1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Cryptographic API.
4 *
5 * Support for OMAP SHA1/MD5 HW acceleration.
6 *
7 * Copyright (c) 2010 Nokia Corporation
8 * Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com>
9 * Copyright (c) 2011 Texas Instruments Incorporated
10 *
11 * Some ideas are from old omap-sha1-md5.c driver.
12 */
13
14 #define pr_fmt(fmt) "%s: " fmt, __func__
15
16 #include <linux/err.h>
17 #include <linux/device.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/interrupt.h>
22 #include <linux/kernel.h>
23 #include <linux/irq.h>
24 #include <linux/io.h>
25 #include <linux/platform_device.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_address.h>
33 #include <linux/of_irq.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <linux/cryptohash.h>
37 #include <crypto/scatterwalk.h>
38 #include <crypto/algapi.h>
39 #include <crypto/sha.h>
40 #include <crypto/hash.h>
41 #include <crypto/hmac.h>
42 #include <crypto/internal/hash.h>
43
44 #define MD5_DIGEST_SIZE 16
45
46 #define SHA_REG_IDIGEST(dd, x) ((dd)->pdata->idigest_ofs + ((x)*0x04))
47 #define SHA_REG_DIN(dd, x) ((dd)->pdata->din_ofs + ((x) * 0x04))
48 #define SHA_REG_DIGCNT(dd) ((dd)->pdata->digcnt_ofs)
49
50 #define SHA_REG_ODIGEST(dd, x) ((dd)->pdata->odigest_ofs + (x * 0x04))
51
52 #define SHA_REG_CTRL 0x18
53 #define SHA_REG_CTRL_LENGTH (0xFFFFFFFF << 5)
54 #define SHA_REG_CTRL_CLOSE_HASH (1 << 4)
55 #define SHA_REG_CTRL_ALGO_CONST (1 << 3)
56 #define SHA_REG_CTRL_ALGO (1 << 2)
57 #define SHA_REG_CTRL_INPUT_READY (1 << 1)
58 #define SHA_REG_CTRL_OUTPUT_READY (1 << 0)
59
60 #define SHA_REG_REV(dd) ((dd)->pdata->rev_ofs)
61
62 #define SHA_REG_MASK(dd) ((dd)->pdata->mask_ofs)
63 #define SHA_REG_MASK_DMA_EN (1 << 3)
64 #define SHA_REG_MASK_IT_EN (1 << 2)
65 #define SHA_REG_MASK_SOFTRESET (1 << 1)
66 #define SHA_REG_AUTOIDLE (1 << 0)
67
68 #define SHA_REG_SYSSTATUS(dd) ((dd)->pdata->sysstatus_ofs)
69 #define SHA_REG_SYSSTATUS_RESETDONE (1 << 0)
70
71 #define SHA_REG_MODE(dd) ((dd)->pdata->mode_ofs)
72 #define SHA_REG_MODE_HMAC_OUTER_HASH (1 << 7)
73 #define SHA_REG_MODE_HMAC_KEY_PROC (1 << 5)
74 #define SHA_REG_MODE_CLOSE_HASH (1 << 4)
75 #define SHA_REG_MODE_ALGO_CONSTANT (1 << 3)
76
77 #define SHA_REG_MODE_ALGO_MASK (7 << 0)
78 #define SHA_REG_MODE_ALGO_MD5_128 (0 << 1)
79 #define SHA_REG_MODE_ALGO_SHA1_160 (1 << 1)
80 #define SHA_REG_MODE_ALGO_SHA2_224 (2 << 1)
81 #define SHA_REG_MODE_ALGO_SHA2_256 (3 << 1)
82 #define SHA_REG_MODE_ALGO_SHA2_384 (1 << 0)
83 #define SHA_REG_MODE_ALGO_SHA2_512 (3 << 0)
84
85 #define SHA_REG_LENGTH(dd) ((dd)->pdata->length_ofs)
86
87 #define SHA_REG_IRQSTATUS 0x118
88 #define SHA_REG_IRQSTATUS_CTX_RDY (1 << 3)
89 #define SHA_REG_IRQSTATUS_PARTHASH_RDY (1 << 2)
90 #define SHA_REG_IRQSTATUS_INPUT_RDY (1 << 1)
91 #define SHA_REG_IRQSTATUS_OUTPUT_RDY (1 << 0)
92
93 #define SHA_REG_IRQENA 0x11C
94 #define SHA_REG_IRQENA_CTX_RDY (1 << 3)
95 #define SHA_REG_IRQENA_PARTHASH_RDY (1 << 2)
96 #define SHA_REG_IRQENA_INPUT_RDY (1 << 1)
97 #define SHA_REG_IRQENA_OUTPUT_RDY (1 << 0)
98
99 #define DEFAULT_TIMEOUT_INTERVAL HZ
100
101 #define DEFAULT_AUTOSUSPEND_DELAY 1000
102
103 /* mostly device flags */
104 #define FLAGS_BUSY 0
105 #define FLAGS_FINAL 1
106 #define FLAGS_DMA_ACTIVE 2
107 #define FLAGS_OUTPUT_READY 3
108 #define FLAGS_INIT 4
109 #define FLAGS_CPU 5
110 #define FLAGS_DMA_READY 6
111 #define FLAGS_AUTO_XOR 7
112 #define FLAGS_BE32_SHA1 8
113 #define FLAGS_SGS_COPIED 9
114 #define FLAGS_SGS_ALLOCED 10
115 /* context flags */
116 #define FLAGS_FINUP 16
117
118 #define FLAGS_MODE_SHIFT 18
119 #define FLAGS_MODE_MASK (SHA_REG_MODE_ALGO_MASK << FLAGS_MODE_SHIFT)
120 #define FLAGS_MODE_MD5 (SHA_REG_MODE_ALGO_MD5_128 << FLAGS_MODE_SHIFT)
121 #define FLAGS_MODE_SHA1 (SHA_REG_MODE_ALGO_SHA1_160 << FLAGS_MODE_SHIFT)
122 #define FLAGS_MODE_SHA224 (SHA_REG_MODE_ALGO_SHA2_224 << FLAGS_MODE_SHIFT)
123 #define FLAGS_MODE_SHA256 (SHA_REG_MODE_ALGO_SHA2_256 << FLAGS_MODE_SHIFT)
124 #define FLAGS_MODE_SHA384 (SHA_REG_MODE_ALGO_SHA2_384 << FLAGS_MODE_SHIFT)
125 #define FLAGS_MODE_SHA512 (SHA_REG_MODE_ALGO_SHA2_512 << FLAGS_MODE_SHIFT)
126
127 #define FLAGS_HMAC 21
128 #define FLAGS_ERROR 22
129
130 #define OP_UPDATE 1
131 #define OP_FINAL 2
132
133 #define OMAP_ALIGN_MASK (sizeof(u32)-1)
134 #define OMAP_ALIGNED __attribute__((aligned(sizeof(u32))))
135
136 #define BUFLEN SHA512_BLOCK_SIZE
137 #define OMAP_SHA_DMA_THRESHOLD 256
138
139 struct omap_sham_dev;
140
141 struct omap_sham_reqctx {
142 struct omap_sham_dev *dd;
143 unsigned long flags;
144 unsigned long op;
145
146 u8 digest[SHA512_DIGEST_SIZE] OMAP_ALIGNED;
147 size_t digcnt;
148 size_t bufcnt;
149 size_t buflen;
150
151 /* walk state */
152 struct scatterlist *sg;
153 struct scatterlist sgl[2];
154 int offset; /* offset in current sg */
155 int sg_len;
156 unsigned int total; /* total request */
157
158 u8 buffer[0] OMAP_ALIGNED;
159 };
160
161 struct omap_sham_hmac_ctx {
162 struct crypto_shash *shash;
163 u8 ipad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
164 u8 opad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
165 };
166
167 struct omap_sham_ctx {
168 struct omap_sham_dev *dd;
169
170 unsigned long flags;
171
172 /* fallback stuff */
173 struct crypto_shash *fallback;
174
175 struct omap_sham_hmac_ctx base[0];
176 };
177
178 #define OMAP_SHAM_QUEUE_LENGTH 10
179
180 struct omap_sham_algs_info {
181 struct ahash_alg *algs_list;
182 unsigned int size;
183 unsigned int registered;
184 };
185
186 struct omap_sham_pdata {
187 struct omap_sham_algs_info *algs_info;
188 unsigned int algs_info_size;
189 unsigned long flags;
190 int digest_size;
191
192 void (*copy_hash)(struct ahash_request *req, int out);
193 void (*write_ctrl)(struct omap_sham_dev *dd, size_t length,
194 int final, int dma);
195 void (*trigger)(struct omap_sham_dev *dd, size_t length);
196 int (*poll_irq)(struct omap_sham_dev *dd);
197 irqreturn_t (*intr_hdlr)(int irq, void *dev_id);
198
199 u32 odigest_ofs;
200 u32 idigest_ofs;
201 u32 din_ofs;
202 u32 digcnt_ofs;
203 u32 rev_ofs;
204 u32 mask_ofs;
205 u32 sysstatus_ofs;
206 u32 mode_ofs;
207 u32 length_ofs;
208
209 u32 major_mask;
210 u32 major_shift;
211 u32 minor_mask;
212 u32 minor_shift;
213 };
214
215 struct omap_sham_dev {
216 struct list_head list;
217 unsigned long phys_base;
218 struct device *dev;
219 void __iomem *io_base;
220 int irq;
221 spinlock_t lock;
222 int err;
223 struct dma_chan *dma_lch;
224 struct tasklet_struct done_task;
225 u8 polling_mode;
226 u8 xmit_buf[BUFLEN] OMAP_ALIGNED;
227
228 unsigned long flags;
229 int fallback_sz;
230 struct crypto_queue queue;
231 struct ahash_request *req;
232
233 const struct omap_sham_pdata *pdata;
234 };
235
236 struct omap_sham_drv {
237 struct list_head dev_list;
238 spinlock_t lock;
