• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for Renesas VMSA-compatible IPMMU
4  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * Copyright (C) 2014 Renesas Electronics Corporation
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-iommu.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sizes.h>
26 #include <linux/slab.h>
27 #include <linux/sys_soc.h>
28 
29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
30 #include <asm/dma-iommu.h>
31 #include <asm/pgalloc.h>
32 #else
33 #define arm_iommu_create_mapping(...)	NULL
34 #define arm_iommu_attach_device(...)	-ENODEV
35 #define arm_iommu_release_mapping(...)	do {} while (0)
36 #define arm_iommu_detach_device(...)	do {} while (0)
37 #endif
38 
39 #define IPMMU_CTX_MAX		8U
40 #define IPMMU_CTX_INVALID	-1
41 
42 #define IPMMU_UTLB_MAX		48U
43 
44 struct ipmmu_features {
45 	bool use_ns_alias_offset;
46 	bool has_cache_leaf_nodes;
47 	unsigned int number_of_contexts;
48 	unsigned int num_utlbs;
49 	bool setup_imbuscr;
50 	bool twobit_imttbcr_sl0;
51 	bool reserved_context;
52 	bool cache_snoop;
53 };
54 
55 struct ipmmu_vmsa_device {
56 	struct device *dev;
57 	void __iomem *base;
58 	struct iommu_device iommu;
59 	struct ipmmu_vmsa_device *root;
60 	const struct ipmmu_features *features;
61 	unsigned int num_ctx;
62 	spinlock_t lock;			/* Protects ctx and domains[] */
63 	DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
64 	struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
65 	s8 utlb_ctx[IPMMU_UTLB_MAX];
66 
67 	struct iommu_group *group;
68 	struct dma_iommu_mapping *mapping;
69 };
70 
71 struct ipmmu_vmsa_domain {
72 	struct ipmmu_vmsa_device *mmu;
73 	struct iommu_domain io_domain;
74 
75 	struct io_pgtable_cfg cfg;
76 	struct io_pgtable_ops *iop;
77 
78 	unsigned int context_id;
79 	struct mutex mutex;			/* Protects mappings */
80 };
81 
to_vmsa_domain(struct iommu_domain * dom)82 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
83 {
84 	return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
85 }
86 
to_ipmmu(struct device * dev)87 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
88 {
89 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
90 
91 	return fwspec ? fwspec->iommu_priv : NULL;
92 }
93 
94 #define TLB_LOOP_TIMEOUT		100	/* 100us */
95 
96 /* -----------------------------------------------------------------------------
97  * Registers Definition
98  */
99 
100 #define IM_NS_ALIAS_OFFSET		0x800
101 
102 #define IM_CTX_SIZE			0x40
103 
104 #define IMCTR				0x0000
105 #define IMCTR_TRE			(1 << 17)
106 #define IMCTR_AFE			(1 << 16)
107 #define IMCTR_RTSEL_MASK		(3 << 4)
108 #define IMCTR_RTSEL_SHIFT		4
109 #define IMCTR_TREN			(1 << 3)
110 #define IMCTR_INTEN			(1 << 2)
111 #define IMCTR_FLUSH			(1 << 1)
112 #define IMCTR_MMUEN			(1 << 0)
113 
114 #define IMCAAR				0x0004
115 
116 #define IMTTBCR				0x0008
117 #define IMTTBCR_EAE			(1 << 31)
118 #define IMTTBCR_PMB			(1 << 30)
119 #define IMTTBCR_SH1_NON_SHAREABLE	(0 << 28)	/* R-Car Gen2 only */
120 #define IMTTBCR_SH1_OUTER_SHAREABLE	(2 << 28)	/* R-Car Gen2 only */
121 #define IMTTBCR_SH1_INNER_SHAREABLE	(3 << 28)	/* R-Car Gen2 only */
122 #define IMTTBCR_SH1_MASK		(3 << 28)	/* R-Car Gen2 only */
123 #define IMTTBCR_ORGN1_NC		(0 << 26)	/* R-Car Gen2 only */
124 #define IMTTBCR_ORGN1_WB_WA		(1 << 26)	/* R-Car Gen2 only */
125 #define IMTTBCR_ORGN1_WT		(2 << 26)	/* R-Car Gen2 only */
126 #define IMTTBCR_ORGN1_WB		(3 << 26)	/* R-Car Gen2 only */
127 #define IMTTBCR_ORGN1_MASK		(3 << 26)	/* R-Car Gen2 only */
128 #define IMTTBCR_IRGN1_NC		(0 << 24)	/* R-Car Gen2 only */
129 #define IMTTBCR_IRGN1_WB_WA		(1 << 24)	/* R-Car Gen2 only */
130 #define IMTTBCR_IRGN1_WT		(2 << 24)	/* R-Car Gen2 only */
131 #define IMTTBCR_IRGN1_WB		(3 << 24)	/* R-Car Gen2 only */
132 #define IMTTBCR_IRGN1_MASK		(3 << 24)	/* R-Car Gen2 only */
133 #define IMTTBCR_TSZ1_MASK		(7 << 16)
134 #define IMTTBCR_TSZ1_SHIFT		16
135 #define IMTTBCR_SH0_NON_SHAREABLE	(0 << 12)	/* R-Car Gen2 only */
136 #define IMTTBCR_SH0_OUTER_SHAREABLE	(2 << 12)	/* R-Car Gen2 only */
137 #define IMTTBCR_SH0_INNER_SHAREABLE	(3 << 12)	/* R-Car Gen2 only */
138 #define IMTTBCR_SH0_MASK		(3 << 12)	/* R-Car Gen2 only */
139 #define IMTTBCR_ORGN0_NC		(0 << 10)	/* R-Car Gen2 only */
140 #define IMTTBCR_ORGN0_WB_WA		(1 << 10)	/* R-Car Gen2 only */
141 #define IMTTBCR_ORGN0_WT		(2 << 10)	/* R-Car Gen2 only */
142 #define IMTTBCR_ORGN0_WB		(3 << 10)	/* R-Car Gen2 only */
143 #define IMTTBCR_ORGN0_MASK		(3 << 10)	/* R-Car Gen2 only */
144 #define IMTTBCR_IRGN0_NC		(0 << 8)	/* R-Car Gen2 only */
145 #define IMTTBCR_IRGN0_WB_WA		(1 << 8)	/* R-Car Gen2 only */
146 #define IMTTBCR_IRGN0_WT		(2 << 8)	/* R-Car Gen2 only */
