1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * GPMC support functions
4 *
5 * Copyright (C) 2005-2006 Nokia Corporation
6 *
7 * Author: Juha Yrjola
8 *
9 * Copyright (C) 2009 Texas Instruments
10 * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
11 */
12 #include <linux/irq.h>
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/err.h>
16 #include <linux/clk.h>
17 #include <linux/ioport.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/gpio/driver.h>
21 #include <linux/gpio/consumer.h> /* GPIO descriptor enum */
22 #include <linux/gpio/machine.h>
23 #include <linux/interrupt.h>
24 #include <linux/irqdomain.h>
25 #include <linux/platform_device.h>
26 #include <linux/of.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/of_platform.h>
30 #include <linux/omap-gpmc.h>
31 #include <linux/pm_runtime.h>
32
33 #include <linux/platform_data/mtd-nand-omap2.h>
34
35 #include <asm/mach-types.h>
36
37 #define DEVICE_NAME "omap-gpmc"
38
39 /* GPMC register offsets */
40 #define GPMC_REVISION 0x00
41 #define GPMC_SYSCONFIG 0x10
42 #define GPMC_SYSSTATUS 0x14
43 #define GPMC_IRQSTATUS 0x18
44 #define GPMC_IRQENABLE 0x1c
45 #define GPMC_TIMEOUT_CONTROL 0x40
46 #define GPMC_ERR_ADDRESS 0x44
47 #define GPMC_ERR_TYPE 0x48
48 #define GPMC_CONFIG 0x50
49 #define GPMC_STATUS 0x54
50 #define GPMC_PREFETCH_CONFIG1 0x1e0
51 #define GPMC_PREFETCH_CONFIG2 0x1e4
52 #define GPMC_PREFETCH_CONTROL 0x1ec
53 #define GPMC_PREFETCH_STATUS 0x1f0
54 #define GPMC_ECC_CONFIG 0x1f4
55 #define GPMC_ECC_CONTROL 0x1f8
56 #define GPMC_ECC_SIZE_CONFIG 0x1fc
57 #define GPMC_ECC1_RESULT 0x200
58 #define GPMC_ECC_BCH_RESULT_0 0x240 /* not available on OMAP2 */
59 #define GPMC_ECC_BCH_RESULT_1 0x244 /* not available on OMAP2 */
60 #define GPMC_ECC_BCH_RESULT_2 0x248 /* not available on OMAP2 */
61 #define GPMC_ECC_BCH_RESULT_3 0x24c /* not available on OMAP2 */
62 #define GPMC_ECC_BCH_RESULT_4 0x300 /* not available on OMAP2 */
63 #define GPMC_ECC_BCH_RESULT_5 0x304 /* not available on OMAP2 */
64 #define GPMC_ECC_BCH_RESULT_6 0x308 /* not available on OMAP2 */
65
66 /* GPMC ECC control settings */
67 #define GPMC_ECC_CTRL_ECCCLEAR 0x100
68 #define GPMC_ECC_CTRL_ECCDISABLE 0x000
69 #define GPMC_ECC_CTRL_ECCREG1 0x001
70 #define GPMC_ECC_CTRL_ECCREG2 0x002
71 #define GPMC_ECC_CTRL_ECCREG3 0x003
72 #define GPMC_ECC_CTRL_ECCREG4 0x004
73 #define GPMC_ECC_CTRL_ECCREG5 0x005
74 #define GPMC_ECC_CTRL_ECCREG6 0x006
75 #define GPMC_ECC_CTRL_ECCREG7 0x007
76 #define GPMC_ECC_CTRL_ECCREG8 0x008
77 #define GPMC_ECC_CTRL_ECCREG9 0x009
78
79 #define GPMC_CONFIG_LIMITEDADDRESS BIT(1)
80
81 #define GPMC_STATUS_EMPTYWRITEBUFFERSTATUS BIT(0)
82
83 #define GPMC_CONFIG2_CSEXTRADELAY BIT(7)
84 #define GPMC_CONFIG3_ADVEXTRADELAY BIT(7)
85 #define GPMC_CONFIG4_OEEXTRADELAY BIT(7)
86 #define GPMC_CONFIG4_WEEXTRADELAY BIT(23)
87 #define GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN BIT(6)
88 #define GPMC_CONFIG6_CYCLE2CYCLESAMECSEN BIT(7)
89
90 #define GPMC_CS0_OFFSET 0x60
91 #define GPMC_CS_SIZE 0x30
92 #define GPMC_BCH_SIZE 0x10
93
94 /*
95 * The first 1MB of GPMC address space is typically mapped to
96 * the internal ROM. Never allocate the first page, to
97 * facilitate bug detection; even if we didn't boot from ROM.
98 * As GPMC minimum partition size is 16MB we can only start from
99 * there.
100 */
101 #define GPMC_MEM_START 0x1000000
102 #define GPMC_MEM_END 0x3FFFFFFF
103
104 #define GPMC_CHUNK_SHIFT 24 /* 16 MB */
105 #define GPMC_SECTION_SHIFT 28 /* 128 MB */
106
107 #define CS_NUM_SHIFT 24
108 #define ENABLE_PREFETCH (0x1 << 7)
109 #define DMA_MPU_MODE 2
110
111 #define GPMC_REVISION_MAJOR(l) ((l >> 4) & 0xf)
112 #define GPMC_REVISION_MINOR(l) (l & 0xf)
113
114 #define GPMC_HAS_WR_ACCESS 0x1
115 #define GPMC_HAS_WR_DATA_MUX_BUS 0x2
116 #define GPMC_HAS_MUX_AAD 0x4
117
118 #define GPMC_NR_WAITPINS 4
119
120 #define GPMC_CS_CONFIG1 0x00
121 #define GPMC_CS_CONFIG2 0x04
122 #define GPMC_CS_CONFIG3 0x08
123 #define GPMC_CS_CONFIG4 0x0c
124 #define GPMC_CS_CONFIG5 0x10
125 #define GPMC_CS_CONFIG6 0x14
126 #define GPMC_CS_CONFIG7 0x18
127 #define GPMC_CS_NAND_COMMAND 0x1c
128 #define GPMC_CS_NAND_ADDRESS 0x20
129 #define GPMC_CS_NAND_DATA 0x24
130
131 /* Control Commands */
132 #define GPMC_CONFIG_RDY_BSY 0x00000001
133 #define GPMC_CONFIG_DEV_SIZE 0x00000002
134 #define GPMC_CONFIG_DEV_TYPE 0x00000003
135
136 #define GPMC_CONFIG1_WRAPBURST_SUPP (1 << 31)
137 #define GPMC_CONFIG1_READMULTIPLE_SUPP (1 << 30)
138 #define GPMC_CONFIG1_READTYPE_ASYNC (0 << 29)
139 #define GPMC_CONFIG1_READTYPE_SYNC (1 << 29)
140 #define GPMC_CONFIG1_WRITEMULTIPLE_SUPP (1 << 28)
141 #define GPMC_CONFIG1_WRITETYPE_ASYNC (0 << 27)
142 #define GPMC_CONFIG1_WRITETYPE_SYNC (1 << 27)
143 #define GPMC_CONFIG1_CLKACTIVATIONTIME(val) ((val & 3) << 25)
144 /** CLKACTIVATIONTIME Max Ticks */
145 #define GPMC_CONFIG1_CLKACTIVATIONTIME_MAX 2
146 #define GPMC_CONFIG1_PAGE_LEN(val) ((val & 3) << 23)
147 /** ATTACHEDDEVICEPAGELENGTH Max Value */
148 #define GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX 2
149 #define GPMC_CONFIG1_WAIT_READ_MON (1 << 22)
150 #define GPMC_CONFIG1_WAIT_WRITE_MON (1 << 21)
151 #define GPMC_CONFIG1_WAIT_MON_TIME(val) ((val & 3) << 18)
152 /** WAITMONITORINGTIME Max Ticks */
153 #define GPMC_CONFIG1_WAITMONITORINGTIME_MAX 2
154 #define GPMC_CONFIG1_WAIT_PIN_SEL(val) ((val & 3) << 16)
155 #define GPMC_CONFIG1_DEVICESIZE(val) ((val & 3) << 12)
156 #define GPMC_CONFIG1_DEVICESIZE_16 GPMC_CONFIG1_DEVICESIZE(1)
157 /** DEVICESIZE Max Value */
158 #define GPMC_CONFIG1_DEVICESIZE_MAX 1
159 #define GPMC_CONFIG1_DEVICETYPE(val) ((val & 3) << 10)
160 #define GPMC_CONFIG1_DEVICETYPE_NOR GPMC_CONFIG1_DEVICETYPE(0)
161 #define GPMC_CONFIG1_MUXTYPE(val) ((val & 3) << 8)
162 #define GPMC_CONFIG1_TIME_PARA_GRAN (1 << 4)
163 #define GPMC_CONFIG1_FCLK_DIV(val) (val & 3)
164 #define GPMC_CONFIG1_FCLK_DIV2 (GPMC_CONFIG1_FCLK_DIV(1))
165 #define GPMC_CONFIG1_FCLK_DIV3 (GPMC_CONFIG1_FCLK_DIV(2))
166 #define GPMC_CONFIG1_FCLK_DIV4 (GPMC_CONFIG1_FCLK_DIV(3))
167 #define GPMC_CONFIG7_CSVALID (1 << 6)
168
169 #define GPMC_CONFIG7_BASEADDRESS_MASK 0x3f
170 #define GPMC_CONFIG7_CSVALID_MASK BIT(6)
171 #define GPMC_CONFIG7_MASKADDRESS_OFFSET 8
172 #define GPMC_CONFIG7_MASKADDRESS_MASK (0xf << GPMC_CONFIG7_MASKADDRESS_OFFSET)
173 /* All CONFIG7 bits except reserved bits */
174 #define GPMC_CONFIG7_MASK (GPMC_CONFIG7_BASEADDRESS_MASK | \
175 GPMC_CONFIG7_CSVALID_MASK | \
176 GPMC_CONFIG7_MASKADDRESS_MASK)
177
178 #define GPMC_DEVICETYPE_NOR 0
179 #define GPMC_DEVICETYPE_NAND 2
180 #define GPMC_CONFIG_WRITEPROTECT 0x00000010
181 #define WR_RD_PIN_MONITORING 0x00600000
182
183 /* ECC commands */
184 #define GPMC_ECC_READ 0 /* Reset Hardware ECC for read */
185 #define GPMC_ECC_WRITE 1 /* Reset Hardware ECC for write */
186 #define GPMC_ECC_READSYN 2 /* Reset before syndrom is read back */
187
188 #define GPMC_NR_NAND_IRQS 2 /* number of NAND specific IRQs */
189
190 enum gpmc_clk_domain {
191 GPMC_CD_FCLK,
192 GPMC_CD_CLK
193 };
194
195 struct gpmc_cs_data {
196 const char *name;
197
198 #define GPMC_CS_RESERVED (1 << 0)
199 u32 flags;
200
201 struct resource mem;
202 };
203
204 /* Structure to save gpmc cs context */
205 struct gpmc_cs_config {
206 u32 config1;
207 u32 config2;
208 u32 config3;
209 u32 config4;
210 u32 config5;
211 u32 config6;
212 u32 config7;
213 int is_valid;
214 };
215
216 /*
217 * Structure to save/restore gpmc context
218 * to support core off on OMAP3
219 */
220 struct omap3_gpmc_regs {
221 u32 sysconfig;
222 u32 irqenable;
223 u32 timeout_ctrl;
224 u32 config;
225 u32 prefetch_config1;
226 u32 prefetch_config2;
227 u32 prefetch_control;
228 struct gpmc_cs_config cs_context[GPMC_CS_NUM];
229 };
230
231 struct gpmc_device {
232 struct device *dev;
233 int irq;
234 struct irq_chip irq_chip;
235 struct gpio_chip gpio_chip;
236 int nirqs;
237 };
238
239 static struct irq_domain *gpmc_irq_domain;
240
241 static struct resource gpmc_mem_root;
242 static struct gpmc_cs_data gpmc_cs[GPMC_CS_NUM];
243 static DEFINE_SPINLOCK(gpmc_mem_lock);
244 /* Define chip-selects as reserved by default until probe completes */
245 static unsigned int gpmc_cs_num = GPMC_CS_NUM;
246 static unsigned int gpmc_nr_waitpins;
247 static resource_size_t phys_base, mem_size;
248 static unsigned gpmc_capability;
249 static void __iomem *gpmc_base;
250
251 static struct clk *gpmc_l3_clk;
252
253 static irqreturn_t gpmc_handle_irq(int irq, void *dev);
254
gpmc_write_reg(int idx,u32 val)255 static void gpmc_write_reg(int idx, u32 val)
256 {
257 writel_relaxed(val, gpmc_base + idx);
258 }
259
gpmc_read_reg(int idx)260 static u32 gpmc_read_reg(int idx)
261 {
262 return readl_relaxed(gpmc_base + idx);
263 }
264
gpmc_cs_write_reg(int cs,int idx,u32 val)265 void gpmc_cs_write_reg(int cs, int idx, u32 val)
266 {
267 void __iomem *reg_addr;
268
269 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
270 writel_relaxed(val, reg_addr);
271 }
272
gpmc_cs_read_reg(int cs,int idx)273 static u32 gpmc_cs_read_reg(int cs, int idx)
274 {
275 void __iomem *reg_addr;
276
277 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
278 return readl_relaxed(reg_addr);
279 }
280
281 /* TODO: Add support for gpmc_fck to clock framework and use it */
gpmc_get_fclk_period(void)282 static unsigned long gpmc_get_fclk_period(void)
283 {
284 unsigned long rate = clk_get_rate(gpmc_l3_clk);
285
286 rate /= 1000;
287 rate = 1000000000 / rate; /* In picoseconds */
288
289 return rate;
290 }
291
292 /**
293 * gpmc_get_clk_period - get period of selected clock domain in ps
294 * @cs Chip Select Region.
