1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright (c) 2009 Samsung Electronics Co., Ltd.
4 // Jaswinder Singh <jassi.brar@samsung.com>
5
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/delay.h>
10 #include <linux/clk.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/spi/spi.h>
16 #include <linux/gpio.h>
17 #include <linux/of.h>
18 #include <linux/of_gpio.h>
19
20 #include <linux/platform_data/spi-s3c64xx.h>
21
22 #define MAX_SPI_PORTS 6
23 #define S3C64XX_SPI_QUIRK_POLL (1 << 0)
24 #define S3C64XX_SPI_QUIRK_CS_AUTO (1 << 1)
25 #define AUTOSUSPEND_TIMEOUT 2000
26
27 /* Registers and bit-fields */
28
29 #define S3C64XX_SPI_CH_CFG 0x00
30 #define S3C64XX_SPI_CLK_CFG 0x04
31 #define S3C64XX_SPI_MODE_CFG 0x08
32 #define S3C64XX_SPI_SLAVE_SEL 0x0C
33 #define S3C64XX_SPI_INT_EN 0x10
34 #define S3C64XX_SPI_STATUS 0x14
35 #define S3C64XX_SPI_TX_DATA 0x18
36 #define S3C64XX_SPI_RX_DATA 0x1C
37 #define S3C64XX_SPI_PACKET_CNT 0x20
38 #define S3C64XX_SPI_PENDING_CLR 0x24
39 #define S3C64XX_SPI_SWAP_CFG 0x28
40 #define S3C64XX_SPI_FB_CLK 0x2C
41
42 #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
43 #define S3C64XX_SPI_CH_SW_RST (1<<5)
44 #define S3C64XX_SPI_CH_SLAVE (1<<4)
45 #define S3C64XX_SPI_CPOL_L (1<<3)
46 #define S3C64XX_SPI_CPHA_B (1<<2)
47 #define S3C64XX_SPI_CH_RXCH_ON (1<<1)
48 #define S3C64XX_SPI_CH_TXCH_ON (1<<0)
49
50 #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
51 #define S3C64XX_SPI_CLKSEL_SRCSHFT 9
52 #define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
53 #define S3C64XX_SPI_PSR_MASK 0xff
54
55 #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
56 #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
57 #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
58 #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
59 #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
60 #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
61 #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
62 #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
63 #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
64 #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
65 #define S3C64XX_SPI_MODE_4BURST (1<<0)
66
67 #define S3C64XX_SPI_SLAVE_AUTO (1<<1)
68 #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
69 #define S3C64XX_SPI_SLAVE_NSC_CNT_2 (2<<4)
70
71 #define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
72 #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
73 #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
74 #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
75 #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
76 #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
77 #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
78
79 #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
80 #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
81 #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
82 #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
83 #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
84 #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
85
86 #define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
87
88 #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
89 #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
90 #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
91 #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
92 #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
93
94 #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
95 #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
96 #define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
97 #define S3C64XX_SPI_SWAP_RX_EN (1<<4)
98 #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
99 #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
100 #define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
101 #define S3C64XX_SPI_SWAP_TX_EN (1<<0)
102
103 #define S3C64XX_SPI_FBCLK_MSK (3<<0)
104
105 #define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
106 #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
107 (1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
108 #define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
109 #define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
110 FIFO_LVL_MASK(i))
111
112 #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
113 #define S3C64XX_SPI_TRAILCNT_OFF 19
114
115 #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
116
117 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
118 #define is_polling(x) (x->port_conf->quirks & S3C64XX_SPI_QUIRK_POLL)
119
120 #define RXBUSY (1<<2)
121 #define TXBUSY (1<<3)
122
123 struct s3c64xx_spi_dma_data {
124 struct dma_chan *ch;
125 enum dma_transfer_direction direction;
126 };
127
128 /**
129 * struct s3c64xx_spi_info - SPI Controller hardware info
130 * @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
131 * @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
132 * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
133 * @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
134 * @clk_from_cmu: True, if the controller does not include a clock mux and
135 * prescaler unit.
136 *
137 * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
138 * differ in some aspects such as the size of the fifo and spi bus clock
139 * setup. Such differences are specified to the driver using this structure
140 * which is provided as driver data to the driver.
141 */
142 struct s3c64xx_spi_port_config {
143 int fifo_lvl_mask[MAX_SPI_PORTS];
144 int rx_lvl_offset;
145 int tx_st_done;
146 int quirks;
147 bool high_speed;
148 bool clk_from_cmu;
149 bool clk_ioclk;
150 };
151
152 /**
153 * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
154 * @clk: Pointer to the spi clock.
155 * @src_clk: Pointer to the clock used to generate SPI signals.
156 * @ioclk: Pointer to the i/o clock between master and slave
157 * @master: Pointer to the SPI Protocol master.
158 * @cntrlr_info: Platform specific data for the controller this driver manages.
159 * @lock: Controller specific lock.
160 * @state: Set of FLAGS to indicate status.
161 * @rx_dmach: Controller's DMA channel for Rx.
162 * @tx_dmach: Controller's DMA channel for Tx.
163 * @sfr_start: BUS address of SPI controller regs.
164 * @regs: Pointer to ioremap'ed controller registers.
165 * @irq: interrupt
166 * @xfer_completion: To indicate completion of xfer task.
167 * @cur_mode: Stores the active configuration of the controller.
168 * @cur_bpw: Stores the active bits per word settings.
169 * @cur_speed: Stores the active xfer clock speed.