147 #define IMTTBCR_IRGN0_WB		(3 << 8)	/* R-Car Gen2 only */
148 #define IMTTBCR_IRGN0_MASK		(3 << 8)	/* R-Car Gen2 only */
149 #define IMTTBCR_SL0_TWOBIT_LVL_3	(0 << 6)	/* R-Car Gen3 only */
150 #define IMTTBCR_SL0_TWOBIT_LVL_2	(1 << 6)	/* R-Car Gen3 only */
151 #define IMTTBCR_SL0_TWOBIT_LVL_1	(2 << 6)	/* R-Car Gen3 only */
152 #define IMTTBCR_SL0_LVL_2		(0 << 4)
153 #define IMTTBCR_SL0_LVL_1		(1 << 4)
154 #define IMTTBCR_TSZ0_MASK		(7 << 0)
155 #define IMTTBCR_TSZ0_SHIFT		O
156 
157 #define IMBUSCR				0x000c
158 #define IMBUSCR_DVM			(1 << 2)
159 #define IMBUSCR_BUSSEL_SYS		(0 << 0)
160 #define IMBUSCR_BUSSEL_CCI		(1 << 0)
161 #define IMBUSCR_BUSSEL_IMCAAR		(2 << 0)
162 #define IMBUSCR_BUSSEL_CCI_IMCAAR	(3 << 0)
163 #define IMBUSCR_BUSSEL_MASK		(3 << 0)
164 
165 #define IMTTLBR0			0x0010
166 #define IMTTUBR0			0x0014
167 #define IMTTLBR1			0x0018
168 #define IMTTUBR1			0x001c
169 
170 #define IMSTR				0x0020
171 #define IMSTR_ERRLVL_MASK		(3 << 12)
172 #define IMSTR_ERRLVL_SHIFT		12
173 #define IMSTR_ERRCODE_TLB_FORMAT	(1 << 8)
174 #define IMSTR_ERRCODE_ACCESS_PERM	(4 << 8)
175 #define IMSTR_ERRCODE_SECURE_ACCESS	(5 << 8)
176 #define IMSTR_ERRCODE_MASK		(7 << 8)
177 #define IMSTR_MHIT			(1 << 4)
178 #define IMSTR_ABORT			(1 << 2)
179 #define IMSTR_PF			(1 << 1)
180 #define IMSTR_TF			(1 << 0)
181 
182 #define IMMAIR0				0x0028
183 #define IMMAIR1				0x002c
184 #define IMMAIR_ATTR_MASK		0xff
185 #define IMMAIR_ATTR_DEVICE		0x04
186 #define IMMAIR_ATTR_NC			0x44
187 #define IMMAIR_ATTR_WBRWA		0xff
188 #define IMMAIR_ATTR_SHIFT(n)		((n) << 3)
189 #define IMMAIR_ATTR_IDX_NC		0
190 #define IMMAIR_ATTR_IDX_WBRWA		1
191 #define IMMAIR_ATTR_IDX_DEV		2
192 
193 #define IMELAR				0x0030	/* IMEAR on R-Car Gen2 */
194 #define IMEUAR				0x0034	/* R-Car Gen3 only */
195 
196 #define IMPCTR				0x0200
197 #define IMPSTR				0x0208
198 #define IMPEAR				0x020c
199 #define IMPMBA(n)			(0x0280 + ((n) * 4))
200 #define IMPMBD(n)			(0x02c0 + ((n) * 4))
201 
202 #define IMUCTR(n)			((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
203 #define IMUCTR0(n)			(0x0300 + ((n) * 16))
204 #define IMUCTR32(n)			(0x0600 + (((n) - 32) * 16))
205 #define IMUCTR_FIXADDEN			(1 << 31)
206 #define IMUCTR_FIXADD_MASK		(0xff << 16)
207 #define IMUCTR_FIXADD_SHIFT		16
208 #define IMUCTR_TTSEL_MMU(n)		((n) << 4)
209 #define IMUCTR_TTSEL_PMB		(8 << 4)
210 #define IMUCTR_TTSEL_MASK		(15 << 4)
211 #define IMUCTR_FLUSH			(1 << 1)
212 #define IMUCTR_MMUEN			(1 << 0)
213 
214 #define IMUASID(n)			((n) < 32 ? IMUASID0(n) : IMUASID32(n))
215 #define IMUASID0(n)			(0x0308 + ((n) * 16))
216 #define IMUASID32(n)			(0x0608 + (((n) - 32) * 16))
217 #define IMUASID_ASID8_MASK		(0xff << 8)
218 #define IMUASID_ASID8_SHIFT		8
219 #define IMUASID_ASID0_MASK		(0xff << 0)
220 #define IMUASID_ASID0_SHIFT		0
221 
222 /* -----------------------------------------------------------------------------
223  * Root device handling
224  */
225 
226 static struct platform_driver ipmmu_driver;
227 
ipmmu_is_root(struct ipmmu_vmsa_device * mmu)228 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
229 {
230 	return mmu->root == mmu;
231 }
232 
__ipmmu_check_device(struct device * dev,void * data)233 static int __ipmmu_check_device(struct device *dev, void *data)
234 {
235 	struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
236 	struct ipmmu_vmsa_device **rootp = data;
237 
238 	if (ipmmu_is_root(mmu))
239 		*rootp = mmu;
240 
241 	return 0;
242 }
243 
ipmmu_find_root(void)244 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
245 {
246 	struct ipmmu_vmsa_device *root = NULL;
247 
248 	return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
249 				      __ipmmu_check_device) == 0 ? root : NULL;
250 }
251 
252 /* -----------------------------------------------------------------------------
253  * Read/Write Access
254  */
255 
ipmmu_read(struct ipmmu_vmsa_device * mmu,unsigned int offset)256 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
257 {
258 	return ioread32(mmu->base + offset);
259 }
260 
ipmmu_write(struct ipmmu_vmsa_device * mmu,unsigned int offset,u32 data)261 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
262 			u32 data)
263 {
264 	iowrite32(data, mmu->base + offset);
265 }
266 
ipmmu_ctx_read_root(struct ipmmu_vmsa_domain * domain,unsigned int reg)267 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
268 			       unsigned int reg)
269 {
270 	return ipmmu_read(domain->mmu->root,
271 			  domain->context_id * IM_CTX_SIZE + reg);
272 }
273 
ipmmu_ctx_write_root(struct ipmmu_vmsa_domain * domain,unsigned int reg,u32 data)274 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
275 				 unsigned int reg, u32 data)
276 {
277 	ipmmu_write(domain->mmu->root,
