1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * IOMMU API for Renesas VMSA-compatible IPMMU
4 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5 *
6 * Copyright (C) 2014 Renesas Electronics Corporation
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-iommu.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sizes.h>
26 #include <linux/slab.h>
27 #include <linux/sys_soc.h>
28
29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
30 #include <asm/dma-iommu.h>
31 #include <asm/pgalloc.h>
32 #else
33 #define arm_iommu_create_mapping(...) NULL
34 #define arm_iommu_attach_device(...) -ENODEV
35 #define arm_iommu_release_mapping(...) do {} while (0)
36 #define arm_iommu_detach_device(...) do {} while (0)
37 #endif
38
39 #define IPMMU_CTX_MAX 8U
40 #define IPMMU_CTX_INVALID -1
41
42 #define IPMMU_UTLB_MAX 48U
43
44 struct ipmmu_features {
45 bool use_ns_alias_offset;
46 bool has_cache_leaf_nodes;
47 unsigned int number_of_contexts;
48 unsigned int num_utlbs;
49 bool setup_imbuscr;
50 bool twobit_imttbcr_sl0;
51 bool reserved_context;
52 bool cache_snoop;
53 };
54
55 struct ipmmu_vmsa_device {
56 struct device *dev;
57 void __iomem *base;
58 struct iommu_device iommu;
59 struct ipmmu_vmsa_device *root;
60 const struct ipmmu_features *features;
61 unsigned int num_ctx;
62 spinlock_t lock; /* Protects ctx and domains[] */
63 DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
64 struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
65 s8 utlb_ctx[IPMMU_UTLB_MAX];
66
67 struct iommu_group *group;
68 struct dma_iommu_mapping *mapping;
69 };
70
71 struct ipmmu_vmsa_domain {
72 struct ipmmu_vmsa_device *mmu;
73 struct iommu_domain io_domain;
74
75 struct io_pgtable_cfg cfg;
76 struct io_pgtable_ops *iop;
77
78 unsigned int context_id;
79 struct mutex mutex; /* Protects mappings */
80 };
81
to_vmsa_domain(struct iommu_domain * dom)82 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
83 {
84 return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
85 }
86
to_ipmmu(struct device * dev)87 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
88 {
89 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
90
91 return fwspec ? fwspec->iommu_priv : NULL;
92 }
93
94 #define TLB_LOOP_TIMEOUT 100 /* 100us */
95
96 /* -----------------------------------------------------------------------------
97 * Registers Definition
98 */
99
100 #define IM_NS_ALIAS_OFFSET 0x800
101
102 #define IM_CTX_SIZE 0x40
103
104 #define IMCTR 0x0000
105 #define IMCTR_TRE (1 << 17)
106 #define IMCTR_AFE (1 << 16)
107 #define IMCTR_RTSEL_MASK (3 << 4)
108 #define IMCTR_RTSEL_SHIFT 4
109 #define IMCTR_TREN (1 << 3)
110 #define IMCTR_INTEN (1 << 2)
111 #define IMCTR_FLUSH (1 << 1)
112 #define IMCTR_MMUEN (1 << 0)
113
114 #define IMCAAR 0x0004
115
116 #define IMTTBCR 0x0008
117 #define IMTTBCR_EAE (1 << 31)
118 #define IMTTBCR_PMB (1 << 30)
119 #define IMTTBCR_SH1_NON_SHAREABLE (0 << 28) /* R-Car Gen2 only */
120 #define IMTTBCR_SH1_OUTER_SHAREABLE (2 << 28) /* R-Car Gen2 only */
121 #define IMTTBCR_SH1_INNER_SHAREABLE (3 << 28) /* R-Car Gen2 only */
122 #define IMTTBCR_SH1_MASK (3 << 28) /* R-Car Gen2 only */
123 #define IMTTBCR_ORGN1_NC (0 << 26) /* R-Car Gen2 only */
124 #define IMTTBCR_ORGN1_WB_WA (1 << 26) /* R-Car Gen2 only */
125 #define IMTTBCR_ORGN1_WT (2 << 26) /* R-Car Gen2 only */
126 #define IMTTBCR_ORGN1_WB (3 << 26) /* R-Car Gen2 only */
127 #define IMTTBCR_ORGN1_MASK (3 << 26) /* R-Car Gen2 only */
128 #define IMTTBCR_IRGN1_NC (0 << 24) /* R-Car Gen2 only */
129 #define IMTTBCR_IRGN1_WB_WA (1 << 24) /* R-Car Gen2 only */
130 #define IMTTBCR_IRGN1_WT (2 << 24) /* R-Car Gen2 only */
131 #define IMTTBCR_IRGN1_WB (3 << 24) /* R-Car Gen2 only */
132 #define IMTTBCR_IRGN1_MASK (3 << 24) /* R-Car Gen2 only */
133 #define IMTTBCR_TSZ1_MASK (7 << 16)
134 #define IMTTBCR_TSZ1_SHIFT 16
135 #define IMTTBCR_SH0_NON_SHAREABLE (0 << 12) /* R-Car Gen2 only */
136 #define IMTTBCR_SH0_OUTER_SHAREABLE (2 << 12) /* R-Car Gen2 only */
137 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12) /* R-Car Gen2 only */
138 #define IMTTBCR_SH0_MASK (3 << 12) /* R-Car Gen2 only */
139 #define IMTTBCR_ORGN0_NC (0 << 10) /* R-Car Gen2 only */
140 #define IMTTBCR_ORGN0_WB_WA (1 << 10) /* R-Car Gen2 only */
141 #define IMTTBCR_ORGN0_WT (2 << 10) /* R-Car Gen2 only */
142 #define IMTTBCR_ORGN0_WB (3 << 10) /* R-Car Gen2 only */
143 #define IMTTBCR_ORGN0_MASK (3 << 10) /* R-Car Gen2 only */
144 #define IMTTBCR_IRGN0_NC (0 << 8) /* R-Car Gen2 only */
145 #define IMTTBCR_IRGN0_WB_WA (1 << 8) /* R-Car Gen2 only */
