"	\
380 			".set	pop"				"\n"	\
381 			: "=r" (__val)					\
382 			: "m" (*__mem));				\
383 		if (irq)						\
384 			local_irq_restore(__flags);			\
385 	} else {							\
386 		__val = 0;						\
387 		BUG();							\
388 	}								\
389 									\
390 	/* prevent prefetching of coherent DMA data prematurely */	\
391 	if (!relax)							\
392 		rmb();							\
393 	return pfx##ioswab##bwlq(__mem, __val);				\
394 }
395 
396 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax, p)	\
397 									\
398 static inline void pfx##out##bwlq##p(type val, unsigned long port)	\
399 {									\
400 	volatile type *__addr;						\
401 	type __val;							\
402 									\
403 	if (barrier)							\
404 		iobarrier_rw();						\
405 	else								\
406 		war_io_reorder_wmb();					\
407 									\
408 	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
409 									\
410 	__val = pfx##ioswab##bwlq(__addr, val);				\
411 									\
412 	/* Really, we want this to be atomic */				\
413 	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
414 									\
415 	*__addr = __val;						\
416 }									\
417 									\
418 static inline type pfx##in##bwlq##p(unsigned long port)			\
419 {									\
420 	volatile type *__addr;						\
421 	type __val;							\
422 									\
423 	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
424 									\
425 	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
426 									\
427 	if (barrier)							\
428 		iobarrier_rw();						\
429 									\
430 	__val = *__addr;						\
431 									\
432 	/* prevent prefetching of coherent DMA data prematurely */	\
433 	if (!relax)							\
434 		rmb();							\
435 	return pfx##ioswab##bwlq(__addr, __val);			\
436 }
437 
438 #define __BUILD_MEMORY_PFX(bus, bwlq, type, relax)			\
439 									\
440 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1)
441 
442 #define BUILDIO_MEM(bwlq, type)						\
443 									\
444 __BUILD_MEMORY_PFX(__raw_, bwlq, type, 0)				\
445 __BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1)				\
446 __BUILD_MEMORY_PFX(__mem_, bwlq, type, 0)				\
447 __BUILD_MEMORY_PFX(, bwlq, type, 0)
448 
BUILDIO_MEM(b,u8)449 BUILDIO_MEM(b, u8)
450 BUILDIO_MEM(w, u16)
451 BUILDIO_MEM(l, u32)
452 #ifdef CONFIG_64BIT
453 BUILDIO_MEM(q, u64)
454 #else
455 __BUILD_MEMORY_PFX(__raw_, q, u64, 0)
456 __BUILD_MEMORY_PFX(__mem_, q, u64, 0)
457 #endif
458 
459 #define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
460 	__BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0,)			\
461 	__BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0, _p)
462 
463 #define BUILDIO_IOPORT(bwlq, type)					\
464 	__BUILD_IOPORT_PFX(, bwlq, type)				\
465 	__BUILD_IOPORT_PFX(__mem_, bwlq, type)
466 
467 BUILDIO_IOPORT(b, u8)
468 BUILDIO_IOPORT(w, u16)
469 BUILDIO_IOPORT(l, u32)
470 #ifdef CONFIG_64BIT
471 BUILDIO_IOPORT(q, u64)
472 #endif
473 
474 #define __BUILDIO(bwlq, type)						\
475 									\
476 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0)
477 
478 __BUILDIO(q, u64)
479 
480 #define readb_relaxed			__relaxed_readb
481 #define readw_relaxed			__relaxed_readw
482 #define readl_relaxed			__relaxed_readl
483 #ifdef CONFIG_64BIT
484 #define readq_relaxed			__relaxed_readq
485 #endif
486 
487 #define writeb_relaxed			__relaxed_writeb
488 #define writew_relaxed			__relaxed_writew
489 #define writel_relaxed			__relaxed_writel
490 #ifdef CONFIG_64BIT
491 #define writeq_relaxed			__relaxed_writeq
492 #endif
493 
494 #define readb_be(addr)							\
495 	__raw_readb((__force unsigned *)(addr))
496 #define readw_be(addr)							\
497 	be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
498 #define readl_be(addr)							\
499 	be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
500 #define readq_be(addr)							\
501 	be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
502 
503 #define writeb_be(val, addr)						\
504 	__raw_writeb((val), (__force unsigned *)(addr))
505 #define writew_be(val, addr)						\
506 	__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
507 #define writel_be(val, addr)						\
508 	__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
509 #define writeq_be(val, addr)						\
510 	__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
511 
512 /*
513  * Some code tests for these symbols
514  */
515 #ifdef CONFIG_64BIT
516 #define readq				readq
517 #define writeq				writeq
518 #endif
519 
520 #define __BUILD_MEMORY_STRING(bwlq, type)				\
521 									\
522 static inline void writes##bwlq(volatile void __iomem *mem,		\
523 				const void *addr, unsigned int count)	\
524 {									\
525 	const volatile type *__addr = addr;				\
526 									\
527 	while (count--) {						\