278 		    domain->context_id * IM_CTX_SIZE + reg, data);
279 }
280 
ipmmu_ctx_write_all(struct ipmmu_vmsa_domain * domain,unsigned int reg,u32 data)281 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
282 				unsigned int reg, u32 data)
283 {
284 	if (domain->mmu != domain->mmu->root)
285 		ipmmu_write(domain->mmu,
286 			    domain->context_id * IM_CTX_SIZE + reg, data);
287 
288 	ipmmu_write(domain->mmu->root,
289 		    domain->context_id * IM_CTX_SIZE + reg, data);
290 }
291 
292 /* -----------------------------------------------------------------------------
293  * TLB and microTLB Management
294  */
295 
296 /* Wait for any pending TLB invalidations to complete */
ipmmu_tlb_sync(struct ipmmu_vmsa_domain * domain)297 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
298 {
299 	unsigned int count = 0;
300 
301 	while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
302 		cpu_relax();
303 		if (++count == TLB_LOOP_TIMEOUT) {
304 			dev_err_ratelimited(domain->mmu->dev,
305 			"TLB sync timed out -- MMU may be deadlocked\n");
306 			return;
307 		}
308 		udelay(1);
309 	}
310 }
311 
ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain * domain)312 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
313 {
314 	u32 reg;
315 
316 	reg = ipmmu_ctx_read_root(domain, IMCTR);
317 	reg |= IMCTR_FLUSH;
318 	ipmmu_ctx_write_all(domain, IMCTR, reg);
319 
320 	ipmmu_tlb_sync(domain);
321 }
322 
323 /*
324  * Enable MMU translation for the microTLB.
325  */
ipmmu_utlb_enable(struct ipmmu_vmsa_domain * domain,unsigned int utlb)326 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
327 			      unsigned int utlb)
328 {
329 	struct ipmmu_vmsa_device *mmu = domain->mmu;
330 
331 	/*
332 	 * TODO: Reference-count the microTLB as several bus masters can be
333 	 * connected to the same microTLB.
334 	 */
335 
336 	/* TODO: What should we set the ASID to ? */
337 	ipmmu_write(mmu, IMUASID(utlb), 0);
338 	/* TODO: Do we need to flush the microTLB ? */
339 	ipmmu_write(mmu, IMUCTR(utlb),
340 		    IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
341 		    IMUCTR_MMUEN);
342 	mmu->utlb_ctx[utlb] = domain->context_id;
343 }
344 
345 /*
346  * Disable MMU translation for the microTLB.
347  */
ipmmu_utlb_disable(struct ipmmu_vmsa_domain * domain,unsigned int utlb)348 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
349 			       unsigned int utlb)
350 {
351 	struct ipmmu_vmsa_device *mmu = domain->mmu;
352 
353 	ipmmu_write(mmu, IMUCTR(utlb), 0);
354 	mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
355 }
356 
ipmmu_tlb_flush_all(void * cookie)357 static void ipmmu_tlb_flush_all(void *cookie)
358 {
359 	struct ipmmu_vmsa_domain *domain = cookie;
360 
361 	ipmmu_tlb_invalidate(domain);
362 }
363 
ipmmu_tlb_flush(unsigned long iova,size_t size,size_t granule,void * cookie)364 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
365 				size_t granule, void *cookie)
366 {
367 	ipmmu_tlb_flush_all(cookie);
368 }
369 
370 static const struct iommu_flush_ops ipmmu_flush_ops = {
371 	.tlb_flush_all = ipmmu_tlb_flush_all,
372 	.tlb_flush_walk = ipmmu_tlb_flush,
373 	.tlb_flush_leaf = ipmmu_tlb_flush,
374 };
375 
376 /* -----------------------------------------------------------------------------
377  * Domain/Context Management
378  */
379 
ipmmu_domain_allocate_context(struct ipmmu_vmsa_device * mmu,struct ipmmu_vmsa_domain * domain)380 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
381 					 struct ipmmu_vmsa_domain *domain)
382 {
383 	unsigned long flags;
384 	int ret;
385 
386 	spin_lock_irqsave(&mmu->lock, flags);
387 
388 	ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
389 	if (ret != mmu->num_ctx) {
390 		mmu->domains[ret] = domain;
391 		set_bit(ret, mmu->ctx);
392 	} else
393 		ret = -EBUSY;
394 
395 	spin_unlock_irqrestore(&mmu->lock, flags);
396 
397 	return ret;
398 }
399 
ipmmu_domain_free_context(struct ipmmu_vmsa_device * mmu,unsigned int context_id)400 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
401 				      unsigned int context_id)
402 {
403 	unsigned long flags;
404 
405 	spin_lock_irqsave(&mmu->lock, flags);
406 
407 	clear_bit(context_id, mmu->ctx);
408 	mmu->domains[context_id] = NULL;
409 
410 	spin_unlock_irqrestore(&mmu->lock, flags);
411 }
412 
ipmmu_domain_setup_context(struct ipmmu_vmsa_domain * domain)413 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
414 {
415 	u64 ttbr;
416 	u32 tmp;
417 
418 	/* TTBR0 */
419 	ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
420 	ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
421 	ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
422 
423 	/*
424 	 * TTBCR
425 	 * We use long descriptors and allocate the whole 32-bit VA space to
426 	 * TTBR0.