170 */
171 struct s3c64xx_spi_driver_data {
172 void __iomem *regs;
173 struct clk *clk;
174 struct clk *src_clk;
175 struct clk *ioclk;
176 struct platform_device *pdev;
177 struct spi_master *master;
178 struct s3c64xx_spi_info *cntrlr_info;
179 spinlock_t lock;
180 unsigned long sfr_start;
181 struct completion xfer_completion;
182 unsigned state;
183 unsigned cur_mode, cur_bpw;
184 unsigned cur_speed;
185 struct s3c64xx_spi_dma_data rx_dma;
186 struct s3c64xx_spi_dma_data tx_dma;
187 struct s3c64xx_spi_port_config *port_conf;
188 unsigned int port_id;
189 };
190
s3c64xx_flush_fifo(struct s3c64xx_spi_driver_data * sdd)191 static void s3c64xx_flush_fifo(struct s3c64xx_spi_driver_data *sdd)
192 {
193 void __iomem *regs = sdd->regs;
194 unsigned long loops;
195 u32 val;
196
197 writel(0, regs + S3C64XX_SPI_PACKET_CNT);
198
199 val = readl(regs + S3C64XX_SPI_CH_CFG);
200 val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
201 writel(val, regs + S3C64XX_SPI_CH_CFG);
202
203 val = readl(regs + S3C64XX_SPI_CH_CFG);
204 val |= S3C64XX_SPI_CH_SW_RST;
205 val &= ~S3C64XX_SPI_CH_HS_EN;
206 writel(val, regs + S3C64XX_SPI_CH_CFG);
207
208 /* Flush TxFIFO*/
209 loops = msecs_to_loops(1);
210 do {
211 val = readl(regs + S3C64XX_SPI_STATUS);
212 } while (TX_FIFO_LVL(val, sdd) && loops--);
213
214 if (loops == 0)
215 dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
216
217 /* Flush RxFIFO*/
218 loops = msecs_to_loops(1);
219 do {
220 val = readl(regs + S3C64XX_SPI_STATUS);
221 if (RX_FIFO_LVL(val, sdd))
222 readl(regs + S3C64XX_SPI_RX_DATA);
223 else
224 break;
225 } while (loops--);
226
227 if (loops == 0)
228 dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
229
230 val = readl(regs + S3C64XX_SPI_CH_CFG);
231 val &= ~S3C64XX_SPI_CH_SW_RST;
232 writel(val, regs + S3C64XX_SPI_CH_CFG);
233
234 val = readl(regs + S3C64XX_SPI_MODE_CFG);
235 val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
236 writel(val, regs + S3C64XX_SPI_MODE_CFG);
237 }
238
s3c64xx_spi_dmacb(void * data)239 static void s3c64xx_spi_dmacb(void *data)
240 {
241 struct s3c64xx_spi_driver_data *sdd;
242 struct s3c64xx_spi_dma_data *dma = data;
243 unsigned long flags;
244
245 if (dma->direction == DMA_DEV_TO_MEM)
246 sdd = container_of(data,
247 struct s3c64xx_spi_driver_data, rx_dma);
248 else
249 sdd = container_of(data,
250 struct s3c64xx_spi_driver_data, tx_dma);
251
252 spin_lock_irqsave(&sdd->lock, flags);
253
254 if (dma->direction == DMA_DEV_TO_MEM) {
255 sdd->state &= ~RXBUSY;
256 if (!(sdd->state & TXBUSY))
257 complete(&sdd->xfer_completion);
258 } else {
259 sdd->state &= ~TXBUSY;
260 if (!(sdd->state & RXBUSY))
261 complete(&sdd->xfer_completion);
262 }
263
264 spin_unlock_irqrestore(&sdd->lock, flags);
265 }
266
prepare_dma(struct s3c64xx_spi_dma_data * dma,struct sg_table * sgt)267 static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
268 struct sg_table *sgt)
269 {
270 struct s3c64xx_spi_driver_data *sdd;
271 struct dma_slave_config config;
272 struct dma_async_tx_descriptor *desc;
273
274 memset(&config, 0, sizeof(config));
275
276 if (dma->direction == DMA_DEV_TO_MEM) {
277 sdd = container_of((void *)dma,
278 struct s3c64xx_spi_driver_data, rx_dma);
279 config.direction = dma->direction;
280 config.src_addr = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
281 config.src_addr_width = sdd->cur_bpw / 8;
282 config.src_maxburst = 1;
283 dmaengine_slave_config(dma->ch, &config);
284 } else {
285 sdd = container_of((void *)dma,
286 struct s3c64xx_spi_driver_data, tx_dma);
287 config.direction = dma->direction;
288 config.dst_addr = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
289 config.dst_addr_width = sdd->cur_bpw / 8;
290 config.dst_maxburst = 1;
291 dmaengine_slave_config(dma->ch, &config);
292 }
293
294 desc = dmaengine_prep_slave_sg(dma->ch, sgt->sgl, sgt->nents,
295 dma->direction, DMA_PREP_INTERRUPT);
296
297 desc->callback = s3c64xx_spi_dmacb;
298 desc->callback_param = dma;
299
300 dmaengine_submit(desc);
301 dma_async_issue_pending(dma->ch);
302 }
303
s3c64xx_spi_set_cs(struct spi_device * spi,bool enable)304 static void s3c64xx_spi_set_cs(struct spi_device *spi, bool enable)
305 {
306 struct s3c64xx_spi_driver_data *sdd =
307 spi_master_get_devdata(spi->master);
308
309 if (sdd->cntrlr_info->no_cs)
310 return;
311
312 if (enable) {
313 if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO)) {
314 writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
315 } else {
316 u32 ssel = readl(sdd->regs + S3C64XX_SPI_SLAVE_SEL);
317
318 ssel |= (S3C64XX_SPI_SLAVE_AUTO |
319 S3C64XX_SPI_SLAVE_NSC_CNT_2);
320 writel(ssel, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
321 }
322 } else {
323 if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO))
324 writel(S3C64XX_SPI_SLAVE_SIG_INACT,
325 sdd->regs + S3C64XX_SPI_SLAVE_SEL);
326 }
327 }
328
s3c64xx_spi_prepare_transfer(struct spi_master * spi)329 static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
330 {
331 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
332
333 if (is_polling(sdd))
334 return 0;
335
336 spi->dma_rx = sdd->rx_dma.ch;
337 spi->dma_tx = sdd->tx_dma.ch;
338
339 return 0;
340 }
341
s3c64xx_spi_can_dma(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)342 static bool s3c64xx_spi_can_dma(struct spi_master *master,
343 struct spi_device *spi,
344 struct spi_transfer *xfer)
345 {
346 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
347
348 return xfer->len > (FIFO_LVL_MASK(sdd) >> 1) + 1;
349 }
350
s3c64xx_enable_datapath(struct s3c64xx_spi_driver_data * sdd,struct spi_transfer * xfer,int dma_mode)351 static void s3c64xx_enable_datapath(struct s3c64xx_spi_driver_data *sdd,
352 struct spi_transfer *xfer, int dma_mode)
353 {
354 void __iomem *regs = sdd->regs;
355 u32 modecfg, chcfg;
356
357 modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
358 modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
359
360 chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
361 chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
362
363 if (dma_mode) {
364 chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
365 } else {
366 /* Always shift in data in FIFO, even if xfer is Tx only,
367 * this helps setting PCKT_CNT value for generating clocks
368 * as exactly needed.
