• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/moduleparam.h>
19 #include <linux/swap.h>
20 #include <linux/swapops.h>
21 #include <linux/kmemleak.h>
22 #include <asm/pgtable.h>
23 #include <asm/pgalloc.h>
24 #include <asm/tlb.h>
25 #include <asm/setup.h>
26 #include <asm/hugetlb.h>
27 #include <asm/pte-walk.h>
28 
29 bool hugetlb_disabled = false;
30 
31 #define hugepd_none(hpd)	(hpd_val(hpd) == 0)
32 
33 #define PTE_T_ORDER	(__builtin_ffs(sizeof(pte_t)) - __builtin_ffs(sizeof(void *)))
34 
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)35 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
36 {
37 	/*
38 	 * Only called for hugetlbfs pages, hence can ignore THP and the
39 	 * irq disabled walk.
40 	 */
41 	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
42 }
43 
__hugepte_alloc(struct mm_struct * mm,hugepd_t * hpdp,unsigned long address,unsigned int pdshift,unsigned int pshift,spinlock_t * ptl)44 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
45 			   unsigned long address, unsigned int pdshift,
46 			   unsigned int pshift, spinlock_t *ptl)
47 {
48 	struct kmem_cache *cachep;
49 	pte_t *new;
50 	int i;
51 	int num_hugepd;
52 
53 	if (pshift >= pdshift) {
54 		cachep = PGT_CACHE(PTE_T_ORDER);
55 		num_hugepd = 1 << (pshift - pdshift);
56 	} else if (IS_ENABLED(CONFIG_PPC_8xx)) {
57 		cachep = PGT_CACHE(PTE_INDEX_SIZE);
58 		num_hugepd = 1;
59 	} else {
60 		cachep = PGT_CACHE(pdshift - pshift);
61 		num_hugepd = 1;
62 	}
63 
64 	if (!cachep) {
65 		WARN_ONCE(1, "No page table cache created for hugetlb tables");
66 		return -ENOMEM;
67 	}
68 
69 	new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
70 
71 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
72 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
73 
74 	if (!new)
75 		return -ENOMEM;
76 
77 	/*
78 	 * Make sure other cpus find the hugepd set only after a
79 	 * properly initialized page table is visible to them.
80 	 * For more details look for comment in __pte_alloc().
81 	 */
82 	smp_wmb();
83 
84 	spin_lock(ptl);
85 	/*
86 	 * We have multiple higher-level entries that point to the same
87 	 * actual pte location.  Fill in each as we go and backtrack on error.
88 	 * We need all of these so the DTLB pgtable walk code can find the
89 	 * right higher-level entry without knowing if it's a hugepage or not.
90 	 */
91 	for (i = 0; i < num_hugepd; i++, hpdp++) {
92 		if (unlikely(!hugepd_none(*hpdp)))
93 			break;
94 		hugepd_populate(hpdp, new, pshift);
95 	}
96 	/* If we bailed from the for loop early, an error occurred, clean up */
97 	if (i < num_hugepd) {
98 		for (i = i - 1 ; i >= 0; i--, hpdp--)
99 			*hpdp = __hugepd(0);
100 		kmem_cache_free(cachep, new);
101 	} else {
102 		kmemleak_ignore(new);
103 	}
104 	spin_unlock(ptl);
105 	return 0;
106 }
107 
108 /*
109  * At this point we do the placement change only for BOOK3S 64. This would
110  * possibly work on other subarchs.