239 unsigned long flags;
240 };
241
242 static struct omap_sham_drv sham = {
243 .dev_list = LIST_HEAD_INIT(sham.dev_list),
244 .lock = __SPIN_LOCK_UNLOCKED(sham.lock),
245 };
246
omap_sham_read(struct omap_sham_dev * dd,u32 offset)247 static inline u32 omap_sham_read(struct omap_sham_dev *dd, u32 offset)
248 {
249 return __raw_readl(dd->io_base + offset);
250 }
251
omap_sham_write(struct omap_sham_dev * dd,u32 offset,u32 value)252 static inline void omap_sham_write(struct omap_sham_dev *dd,
253 u32 offset, u32 value)
254 {
255 __raw_writel(value, dd->io_base + offset);
256 }
257
omap_sham_write_mask(struct omap_sham_dev * dd,u32 address,u32 value,u32 mask)258 static inline void omap_sham_write_mask(struct omap_sham_dev *dd, u32 address,
259 u32 value, u32 mask)
260 {
261 u32 val;
262
263 val = omap_sham_read(dd, address);
264 val &= ~mask;
265 val |= value;
266 omap_sham_write(dd, address, val);
267 }
268
omap_sham_wait(struct omap_sham_dev * dd,u32 offset,u32 bit)269 static inline int omap_sham_wait(struct omap_sham_dev *dd, u32 offset, u32 bit)
270 {
271 unsigned long timeout = jiffies + DEFAULT_TIMEOUT_INTERVAL;
272
273 while (!(omap_sham_read(dd, offset) & bit)) {
274 if (time_is_before_jiffies(timeout))
275 return -ETIMEDOUT;
276 }
277
278 return 0;
279 }
280
omap_sham_copy_hash_omap2(struct ahash_request * req,int out)281 static void omap_sham_copy_hash_omap2(struct ahash_request *req, int out)
282 {
283 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
284 struct omap_sham_dev *dd = ctx->dd;
285 u32 *hash = (u32 *)ctx->digest;
286 int i;
287
288 for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
289 if (out)
290 hash[i] = omap_sham_read(dd, SHA_REG_IDIGEST(dd, i));
291 else
292 omap_sham_write(dd, SHA_REG_IDIGEST(dd, i), hash[i]);
293 }
294 }
295
omap_sham_copy_hash_omap4(struct ahash_request * req,int out)296 static void omap_sham_copy_hash_omap4(struct ahash_request *req, int out)
297 {
298 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
299 struct omap_sham_dev *dd = ctx->dd;
300 int i;
301
302 if (ctx->flags & BIT(FLAGS_HMAC)) {
303 struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
304 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
305 struct omap_sham_hmac_ctx *bctx = tctx->base;
306 u32 *opad = (u32 *)bctx->opad;
307
308 for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
309 if (out)
310 opad[i] = omap_sham_read(dd,
311 SHA_REG_ODIGEST(dd, i));
312 else
313 omap_sham_write(dd, SHA_REG_ODIGEST(dd, i),
314 opad[i]);
315 }
316 }
317
318 omap_sham_copy_hash_omap2(req, out);
319 }
320
omap_sham_copy_ready_hash(struct ahash_request * req)321 static void omap_sham_copy_ready_hash(struct ahash_request *req)
322 {
323 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
324 u32 *in = (u32 *)ctx->digest;
325 u32 *hash = (u32 *)req->result;
326 int i, d, big_endian = 0;
327
328 if (!hash)
329 return;
330
331 switch (ctx->flags & FLAGS_MODE_MASK) {
332 case FLAGS_MODE_MD5:
333 d = MD5_DIGEST_SIZE / sizeof(u32);
334 break;
335 case FLAGS_MODE_SHA1:
336 /* OMAP2 SHA1 is big endian */
337 if (test_bit(FLAGS_BE32_SHA1, &ctx->dd->flags))
338 big_endian = 1;
339 d = SHA1_DIGEST_SIZE / sizeof(u32);
340 break;
341 case FLAGS_MODE_SHA224:
342 d = SHA224_DIGEST_SIZE / sizeof(u32);
343 break;
344 case FLAGS_MODE_SHA256:
345 d = SHA256_DIGEST_SIZE / sizeof(u32);
346 break;
347 case FLAGS_MODE_SHA384:
348 d = SHA384_DIGEST_SIZE / sizeof(u32);
349 break;
350 case FLAGS_MODE_SHA512:
351 d = SHA512_DIGEST_SIZE / sizeof(u32);
352 break;
353 default:
354 d = 0;
355 }
356
357 if (big_endian)
358 for (i = 0; i < d; i++)
359 hash[i] = be32_to_cpu(in[i]);
360 else
361 for (i = 0; i < d; i++)
362 hash[i] = le32_to_cpu(in[i]);
363 }
364
omap_sham_hw_init(struct omap_sham_dev * dd)365 static int omap_sham_hw_init(struct omap_sham_dev *dd)
366 {
367 int err;
368
369 err = pm_runtime_get_sync(dd->dev);
370 if (err < 0) {
371 dev_err(dd->dev, "failed to get sync: %d\n", err);
372 return err;
373 }
374
375 if (!test_bit(FLAGS_INIT, &dd->flags)) {
376 set_bit(FLAGS_INIT, &dd->flags);
377 dd->err = 0;
378 }
379
380 return 0;
381 }
382
omap_sham_write_ctrl_omap2(struct omap_sham_dev * dd,size_t length,int final,int dma)383 static void omap_sham_write_ctrl_omap2(struct omap_sham_dev *dd, size_t length,
384 int final, int dma)
385 {
386 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
387 u32 val = length << 5, mask;
388
389 if (likely(ctx->digcnt))
390 omap_sham_write(dd, SHA_REG_DIGCNT(dd), ctx->digcnt);
391
392 omap_sham_write_mask(dd, SHA_REG_MASK(dd),
393 SHA_REG_MASK_IT_EN | (dma ? SHA_REG_MASK_DMA_EN : 0),
394 SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
395 /*
396 * Setting ALGO_CONST only for the first iteration
397 * and CLOSE_HASH only for the last one.
398 */
399 if ((ctx->flags & FLAGS_MODE_MASK) == FLAGS_MODE_SHA1)
400 val |= SHA_REG_CTRL_ALGO;
401 if (!ctx->digcnt)
402 val |= SHA_REG_CTRL_ALGO_CONST;
403 if (final)
404 val |= SHA_REG_CTRL_CLOSE_HASH;
405
406 mask = SHA_REG_CTRL_ALGO_CONST | SHA_REG_CTRL_CLOSE_HASH |
407 SHA_REG_CTRL_ALGO | SHA_REG_CTRL_LENGTH;
408
409 omap_sham_write_mask(dd, SHA_REG_CTRL, val, mask);
410 }
411
omap_sham_trigger_omap2(struct omap_sham_dev * dd,size_t length)412 static void omap_sham_trigger_omap2(struct omap_sham_dev *dd, size_t length)
413 {
414 }
415
omap_sham_poll_irq_omap2(struct omap_sham_dev * dd)416 static int omap_sham_poll_irq_omap2(struct omap_sham_dev *dd)
417 {
418 return omap_sham_wait(dd, SHA_REG_CTRL, SHA_REG_CTRL_INPUT_READY);
419 }
420
get_block_size(struct omap_sham_reqctx * ctx)421 static int get_block_size(struct omap_sham_reqctx *ctx)
422 {
423 int d;
424
425 switch (ctx->flags & FLAGS_MODE_MASK) {
426 case FLAGS_MODE_MD5:
427 case FLAGS_MODE_SHA1:
428 d = SHA1_BLOCK_SIZE;
429 break;
430 case FLAGS_MODE_SHA224:
431 case FLAGS_MODE_SHA256:
432 d = SHA256_BLOCK_SIZE;
433 break;
434 case FLAGS_MODE_SHA384:
435 case FLAGS_MODE_SHA512:
436 d = SHA512_BLOCK_SIZE;
437 break;
438 default:
439 d = 0;
440 }
441
442 return d;
443 }
444
omap_sham_write_n(struct omap_sham_dev * dd,u32 offset,u32 * value,int count)445 static void omap_sham_write_n(struct omap_sham_dev *dd, u32 offset,
446 u32 *value, int count)
447 {
448 for (; count--; value++, offset += 4)
449 omap_sham_write(dd, offset, *value);
450 }
451
omap_sham_write_ctrl_omap4(struct omap_sham_dev * dd,size_t length,int final,int dma)452 static void omap_sham_write_ctrl_omap4(struct omap_sham_dev *dd, size_t length,
453 int final, int dma)
454 {
455 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
456 u32 val, mask;
457
458 /*
459 * Setting ALGO_CONST only for the first iteration and
460 * CLOSE_HASH only for the last one. Note that flags mode bits
461 * correspond to algorithm encoding in mode register.