146 #define IMTTBCR_IRGN0_WT (2 << 8) /* R-Car Gen2 only */
147 #define IMTTBCR_IRGN0_WB (3 << 8) /* R-Car Gen2 only */
148 #define IMTTBCR_IRGN0_MASK (3 << 8) /* R-Car Gen2 only */
149 #define IMTTBCR_SL0_TWOBIT_LVL_3 (0 << 6) /* R-Car Gen3 only */
150 #define IMTTBCR_SL0_TWOBIT_LVL_2 (1 << 6) /* R-Car Gen3 only */
151 #define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6) /* R-Car Gen3 only */
152 #define IMTTBCR_SL0_LVL_2 (0 << 4)
153 #define IMTTBCR_SL0_LVL_1 (1 << 4)
154 #define IMTTBCR_TSZ0_MASK (7 << 0)
155 #define IMTTBCR_TSZ0_SHIFT O
156
157 #define IMBUSCR 0x000c
158 #define IMBUSCR_DVM (1 << 2)
159 #define IMBUSCR_BUSSEL_SYS (0 << 0)
160 #define IMBUSCR_BUSSEL_CCI (1 << 0)
161 #define IMBUSCR_BUSSEL_IMCAAR (2 << 0)
162 #define IMBUSCR_BUSSEL_CCI_IMCAAR (3 << 0)
163 #define IMBUSCR_BUSSEL_MASK (3 << 0)
164
165 #define IMTTLBR0 0x0010
166 #define IMTTUBR0 0x0014
167 #define IMTTLBR1 0x0018
168 #define IMTTUBR1 0x001c
169
170 #define IMSTR 0x0020
171 #define IMSTR_ERRLVL_MASK (3 << 12)
172 #define IMSTR_ERRLVL_SHIFT 12
173 #define IMSTR_ERRCODE_TLB_FORMAT (1 << 8)
174 #define IMSTR_ERRCODE_ACCESS_PERM (4 << 8)
175 #define IMSTR_ERRCODE_SECURE_ACCESS (5 << 8)
176 #define IMSTR_ERRCODE_MASK (7 << 8)
177 #define IMSTR_MHIT (1 << 4)
178 #define IMSTR_ABORT (1 << 2)
179 #define IMSTR_PF (1 << 1)
180 #define IMSTR_TF (1 << 0)
181
182 #define IMMAIR0 0x0028
183 #define IMMAIR1 0x002c
184 #define IMMAIR_ATTR_MASK 0xff
185 #define IMMAIR_ATTR_DEVICE 0x04
186 #define IMMAIR_ATTR_NC 0x44
187 #define IMMAIR_ATTR_WBRWA 0xff
188 #define IMMAIR_ATTR_SHIFT(n) ((n) << 3)
189 #define IMMAIR_ATTR_IDX_NC 0
190 #define IMMAIR_ATTR_IDX_WBRWA 1
191 #define IMMAIR_ATTR_IDX_DEV 2
192
193 #define IMELAR 0x0030 /* IMEAR on R-Car Gen2 */
194 #define IMEUAR 0x0034 /* R-Car Gen3 only */
195
196 #define IMPCTR 0x0200
197 #define IMPSTR 0x0208
198 #define IMPEAR 0x020c
199 #define IMPMBA(n) (0x0280 + ((n) * 4))
200 #define IMPMBD(n) (0x02c0 + ((n) * 4))
201
202 #define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
203 #define IMUCTR0(n) (0x0300 + ((n) * 16))
204 #define IMUCTR32(n) (0x0600 + (((n) - 32) * 16))
205 #define IMUCTR_FIXADDEN (1 << 31)
206 #define IMUCTR_FIXADD_MASK (0xff << 16)
207 #define IMUCTR_FIXADD_SHIFT 16
208 #define IMUCTR_TTSEL_MMU(n) ((n) << 4)
209 #define IMUCTR_TTSEL_PMB (8 << 4)
210 #define IMUCTR_TTSEL_MASK (15 << 4)
211 #define IMUCTR_FLUSH (1 << 1)
212 #define IMUCTR_MMUEN (1 << 0)
213
214 #define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
215 #define IMUASID0(n) (0x0308 + ((n) * 16))
216 #define IMUASID32(n) (0x0608 + (((n) - 32) * 16))
217 #define IMUASID_ASID8_MASK (0xff << 8)
218 #define IMUASID_ASID8_SHIFT 8
219 #define IMUASID_ASID0_MASK (0xff << 0)
220 #define IMUASID_ASID0_SHIFT 0
221
222 /* -----------------------------------------------------------------------------
223 * Root device handling
224 */
225
226 static struct platform_driver ipmmu_driver;
227
ipmmu_is_root(struct ipmmu_vmsa_device * mmu)228 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
229 {
230 return mmu->root == mmu;
231 }
232
__ipmmu_check_device(struct device * dev,void * data)233 static int __ipmmu_check_device(struct device *dev, void *data)
234 {
235 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
236 struct ipmmu_vmsa_device **rootp = data;
237
238 if (ipmmu_is_root(mmu))
239 *rootp = mmu;
240
241 return 0;
242 }
243
ipmmu_find_root(void)244 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
245 {
246 struct ipmmu_vmsa_device *root = NULL;
247
248 return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
249 __ipmmu_check_device) == 0 ? root : NULL;
250 }
251
252 /* -----------------------------------------------------------------------------
253 * Read/Write Access
254 */
255
ipmmu_read(struct ipmmu_vmsa_device * mmu,unsigned int offset)256 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
257 {
258 return ioread32(mmu->base + offset);
259 }
260
ipmmu_write(struct ipmmu_vmsa_device * mmu,unsigned int offset,u32 data)261 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
262 u32 data)
263 {
264 iowrite32(data, mmu->base + offset);
265 }
266
ipmmu_ctx_read_root(struct ipmmu_vmsa_domain * domain,unsigned int reg)267 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
268 unsigned int reg)
269 {
270 return ipmmu_read(domain->mmu->root,
271 domain->context_id * IM_CTX_SIZE + reg);
272 }
273
ipmmu_ctx_write_root(struct ipmmu_vmsa_domain * domain,unsigned int reg,u32 data)274 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
275 unsigned int reg, u32 data)
276 {
