1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Special handling for DW core on Intel MID platform
4 *
5 * Copyright (c) 2009, 2014 Intel Corporation.
6 */
7
8 #include <linux/dma-mapping.h>
9 #include <linux/dmaengine.h>
10 #include <linux/interrupt.h>
11 #include <linux/slab.h>
12 #include <linux/spi/spi.h>
13 #include <linux/types.h>
14
15 #include "spi-dw.h"
16
17 #ifdef CONFIG_SPI_DW_MID_DMA
18 #include <linux/pci.h>
19 #include <linux/platform_data/dma-dw.h>
20
21 #define RX_BUSY 0
22 #define TX_BUSY 1
23
24 static struct dw_dma_slave mid_dma_tx = { .dst_id = 1 };
25 static struct dw_dma_slave mid_dma_rx = { .src_id = 0 };
26
mid_spi_dma_chan_filter(struct dma_chan * chan,void * param)27 static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param)
28 {
29 struct dw_dma_slave *s = param;
30
31 if (s->dma_dev != chan->device->dev)
32 return false;
33
34 chan->private = s;
35 return true;
36 }
37
mid_spi_dma_init(struct dw_spi * dws)38 static int mid_spi_dma_init(struct dw_spi *dws)
39 {
40 struct pci_dev *dma_dev;
41 struct dw_dma_slave *tx = dws->dma_tx;
42 struct dw_dma_slave *rx = dws->dma_rx;
43 dma_cap_mask_t mask;
44
45 /*
46 * Get pci device for DMA controller, currently it could only
47 * be the DMA controller of Medfield
48 */
49 dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
50 if (!dma_dev)
51 return -ENODEV;
52
53 dma_cap_zero(mask);
54 dma_cap_set(DMA_SLAVE, mask);
55
56 /* 1. Init rx channel */
57 rx->dma_dev = &dma_dev->dev;
58 dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, rx);
59 if (!dws->rxchan)
60 goto err_exit;
61 dws->master->dma_rx = dws->rxchan;
62
63 /* 2. Init tx channel */
64 tx->dma_dev = &dma_dev->dev;
65 dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, tx);
66 if (!dws->txchan)
67 goto free_rxchan;
68 dws->master->dma_tx = dws->txchan;
69
70 dws->dma_inited = 1;
71 return 0;
72
73 free_rxchan:
74 dma_release_channel(dws->rxchan);
75 err_exit:
76 return -EBUSY;
77 }
78
mid_spi_dma_exit(struct dw_spi * dws)79 static void mid_spi_dma_exit(struct dw_spi *dws)
80 {
81 if (!dws->dma_inited)
82 return;
83
84 dmaengine_terminate_sync(dws->txchan);
85 dma_release_channel(dws->txchan);
86
87 dmaengine_terminate_sync(dws->rxchan);
88 dma_release_channel(dws->rxchan);
89 }
90
dma_transfer(struct dw_spi * dws)91 static irqreturn_t dma_transfer(struct dw_spi *dws)
92 {
93 u16 irq_status = dw_readl(dws, DW_SPI_ISR);
94
95 if (!irq_status)
96 return IRQ_NONE;
97
98 dw_readl(dws, DW_SPI_ICR);
99 spi_reset_chip(dws);
100
101 dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__);
102 dws->master->cur_msg->status = -EIO;
103 spi_finalize_current_transfer(dws->master);
104 return IRQ_HANDLED;
105 }
106
mid_spi_can_dma(struct spi_controller * master,struct spi_device * spi,struct spi_transfer * xfer)107 static bool mid_spi_can_dma(struct spi_controller *master,
108 struct spi_device *spi, struct spi_transfer *xfer)
109 {
110 struct dw_spi *dws = spi_controller_get_devdata(master);
111
112 if (!dws->dma_inited)
113 return false;
114
115 return xfer->len > dws->fifo_len;
116 }
117
convert_dma_width(u32 dma_width)118 static enum dma_slave_buswidth convert_dma_width(u32 dma_width) {
119 if (dma_width == 1)
120 return DMA_SLAVE_BUSWIDTH_1_BYTE;
121 else if (dma_width == 2)
122 return DMA_SLAVE_BUSWIDTH_2_BYTES;
123
124 return DMA_SLAVE_BUSWIDTH_UNDEFINED;
125 }
126
127 /*
128 * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
129 * channel will clear a corresponding bit.