462 */
463 val = (ctx->flags & FLAGS_MODE_MASK) >> (FLAGS_MODE_SHIFT);
464 if (!ctx->digcnt) {
465 struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
466 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
467 struct omap_sham_hmac_ctx *bctx = tctx->base;
468 int bs, nr_dr;
469
470 val |= SHA_REG_MODE_ALGO_CONSTANT;
471
472 if (ctx->flags & BIT(FLAGS_HMAC)) {
473 bs = get_block_size(ctx);
474 nr_dr = bs / (2 * sizeof(u32));
475 val |= SHA_REG_MODE_HMAC_KEY_PROC;
476 omap_sham_write_n(dd, SHA_REG_ODIGEST(dd, 0),
477 (u32 *)bctx->ipad, nr_dr);
478 omap_sham_write_n(dd, SHA_REG_IDIGEST(dd, 0),
479 (u32 *)bctx->ipad + nr_dr, nr_dr);
480 ctx->digcnt += bs;
481 }
482 }
483
484 if (final) {
485 val |= SHA_REG_MODE_CLOSE_HASH;
486
487 if (ctx->flags & BIT(FLAGS_HMAC))
488 val |= SHA_REG_MODE_HMAC_OUTER_HASH;
489 }
490
491 mask = SHA_REG_MODE_ALGO_CONSTANT | SHA_REG_MODE_CLOSE_HASH |
492 SHA_REG_MODE_ALGO_MASK | SHA_REG_MODE_HMAC_OUTER_HASH |
493 SHA_REG_MODE_HMAC_KEY_PROC;
494
495 dev_dbg(dd->dev, "ctrl: %08x, flags: %08lx\n", val, ctx->flags);
496 omap_sham_write_mask(dd, SHA_REG_MODE(dd), val, mask);
497 omap_sham_write(dd, SHA_REG_IRQENA, SHA_REG_IRQENA_OUTPUT_RDY);
498 omap_sham_write_mask(dd, SHA_REG_MASK(dd),
499 SHA_REG_MASK_IT_EN |
500 (dma ? SHA_REG_MASK_DMA_EN : 0),
501 SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
502 }
503
omap_sham_trigger_omap4(struct omap_sham_dev * dd,size_t length)504 static void omap_sham_trigger_omap4(struct omap_sham_dev *dd, size_t length)
505 {
506 omap_sham_write(dd, SHA_REG_LENGTH(dd), length);
507 }
508
omap_sham_poll_irq_omap4(struct omap_sham_dev * dd)509 static int omap_sham_poll_irq_omap4(struct omap_sham_dev *dd)
510 {
511 return omap_sham_wait(dd, SHA_REG_IRQSTATUS,
512 SHA_REG_IRQSTATUS_INPUT_RDY);
513 }
514
omap_sham_xmit_cpu(struct omap_sham_dev * dd,size_t length,int final)515 static int omap_sham_xmit_cpu(struct omap_sham_dev *dd, size_t length,
516 int final)
517 {
518 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
519 int count, len32, bs32, offset = 0;
520 const u32 *buffer;
521 int mlen;
522 struct sg_mapping_iter mi;
523
524 dev_dbg(dd->dev, "xmit_cpu: digcnt: %d, length: %d, final: %d\n",
525 ctx->digcnt, length, final);
526
527 dd->pdata->write_ctrl(dd, length, final, 0);
528 dd->pdata->trigger(dd, length);
529
530 /* should be non-zero before next lines to disable clocks later */
531 ctx->digcnt += length;
532 ctx->total -= length;
533
534 if (final)
535 set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
536
537 set_bit(FLAGS_CPU, &dd->flags);
538
539 len32 = DIV_ROUND_UP(length, sizeof(u32));
540 bs32 = get_block_size(ctx) / sizeof(u32);
541
542 sg_miter_start(&mi, ctx->sg, ctx->sg_len,
543 SG_MITER_FROM_SG | SG_MITER_ATOMIC);
544
545 mlen = 0;
546
547 while (len32) {
548 if (dd->pdata->poll_irq(dd))
549 return -ETIMEDOUT;
550
551 for (count = 0; count < min(len32, bs32); count++, offset++) {
552 if (!mlen) {
553 sg_miter_next(&mi);
554 mlen = mi.length;
555 if (!mlen) {
556 pr_err("sg miter failure.\n");
557 return -EINVAL;
558 }
559 offset = 0;
560 buffer = mi.addr;
561 }
562 omap_sham_write(dd, SHA_REG_DIN(dd, count),
563 buffer[offset]);
564 mlen -= 4;
565 }
566 len32 -= min(len32, bs32);
567 }
568
569 sg_miter_stop(&mi);
570
571 return -EINPROGRESS;
572 }
573
omap_sham_dma_callback(void * param)574 static void omap_sham_dma_callback(void *param)
575 {
576 struct omap_sham_dev *dd = param;
577
578 set_bit(FLAGS_DMA_READY, &dd->flags);
579 tasklet_schedule(&dd->done_task);
580 }
581
omap_sham_xmit_dma(struct omap_sham_dev * dd,size_t length,int final)582 static int omap_sham_xmit_dma(struct omap_sham_dev *dd, size_t length,
583 int final)
584 {
585 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
586 struct dma_async_tx_descriptor *tx;
587 struct dma_slave_config cfg;
588 int ret;
589
590 dev_dbg(dd->dev, "xmit_dma: digcnt: %d, length: %d, final: %d\n",
591 ctx->digcnt, length, final);
592
593 if (!dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE)) {
594 dev_err(dd->dev, "dma_map_sg error\n");
595 return -EINVAL;
596 }
597
598 memset(&cfg, 0, sizeof(cfg));
599
600 cfg.dst_addr = dd->phys_base + SHA_REG_DIN(dd, 0);
601 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
602 cfg.dst_maxburst = get_block_size(ctx) / DMA_SLAVE_BUSWIDTH_4_BYTES;
603
604 ret = dmaengine_slave_config(dd->dma_lch, &cfg);
605 if (ret) {
606 pr_err("omap-sham: can't configure dmaengine slave: %d\n", ret);
607 return ret;
608 }
609
610 tx = dmaengine_prep_slave_sg(dd->dma_lch, ctx->sg, ctx->sg_len,
611 DMA_MEM_TO_DEV,
612 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
613
614 if (!tx) {
615 dev_err(dd->dev, "prep_slave_sg failed\n");
616 return -EINVAL;
617 }
618
619 tx->callback = omap_sham_dma_callback;
620 tx->callback_param = dd;
621
622 dd->pdata->write_ctrl(dd, length, final, 1);
623
624 ctx->digcnt += length;
625 ctx->total -= length;
626
627 if (final)
628 set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
629
630 set_bit(FLAGS_DMA_ACTIVE, &dd->flags);
631
632 dmaengine_submit(tx);
633 dma_async_issue_pending(dd->dma_lch);
634
635 dd->pdata->trigger(dd, length);
636
637 return -EINPROGRESS;
638 }
639
omap_sham_copy_sg_lists(struct omap_sham_reqctx * ctx,struct scatterlist * sg,int bs,int new_len)640 static int omap_sham_copy_sg_lists(struct omap_sham_reqctx *ctx,
641 struct scatterlist *sg, int bs, int new_len)
642 {
643 int n = sg_nents(sg);
644 struct scatterlist *tmp;
645 int offset = ctx->offset;
646
647 if (ctx->bufcnt)
648 n++;
649
650 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
651 if (!ctx->sg)
652 return -ENOMEM;
653
654 sg_init_table(ctx->sg, n);
655
656 tmp = ctx->sg;
657
658 ctx->sg_len = 0;
659
660 if (ctx->bufcnt) {
661 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
662 tmp = sg_next(tmp);
663 ctx->sg_len++;
664 }
665
666 while (sg && new_len) {
667 int len = sg->length - offset;
668
669 if (offset) {
670 offset -= sg->length;
671 if (offset < 0)
672 offset = 0;
673 }
674
675 if (new_len < len)
676 len = new_len;
677
678 if (len > 0) {
679 new_len -= len;
680 sg_set_page(tmp, sg_page(sg), len, sg->offset);
681 if (new_len <= 0)
682 sg_mark_end(tmp);
683 tmp = sg_next(tmp);
684 ctx->sg_len++;
685 }
686
687 sg = sg_next(sg);
688 }
689
690 set_bit(FLAGS_SGS_ALLOCED, &ctx->dd->flags);
691
692 ctx->bufcnt = 0;
693
694 return 0;
695 }
696
omap_sham_copy_sgs(struct omap_sham_reqctx * ctx,struct scatterlist * sg,int bs,int new_len)697 static int omap_sham_copy_sgs(struct omap_sham_reqctx *ctx,
698 struct scatterlist *sg, int bs, int new_len)
699 {
700 int pages;
701 void *buf;
702 int len;
703
704 len = new_len + ctx->bufcnt;
705
706 pages = get_order(ctx->total);
707
708 buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
709 if (!buf) {
710 pr_err("Couldn't allocate pages for unaligned cases.\n");
711 return -ENOMEM;
712 }
713
714 if (ctx->bufcnt)
715 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
716
717 scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->offset,
718 ctx->total - ctx->bufcnt, 0);
719 sg_init_table(ctx->sgl, 1);
720 sg_set_buf(ctx->sgl, buf, len);
721 ctx->sg = ctx->sgl;
722 set_bit(FLAGS_SGS_COPIED, &ctx->dd->flags);
723 ctx->sg_len = 1;
724 ctx->bufcnt = 0;
725 ctx->offset = 0;
726
727 return 0;
728 }
729