111  */
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)112 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
113 {
114 	pgd_t *pg;
115 	pud_t *pu;
116 	pmd_t *pm;
117 	hugepd_t *hpdp = NULL;
118 	unsigned pshift = __ffs(sz);
119 	unsigned pdshift = PGDIR_SHIFT;
120 	spinlock_t *ptl;
121 
122 	addr &= ~(sz-1);
123 	pg = pgd_offset(mm, addr);
124 
125 #ifdef CONFIG_PPC_BOOK3S_64
126 	if (pshift == PGDIR_SHIFT)
127 		/* 16GB huge page */
128 		return (pte_t *) pg;
129 	else if (pshift > PUD_SHIFT) {
130 		/*
131 		 * We need to use hugepd table
132 		 */
133 		ptl = &mm->page_table_lock;
134 		hpdp = (hugepd_t *)pg;
135 	} else {
136 		pdshift = PUD_SHIFT;
137 		pu = pud_alloc(mm, pg, addr);
138 		if (!pu)
139 			return NULL;
140 		if (pshift == PUD_SHIFT)
141 			return (pte_t *)pu;
142 		else if (pshift > PMD_SHIFT) {
143 			ptl = pud_lockptr(mm, pu);
144 			hpdp = (hugepd_t *)pu;
145 		} else {
146 			pdshift = PMD_SHIFT;
147 			pm = pmd_alloc(mm, pu, addr);
148 			if (!pm)
149 				return NULL;
150 			if (pshift == PMD_SHIFT)
151 				/* 16MB hugepage */
152 				return (pte_t *)pm;
153 			else {
154 				ptl = pmd_lockptr(mm, pm);
155 				hpdp = (hugepd_t *)pm;
156 			}
157 		}
158 	}
159 #else
160 	if (pshift >= PGDIR_SHIFT) {
161 		ptl = &mm->page_table_lock;
162 		hpdp = (hugepd_t *)pg;
163 	} else {
164 		pdshift = PUD_SHIFT;
165 		pu = pud_alloc(mm, pg, addr);
166 		if (!pu)
167 			return NULL;
168 		if (pshift >= PUD_SHIFT) {
169 			ptl = pud_lockptr(mm, pu);
170 			hpdp = (hugepd_t *)pu;
171 		} else {
172 			pdshift = PMD_SHIFT;
173 			pm = pmd_alloc(mm, pu, addr);
174 			if (!pm)
175 				return NULL;
176 			ptl = pmd_lockptr(mm, pm);
177 			hpdp = (hugepd_t *)pm;
178 		}
179 	}
180 #endif
181 	if (!hpdp)
182 		return NULL;
183 
184 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
185 
186 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
187 						  pdshift, pshift, ptl))
188 		return NULL;
189 
190 	return hugepte_offset(*hpdp, addr, pdshift);
191 }
192 
193 #ifdef CONFIG_PPC_BOOK3S_64
194 /*
195  * Tracks gpages after the device tree is scanned and before the
196  * huge_boot_pages list is ready on pseries.
197  */
198 #define MAX_NUMBER_GPAGES	1024
199 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
200 __initdata static unsigned nr_gpages;
201 
202 /*
203  * Build list of addresses of gigantic pages.  This function is used in early
204  * boot before the buddy allocator is setup.
205  */
pseries_add_gpage(u64 addr,u64 page_size,unsigned long number_of_pages)206 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
207 {
208 	if (!addr)
209 		return;
210 	while (number_of_pages > 0) {
211 		gpage_freearray[nr_gpages] = addr;
212 		nr_gpages++;
213 		number_of_pages--;
214 		addr += page_size;
215 	}
216 }
217 
pseries_alloc_bootmem_huge_page(struct hstate * hstate)218 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
219 {
220 	struct huge_bootmem_page *m;
221 	if (nr_gpages == 0)
222 		return 0;
223 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
224 	gpage_freearray[nr_gpages] = 0;
225 	list_add(&m->list, &huge_boot_pages);
226 	m->hstate = hstate;
227 	return 1;
228 }
229 #endif
230 
231 
alloc_bootmem_huge_page(struct hstate * h)232 int __init alloc_bootmem_huge_page(struct hstate *h)
233 {
234 
235 #ifdef CONFIG_PPC_BOOK3S_64
236 	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
237 		return pseries_alloc_bootmem_huge_page(h);
238 #endif
239 	return __alloc_bootmem_huge_page(h);
240 }
241 
242 #ifndef CONFIG_PPC_BOOK3S_64
243 #define HUGEPD_FREELIST_SIZE \
244 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
245 
246 struct hugepd_freelist {
247 	struct rcu_head	rcu;
248 	unsigned int index;
249 	void *ptes[0];
250 };
251 
252 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
253 
hugepd_free_rcu_callback(struct rcu_head * head)254 static void hugepd_free_rcu_callback(struct rcu_head *head)
255 {
256 	struct hugepd_freelist *batch =
257 		container_of(head, struct hugepd_freelist, rcu);
258 	unsigned int i;
259 
260 	for (i = 0; i < batch->index; i++)
261 		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
262 
263 	free_page((unsigned long)batch);
264 }
265 
hugepd_free(struct mmu_gather * tlb,void * hugepte)266 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
267 {
268 	struct hugepd_freelist **batchp;
269 
270 	batchp = &get_cpu_var(hugepd_freelist_cur);