369 */
370 chcfg |= S3C64XX_SPI_CH_RXCH_ON;
371 writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
372 | S3C64XX_SPI_PACKET_CNT_EN,
373 regs + S3C64XX_SPI_PACKET_CNT);
374 }
375
376 if (xfer->tx_buf != NULL) {
377 sdd->state |= TXBUSY;
378 chcfg |= S3C64XX_SPI_CH_TXCH_ON;
379 if (dma_mode) {
380 modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
381 prepare_dma(&sdd->tx_dma, &xfer->tx_sg);
382 } else {
383 switch (sdd->cur_bpw) {
384 case 32:
385 iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
386 xfer->tx_buf, xfer->len / 4);
387 break;
388 case 16:
389 iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
390 xfer->tx_buf, xfer->len / 2);
391 break;
392 default:
393 iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
394 xfer->tx_buf, xfer->len);
395 break;
396 }
397 }
398 }
399
400 if (xfer->rx_buf != NULL) {
401 sdd->state |= RXBUSY;
402
403 if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
404 && !(sdd->cur_mode & SPI_CPHA))
405 chcfg |= S3C64XX_SPI_CH_HS_EN;
406
407 if (dma_mode) {
408 modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
409 chcfg |= S3C64XX_SPI_CH_RXCH_ON;
410 writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
411 | S3C64XX_SPI_PACKET_CNT_EN,
412 regs + S3C64XX_SPI_PACKET_CNT);
413 prepare_dma(&sdd->rx_dma, &xfer->rx_sg);
414 }
415 }
416
417 writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
418 writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
419 }
420
s3c64xx_spi_wait_for_timeout(struct s3c64xx_spi_driver_data * sdd,int timeout_ms)421 static u32 s3c64xx_spi_wait_for_timeout(struct s3c64xx_spi_driver_data *sdd,
422 int timeout_ms)
423 {
424 void __iomem *regs = sdd->regs;
425 unsigned long val = 1;
426 u32 status;
427
428 /* max fifo depth available */
429 u32 max_fifo = (FIFO_LVL_MASK(sdd) >> 1) + 1;
430
431 if (timeout_ms)
432 val = msecs_to_loops(timeout_ms);
433
434 do {
435 status = readl(regs + S3C64XX_SPI_STATUS);
436 } while (RX_FIFO_LVL(status, sdd) < max_fifo && --val);
437
438 /* return the actual received data length */
439 return RX_FIFO_LVL(status, sdd);
440 }
441
s3c64xx_wait_for_dma(struct s3c64xx_spi_driver_data * sdd,struct spi_transfer * xfer)442 static int s3c64xx_wait_for_dma(struct s3c64xx_spi_driver_data *sdd,
443 struct spi_transfer *xfer)
444 {
445 void __iomem *regs = sdd->regs;
446 unsigned long val;
447 u32 status;
448 int ms;
449
450 /* millisecs to xfer 'len' bytes @ 'cur_speed' */
451 ms = xfer->len * 8 * 1000 / sdd->cur_speed;
452 ms += 10; /* some tolerance */
453
454 val = msecs_to_jiffies(ms) + 10;
455 val = wait_for_completion_timeout(&sdd->xfer_completion, val);
456
457 /*
458 * If the previous xfer was completed within timeout, then
459 * proceed further else return -EIO.
460 * DmaTx returns after simply writing data in the FIFO,
461 * w/o waiting for real transmission on the bus to finish.
462 * DmaRx returns only after Dma read data from FIFO which
463 * needs bus transmission to finish, so we don't worry if
464 * Xfer involved Rx(with or without Tx).
465 */
466 if (val && !xfer->rx_buf) {
467 val = msecs_to_loops(10);
468 status = readl(regs + S3C64XX_SPI_STATUS);
469 while ((TX_FIFO_LVL(status, sdd)
470 || !S3C64XX_SPI_ST_TX_DONE(status, sdd))
471 && --val) {
472 cpu_relax();
473 status = readl(regs + S3C64XX_SPI_STATUS);
474 }
475
476 }
477
478 /* If timed out while checking rx/tx status return error */
479 if (!val)
480 return -EIO;
481
482 return 0;
483 }
484
s3c64xx_wait_for_pio(struct s3c64xx_spi_driver_data * sdd,struct spi_transfer * xfer)485 static int s3c64xx_wait_for_pio(struct s3c64xx_spi_driver_data *sdd,
486 struct spi_transfer *xfer)
487 {
488 void __iomem *regs = sdd->regs;
489 unsigned long val;
490 u32 status;
491 int loops;
492 u32 cpy_len;
493 u8 *buf;
494 int ms;
495
496 /* millisecs to xfer 'len' bytes @ 'cur_speed' */
497 ms = xfer->len * 8 * 1000 / sdd->cur_speed;
498 ms += 10; /* some tolerance */
499
500 val = msecs_to_loops(ms);
501 do {
502 status = readl(regs + S3C64XX_SPI_STATUS);
503 } while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
504
505 if (!val)
506 return -EIO;
507
508 /* If it was only Tx */
509 if (!xfer->rx_buf) {
510 sdd->state &= ~TXBUSY;
511 return 0;
512 }
513
514 /*
515 * If the receive length is bigger than the controller fifo
516 * size, calculate the loops and read the fifo as many times.
517 * loops = length / max fifo size (calculated by using the
518 * fifo mask).
519 * For any size less than the fifo size the below code is
520 * executed atleast once.