427 	 */
428 	if (domain->mmu->features->twobit_imttbcr_sl0)
429 		tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
430 	else
431 		tmp = IMTTBCR_SL0_LVL_1;
432 
433 	if (domain->mmu->features->cache_snoop)
434 		tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
435 		       IMTTBCR_IRGN0_WB_WA;
436 
437 	ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
438 
439 	/* MAIR0 */
440 	ipmmu_ctx_write_root(domain, IMMAIR0,
441 			     domain->cfg.arm_lpae_s1_cfg.mair[0]);
442 
443 	/* IMBUSCR */
444 	if (domain->mmu->features->setup_imbuscr)
445 		ipmmu_ctx_write_root(domain, IMBUSCR,
446 				     ipmmu_ctx_read_root(domain, IMBUSCR) &
447 				     ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
448 
449 	/*
450 	 * IMSTR
451 	 * Clear all interrupt flags.
452 	 */
453 	ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
454 
455 	/*
456 	 * IMCTR
457 	 * Enable the MMU and interrupt generation. The long-descriptor
458 	 * translation table format doesn't use TEX remapping. Don't enable AF
459 	 * software management as we have no use for it. Flush the TLB as
460 	 * required when modifying the context registers.
461 	 */
462 	ipmmu_ctx_write_all(domain, IMCTR,
463 			    IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
464 }
465 
ipmmu_domain_init_context(struct ipmmu_vmsa_domain * domain)466 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
467 {
468 	int ret;
469 
470 	/*
471 	 * Allocate the page table operations.
472 	 *
473 	 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
474 	 * access, Long-descriptor format" that the NStable bit being set in a
475 	 * table descriptor will result in the NStable and NS bits of all child
476 	 * entries being ignored and considered as being set. The IPMMU seems
477 	 * not to comply with this, as it generates a secure access page fault
478 	 * if any of the NStable and NS bits isn't set when running in
479 	 * non-secure mode.
480 	 */
481 	domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
482 	domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
483 	domain->cfg.ias = 32;
484 	domain->cfg.oas = 40;
485 	domain->cfg.tlb = &ipmmu_flush_ops;
486 	domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
487 	domain->io_domain.geometry.force_aperture = true;
488 	/*
489 	 * TODO: Add support for coherent walk through CCI with DVM and remove
490 	 * cache handling. For now, delegate it to the io-pgtable code.
491 	 */
492 	domain->cfg.coherent_walk = false;
493 	domain->cfg.iommu_dev = domain->mmu->root->dev;
494 
495 	/*
496 	 * Find an unused context.
497 	 */
498 	ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
499 	if (ret < 0)
500 		return ret;
501 
502 	domain->context_id = ret;
503 
504 	domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
505 					   domain);
506 	if (!domain->iop) {
507 		ipmmu_domain_free_context(domain->mmu->root,
508 					  domain->context_id);
509 		return -EINVAL;
510 	}
511 
512 	ipmmu_domain_setup_context(domain);
513 	return 0;
514 }
515 
ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain * domain)516 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
517 {
518 	if (!domain->mmu)
519 		return;
520 
521 	/*
522 	 * Disable the context. Flush the TLB as required when modifying the
523 	 * context registers.
524 	 *
525 	 * TODO: Is TLB flush really needed ?
526 	 */
527 	ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
528 	ipmmu_tlb_sync(domain);
529 	ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
530 }
531 
532 /* -----------------------------------------------------------------------------
533  * Fault Handling
534  */
535 
ipmmu_domain_irq(struct ipmmu_vmsa_domain * domain)536 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
537 {
538 	const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
539 	struct ipmmu_vmsa_device *mmu = domain->mmu;
540 	unsigned long iova;
541 	u32 status;
542 
543 	status = ipmmu_ctx_read_root(domain, IMSTR);
544 	if (!(status & err_mask))
545 		return IRQ_NONE;
546 
547 	iova = ipmmu_ctx_read_root(domain, IMELAR);
548 	if (IS_ENABLED(CONFIG_64BIT))
549 		iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
550 
551 	/*
552 	 * Clear the error status flags. Unlike traditional interrupt flag
553 	 * registers that must be cleared by writing 1, this status register
554 	 * seems to require 0. The error address register must be read before,
555 	 * otherwise its value will be 0.
556 	 */
557 	ipmmu_ctx_write_root(domain, IMSTR, 0);
558 
559 	/* Log fatal errors. */
560 	if (status & IMSTR_MHIT)
561 		dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
562 				    iova);
563 	if (status & IMSTR_ABORT)
564 		dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
565 				    iova);
566 
567 	if (!(status & (IMSTR_PF | IMSTR_TF)))
568 		return IRQ_NONE;
569 
570 	/*
571 	 * Try to handle page faults and translation faults.