295 * @cd Clock Domain.
296 *
297 * GPMC_CS_CONFIG1 GPMCFCLKDIVIDER for cs has to be setup
298 * prior to calling this function with GPMC_CD_CLK.
299 */
gpmc_get_clk_period(int cs,enum gpmc_clk_domain cd)300 static unsigned long gpmc_get_clk_period(int cs, enum gpmc_clk_domain cd)
301 {
302
303 unsigned long tick_ps = gpmc_get_fclk_period();
304 u32 l;
305 int div;
306
307 switch (cd) {
308 case GPMC_CD_CLK:
309 /* get current clk divider */
310 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
311 div = (l & 0x03) + 1;
312 /* get GPMC_CLK period */
313 tick_ps *= div;
314 break;
315 case GPMC_CD_FCLK:
316 /* FALL-THROUGH */
317 default:
318 break;
319 }
320
321 return tick_ps;
322
323 }
324
gpmc_ns_to_clk_ticks(unsigned int time_ns,int cs,enum gpmc_clk_domain cd)325 static unsigned int gpmc_ns_to_clk_ticks(unsigned int time_ns, int cs,
326 enum gpmc_clk_domain cd)
327 {
328 unsigned long tick_ps;
329
330 /* Calculate in picosecs to yield more exact results */
331 tick_ps = gpmc_get_clk_period(cs, cd);
332
333 return (time_ns * 1000 + tick_ps - 1) / tick_ps;
334 }
335
gpmc_ns_to_ticks(unsigned int time_ns)336 static unsigned int gpmc_ns_to_ticks(unsigned int time_ns)
337 {
338 return gpmc_ns_to_clk_ticks(time_ns, /* any CS */ 0, GPMC_CD_FCLK);
339 }
340
gpmc_ps_to_ticks(unsigned int time_ps)341 static unsigned int gpmc_ps_to_ticks(unsigned int time_ps)
342 {
343 unsigned long tick_ps;
344
345 /* Calculate in picosecs to yield more exact results */
346 tick_ps = gpmc_get_fclk_period();
347
348 return (time_ps + tick_ps - 1) / tick_ps;
349 }
350
gpmc_clk_ticks_to_ns(unsigned int ticks,int cs,enum gpmc_clk_domain cd)351 static unsigned int gpmc_clk_ticks_to_ns(unsigned int ticks, int cs,
352 enum gpmc_clk_domain cd)
353 {
354 return ticks * gpmc_get_clk_period(cs, cd) / 1000;
355 }
356
gpmc_ticks_to_ns(unsigned int ticks)357 unsigned int gpmc_ticks_to_ns(unsigned int ticks)
358 {
359 return gpmc_clk_ticks_to_ns(ticks, /* any CS */ 0, GPMC_CD_FCLK);
360 }
361
gpmc_ticks_to_ps(unsigned int ticks)362 static unsigned int gpmc_ticks_to_ps(unsigned int ticks)
363 {
364 return ticks * gpmc_get_fclk_period();
365 }
366
gpmc_round_ps_to_ticks(unsigned int time_ps)367 static unsigned int gpmc_round_ps_to_ticks(unsigned int time_ps)
368 {
369 unsigned long ticks = gpmc_ps_to_ticks(time_ps);
370
371 return ticks * gpmc_get_fclk_period();
372 }
373
gpmc_cs_modify_reg(int cs,int reg,u32 mask,bool value)374 static inline void gpmc_cs_modify_reg(int cs, int reg, u32 mask, bool value)
375 {
376 u32 l;
377
378 l = gpmc_cs_read_reg(cs, reg);
379 if (value)
380 l |= mask;
381 else
382 l &= ~mask;
383 gpmc_cs_write_reg(cs, reg, l);
384 }
385
gpmc_cs_bool_timings(int cs,const struct gpmc_bool_timings * p)386 static void gpmc_cs_bool_timings(int cs, const struct gpmc_bool_timings *p)
387 {
388 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG1,
389 GPMC_CONFIG1_TIME_PARA_GRAN,
390 p->time_para_granularity);
391 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG2,
392 GPMC_CONFIG2_CSEXTRADELAY, p->cs_extra_delay);
393 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG3,
394 GPMC_CONFIG3_ADVEXTRADELAY, p->adv_extra_delay);
395 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
396 GPMC_CONFIG4_OEEXTRADELAY, p->oe_extra_delay);
397 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
398 GPMC_CONFIG4_WEEXTRADELAY, p->we_extra_delay);
399 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
400 GPMC_CONFIG6_CYCLE2CYCLESAMECSEN,
401 p->cycle2cyclesamecsen);
402 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
403 GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN,
404 p->cycle2cyclediffcsen);
405 }
406
407 #ifdef CONFIG_OMAP_GPMC_DEBUG
408 /**
409 * get_gpmc_timing_reg - read a timing parameter and print DTS settings for it.
410 * @cs: Chip Select Region
411 * @reg: GPMC_CS_CONFIGn register offset.
412 * @st_bit: Start Bit
413 * @end_bit: End Bit. Must be >= @st_bit.
414 * @ma:x Maximum parameter value (before optional @shift).
415 * If 0, maximum is as high as @st_bit and @end_bit allow.
416 * @name: DTS node name, w/o "gpmc,"
417 * @cd: Clock Domain of timing parameter.
418 * @shift: Parameter value left shifts @shift, which is then printed instead of value.
419 * @raw: Raw Format Option.
420 * raw format: gpmc,name = <value>
421 * tick format: gpmc,name = <value> /‍* x ns -- y ns; x ticks *‍/
422 * Where x ns -- y ns result in the same tick value.
423 * When @max is exceeded, "invalid" is printed inside comment.
424 * @noval: Parameter values equal to 0 are not printed.
425 * @return: Specified timing parameter (after optional @shift).
426 *
427 */
get_gpmc_timing_reg(int cs,int reg,int st_bit,int end_bit,int max,const char * name,const enum gpmc_clk_domain cd,int shift,bool raw,bool noval)428 static int get_gpmc_timing_reg(
429 /* timing specifiers */
430 int cs, int reg, int st_bit, int end_bit, int max,
431 const char *name, const enum gpmc_clk_domain cd,
432 /* value transform */
433 int shift,
434 /* format specifiers */
435 bool raw, bool noval)
436 {
437 u32 l;
438 int nr_bits;
439 int mask;
440 bool invalid;
441
442 l = gpmc_cs_read_reg(cs, reg);
443 nr_bits = end_bit - st_bit + 1;
444 mask = (1 << nr_bits) - 1;
445 l = (l >> st_bit) & mask;
446 if (!max)
447 max = mask;
448 invalid = l > max;
449 if (shift)
450 l = (shift << l);
451 if (noval && (l == 0))
452 return 0;
453 if (!raw) {
454 /* DTS tick format for timings in ns */
455 unsigned int time_ns;
456 unsigned int time_ns_min = 0;
457
458 if (l)
459 time_ns_min = gpmc_clk_ticks_to_ns(l - 1, cs, cd) + 1;
460 time_ns = gpmc_clk_ticks_to_ns(l, cs, cd);
461 pr_info("gpmc,%s = <%u>; /* %u ns - %u ns; %i ticks%s*/\n",
462 name, time_ns, time_ns_min, time_ns, l,
463 invalid ? "; invalid " : " ");
464 } else {
465 /* raw format */
466 pr_info("gpmc,%s = <%u>;%s\n", name, l,
467 invalid ? " /* invalid */" : "");
468 }
469
470 return l;
471 }
472
473 #define GPMC_PRINT_CONFIG(cs, config) \
474 pr_info("cs%i %s: 0x%08x\n", cs, #config, \
475 gpmc_cs_read_reg(cs, config))
476 #define GPMC_GET_RAW(reg, st, end, field) \
477 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 0)
478 #define GPMC_GET_RAW_MAX(reg, st, end, max, field) \
479 get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, 0, 1, 0)
480 #define GPMC_GET_RAW_BOOL(reg, st, end, field) \
481 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 1)
482 #define GPMC_GET_RAW_SHIFT_MAX(reg, st, end, shift, max, field) \
483 get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, (shift), 1, 1)
484 #define GPMC_GET_TICKS(reg, st, end, field) \
485 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 0, 0)
486 #define GPMC_GET_TICKS_CD(reg, st, end, field, cd) \
487 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, (cd), 0, 0, 0)
488 #define GPMC_GET_TICKS_CD_MAX(reg, st, end, max, field, cd) \
489 get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, (cd), 0, 0, 0)
490
gpmc_show_regs(int cs,const char * desc)491 static void gpmc_show_regs(int cs, const char *desc)
492 {
493 pr_info("gpmc cs%i %s:\n", cs, desc);
494 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG1);
495 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG2);
496 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG3);
497 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG4);
498 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG5);
499 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG6);
500 }
501
502 /*
503 * Note that gpmc,wait-pin handing wrongly assumes bit 8 is available,
504 * see commit c9fb809.
505 */
gpmc_cs_show_timings(int cs,const char * desc)506 static void gpmc_cs_show_timings(int cs, const char *desc)
507 {
508 gpmc_show_regs(cs, desc);
509
510 pr_info("gpmc cs%i access configuration:\n", cs);
511 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 4, 4, "time-para-granularity");
512 GPMC_GET_RAW(GPMC_CS_CONFIG1, 8, 9, "mux-add-data");
513 GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 12, 13, 1,
514 GPMC_CONFIG1_DEVICESIZE_MAX, "device-width");
515 GPMC_GET_RAW(GPMC_CS_CONFIG1, 16, 17, "wait-pin");
516 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 21, 21, "wait-on-write");
517 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 22, 22, "wait-on-read");
518 GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 23, 24, 4,
519 GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX,
520 "burst-length");
521 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 27, 27, "sync-write");
522 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 28, 28, "burst-write");
523 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 29, 29, "gpmc,sync-read");
524 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 30, 30, "burst-read");
525 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 31, 31, "burst-wrap");
526
527 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG2, 7, 7, "cs-extra-delay");
528
529 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG3, 7, 7, "adv-extra-delay");
530
531 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 23, 23, "we-extra-delay");
532 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 7, 7, "oe-extra-delay");
533
534 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6, 7, 7, "cycle2cycle-samecsen");
535 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6, 6, 6, "cycle2cycle-diffcsen");
536
537 pr_info("gpmc cs%i timings configuration:\n", cs);
538 GPMC_GET_TICKS(GPMC_CS_CONFIG2, 0, 3, "cs-on-ns");
539 GPMC_GET_TICKS(GPMC_CS_CONFIG2, 8, 12, "cs-rd-off-ns");
540 GPMC_GET_TICKS(GPMC_CS_CONFIG2, 16, 20, "cs-wr-off-ns");
541
542 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 0, 3, "adv-on-ns");
543 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 8, 12, "adv-rd-off-ns");
544 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 16, 20, "adv-wr-off-ns");
545 if (gpmc_capability & GPMC_HAS_MUX_AAD) {
546 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 4, 6, "adv-aad-mux-on-ns");
547 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 24, 26,
548 "adv-aad-mux-rd-off-ns");
549 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 28, 30,
550 "adv-aad-mux-wr-off-ns");
551 }
552
553 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 0, 3, "oe-on-ns");
554 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 8, 12, "oe-off-ns");
555 if (gpmc_capability & GPMC_HAS_MUX_AAD) {
556 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 4, 6, "oe-aad-mux-on-ns");
557 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 13, 15, "oe-aad-mux-off-ns");
558 }
559 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 16, 19, "we-on-ns");
560 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 24, 28, "we-off-ns");
561
562 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 0, 4, "rd-cycle-ns");
563 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 8, 12, "wr-cycle-ns");
564 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 16, 20, "access-ns");
565
566 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 24, 27, "page-burst-access-ns");
567
568 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 0, 3, "bus-turnaround-ns");
569 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 8, 11, "cycle2cycle-delay-ns");
570
571 GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 18, 19,
572 GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
573 "wait-monitoring-ns", GPMC_CD_CLK);
574 GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 25, 26,
575 GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
576 "clk-activation-ns", GPMC_CD_FCLK);
577
578 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 16, 19, "wr-data-mux-bus-ns");
579 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 24, 28, "wr-access-ns");
580 }
581 #else
gpmc_cs_show_timings(int cs,const char * desc)582 static inline void gpmc_cs_show_timings(int cs, const char *desc)
583 {
584 }
585 #endif
586
587 /**
588 * set_gpmc_timing_reg - set a single timing parameter for Chip Select Region.
589 * Caller is expected to have initialized CONFIG1 GPMCFCLKDIVIDER
590 * prior to calling this function with @cd equal to GPMC_CD_CLK.
591 *
592 * @cs: Chip Select Region.
593 * @reg: GPMC_CS_CONFIGn register offset.
594 * @st_bit: Start Bit
595 * @end_bit: End Bit. Must be >= @st_bit.
596 * @max: Maximum parameter value.
597 * If 0, maximum is as high as @st_bit and @end_bit allow.
598 * @time: Timing parameter in ns.
599 * @cd: Timing parameter clock domain.
600 * @name: Timing parameter name.
601 * @return: 0 on success, -1 on error.