277 ipmmu_write(domain->mmu->root,
278 domain->context_id * IM_CTX_SIZE + reg, data);
279 }
280
ipmmu_ctx_write_all(struct ipmmu_vmsa_domain * domain,unsigned int reg,u32 data)281 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
282 unsigned int reg, u32 data)
283 {
284 if (domain->mmu != domain->mmu->root)
285 ipmmu_write(domain->mmu,
286 domain->context_id * IM_CTX_SIZE + reg, data);
287
288 ipmmu_write(domain->mmu->root,
289 domain->context_id * IM_CTX_SIZE + reg, data);
290 }
291
292 /* -----------------------------------------------------------------------------
293 * TLB and microTLB Management
294 */
295
296 /* Wait for any pending TLB invalidations to complete */
ipmmu_tlb_sync(struct ipmmu_vmsa_domain * domain)297 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
298 {
299 unsigned int count = 0;
300
301 while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
302 cpu_relax();
303 if (++count == TLB_LOOP_TIMEOUT) {
304 dev_err_ratelimited(domain->mmu->dev,
305 "TLB sync timed out -- MMU may be deadlocked\n");
306 return;
307 }
308 udelay(1);
309 }
310 }
311
ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain * domain)312 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
313 {
314 u32 reg;
315
316 reg = ipmmu_ctx_read_root(domain, IMCTR);
317 reg |= IMCTR_FLUSH;
318 ipmmu_ctx_write_all(domain, IMCTR, reg);
319
320 ipmmu_tlb_sync(domain);
321 }
322
323 /*
324 * Enable MMU translation for the microTLB.
325 */
ipmmu_utlb_enable(struct ipmmu_vmsa_domain * domain,unsigned int utlb)326 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
327 unsigned int utlb)
328 {
329 struct ipmmu_vmsa_device *mmu = domain->mmu;
330
331 /*
332 * TODO: Reference-count the microTLB as several bus masters can be
333 * connected to the same microTLB.
334 */
335
336 /* TODO: What should we set the ASID to ? */
337 ipmmu_write(mmu, IMUASID(utlb), 0);
338 /* TODO: Do we need to flush the microTLB ? */
339 ipmmu_write(mmu, IMUCTR(utlb),
340 IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
341 IMUCTR_MMUEN);
342 mmu->utlb_ctx[utlb] = domain->context_id;
343 }
344
345 /*
346 * Disable MMU translation for the microTLB.
347 */
ipmmu_utlb_disable(struct ipmmu_vmsa_domain * domain,unsigned int utlb)348 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
349 unsigned int utlb)
350 {
351 struct ipmmu_vmsa_device *mmu = domain->mmu;
352
353 ipmmu_write(mmu, IMUCTR(utlb), 0);
354 mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
355 }
356
ipmmu_tlb_flush_all(void * cookie)357 static void ipmmu_tlb_flush_all(void *cookie)
358 {
359 struct ipmmu_vmsa_domain *domain = cookie;
360
361 ipmmu_tlb_invalidate(domain);
362 }
363
ipmmu_tlb_flush(unsigned long iova,size_t size,size_t granule,void * cookie)364 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
365 size_t granule, void *cookie)
366 {
367 ipmmu_tlb_flush_all(cookie);
368 }
369
370 static const struct iommu_flush_ops ipmmu_flush_ops = {
371 .tlb_flush_all = ipmmu_tlb_flush_all,
372 .tlb_flush_walk = ipmmu_tlb_flush,
373 .tlb_flush_leaf = ipmmu_tlb_flush,
374 };
375
376 /* -----------------------------------------------------------------------------
377 * Domain/Context Management
378 */
379
ipmmu_domain_allocate_context(struct ipmmu_vmsa_device * mmu,struct ipmmu_vmsa_domain * domain)380 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
381 struct ipmmu_vmsa_domain *domain)
382 {
383 unsigned long flags;
384 int ret;
385
386 spin_lock_irqsave(&mmu->lock, flags);
387
388 ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
389 if (ret != mmu->num_ctx) {
390 mmu->domains[ret] = domain;
391 set_bit(ret, mmu->ctx);
392 } else
393 ret = -EBUSY;
394
395 spin_unlock_irqrestore(&mmu->lock, flags);
396
397 return ret;
398 }
399
ipmmu_domain_free_context(struct ipmmu_vmsa_device * mmu,unsigned int context_id)400 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
401 unsigned int context_id)
402 {
403 unsigned long flags;
404
405 spin_lock_irqsave(&mmu->lock, flags);
406
407 clear_bit(context_id, mmu->ctx);
408 mmu->domains[context_id] = NULL;
409
410 spin_unlock_irqrestore(&mmu->lock, flags);
411 }
412
ipmmu_domain_setup_context(struct ipmmu_vmsa_domain * domain)413 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
414 {
415 u64 ttbr;
416 u32 tmp;
417
418 /* TTBR0 */
419 ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
420 ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
421 ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
422
423 /*
424 * TTBCR
425 * We use long descriptors and allocate the whole 32-bit VA space to
426 * TTBR0.
