• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Special handling for DW core on Intel MID platform
4  *
5  * Copyright (c) 2009, 2014 Intel Corporation.
6  */
7 
8 #include <linux/dma-mapping.h>
9 #include <linux/dmaengine.h>
10 #include <linux/interrupt.h>
11 #include <linux/slab.h>
12 #include <linux/spi/spi.h>
13 #include <linux/types.h>
14 
15 #include "spi-dw.h"
16 
17 #ifdef CONFIG_SPI_DW_MID_DMA
18 #include <linux/pci.h>
19 #include <linux/platform_data/dma-dw.h>
20 
21 #define RX_BUSY		0
22 #define TX_BUSY		1
23 
24 static struct dw_dma_slave mid_dma_tx = { .dst_id = 1 };
25 static struct dw_dma_slave mid_dma_rx = { .src_id = 0 };
26 
mid_spi_dma_chan_filter(struct dma_chan * chan,void * param)27 static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param)
28 {
29 	struct dw_dma_slave *s = param;
30 
31 	if (s->dma_dev != chan->device->dev)
32 		return false;
33 
34 	chan->private = s;
35 	return true;
36 }
37 
mid_spi_dma_init(struct dw_spi * dws)38 static int mid_spi_dma_init(struct dw_spi *dws)
39 {
40 	struct pci_dev *dma_dev;
41 	struct dw_dma_slave *tx = dws->dma_tx;
42 	struct dw_dma_slave *rx = dws->dma_rx;
43 	dma_cap_mask_t mask;
44 
45 	/*
46 	 * Get pci device for DMA controller, currently it could only
47 	 * be the DMA controller of Medfield
48 	 */
49 	dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
50 	if (!dma_dev)
51 		return -ENODEV;
52 
53 	dma_cap_zero(mask);
54 	dma_cap_set(DMA_SLAVE, mask);
55 
56 	/* 1. Init rx channel */
57 	rx->dma_dev = &dma_dev->dev;
58 	dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, rx);
59 	if (!dws->rxchan)
60 		goto err_exit;
61 	dws->master->dma_rx = dws->rxchan;
62 
63 	/* 2. Init tx channel */
64 	tx->dma_dev = &dma_dev->dev;
65 	dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, tx);
66 	if (!dws->txchan)
67 		goto free_rxchan;
68 	dws->master->dma_tx = dws->txchan;
69 
70 	dws->dma_inited = 1;
71 	return 0;
72 
73 free_rxchan:
74 	dma_release_channel(dws->rxchan);
75 err_exit:
76 	return -EBUSY;
77 }
78 
mid_spi_dma_exit(struct dw_spi * dws)79 static void mid_spi_dma_exit(struct dw_spi *dws)
80 {
81 	if (!dws->dma_inited)
82 		return;
83 
84 	dmaengine_terminate_sync(dws->txchan);
85 	dma_release_channel(dws->txchan);
86 
87 	dmaengine_terminate_sync(dws->rxchan);
88 	dma_release_channel(dws->rxchan);
89 }
90 
dma_transfer(struct dw_spi * dws)91 static irqreturn_t dma_transfer(struct dw_spi *dws)
92 {
93 	u16 irq_status = dw_readl(dws, DW_SPI_ISR);
94 
95 	if (!irq_status)
96 		return IRQ_NONE;
97 
98 	dw_readl(dws, DW_SPI_ICR);
99 	spi_reset_chip(dws);
100 
101 	dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__);
102 	dws->master->cur_msg->status = -EIO;
103 	spi_finalize_current_transfer(dws->master);
104 	return IRQ_HANDLED;
105 }
106 
mid_spi_can_dma(struct spi_controller * master,struct spi_device * spi,struct spi_transfer * xfer)107 static bool mid_spi_can_dma(struct spi_controller *master,
108 		struct spi_device *spi, struct spi_transfer *xfer)
109 {
110 	struct dw_spi *dws = spi_controller_get_devdata(master);
111 
112 	if (!dws->dma_inited)
113 		return false;
114 
115 	return xfer->len > dws->fifo_len;
116 }
117 
convert_dma_width(u32 dma_width)118 static enum dma_slave_buswidth convert_dma_width(u32 dma_width) {
119 	if (dma_width == 1)
120 		return DMA_SLAVE_BUSWIDTH_1_BYTE;
121 	else if (dma_width == 2)
122 		return DMA_SLAVE_BUSWIDTH_2_BYTES;
123 
124 	return DMA_SLAVE_BUSWIDTH_UNDEFINED;
125 }
126 
127 /*
128  * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
129  * channel will clear a corresponding bit.