602 */
set_gpmc_timing_reg(int cs,int reg,int st_bit,int end_bit,int max,int time,enum gpmc_clk_domain cd,const char * name)603 static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit, int max,
604 int time, enum gpmc_clk_domain cd, const char *name)
605 {
606 u32 l;
607 int ticks, mask, nr_bits;
608
609 if (time == 0)
610 ticks = 0;
611 else
612 ticks = gpmc_ns_to_clk_ticks(time, cs, cd);
613 nr_bits = end_bit - st_bit + 1;
614 mask = (1 << nr_bits) - 1;
615
616 if (!max)
617 max = mask;
618
619 if (ticks > max) {
620 pr_err("%s: GPMC CS%d: %s %d ns, %d ticks > %d ticks\n",
621 __func__, cs, name, time, ticks, max);
622
623 return -1;
624 }
625
626 l = gpmc_cs_read_reg(cs, reg);
627 #ifdef CONFIG_OMAP_GPMC_DEBUG
628 pr_info(
629 "GPMC CS%d: %-17s: %3d ticks, %3lu ns (was %3i ticks) %3d ns\n",
630 cs, name, ticks, gpmc_get_clk_period(cs, cd) * ticks / 1000,
631 (l >> st_bit) & mask, time);
632 #endif
633 l &= ~(mask << st_bit);
634 l |= ticks << st_bit;
635 gpmc_cs_write_reg(cs, reg, l);
636
637 return 0;
638 }
639
640 #define GPMC_SET_ONE_CD_MAX(reg, st, end, max, field, cd) \
641 if (set_gpmc_timing_reg(cs, (reg), (st), (end), (max), \
642 t->field, (cd), #field) < 0) \
643 return -1
644
645 #define GPMC_SET_ONE(reg, st, end, field) \
646 GPMC_SET_ONE_CD_MAX(reg, st, end, 0, field, GPMC_CD_FCLK)
647
648 /**
649 * gpmc_calc_waitmonitoring_divider - calculate proper GPMCFCLKDIVIDER based on WAITMONITORINGTIME
650 * WAITMONITORINGTIME will be _at least_ as long as desired, i.e.
651 * read --> don't sample bus too early
652 * write --> data is longer on bus
653 *
654 * Formula:
655 * gpmc_clk_div + 1 = ceil(ceil(waitmonitoringtime_ns / gpmc_fclk_ns)
656 * / waitmonitoring_ticks)
657 * WAITMONITORINGTIME resulting in 0 or 1 tick with div = 1 are caught by
658 * div <= 0 check.
659 *
660 * @wait_monitoring: WAITMONITORINGTIME in ns.
661 * @return: -1 on failure to scale, else proper divider > 0.
662 */
gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)663 static int gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)
664 {
665
666 int div = gpmc_ns_to_ticks(wait_monitoring);
667
668 div += GPMC_CONFIG1_WAITMONITORINGTIME_MAX - 1;
669 div /= GPMC_CONFIG1_WAITMONITORINGTIME_MAX;
670
671 if (div > 4)
672 return -1;
673 if (div <= 0)
674 div = 1;
675
676 return div;
677
678 }
679
680 /**
681 * gpmc_calc_divider - calculate GPMC_FCLK divider for sync_clk GPMC_CLK period.
682 * @sync_clk: GPMC_CLK period in ps.
683 * @return: Returns at least 1 if GPMC_FCLK can be divided to GPMC_CLK.
684 * Else, returns -1.
685 */
gpmc_calc_divider(unsigned int sync_clk)686 int gpmc_calc_divider(unsigned int sync_clk)
687 {
688 int div = gpmc_ps_to_ticks(sync_clk);
689
690 if (div > 4)
691 return -1;
692 if (div <= 0)
693 div = 1;
694
695 return div;
696 }
697
698 /**
699 * gpmc_cs_set_timings - program timing parameters for Chip Select Region.
700 * @cs: Chip Select Region.
701 * @t: GPMC timing parameters.
702 * @s: GPMC timing settings.
703 * @return: 0 on success, -1 on error.
704 */
gpmc_cs_set_timings(int cs,const struct gpmc_timings * t,const struct gpmc_settings * s)705 int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t,
706 const struct gpmc_settings *s)
707 {
708 int div;
709 u32 l;
710
711 div = gpmc_calc_divider(t->sync_clk);
712 if (div < 0)
713 return div;
714
715 /*
716 * See if we need to change the divider for waitmonitoringtime.
717 *
718 * Calculate GPMCFCLKDIVIDER independent of gpmc,sync-clk-ps in DT for
719 * pure asynchronous accesses, i.e. both read and write asynchronous.
720 * However, only do so if WAITMONITORINGTIME is actually used, i.e.
721 * either WAITREADMONITORING or WAITWRITEMONITORING is set.
722 *
723 * This statement must not change div to scale async WAITMONITORINGTIME
724 * to protect mixed synchronous and asynchronous accesses.
725 *
726 * We raise an error later if WAITMONITORINGTIME does not fit.
727 */
728 if (!s->sync_read && !s->sync_write &&
729 (s->wait_on_read || s->wait_on_write)
730 ) {
731
732 div = gpmc_calc_waitmonitoring_divider(t->wait_monitoring);
733 if (div < 0) {
734 pr_err("%s: waitmonitoringtime %3d ns too large for greatest gpmcfclkdivider.\n",
735 __func__,
736 t->wait_monitoring
737 );
738 return -1;
739 }
740 }
741
742 GPMC_SET_ONE(GPMC_CS_CONFIG2, 0, 3, cs_on);
743 GPMC_SET_ONE(GPMC_CS_CONFIG2, 8, 12, cs_rd_off);
744 GPMC_SET_ONE(GPMC_CS_CONFIG2, 16, 20, cs_wr_off);
745
746 GPMC_SET_ONE(GPMC_CS_CONFIG3, 0, 3, adv_on);
747 GPMC_SET_ONE(GPMC_CS_CONFIG3, 8, 12, adv_rd_off);
748 GPMC_SET_ONE(GPMC_CS_CONFIG3, 16, 20, adv_wr_off);
749 if (gpmc_capability & GPMC_HAS_MUX_AAD) {
750 GPMC_SET_ONE(GPMC_CS_CONFIG3, 4, 6, adv_aad_mux_on);
751 GPMC_SET_ONE(GPMC_CS_CONFIG3, 24, 26, adv_aad_mux_rd_off);
752 GPMC_SET_ONE(GPMC_CS_CONFIG3, 28, 30, adv_aad_mux_wr_off);
753 }
754
755 GPMC_SET_ONE(GPMC_CS_CONFIG4, 0, 3, oe_on);
756 GPMC_SET_ONE(GPMC_CS_CONFIG4, 8, 12, oe_off);
757 if (gpmc_capability & GPMC_HAS_MUX_AAD) {
758 GPMC_SET_ONE(GPMC_CS_CONFIG4, 4, 6, oe_aad_mux_on);
759 GPMC_SET_ONE(GPMC_CS_CONFIG4, 13, 15, oe_aad_mux_off);
760 }
761 GPMC_SET_ONE(GPMC_CS_CONFIG4, 16, 19, we_on);
762 GPMC_SET_ONE(GPMC_CS_CONFIG4, 24, 28, we_off);
763
764 GPMC_SET_ONE(GPMC_CS_CONFIG5, 0, 4, rd_cycle);
765 GPMC_SET_ONE(GPMC_CS_CONFIG5, 8, 12, wr_cycle);
766 GPMC_SET_ONE(GPMC_CS_CONFIG5, 16, 20, access);
767
768 GPMC_SET_ONE(GPMC_CS_CONFIG5, 24, 27, page_burst_access);
769
770 GPMC_SET_ONE(GPMC_CS_CONFIG6, 0, 3, bus_turnaround);
771 GPMC_SET_ONE(GPMC_CS_CONFIG6, 8, 11, cycle2cycle_delay);
772
773 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
774 GPMC_SET_ONE(GPMC_CS_CONFIG6, 16, 19, wr_data_mux_bus);
775 if (gpmc_capability & GPMC_HAS_WR_ACCESS)
776 GPMC_SET_ONE(GPMC_CS_CONFIG6, 24, 28, wr_access);
777
778 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
779 l &= ~0x03;
780 l |= (div - 1);
781 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, l);
782
783 GPMC_SET_ONE_CD_MAX(GPMC_CS_CONFIG1, 18, 19,
784 GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
785 wait_monitoring, GPMC_CD_CLK);
786 GPMC_SET_ONE_CD_MAX(GPMC_CS_CONFIG1, 25, 26,
787 GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
788 clk_activation, GPMC_CD_FCLK);
789
790 #ifdef CONFIG_OMAP_GPMC_DEBUG
791 pr_info("GPMC CS%d CLK period is %lu ns (div %d)\n",
792 cs, (div * gpmc_get_fclk_period()) / 1000, div);
793 #endif
794
795 gpmc_cs_bool_timings(cs, &t->bool_timings);
796 gpmc_cs_show_timings(cs, "after gpmc_cs_set_timings");
797
798 return 0;
799 }
800
gpmc_cs_set_memconf(int cs,u32 base,u32 size)801 static int gpmc_cs_set_memconf(int cs, u32 base, u32 size)
802 {
803 u32 l;
804 u32 mask;
805
806 /*
807 * Ensure that base address is aligned on a
808 * boundary equal to or greater than size.
809 */
810 if (base & (size - 1))
811 return -EINVAL;
812
813 base >>= GPMC_CHUNK_SHIFT;
814 mask = (1 << GPMC_SECTION_SHIFT) - size;
815 mask >>= GPMC_CHUNK_SHIFT;
816 mask <<= GPMC_CONFIG7_MASKADDRESS_OFFSET;
817
818 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
819 l &= ~GPMC_CONFIG7_MASK;
820 l |= base & GPMC_CONFIG7_BASEADDRESS_MASK;
821 l |= mask & GPMC_CONFIG7_MASKADDRESS_MASK;
822 l |= GPMC_CONFIG7_CSVALID;
823 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
824
825 return 0;
826 }
827
gpmc_cs_enable_mem(int cs)828 static void gpmc_cs_enable_mem(int cs)
829 {
830 u32 l;
831
832 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
833 l |= GPMC_CONFIG7_CSVALID;
834 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
835 }
836
gpmc_cs_disable_mem(int cs)837 static void gpmc_cs_disable_mem(int cs)
838 {
839 u32 l;
840
841 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
842 l &= ~GPMC_CONFIG7_CSVALID;
843 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
844 }
845
gpmc_cs_get_memconf(int cs,u32 * base,u32 * size)846 static void gpmc_cs_get_memconf(int cs, u32 *base, u32 *size)
847 {
848 u32 l;
849 u32 mask;
850
851 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
852 *base = (l & 0x3f) << GPMC_CHUNK_SHIFT;
853 mask = (l >> 8) & 0x0f;
854 *size = (1 << GPMC_SECTION_SHIFT) - (mask << GPMC_CHUNK_SHIFT);
855 }
856
gpmc_cs_mem_enabled(int cs)857 static int gpmc_cs_mem_enabled(int cs)
858 {
859 u32 l;
860
861 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
862 return l & GPMC_CONFIG7_CSVALID;
863 }
864
gpmc_cs_set_reserved(int cs,int reserved)865 static void gpmc_cs_set_reserved(int cs, int reserved)
866 {
867 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
868
869 gpmc->flags |= GPMC_CS_RESERVED;
870 }
871
gpmc_cs_reserved(int cs)872 static bool gpmc_cs_reserved(int cs)
873 {
874 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
875
876 return gpmc->flags & GPMC_CS_RESERVED;
877 }
878
gpmc_cs_set_name(int cs,const char * name)879 static void gpmc_cs_set_name(int cs, const char *name)
880 {
881 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
882
883 gpmc->name = name;
884 }
885
gpmc_cs_get_name(int cs)886 static const char *gpmc_cs_get_name(int cs)
887 {
888 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
889
890 return gpmc->name;
891 }
892
gpmc_mem_align(unsigned long size)893 static unsigned long gpmc_mem_align(unsigned long size)
894 {
895 int order;
896
897 size = (size - 1) >> (GPMC_CHUNK_SHIFT - 1);
898 order = GPMC_CHUNK_SHIFT - 1;
899 do {
900 size >>= 1;
901 order++;
902 } while (size);
903 size = 1 << order;
904 return size;
905 }
906
gpmc_cs_insert_mem(int cs,unsigned long base,unsigned long size)907 static int gpmc_cs_insert_mem(int cs, unsigned long base, unsigned long size)
908 {
909 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
910 struct resource *res = &gpmc->mem;
911 int r;
912
913 size = gpmc_mem_align(size);
914 spin_lock(&gpmc_mem_lock);
915 res->start = base;
916 res->end = base + size - 1;
917 r = request_resource(&gpmc_mem_root, res);
918 spin_unlock(&gpmc_mem_lock);
919
920 return r;
921 }
922
gpmc_cs_delete_mem(int cs)923 static int gpmc_cs_delete_mem(int cs)
924 {
925 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
926 struct resource *res = &gpmc->mem;
927 int r;
928
929 spin_lock(&gpmc_mem_lock);
930 r = release_resource(res);
931 res->start = 0;
932 res->end = 0;
933 spin_unlock(&gpmc_mem_lock);
934
935 return r;
936 }
937
938 /**
939 * gpmc_cs_remap - remaps a chip-select physical base address
940 * @cs: chip-select to remap
941 * @base: physical base address to re-map chip-select to
942 *
943 * Re-maps a chip-select to a new physical base address specified by
944 * "base". Returns 0 on success and appropriate negative error code
945 * on failure.
946 */
gpmc_cs_remap(int cs,u32 base)947 static int gpmc_cs_remap(int cs, u32 base)
948 {
949 int ret;
950 u32 old_base, size;
951
952 if (cs > gpmc_cs_num) {
953 pr_err("%s: requested chip-select is disabled\n", __func__);
954 return -ENODEV;
955 }
956
957 /*
958 * Make sure we ignore any device offsets from the GPMC partition
959 * allocated for the chip select and that the new base confirms
960 * to the GPMC 16MB minimum granularity.