271 
272 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
273 	    mm_is_thread_local(tlb->mm)) {
274 		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
275 		put_cpu_var(hugepd_freelist_cur);
276 		return;
277 	}
278 
279 	if (*batchp == NULL) {
280 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
281 		(*batchp)->index = 0;
282 	}
283 
284 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
285 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
286 		call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
287 		*batchp = NULL;
288 	}
289 	put_cpu_var(hugepd_freelist_cur);
290 }
291 #else
hugepd_free(struct mmu_gather * tlb,void * hugepte)292 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
293 #endif
294 
free_hugepd_range(struct mmu_gather * tlb,hugepd_t * hpdp,int pdshift,unsigned long start,unsigned long end,unsigned long floor,unsigned long ceiling)295 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
296 			      unsigned long start, unsigned long end,
297 			      unsigned long floor, unsigned long ceiling)
298 {
299 	pte_t *hugepte = hugepd_page(*hpdp);
300 	int i;
301 
302 	unsigned long pdmask = ~((1UL << pdshift) - 1);
303 	unsigned int num_hugepd = 1;
304 	unsigned int shift = hugepd_shift(*hpdp);
305 
306 	/* Note: On fsl the hpdp may be the first of several */
307 	if (shift > pdshift)
308 		num_hugepd = 1 << (shift - pdshift);
309 
310 	start &= pdmask;
311 	if (start < floor)
312 		return;
313 	if (ceiling) {
314 		ceiling &= pdmask;
315 		if (! ceiling)
316 			return;
317 	}
318 	if (end - 1 > ceiling - 1)
319 		return;
320 
321 	for (i = 0; i < num_hugepd; i++, hpdp++)
322 		*hpdp = __hugepd(0);
323 
324 	if (shift >= pdshift)
325 		hugepd_free(tlb, hugepte);
326 	else if (IS_ENABLED(CONFIG_PPC_8xx))
327 		pgtable_free_tlb(tlb, hugepte,
328 				 get_hugepd_cache_index(PTE_INDEX_SIZE));
329 	else
330 		pgtable_free_tlb(tlb, hugepte,
331 				 get_hugepd_cache_index(pdshift - shift));
332 }
333 
hugetlb_free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)334 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
335 				   unsigned long addr, unsigned long end,
336 				   unsigned long floor, unsigned long ceiling)
337 {
338 	pmd_t *pmd;
339 	unsigned long next;
340 	unsigned long start;
341 
342 	start = addr;
343 	do {
344 		unsigned long more;
345 
346 		pmd = pmd_offset(pud, addr);
347 		next = pmd_addr_end(addr, end);
348 		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
349 			/*
350 			 * if it is not hugepd pointer, we should already find
351 			 * it cleared.
352 			 */
353 			WARN_ON(!pmd_none_or_clear_bad(pmd));
354 			continue;
355 		}
356 		/*
357 		 * Increment next by the size of the huge mapping since
358 		 * there may be more than one entry at this level for a
359 		 * single hugepage, but all of them point to
360 		 * the same kmem cache that holds the hugepte.
361 		 */
362 		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
363 		if (more > next)
364 			next = more;
365 
366 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
367 				  addr, next, floor, ceiling);
368 	} while (addr = next, addr != end);
369 
370 	start &= PUD_MASK;
371 	if (start < floor)
372 		return;
373 	if (ceiling) {
374 		ceiling &= PUD_MASK;
375 		if (!ceiling)
376 			return;
377 	}
378 	if (end - 1 > ceiling - 1)
379 		return;
380 
381 	pmd = pmd_offset(pud, start);
382 	pud_clear(pud);
383 	pmd_free_tlb(tlb, pmd, start);
384 	mm_dec_nr_pmds(tlb->mm);
385 }
386 
hugetlb_free_pud_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)387 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
388 				   unsigned long addr, unsigned long end,
389 				   unsigned long floor, unsigned long ceiling)
390 {
391 	pud_t *pud;
392 	unsigned long next;
393 	unsigned long start;
394 
395 	start = addr;
396 	do {
397 		pud = pud_offset(pgd, addr);
398 		next = pud_addr_end(addr, end);
399 		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
400 			if (pud_none_or_clear_bad(pud))
401 				continue;
402 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
403 					       ceiling);
404 		} else {
405 			unsigned long more;
406 			/*
407 			 * Increment next by the size of the huge mapping since
408 			 * there may be more than one entry at this level for a
409 			 * single hugepage, but all of them point to
410 			 * the same kmem cache that holds the hugepte.