521 */
522 loops = xfer->len / ((FIFO_LVL_MASK(sdd) >> 1) + 1);
523 buf = xfer->rx_buf;
524 do {
525 /* wait for data to be received in the fifo */
526 cpy_len = s3c64xx_spi_wait_for_timeout(sdd,
527 (loops ? ms : 0));
528
529 switch (sdd->cur_bpw) {
530 case 32:
531 ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
532 buf, cpy_len / 4);
533 break;
534 case 16:
535 ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
536 buf, cpy_len / 2);
537 break;
538 default:
539 ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
540 buf, cpy_len);
541 break;
542 }
543
544 buf = buf + cpy_len;
545 } while (loops--);
546 sdd->state &= ~RXBUSY;
547
548 return 0;
549 }
550
s3c64xx_spi_config(struct s3c64xx_spi_driver_data * sdd)551 static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
552 {
553 void __iomem *regs = sdd->regs;
554 u32 val;
555
556 /* Disable Clock */
557 if (!sdd->port_conf->clk_from_cmu) {
558 val = readl(regs + S3C64XX_SPI_CLK_CFG);
559 val &= ~S3C64XX_SPI_ENCLK_ENABLE;
560 writel(val, regs + S3C64XX_SPI_CLK_CFG);
561 }
562
563 /* Set Polarity and Phase */
564 val = readl(regs + S3C64XX_SPI_CH_CFG);
565 val &= ~(S3C64XX_SPI_CH_SLAVE |
566 S3C64XX_SPI_CPOL_L |
567 S3C64XX_SPI_CPHA_B);
568
569 if (sdd->cur_mode & SPI_CPOL)
570 val |= S3C64XX_SPI_CPOL_L;
571
572 if (sdd->cur_mode & SPI_CPHA)
573 val |= S3C64XX_SPI_CPHA_B;
574
575 writel(val, regs + S3C64XX_SPI_CH_CFG);
576
577 /* Set Channel & DMA Mode */
578 val = readl(regs + S3C64XX_SPI_MODE_CFG);
579 val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
580 | S3C64XX_SPI_MODE_CH_TSZ_MASK);
581
582 switch (sdd->cur_bpw) {
583 case 32:
584 val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
585 val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
586 break;
587 case 16:
588 val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
589 val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
590 break;
591 default:
592 val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
593 val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
594 break;
595 }
596
597 writel(val, regs + S3C64XX_SPI_MODE_CFG);
598
599 if (sdd->port_conf->clk_from_cmu) {
600 /* The src_clk clock is divided internally by 2 */
601 clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
602 } else {
603 /* Configure Clock */
604 val = readl(regs + S3C64XX_SPI_CLK_CFG);
605 val &= ~S3C64XX_SPI_PSR_MASK;
606 val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
607 & S3C64XX_SPI_PSR_MASK);
608 writel(val, regs + S3C64XX_SPI_CLK_CFG);
609
610 /* Enable Clock */
611 val = readl(regs + S3C64XX_SPI_CLK_CFG);
612 val |= S3C64XX_SPI_ENCLK_ENABLE;
613 writel(val, regs + S3C64XX_SPI_CLK_CFG);
614 }
615 }
616
617 #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
618
s3c64xx_spi_prepare_message(struct spi_master * master,struct spi_message * msg)619 static int s3c64xx_spi_prepare_message(struct spi_master *master,
620 struct spi_message *msg)
621 {
622 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
623 struct spi_device *spi = msg->spi;
624 struct s3c64xx_spi_csinfo *cs = spi->controller_data;
625
626 /* Configure feedback delay */
627 writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
628
629 return 0;
630 }
631
s3c64xx_spi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)632 static int s3c64xx_spi_transfer_one(struct spi_master *master,
633 struct spi_device *spi,
634 struct spi_transfer *xfer)
635 {
636 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
637 const unsigned int fifo_len = (FIFO_LVL_MASK(sdd) >> 1) + 1;
638 const void *tx_buf = NULL;
639 void *rx_buf = NULL;
640 int target_len = 0, origin_len = 0;
641 int use_dma = 0;
642 int status;
643 u32 speed;
644 u8 bpw;
645 unsigned long flags;
646
647 reinit_completion(&sdd->xfer_completion);
648
649 /* Only BPW and Speed may change across transfers */
650 bpw = xfer->bits_per_word;
651 speed = xfer->speed_hz;
652
653 if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
654 sdd->cur_bpw = bpw;
655 sdd->cur_speed = speed;
656 sdd->cur_mode = spi->mode;
657 s3c64xx_spi_config(sdd);
658 }
659
660 if (!is_polling(sdd) && (xfer->len > fifo_len) &&
661 sdd->rx_dma.ch && sdd->tx_dma.ch) {
662 use_dma = 1;
663
664 } else if (is_polling(sdd) && xfer->len > fifo_len) {
665 tx_buf = xfer->tx_buf;
666 rx_buf = xfer->rx_buf;
667 origin_len = xfer->len;
668
669 target_len = xfer->len;
670 if (xfer->len > fifo_len)
671 xfer->len = fifo_len;
672 }
673
674 do {
675 spin_lock_irqsave(&sdd->lock, flags);
676
677 /* Pending only which is to be done */
678 sdd->state &= ~RXBUSY;
679 sdd->state &= ~TXBUSY;
680
681 s3c64xx_enable_datapath(sdd, xfer, use_dma);
682
683 /* Start the signals */
684 s3c64xx_spi_set_cs(spi, true);
685
686 spin_unlock_irqrestore(&sdd->lock, flags);
687
688 if (use_dma)
689 status = s3c64xx_wait_for_dma(sdd, xfer);
690 else
691 status = s3c64xx_wait_for_pio(sdd, xfer);
692
693 if (status) {
694 dev_err(&spi->dev,
695 "I/O Error: rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
696 xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
697 (sdd->state & RXBUSY) ? 'f' : 'p',
698 (sdd->state & TXBUSY) ? 'f' : 'p',
699 xfer->len);
700
701 if (use_dma) {
702 if (xfer->tx_buf && (sdd->state & TXBUSY))
703 dmaengine_terminate_all(sdd->tx_dma.ch);
704 if (xfer->rx_buf && (sdd->state & RXBUSY))
705 dmaengine_terminate_all(sdd->rx_dma.ch);
706 }
707 } else {
708 s3c64xx_flush_fifo(sdd);
709 }
710 if (target_len > 0) {
711 target_len -= xfer->len;
712
713 if (xfer->tx_buf)
714 xfer->tx_buf += xfer->len;
715
716 if (xfer->rx_buf)
717 xfer->rx_buf += xfer->len;
718
719 if (target_len > fifo_len)
720 xfer->len = fifo_len;
721 else
722 xfer->len = target_len;
723 }
724 } while (target_len > 0);
725
726 if (origin_len) {
727 /* Restore original xfer buffers and length */
728 xfer->tx_buf = tx_buf;
729 xfer->rx_buf = rx_buf;
730 xfer->len = origin_len;
731 }
732
733 return status;
734 }
735
s3c64xx_get_slave_ctrldata(struct spi_device * spi)736 static struct s3c64xx_spi_csinfo *s3c64xx_get_slave_ctrldata(
737 struct spi_device *spi)
738 {
739 struct s3c64xx_spi_csinfo *cs;
740 struct device_node *slave_np, *data_np = NULL;
741 u32 fb_delay = 0;
742
743 slave_np = spi->dev.of_node;
744 if (!slave_np) {
745 dev_err(&spi->dev, "device node not found\n");
746 return ERR_PTR(-EINVAL);
747 }
748
749 data_np = of_get_child_by_name(slave_np, "controller-data");
750 if (!data_np) {
751 dev_err(&spi->dev, "child node 'controller-data' not found\n");
752 return ERR_PTR(-EINVAL);
753 }
754
755 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
756 if (!cs) {
757 of_node_put(data_np);
758 return ERR_PTR(-ENOMEM);
759 }
760
761 of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
762 cs->fb_delay = fb_delay;
763 of_node_put(data_np);
764 return cs;
765 }
766
767 /*
768 * Here we only check the validity of requested configuration
769 * and save the configuration in a local data-structure.