961 */
962 base &= ~(SZ_16M - 1);
963
964 gpmc_cs_get_memconf(cs, &old_base, &size);
965 if (base == old_base)
966 return 0;
967
968 ret = gpmc_cs_delete_mem(cs);
969 if (ret < 0)
970 return ret;
971
972 ret = gpmc_cs_insert_mem(cs, base, size);
973 if (ret < 0)
974 return ret;
975
976 ret = gpmc_cs_set_memconf(cs, base, size);
977
978 return ret;
979 }
980
gpmc_cs_request(int cs,unsigned long size,unsigned long * base)981 int gpmc_cs_request(int cs, unsigned long size, unsigned long *base)
982 {
983 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
984 struct resource *res = &gpmc->mem;
985 int r = -1;
986
987 if (cs > gpmc_cs_num) {
988 pr_err("%s: requested chip-select is disabled\n", __func__);
989 return -ENODEV;
990 }
991 size = gpmc_mem_align(size);
992 if (size > (1 << GPMC_SECTION_SHIFT))
993 return -ENOMEM;
994
995 spin_lock(&gpmc_mem_lock);
996 if (gpmc_cs_reserved(cs)) {
997 r = -EBUSY;
998 goto out;
999 }
1000 if (gpmc_cs_mem_enabled(cs))
1001 r = adjust_resource(res, res->start & ~(size - 1), size);
1002 if (r < 0)
1003 r = allocate_resource(&gpmc_mem_root, res, size, 0, ~0,
1004 size, NULL, NULL);
1005 if (r < 0)
1006 goto out;
1007
1008 /* Disable CS while changing base address and size mask */
1009 gpmc_cs_disable_mem(cs);
1010
1011 r = gpmc_cs_set_memconf(cs, res->start, resource_size(res));
1012 if (r < 0) {
1013 release_resource(res);
1014 goto out;
1015 }
1016
1017 /* Enable CS */
1018 gpmc_cs_enable_mem(cs);
1019 *base = res->start;
1020 gpmc_cs_set_reserved(cs, 1);
1021 out:
1022 spin_unlock(&gpmc_mem_lock);
1023 return r;
1024 }
1025 EXPORT_SYMBOL(gpmc_cs_request);
1026
gpmc_cs_free(int cs)1027 void gpmc_cs_free(int cs)
1028 {
1029 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
1030 struct resource *res = &gpmc->mem;
1031
1032 spin_lock(&gpmc_mem_lock);
1033 if (cs >= gpmc_cs_num || cs < 0 || !gpmc_cs_reserved(cs)) {
1034 printk(KERN_ERR "Trying to free non-reserved GPMC CS%d\n", cs);
1035 BUG();
1036 spin_unlock(&gpmc_mem_lock);
1037 return;
1038 }
1039 gpmc_cs_disable_mem(cs);
1040 if (res->flags)
1041 release_resource(res);
1042 gpmc_cs_set_reserved(cs, 0);
1043 spin_unlock(&gpmc_mem_lock);
1044 }
1045 EXPORT_SYMBOL(gpmc_cs_free);
1046
1047 /**
1048 * gpmc_configure - write request to configure gpmc
1049 * @cmd: command type
1050 * @wval: value to write
1051 * @return status of the operation
1052 */
gpmc_configure(int cmd,int wval)1053 int gpmc_configure(int cmd, int wval)
1054 {
1055 u32 regval;
1056
1057 switch (cmd) {
1058 case GPMC_CONFIG_WP:
1059 regval = gpmc_read_reg(GPMC_CONFIG);
1060 if (wval)
1061 regval &= ~GPMC_CONFIG_WRITEPROTECT; /* WP is ON */
1062 else
1063 regval |= GPMC_CONFIG_WRITEPROTECT; /* WP is OFF */
1064 gpmc_write_reg(GPMC_CONFIG, regval);
1065 break;
1066
1067 default:
1068 pr_err("%s: command not supported\n", __func__);
1069 return -EINVAL;
1070 }
1071
1072 return 0;
1073 }
1074 EXPORT_SYMBOL(gpmc_configure);
1075
gpmc_nand_writebuffer_empty(void)1076 static bool gpmc_nand_writebuffer_empty(void)
1077 {
1078 if (gpmc_read_reg(GPMC_STATUS) & GPMC_STATUS_EMPTYWRITEBUFFERSTATUS)
1079 return true;
1080
1081 return false;
1082 }
1083
1084 static struct gpmc_nand_ops nand_ops = {
1085 .nand_writebuffer_empty = gpmc_nand_writebuffer_empty,
1086 };
1087
1088 /**
1089 * gpmc_omap_get_nand_ops - Get the GPMC NAND interface
1090 * @regs: the GPMC NAND register map exclusive for NAND use.
1091 * @cs: GPMC chip select number on which the NAND sits. The
1092 * register map returned will be specific to this chip select.
1093 *
1094 * Returns NULL on error e.g. invalid cs.
1095 */
gpmc_omap_get_nand_ops(struct gpmc_nand_regs * reg,int cs)1096 struct gpmc_nand_ops *gpmc_omap_get_nand_ops(struct gpmc_nand_regs *reg, int cs)
1097 {
1098 int i;
1099
1100 if (cs >= gpmc_cs_num)
1101 return NULL;
1102
1103 reg->gpmc_nand_command = gpmc_base + GPMC_CS0_OFFSET +
1104 GPMC_CS_NAND_COMMAND + GPMC_CS_SIZE * cs;
1105 reg->gpmc_nand_address = gpmc_base + GPMC_CS0_OFFSET +
1106 GPMC_CS_NAND_ADDRESS + GPMC_CS_SIZE * cs;
1107 reg->gpmc_nand_data = gpmc_base + GPMC_CS0_OFFSET +
1108 GPMC_CS_NAND_DATA + GPMC_CS_SIZE * cs;
1109 reg->gpmc_prefetch_config1 = gpmc_base + GPMC_PREFETCH_CONFIG1;
1110 reg->gpmc_prefetch_config2 = gpmc_base + GPMC_PREFETCH_CONFIG2;
1111 reg->gpmc_prefetch_control = gpmc_base + GPMC_PREFETCH_CONTROL;
1112 reg->gpmc_prefetch_status = gpmc_base + GPMC_PREFETCH_STATUS;
1113 reg->gpmc_ecc_config = gpmc_base + GPMC_ECC_CONFIG;
1114 reg->gpmc_ecc_control = gpmc_base + GPMC_ECC_CONTROL;
1115 reg->gpmc_ecc_size_config = gpmc_base + GPMC_ECC_SIZE_CONFIG;
1116 reg->gpmc_ecc1_result = gpmc_base + GPMC_ECC1_RESULT;
1117
1118 for (i = 0; i < GPMC_BCH_NUM_REMAINDER; i++) {
1119 reg->gpmc_bch_result0[i] = gpmc_base + GPMC_ECC_BCH_RESULT_0 +
1120 GPMC_BCH_SIZE * i;
1121 reg->gpmc_bch_result1[i] = gpmc_base + GPMC_ECC_BCH_RESULT_1 +
1122 GPMC_BCH_SIZE * i;
1123 reg->gpmc_bch_result2[i] = gpmc_base + GPMC_ECC_BCH_RESULT_2 +
1124 GPMC_BCH_SIZE * i;
1125 reg->gpmc_bch_result3[i] = gpmc_base + GPMC_ECC_BCH_RESULT_3 +
1126 GPMC_BCH_SIZE * i;
1127 reg->gpmc_bch_result4[i] = gpmc_base + GPMC_ECC_BCH_RESULT_4 +
1128 i * GPMC_BCH_SIZE;
1129 reg->gpmc_bch_result5[i] = gpmc_base + GPMC_ECC_BCH_RESULT_5 +
1130 i * GPMC_BCH_SIZE;
1131 reg->gpmc_bch_result6[i] = gpmc_base + GPMC_ECC_BCH_RESULT_6 +
1132 i * GPMC_BCH_SIZE;
1133 }
1134
1135 return &nand_ops;
1136 }
1137 EXPORT_SYMBOL_GPL(gpmc_omap_get_nand_ops);
1138
gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings * t,struct gpmc_settings * s,int freq,int latency)1139 static void gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings *t,
1140 struct gpmc_settings *s,
1141 int freq, int latency)
1142 {
1143 struct gpmc_device_timings dev_t;
1144 const int t_cer = 15;
1145 const int t_avdp = 12;
1146 const int t_cez = 20; /* max of t_cez, t_oez */
1147 const int t_wpl = 40;
1148 const int t_wph = 30;
1149 int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
1150
1151 switch (freq) {
1152 case 104:
1153 min_gpmc_clk_period = 9600; /* 104 MHz */
1154 t_ces = 3;
1155 t_avds = 4;
1156 t_avdh = 2;
1157 t_ach = 3;
1158 t_aavdh = 6;
1159 t_rdyo = 6;
1160 break;
1161 case 83:
1162 min_gpmc_clk_period = 12000; /* 83 MHz */
1163 t_ces = 5;
1164 t_avds = 4;
1165 t_avdh = 2;
1166 t_ach = 6;
1167 t_aavdh = 6;
1168 t_rdyo = 9;
1169 break;
1170 case 66:
1171 min_gpmc_clk_period = 15000; /* 66 MHz */
1172 t_ces = 6;
1173 t_avds = 5;
1174 t_avdh = 2;
1175 t_ach = 6;
1176 t_aavdh = 6;
1177 t_rdyo = 11;
1178 break;
1179 default:
1180 min_gpmc_clk_period = 18500; /* 54 MHz */
1181 t_ces = 7;
1182 t_avds = 7;
1183 t_avdh = 7;
1184 t_ach = 9;
1185 t_aavdh = 7;
1186 t_rdyo = 15;
1187 break;
1188 }
1189
1190 /* Set synchronous read timings */
1191 memset(&dev_t, 0, sizeof(dev_t));
1192
1193 if (!s->sync_write) {
1194 dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000;
1195 dev_t.t_wpl = t_wpl * 1000;
1196 dev_t.t_wph = t_wph * 1000;
1197 dev_t.t_aavdh = t_aavdh * 1000;
1198 }
1199 dev_t.ce_xdelay = true;
1200 dev_t.avd_xdelay = true;
1201 dev_t.oe_xdelay = true;
1202 dev_t.we_xdelay = true;
1203 dev_t.clk = min_gpmc_clk_period;
1204 dev_t.t_bacc = dev_t.clk;
1205 dev_t.t_ces = t_ces * 1000;
1206 dev_t.t_avds = t_avds * 1000;
1207 dev_t.t_avdh = t_avdh * 1000;
1208 dev_t.t_ach = t_ach * 1000;
1209 dev_t.cyc_iaa = (latency + 1);
1210 dev_t.t_cez_r = t_cez * 1000;
1211 dev_t.t_cez_w = dev_t.t_cez_r;
1212 dev_t.cyc_aavdh_oe = 1;
1213 dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period;
1214
1215 gpmc_calc_timings(t, s, &dev_t);
1216 }
1217
gpmc_omap_onenand_set_timings(struct device * dev,int cs,int freq,int latency,struct gpmc_onenand_info * info)1218 int gpmc_omap_onenand_set_timings(struct device *dev, int cs, int freq,
1219 int latency,
1220 struct gpmc_onenand_info *info)
1221 {
1222 int ret;
1223 struct gpmc_timings gpmc_t;
1224 struct gpmc_settings gpmc_s;
1225
1226 gpmc_read_settings_dt(dev->of_node, &gpmc_s);
1227
1228 info->sync_read = gpmc_s.sync_read;
1229 info->sync_write = gpmc_s.sync_write;
1230 info->burst_len = gpmc_s.burst_len;
1231
1232 if (!gpmc_s.sync_read && !gpmc_s.sync_write)
1233 return 0;
1234
1235 gpmc_omap_onenand_calc_sync_timings(&gpmc_t, &gpmc_s, freq, latency);
1236
1237 ret = gpmc_cs_program_settings(cs, &gpmc_s);
1238 if (ret < 0)
1239 return ret;
1240
1241 return gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
1242 }
1243 EXPORT_SYMBOL_GPL(gpmc_omap_onenand_set_timings);
1244