omap_sham_align_sgs(struct scatterlist * sg,int nbytes,int bs,bool final,struct omap_sham_reqctx * rctx)730 static int omap_sham_align_sgs(struct scatterlist *sg,
731 int nbytes, int bs, bool final,
732 struct omap_sham_reqctx *rctx)
733 {
734 int n = 0;
735 bool aligned = true;
736 bool list_ok = true;
737 struct scatterlist *sg_tmp = sg;
738 int new_len;
739 int offset = rctx->offset;
740
741 if (!sg || !sg->length || !nbytes)
742 return 0;
743
744 new_len = nbytes;
745
746 if (offset)
747 list_ok = false;
748
749 if (final)
750 new_len = DIV_ROUND_UP(new_len, bs) * bs;
751 else
752 new_len = (new_len - 1) / bs * bs;
753
754 if (nbytes != new_len)
755 list_ok = false;
756
757 while (nbytes > 0 && sg_tmp) {
758 n++;
759
760 #ifdef CONFIG_ZONE_DMA
761 if (page_zonenum(sg_page(sg_tmp)) != ZONE_DMA) {
762 aligned = false;
763 break;
764 }
765 #endif
766
767 if (offset < sg_tmp->length) {
768 if (!IS_ALIGNED(offset + sg_tmp->offset, 4)) {
769 aligned = false;
770 break;
771 }
772
773 if (!IS_ALIGNED(sg_tmp->length - offset, bs)) {
774 aligned = false;
775 break;
776 }
777 }
778
779 if (offset) {
780 offset -= sg_tmp->length;
781 if (offset < 0) {
782 nbytes += offset;
783 offset = 0;
784 }
785 } else {
786 nbytes -= sg_tmp->length;
787 }
788
789 sg_tmp = sg_next(sg_tmp);
790
791 if (nbytes < 0) {
792 list_ok = false;
793 break;
794 }
795 }
796
797 if (!aligned)
798 return omap_sham_copy_sgs(rctx, sg, bs, new_len);
799 else if (!list_ok)
800 return omap_sham_copy_sg_lists(rctx, sg, bs, new_len);
801
802 rctx->sg_len = n;
803 rctx->sg = sg;
804
805 return 0;
806 }
807
omap_sham_prepare_request(struct ahash_request * req,bool update)808 static int omap_sham_prepare_request(struct ahash_request *req, bool update)
809 {
810 struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
811 int bs;
812 int ret;
813 int nbytes;
814 bool final = rctx->flags & BIT(FLAGS_FINUP);
815 int xmit_len, hash_later;
816
817 bs = get_block_size(rctx);
818
819 if (update)
820 nbytes = req->nbytes;
821 else
822 nbytes = 0;
823
824 rctx->total = nbytes + rctx->bufcnt;
825
826 if (!rctx->total)
827 return 0;
828
829 if (nbytes && (!IS_ALIGNED(rctx->bufcnt, bs))) {
830 int len = bs - rctx->bufcnt % bs;
831
832 if (len > nbytes)
833 len = nbytes;
834 scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, req->src,
835 0, len, 0);
836 rctx->bufcnt += len;
837 nbytes -= len;
838 rctx->offset = len;
839 }
840
841 if (rctx->bufcnt)
842 memcpy(rctx->dd->xmit_buf, rctx->buffer, rctx->bufcnt);
843
844 ret = omap_sham_align_sgs(req->src, nbytes, bs, final, rctx);
845 if (ret)
846 return ret;
847
848 xmit_len = rctx->total;
849
850 if (!IS_ALIGNED(xmit_len, bs)) {
851 if (final)
852 xmit_len = DIV_ROUND_UP(xmit_len, bs) * bs;
853 else
854 xmit_len = xmit_len / bs * bs;
855 } else if (!final) {
856 xmit_len -= bs;
857 }
858
859 hash_later = rctx->total - xmit_len;
860 if (hash_later < 0)
861 hash_later = 0;
862
863 if (rctx->bufcnt && nbytes) {
864 /* have data from previous operation and current */
865 sg_init_table(rctx->sgl, 2);
866 sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, rctx->bufcnt);
867
868 sg_chain(rctx->sgl, 2, req->src);
869
870 rctx->sg = rctx->sgl;
871
872 rctx->sg_len++;
873 } else if (rctx->bufcnt) {
874 /* have buffered data only */
875 sg_init_table(rctx->sgl, 1);
876 sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, xmit_len);
877
878 rctx->sg = rctx->sgl;
879
880 rctx->sg_len = 1;
881 }
882
883 if (hash_later) {
884 int offset = 0;
885
886 if (hash_later > req->nbytes) {
887 memcpy(rctx->buffer, rctx->buffer + xmit_len,
888 hash_later - req->nbytes);
889 offset = hash_later - req->nbytes;
890 }
891
892 if (req->nbytes) {
893 scatterwalk_map_and_copy(rctx->buffer + offset,
894 req->src,
895 offset + req->nbytes -
896 hash_later, hash_later, 0);
897 }
898
899 rctx->bufcnt = hash_later;
900 } else {
901 rctx->bufcnt = 0;
902 }
903
904 if (!final)
905 rctx->total = xmit_len;
906
907 return 0;
908 }
909
omap_sham_update_dma_stop(struct omap_sham_dev * dd)910 static int omap_sham_update_dma_stop(struct omap_sham_dev *dd)
911 {
912 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
913
914 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
915
916 clear_bit(FLAGS_DMA_ACTIVE, &dd->flags);
917
918 return 0;
919 }
920
omap_sham_init(struct ahash_request * req)921 static int omap_sham_init(struct ahash_request *req)
922 {
923 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
924 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
925 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
926 struct omap_sham_dev *dd = NULL, *tmp;
927 int bs = 0;
928
929 spin_lock_bh(&sham.lock);
930 if (!tctx->dd) {
931 list_for_each_entry(tmp, &sham.dev_list, list) {
932 dd = tmp;
933 break;
934 }
935 tctx->dd = dd;
936 } else {
937 dd = tctx->dd;
938 }
939 spin_unlock_bh(&sham.lock);
940
941 ctx->dd = dd;
942
943 ctx->flags = 0;
944
945 dev_dbg(dd->dev, "init: digest size: %d\n",
946 crypto_ahash_digestsize(tfm));
947
948 switch (crypto_ahash_digestsize(tfm)) {
949 case MD5_DIGEST_SIZE:
950 ctx->flags |= FLAGS_MODE_MD5;
951 bs = SHA1_BLOCK_SIZE;
952 break;
953 case SHA1_DIGEST_SIZE:
954 ctx->flags |= FLAGS_MODE_SHA1;
955 bs = SHA1_BLOCK_SIZE;
956 break;
957 case SHA224_DIGEST_SIZE:
958 ctx->flags |= FLAGS_MODE_SHA224;
959 bs = SHA224_BLOCK_SIZE;
960 break;
961 case SHA256_DIGEST_SIZE:
962 ctx->flags |= FLAGS_MODE_SHA256;
963 bs = SHA256_BLOCK_SIZE;
964 break;
965 case SHA384_DIGEST_SIZE:
966 ctx->flags |= FLAGS_MODE_SHA384;
967 bs = SHA384_BLOCK_SIZE;
968 break;
969 case SHA512_DIGEST_SIZE:
970 ctx->flags |= FLAGS_MODE_SHA512;
971 bs = SHA512_BLOCK_SIZE;
972 break;
973 }
974
975 ctx->bufcnt = 0;
976 ctx->digcnt = 0;
977 ctx->total = 0;
978 ctx->offset = 0;
979 ctx->buflen = BUFLEN;
980
981 if (tctx->flags & BIT(FLAGS_HMAC)) {
982 if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
983 struct omap_sham_hmac_ctx *bctx = tctx->base;
984
985 memcpy(ctx->buffer, bctx->ipad, bs);
986 ctx->bufcnt = bs;
987 }
988
989 ctx->flags |= BIT(FLAGS_HMAC);
990 }
991
992 return 0;
993
994 }
995
omap_sham_update_req(struct omap_sham_dev * dd)996 static int omap_sham_update_req(struct omap_sham_dev *dd)
997 {
998 struct ahash_request *req = dd->req;
999 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1000 int err;
1001 bool final = ctx->flags & BIT(FLAGS_FINUP);
1002
1003 dev_dbg(dd->dev, "update_req: total: %u, digcnt: %d, finup: %d\n",
1004 ctx->total, ctx->digcnt, (ctx->flags & BIT(FLAGS_FINUP)) != 0);
1005
1006 if (ctx->total < get_block_size(ctx) ||
1007 ctx->total < dd->fallback_sz)
1008 ctx->flags |= BIT(FLAGS_CPU);
1009
1010 if (ctx->flags & BIT(FLAGS_CPU))
1011 err = omap_sham_xmit_cpu(dd, ctx->total, final);
1012 else
1013 err = omap_sham_xmit_dma(dd, ctx->total, final);
1014
1015 /* wait for dma completion before can take more data */
1016 dev_dbg(dd->dev, "update: err: %d, digcnt: %d\n", err, ctx->digcnt);
1017
1018 return err;
1019 }
1020
omap_sham_final_req(struct omap_sham_dev * dd)1021 static int omap_sham_final_req(struct omap_sham_dev *dd)
1022 {
1023 struct ahash_request *req = dd->req;
1024 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1025 int err = 0, use_dma = 1;
1026
1027 if ((ctx->total <= get_block_size(ctx)) || dd->polling_mode)
1028 /*
1029 * faster to handle last block with cpu or
1030 * use cpu when dma is not present.