770 * The controller is actually configured only just before we
771 * get a message to transfer.
772 */
s3c64xx_spi_setup(struct spi_device * spi)773 static int s3c64xx_spi_setup(struct spi_device *spi)
774 {
775 struct s3c64xx_spi_csinfo *cs = spi->controller_data;
776 struct s3c64xx_spi_driver_data *sdd;
777 int err;
778
779 sdd = spi_master_get_devdata(spi->master);
780 if (spi->dev.of_node) {
781 cs = s3c64xx_get_slave_ctrldata(spi);
782 spi->controller_data = cs;
783 } else if (cs) {
784 /* On non-DT platforms the SPI core will set spi->cs_gpio
785 * to -ENOENT. The GPIO pin used to drive the chip select
786 * is defined by using platform data so spi->cs_gpio value
787 * has to be override to have the proper GPIO pin number.
788 */
789 spi->cs_gpio = cs->line;
790 }
791
792 if (IS_ERR_OR_NULL(cs)) {
793 dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
794 return -ENODEV;
795 }
796
797 if (!spi_get_ctldata(spi)) {
798 if (gpio_is_valid(spi->cs_gpio)) {
799 err = gpio_request_one(spi->cs_gpio, GPIOF_OUT_INIT_HIGH,
800 dev_name(&spi->dev));
801 if (err) {
802 dev_err(&spi->dev,
803 "Failed to get /CS gpio [%d]: %d\n",
804 spi->cs_gpio, err);
805 goto err_gpio_req;
806 }
807 }
808
809 spi_set_ctldata(spi, cs);
810 }
811
812 pm_runtime_get_sync(&sdd->pdev->dev);
813
814 /* Check if we can provide the requested rate */
815 if (!sdd->port_conf->clk_from_cmu) {
816 u32 psr, speed;
817
818 /* Max possible */
819 speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
820
821 if (spi->max_speed_hz > speed)
822 spi->max_speed_hz = speed;
823
824 psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
825 psr &= S3C64XX_SPI_PSR_MASK;
826 if (psr == S3C64XX_SPI_PSR_MASK)
827 psr--;
828
829 speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
830 if (spi->max_speed_hz < speed) {
831 if (psr+1 < S3C64XX_SPI_PSR_MASK) {
832 psr++;
833 } else {
834 err = -EINVAL;
835 goto setup_exit;
836 }
837 }
838
839 speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
840 if (spi->max_speed_hz >= speed) {
841 spi->max_speed_hz = speed;
842 } else {
843 dev_err(&spi->dev, "Can't set %dHz transfer speed\n",
844 spi->max_speed_hz);
845 err = -EINVAL;
846 goto setup_exit;
847 }
848 }
849
850 pm_runtime_mark_last_busy(&sdd->pdev->dev);
851 pm_runtime_put_autosuspend(&sdd->pdev->dev);
852 s3c64xx_spi_set_cs(spi, false);
853
854 return 0;
855
856 setup_exit:
857 pm_runtime_mark_last_busy(&sdd->pdev->dev);
858 pm_runtime_put_autosuspend(&sdd->pdev->dev);
859 /* setup() returns with device de-selected */
860 s3c64xx_spi_set_cs(spi, false);
861
862 if (gpio_is_valid(spi->cs_gpio))
863 gpio_free(spi->cs_gpio);
864 spi_set_ctldata(spi, NULL);
865
866 err_gpio_req:
867 if (spi->dev.of_node)
868 kfree(cs);
869
870 return err;
871 }
872
s3c64xx_spi_cleanup(struct spi_device * spi)873 static void s3c64xx_spi_cleanup(struct spi_device *spi)
874 {
875 struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
876
877 if (gpio_is_valid(spi->cs_gpio)) {
878 gpio_free(spi->cs_gpio);
879 if (spi->dev.of_node)
880 kfree(cs);
881 else {
882 /* On non-DT platforms, the SPI core sets
883 * spi->cs_gpio to -ENOENT and .setup()
884 * overrides it with the GPIO pin value
885 * passed using platform data.