130  */
dw_spi_dma_tx_done(void * arg)131 static void dw_spi_dma_tx_done(void *arg)
132 {
133 	struct dw_spi *dws = arg;
134 
135 	clear_bit(TX_BUSY, &dws->dma_chan_busy);
136 	if (test_bit(RX_BUSY, &dws->dma_chan_busy))
137 		return;
138 	spi_finalize_current_transfer(dws->master);
139 }
140 
dw_spi_dma_prepare_tx(struct dw_spi * dws,struct spi_transfer * xfer)141 static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws,
142 		struct spi_transfer *xfer)
143 {
144 	struct dma_slave_config txconf;
145 	struct dma_async_tx_descriptor *txdesc;
146 
147 	if (!xfer->tx_buf)
148 		return NULL;
149 
150 	txconf.direction = DMA_MEM_TO_DEV;
151 	txconf.dst_addr = dws->dma_addr;
152 	txconf.dst_maxburst = 16;
153 	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
154 	txconf.dst_addr_width = convert_dma_width(dws->dma_width);
155 	txconf.device_fc = false;
156 
157 	dmaengine_slave_config(dws->txchan, &txconf);
158 
159 	txdesc = dmaengine_prep_slave_sg(dws->txchan,
160 				xfer->tx_sg.sgl,
161 				xfer->tx_sg.nents,
162 				DMA_MEM_TO_DEV,
163 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
164 	if (!txdesc)
165 		return NULL;
166 
167 	txdesc->callback = dw_spi_dma_tx_done;
168 	txdesc->callback_param = dws;
169 
170 	return txdesc;
171 }
172 
173 /*
174  * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
175  * channel will clear a corresponding bit.
176  */
dw_spi_dma_rx_done(void * arg)177 static void dw_spi_dma_rx_done(void *arg)
178 {
179 	struct dw_spi *dws = arg;
180 
181 	clear_bit(RX_BUSY, &dws->dma_chan_busy);
182 	if (test_bit(TX_BUSY, &dws->dma_chan_busy))
183 		return;
184 	spi_finalize_current_transfer(dws->master);
185 }
186 
dw_spi_dma_prepare_rx(struct dw_spi * dws,struct spi_transfer * xfer)187 static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws,
188 		struct spi_transfer *xfer)
189 {
190 	struct dma_slave_config rxconf;
191 	struct dma_async_tx_descriptor *rxdesc;
192 
193 	if (!xfer->rx_buf)
194 		return NULL;
195 
196 	rxconf.direction = DMA_DEV_TO_MEM;
197 	rxconf.src_addr = dws->dma_addr;
198 	rxconf.src_maxburst = 16;
199 	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
200 	rxconf.src_addr_width = convert_dma_width(dws->dma_width);
201 	rxconf.device_fc = false;
202 
203 	dmaengine_slave_config(dws->rxchan, &rxconf);
204 
205 	rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
206 				xfer->rx_sg.sgl,
207 				xfer->rx_sg.nents,
208 				DMA_DEV_TO_MEM,
209 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
210 	if (!rxdesc)
211 		return NULL;
212 
213 	rxdesc->callback = dw_spi_dma_rx_done;
214 	rxdesc->callback_param = dws;
215 
216 	return rxdesc;
217 }
218 
mid_spi_dma_setup(struct dw_spi * dws,struct spi_transfer * xfer)219 static int mid_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
220 {
221 	u16 dma_ctrl = 0;
222 
223 	dw_writel(dws, DW_SPI_DMARDLR, 0xf);
224 	dw_writel(dws, DW_SPI_DMATDLR, 0x10);
225 
226 	if (xfer->tx_buf)