1031 */
1032 use_dma = 0;
1033
1034 if (use_dma)
1035 err = omap_sham_xmit_dma(dd, ctx->total, 1);
1036 else
1037 err = omap_sham_xmit_cpu(dd, ctx->total, 1);
1038
1039 ctx->bufcnt = 0;
1040
1041 dev_dbg(dd->dev, "final_req: err: %d\n", err);
1042
1043 return err;
1044 }
1045
omap_sham_finish_hmac(struct ahash_request * req)1046 static int omap_sham_finish_hmac(struct ahash_request *req)
1047 {
1048 struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1049 struct omap_sham_hmac_ctx *bctx = tctx->base;
1050 int bs = crypto_shash_blocksize(bctx->shash);
1051 int ds = crypto_shash_digestsize(bctx->shash);
1052 SHASH_DESC_ON_STACK(shash, bctx->shash);
1053
1054 shash->tfm = bctx->shash;
1055
1056 return crypto_shash_init(shash) ?:
1057 crypto_shash_update(shash, bctx->opad, bs) ?:
1058 crypto_shash_finup(shash, req->result, ds, req->result);
1059 }
1060
omap_sham_finish(struct ahash_request * req)1061 static int omap_sham_finish(struct ahash_request *req)
1062 {
1063 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1064 struct omap_sham_dev *dd = ctx->dd;
1065 int err = 0;
1066
1067 if (ctx->digcnt) {
1068 omap_sham_copy_ready_hash(req);
1069 if ((ctx->flags & BIT(FLAGS_HMAC)) &&
1070 !test_bit(FLAGS_AUTO_XOR, &dd->flags))
1071 err = omap_sham_finish_hmac(req);
1072 }
1073
1074 dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt, ctx->bufcnt);
1075
1076 return err;
1077 }
1078
omap_sham_finish_req(struct ahash_request * req,int err)1079 static void omap_sham_finish_req(struct ahash_request *req, int err)
1080 {
1081 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1082 struct omap_sham_dev *dd = ctx->dd;
1083
1084 if (test_bit(FLAGS_SGS_COPIED, &dd->flags))
1085 free_pages((unsigned long)sg_virt(ctx->sg),
1086 get_order(ctx->sg->length + ctx->bufcnt));
1087
1088 if (test_bit(FLAGS_SGS_ALLOCED, &dd->flags))
1089 kfree(ctx->sg);
1090
1091 ctx->sg = NULL;
1092
1093 dd->flags &= ~(BIT(FLAGS_SGS_ALLOCED) | BIT(FLAGS_SGS_COPIED));
1094
1095 if (!err) {
1096 dd->pdata->copy_hash(req, 1);
1097 if (test_bit(FLAGS_FINAL, &dd->flags))
1098 err = omap_sham_finish(req);
1099 } else {
1100 ctx->flags |= BIT(FLAGS_ERROR);
1101 }
1102
1103 /* atomic operation is not needed here */
1104 dd->flags &= ~(BIT(FLAGS_BUSY) | BIT(FLAGS_FINAL) | BIT(FLAGS_CPU) |
1105 BIT(FLAGS_DMA_READY) | BIT(FLAGS_OUTPUT_READY));
1106
1107 pm_runtime_mark_last_busy(dd->dev);
1108 pm_runtime_put_autosuspend(dd->dev);
1109
1110 if (req->base.complete)
1111 req->base.complete(&req->base, err);
1112 }
1113
omap_sham_handle_queue(struct omap_sham_dev * dd,struct ahash_request * req)1114 static int omap_sham_handle_queue(struct omap_sham_dev *dd,
1115 struct ahash_request *req)
1116 {
1117 struct crypto_async_request *async_req, *backlog;
1118 struct omap_sham_reqctx *ctx;
1119 unsigned long flags;
1120 int err = 0, ret = 0;
1121
1122 retry:
1123 spin_lock_irqsave(&dd->lock, flags);
1124 if (req)
1125 ret = ahash_enqueue_request(&dd->queue, req);
1126 if (test_bit(FLAGS_BUSY, &dd->flags)) {
1127 spin_unlock_irqrestore(&dd->lock, flags);
1128 return ret;
1129 }
1130 backlog = crypto_get_backlog(&dd->queue);
1131 async_req = crypto_dequeue_request(&dd->queue);
1132 if (async_req)
1133 set_bit(FLAGS_BUSY, &dd->flags);
1134 spin_unlock_irqrestore(&dd->lock, flags);
1135
1136 if (!async_req)
1137 return ret;
1138
1139 if (backlog)
1140 backlog->complete(backlog, -EINPROGRESS);
1141
1142 req = ahash_request_cast(async_req);
1143 dd->req = req;
1144 ctx = ahash_request_ctx(req);
1145
1146 err = omap_sham_prepare_request(req, ctx->op == OP_UPDATE);
1147 if (err || !ctx->total)
1148 goto err1;
1149
1150 dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1151 ctx->op, req->nbytes);
1152
1153 err = omap_sham_hw_init(dd);
1154 if (err)
1155 goto err1;
1156
1157 if (ctx->digcnt)
1158 /* request has changed - restore hash */
1159 dd->pdata->copy_hash(req, 0);
1160
1161 if (ctx->op == OP_UPDATE) {
1162 err = omap_sham_update_req(dd);
1163 if (err != -EINPROGRESS && (ctx->flags & BIT(FLAGS_FINUP)))
1164 /* no final() after finup() */
1165 err = omap_sham_final_req(dd);
1166 } else if (ctx->op == OP_FINAL) {
1167 err = omap_sham_final_req(dd);
1168 }
1169 err1:
1170 dev_dbg(dd->dev, "exit, err: %d\n", err);
1171
1172 if (err != -EINPROGRESS) {
1173 /* done_task will not finish it, so do it here */
1174 omap_sham_finish_req(req, err);
1175 req = NULL;
1176
1177 /*
1178 * Execute next request immediately if there is anything
1179 * in queue.
1180 */
1181 goto retry;
1182 }
1183
1184 return ret;
1185 }
1186
omap_sham_enqueue(struct ahash_request * req,unsigned int op)1187 static int omap_sham_enqueue(struct ahash_request *req, unsigned int op)
1188 {
1189 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1190 struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1191 struct omap_sham_dev *dd = tctx->dd;
1192
1193 ctx->op = op;
1194
1195 return omap_sham_handle_queue(dd, req);
1196 }
1197
omap_sham_update(struct ahash_request * req)1198 static int omap_sham_update(struct ahash_request *req)
1199 {
1200 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1201 struct omap_sham_dev *dd = ctx->dd;
1202
1203 if (!req->nbytes)
1204 return 0;
1205
1206 if (ctx->bufcnt + req->nbytes <= ctx->buflen) {
1207 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1208 0, req->nbytes, 0);
1209 ctx->bufcnt += req->nbytes;
1210 return 0;
1211 }
1212
1213 if (dd->polling_mode)
1214 ctx->flags |= BIT(FLAGS_CPU);
1215
1216 return omap_sham_enqueue(req, OP_UPDATE);
1217 }
1218
omap_sham_shash_digest(struct crypto_shash * tfm,u32 flags,const u8 * data,unsigned int len,u8 * out)1219 static int omap_sham_shash_digest(struct crypto_shash *tfm, u32 flags,
1220 const u8 *data, unsigned int len, u8 *out)
1221 {
1222 SHASH_DESC_ON_STACK(shash, tfm);
1223
1224 shash->tfm = tfm;
1225
1226 return crypto_shash_digest(shash, data, len, out);
1227 }
1228
omap_sham_final_shash(struct ahash_request * req)1229 static int omap_sham_final_shash(struct ahash_request *req)
1230 {
1231 struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1232 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1233 int offset = 0;
1234
1235 /*
1236 * If we are running HMAC on limited hardware support, skip
1237 * the ipad in the beginning of the buffer if we are going for
1238 * software fallback algorithm.
1239 */
1240 if (test_bit(FLAGS_HMAC, &ctx->flags) &&
1241 !test_bit(FLAGS_AUTO_XOR, &ctx->dd->flags))
1242 offset = get_block_size(ctx);
1243
1244 return omap_sham_shash_digest(tctx->fallback, req->base.flags,
1245 ctx->buffer + offset,
1246 ctx->bufcnt - offset, req->result);
1247 }
1248
omap_sham_final(struct ahash_request * req)1249 static int omap_sham_final(struct ahash_request *req)
1250 {
1251 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1252
1253 ctx->flags |= BIT(FLAGS_FINUP);
1254
1255 if (ctx->flags & BIT(FLAGS_ERROR))
1256 return 0; /* uncompleted hash is not needed */
1257
1258 /*
1259 * OMAP HW accel works only with buffers >= 9.
1260 * HMAC is always >= 9 because ipad == block size.
1261 * If buffersize is less than fallback_sz, we use fallback
1262 * SW encoding, as using DMA + HW in this case doesn't provide
1263 * any benefit.