886 */
887 spi->cs_gpio = -ENOENT;
888 }
889 }
890
891 spi_set_ctldata(spi, NULL);
892 }
893
s3c64xx_spi_irq(int irq,void * data)894 static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
895 {
896 struct s3c64xx_spi_driver_data *sdd = data;
897 struct spi_master *spi = sdd->master;
898 unsigned int val, clr = 0;
899
900 val = readl(sdd->regs + S3C64XX_SPI_STATUS);
901
902 if (val & S3C64XX_SPI_ST_RX_OVERRUN_ERR) {
903 clr = S3C64XX_SPI_PND_RX_OVERRUN_CLR;
904 dev_err(&spi->dev, "RX overrun\n");
905 }
906 if (val & S3C64XX_SPI_ST_RX_UNDERRUN_ERR) {
907 clr |= S3C64XX_SPI_PND_RX_UNDERRUN_CLR;
908 dev_err(&spi->dev, "RX underrun\n");
909 }
910 if (val & S3C64XX_SPI_ST_TX_OVERRUN_ERR) {
911 clr |= S3C64XX_SPI_PND_TX_OVERRUN_CLR;
912 dev_err(&spi->dev, "TX overrun\n");
913 }
914 if (val & S3C64XX_SPI_ST_TX_UNDERRUN_ERR) {
915 clr |= S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
916 dev_err(&spi->dev, "TX underrun\n");
917 }
918
919 /* Clear the pending irq by setting and then clearing it */
920 writel(clr, sdd->regs + S3C64XX_SPI_PENDING_CLR);
921 writel(0, sdd->regs + S3C64XX_SPI_PENDING_CLR);
922
923 return IRQ_HANDLED;
924 }
925
s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data * sdd)926 static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd)
927 {
928 struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
929 void __iomem *regs = sdd->regs;
930 unsigned int val;
931
932 sdd->cur_speed = 0;
933
934 if (sci->no_cs)
935 writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
936 else if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO))
937 writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
938
939 /* Disable Interrupts - we use Polling if not DMA mode */
940 writel(0, regs + S3C64XX_SPI_INT_EN);
941
942 if (!sdd->port_conf->clk_from_cmu)
943 writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
944 regs + S3C64XX_SPI_CLK_CFG);
945 writel(0, regs + S3C64XX_SPI_MODE_CFG);
946 writel(0, regs + S3C64XX_SPI_PACKET_CNT);
947
948 /* Clear any irq pending bits, should set and clear the bits */
949 val = S3C64XX_SPI_PND_RX_OVERRUN_CLR |
950 S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
951 S3C64XX_SPI_PND_TX_OVERRUN_CLR |
952 S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
953 writel(val, regs + S3C64XX_SPI_PENDING_CLR);
954 writel(0, regs + S3C64XX_SPI_PENDING_CLR);
955
956 writel(0, regs + S3C64XX_SPI_SWAP_CFG);
957
958 val = readl(regs + S3C64XX_SPI_MODE_CFG);
959 val &= ~S3C64XX_SPI_MODE_4BURST;
960 val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
961 val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
962 writel(val, regs + S3C64XX_SPI_MODE_CFG);
963
964 s3c64xx_flush_fifo(sdd);
965 }
966
967 #ifdef CONFIG_OF
s3c64xx_spi_parse_dt(struct device * dev)968 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
969 {
970 struct s3c64xx_spi_info *sci;
971 u32 temp;
972
973 sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
974 if (!sci)
975 return ERR_PTR(-ENOMEM);
976
977 if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
978 dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
979 sci->src_clk_nr = 0;
980 } else {
981 sci->src_clk_nr = temp;
982 }
983
984 if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
985 dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
986 sci->num_cs = 1;
987 } else {
988 sci->num_cs = temp;
989 }
990
991 sci->no_cs = of_property_read_bool(dev->of_node, "no-cs-readback");
992
993 return sci;
994 }
995 #else
s3c64xx_spi_parse_dt(struct device * dev)996 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
997 {
998 return dev_get_platdata(dev);
999 }
1000 #endif
1001
1002 static const struct of_device_id s3c64xx_spi_dt_match[];
1003
s3c64xx_spi_get_port_config(struct platform_device * pdev)1004 static inline struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
1005 struct platform_device *pdev)
1006 {
1007 #ifdef CONFIG_OF
1008 if (pdev->dev.of_node) {
1009 const struct of_device_id *match;
1010 match = of_match_node(s3c64xx_spi_dt_match, pdev->dev.of_node);
1011 return (struct s3c64xx_spi_port_config *)match->data;
1012 }
1013 #endif
1014 return (struct s3c64xx_spi_port_config *)
1015 platform_get_device_id(pdev)->driver_data;
1016 }
1017
s3c64xx_spi_probe(struct platform_device * pdev)1018 static int s3c64xx_spi_probe(struct platform_device *pdev)
1019 {
1020 struct resource *mem_res;
1021 struct s3c64xx_spi_driver_data *sdd;
1022 struct s3c64xx_spi_info *sci = dev_get_platdata(&pdev->dev);
1023 struct spi_master *master;
1024 int ret, irq;
1025 char clk_name[16];
1026
1027 if (!sci && pdev->dev.of_node) {
1028 sci = s3c64xx_spi_parse_dt(&pdev->dev);
1029 if (IS_ERR(sci))
1030 return PTR_ERR(sci);
1031 }
1032
1033 if (!sci) {
1034 dev_err(&pdev->dev, "platform_data missing!\n");
1035 return -ENODEV;
1036 }
1037
1038 mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1039 if (mem_res == NULL) {
1040 dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
1041 return -ENXIO;
1042 }
1043
1044 irq = platform_get_irq(pdev, 0);
1045 if (irq < 0) {
1046 dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
1047 return irq;
1048 }
1049
1050 master = spi_alloc_master(&pdev->dev,
1051 sizeof(struct s3c64xx_spi_driver_data));
1052 if (master == NULL) {
1053 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
1054 return -ENOMEM;
1055 }
1056
1057 platform_set_drvdata(pdev, master);
1058
1059 sdd = spi_master_get_devdata(master);
1060 sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
1061 sdd->master = master;
1062 sdd->cntrlr_info = sci;
1063 sdd->pdev = pdev;
1064 sdd->sfr_start = mem_res->start;
1065 if (pdev->dev.of_node) {
1066 ret = of_alias_get_id(pdev->dev.of_node, "spi");