528 		__mem_write##bwlq(*__addr, mem);			\
529 		__addr++;						\
530 	}								\
531 }									\
532 									\
533 static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
534 			       unsigned int count)			\
535 {									\
536 	volatile type *__addr = addr;					\
537 									\
538 	while (count--) {						\
539 		*__addr = __mem_read##bwlq(mem);			\
540 		__addr++;						\
541 	}								\
542 }
543 
544 #define __BUILD_IOPORT_STRING(bwlq, type)				\
545 									\
546 static inline void outs##bwlq(unsigned long port, const void *addr,	\
547 			      unsigned int count)			\
548 {									\
549 	const volatile type *__addr = addr;				\
550 									\
551 	while (count--) {						\
552 		__mem_out##bwlq(*__addr, port);				\
553 		__addr++;						\
554 	}								\
555 }									\
556 									\
557 static inline void ins##bwlq(unsigned long port, void *addr,		\
558 			     unsigned int count)			\
559 {									\
560 	volatile type *__addr = addr;					\
561 									\
562 	while (count--) {						\
563 		*__addr = __mem_in##bwlq(port);				\
564 		__addr++;						\
565 	}								\
566 }
567 
568 #define BUILDSTRING(bwlq, type)						\
569 									\
570 __BUILD_MEMORY_STRING(bwlq, type)					\
571 __BUILD_IOPORT_STRING(bwlq, type)
572 
573 BUILDSTRING(b, u8)
574 BUILDSTRING(w, u16)
575 BUILDSTRING(l, u32)
576 #ifdef CONFIG_64BIT
577 BUILDSTRING(q, u64)
578 #endif
579 
580 static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
581 {
582 	memset((void __force *) addr, val, count);
583 }
memcpy_fromio(void * dst,const volatile void __iomem * src,int count)584 static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
585 {
586 	memcpy(dst, (void __force *) src, count);
587 }
memcpy_toio(volatile void __iomem * dst,const void * src,int count)588 static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
589 {
590 	memcpy((void __force *) dst, src, count);
591 }
592 
593 /*
594  * The caches on some architectures aren't dma-coherent and have need to
595  * handle this in software.  There are three types of operations that
596  * can be applied to dma buffers.
597  *
598  *  - dma_cache_wback_inv(start, size) makes caches and coherent by
599  *    writing the content of the caches back to memory, if necessary.
600  *    The function also invalidates the affected part of the caches as
601  *    necessary before DMA transfers from outside to memory.
602  *  - dma_cache_wback(start, size) makes caches and coherent by
603  *    writing the content of the caches back to memory, if necessary.
604  *    The function also invalidates the affected part of the caches as
605  *    necessary before DMA transfers from outside to memory.
606  *  - dma_cache_inv(start, size) invalidates the affected parts of the
607  *    caches.  Dirty lines of the caches may be written back or simply
608  *    be discarded.  This operation is necessary before dma operations
609  *    to the memory.
610  *
611  * This API used to be exported; it now is for arch code internal use only.
612  */
613 #ifdef CONFIG_DMA_NONCOHERENT
614 
615 extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
616 extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
617 extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
618 
619 #define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)
620 #define dma_cache_wback(start, size)		_dma_cache_wback(start, size)
621 #define dma_cache_inv(start, size)		_dma_cache_inv(start, size)
622 
623 #else /* Sane hardware */
624 
625 #define dma_cache_wback_inv(start,size) \
626 	do { (void) (start); (void) (size); } while (0)
627 #define dma_cache_wback(start,size)	\
628 	do { (void) (start); (void) (size); } while (0)
629 #define dma_cache_inv(start,size)	\
630 	do { (void) (start); (void) (size); } while (0)
631 
632 #endif /* CONFIG_DMA_NONCOHERENT */
633 
634 /*
635  * Read a 32-bit register that requires a 64-bit read cycle on the bus.
636  * Avoid interrupt mucking, just adjust the address for 4-byte access.
637  * Assume the addresses are 8-byte aligned.
638  */
639 #ifdef __MIPSEB__
640 #define __CSR_32_ADJUST 4
641 #else
642 #define __CSR_32_ADJUST 0
643 #endif
644 
645 #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
646 #define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
647 
648 /*
649  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
650  * access
651  */
652 #define xlate_dev_mem_ptr(p)	__va(p)
653 
654 /*
655  * Convert a virtual cached pointer to an uncached pointer
656  */
657 #define xlate_dev_kmem_ptr(p)	p
658 
659 void __ioread64_copy(void *to, const void __iomem *from, size_t count);
660 
661 #endif /* _ASM_IO_H */
662