1264 */
1265 if (!ctx->digcnt && ctx->bufcnt < ctx->dd->fallback_sz)
1266 return omap_sham_final_shash(req);
1267 else if (ctx->bufcnt)
1268 return omap_sham_enqueue(req, OP_FINAL);
1269
1270 /* copy ready hash (+ finalize hmac) */
1271 return omap_sham_finish(req);
1272 }
1273
omap_sham_finup(struct ahash_request * req)1274 static int omap_sham_finup(struct ahash_request *req)
1275 {
1276 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1277 int err1, err2;
1278
1279 ctx->flags |= BIT(FLAGS_FINUP);
1280
1281 err1 = omap_sham_update(req);
1282 if (err1 == -EINPROGRESS || err1 == -EBUSY)
1283 return err1;
1284 /*
1285 * final() has to be always called to cleanup resources
1286 * even if udpate() failed, except EINPROGRESS
1287 */
1288 err2 = omap_sham_final(req);
1289
1290 return err1 ?: err2;
1291 }
1292
omap_sham_digest(struct ahash_request * req)1293 static int omap_sham_digest(struct ahash_request *req)
1294 {
1295 return omap_sham_init(req) ?: omap_sham_finup(req);
1296 }
1297
omap_sham_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1298 static int omap_sham_setkey(struct crypto_ahash *tfm, const u8 *key,
1299 unsigned int keylen)
1300 {
1301 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
1302 struct omap_sham_hmac_ctx *bctx = tctx->base;
1303 int bs = crypto_shash_blocksize(bctx->shash);
1304 int ds = crypto_shash_digestsize(bctx->shash);
1305 struct omap_sham_dev *dd = NULL, *tmp;
1306 int err, i;
1307
1308 spin_lock_bh(&sham.lock);
1309 if (!tctx->dd) {
1310 list_for_each_entry(tmp, &sham.dev_list, list) {
1311 dd = tmp;
1312 break;
1313 }
1314 tctx->dd = dd;
1315 } else {
1316 dd = tctx->dd;
1317 }
1318 spin_unlock_bh(&sham.lock);
1319
1320 err = crypto_shash_setkey(tctx->fallback, key, keylen);
1321 if (err)
1322 return err;
1323
1324 if (keylen > bs) {
1325 err = omap_sham_shash_digest(bctx->shash,
1326 crypto_shash_get_flags(bctx->shash),
1327 key, keylen, bctx->ipad);
1328 if (err)
1329 return err;
1330 keylen = ds;
1331 } else {
1332 memcpy(bctx->ipad, key, keylen);
1333 }
1334
1335 memset(bctx->ipad + keylen, 0, bs - keylen);
1336
1337 if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
1338 memcpy(bctx->opad, bctx->ipad, bs);
1339
1340 for (i = 0; i < bs; i++) {
1341 bctx->ipad[i] ^= HMAC_IPAD_VALUE;
1342 bctx->opad[i] ^= HMAC_OPAD_VALUE;
1343 }
1344 }
1345
1346 return err;
1347 }
1348
omap_sham_cra_init_alg(struct crypto_tfm * tfm,const char * alg_base)1349 static int omap_sham_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
1350 {
1351 struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
1352 const char *alg_name = crypto_tfm_alg_name(tfm);
1353
1354 /* Allocate a fallback and abort if it failed. */
1355 tctx->fallback = crypto_alloc_shash(alg_name, 0,
1356 CRYPTO_ALG_NEED_FALLBACK);
1357 if (IS_ERR(tctx->fallback)) {
1358 pr_err("omap-sham: fallback driver '%s' "
1359 "could not be loaded.\n", alg_name);
1360 return PTR_ERR(tctx->fallback);
1361 }
1362
1363 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1364 sizeof(struct omap_sham_reqctx) + BUFLEN);
1365
1366 if (alg_base) {
1367 struct omap_sham_hmac_ctx *bctx = tctx->base;
1368 tctx->flags |= BIT(FLAGS_HMAC);
1369 bctx->shash = crypto_alloc_shash(alg_base, 0,
1370 CRYPTO_ALG_NEED_FALLBACK);
1371 if (IS_ERR(bctx->shash)) {
1372 pr_err("omap-sham: base driver '%s' "
1373 "could not be loaded.\n", alg_base);
1374 crypto_free_shash(tctx->fallback);
1375 return PTR_ERR(bctx->shash);
1376 }
1377
1378 }
1379
1380 return 0;
1381 }
1382
omap_sham_cra_init(struct crypto_tfm * tfm)1383 static int omap_sham_cra_init(struct crypto_tfm *tfm)
1384 {
1385 return omap_sham_cra_init_alg(tfm, NULL);
1386 }
1387
omap_sham_cra_sha1_init(struct crypto_tfm * tfm)1388 static int omap_sham_cra_sha1_init(struct crypto_tfm *tfm)
1389 {
1390 return omap_sham_cra_init_alg(tfm, "sha1");
1391 }
1392
omap_sham_cra_sha224_init(struct crypto_tfm * tfm)1393 static int omap_sham_cra_sha224_init(struct crypto_tfm *tfm)
1394 {
1395 return omap_sham_cra_init_alg(tfm, "sha224");
1396 }
1397
omap_sham_cra_sha256_init(struct crypto_tfm * tfm)1398 static int omap_sham_cra_sha256_init(struct crypto_tfm *tfm)
1399 {
1400 return omap_sham_cra_init_alg(tfm, "sha256");
1401 }
1402
omap_sham_cra_md5_init(struct crypto_tfm * tfm)1403 static int omap_sham_cra_md5_init(struct crypto_tfm *tfm)
1404 {
1405 return omap_sham_cra_init_alg(tfm, "md5");
1406 }
1407
omap_sham_cra_sha384_init(struct crypto_tfm * tfm)1408 static int omap_sham_cra_sha384_init(struct crypto_tfm *tfm)
1409 {
1410 return omap_sham_cra_init_alg(tfm, "sha384");
1411 }
1412
omap_sham_cra_sha512_init(struct crypto_tfm * tfm)1413 static int omap_sham_cra_sha512_init(struct crypto_tfm *tfm)
1414 {
1415 return omap_sham_cra_init_alg(tfm, "sha512");
1416 }
1417
omap_sham_cra_exit(struct crypto_tfm * tfm)1418 static void omap_sham_cra_exit(struct crypto_tfm *tfm)
1419 {
1420 struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
1421
1422 crypto_free_shash(tctx->fallback);
1423 tctx->fallback = NULL;
1424
1425 if (tctx->flags & BIT(FLAGS_HMAC)) {
1426 struct omap_sham_hmac_ctx *bctx = tctx->base;
1427 crypto_free_shash(bctx->shash);
1428 }
1429 }
1430
omap_sham_export(struct ahash_request * req,void * out)1431 static int omap_sham_export(struct ahash_request *req, void *out)
1432 {
1433 struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
1434
1435 memcpy(out, rctx, sizeof(*rctx) + rctx->bufcnt);
1436
1437 return 0;
1438 }
1439
omap_sham_import(struct ahash_request * req,const void * in)1440 static int omap_sham_import(struct ahash_request *req, const void *in)
1441 {
1442 struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
1443 const struct omap_sham_reqctx *ctx_in = in;
1444
1445 memcpy(rctx, in, sizeof(*rctx) + ctx_in->bufcnt);
1446
1447 return 0;
1448 }
1449
1450 static struct ahash_alg algs_sha1_md5[] = {
1451 {
1452 .init = omap_sham_init,
1453 .update = omap_sham_update,
1454 .final = omap_sham_final,
1455 .finup = omap_sham_finup,
1456 .digest = omap_sham_digest,
1457 .halg.digestsize = SHA1_DIGEST_SIZE,
1458 .halg.base = {
1459 .cra_name = "sha1",
1460 .cra_driver_name = "omap-sha1",
1461 .cra_priority = 400,
1462 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1463 CRYPTO_ALG_ASYNC |
1464 CRYPTO_ALG_NEED_FALLBACK,
1465 .cra_blocksize = SHA1_BLOCK_SIZE,
1466 .cra_ctxsize = sizeof(struct omap_sham_ctx),
1467 .cra_alignmask = OMAP_ALIGN_MASK,
1468 .cra_module = THIS_MODULE,
1469 .cra_init = omap_sham_cra_init,
1470 .cra_exit = omap_sham_cra_exit,
1471 }
1472 },
1473 {
1474 .init = omap_sham_init,
1475 .update = omap_sham_update,
1476 .final = omap_sham_final,
1477 .finup = omap_sham_finup,
1478 .digest = omap_sham_digest,
1479 .halg.digestsize = MD5_DIGEST_SIZE,
1480 .halg.base = {
1481 .cra_name = "md5",
1482 .cra_driver_name = "omap-md5",
1483 .cra_priority = 400,
1484 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1485 CRYPTO_ALG_ASYNC |
1486 CRYPTO_ALG_NEED_FALLBACK,
1487 .cra_blocksize = SHA1_BLOCK_SIZE,
1488 .cra_ctxsize = sizeof(struct omap_sham_ctx),
1489 .cra_alignmask = OMAP_ALIGN_MASK,
1490 .cra_module = THIS_MODULE,
1491 .cra_init = omap_sham_cra_init,
1492 .cra_exit = omap_sham_cra_exit,
1493 }
1494 },
1495 {
1496 .init = omap_sham_init,
1497 .update = omap_sham_update,
1498 .final = omap_sham_final,
1499 .finup = omap_sham_finup,
1500 .digest = omap_sham_digest,
1501 .setkey = omap_sham_setkey,
1502 .halg.digestsize = SHA1_DIGEST_SIZE,
1503 .halg.base = {