411 			 */
412 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
413 			if (more > next)
414 				next = more;
415 
416 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
417 					  addr, next, floor, ceiling);
418 		}
419 	} while (addr = next, addr != end);
420 
421 	start &= PGDIR_MASK;
422 	if (start < floor)
423 		return;
424 	if (ceiling) {
425 		ceiling &= PGDIR_MASK;
426 		if (!ceiling)
427 			return;
428 	}
429 	if (end - 1 > ceiling - 1)
430 		return;
431 
432 	pud = pud_offset(pgd, start);
433 	pgd_clear(pgd);
434 	pud_free_tlb(tlb, pud, start);
435 	mm_dec_nr_puds(tlb->mm);
436 }
437 
438 /*
439  * This function frees user-level page tables of a process.
440  */
hugetlb_free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)441 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
442 			    unsigned long addr, unsigned long end,
443 			    unsigned long floor, unsigned long ceiling)
444 {
445 	pgd_t *pgd;
446 	unsigned long next;
447 
448 	/*
449 	 * Because there are a number of different possible pagetable
450 	 * layouts for hugepage ranges, we limit knowledge of how
451 	 * things should be laid out to the allocation path
452 	 * (huge_pte_alloc(), above).  Everything else works out the
453 	 * structure as it goes from information in the hugepd
454 	 * pointers.  That means that we can't here use the
455 	 * optimization used in the normal page free_pgd_range(), of
456 	 * checking whether we're actually covering a large enough
457 	 * range to have to do anything at the top level of the walk
458 	 * instead of at the bottom.
459 	 *
460 	 * To make sense of this, you should probably go read the big
461 	 * block comment at the top of the normal free_pgd_range(),
462 	 * too.
463 	 */
464 
465 	do {
466 		next = pgd_addr_end(addr, end);
467 		pgd = pgd_offset(tlb->mm, addr);
468 		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
469 			if (pgd_none_or_clear_bad(pgd))
470 				continue;
471 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
472 		} else {
473 			unsigned long more;
474 			/*
475 			 * Increment next by the size of the huge mapping since
476 			 * there may be more than one entry at the pgd level
477 			 * for a single hugepage, but all of them point to the
478 			 * same kmem cache that holds the hugepte.
479 			 */
480 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
481 			if (more > next)
482 				next = more;
483 
484 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
485 					  addr, next, floor, ceiling);
486 		}
487 	} while (addr = next, addr != end);
488 }
489 
follow_huge_pd(struct vm_area_struct * vma,unsigned long address,hugepd_t hpd,int flags,int pdshift)490 struct page *follow_huge_pd(struct vm_area_struct *vma,
491 			    unsigned long address, hugepd_t hpd,
492 			    int flags, int pdshift)
493 {
494 	pte_t *ptep;
495 	spinlock_t *ptl;
496 	struct page *page = NULL;
497 	unsigned long mask;
498 	int shift = hugepd_shift(hpd);
499 	struct mm_struct *mm = vma->vm_mm;
500 
501 retry:
502 	/*
503 	 * hugepage directory entries are protected by mm->page_table_lock
504 	 * Use this instead of huge_pte_lockptr
505 	 */
506 	ptl = &mm->page_table_lock;
507 	spin_lock(ptl);
508 
509 	ptep = hugepte_offset(hpd, address, pdshift);
510 	if (pte_present(*ptep)) {
511 		mask = (1UL << shift) - 1;
512 		page = pte_page(*ptep);
513 		page += ((address & mask) >> PAGE_SHIFT);
514 		if (flags & FOLL_GET)
515 			get_page(page);
516 	} else {
517 		if (is_hugetlb_entry_migration(*ptep)) {
518 			spin_unlock(ptl);
519 			__migration_entry_wait(mm, ptep, ptl);
520 			goto retry;
521 		}
522 	}
523 	spin_unlock(ptl);
524 	return page;
525 }
526 
527 #ifdef CONFIG_PPC_MM_SLICES
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)528 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
529 					unsigned long len, unsigned long pgoff,
530 					unsigned long flags)
531 {
532 	struct hstate *hstate = hstate_file(file);
533 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
534 