gpmc_get_client_irq(unsigned irq_config)1245 int gpmc_get_client_irq(unsigned irq_config)
1246 {
1247 if (!gpmc_irq_domain) {
1248 pr_warn("%s called before GPMC IRQ domain available\n",
1249 __func__);
1250 return 0;
1251 }
1252
1253 /* we restrict this to NAND IRQs only */
1254 if (irq_config >= GPMC_NR_NAND_IRQS)
1255 return 0;
1256
1257 return irq_create_mapping(gpmc_irq_domain, irq_config);
1258 }
1259
gpmc_irq_endis(unsigned long hwirq,bool endis)1260 static int gpmc_irq_endis(unsigned long hwirq, bool endis)
1261 {
1262 u32 regval;
1263
1264 /* bits GPMC_NR_NAND_IRQS to 8 are reserved */
1265 if (hwirq >= GPMC_NR_NAND_IRQS)
1266 hwirq += 8 - GPMC_NR_NAND_IRQS;
1267
1268 regval = gpmc_read_reg(GPMC_IRQENABLE);
1269 if (endis)
1270 regval |= BIT(hwirq);
1271 else
1272 regval &= ~BIT(hwirq);
1273 gpmc_write_reg(GPMC_IRQENABLE, regval);
1274
1275 return 0;
1276 }
1277
gpmc_irq_disable(struct irq_data * p)1278 static void gpmc_irq_disable(struct irq_data *p)
1279 {
1280 gpmc_irq_endis(p->hwirq, false);
1281 }
1282
gpmc_irq_enable(struct irq_data * p)1283 static void gpmc_irq_enable(struct irq_data *p)
1284 {
1285 gpmc_irq_endis(p->hwirq, true);
1286 }
1287
gpmc_irq_mask(struct irq_data * d)1288 static void gpmc_irq_mask(struct irq_data *d)
1289 {
1290 gpmc_irq_endis(d->hwirq, false);
1291 }
1292
gpmc_irq_unmask(struct irq_data * d)1293 static void gpmc_irq_unmask(struct irq_data *d)
1294 {
1295 gpmc_irq_endis(d->hwirq, true);
1296 }
1297
gpmc_irq_edge_config(unsigned long hwirq,bool rising_edge)1298 static void gpmc_irq_edge_config(unsigned long hwirq, bool rising_edge)
1299 {
1300 u32 regval;
1301
1302 /* NAND IRQs polarity is not configurable */
1303 if (hwirq < GPMC_NR_NAND_IRQS)
1304 return;
1305
1306 /* WAITPIN starts at BIT 8 */
1307 hwirq += 8 - GPMC_NR_NAND_IRQS;
1308
1309 regval = gpmc_read_reg(GPMC_CONFIG);
1310 if (rising_edge)
1311 regval &= ~BIT(hwirq);
1312 else
1313 regval |= BIT(hwirq);
1314
1315 gpmc_write_reg(GPMC_CONFIG, regval);
1316 }
1317
gpmc_irq_ack(struct irq_data * d)1318 static void gpmc_irq_ack(struct irq_data *d)
1319 {
1320 unsigned int hwirq = d->hwirq;
1321
1322 /* skip reserved bits */
1323 if (hwirq >= GPMC_NR_NAND_IRQS)
1324 hwirq += 8 - GPMC_NR_NAND_IRQS;
1325
1326 /* Setting bit to 1 clears (or Acks) the interrupt */
1327 gpmc_write_reg(GPMC_IRQSTATUS, BIT(hwirq));
1328 }
1329
gpmc_irq_set_type(struct irq_data * d,unsigned int trigger)1330 static int gpmc_irq_set_type(struct irq_data *d, unsigned int trigger)
1331 {
1332 /* can't set type for NAND IRQs */
1333 if (d->hwirq < GPMC_NR_NAND_IRQS)
1334 return -EINVAL;
1335
1336 /* We can support either rising or falling edge at a time */
1337 if (trigger == IRQ_TYPE_EDGE_FALLING)
1338 gpmc_irq_edge_config(d->hwirq, false);
1339 else if (trigger == IRQ_TYPE_EDGE_RISING)
1340 gpmc_irq_edge_config(d->hwirq, true);
1341 else
1342 return -EINVAL;
1343
1344 return 0;
1345 }
1346
gpmc_irq_map(struct irq_domain * d,unsigned int virq,irq_hw_number_t hw)1347 static int gpmc_irq_map(struct irq_domain *d, unsigned int virq,
1348 irq_hw_number_t hw)
1349 {
1350 struct gpmc_device *gpmc = d->host_data;
1351
1352 irq_set_chip_data(virq, gpmc);
1353 if (hw < GPMC_NR_NAND_IRQS) {
1354 irq_modify_status(virq, IRQ_NOREQUEST, IRQ_NOAUTOEN);
1355 irq_set_chip_and_handler(virq, &gpmc->irq_chip,
1356 handle_simple_irq);
1357 } else {
1358 irq_set_chip_and_handler(virq, &gpmc->irq_chip,
1359 handle_edge_irq);
1360 }
1361
1362 return 0;
1363 }
1364
1365 static const struct irq_domain_ops gpmc_irq_domain_ops = {
1366 .map = gpmc_irq_map,
1367 .xlate = irq_domain_xlate_twocell,
1368 };
1369
gpmc_handle_irq(int irq,void * data)1370 static irqreturn_t gpmc_handle_irq(int irq, void *data)
1371 {
1372 int hwirq, virq;
1373 u32 regval, regvalx;
1374 struct gpmc_device *gpmc = data;
1375
1376 regval = gpmc_read_reg(GPMC_IRQSTATUS);
1377 regvalx = regval;
1378
1379 if (!regval)
1380 return IRQ_NONE;
1381
1382 for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++) {
1383 /* skip reserved status bits */
1384 if (hwirq == GPMC_NR_NAND_IRQS)
1385 regvalx >>= 8 - GPMC_NR_NAND_IRQS;
1386
1387 if (regvalx & BIT(hwirq)) {
1388 virq = irq_find_mapping(gpmc_irq_domain, hwirq);
1389 if (!virq) {
1390 dev_warn(gpmc->dev,
1391 "spurious irq detected hwirq %d, virq %d\n",
1392 hwirq, virq);
1393 }
1394
1395 generic_handle_irq(virq);
1396 }
1397 }
1398
1399 gpmc_write_reg(GPMC_IRQSTATUS, regval);
1400
1401 return IRQ_HANDLED;
1402 }
1403
gpmc_setup_irq(struct gpmc_device * gpmc)1404 static int gpmc_setup_irq(struct gpmc_device *gpmc)
1405 {
1406 u32 regval;
1407 int rc;
1408
1409 /* Disable interrupts */
1410 gpmc_write_reg(GPMC_IRQENABLE, 0);
1411
1412 /* clear interrupts */
1413 regval = gpmc_read_reg(GPMC_IRQSTATUS);
1414 gpmc_write_reg(GPMC_IRQSTATUS, regval);
1415
1416 gpmc->irq_chip.name = "gpmc";
1417 gpmc->irq_chip.irq_enable = gpmc_irq_enable;
1418 gpmc->irq_chip.irq_disable = gpmc_irq_disable;
1419 gpmc->irq_chip.irq_ack = gpmc_irq_ack;
1420 gpmc->irq_chip.irq_mask = gpmc_irq_mask;
1421 gpmc->irq_chip.irq_unmask = gpmc_irq_unmask;
1422 gpmc->irq_chip.irq_set_type = gpmc_irq_set_type;
1423
1424 gpmc_irq_domain = irq_domain_add_linear(gpmc->dev->of_node,
1425 gpmc->nirqs,
1426 &gpmc_irq_domain_ops,
1427 gpmc);
1428 if (!gpmc_irq_domain) {
1429 dev_err(gpmc->dev, "IRQ domain add failed\n");
1430 return -ENODEV;
1431 }
1432
1433 rc = request_irq(gpmc->irq, gpmc_handle_irq, 0, "gpmc", gpmc);
1434 if (rc) {
1435 dev_err(gpmc->dev, "failed to request irq %d: %d\n",
1436 gpmc->irq, rc);
1437 irq_domain_remove(gpmc_irq_domain);
1438 gpmc_irq_domain = NULL;
1439 }
1440
1441 return rc;
1442 }
1443
gpmc_free_irq(struct gpmc_device * gpmc)1444 static int gpmc_free_irq(struct gpmc_device *gpmc)
1445 {
1446 int hwirq;
1447
1448 free_irq(gpmc->irq, gpmc);
1449
1450 for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++)
1451 irq_dispose_mapping(irq_find_mapping(gpmc_irq_domain, hwirq));
1452
1453 irq_domain_remove(gpmc_irq_domain);
1454 gpmc_irq_domain = NULL;
1455
1456 return 0;
1457 }
1458
gpmc_mem_exit(void)1459 static void gpmc_mem_exit(void)
1460 {
1461 int cs;
1462
1463 for (cs = 0; cs < gpmc_cs_num; cs++) {
1464 if (!gpmc_cs_mem_enabled(cs))
1465 continue;
1466 gpmc_cs_delete_mem(cs);
1467 }
1468
1469 }
1470
gpmc_mem_init(void)1471 static void gpmc_mem_init(void)
1472 {
1473 int cs;
1474
1475 gpmc_mem_root.start = GPMC_MEM_START;
1476 gpmc_mem_root.end = GPMC_MEM_END;
1477
1478 /* Reserve all regions that has been set up by bootloader */
1479 for (cs = 0; cs < gpmc_cs_num; cs++) {
1480 u32 base, size;
1481
1482 if (!gpmc_cs_mem_enabled(cs))
1483 continue;
1484 gpmc_cs_get_memconf(cs, &base, &size);
1485 if (gpmc_cs_insert_mem(cs, base, size)) {
1486 pr_warn("%s: disabling cs %d mapped at 0x%x-0x%x\n",
1487 __func__, cs, base, base + size);
1488 gpmc_cs_disable_mem(cs);
1489 }
1490 }
1491 }
1492
gpmc_round_ps_to_sync_clk(u32 time_ps,u32 sync_clk)1493 static u32 gpmc_round_ps_to_sync_clk(u32 time_ps, u32 sync_clk)
1494 {
1495 u32 temp;
1496 int div;
1497
1498 div = gpmc_calc_divider(sync_clk);
1499 temp = gpmc_ps_to_ticks(time_ps);
1500 temp = (temp + div - 1) / div;
1501 return gpmc_ticks_to_ps(temp * div);
1502 }
1503
1504 /* XXX: can the cycles be avoided ? */
gpmc_calc_sync_read_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1505 static int gpmc_calc_sync_read_timings(struct gpmc_timings *gpmc_t,
1506 struct gpmc_device_timings *dev_t,
1507 bool mux)
1508 {
1509 u32 temp;
1510
1511 /* adv_rd_off */
1512 temp = dev_t->t_avdp_r;
1513 /* XXX: mux check required ? */
1514 if (mux) {
1515 /* XXX: t_avdp not to be required for sync, only added for tusb
1516 * this indirectly necessitates requirement of t_avdp_r and
1517 * t_avdp_w instead of having a single t_avdp
1518 */
1519 temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_avdh);
1520 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1521 }
1522 gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
1523
1524 /* oe_on */
1525 temp = dev_t->t_oeasu; /* XXX: remove this ? */
1526 if (mux) {
1527 temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_ach);
1528 temp = max_t(u32, temp, gpmc_t->adv_rd_off +
1529 gpmc_ticks_to_ps(dev_t->cyc_aavdh_oe));
1530 }
1531 gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
1532
1533 /* access */
1534 /* XXX: any scope for improvement ?, by combining oe_on
1535 * and clk_activation, need to check whether
1536 * access = clk_activation + round to sync clk ?