427 */
428 if (domain->mmu->features->twobit_imttbcr_sl0)
429 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
430 else
431 tmp = IMTTBCR_SL0_LVL_1;
432
433 if (domain->mmu->features->cache_snoop)
434 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
435 IMTTBCR_IRGN0_WB_WA;
436
437 ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
438
439 /* MAIR0 */
440 ipmmu_ctx_write_root(domain, IMMAIR0,
441 domain->cfg.arm_lpae_s1_cfg.mair[0]);
442
443 /* IMBUSCR */
444 if (domain->mmu->features->setup_imbuscr)
445 ipmmu_ctx_write_root(domain, IMBUSCR,
446 ipmmu_ctx_read_root(domain, IMBUSCR) &
447 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
448
449 /*
450 * IMSTR
451 * Clear all interrupt flags.
452 */
453 ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
454
455 /*
456 * IMCTR
457 * Enable the MMU and interrupt generation. The long-descriptor
458 * translation table format doesn't use TEX remapping. Don't enable AF
459 * software management as we have no use for it. Flush the TLB as
460 * required when modifying the context registers.
461 */
462 ipmmu_ctx_write_all(domain, IMCTR,
463 IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
464 }
465
ipmmu_domain_init_context(struct ipmmu_vmsa_domain * domain)466 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
467 {
468 int ret;
469
470 /*
471 * Allocate the page table operations.
472 *
473 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
474 * access, Long-descriptor format" that the NStable bit being set in a
475 * table descriptor will result in the NStable and NS bits of all child
476 * entries being ignored and considered as being set. The IPMMU seems
477 * not to comply with this, as it generates a secure access page fault
478 * if any of the NStable and NS bits isn't set when running in
479 * non-secure mode.
480 */
481 domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
482 domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
483 domain->cfg.ias = 32;
484 domain->cfg.oas = 40;
485 domain->cfg.tlb = &ipmmu_flush_ops;
486 domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
487 domain->io_domain.geometry.force_aperture = true;
488 /*
489 * TODO: Add support for coherent walk through CCI with DVM and remove
490 * cache handling. For now, delegate it to the io-pgtable code.
491 */
492 domain->cfg.coherent_walk = false;
493 domain->cfg.iommu_dev = domain->mmu->root->dev;
494
495 /*
496 * Find an unused context.
497 */
498 ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
499 if (ret < 0)
500 return ret;
501
502 domain->context_id = ret;
503
504 domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
505 domain);
506 if (!domain->iop) {
507 ipmmu_domain_free_context(domain->mmu->root,
508 domain->context_id);
509 return -EINVAL;
510 }
511
512 ipmmu_domain_setup_context(domain);
513 return 0;
514 }
515
ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain * domain)516 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
517 {
518 if (!domain->mmu)
519 return;
520
521 /*
522 * Disable the context. Flush the TLB as required when modifying the
523 * context registers.
524 *
525 * TODO: Is TLB flush really needed ?
526 */
527 ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
528 ipmmu_tlb_sync(domain);
529 ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
530 }
531
532 /* -----------------------------------------------------------------------------
533 * Fault Handling
534 */
535
ipmmu_domain_irq(struct ipmmu_vmsa_domain * domain)536 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
537 {
538 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
539 struct ipmmu_vmsa_device *mmu = domain->mmu;
540 unsigned long iova;
541 u32 status;
542
543 status = ipmmu_ctx_read_root(domain, IMSTR);
544 if (!(status & err_mask))
545 return IRQ_NONE;
546
547 iova = ipmmu_ctx_read_root(domain, IMELAR);
548 if (IS_ENABLED(CONFIG_64BIT))
549 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
550
551 /*
552 * Clear the error status flags. Unlike traditional interrupt flag
553 * registers that must be cleared by writing 1, this status register
554 * seems to require 0. The error address register must be read before,
555 * otherwise its value will be 0.
556 */
557 ipmmu_ctx_write_root(domain, IMSTR, 0);
558
559 /* Log fatal errors. */
560 if (status & IMSTR_MHIT)
561 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
562 iova);
563 if (status & IMSTR_ABORT)
564 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
565 iova);
566
567 if (!(status & (IMSTR_PF | IMSTR_TF)))
568 return IRQ_NONE;
569
570 /*
571 * Try to handle page faults and translation faults.