535 #ifdef CONFIG_PPC_RADIX_MMU
536 	if (radix_enabled())
537 		return radix__hugetlb_get_unmapped_area(file, addr, len,
538 						       pgoff, flags);
539 #endif
540 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
541 }
542 #endif
543 
vma_mmu_pagesize(struct vm_area_struct * vma)544 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
545 {
546 	/* With radix we don't use slice, so derive it from vma*/
547 	if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
548 		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
549 
550 		return 1UL << mmu_psize_to_shift(psize);
551 	}
552 	return vma_kernel_pagesize(vma);
553 }
554 
add_huge_page_size(unsigned long long size)555 static int __init add_huge_page_size(unsigned long long size)
556 {
557 	int shift = __ffs(size);
558 	int mmu_psize;
559 
560 	/* Check that it is a page size supported by the hardware and
561 	 * that it fits within pagetable and slice limits. */
562 	if (size <= PAGE_SIZE || !is_power_of_2(size))
563 		return -EINVAL;
564 
565 	mmu_psize = check_and_get_huge_psize(shift);
566 	if (mmu_psize < 0)
567 		return -EINVAL;
568 
569 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
570 
571 	/* Return if huge page size has already been setup */
572 	if (size_to_hstate(size))
573 		return 0;
574 
575 	hugetlb_add_hstate(shift - PAGE_SHIFT);
576 
577 	return 0;
578 }
579 
hugepage_setup_sz(char * str)580 static int __init hugepage_setup_sz(char *str)
581 {
582 	unsigned long long size;
583 
584 	size = memparse(str, &str);
585 
586 	if (add_huge_page_size(size) != 0) {
587 		hugetlb_bad_size();
588 		pr_err("Invalid huge page size specified(%llu)\n", size);
589 	}
590 
591 	return 1;
592 }
593 __setup("hugepagesz=", hugepage_setup_sz);
594 
hugetlbpage_init(void)595 static int __init hugetlbpage_init(void)
596 {
597 	bool configured = false;
598 	int psize;
599 
600 	if (hugetlb_disabled) {
601 		pr_info("HugeTLB support is disabled!\n");
602 		return 0;
603 	}
604 
605 	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
606 	    !mmu_has_feature(MMU_FTR_16M_PAGE))
607 		return -ENODEV;
608 
609 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
610 		unsigned shift;
611 		unsigned pdshift;
612 
613 		if (!mmu_psize_defs[psize].shift)
614 			continue;
615 
616 		shift = mmu_psize_to_shift(psize);
617 
618 #ifdef CONFIG_PPC_BOOK3S_64
619 		if (shift > PGDIR_SHIFT)
620 			continue;
621 		else if (shift > PUD_SHIFT)
622 			pdshift = PGDIR_SHIFT;
623 		else if (shift > PMD_SHIFT)
624 			pdshift = PUD_SHIFT;
625 		else
626 			pdshift = PMD_SHIFT;
627 #else
628 		if (shift < PUD_SHIFT)
629 			pdshift = PMD_SHIFT;
630 		else if (shift < PGDIR_SHIFT)
631 			pdshift = PUD_SHIFT;
632 		else
633 			pdshift = PGDIR_SHIFT;
634 #endif
635 
636 		if (add_huge_page_size(1ULL << shift) < 0)
637 			continue;
638 		/*
639 		 * if we have pdshift and shift value same, we don't
640 		 * use pgt cache for hugepd.
641 		 */
642 		if (pdshift > shift && IS_ENABLED(CONFIG_PPC_8xx))
643 			pgtable_cache_add(PTE_INDEX_SIZE);
644 		else if (pdshift > shift)
645 			pgtable_cache_add(pdshift - shift);
646 		else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) || IS_ENABLED(CONFIG_PPC_8xx))
647 			pgtable_cache_add(PTE_T_ORDER);
648 
649 		configured = true;
650 	}
651 
652 	if (configured) {
653 		if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
654 			hugetlbpage_init_default();
655 	} else
656 		pr_info("Failed to initialize. Disabling HugeTLB");
657 
658 	return 0;
659 }
660 
661 arch_initcall(hugetlbpage_init);
662 
flush_dcache_icache_hugepage(struct page * page)663 void flush_dcache_icache_hugepage(struct page *page)
664 {
665 	int i;
666 	void *start;
667 
668 	BUG_ON(!PageCompound(page));
669 
670 	for (i = 0; i < compound_nr(page); i++) {
671 		if (!PageHighMem(page)) {
672 			__flush_dcache_icache(page_address(page+i));
673 		} else {
674 			start = kmap_atomic(page+i);
675 			__flush_dcache_icache(start);
676 			kunmap_atomic(start);
677 		}
678 	}
679 }
680