572 	 *
573 	 * TODO: We need to look up the faulty device based on the I/O VA. Use
574 	 * the IOMMU device for now.
575 	 */
576 	if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
577 		return IRQ_HANDLED;
578 
579 	dev_err_ratelimited(mmu->dev,
580 			    "Unhandled fault: status 0x%08x iova 0x%lx\n",
581 			    status, iova);
582 
583 	return IRQ_HANDLED;
584 }
585 
ipmmu_irq(int irq,void * dev)586 static irqreturn_t ipmmu_irq(int irq, void *dev)
587 {
588 	struct ipmmu_vmsa_device *mmu = dev;
589 	irqreturn_t status = IRQ_NONE;
590 	unsigned int i;
591 	unsigned long flags;
592 
593 	spin_lock_irqsave(&mmu->lock, flags);
594 
595 	/*
596 	 * Check interrupts for all active contexts.
597 	 */
598 	for (i = 0; i < mmu->num_ctx; i++) {
599 		if (!mmu->domains[i])
600 			continue;
601 		if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
602 			status = IRQ_HANDLED;
603 	}
604 
605 	spin_unlock_irqrestore(&mmu->lock, flags);
606 
607 	return status;
608 }
609 
610 /* -----------------------------------------------------------------------------
611  * IOMMU Operations
612  */
613 
__ipmmu_domain_alloc(unsigned type)614 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
615 {
616 	struct ipmmu_vmsa_domain *domain;
617 
618 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
619 	if (!domain)
620 		return NULL;
621 
622 	mutex_init(&domain->mutex);
623 
624 	return &domain->io_domain;
625 }
626 
ipmmu_domain_alloc(unsigned type)627 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
628 {
629 	struct iommu_domain *io_domain = NULL;
630 
631 	switch (type) {
632 	case IOMMU_DOMAIN_UNMANAGED:
633 		io_domain = __ipmmu_domain_alloc(type);
634 		break;
635 
636 	case IOMMU_DOMAIN_DMA:
637 		io_domain = __ipmmu_domain_alloc(type);
638 		if (io_domain && iommu_get_dma_cookie(io_domain)) {
639 			kfree(io_domain);
640 			io_domain = NULL;
641 		}
642 		break;
643 	}
644 
645 	return io_domain;
646 }
647 
ipmmu_domain_free(struct iommu_domain * io_domain)648 static void ipmmu_domain_free(struct iommu_domain *io_domain)
649 {
650 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
651 
652 	/*
653 	 * Free the domain resources. We assume that all devices have already
654 	 * been detached.
655 	 */
656 	iommu_put_dma_cookie(io_domain);
657 	ipmmu_domain_destroy_context(domain);
658 	free_io_pgtable_ops(domain->iop);
659 	kfree(domain);
660 }
661 
ipmmu_attach_device(struct iommu_domain * io_domain,struct device * dev)662 static int ipmmu_attach_device(struct iommu_domain *io_domain,
663 			       struct device *dev)
664 {
665 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
666 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
667 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
668 	unsigned int i;
669 	int ret = 0;
670 
671 	if (!mmu) {
672 		dev_err(dev, "Cannot attach to IPMMU\n");
673 		return -ENXIO;
674 	}
675 
676 	mutex_lock(&domain->mutex);
677 
678 	if (!domain->mmu) {
679 		/* The domain hasn't been used yet, initialize it. */
680 		domain->mmu = mmu;
681 		ret = ipmmu_domain_init_context(domain);
682 		if (ret < 0) {
683 			dev_err(dev, "Unable to initialize IPMMU context\n");
684 			domain->mmu = NULL;
685 		} else {
686 			dev_info(dev, "Using IPMMU context %u\n",
687 				 domain->context_id);
688 		}
689 	} else if (domain->mmu != mmu) {
690 		/*
691 		 * Something is wrong, we can't attach two devices using
692 		 * different IOMMUs to the same domain.
693 		 */
694 		dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
695 			dev_name(mmu->dev), dev_name(domain->mmu->dev));
696 		ret = -EINVAL;
697 	} else
698 		dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
699 
700 	mutex_unlock(&domain->mutex);
701 
702 	if (ret < 0)
703 		return ret;
704 
705 	for (i = 0; i < fwspec->num_ids; ++i)
706 		ipmmu_utlb_enable(domain, fwspec->ids[i]);
707 
708 	return 0;
709 }
710 
ipmmu_detach_device(struct iommu_domain * io_domain,struct device * dev)711 static void ipmmu_detach_device(struct iommu_domain *io_domain,
712 				struct device *dev)
713 {
714 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
715 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
716 	unsigned int i;
717 
718 	for (i = 0; i < fwspec->num_ids; ++i)
719 		ipmmu_utlb_disable(domain, fwspec->ids[i]);
720 
721 	/*
722 	 * TODO: Optimize by disabling the context when no device is attached.