227 		dma_ctrl |= SPI_DMA_TDMAE;
228 	if (xfer->rx_buf)
229 		dma_ctrl |= SPI_DMA_RDMAE;
230 	dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
231 
232 	/* Set the interrupt mask */
233 	spi_umask_intr(dws, SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI);
234 
235 	dws->transfer_handler = dma_transfer;
236 
237 	return 0;
238 }
239 
mid_spi_dma_transfer(struct dw_spi * dws,struct spi_transfer * xfer)240 static int mid_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
241 {
242 	struct dma_async_tx_descriptor *txdesc, *rxdesc;
243 
244 	/* Prepare the TX dma transfer */
245 	txdesc = dw_spi_dma_prepare_tx(dws, xfer);
246 
247 	/* Prepare the RX dma transfer */
248 	rxdesc = dw_spi_dma_prepare_rx(dws, xfer);
249 
250 	/* rx must be started before tx due to spi instinct */
251 	if (rxdesc) {
252 		set_bit(RX_BUSY, &dws->dma_chan_busy);
253 		dmaengine_submit(rxdesc);
254 		dma_async_issue_pending(dws->rxchan);
255 	}
256 
257 	if (txdesc) {
258 		set_bit(TX_BUSY, &dws->dma_chan_busy);
259 		dmaengine_submit(txdesc);
260 		dma_async_issue_pending(dws->txchan);
261 	}
262 
263 	return 0;
264 }
265 
mid_spi_dma_stop(struct dw_spi * dws)266 static void mid_spi_dma_stop(struct dw_spi *dws)
267 {
268 	if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
269 		dmaengine_terminate_sync(dws->txchan);
270 		clear_bit(TX_BUSY, &dws->dma_chan_busy);
271 	}
272 	if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
273 		dmaengine_terminate_sync(dws->rxchan);
274 		clear_bit(RX_BUSY, &dws->dma_chan_busy);
275 	}
276 }
277 
278 static const struct dw_spi_dma_ops mid_dma_ops = {
279 	.dma_init	= mid_spi_dma_init,
280 	.dma_exit	= mid_spi_dma_exit,
281 	.dma_setup	= mid_spi_dma_setup,
282 	.can_dma	= mid_spi_can_dma,
283 	.dma_transfer	= mid_spi_dma_transfer,
284 	.dma_stop	= mid_spi_dma_stop,
285 };
286 #endif
287 
288 /* Some specific info for SPI0 controller on Intel MID */
289 
290 /* HW info for MRST Clk Control Unit, 32b reg per controller */
291 #define MRST_SPI_CLK_BASE	100000000	/* 100m */
292 #define MRST_CLK_SPI_REG	0xff11d86c
293 #define CLK_SPI_BDIV_OFFSET	0
294 #define CLK_SPI_BDIV_MASK	0x00000007
295 #define CLK_SPI_CDIV_OFFSET	9
296 #define CLK_SPI_CDIV_MASK	0x00000e00
297 #define CLK_SPI_DISABLE_OFFSET	8
298 
dw_spi_mid_init(struct dw_spi * dws)299 int dw_spi_mid_init(struct dw_spi *dws)
300 {
301 	void __iomem *clk_reg;
302 	u32 clk_cdiv;
303 
304 	clk_reg = ioremap_nocache(MRST_CLK_SPI_REG, 16);
305 	if (!clk_reg)
306 		return -ENOMEM;
307 
308 	/* Get SPI controller operating freq info */
309 	clk_cdiv = readl(clk_reg + dws->bus_num * sizeof(u32));
310 	clk_cdiv &= CLK_SPI_CDIV_MASK;
311 	clk_cdiv >>= CLK_SPI_CDIV_OFFSET;
312 	dws->max_freq = MRST_SPI_CLK_BASE / (clk_cdiv + 1);
313 
314 	iounmap(clk_reg);
315 
316 #ifdef CONFIG_SPI_DW_MID_DMA
317 	dws->dma_tx = &mid_dma_tx;
318 	dws->dma_rx = &mid_dma_rx;
319 	dws->dma_ops = &mid_dma_ops;
320 #endif
321 	return 0;
322 }
323