572 *
573 * TODO: We need to look up the faulty device based on the I/O VA. Use
574 * the IOMMU device for now.
575 */
576 if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
577 return IRQ_HANDLED;
578
579 dev_err_ratelimited(mmu->dev,
580 "Unhandled fault: status 0x%08x iova 0x%lx\n",
581 status, iova);
582
583 return IRQ_HANDLED;
584 }
585
ipmmu_irq(int irq,void * dev)586 static irqreturn_t ipmmu_irq(int irq, void *dev)
587 {
588 struct ipmmu_vmsa_device *mmu = dev;
589 irqreturn_t status = IRQ_NONE;
590 unsigned int i;
591 unsigned long flags;
592
593 spin_lock_irqsave(&mmu->lock, flags);
594
595 /*
596 * Check interrupts for all active contexts.
597 */
598 for (i = 0; i < mmu->num_ctx; i++) {
599 if (!mmu->domains[i])
600 continue;
601 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
602 status = IRQ_HANDLED;
603 }
604
605 spin_unlock_irqrestore(&mmu->lock, flags);
606
607 return status;
608 }
609
610 /* -----------------------------------------------------------------------------
611 * IOMMU Operations
612 */
613
__ipmmu_domain_alloc(unsigned type)614 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
615 {
616 struct ipmmu_vmsa_domain *domain;
617
618 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
619 if (!domain)
620 return NULL;
621
622 mutex_init(&domain->mutex);
623
624 return &domain->io_domain;
625 }
626
ipmmu_domain_alloc(unsigned type)627 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
628 {
629 struct iommu_domain *io_domain = NULL;
630
631 switch (type) {
632 case IOMMU_DOMAIN_UNMANAGED:
633 io_domain = __ipmmu_domain_alloc(type);
634 break;
635
636 case IOMMU_DOMAIN_DMA:
637 io_domain = __ipmmu_domain_alloc(type);
638 if (io_domain && iommu_get_dma_cookie(io_domain)) {
639 kfree(io_domain);
640 io_domain = NULL;
641 }
642 break;
643 }
644
645 return io_domain;
646 }
647
ipmmu_domain_free(struct iommu_domain * io_domain)648 static void ipmmu_domain_free(struct iommu_domain *io_domain)
649 {
650 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
651
652 /*
653 * Free the domain resources. We assume that all devices have already
654 * been detached.
655 */
656 iommu_put_dma_cookie(io_domain);
657 ipmmu_domain_destroy_context(domain);
658 free_io_pgtable_ops(domain->iop);
659 kfree(domain);
660 }
661
ipmmu_attach_device(struct iommu_domain * io_domain,struct device * dev)662 static int ipmmu_attach_device(struct iommu_domain *io_domain,
663 struct device *dev)
664 {
665 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
666 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
667 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
668 unsigned int i;
669 int ret = 0;
670
671 if (!mmu) {
672 dev_err(dev, "Cannot attach to IPMMU\n");
673 return -ENXIO;
674 }
675
676 mutex_lock(&domain->mutex);
677
678 if (!domain->mmu) {
679 /* The domain hasn't been used yet, initialize it. */
680 domain->mmu = mmu;
681 ret = ipmmu_domain_init_context(domain);
682 if (ret < 0) {
683 dev_err(dev, "Unable to initialize IPMMU context\n");
684 domain->mmu = NULL;
685 } else {
686 dev_info(dev, "Using IPMMU context %u\n",
687 domain->context_id);
688 }
689 } else if (domain->mmu != mmu) {
690 /*
691 * Something is wrong, we can't attach two devices using
692 * different IOMMUs to the same domain.
693 */
694 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
695 dev_name(mmu->dev), dev_name(domain->mmu->dev));
696 ret = -EINVAL;
697 } else
698 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
699
700 mutex_unlock(&domain->mutex);
701
702 if (ret < 0)
703 return ret;
704
705 for (i = 0; i < fwspec->num_ids; ++i)
706 ipmmu_utlb_enable(domain, fwspec->ids[i]);
707
708 return 0;
709 }
710
ipmmu_detach_device(struct iommu_domain * io_domain,struct device * dev)711 static void ipmmu_detach_device(struct iommu_domain *io_domain,
712 struct device *dev)
713 {
714 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
715 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
716 unsigned int i;
717
718 for (i = 0; i < fwspec->num_ids; ++i)
719 ipmmu_utlb_disable(domain, fwspec->ids[i]);
720
721 /*
722 * TODO: Optimize by disabling the context when no device is attached.