1537 */
1538 temp = max_t(u32, dev_t->t_iaa, dev_t->cyc_iaa * gpmc_t->sync_clk);
1539 temp += gpmc_t->clk_activation;
1540 if (dev_t->cyc_oe)
1541 temp = max_t(u32, temp, gpmc_t->oe_on +
1542 gpmc_ticks_to_ps(dev_t->cyc_oe));
1543 gpmc_t->access = gpmc_round_ps_to_ticks(temp);
1544
1545 gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
1546 gpmc_t->cs_rd_off = gpmc_t->oe_off;
1547
1548 /* rd_cycle */
1549 temp = max_t(u32, dev_t->t_cez_r, dev_t->t_oez);
1550 temp = gpmc_round_ps_to_sync_clk(temp, gpmc_t->sync_clk) +
1551 gpmc_t->access;
1552 /* XXX: barter t_ce_rdyz with t_cez_r ? */
1553 if (dev_t->t_ce_rdyz)
1554 temp = max_t(u32, temp, gpmc_t->cs_rd_off + dev_t->t_ce_rdyz);
1555 gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
1556
1557 return 0;
1558 }
1559
gpmc_calc_sync_write_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1560 static int gpmc_calc_sync_write_timings(struct gpmc_timings *gpmc_t,
1561 struct gpmc_device_timings *dev_t,
1562 bool mux)
1563 {
1564 u32 temp;
1565
1566 /* adv_wr_off */
1567 temp = dev_t->t_avdp_w;
1568 if (mux) {
1569 temp = max_t(u32, temp,
1570 gpmc_t->clk_activation + dev_t->t_avdh);
1571 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1572 }
1573 gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
1574
1575 /* wr_data_mux_bus */
1576 temp = max_t(u32, dev_t->t_weasu,
1577 gpmc_t->clk_activation + dev_t->t_rdyo);
1578 /* XXX: shouldn't mux be kept as a whole for wr_data_mux_bus ?,
1579 * and in that case remember to handle we_on properly
1580 */
1581 if (mux) {
1582 temp = max_t(u32, temp,
1583 gpmc_t->adv_wr_off + dev_t->t_aavdh);
1584 temp = max_t(u32, temp, gpmc_t->adv_wr_off +
1585 gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
1586 }
1587 gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1588
1589 /* we_on */
1590 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1591 gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1592 else
1593 gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1594
1595 /* wr_access */
1596 /* XXX: gpmc_capability check reqd ? , even if not, will not harm */
1597 gpmc_t->wr_access = gpmc_t->access;
1598
1599 /* we_off */
1600 temp = gpmc_t->we_on + dev_t->t_wpl;
1601 temp = max_t(u32, temp,
1602 gpmc_t->wr_access + gpmc_ticks_to_ps(1));
1603 temp = max_t(u32, temp,
1604 gpmc_t->we_on + gpmc_ticks_to_ps(dev_t->cyc_wpl));
1605 gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1606
1607 gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1608 dev_t->t_wph);
1609
1610 /* wr_cycle */
1611 temp = gpmc_round_ps_to_sync_clk(dev_t->t_cez_w, gpmc_t->sync_clk);
1612 temp += gpmc_t->wr_access;
1613 /* XXX: barter t_ce_rdyz with t_cez_w ? */
1614 if (dev_t->t_ce_rdyz)
1615 temp = max_t(u32, temp,
1616 gpmc_t->cs_wr_off + dev_t->t_ce_rdyz);
1617 gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1618
1619 return 0;
1620 }
1621
gpmc_calc_async_read_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1622 static int gpmc_calc_async_read_timings(struct gpmc_timings *gpmc_t,
1623 struct gpmc_device_timings *dev_t,
1624 bool mux)
1625 {
1626 u32 temp;
1627
1628 /* adv_rd_off */
1629 temp = dev_t->t_avdp_r;
1630 if (mux)
1631 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1632 gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
1633
1634 /* oe_on */
1635 temp = dev_t->t_oeasu;
1636 if (mux)
1637 temp = max_t(u32, temp,
1638 gpmc_t->adv_rd_off + dev_t->t_aavdh);
1639 gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
1640
1641 /* access */
1642 temp = max_t(u32, dev_t->t_iaa, /* XXX: remove t_iaa in async ? */
1643 gpmc_t->oe_on + dev_t->t_oe);
1644 temp = max_t(u32, temp,
1645 gpmc_t->cs_on + dev_t->t_ce);
1646 temp = max_t(u32, temp,
1647 gpmc_t->adv_on + dev_t->t_aa);
1648 gpmc_t->access = gpmc_round_ps_to_ticks(temp);
1649
1650 gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
1651 gpmc_t->cs_rd_off = gpmc_t->oe_off;
1652
1653 /* rd_cycle */
1654 temp = max_t(u32, dev_t->t_rd_cycle,
1655 gpmc_t->cs_rd_off + dev_t->t_cez_r);
1656 temp = max_t(u32, temp, gpmc_t->oe_off + dev_t->t_oez);
1657 gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
1658
1659 return 0;
1660 }
1661
gpmc_calc_async_write_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1662 static int gpmc_calc_async_write_timings(struct gpmc_timings *gpmc_t,
1663 struct gpmc_device_timings *dev_t,
1664 bool mux)
1665 {
1666 u32 temp;
1667
1668 /* adv_wr_off */
1669 temp = dev_t->t_avdp_w;
1670 if (mux)
1671 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1672 gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
1673
1674 /* wr_data_mux_bus */
1675 temp = dev_t->t_weasu;
1676 if (mux) {
1677 temp = max_t(u32, temp, gpmc_t->adv_wr_off + dev_t->t_aavdh);
1678 temp = max_t(u32, temp, gpmc_t->adv_wr_off +
1679 gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
1680 }
1681 gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1682
1683 /* we_on */
1684 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1685 gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1686 else
1687 gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1688
1689 /* we_off */
1690 temp = gpmc_t->we_on + dev_t->t_wpl;
1691 gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1692
1693 gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1694 dev_t->t_wph);
1695
1696 /* wr_cycle */
1697 temp = max_t(u32, dev_t->t_wr_cycle,
1698 gpmc_t->cs_wr_off + dev_t->t_cez_w);
1699 gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1700
1701 return 0;
1702 }
1703
gpmc_calc_sync_common_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t)1704 static int gpmc_calc_sync_common_timings(struct gpmc_timings *gpmc_t,
1705 struct gpmc_device_timings *dev_t)
1706 {
1707 u32 temp;
1708
1709 gpmc_t->sync_clk = gpmc_calc_divider(dev_t->clk) *
1710 gpmc_get_fclk_period();
1711
1712 gpmc_t->page_burst_access = gpmc_round_ps_to_sync_clk(
1713 dev_t->t_bacc,
1714 gpmc_t->sync_clk);
1715
1716 temp = max_t(u32, dev_t->t_ces, dev_t->t_avds);
1717 gpmc_t->clk_activation = gpmc_round_ps_to_ticks(temp);
1718
1719 if (gpmc_calc_divider(gpmc_t->sync_clk) != 1)
1720 return 0;
1721
1722 if (dev_t->ce_xdelay)
1723 gpmc_t->bool_timings.cs_extra_delay = true;
1724 if (dev_t->avd_xdelay)
1725 gpmc_t->bool_timings.adv_extra_delay = true;
1726 if (dev_t->oe_xdelay)
1727 gpmc_t->bool_timings.oe_extra_delay = true;
1728 if (dev_t->we_xdelay)
1729 gpmc_t->bool_timings.we_extra_delay = true;
1730
1731 return 0;
1732 }
1733
gpmc_calc_common_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool sync)1734 static int gpmc_calc_common_timings(struct gpmc_timings *gpmc_t,
1735 struct gpmc_device_timings *dev_t,
1736 bool sync)
1737 {
1738 u32 temp;
1739
1740 /* cs_on */
1741 gpmc_t->cs_on = gpmc_round_ps_to_ticks(dev_t->t_ceasu);
1742
1743 /* adv_on */
1744 temp = dev_t->t_avdasu;
1745 if (dev_t->t_ce_avd)
1746 temp = max_t(u32, temp,
1747 gpmc_t->cs_on + dev_t->t_ce_avd);
1748 gpmc_t->adv_on = gpmc_round_ps_to_ticks(temp);
1749
1750 if (sync)
1751 gpmc_calc_sync_common_timings(gpmc_t, dev_t);
1752
1753 return 0;
1754 }
1755
1756 /* TODO: remove this function once all peripherals are confirmed to
1757 * work with generic timing. Simultaneously gpmc_cs_set_timings()
1758 * has to be modified to handle timings in ps instead of ns
1759 */
gpmc_convert_ps_to_ns(struct gpmc_timings * t)1760 static void gpmc_convert_ps_to_ns(struct gpmc_timings *t)
1761 {
1762 t->cs_on /= 1000;
1763 t->cs_rd_off /= 1000;
1764 t->cs_wr_off /= 1000;
1765 t->adv_on /= 1000;
1766 t->adv_rd_off /= 1000;
1767 t->adv_wr_off /= 1000;
1768 t->we_on /= 1000;
1769 t->we_off /= 1000;
1770 t->oe_on /= 1000;
1771 t->oe_off /= 1000;
1772 t->page_burst_access /= 1000;
1773 t->access /= 1000;
1774 t->rd_cycle /= 1000;
1775 t->wr_cycle /= 1000;
1776 t->bus_turnaround /= 1000;
1777 t->cycle2cycle_delay /= 1000;
1778 t->wait_monitoring /= 1000;
1779 t->clk_activation /= 1000;
1780 t->wr_access /= 1000;
1781 t->wr_data_mux_bus /= 1000;
1782 }
1783
gpmc_calc_timings(struct gpmc_timings * gpmc_t,struct gpmc_settings * gpmc_s,struct gpmc_device_timings * dev_t)1784 int gpmc_calc_timings(struct gpmc_timings *gpmc_t,
1785 struct gpmc_settings *gpmc_s,
1786 struct gpmc_device_timings *dev_t)
1787 {
1788 bool mux = false, sync = false;
1789
1790 if (gpmc_s) {
1791 mux = gpmc_s->mux_add_data ? true : false;
1792 sync = (gpmc_s->sync_read || gpmc_s->sync_write);
1793 }
1794
1795 memset(gpmc_t, 0, sizeof(*gpmc_t));
1796
1797 gpmc_calc_common_timings(gpmc_t, dev_t, sync);
1798
1799 if (gpmc_s && gpmc_s->sync_read)
1800 gpmc_calc_sync_read_timings(gpmc_t, dev_t, mux);
1801 else
1802 gpmc_calc_async_read_timings(gpmc_t, dev_t, mux);
1803
1804 if (gpmc_s && gpmc_s->sync_write)
1805 gpmc_calc_sync_write_timings(gpmc_t, dev_t, mux);
1806 else
1807 gpmc_calc_async_write_timings(gpmc_t, dev_t, mux);
1808
1809 /* TODO: remove, see function definition */
1810 gpmc_convert_ps_to_ns(gpmc_t);
1811
1812 return 0;
1813 }
1814
1815 /**
1816 * gpmc_cs_program_settings - programs non-timing related settings
1817 * @cs: GPMC chip-select to program
1818 * @p: pointer to GPMC settings structure
1819 *
1820 * Programs non-timing related settings for a GPMC chip-select, such as
1821 * bus-width, burst configuration, etc. Function should be called once
1822 * for each chip-select that is being used and must be called before
1823 * calling gpmc_cs_set_timings() as timing parameters in the CONFIG1
1824 * register will be initialised to zero by this function. Returns 0 on
1825 * success and appropriate negative error code on failure.
1826 */
gpmc_cs_program_settings(int cs,struct gpmc_settings * p)1827 int gpmc_cs_program_settings(int cs, struct gpmc_settings *p)
1828 {
1829 u32 config1;
1830
1831 if ((!p->device_width) || (p->device_width > GPMC_DEVWIDTH_16BIT)) {
1832 pr_err("%s: invalid width %d!", __func__, p->device_width);
1833 return -EINVAL;
1834 }
1835
1836 /* Address-data multiplexing not supported for NAND devices */
1837 if (p->device_nand && p->mux_add_data) {
1838 pr_err("%s: invalid configuration!\n", __func__);
1839 return -EINVAL;
1840 }
1841
1842 if ((p->mux_add_data > GPMC_MUX_AD) ||
1843 ((p->mux_add_data == GPMC_MUX_AAD) &&
1844 !(gpmc_capability & GPMC_HAS_MUX_AAD))) {
1845 pr_err("%s: invalid multiplex configuration!\n", __func__);
1846 return -EINVAL;
1847 }
1848
1849 /* Page/burst mode supports lengths of 4, 8 and 16 bytes */
1850 if (p->burst_read || p->burst_write) {
1851 switch (p->burst_len) {
1852 case GPMC_BURST_4:
1853 case GPMC_BURST_8:
1854 case GPMC_BURST_16:
1855 break;
1856 default:
1857 pr_err("%s: invalid page/burst-length (%d)\n",
1858 __func__, p->burst_len);
1859 return -EINVAL;
1860 }
1861 }
1862
1863 if (p->wait_pin > gpmc_nr_waitpins) {
1864 pr_err("%s: invalid wait-pin (%d)\n", __func__, p->wait_pin);
1865 return -EINVAL;
1866 }
1867
1868 config1 = GPMC_CONFIG1_DEVICESIZE((p->device_width - 1));
1869
1870 if (p->sync_read)
1871 config1 |= GPMC_CONFIG1_READTYPE_SYNC;
1872 if (p->sync_write)
1873 config1 |= GPMC_CONFIG1_WRITETYPE_SYNC;
1874 if (p->wait_on_read)
1875 config1 |= GPMC_CONFIG1_WAIT_READ_MON;
1876 if (p->wait_on_write)
1877 config1 |= GPMC_CONFIG1_WAIT_WRITE_MON;
1878 if (p->wait_on_read || p->wait_on_write)
1879 config1 |= GPMC_CONFIG1_WAIT_PIN_SEL(p->wait_pin);
1880 if (p->device_nand)
1881 config1 |= GPMC_CONFIG1_DEVICETYPE(GPMC_DEVICETYPE_NAND);
1882 if (p->mux_add_data)
1883 config1 |= GPMC_CONFIG1_MUXTYPE(p->mux_add_data);
1884 if (p->burst_read)
1885 config1 |= GPMC_CONFIG1_READMULTIPLE_SUPP;
1886 if (p->burst_write)
1887 config1 |= GPMC_CONFIG1_WRITEMULTIPLE_SUPP;
1888 if (p->burst_read || p->burst_write) {
1889 config1 |= GPMC_CONFIG1_PAGE_LEN(p->burst_len >> 3);
1890 config1 |= p->burst_wrap ? GPMC_CONFIG1_WRAPBURST_SUPP : 0;
1891 }
1892
1893 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, config1);
1894
1895 return 0;
1896 }
1897
1898 #ifdef CONFIG_OF
1899 static const struct of_device_id gpmc_dt_ids[] = {
1900 { .compatible = "ti,omap2420-gpmc" },
1901 { .compatible = "ti,omap2430-gpmc" },
1902 { .compatible = "ti,omap3430-gpmc" }, /* omap3430 & omap3630 */
1903 { .compatible = "ti,omap4430-gpmc" }, /* omap4430 & omap4460 & omap543x */
1904 { .compatible = "ti,am3352-gpmc" }, /* am335x devices */
1905 { }
1906 };
1907
1908 /**
1909 * gpmc_read_settings_dt - read gpmc settings from device-tree
1910 * @np: pointer to device-tree node for a gpmc child device
1911 * @p: pointer to gpmc settings structure
1912 *
1913 * Reads the GPMC settings for a GPMC child device from device-tree and
1914 * stores them in the GPMC settings structure passed. The GPMC settings
1915 * structure is initialised to zero by this function and so any
1916 * previously stored settings will be cleared.