1504 .cra_name = "hmac(sha1)",
1505 .cra_driver_name = "omap-hmac-sha1",
1506 .cra_priority = 400,
1507 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1508 CRYPTO_ALG_ASYNC |
1509 CRYPTO_ALG_NEED_FALLBACK,
1510 .cra_blocksize = SHA1_BLOCK_SIZE,
1511 .cra_ctxsize = sizeof(struct omap_sham_ctx) +
1512 sizeof(struct omap_sham_hmac_ctx),
1513 .cra_alignmask = OMAP_ALIGN_MASK,
1514 .cra_module = THIS_MODULE,
1515 .cra_init = omap_sham_cra_sha1_init,
1516 .cra_exit = omap_sham_cra_exit,
1517 }
1518 },
1519 {
1520 .init = omap_sham_init,
1521 .update = omap_sham_update,
1522 .final = omap_sham_final,
1523 .finup = omap_sham_finup,
1524 .digest = omap_sham_digest,
1525 .setkey = omap_sham_setkey,
1526 .halg.digestsize = MD5_DIGEST_SIZE,
1527 .halg.base = {
1528 .cra_name = "hmac(md5)",
1529 .cra_driver_name = "omap-hmac-md5",
1530 .cra_priority = 400,
1531 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1532 CRYPTO_ALG_ASYNC |
1533 CRYPTO_ALG_NEED_FALLBACK,
1534 .cra_blocksize = SHA1_BLOCK_SIZE,
1535 .cra_ctxsize = sizeof(struct omap_sham_ctx) +
1536 sizeof(struct omap_sham_hmac_ctx),
1537 .cra_alignmask = OMAP_ALIGN_MASK,
1538 .cra_module = THIS_MODULE,
1539 .cra_init = omap_sham_cra_md5_init,
1540 .cra_exit = omap_sham_cra_exit,
1541 }
1542 }
1543 };
1544
1545 /* OMAP4 has some algs in addition to what OMAP2 has */
1546 static struct ahash_alg algs_sha224_sha256[] = {
1547 {
1548 .init = omap_sham_init,
1549 .update = omap_sham_update,
1550 .final = omap_sham_final,
1551 .finup = omap_sham_finup,
1552 .digest = omap_sham_digest,
1553 .halg.digestsize = SHA224_DIGEST_SIZE,
1554 .halg.base = {
1555 .cra_name = "sha224",
1556 .cra_driver_name = "omap-sha224",
1557 .cra_priority = 400,
1558 .cra_flags = CRYPTO_ALG_ASYNC |
1559 CRYPTO_ALG_NEED_FALLBACK,
1560 .cra_blocksize = SHA224_BLOCK_SIZE,
1561 .cra_ctxsize = sizeof(struct omap_sham_ctx),
1562 .cra_alignmask = OMAP_ALIGN_MASK,
1563 .cra_module = THIS_MODULE,
1564 .cra_init = omap_sham_cra_init,
1565 .cra_exit = omap_sham_cra_exit,
1566 }
1567 },
1568 {
1569 .init = omap_sham_init,
1570 .update = omap_sham_update,
1571 .final = omap_sham_final,
1572 .finup = omap_sham_finup,
1573 .digest = omap_sham_digest,
1574 .halg.digestsize = SHA256_DIGEST_SIZE,
1575 .halg.base = {
1576 .cra_name = "sha256",
1577 .cra_driver_name = "omap-sha256",
1578 .cra_priority = 400,
1579 .cra_flags = CRYPTO_ALG_ASYNC |
1580 CRYPTO_ALG_NEED_FALLBACK,
1581 .cra_blocksize = SHA256_BLOCK_SIZE,
1582 .cra_ctxsize = sizeof(struct omap_sham_ctx),
1583 .cra_alignmask = OMAP_ALIGN_MASK,
1584 .cra_module = THIS_MODULE,
1585 .cra_init = omap_sham_cra_init,
1586 .cra_exit = omap_sham_cra_exit,
1587 }
1588 },
1589 {
1590 .init = omap_sham_init,
1591 .update = omap_sham_update,
1592 .final = omap_sham_final,
1593 .finup = omap_sham_finup,
1594 .digest = omap_sham_digest,
1595 .setkey = omap_sham_setkey,
1596 .halg.digestsize = SHA224_DIGEST_SIZE,
1597 .halg.base = {
1598 .cra_name = "hmac(sha224)",
1599 .cra_driver_name = "omap-hmac-sha224",
1600 .cra_priority = 400,
1601 .cra_flags = CRYPTO_ALG_ASYNC |
1602 CRYPTO_ALG_NEED_FALLBACK,
1603 .cra_blocksize = SHA224_BLOCK_SIZE,
1604 .cra_ctxsize = sizeof(struct omap_sham_ctx) +
1605 sizeof(struct omap_sham_hmac_ctx),
1606 .cra_alignmask = OMAP_ALIGN_MASK,
1607 .cra_module = THIS_MODULE,
1608 .cra_init = omap_sham_cra_sha224_init,
1609 .cra_exit = omap_sham_cra_exit,
1610 }
1611 },
1612 {
1613 .init = omap_sham_init,
1614 .update = omap_sham_update,
1615 .final = omap_sham_final,
1616 .finup = omap_sham_finup,
1617 .digest = omap_sham_digest,
1618 .setkey = omap_sham_setkey,
1619 .halg.digestsize = SHA256_DIGEST_SIZE,
1620 .halg.base = {
1621 .cra_name = "hmac(sha256)",
1622 .cra_driver_name = "omap-hmac-sha256",
1623 .cra_priority = 400,
1624 .cra_flags = CRYPTO_ALG_ASYNC |
1625 CRYPTO_ALG_NEED_FALLBACK,
1626 .cra_blocksize = SHA256_BLOCK_SIZE,
1627 .cra_ctxsize = sizeof(struct omap_sham_ctx) +
1628 sizeof(struct omap_sham_hmac_ctx),
1629 .cra_alignmask = OMAP_ALIGN_MASK,
1630 .cra_module = THIS_MODULE,
1631 .cra_init = omap_sham_cra_sha256_init,
1632 .cra_exit = omap_sham_cra_exit,
1633 }
1634 },
1635 };
1636
1637 static struct ahash_alg algs_sha384_sha512[] = {
1638 {
1639 .init = omap_sham_init,
1640 .update = omap_sham_update,
1641 .final = omap_sham_final,
1642 .finup = omap_sham_finup,
1643 .digest = omap_sham_digest,
1644 .halg.digestsize = SHA384_DIGEST_SIZE,
1645 .halg.base = {
1646 .cra_name = "sha384",
1647 .cra_driver_name = "omap-sha384",
1648 .cra_priority = 400,
1649 .cra_flags = CRYPTO_ALG_ASYNC |
1650 CRYPTO_ALG_NEED_FALLBACK,
1651 .cra_blocksize = SHA384_BLOCK_SIZE,
1652 .cra_ctxsize = sizeof(struct omap_sham_ctx),
1653 .cra_alignmask = OMAP_ALIGN_MASK,
1654 .cra_module = THIS_MODULE,
1655 .cra_init = omap_sham_cra_init,
1656 .cra_exit = omap_sham_cra_exit,
1657 }
1658 },
1659 {
1660 .init = omap_sham_init,
1661 .update = omap_sham_update,
1662 .final = omap_sham_final,
1663 .finup = omap_sham_finup,
1664 .digest = omap_sham_digest,
1665 .halg.digestsize = SHA512_DIGEST_SIZE,
1666 .halg.base = {
1667 .cra_name = "sha512",
1668 .cra_driver_name = "omap-sha512",
1669 .cra_priority = 400,
1670 .cra_flags = CRYPTO_ALG_ASYNC |
1671 CRYPTO_ALG_NEED_FALLBACK,
1672 .cra_blocksize = SHA512_BLOCK_SIZE,
1673 .cra_ctxsize = sizeof(struct omap_sham_ctx),
1674 .cra_alignmask = OMAP_ALIGN_MASK,
1675 .cra_module = THIS_MODULE,
1676 .cra_init = omap_sham_cra_init,
1677 .cra_exit = omap_sham_cra_exit,
1678 }
1679 },
1680 {
1681 .init = omap_sham_init,
1682 .update = omap_sham_update,
1683 .final = omap_sham_final,
1684 .finup = omap_sham_finup,
1685 .digest = omap_sham_digest,
1686 .setkey = omap_sham_setkey,
1687 .halg.digestsize = SHA384_DIGEST_SIZE,
1688 .halg.base = {
1689 .cra_name = "hmac(sha384)",
1690 .cra_driver_name = "omap-hmac-sha384",
1691 .cra_priority = 400,
1692 .cra_flags = CRYPTO_ALG_ASYNC |
1693 CRYPTO_ALG_NEED_FALLBACK,
1694 .cra_blocksize = SHA384_BLOCK_SIZE,
1695 .cra_ctxsize = sizeof(struct omap_sham_ctx) +
1696 sizeof(struct omap_sham_hmac_ctx),
1697 .cra_alignmask = OMAP_ALIGN_MASK,
1698 .cra_module = THIS_MODULE,
1699 .cra_init = omap_sham_cra_sha384_init,
1700 .cra_exit = omap_sham_cra_exit,
1701 }
1702 },
1703 {
1704 .init = omap_sham_init,
1705 .update = omap_sham_update,
1706 .final = omap_sham_final,
1707 .finup = omap_sham_finup,
1708 .digest = omap_sham_digest,
1709 .setkey = omap_sham_setkey,
1710 .halg.digestsize = SHA512_DIGEST_SIZE,
1711 .halg.base = {
1712 .cra_name = "hmac(sha512)",
1713 .cra_driver_name = "omap-hmac-sha512",
1714 .cra_priority = 400,
1715 .cra_flags = CRYPTO_ALG_ASYNC |
1716 CRYPTO_ALG_NEED_FALLBACK,
1717 .cra_blocksize = SHA512_BLOCK_SIZE,
1718 .cra_ctxsize = sizeof(struct omap_sham_ctx) +
1719 sizeof(struct omap_sham_hmac_ctx),
1720 .cra_alignmask = OMAP_ALIGN_MASK,
1721 .cra_module = THIS_MODULE,
1722 .cra_init = omap_sham_cra_sha512_init,
1723 .cra_exit = omap_sham_cra_exit,
1724 }
1725 },
1726 };
1727
omap_sham_done_task(unsigned long data)1728 static void omap_sham_done_task(unsigned long data)
1729 {
1730 struct omap_sham_dev *dd = (struct omap_sham_dev *)data;
1731 int err = 0;
1732
1733 if (!test_bit(FLAGS_BUSY, &dd->flags)) {
1734 omap_sham_handle_queue(dd, NULL);
1735 return;
1736 }
1737
1738 if (test_bit(FLAGS_CPU, &dd->flags)) {
1739 if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags))
1740 goto finish;
1741 } else if (test_bit(FLAGS_DMA_READY, &dd->flags)) {
1742 if (test_and_clear_bit(FLAGS_DMA_ACTIVE, &dd->flags)) {