723 */
724 }
725
ipmmu_map(struct iommu_domain * io_domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)726 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
727 phys_addr_t paddr, size_t size, int prot)
728 {
729 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
730
731 if (!domain)
732 return -ENODEV;
733
734 return domain->iop->map(domain->iop, iova, paddr, size, prot);
735 }
736
ipmmu_unmap(struct iommu_domain * io_domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * gather)737 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
738 size_t size, struct iommu_iotlb_gather *gather)
739 {
740 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
741
742 return domain->iop->unmap(domain->iop, iova, size, gather);
743 }
744
ipmmu_flush_iotlb_all(struct iommu_domain * io_domain)745 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
746 {
747 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
748
749 if (domain->mmu)
750 ipmmu_tlb_flush_all(domain);
751 }
752
ipmmu_iotlb_sync(struct iommu_domain * io_domain,struct iommu_iotlb_gather * gather)753 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
754 struct iommu_iotlb_gather *gather)
755 {
756 ipmmu_flush_iotlb_all(io_domain);
757 }
758
ipmmu_iova_to_phys(struct iommu_domain * io_domain,dma_addr_t iova)759 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
760 dma_addr_t iova)
761 {
762 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
763
764 /* TODO: Is locking needed ? */
765
766 return domain->iop->iova_to_phys(domain->iop, iova);
767 }
768
ipmmu_init_platform_device(struct device * dev,struct of_phandle_args * args)769 static int ipmmu_init_platform_device(struct device *dev,
770 struct of_phandle_args *args)
771 {
772 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
773 struct platform_device *ipmmu_pdev;
774
775 ipmmu_pdev = of_find_device_by_node(args->np);
776 if (!ipmmu_pdev)
777 return -ENODEV;
778
779 fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
780
781 return 0;
782 }
783
784 static const struct soc_device_attribute soc_rcar_gen3[] = {
785 { .soc_id = "r8a774a1", },
786 { .soc_id = "r8a774c0", },
787 { .soc_id = "r8a7795", },
788 { .soc_id = "r8a7796", },
789 { .soc_id = "r8a77965", },
790 { .soc_id = "r8a77970", },
791 { .soc_id = "r8a77990", },
792 { .soc_id = "r8a77995", },
793 { /* sentinel */ }
794 };
795
796 static const struct soc_device_attribute soc_rcar_gen3_whitelist[] = {
797 { .soc_id = "r8a774c0", },
798 { .soc_id = "r8a7795", .revision = "ES3.*" },
799 { .soc_id = "r8a77965", },
800 { .soc_id = "r8a77990", },
801 { .soc_id = "r8a77995", },
802 { /* sentinel */ }
803 };
804
805 static const char * const rcar_gen3_slave_whitelist[] = {
806 };
807
ipmmu_slave_whitelist(struct device * dev)808 static bool ipmmu_slave_whitelist(struct device *dev)
809 {
810 unsigned int i;
811
812 /*
813 * For R-Car Gen3 use a white list to opt-in slave devices.
814 * For Other SoCs, this returns true anyway.
815 */
816 if (!soc_device_match(soc_rcar_gen3))
817 return true;
818
819 /* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
820 if (!soc_device_match(soc_rcar_gen3_whitelist))
821 return false;
822
823 /* Check whether this slave device can work with the IPMMU */
824 for (i = 0; i < ARRAY_SIZE(rcar_gen3_slave_whitelist); i++) {
825 if (!strcmp(dev_name(dev), rcar_gen3_slave_whitelist[i]))
826 return true;
827 }
828
829 /* Otherwise, do not allow use of IPMMU */
830 return false;
831 }
832
ipmmu_of_xlate(struct device * dev,struct of_phandle_args * spec)833 static int ipmmu_of_xlate(struct device *dev,
834 struct of_phandle_args *spec)
835 {
836 if (!ipmmu_slave_whitelist(dev))
837 return -ENODEV;
838
839 iommu_fwspec_add_ids(dev, spec->args, 1);
840
841 /* Initialize once - xlate() will call multiple times */
842 if (to_ipmmu(dev))
843 return 0;
844
845 return ipmmu_init_platform_device(dev, spec);
846 }
847
ipmmu_init_arm_mapping(struct device * dev)848 static int ipmmu_init_arm_mapping(struct device *dev)
849 {
850 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
851 struct iommu_group *group;
852 int ret;
853
854 /* Create a device group and add the device to it. */
855 group = iommu_group_alloc();
856 if (IS_ERR(group)) {
857 dev_err(dev, "Failed to allocate IOMMU group\n");
858 return PTR_ERR(group);
859 }
860
861 ret = iommu_group_add_device(group, dev);
862 iommu_group_put(group);
863
864 if (ret < 0) {
865 dev_err(dev, "Failed to add device to IPMMU group\n");
866 return ret;
867 }
868
869 /*
870 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
871 * VAs. This will allocate a corresponding IOMMU domain.
872 *
873 * TODO:
874 * - Create one mapping per context (TLB).
875 * - Make the mapping size configurable ? We currently use a 2GB mapping
876 * at a 1GB offset to ensure that NULL VAs will fault.