130 */
dw_spi_dma_tx_done(void * arg)131 static void dw_spi_dma_tx_done(void *arg)
132 {
133 struct dw_spi *dws = arg;
134
135 clear_bit(TX_BUSY, &dws->dma_chan_busy);
136 if (test_bit(RX_BUSY, &dws->dma_chan_busy))
137 return;
138 spi_finalize_current_transfer(dws->master);
139 }
140
dw_spi_dma_prepare_tx(struct dw_spi * dws,struct spi_transfer * xfer)141 static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws,
142 struct spi_transfer *xfer)
143 {
144 struct dma_slave_config txconf;
145 struct dma_async_tx_descriptor *txdesc;
146
147 if (!xfer->tx_buf)
148 return NULL;
149
150 txconf.direction = DMA_MEM_TO_DEV;
151 txconf.dst_addr = dws->dma_addr;
152 txconf.dst_maxburst = 16;
153 txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
154 txconf.dst_addr_width = convert_dma_width(dws->dma_width);
155 txconf.device_fc = false;
156
157 dmaengine_slave_config(dws->txchan, &txconf);
158
159 txdesc = dmaengine_prep_slave_sg(dws->txchan,
160 xfer->tx_sg.sgl,
161 xfer->tx_sg.nents,
162 DMA_MEM_TO_DEV,
163 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
164 if (!txdesc)
165 return NULL;
166
167 txdesc->callback = dw_spi_dma_tx_done;
168 txdesc->callback_param = dws;
169
170 return txdesc;
171 }
172
173 /*
174 * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
175 * channel will clear a corresponding bit.
176 */
dw_spi_dma_rx_done(void * arg)177 static void dw_spi_dma_rx_done(void *arg)
178 {
179 struct dw_spi *dws = arg;
180
181 clear_bit(RX_BUSY, &dws->dma_chan_busy);
182 if (test_bit(TX_BUSY, &dws->dma_chan_busy))
183 return;
184 spi_finalize_current_transfer(dws->master);
185 }
186
dw_spi_dma_prepare_rx(struct dw_spi * dws,struct spi_transfer * xfer)187 static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws,
188 struct spi_transfer *xfer)
189 {
190 struct dma_slave_config rxconf;
191 struct dma_async_tx_descriptor *rxdesc;
192
193 if (!xfer->rx_buf)
194 return NULL;
195
196 rxconf.direction = DMA_DEV_TO_MEM;
197 rxconf.src_addr = dws->dma_addr;
198 rxconf.src_maxburst = 16;
199 rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
200 rxconf.src_addr_width = convert_dma_width(dws->dma_width);
201 rxconf.device_fc = false;
202
203 dmaengine_slave_config(dws->rxchan, &rxconf);
204
205 rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
206 xfer->rx_sg.sgl,
207 xfer->rx_sg.nents,
208 DMA_DEV_TO_MEM,
209 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
210 if (!rxdesc)
211 return NULL;
212
213 rxdesc->callback = dw_spi_dma_rx_done;
214 rxdesc->callback_param = dws;
215
216 return rxdesc;
217 }
218
mid_spi_dma_setup(struct dw_spi * dws,struct spi_transfer * xfer)219 static int mid_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
220 {
221 u16 dma_ctrl = 0;
222
223 dw_writel(dws, DW_SPI_DMARDLR, 0xf);
224 dw_writel(dws, DW_SPI_DMATDLR, 0x10);
225
226 if (xfer->tx_buf)