723 	 */
724 }
725 
ipmmu_map(struct iommu_domain * io_domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)726 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
727 		     phys_addr_t paddr, size_t size, int prot)
728 {
729 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
730 
731 	if (!domain)
732 		return -ENODEV;
733 
734 	return domain->iop->map(domain->iop, iova, paddr, size, prot);
735 }
736 
ipmmu_unmap(struct iommu_domain * io_domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * gather)737 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
738 			  size_t size, struct iommu_iotlb_gather *gather)
739 {
740 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
741 
742 	return domain->iop->unmap(domain->iop, iova, size, gather);
743 }
744 
ipmmu_flush_iotlb_all(struct iommu_domain * io_domain)745 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
746 {
747 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
748 
749 	if (domain->mmu)
750 		ipmmu_tlb_flush_all(domain);
751 }
752 
ipmmu_iotlb_sync(struct iommu_domain * io_domain,struct iommu_iotlb_gather * gather)753 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
754 			     struct iommu_iotlb_gather *gather)
755 {
756 	ipmmu_flush_iotlb_all(io_domain);
757 }
758 
ipmmu_iova_to_phys(struct iommu_domain * io_domain,dma_addr_t iova)759 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
760 				      dma_addr_t iova)
761 {
762 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
763 
764 	/* TODO: Is locking needed ? */
765 
766 	return domain->iop->iova_to_phys(domain->iop, iova);
767 }
768 
ipmmu_init_platform_device(struct device * dev,struct of_phandle_args * args)769 static int ipmmu_init_platform_device(struct device *dev,
770 				      struct of_phandle_args *args)
771 {
772 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
773 	struct platform_device *ipmmu_pdev;
774 
775 	ipmmu_pdev = of_find_device_by_node(args->np);
776 	if (!ipmmu_pdev)
777 		return -ENODEV;
778 
779 	fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
780 
781 	return 0;
782 }
783 
784 static const struct soc_device_attribute soc_rcar_gen3[] = {
785 	{ .soc_id = "r8a774a1", },
786 	{ .soc_id = "r8a774c0", },
787 	{ .soc_id = "r8a7795", },
788 	{ .soc_id = "r8a7796", },
789 	{ .soc_id = "r8a77965", },
790 	{ .soc_id = "r8a77970", },
791 	{ .soc_id = "r8a77990", },
792 	{ .soc_id = "r8a77995", },
793 	{ /* sentinel */ }
794 };
795 
796 static const struct soc_device_attribute soc_rcar_gen3_whitelist[] = {
797 	{ .soc_id = "r8a774c0", },
798 	{ .soc_id = "r8a7795", .revision = "ES3.*" },
799 	{ .soc_id = "r8a77965", },
800 	{ .soc_id = "r8a77990", },
801 	{ .soc_id = "r8a77995", },
802 	{ /* sentinel */ }
803 };
804 
805 static const char * const rcar_gen3_slave_whitelist[] = {
806 };
807 
ipmmu_slave_whitelist(struct device * dev)808 static bool ipmmu_slave_whitelist(struct device *dev)
809 {
810 	unsigned int i;
811 
812 	/*
813 	 * For R-Car Gen3 use a white list to opt-in slave devices.
814 	 * For Other SoCs, this returns true anyway.
815 	 */
816 	if (!soc_device_match(soc_rcar_gen3))
817 		return true;
818 
819 	/* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
820 	if (!soc_device_match(soc_rcar_gen3_whitelist))
821 		return false;
822 
823 	/* Check whether this slave device can work with the IPMMU */
824 	for (i = 0; i < ARRAY_SIZE(rcar_gen3_slave_whitelist); i++) {
825 		if (!strcmp(dev_name(dev), rcar_gen3_slave_whitelist[i]))
826 			return true;
827 	}
828 
829 	/* Otherwise, do not allow use of IPMMU */
830 	return false;
831 }
832 
ipmmu_of_xlate(struct device * dev,struct of_phandle_args * spec)833 static int ipmmu_of_xlate(struct device *dev,
834 			  struct of_phandle_args *spec)
835 {
836 	if (!ipmmu_slave_whitelist(dev))
837 		return -ENODEV;
838 
839 	iommu_fwspec_add_ids(dev, spec->args, 1);
840 
841 	/* Initialize once - xlate() will call multiple times */
842 	if (to_ipmmu(dev))
843 		return 0;
844 
845 	return ipmmu_init_platform_device(dev, spec);
846 }
847 
ipmmu_init_arm_mapping(struct device * dev)848 static int ipmmu_init_arm_mapping(struct device *dev)
849 {
850 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
851 	struct iommu_group *group;
852 	int ret;
853 
854 	/* Create a device group and add the device to it. */
855 	group = iommu_group_alloc();
856 	if (IS_ERR(group)) {
857 		dev_err(dev, "Failed to allocate IOMMU group\n");
858 		return PTR_ERR(group);
859 	}
860 
861 	ret = iommu_group_add_device(group, dev);
862 	iommu_group_put(group);
863 
864 	if (ret < 0) {
865 		dev_err(dev, "Failed to add device to IPMMU group\n");
866 		return ret;
867 	}
868 
869 	/*
870 	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
871 	 * VAs. This will allocate a corresponding IOMMU domain.
872 	 *
873 	 * TODO:
874 	 * - Create one mapping per context (TLB).
875 	 * - Make the mapping size configurable ? We currently use a 2GB mapping
876 	 *   at a 1GB offset to ensure that NULL VAs will fault.