877 */
878 if (!mmu->mapping) {
879 struct dma_iommu_mapping *mapping;
880
881 mapping = arm_iommu_create_mapping(&platform_bus_type,
882 SZ_1G, SZ_2G);
883 if (IS_ERR(mapping)) {
884 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
885 ret = PTR_ERR(mapping);
886 goto error;
887 }
888
889 mmu->mapping = mapping;
890 }
891
892 /* Attach the ARM VA mapping to the device. */
893 ret = arm_iommu_attach_device(dev, mmu->mapping);
894 if (ret < 0) {
895 dev_err(dev, "Failed to attach device to VA mapping\n");
896 goto error;
897 }
898
899 return 0;
900
901 error:
902 iommu_group_remove_device(dev);
903 if (mmu->mapping)
904 arm_iommu_release_mapping(mmu->mapping);
905
906 return ret;
907 }
908
ipmmu_add_device(struct device * dev)909 static int ipmmu_add_device(struct device *dev)
910 {
911 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
912 struct iommu_group *group;
913 int ret;
914
915 /*
916 * Only let through devices that have been verified in xlate()
917 */
918 if (!mmu)
919 return -ENODEV;
920
921 if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)) {
922 ret = ipmmu_init_arm_mapping(dev);
923 if (ret)
924 return ret;
925 } else {
926 group = iommu_group_get_for_dev(dev);
927 if (IS_ERR(group))
928 return PTR_ERR(group);
929
930 iommu_group_put(group);
931 }
932
933 iommu_device_link(&mmu->iommu, dev);
934 return 0;
935 }
936
ipmmu_remove_device(struct device * dev)937 static void ipmmu_remove_device(struct device *dev)
938 {
939 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
940
941 iommu_device_unlink(&mmu->iommu, dev);
942 arm_iommu_detach_device(dev);
943 iommu_group_remove_device(dev);
944 }
945
ipmmu_find_group(struct device * dev)946 static struct iommu_group *ipmmu_find_group(struct device *dev)
947 {
948 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
949 struct iommu_group *group;
950
951 if (mmu->group)
952 return iommu_group_ref_get(mmu->group);
953
954 group = iommu_group_alloc();
955 if (!IS_ERR(group))
956 mmu->group = group;
957
958 return group;
959 }
960
961 static const struct iommu_ops ipmmu_ops = {
962 .domain_alloc = ipmmu_domain_alloc,
963 .domain_free = ipmmu_domain_free,
964 .attach_dev = ipmmu_attach_device,
965 .detach_dev = ipmmu_detach_device,
966 .map = ipmmu_map,
967 .unmap = ipmmu_unmap,
968 .flush_iotlb_all = ipmmu_flush_iotlb_all,
969 .iotlb_sync = ipmmu_iotlb_sync,
970 .iova_to_phys = ipmmu_iova_to_phys,
971 .add_device = ipmmu_add_device,
972 .remove_device = ipmmu_remove_device,
973 .device_group = ipmmu_find_group,
974 .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
975 .of_xlate = ipmmu_of_xlate,
976 };
977
978 /* -----------------------------------------------------------------------------
979 * Probe/remove and init
980 */
981
ipmmu_device_reset(struct ipmmu_vmsa_device * mmu)982 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
983 {
984 unsigned int i;
985
986 /* Disable all contexts. */
987 for (i = 0; i < mmu->num_ctx; ++i)
988 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
989 }
990
991 static const struct ipmmu_features ipmmu_features_default = {
992 .use_ns_alias_offset = true,
993 .has_cache_leaf_nodes = false,
994 .number_of_contexts = 1, /* software only tested with one context */
995 .num_utlbs = 32,
996 .setup_imbuscr = true,
997 .twobit_imttbcr_sl0 = false,
998 .reserved_context = false,
999 .cache_snoop = true,
1000 };
1001
1002 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
1003 .use_ns_alias_offset = false,
1004 .has_cache_leaf_nodes = true,
1005 .number_of_contexts = 8,
1006 .num_utlbs = 48,
1007 .setup_imbuscr = false,
1008 .twobit_imttbcr_sl0 = true,
1009 .reserved_context = true,
1010 .cache_snoop = false,
1011 };
1012
1013 static const struct of_device_id ipmmu_of_ids[] = {
1014 {
1015 .compatible = "renesas,ipmmu-vmsa",
1016 .data = &ipmmu_features_default,
1017 }, {
1018 .compatible = "renesas,ipmmu-r8a774a1",
1019 .data = &ipmmu_features_rcar_gen3,
1020 }, {
1021 .compatible = "renesas,ipmmu-r8a774c0",
1022 .data = &ipmmu_features_rcar_gen3,
1023 }, {
1024 .compatible = "renesas,ipmmu-r8a7795",
1025 .data = &ipmmu_features_rcar_gen3,
1026 }, {
1027 .compatible = "renesas,ipmmu-r8a7796",
1028 .data = &ipmmu_features_rcar_gen3,
1029 }, {
1030 .compatible = "renesas,ipmmu-r8a77965",
1031 .data = &ipmmu_features_rcar_gen3,
1032 }, {
1033 .compatible = "renesas,ipmmu-r8a77970",
1034 .data = &ipmmu_features_rcar_gen3,
1035 }, {
1036 .compatible = "renesas,ipmmu-r8a77990",
1037 .data = &ipmmu_features_rcar_gen3,
1038 }, {
1039 .compatible = "renesas,ipmmu-r8a77995",
1040 .data = &ipmmu_features_rcar_gen3,
1041 }, {
1042 /* Terminator */
1043 },
1044 };
1045
ipmmu_probe(struct platform_device * pdev)1046 static int ipmmu_probe(struct platform_device *pdev)
1047 {
1048 struct ipmmu_vmsa_device *mmu;
1049 struct resource *res;
1050 int irq;
1051 int ret;
1052
1053 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1054 if (!mmu) {
1055 dev_err(&pdev->dev, "cannot allocate device data\n");
1056 return -ENOMEM;
1057 }
1058
1059 mmu->dev = &pdev->dev;
1060 spin_lock_init(&mmu->lock);
1061 bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1062 mmu->features = of_device_get_match_data(&pdev->dev);
1063 memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1064 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1065
1066 /* Map I/O memory and request IRQ. */
1067 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1068 mmu->base = devm_ioremap_resource(&pdev->dev, res);
1069 if (IS_ERR(mmu->base))
1070 return PTR_ERR(mmu->base);
1071
1072 /*
1073 * The IPMMU has two register banks, for secure and non-secure modes.