1067 if (ret < 0) {
1068 dev_err(&pdev->dev, "failed to get alias id, errno %d\n",
1069 ret);
1070 goto err_deref_master;
1071 }
1072 sdd->port_id = ret;
1073 } else {
1074 sdd->port_id = pdev->id;
1075 }
1076
1077 sdd->cur_bpw = 8;
1078
1079 sdd->tx_dma.direction = DMA_MEM_TO_DEV;
1080 sdd->rx_dma.direction = DMA_DEV_TO_MEM;
1081
1082 master->dev.of_node = pdev->dev.of_node;
1083 master->bus_num = sdd->port_id;
1084 master->setup = s3c64xx_spi_setup;
1085 master->cleanup = s3c64xx_spi_cleanup;
1086 master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
1087 master->prepare_message = s3c64xx_spi_prepare_message;
1088 master->transfer_one = s3c64xx_spi_transfer_one;
1089 master->num_chipselect = sci->num_cs;
1090 master->dma_alignment = 8;
1091 master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
1092 SPI_BPW_MASK(8);
1093 /* the spi->mode bits understood by this driver: */
1094 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1095 master->auto_runtime_pm = true;
1096 if (!is_polling(sdd))
1097 master->can_dma = s3c64xx_spi_can_dma;
1098
1099 sdd->regs = devm_ioremap_resource(&pdev->dev, mem_res);
1100 if (IS_ERR(sdd->regs)) {
1101 ret = PTR_ERR(sdd->regs);
1102 goto err_deref_master;
1103 }
1104
1105 if (sci->cfg_gpio && sci->cfg_gpio()) {
1106 dev_err(&pdev->dev, "Unable to config gpio\n");
1107 ret = -EBUSY;
1108 goto err_deref_master;
1109 }
1110
1111 /* Setup clocks */
1112 sdd->clk = devm_clk_get(&pdev->dev, "spi");
1113 if (IS_ERR(sdd->clk)) {
1114 dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
1115 ret = PTR_ERR(sdd->clk);
1116 goto err_deref_master;
1117 }
1118
1119 ret = clk_prepare_enable(sdd->clk);
1120 if (ret) {
1121 dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
1122 goto err_deref_master;
1123 }
1124
1125 sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
1126 sdd->src_clk = devm_clk_get(&pdev->dev, clk_name);
1127 if (IS_ERR(sdd->src_clk)) {
1128 dev_err(&pdev->dev,
1129 "Unable to acquire clock '%s'\n", clk_name);
1130 ret = PTR_ERR(sdd->src_clk);
1131 goto err_disable_clk;
1132 }
1133
1134 ret = clk_prepare_enable(sdd->src_clk);
1135 if (ret) {
1136 dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
1137 goto err_disable_clk;
1138 }
1139
1140 if (sdd->port_conf->clk_ioclk) {
1141 sdd->ioclk = devm_clk_get(&pdev->dev, "spi_ioclk");
1142 if (IS_ERR(sdd->ioclk)) {
1143 dev_err(&pdev->dev, "Unable to acquire 'ioclk'\n");
1144 ret = PTR_ERR(sdd->ioclk);
1145 goto err_disable_src_clk;
1146 }
1147
1148 ret = clk_prepare_enable(sdd->ioclk);
1149 if (ret) {
1150 dev_err(&pdev->dev, "Couldn't enable clock 'ioclk'\n");
1151 goto err_disable_src_clk;
1152 }
1153 }
1154
1155 if (!is_polling(sdd)) {
1156 /* Acquire DMA channels */
1157 sdd->rx_dma.ch = dma_request_slave_channel_reason(&pdev->dev,
1158 "rx");
1159 if (IS_ERR(sdd->rx_dma.ch)) {
1160 dev_err(&pdev->dev, "Failed to get RX DMA channel\n");
1161 ret = PTR_ERR(sdd->rx_dma.ch);
1162 goto err_disable_io_clk;
1163 }
1164 sdd->tx_dma.ch = dma_request_slave_channel_reason(&pdev->dev,
1165 "tx");
1166 if (IS_ERR(sdd->tx_dma.ch)) {
1167 dev_err(&pdev->dev, "Failed to get TX DMA channel\n");
1168 ret = PTR_ERR(sdd->tx_dma.ch);
1169 goto err_release_rx_dma;
1170 }
1171 }
1172
1173 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1174 pm_runtime_use_autosuspend(&pdev->dev);
1175 pm_runtime_set_active(&pdev->dev);
1176 pm_runtime_enable(&pdev->dev);
1177 pm_runtime_get_sync(&pdev->dev);
1178
1179 /* Setup Deufult Mode */
1180 s3c64xx_spi_hwinit(sdd);
1181
1182 spin_lock_init(&sdd->lock);
1183 init_completion(&sdd->xfer_completion);
1184
1185 ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0,
1186 "spi-s3c64xx", sdd);
1187 if (ret != 0) {
1188 dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
1189 irq, ret);
1190 goto err_pm_put;
1191 }
1192
1193 writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
1194 S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
1195 sdd->regs + S3C64XX_SPI_INT_EN);
1196
1197 ret = devm_spi_register_master(&pdev->dev, master);
1198 if (ret != 0) {
1199 dev_err(&pdev->dev, "cannot register SPI master: %d\n", ret);
1200 goto err_pm_put;
1201 }
1202
1203 dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Slaves attached\n",
1204 sdd->port_id, master->num_chipselect);
1205 dev_dbg(&pdev->dev, "\tIOmem=[%pR]\tFIFO %dbytes\n",
1206 mem_res, (FIFO_LVL_MASK(sdd) >> 1) + 1);
1207
1208 pm_runtime_mark_last_busy(&pdev->dev);
1209 pm_runtime_put_autosuspend(&pdev->dev);
1210
1211 return 0;
1212
1213 err_pm_put:
1214 pm_runtime_put_noidle(&pdev->dev);
1215 pm_runtime_disable(&pdev->dev);
1216 pm_runtime_set_suspended(&pdev->dev);
1217
1218 if (!is_polling(sdd))
1219 dma_release_channel(sdd->tx_dma.ch);
1220 err_release_rx_dma:
1221 if (!is_polling(sdd))
1222 dma_release_channel(sdd->rx_dma.ch);
1223 err_disable_io_clk:
1224 clk_disable_unprepare(sdd->ioclk);
1225 err_disable_src_clk:
1226 clk_disable_unprepare(sdd->src_clk);
1227 err_disable_clk:
1228 clk_disable_unprepare(sdd->clk);
1229 err_deref_master:
1230 spi_master_put(master);
1231
1232 return ret;
1233 }
1234
s3c64xx_spi_remove(struct platform_device * pdev)1235 static int s3c64xx_spi_remove(struct platform_device *pdev)
1236 {
1237 struct spi_master *master = platform_get_drvdata(pdev);
1238 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1239
1240 pm_runtime_get_sync(&pdev->dev);
1241
1242 writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
1243
1244 if (!is_polling(sdd)) {
1245 dma_release_channel(sdd->rx_dma.ch);
1246 dma_release_channel(sdd->tx_dma.ch);
1247 }
1248
1249 clk_disable_unprepare(sdd->ioclk);
1250
1251 clk_disable_unprepare(sdd->src_clk);
1252
1253 clk_disable_unprepare(sdd->clk);