877 	 */
878 	if (!mmu->mapping) {
879 		struct dma_iommu_mapping *mapping;
880 
881 		mapping = arm_iommu_create_mapping(&platform_bus_type,
882 						   SZ_1G, SZ_2G);
883 		if (IS_ERR(mapping)) {
884 			dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
885 			ret = PTR_ERR(mapping);
886 			goto error;
887 		}
888 
889 		mmu->mapping = mapping;
890 	}
891 
892 	/* Attach the ARM VA mapping to the device. */
893 	ret = arm_iommu_attach_device(dev, mmu->mapping);
894 	if (ret < 0) {
895 		dev_err(dev, "Failed to attach device to VA mapping\n");
896 		goto error;
897 	}
898 
899 	return 0;
900 
901 error:
902 	iommu_group_remove_device(dev);
903 	if (mmu->mapping)
904 		arm_iommu_release_mapping(mmu->mapping);
905 
906 	return ret;
907 }
908 
ipmmu_add_device(struct device * dev)909 static int ipmmu_add_device(struct device *dev)
910 {
911 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
912 	struct iommu_group *group;
913 	int ret;
914 
915 	/*
916 	 * Only let through devices that have been verified in xlate()
917 	 */
918 	if (!mmu)
919 		return -ENODEV;
920 
921 	if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)) {
922 		ret = ipmmu_init_arm_mapping(dev);
923 		if (ret)
924 			return ret;
925 	} else {
926 		group = iommu_group_get_for_dev(dev);
927 		if (IS_ERR(group))
928 			return PTR_ERR(group);
929 
930 		iommu_group_put(group);
931 	}
932 
933 	iommu_device_link(&mmu->iommu, dev);
934 	return 0;
935 }
936 
ipmmu_remove_device(struct device * dev)937 static void ipmmu_remove_device(struct device *dev)
938 {
939 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
940 
941 	iommu_device_unlink(&mmu->iommu, dev);
942 	arm_iommu_detach_device(dev);
943 	iommu_group_remove_device(dev);
944 }
945 
ipmmu_find_group(struct device * dev)946 static struct iommu_group *ipmmu_find_group(struct device *dev)
947 {
948 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
949 	struct iommu_group *group;
950 
951 	if (mmu->group)
952 		return iommu_group_ref_get(mmu->group);
953 
954 	group = iommu_group_alloc();
955 	if (!IS_ERR(group))
956 		mmu->group = group;
957 
958 	return group;
959 }
960 
961 static const struct iommu_ops ipmmu_ops = {
962 	.domain_alloc = ipmmu_domain_alloc,
963 	.domain_free = ipmmu_domain_free,
964 	.attach_dev = ipmmu_attach_device,
965 	.detach_dev = ipmmu_detach_device,
966 	.map = ipmmu_map,
967 	.unmap = ipmmu_unmap,
968 	.flush_iotlb_all = ipmmu_flush_iotlb_all,
969 	.iotlb_sync = ipmmu_iotlb_sync,
970 	.iova_to_phys = ipmmu_iova_to_phys,
971 	.add_device = ipmmu_add_device,
972 	.remove_device = ipmmu_remove_device,
973 	.device_group = ipmmu_find_group,
974 	.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
975 	.of_xlate = ipmmu_of_xlate,
976 };
977 
978 /* -----------------------------------------------------------------------------
979  * Probe/remove and init
980  */
981 
ipmmu_device_reset(struct ipmmu_vmsa_device * mmu)982 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
983 {
984 	unsigned int i;
985 
986 	/* Disable all contexts. */
987 	for (i = 0; i < mmu->num_ctx; ++i)
988 		ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
989 }
990 
991 static const struct ipmmu_features ipmmu_features_default = {
992 	.use_ns_alias_offset = true,
993 	.has_cache_leaf_nodes = false,
994 	.number_of_contexts = 1, /* software only tested with one context */
995 	.num_utlbs = 32,
996 	.setup_imbuscr = true,
997 	.twobit_imttbcr_sl0 = false,
998 	.reserved_context = false,
999 	.cache_snoop = true,
1000 };
1001 
1002 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
1003 	.use_ns_alias_offset = false,
1004 	.has_cache_leaf_nodes = true,
1005 	.number_of_contexts = 8,
1006 	.num_utlbs = 48,
1007 	.setup_imbuscr = false,
1008 	.twobit_imttbcr_sl0 = true,
1009 	.reserved_context = true,
1010 	.cache_snoop = false,
1011 };
1012 
1013 static const struct of_device_id ipmmu_of_ids[] = {
1014 	{
1015 		.compatible = "renesas,ipmmu-vmsa",
1016 		.data = &ipmmu_features_default,
1017 	}, {
1018 		.compatible = "renesas,ipmmu-r8a774a1",
1019 		.data = &ipmmu_features_rcar_gen3,
1020 	}, {
1021 		.compatible = "renesas,ipmmu-r8a774c0",
1022 		.data = &ipmmu_features_rcar_gen3,
1023 	}, {
1024 		.compatible = "renesas,ipmmu-r8a7795",
1025 		.data = &ipmmu_features_rcar_gen3,
1026 	}, {
1027 		.compatible = "renesas,ipmmu-r8a7796",
1028 		.data = &ipmmu_features_rcar_gen3,
1029 	}, {
1030 		.compatible = "renesas,ipmmu-r8a77965",
1031 		.data = &ipmmu_features_rcar_gen3,
1032 	}, {
1033 		.compatible = "renesas,ipmmu-r8a77970",
1034 		.data = &ipmmu_features_rcar_gen3,
1035 	}, {
1036 		.compatible = "renesas,ipmmu-r8a77990",
1037 		.data = &ipmmu_features_rcar_gen3,
1038 	}, {
1039 		.compatible = "renesas,ipmmu-r8a77995",
1040 		.data = &ipmmu_features_rcar_gen3,
1041 	}, {
1042 		/* Terminator */
1043 	},
1044 };
1045 
ipmmu_probe(struct platform_device * pdev)1046 static int ipmmu_probe(struct platform_device *pdev)
1047 {
1048 	struct ipmmu_vmsa_device *mmu;
1049 	struct resource *res;
1050 	int irq;
1051 	int ret;
1052 
1053 	mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1054 	if (!mmu) {
1055 		dev_err(&pdev->dev, "cannot allocate device data\n");
1056 		return -ENOMEM;
1057 	}
1058 
1059 	mmu->dev = &pdev->dev;
1060 	spin_lock_init(&mmu->lock);
1061 	bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1062 	mmu->features = of_device_get_match_data(&pdev->dev);
1063 	memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1064 	dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1065 
1066 	/* Map I/O memory and request IRQ. */
1067 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1068 	mmu->base = devm_ioremap_resource(&pdev->dev, res);
1069 	if (IS_ERR(mmu->base))
1070 		return PTR_ERR(mmu->base);
1071 
1072 	/*
1073 	 * The IPMMU has two register banks, for secure and non-secure modes.