1074 * The bank mapped at the beginning of the IPMMU address space
1075 * corresponds to the running mode of the CPU. When running in secure
1076 * mode the non-secure register bank is also available at an offset.
1077 *
1078 * Secure mode operation isn't clearly documented and is thus currently
1079 * not implemented in the driver. Furthermore, preliminary tests of
1080 * non-secure operation with the main register bank were not successful.
1081 * Offset the registers base unconditionally to point to the non-secure
1082 * alias space for now.
1083 */
1084 if (mmu->features->use_ns_alias_offset)
1085 mmu->base += IM_NS_ALIAS_OFFSET;
1086
1087 mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1088
1089 /*
1090 * Determine if this IPMMU instance is a root device by checking for
1091 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1092 */
1093 if (!mmu->features->has_cache_leaf_nodes ||
1094 !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1095 mmu->root = mmu;
1096 else
1097 mmu->root = ipmmu_find_root();
1098
1099 /*
1100 * Wait until the root device has been registered for sure.
1101 */
1102 if (!mmu->root)
1103 return -EPROBE_DEFER;
1104
1105 /* Root devices have mandatory IRQs */
1106 if (ipmmu_is_root(mmu)) {
1107 irq = platform_get_irq(pdev, 0);
1108 if (irq < 0)
1109 return irq;
1110
1111 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1112 dev_name(&pdev->dev), mmu);
1113 if (ret < 0) {
1114 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1115 return ret;
1116 }
1117
1118 ipmmu_device_reset(mmu);
1119
1120 if (mmu->features->reserved_context) {
1121 dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1122 set_bit(0, mmu->ctx);
1123 }
1124 }
1125
1126 /*
1127 * Register the IPMMU to the IOMMU subsystem in the following cases:
1128 * - R-Car Gen2 IPMMU (all devices registered)
1129 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1130 */
1131 if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1132 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1133 dev_name(&pdev->dev));
1134 if (ret)
1135 return ret;
1136
1137 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1138 iommu_device_set_fwnode(&mmu->iommu,
1139 &pdev->dev.of_node->fwnode);
1140
1141 ret = iommu_device_register(&mmu->iommu);
1142 if (ret)
1143 return ret;
1144
1145 #if defined(CONFIG_IOMMU_DMA)
1146 if (!iommu_present(&platform_bus_type))
1147 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1148 #endif
1149 }
1150
1151 /*
1152 * We can't create the ARM mapping here as it requires the bus to have
1153 * an IOMMU, which only happens when bus_set_iommu() is called in
1154 * ipmmu_init() after the probe function returns.
1155 */
1156
1157 platform_set_drvdata(pdev, mmu);
1158
1159 return 0;
1160 }
1161
ipmmu_remove(struct platform_device * pdev)1162 static int ipmmu_remove(struct platform_device *pdev)
1163 {
1164 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1165
1166 iommu_device_sysfs_remove(&mmu->iommu);
1167 iommu_device_unregister(&mmu->iommu);
1168
1169 arm_iommu_release_mapping(mmu->mapping);
1170
1171 ipmmu_device_reset(mmu);
1172
1173 return 0;
1174 }
1175
1176 #ifdef CONFIG_PM_SLEEP
ipmmu_resume_noirq(struct device * dev)1177 static int ipmmu_resume_noirq(struct device *dev)
1178 {
1179 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1180 unsigned int i;
1181
1182 /* Reset root MMU and restore contexts */
1183 if (ipmmu_is_root(mmu)) {
1184 ipmmu_device_reset(mmu);
1185
1186 for (i = 0; i < mmu->num_ctx; i++) {
1187 if (!mmu->domains[i])
1188 continue;
1189
1190 ipmmu_domain_setup_context(mmu->domains[i]);
1191 }
1192 }
1193
1194 /* Re-enable active micro-TLBs */
1195 for (i = 0; i < mmu->features->num_utlbs; i++) {
1196 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1197 continue;
1198
1199 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1200 }
1201
1202 return 0;
1203 }
1204
1205 static const struct dev_pm_ops ipmmu_pm = {
1206 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1207 };
1208 #define DEV_PM_OPS &ipmmu_pm
1209 #else
1210 #define DEV_PM_OPS NULL
1211 #endif /* CONFIG_PM_SLEEP */
1212
1213 static struct platform_driver ipmmu_driver = {
1214 .driver = {
1215 .name = "ipmmu-vmsa",
1216 .of_match_table = of_match_ptr(ipmmu_of_ids),
1217 .pm = DEV_PM_OPS,
1218 },
1219 .probe = ipmmu_probe,
1220 .remove = ipmmu_remove,
1221 };
1222
ipmmu_init(void)1223 static int __init ipmmu_init(void)
1224 {
1225 struct device_node *np;
1226 static bool setup_done;
1227 int ret;
1228
1229 if (setup_done)
1230 return 0;
1231
1232 np = of_find_matching_node(NULL, ipmmu_of_ids);
1233 if (!np)
1234 return 0;
1235
1236 of_node_put(np);
1237
1238 ret = platform_driver_register(&ipmmu_driver);
1239 if (ret < 0)
1240 return ret;
1241
1242 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1243 if (!iommu_present(&platform_bus_type))
1244 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1245 #endif
1246
1247 setup_done = true;
1248 return 0;
1249 }
1250 subsys_initcall(ipmmu_init);
1251