1254
1255 pm_runtime_put_noidle(&pdev->dev);
1256 pm_runtime_disable(&pdev->dev);
1257 pm_runtime_set_suspended(&pdev->dev);
1258
1259 return 0;
1260 }
1261
1262 #ifdef CONFIG_PM_SLEEP
s3c64xx_spi_suspend(struct device * dev)1263 static int s3c64xx_spi_suspend(struct device *dev)
1264 {
1265 struct spi_master *master = dev_get_drvdata(dev);
1266 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1267
1268 int ret = spi_master_suspend(master);
1269 if (ret)
1270 return ret;
1271
1272 ret = pm_runtime_force_suspend(dev);
1273 if (ret < 0)
1274 return ret;
1275
1276 sdd->cur_speed = 0; /* Output Clock is stopped */
1277
1278 return 0;
1279 }
1280
s3c64xx_spi_resume(struct device * dev)1281 static int s3c64xx_spi_resume(struct device *dev)
1282 {
1283 struct spi_master *master = dev_get_drvdata(dev);
1284 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1285 struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1286 int ret;
1287
1288 if (sci->cfg_gpio)
1289 sci->cfg_gpio();
1290
1291 ret = pm_runtime_force_resume(dev);
1292 if (ret < 0)
1293 return ret;
1294
1295 return spi_master_resume(master);
1296 }
1297 #endif /* CONFIG_PM_SLEEP */
1298
1299 #ifdef CONFIG_PM
s3c64xx_spi_runtime_suspend(struct device * dev)1300 static int s3c64xx_spi_runtime_suspend(struct device *dev)
1301 {
1302 struct spi_master *master = dev_get_drvdata(dev);
1303 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1304
1305 clk_disable_unprepare(sdd->clk);
1306 clk_disable_unprepare(sdd->src_clk);
1307 clk_disable_unprepare(sdd->ioclk);
1308
1309 return 0;
1310 }
1311
s3c64xx_spi_runtime_resume(struct device * dev)1312 static int s3c64xx_spi_runtime_resume(struct device *dev)
1313 {
1314 struct spi_master *master = dev_get_drvdata(dev);
1315 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1316 int ret;
1317
1318 if (sdd->port_conf->clk_ioclk) {
1319 ret = clk_prepare_enable(sdd->ioclk);
1320 if (ret != 0)
1321 return ret;
1322 }
1323
1324 ret = clk_prepare_enable(sdd->src_clk);
1325 if (ret != 0)
1326 goto err_disable_ioclk;
1327
1328 ret = clk_prepare_enable(sdd->clk);
1329 if (ret != 0)
1330 goto err_disable_src_clk;
1331
1332 s3c64xx_spi_hwinit(sdd);
1333
1334 return 0;
1335
1336 err_disable_src_clk:
1337 clk_disable_unprepare(sdd->src_clk);
1338 err_disable_ioclk:
1339 clk_disable_unprepare(sdd->ioclk);
1340
1341 return ret;
1342 }
1343 #endif /* CONFIG_PM */
1344
1345 static const struct dev_pm_ops s3c64xx_spi_pm = {
1346 SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
1347 SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
1348 s3c64xx_spi_runtime_resume, NULL)
1349 };
1350
1351 static struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
1352 .fifo_lvl_mask = { 0x7f },
1353 .rx_lvl_offset = 13,
1354 .tx_st_done = 21,
1355 .high_speed = true,
1356 };
1357
1358 static struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
1359 .fifo_lvl_mask = { 0x7f, 0x7F },
1360 .rx_lvl_offset = 13,
1361 .tx_st_done = 21,
1362 };
1363
1364 static struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
1365 .fifo_lvl_mask = { 0x1ff, 0x7F },
1366 .rx_lvl_offset = 15,
1367 .tx_st_done = 25,
1368 .high_speed = true,
1369 };
1370
1371 static struct s3c64xx_spi_port_config exynos4_spi_port_config = {
1372 .fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F },
1373 .rx_lvl_offset = 15,
1374 .tx_st_done = 25,
1375 .high_speed = true,
1376 .clk_from_cmu = true,
1377 };
1378
1379 static struct s3c64xx_spi_port_config exynos7_spi_port_config = {
1380 .fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F, 0x7F, 0x7F, 0x1ff},
1381 .rx_lvl_offset = 15,
1382 .tx_st_done = 25,
1383 .high_speed = true,
1384 .clk_from_cmu = true,
1385 .quirks = S3C64XX_SPI_QUIRK_CS_AUTO,
1386 };
1387
1388 static struct s3c64xx_spi_port_config exynos5433_spi_port_config = {
1389 .fifo_lvl_mask = { 0x1ff, 0x7f, 0x7f, 0x7f, 0x7f, 0x1ff},
1390 .rx_lvl_offset = 15,
1391 .tx_st_done = 25,
1392 .high_speed = true,
1393 .clk_from_cmu = true,
1394 .clk_ioclk = true,
1395 .quirks = S3C64XX_SPI_QUIRK_CS_AUTO,
1396 };
1397
1398 static const struct platform_device_id s3c64xx_spi_driver_ids[] = {
1399 {
1400 .name = "s3c2443-spi",
1401 .driver_data = (kernel_ulong_t)&s3c2443_spi_port_config,
1402 }, {
1403 .name = "s3c6410-spi",
1404 .driver_data = (kernel_ulong_t)&s3c6410_spi_port_config,
1405 },
1406 { },
1407 };
1408
1409 static const struct of_device_id s3c64xx_spi_dt_match[] = {
1410 { .compatible = "samsung,s3c2443-spi",
1411 .data = (void *)&s3c2443_spi_port_config,
1412 },
1413 { .compatible = "samsung,s3c6410-spi",
1414 .data = (void *)&s3c6410_spi_port_config,
1415 },
1416 { .compatible = "samsung,s5pv210-spi",
1417 .data = (void *)&s5pv210_spi_port_config,
1418 },
1419 { .compatible = "samsung,exynos4210-spi",
1420 .data = (void *)&exynos4_spi_port_config,
1421 },
1422 { .compatible = "samsung,exynos7-spi",
1423 .data = (void *)&exynos7_spi_port_config,
1424 },
1425 { .compatible = "samsung,exynos5433-spi",
1426 .data = (void *)&exynos5433_spi_port_config,
1427 },
1428 { },
1429 };
1430 MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
1431
1432 static struct platform_driver s3c64xx_spi_driver = {
1433 .driver = {
1434 .name = "s3c64xx-spi",
1435 .pm = &s3c64xx_spi_pm,
1436 .of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
1437 },
1438 .probe = s3c64xx_spi_probe,
1439 .remove = s3c64xx_spi_remove,
1440 .id_table = s3c64xx_spi_driver_ids,
1441 };
1442 MODULE_ALIAS("platform:s3c64xx-spi");
1443
1444 module_platform_driver(s3c64xx_spi_driver);
1445
1446 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
1447 MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
1448 MODULE_LICENSE("GPL");
1449