1074 	 * The bank mapped at the beginning of the IPMMU address space
1075 	 * corresponds to the running mode of the CPU. When running in secure
1076 	 * mode the non-secure register bank is also available at an offset.
1077 	 *
1078 	 * Secure mode operation isn't clearly documented and is thus currently
1079 	 * not implemented in the driver. Furthermore, preliminary tests of
1080 	 * non-secure operation with the main register bank were not successful.
1081 	 * Offset the registers base unconditionally to point to the non-secure
1082 	 * alias space for now.
1083 	 */
1084 	if (mmu->features->use_ns_alias_offset)
1085 		mmu->base += IM_NS_ALIAS_OFFSET;
1086 
1087 	mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1088 
1089 	/*
1090 	 * Determine if this IPMMU instance is a root device by checking for
1091 	 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1092 	 */
1093 	if (!mmu->features->has_cache_leaf_nodes ||
1094 	    !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1095 		mmu->root = mmu;
1096 	else
1097 		mmu->root = ipmmu_find_root();
1098 
1099 	/*
1100 	 * Wait until the root device has been registered for sure.
1101 	 */
1102 	if (!mmu->root)
1103 		return -EPROBE_DEFER;
1104 
1105 	/* Root devices have mandatory IRQs */
1106 	if (ipmmu_is_root(mmu)) {
1107 		irq = platform_get_irq(pdev, 0);
1108 		if (irq < 0)
1109 			return irq;
1110 
1111 		ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1112 				       dev_name(&pdev->dev), mmu);
1113 		if (ret < 0) {
1114 			dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1115 			return ret;
1116 		}
1117 
1118 		ipmmu_device_reset(mmu);
1119 
1120 		if (mmu->features->reserved_context) {
1121 			dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1122 			set_bit(0, mmu->ctx);
1123 		}
1124 	}
1125 
1126 	/*
1127 	 * Register the IPMMU to the IOMMU subsystem in the following cases:
1128 	 * - R-Car Gen2 IPMMU (all devices registered)
1129 	 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1130 	 */
1131 	if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1132 		ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1133 					     dev_name(&pdev->dev));
1134 		if (ret)
1135 			return ret;
1136 
1137 		iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1138 		iommu_device_set_fwnode(&mmu->iommu,
1139 					&pdev->dev.of_node->fwnode);
1140 
1141 		ret = iommu_device_register(&mmu->iommu);
1142 		if (ret)
1143 			return ret;
1144 
1145 #if defined(CONFIG_IOMMU_DMA)
1146 		if (!iommu_present(&platform_bus_type))
1147 			bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1148 #endif
1149 	}
1150 
1151 	/*
1152 	 * We can't create the ARM mapping here as it requires the bus to have
1153 	 * an IOMMU, which only happens when bus_set_iommu() is called in
1154 	 * ipmmu_init() after the probe function returns.
1155 	 */
1156 
1157 	platform_set_drvdata(pdev, mmu);
1158 
1159 	return 0;
1160 }
1161 
ipmmu_remove(struct platform_device * pdev)1162 static int ipmmu_remove(struct platform_device *pdev)
1163 {
1164 	struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1165 
1166 	iommu_device_sysfs_remove(&mmu->iommu);
1167 	iommu_device_unregister(&mmu->iommu);
1168 
1169 	arm_iommu_release_mapping(mmu->mapping);
1170 
1171 	ipmmu_device_reset(mmu);
1172 
1173 	return 0;
1174 }
1175 
1176 #ifdef CONFIG_PM_SLEEP
ipmmu_resume_noirq(struct device * dev)1177 static int ipmmu_resume_noirq(struct device *dev)
1178 {
1179 	struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1180 	unsigned int i;
1181 
1182 	/* Reset root MMU and restore contexts */
1183 	if (ipmmu_is_root(mmu)) {
1184 		ipmmu_device_reset(mmu);
1185 
1186 		for (i = 0; i < mmu->num_ctx; i++) {
1187 			if (!mmu->domains[i])
1188 				continue;
1189 
1190 			ipmmu_domain_setup_context(mmu->domains[i]);
1191 		}
1192 	}
1193 
1194 	/* Re-enable active micro-TLBs */
1195 	for (i = 0; i < mmu->features->num_utlbs; i++) {
1196 		if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1197 			continue;
1198 
1199 		ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 static const struct dev_pm_ops ipmmu_pm  = {
1206 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1207 };
1208 #define DEV_PM_OPS	&ipmmu_pm
1209 #else
1210 #define DEV_PM_OPS	NULL
1211 #endif /* CONFIG_PM_SLEEP */
1212 
1213 static struct platform_driver ipmmu_driver = {
1214 	.driver = {
1215 		.name = "ipmmu-vmsa",
1216 		.of_match_table = of_match_ptr(ipmmu_of_ids),
1217 		.pm = DEV_PM_OPS,
1218 	},
1219 	.probe = ipmmu_probe,
1220 	.remove	= ipmmu_remove,
1221 };
1222 
ipmmu_init(void)1223 static int __init ipmmu_init(void)
1224 {
1225 	struct device_node *np;
1226 	static bool setup_done;
1227 	int ret;
1228 
1229 	if (setup_done)
1230 		return 0;
1231 
1232 	np = of_find_matching_node(NULL, ipmmu_of_ids);
1233 	if (!np)
1234 		return 0;
1235 
1236 	of_node_put(np);
1237 
1238 	ret = platform_driver_register(&ipmmu_driver);
1239 	if (ret < 0)
1240 		return ret;
1241 
1242 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1243 	if (!iommu_present(&platform_bus_type))
1244 		bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1245 #endif
1246 
1247 	setup_done = true;
1248 	return 0;
1249 }
1250 subsys_initcall(ipmmu_init);
1251