227 dma_ctrl |= SPI_DMA_TDMAE;
228 if (xfer->rx_buf)
229 dma_ctrl |= SPI_DMA_RDMAE;
230 dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
231
232 /* Set the interrupt mask */
233 spi_umask_intr(dws, SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI);
234
235 dws->transfer_handler = dma_transfer;
236
237 return 0;
238 }
239
mid_spi_dma_transfer(struct dw_spi * dws,struct spi_transfer * xfer)240 static int mid_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
241 {
242 struct dma_async_tx_descriptor *txdesc, *rxdesc;
243
244 /* Prepare the TX dma transfer */
245 txdesc = dw_spi_dma_prepare_tx(dws, xfer);
246
247 /* Prepare the RX dma transfer */
248 rxdesc = dw_spi_dma_prepare_rx(dws, xfer);
249
250 /* rx must be started before tx due to spi instinct */
251 if (rxdesc) {
252 set_bit(RX_BUSY, &dws->dma_chan_busy);
253 dmaengine_submit(rxdesc);
254 dma_async_issue_pending(dws->rxchan);
255 }
256
257 if (txdesc) {
258 set_bit(TX_BUSY, &dws->dma_chan_busy);
259 dmaengine_submit(txdesc);
260 dma_async_issue_pending(dws->txchan);
261 }
262
263 return 0;
264 }
265
mid_spi_dma_stop(struct dw_spi * dws)266 static void mid_spi_dma_stop(struct dw_spi *dws)
267 {
268 if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
269 dmaengine_terminate_sync(dws->txchan);
270 clear_bit(TX_BUSY, &dws->dma_chan_busy);
271 }
272 if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
273 dmaengine_terminate_sync(dws->rxchan);
274 clear_bit(RX_BUSY, &dws->dma_chan_busy);
275 }
276 }
277
278 static const struct dw_spi_dma_ops mid_dma_ops = {
279 .dma_init = mid_spi_dma_init,
280 .dma_exit = mid_spi_dma_exit,
281 .dma_setup = mid_spi_dma_setup,
282 .can_dma = mid_spi_can_dma,
283 .dma_transfer = mid_spi_dma_transfer,
284 .dma_stop = mid_spi_dma_stop,
285 };
286 #endif
287
288 /* Some specific info for SPI0 controller on Intel MID */
289
290 /* HW info for MRST Clk Control Unit, 32b reg per controller */
291 #define MRST_SPI_CLK_BASE 100000000 /* 100m */
292 #define MRST_CLK_SPI_REG 0xff11d86c
293 #define CLK_SPI_BDIV_OFFSET 0
294 #define CLK_SPI_BDIV_MASK 0x00000007
295 #define CLK_SPI_CDIV_OFFSET 9
296 #define CLK_SPI_CDIV_MASK 0x00000e00
297 #define CLK_SPI_DISABLE_OFFSET 8
298
dw_spi_mid_init(struct dw_spi * dws)299 int dw_spi_mid_init(struct dw_spi *dws)
300 {
301 void __iomem *clk_reg;
302 u32 clk_cdiv;
303
304 clk_reg = ioremap_nocache(MRST_CLK_SPI_REG, 16);
305 if (!clk_reg)
306 return -ENOMEM;
307
308 /* Get SPI controller operating freq info */
309 clk_cdiv = readl(clk_reg + dws->bus_num * sizeof(u32));
310 clk_cdiv &= CLK_SPI_CDIV_MASK;
311 clk_cdiv >>= CLK_SPI_CDIV_OFFSET;
312 dws->max_freq = MRST_SPI_CLK_BASE / (clk_cdiv + 1);
313
314 iounmap(clk_reg);
315
316 #ifdef CONFIG_SPI_DW_MID_DMA
317 dws->dma_tx = &mid_dma_tx;
318 dws->dma_rx = &mid_dma_rx;
319 dws->dma_ops = &mid_dma_ops;
320 #endif
321 return 0;
322 }
323