1917 */
gpmc_read_settings_dt(struct device_node * np,struct gpmc_settings * p)1918 void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
1919 {
1920 memset(p, 0, sizeof(struct gpmc_settings));
1921
1922 p->sync_read = of_property_read_bool(np, "gpmc,sync-read");
1923 p->sync_write = of_property_read_bool(np, "gpmc,sync-write");
1924 of_property_read_u32(np, "gpmc,device-width", &p->device_width);
1925 of_property_read_u32(np, "gpmc,mux-add-data", &p->mux_add_data);
1926
1927 if (!of_property_read_u32(np, "gpmc,burst-length", &p->burst_len)) {
1928 p->burst_wrap = of_property_read_bool(np, "gpmc,burst-wrap");
1929 p->burst_read = of_property_read_bool(np, "gpmc,burst-read");
1930 p->burst_write = of_property_read_bool(np, "gpmc,burst-write");
1931 if (!p->burst_read && !p->burst_write)
1932 pr_warn("%s: page/burst-length set but not used!\n",
1933 __func__);
1934 }
1935
1936 if (!of_property_read_u32(np, "gpmc,wait-pin", &p->wait_pin)) {
1937 p->wait_on_read = of_property_read_bool(np,
1938 "gpmc,wait-on-read");
1939 p->wait_on_write = of_property_read_bool(np,
1940 "gpmc,wait-on-write");
1941 if (!p->wait_on_read && !p->wait_on_write)
1942 pr_debug("%s: rd/wr wait monitoring not enabled!\n",
1943 __func__);
1944 }
1945 }
1946
gpmc_read_timings_dt(struct device_node * np,struct gpmc_timings * gpmc_t)1947 static void __maybe_unused gpmc_read_timings_dt(struct device_node *np,
1948 struct gpmc_timings *gpmc_t)
1949 {
1950 struct gpmc_bool_timings *p;
1951
1952 if (!np || !gpmc_t)
1953 return;
1954
1955 memset(gpmc_t, 0, sizeof(*gpmc_t));
1956
1957 /* minimum clock period for syncronous mode */
1958 of_property_read_u32(np, "gpmc,sync-clk-ps", &gpmc_t->sync_clk);
1959
1960 /* chip select timtings */
1961 of_property_read_u32(np, "gpmc,cs-on-ns", &gpmc_t->cs_on);
1962 of_property_read_u32(np, "gpmc,cs-rd-off-ns", &gpmc_t->cs_rd_off);
1963 of_property_read_u32(np, "gpmc,cs-wr-off-ns", &gpmc_t->cs_wr_off);
1964
1965 /* ADV signal timings */
1966 of_property_read_u32(np, "gpmc,adv-on-ns", &gpmc_t->adv_on);
1967 of_property_read_u32(np, "gpmc,adv-rd-off-ns", &gpmc_t->adv_rd_off);
1968 of_property_read_u32(np, "gpmc,adv-wr-off-ns", &gpmc_t->adv_wr_off);
1969 of_property_read_u32(np, "gpmc,adv-aad-mux-on-ns",
1970 &gpmc_t->adv_aad_mux_on);
1971 of_property_read_u32(np, "gpmc,adv-aad-mux-rd-off-ns",
1972 &gpmc_t->adv_aad_mux_rd_off);
1973 of_property_read_u32(np, "gpmc,adv-aad-mux-wr-off-ns",
1974 &gpmc_t->adv_aad_mux_wr_off);
1975
1976 /* WE signal timings */
1977 of_property_read_u32(np, "gpmc,we-on-ns", &gpmc_t->we_on);
1978 of_property_read_u32(np, "gpmc,we-off-ns", &gpmc_t->we_off);
1979
1980 /* OE signal timings */
1981 of_property_read_u32(np, "gpmc,oe-on-ns", &gpmc_t->oe_on);
1982 of_property_read_u32(np, "gpmc,oe-off-ns", &gpmc_t->oe_off);
1983 of_property_read_u32(np, "gpmc,oe-aad-mux-on-ns",
1984 &gpmc_t->oe_aad_mux_on);
1985 of_property_read_u32(np, "gpmc,oe-aad-mux-off-ns",
1986 &gpmc_t->oe_aad_mux_off);
1987
1988 /* access and cycle timings */
1989 of_property_read_u32(np, "gpmc,page-burst-access-ns",
1990 &gpmc_t->page_burst_access);
1991 of_property_read_u32(np, "gpmc,access-ns", &gpmc_t->access);
1992 of_property_read_u32(np, "gpmc,rd-cycle-ns", &gpmc_t->rd_cycle);
1993 of_property_read_u32(np, "gpmc,wr-cycle-ns", &gpmc_t->wr_cycle);
1994 of_property_read_u32(np, "gpmc,bus-turnaround-ns",
1995 &gpmc_t->bus_turnaround);
1996 of_property_read_u32(np, "gpmc,cycle2cycle-delay-ns",
1997 &gpmc_t->cycle2cycle_delay);
1998 of_property_read_u32(np, "gpmc,wait-monitoring-ns",
1999 &gpmc_t->wait_monitoring);
2000 of_property_read_u32(np, "gpmc,clk-activation-ns",
2001 &gpmc_t->clk_activation);
2002
2003 /* only applicable to OMAP3+ */
2004 of_property_read_u32(np, "gpmc,wr-access-ns", &gpmc_t->wr_access);
2005 of_property_read_u32(np, "gpmc,wr-data-mux-bus-ns",
2006 &gpmc_t->wr_data_mux_bus);
2007
2008 /* bool timing parameters */
2009 p = &gpmc_t->bool_timings;
2010
2011 p->cycle2cyclediffcsen =
2012 of_property_read_bool(np, "gpmc,cycle2cycle-diffcsen");
2013 p->cycle2cyclesamecsen =
2014 of_property_read_bool(np, "gpmc,cycle2cycle-samecsen");
2015 p->we_extra_delay = of_property_read_bool(np, "gpmc,we-extra-delay");
2016 p->oe_extra_delay = of_property_read_bool(np, "gpmc,oe-extra-delay");
2017 p->adv_extra_delay = of_property_read_bool(np, "gpmc,adv-extra-delay");
2018 p->cs_extra_delay = of_property_read_bool(np, "gpmc,cs-extra-delay");
2019 p->time_para_granularity =
2020 of_property_read_bool(np, "gpmc,time-para-granularity");
2021 }
2022
2023 /**
2024 * gpmc_probe_generic_child - configures the gpmc for a child device
2025 * @pdev: pointer to gpmc platform device
2026 * @child: pointer to device-tree node for child device
2027 *
2028 * Allocates and configures a GPMC chip-select for a child device.
2029 * Returns 0 on success and appropriate negative error code on failure.
2030 */
gpmc_probe_generic_child(struct platform_device * pdev,struct device_node * child)2031 static int gpmc_probe_generic_child(struct platform_device *pdev,
2032 struct device_node *child)
2033 {
2034 struct gpmc_settings gpmc_s;
2035 struct gpmc_timings gpmc_t;
2036 struct resource res;
2037 unsigned long base;
2038 const char *name;
2039 int ret, cs;
2040 u32 val;
2041 struct gpio_desc *waitpin_desc = NULL;
2042 struct gpmc_device *gpmc = platform_get_drvdata(pdev);
2043
2044 if (of_property_read_u32(child, "reg", &cs) < 0) {
2045 dev_err(&pdev->dev, "%pOF has no 'reg' property\n",
2046 child);
2047 return -ENODEV;
2048 }
2049
2050 if (of_address_to_resource(child, 0, &res) < 0) {
2051 dev_err(&pdev->dev, "%pOF has malformed 'reg' property\n",
2052 child);
2053 return -ENODEV;
2054 }
2055
2056 /*
2057 * Check if we have multiple instances of the same device
2058 * on a single chip select. If so, use the already initialized
2059 * timings.
2060 */
2061 name = gpmc_cs_get_name(cs);
2062 if (name && of_node_name_eq(child, name))
2063 goto no_timings;
2064
2065 ret = gpmc_cs_request(cs, resource_size(&res), &base);
2066 if (ret < 0) {
2067 dev_err(&pdev->dev, "cannot request GPMC CS %d\n", cs);
2068 return ret;
2069 }
2070 gpmc_cs_set_name(cs, child->full_name);
2071
2072 gpmc_read_settings_dt(child, &gpmc_s);
2073 gpmc_read_timings_dt(child, &gpmc_t);
2074
2075 /*
2076 * For some GPMC devices we still need to rely on the bootloader
2077 * timings because the devices can be connected via FPGA.
2078 * REVISIT: Add timing support from slls644g.pdf.
2079 */
2080 if (!gpmc_t.cs_rd_off) {
2081 WARN(1, "enable GPMC debug to configure .dts timings for CS%i\n",
2082 cs);
2083 gpmc_cs_show_timings(cs,
2084 "please add GPMC bootloader timings to .dts");
2085 goto no_timings;
2086 }
2087
2088 /* CS must be disabled while making changes to gpmc configuration */
2089 gpmc_cs_disable_mem(cs);
2090
2091 /*
2092 * FIXME: gpmc_cs_request() will map the CS to an arbitary
2093 * location in the gpmc address space. When booting with
2094 * device-tree we want the NOR flash to be mapped to the
2095 * location specified in the device-tree blob. So remap the
2096 * CS to this location. Once DT migration is complete should
2097 * just make gpmc_cs_request() map a specific address.
2098 */
2099 ret = gpmc_cs_remap(cs, res.start);
2100 if (ret < 0) {
2101 dev_err(&pdev->dev, "cannot remap GPMC CS %d to %pa\n",
2102 cs, &res.start);
2103 if (res.start < GPMC_MEM_START) {
2104 dev_info(&pdev->dev,
2105 "GPMC CS %d start cannot be lesser than 0x%x\n",
2106 cs, GPMC_MEM_START);
2107 } else if (res.end > GPMC_MEM_END) {
2108 dev_info(&pdev->dev,
2109 "GPMC CS %d end cannot be greater than 0x%x\n",
2110 cs, GPMC_MEM_END);
2111 }
2112 goto err;
2113 }
2114
2115 if (of_node_name_eq(child, "nand")) {
2116 /* Warn about older DT blobs with no compatible property */
2117 if (!of_property_read_bool(child, "compatible")) {
2118 dev_warn(&pdev->dev,
2119 "Incompatible NAND node: missing compatible");
2120 ret = -EINVAL;
2121 goto err;
2122 }
2123 }
2124
2125 if (of_node_name_eq(child, "onenand")) {
2126 /* Warn about older DT blobs with no compatible property */
2127 if (!of_property_read_bool(child, "compatible")) {
2128 dev_warn(&pdev->dev,
2129 "Incompatible OneNAND node: missing compatible");
2130 ret = -EINVAL;
2131 goto err;
2132 }
2133 }
2134
2135 if (of_device_is_compatible(child, "ti,omap2-nand")) {
2136 /* NAND specific setup */
2137 val = 8;
2138 of_property_read_u32(child, "nand-bus-width", &val);
2139 switch (val) {
2140 case 8:
2141 gpmc_s.device_width = GPMC_DEVWIDTH_8BIT;
2142 break;
2143 case 16:
2144 gpmc_s.device_width = GPMC_DEVWIDTH_16BIT;
2145 break;
2146 default:
2147 dev_err(&pdev->dev, "%pOFn: invalid 'nand-bus-width'\n",
2148 child);
2149 ret = -EINVAL;
2150 goto err;
2151 }
2152
2153 /* disable write protect */
2154 gpmc_configure(GPMC_CONFIG_WP, 0);
2155 gpmc_s.device_nand = true;
2156 } else {
2157 ret = of_property_read_u32(child, "bank-width",
2158 &gpmc_s.device_width);
2159 if (ret < 0 && !gpmc_s.device_width) {
2160 dev_err(&pdev->dev,
2161 "%pOF has no 'gpmc,device-width' property\n",
2162 child);
2163 goto err;
2164 }
2165 }
2166
2167 /* Reserve wait pin if it is required and valid */
2168 if (gpmc_s.wait_on_read || gpmc_s.wait_on_write) {
2169 unsigned int wait_pin = gpmc_s.wait_pin;
2170
2171 waitpin_desc = gpiochip_request_own_desc(&gpmc->gpio_chip,
2172 wait_pin, "WAITPIN",
2173 GPIO_ACTIVE_HIGH,
2174 GPIOD_IN);
2175 if (IS_ERR(waitpin_desc)) {
2176 dev_err(&pdev->dev, "invalid wait-pin: %d\n", wait_pin);
2177 ret = PTR_ERR(waitpin_desc);
2178 goto err;
2179 }
2180 }
2181
2182 gpmc_cs_show_timings(cs, "before gpmc_cs_program_settings");
2183
2184 ret = gpmc_cs_program_settings(cs, &gpmc_s);
2185 if (ret < 0)
2186 goto err_cs;
2187
2188 ret = gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
2189 if (ret) {
2190 dev_err(&pdev->dev, "failed to set gpmc timings for: %pOFn\n",
2191 child);
2192 goto err_cs;
2193 }
2194
2195 /* Clear limited address i.e. enable A26-A11 */
2196 val = gpmc_read_reg(GPMC_CONFIG);
2197 val &= ~GPMC_CONFIG_LIMITEDADDRESS;
2198 gpmc_write_reg(GPMC_CONFIG, val);
2199
2200 /* Enable CS region */
2201 gpmc_cs_enable_mem(cs);
2202
2203 no_timings:
2204
2205 /* create platform device, NULL on error or when disabled */
2206 if (!of_platform_device_create(child, NULL, &pdev->dev))
2207 goto err_child_fail;
2208
2209 /* is child a common bus? */
2210 if (of_match_node(of_default_bus_match_table, child))
2211 /* create children and other common bus children */
2212 if (of_platform_default_populate(child, NULL, &pdev->dev))
2213 goto err_child_fail;
2214
2215 return 0;
2216
2217 err_child_fail:
2218
2219 dev_err(&pdev->dev, "failed to create gpmc child %pOFn\n", child);
2220 ret = -ENODEV;
2221
2222 err_cs:
2223 gpiochip_free_own_desc(waitpin_desc);
2224 err:
2225 gpmc_cs_free(cs);
2226
2227 return ret;
2228 }
2229
gpmc_probe_dt(struct platform_device * pdev)2230 static int gpmc_probe_dt(struct platform_device *pdev)
2231 {
2232 int ret;
2233 const struct of_device_id *of_id =
2234 of_match_device(gpmc_dt_ids, &pdev->dev);
2235
2236 if (!of_id)
2237 return 0;
2238
2239 ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-cs",
2240 &gpmc_cs_num);
2241 if (ret < 0) {
2242 pr_err("%s: number of chip-selects not defined\n", __func__);
2243 return ret;
2244 } else if (gpmc_cs_num < 1) {
2245 pr_err("%s: all chip-selects are disabled\n", __func__);
2246 return -EINVAL;
2247 } else if (gpmc_cs_num > GPMC_CS_NUM) {
2248 pr_err("%s: number of supported chip-selects cannot be > %d\n",
2249 __func__, GPMC_CS_NUM);
2250 return -EINVAL;
2251 }
2252
2253 ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-waitpins",
2254 &gpmc_nr_waitpins);
2255 if (ret < 0) {
2256 pr_err("%s: number of wait pins not found!\n", __func__);
2257 return ret;
2258 }
2259
2260 return 0;
2261 }
2262
gpmc_probe_dt_children(struct platform_device * pdev)2263 static void gpmc_probe_dt_children(struct platform_device *pdev)
2264 {
2265 int ret;
2266 struct device_node *child;
2267
2268 for_each_available_child_of_node(pdev->dev.of_node, child) {
2269 ret = gpmc_probe_generic_child(pdev, child);
2270 if (ret) {
2271 dev_err(&pdev->dev, "failed to probe DT child '%pOFn': %d\n",
2272 child, ret);
2273 }
2274 }
2275 }
2276 #else
gpmc_probe_dt(struct platform_device * pdev)2277 static int gpmc_probe_dt(struct platform_device *pdev)
2278 {
2279 return 0;
2280 }
2281
gpmc_probe_dt_children(struct platform_device * pdev)2282 static void gpmc_probe_dt_children(struct platform_device *pdev)
2283 {
2284 }
2285 #endif /* CONFIG_OF */
2286
gpmc_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)2287 static int gpmc_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
2288 {
2289 return 1; /* we're input only */
2290 }
2291
gpmc_gpio_direction_input(struct gpio_chip * chip,unsigned int offset)2292 static int gpmc_gpio_direction_input(struct gpio_chip *chip,
2293 unsigned int offset)
2294 {
2295 return 0; /* we're input only */
2296 }
2297
gpmc_gpio_direction_output(struct gpio_chip * chip,unsigned int offset,int value)2298 static int gpmc_gpio_direction_output(struct gpio_chip *chip,
2299 unsigned int offset, int value)
2300 {
2301 return -EINVAL; /* we're input only */
2302 }
2303
gpmc_gpio_set(struct gpio_chip * chip,unsigned int offset,int value)2304 static void gpmc_gpio_set(struct gpio_chip *chip, unsigned int offset,
2305 int value)
2306 {
2307 }
2308
gpmc_gpio_get(struct gpio_chip * chip,unsigned int offset)2309 static int gpmc_gpio_get(struct gpio_chip *chip, unsigned int offset)
2310 {
2311 u32 reg;
2312
2313 offset += 8;
2314
2315 reg = gpmc_read_reg(GPMC_STATUS) & BIT(offset);
2316
2317 return !!reg;
2318 }
2319
gpmc_gpio_init(struct gpmc_device * gpmc)2320 static int gpmc_gpio_init(struct gpmc_device *gpmc)
2321 {
2322 int ret;
2323
2324 gpmc->gpio_chip.parent = gpmc->dev;
2325 gpmc->gpio_chip.owner = THIS_MODULE;
2326 gpmc->gpio_chip.label = DEVICE_NAME;
2327 gpmc->gpio_chip.ngpio = gpmc_nr_waitpins;
2328 gpmc->gpio_chip.get_direction = gpmc_gpio_get_direction;
2329 gpmc->gpio_chip.direction_input = gpmc_gpio_direction_input;
2330 gpmc->gpio_chip.direction_output = gpmc_gpio_direction_output;
2331 gpmc->gpio_chip.set = gpmc_gpio_set;
2332 gpmc->gpio_chip.get = gpmc_gpio_get;
2333 gpmc->gpio_chip.base = -1;
2334
2335 ret = devm_gpiochip_add_data(gpmc->dev, &gpmc->gpio_chip, NULL);
2336 if (ret < 0) {
2337 dev_err(gpmc->dev, "could not register gpio chip: %d\n", ret);
2338 return ret;
2339 }
2340
2341 return 0;
2342 }
2343
gpmc_probe(struct platform_device * pdev)2344 static int gpmc_probe(struct platform_device *pdev)
2345 {
2346 int rc;
2347 u32 l;
2348 struct resource *res;
2349 struct gpmc_device *gpmc;
2350
2351 gpmc = devm_kzalloc(&pdev->dev, sizeof(*gpmc), GFP_KERNEL);
2352 if (!gpmc)
2353 return -ENOMEM;
2354
2355 gpmc->dev = &pdev->dev;
2356 platform_set_drvdata(pdev, gpmc);
2357
2358 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2359 if (res == NULL)
2360 return -ENOENT;
2361
2362 phys_base = res->start;
2363 mem_size = resource_size(res);
2364
2365 gpmc_base = devm_ioremap_resource(&pdev->dev, res);
2366 if (IS_ERR(gpmc_base))
2367 return PTR_ERR(gpmc_base);
2368
2369 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2370 if (!res) {
2371 dev_err(&pdev->dev, "Failed to get resource: irq\n");
2372 return -ENOENT;
2373 }
2374
2375 gpmc->irq = res->start;
2376
2377 gpmc_l3_clk = devm_clk_get(&pdev->dev, "fck");
2378 if (IS_ERR(gpmc_l3_clk)) {
2379 dev_err(&pdev->dev, "Failed to get GPMC fck\n");
2380 return PTR_ERR(gpmc_l3_clk);
2381 }
2382
2383 if (!clk_get_rate(gpmc_l3_clk)) {
2384 dev_err(&pdev->dev, "Invalid GPMC fck clock rate\n");
2385 return -EINVAL;
2386 }
2387
2388 if (pdev->dev.of_node) {
2389 rc = gpmc_probe_dt(pdev);
2390 if (rc)
2391 return rc;
2392 } else {
2393 gpmc_cs_num = GPMC_CS_NUM;
2394 gpmc_nr_waitpins = GPMC_NR_WAITPINS;
2395 }
2396
2397 pm_runtime_enable(&pdev->dev);
2398 pm_runtime_get_sync(&pdev->dev);
2399
2400 l = gpmc_read_reg(GPMC_REVISION);
2401
2402 /*
2403 * FIXME: Once device-tree migration is complete the below flags
2404 * should be populated based upon the device-tree compatible
2405 * string. For now just use the IP revision. OMAP3+ devices have
2406 * the wr_access and wr_data_mux_bus register fields. OMAP4+
2407 * devices support the addr-addr-data multiplex protocol.
2408 *
2409 * GPMC IP revisions:
2410 * - OMAP24xx = 2.0
2411 * - OMAP3xxx = 5.0
2412 * - OMAP44xx/54xx/AM335x = 6.0
2413 */
2414 if (GPMC_REVISION_MAJOR(l) > 0x4)
2415 gpmc_capability = GPMC_HAS_WR_ACCESS | GPMC_HAS_WR_DATA_MUX_BUS;
2416 if (GPMC_REVISION_MAJOR(l) > 0x5)
2417 gpmc_capability |= GPMC_HAS_MUX_AAD;
2418 dev_info(gpmc->dev, "GPMC revision %d.%d\n", GPMC_REVISION_MAJOR(l),
2419 GPMC_REVISION_MINOR(l));
2420
2421 gpmc_mem_init();
2422 rc = gpmc_gpio_init(gpmc);
2423 if (rc)
2424 goto gpio_init_failed;
2425
2426 gpmc->nirqs = GPMC_NR_NAND_IRQS + gpmc_nr_waitpins;
2427 rc = gpmc_setup_irq(gpmc);
2428 if (rc) {
2429 dev_err(gpmc->dev, "gpmc_setup_irq failed\n");
2430 goto gpio_init_failed;
2431 }
2432
2433 gpmc_probe_dt_children(pdev);
2434
2435 return 0;
2436
2437 gpio_init_failed:
2438 gpmc_mem_exit();
2439 pm_runtime_put_sync(&pdev->dev);
2440 pm_runtime_disable(&pdev->dev);
2441
2442 return rc;
2443 }
2444
gpmc_remove(struct platform_device * pdev)2445 static int gpmc_remove(struct platform_device *pdev)
2446 {
2447 struct gpmc_device *gpmc = platform_get_drvdata(pdev);
2448
2449 gpmc_free_irq(gpmc);
2450 gpmc_mem_exit();
2451 pm_runtime_put_sync(&pdev->dev);
2452 pm_runtime_disable(&pdev->dev);
2453
2454 return 0;
2455 }
2456
2457 #ifdef CONFIG_PM_SLEEP
gpmc_suspend(struct device * dev)2458 static int gpmc_suspend(struct device *dev)
2459 {
2460 omap3_gpmc_save_context();
2461 pm_runtime_put_sync(dev);
2462 return 0;
2463 }
2464
gpmc_resume(struct device * dev)2465 static int gpmc_resume(struct device *dev)
2466 {
2467 pm_runtime_get_sync(dev);
2468 omap3_gpmc_restore_context();
2469 return 0;
2470 }
2471 #endif
2472
2473 static SIMPLE_DEV_PM_OPS(gpmc_pm_ops, gpmc_suspend, gpmc_resume);
2474
2475 static struct platform_driver gpmc_driver = {
2476 .probe = gpmc_probe,
2477 .remove = gpmc_remove,
2478 .driver = {
2479 .name = DEVICE_NAME,
2480 .of_match_table = of_match_ptr(gpmc_dt_ids),
2481 .pm = &gpmc_pm_ops,
2482 },
2483 };
2484
gpmc_init(void)2485 static __init int gpmc_init(void)
2486 {
2487 return platform_driver_register(&gpmc_driver);
2488 }
2489 postcore_initcall(gpmc_init);
2490
2491 static struct omap3_gpmc_regs gpmc_context;
2492
omap3_gpmc_save_context(void)2493 void omap3_gpmc_save_context(void)
2494 {
2495 int i;
2496
2497 if (!gpmc_base)
2498 return;
2499
2500 gpmc_context.sysconfig = gpmc_read_reg(GPMC_SYSCONFIG);
2501 gpmc_context.irqenable = gpmc_read_reg(GPMC_IRQENABLE);
2502 gpmc_context.timeout_ctrl = gpmc_read_reg(GPMC_TIMEOUT_CONTROL);
2503 gpmc_context.config = gpmc_read_reg(GPMC_CONFIG);
2504 gpmc_context.prefetch_config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
2505 gpmc_context.prefetch_config2 = gpmc_read_reg(GPMC_PREFETCH_CONFIG2);
2506 gpmc_context.prefetch_control = gpmc_read_reg(GPMC_PREFETCH_CONTROL);
2507 for (i = 0; i < gpmc_cs_num; i++) {
2508 gpmc_context.cs_context[i].is_valid = gpmc_cs_mem_enabled(i);
2509 if (gpmc_context.cs_context[i].is_valid) {
2510 gpmc_context.cs_context[i].config1 =
2511 gpmc_cs_read_reg(i, GPMC_CS_CONFIG1);
2512 gpmc_context.cs_context[i].config2 =
2513 gpmc_cs_read_reg(i, GPMC_CS_CONFIG2);
2514 gpmc_context.cs_context[i].config3 =
2515 gpmc_cs_read_reg(i, GPMC_CS_CONFIG3);
2516 gpmc_context.cs_context[i].config4 =
2517 gpmc_cs_read_reg(i, GPMC_CS_CONFIG4);
2518 gpmc_context.cs_context[i].config5 =
2519 gpmc_cs_read_reg(i, GPMC_CS_CONFIG5);
2520 gpmc_context.cs_context[i].config6 =
2521 gpmc_cs_read_reg(i, GPMC_CS_CONFIG6);
2522 gpmc_context.cs_context[i].config7 =
2523 gpmc_cs_read_reg(i, GPMC_CS_CONFIG7);
2524 }
2525 }
2526 }
2527
omap3_gpmc_restore_context(void)2528 void omap3_gpmc_restore_context(void)
2529 {
2530 int i;
2531
2532 if (!gpmc_base)
2533 return;
2534
2535 gpmc_write_reg(GPMC_SYSCONFIG, gpmc_context.sysconfig);
2536 gpmc_write_reg(GPMC_IRQENABLE, gpmc_context.irqenable);
2537 gpmc_write_reg(GPMC_TIMEOUT_CONTROL, gpmc_context.timeout_ctrl);
2538 gpmc_write_reg(GPMC_CONFIG, gpmc_context.config);
2539 gpmc_write_reg(GPMC_PREFETCH_CONFIG1, gpmc_context.prefetch_config1);
2540 gpmc_write_reg(GPMC_PREFETCH_CONFIG2, gpmc_context.prefetch_config2);
2541 gpmc_write_reg(GPMC_PREFETCH_CONTROL, gpmc_context.prefetch_control);
2542 for (i = 0; i < gpmc_cs_num; i++) {
2543 if (gpmc_context.cs_context[i].is_valid) {
2544 gpmc_cs_write_reg(i, GPMC_CS_CONFIG1,
2545 gpmc_context.cs_context[i].config1);
2546 gpmc_cs_write_reg(i, GPMC_CS_CONFIG2,
2547 gpmc_context.cs_context[i].config2);
2548 gpmc_cs_write_reg(i, GPMC_CS_CONFIG3,
2549 gpmc_context.cs_context[i].config3);
2550 gpmc_cs_write_reg(i, GPMC_CS_CONFIG4,
2551 gpmc_context.cs_context[i].config4);
2552 gpmc_cs_write_reg(i, GPMC_CS_CONFIG5,
2553 gpmc_context.cs_context[i].config5);
2554 gpmc_cs_write_reg(i, GPMC_CS_CONFIG6,
2555 gpmc_context.cs_context[i].config6);
2556 gpmc_cs_write_reg(i, GPMC_CS_CONFIG7,
2557 gpmc_context.cs_context[i].config7);
2558 }
2559 }
2560 }
2561