1743 omap_sham_update_dma_stop(dd);
1744 if (dd->err) {
1745 err = dd->err;
1746 goto finish;
1747 }
1748 }
1749 if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags)) {
1750 /* hash or semi-hash ready */
1751 clear_bit(FLAGS_DMA_READY, &dd->flags);
1752 goto finish;
1753 }
1754 }
1755
1756 return;
1757
1758 finish:
1759 dev_dbg(dd->dev, "update done: err: %d\n", err);
1760 /* finish curent request */
1761 omap_sham_finish_req(dd->req, err);
1762
1763 /* If we are not busy, process next req */
1764 if (!test_bit(FLAGS_BUSY, &dd->flags))
1765 omap_sham_handle_queue(dd, NULL);
1766 }
1767
omap_sham_irq_common(struct omap_sham_dev * dd)1768 static irqreturn_t omap_sham_irq_common(struct omap_sham_dev *dd)
1769 {
1770 if (!test_bit(FLAGS_BUSY, &dd->flags)) {
1771 dev_warn(dd->dev, "Interrupt when no active requests.\n");
1772 } else {
1773 set_bit(FLAGS_OUTPUT_READY, &dd->flags);
1774 tasklet_schedule(&dd->done_task);
1775 }
1776
1777 return IRQ_HANDLED;
1778 }
1779
omap_sham_irq_omap2(int irq,void * dev_id)1780 static irqreturn_t omap_sham_irq_omap2(int irq, void *dev_id)
1781 {
1782 struct omap_sham_dev *dd = dev_id;
1783
1784 if (unlikely(test_bit(FLAGS_FINAL, &dd->flags)))
1785 /* final -> allow device to go to power-saving mode */
1786 omap_sham_write_mask(dd, SHA_REG_CTRL, 0, SHA_REG_CTRL_LENGTH);
1787
1788 omap_sham_write_mask(dd, SHA_REG_CTRL, SHA_REG_CTRL_OUTPUT_READY,
1789 SHA_REG_CTRL_OUTPUT_READY);
1790 omap_sham_read(dd, SHA_REG_CTRL);
1791
1792 return omap_sham_irq_common(dd);
1793 }
1794
omap_sham_irq_omap4(int irq,void * dev_id)1795 static irqreturn_t omap_sham_irq_omap4(int irq, void *dev_id)
1796 {
1797 struct omap_sham_dev *dd = dev_id;
1798
1799 omap_sham_write_mask(dd, SHA_REG_MASK(dd), 0, SHA_REG_MASK_IT_EN);
1800
1801 return omap_sham_irq_common(dd);
1802 }
1803
1804 static struct omap_sham_algs_info omap_sham_algs_info_omap2[] = {
1805 {
1806 .algs_list = algs_sha1_md5,
1807 .size = ARRAY_SIZE(algs_sha1_md5),
1808 },
1809 };
1810
1811 static const struct omap_sham_pdata omap_sham_pdata_omap2 = {
1812 .algs_info = omap_sham_algs_info_omap2,
1813 .algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap2),
1814 .flags = BIT(FLAGS_BE32_SHA1),
1815 .digest_size = SHA1_DIGEST_SIZE,
1816 .copy_hash = omap_sham_copy_hash_omap2,
1817 .write_ctrl = omap_sham_write_ctrl_omap2,
1818 .trigger = omap_sham_trigger_omap2,
1819 .poll_irq = omap_sham_poll_irq_omap2,
1820 .intr_hdlr = omap_sham_irq_omap2,
1821 .idigest_ofs = 0x00,
1822 .din_ofs = 0x1c,
1823 .digcnt_ofs = 0x14,
1824 .rev_ofs = 0x5c,
1825 .mask_ofs = 0x60,
1826 .sysstatus_ofs = 0x64,
1827 .major_mask = 0xf0,
1828 .major_shift = 4,
1829 .minor_mask = 0x0f,
1830 .minor_shift = 0,
1831 };
1832
1833 #ifdef CONFIG_OF
1834 static struct omap_sham_algs_info omap_sham_algs_info_omap4[] = {
1835 {
1836 .algs_list = algs_sha1_md5,
1837 .size = ARRAY_SIZE(algs_sha1_md5),
1838 },
1839 {
1840 .algs_list = algs_sha224_sha256,
1841 .size = ARRAY_SIZE(algs_sha224_sha256),
1842 },
1843 };
1844
1845 static const struct omap_sham_pdata omap_sham_pdata_omap4 = {
1846 .algs_info = omap_sham_algs_info_omap4,
1847 .algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap4),
1848 .flags = BIT(FLAGS_AUTO_XOR),
1849 .digest_size = SHA256_DIGEST_SIZE,
1850 .copy_hash = omap_sham_copy_hash_omap4,
1851 .write_ctrl = omap_sham_write_ctrl_omap4,
1852 .trigger = omap_sham_trigger_omap4,
1853 .poll_irq = omap_sham_poll_irq_omap4,
1854 .intr_hdlr = omap_sham_irq_omap4,
1855 .idigest_ofs = 0x020,
1856 .odigest_ofs = 0x0,
1857 .din_ofs = 0x080,
1858 .digcnt_ofs = 0x040,
1859 .rev_ofs = 0x100,
1860 .mask_ofs = 0x110,
1861 .sysstatus_ofs = 0x114,
1862 .mode_ofs = 0x44,
1863 .length_ofs = 0x48,
1864 .major_mask = 0x0700,
1865 .major_shift = 8,
1866 .minor_mask = 0x003f,
1867 .minor_shift = 0,
1868 };
1869
1870 static struct omap_sham_algs_info omap_sham_algs_info_omap5[] = {
1871 {
1872 .algs_list = algs_sha1_md5,
1873 .size = ARRAY_SIZE(algs_sha1_md5),
1874 },
1875 {
1876 .algs_list = algs_sha224_sha256,
1877 .size = ARRAY_SIZE(algs_sha224_sha256),
1878 },
1879 {
1880 .algs_list = algs_sha384_sha512,
1881 .size = ARRAY_SIZE(algs_sha384_sha512),
1882 },
1883 };
1884
1885 static const struct omap_sham_pdata omap_sham_pdata_omap5 = {
1886 .algs_info = omap_sham_algs_info_omap5,
1887 .algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap5),
1888 .flags = BIT(FLAGS_AUTO_XOR),
1889 .digest_size = SHA512_DIGEST_SIZE,
1890 .copy_hash = omap_sham_copy_hash_omap4,
1891 .write_ctrl = omap_sham_write_ctrl_omap4,
1892 .trigger = omap_sham_trigger_omap4,
1893 .poll_irq = omap_sham_poll_irq_omap4,
1894 .intr_hdlr = omap_sham_irq_omap4,
1895 .idigest_ofs = 0x240,
1896 .odigest_ofs = 0x200,
1897 .din_ofs = 0x080,
1898 .digcnt_ofs = 0x280,
1899 .rev_ofs = 0x100,
1900 .mask_ofs = 0x110,
1901 .sysstatus_ofs = 0x114,
1902 .mode_ofs = 0x284,
1903 .length_ofs = 0x288,
1904 .major_mask = 0x0700,
1905 .major_shift = 8,
1906 .minor_mask = 0x003f,
1907 .minor_shift = 0,
1908 };
1909
1910 static const struct of_device_id omap_sham_of_match[] = {
1911 {
1912 .compatible = "ti,omap2-sham",
1913 .data = &omap_sham_pdata_omap2,
1914 },
1915 {
1916 .compatible = "ti,omap3-sham",
1917 .data = &omap_sham_pdata_omap2,
1918 },
1919 {
1920 .compatible = "ti,omap4-sham",
1921 .data = &omap_sham_pdata_omap4,
1922 },
1923 {
1924 .compatible = "ti,omap5-sham",
1925 .data = &omap_sham_pdata_omap5,
1926 },
1927 {},
1928 };
1929 MODULE_DEVICE_TABLE(of, omap_sham_of_match);
1930
omap_sham_get_res_of(struct omap_sham_dev * dd,struct device * dev,struct resource * res)1931 static int omap_sham_get_res_of(struct omap_sham_dev *dd,
1932 struct device *dev, struct resource *res)
1933 {
1934 struct device_node *node = dev->of_node;
1935 int err = 0;
1936
1937 dd->pdata = of_device_get_match_data(dev);
1938 if (!dd->pdata) {
1939 dev_err(dev, "no compatible OF match\n");
1940 err = -EINVAL;
1941 goto err;
1942 }
1943
1944 err = of_address_to_resource(node, 0, res);
1945 if (err < 0) {
1946 dev_err(dev, "can't translate OF node address\n");
1947 err = -EINVAL;
1948 goto err;
1949 }
1950
1951 dd->irq = irq_of_parse_and_map(node, 0);
1952 if (!dd->irq) {
1953 dev_err(dev, "can't translate OF irq value\n");
1954 err = -EINVAL;
1955 goto err;
1956 }
1957
1958 err:
1959 return err;
1960 }
1961 #else
1962 static const struct of_device_id omap_sham_of_match[] = {
1963 {},
1964 };
1965
omap_sham_get_res_of(struct omap_sham_dev * dd,struct device * dev,struct resource * res)1966 static int omap_sham_get_res_of(struct omap_sham_dev *dd,
1967 struct device *dev, struct resource *res)
1968 {
1969 return -EINVAL;
1970 }
1971 #endif
1972
omap_sham_get_res_pdev(struct omap_sham_dev * dd,struct platform_device * pdev,struct resource * res)1973 static int omap_sham_get_res_pdev(struct omap_sham_dev *dd,
1974 struct platform_device *pdev, struct resource *res)
1975 {
1976 struct device *dev = &pdev->dev;
1977 struct resource *r;
1978 int err = 0;
1979
1980 /* Get the base address */
1981 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1982 if (!r) {
1983 dev_err(dev, "no MEM resource info\n");
1984 err = -ENODEV;
1985 goto err;
1986 }
1987 memcpy(res, r, sizeof(*res));
1988
1989 /* Get the IRQ */
1990 dd->irq = platform_get_irq(pdev, 0);
1991 if (dd->irq < 0) {
1992 err = dd->irq;
1993 goto err;
1994 }
1995
1996 /* Only OMAP2/3 can be non-DT */
1997 dd->pdata = &omap_sham_pdata_omap2;
1998
1999 err:
2000 return err;
2001 }
2002
fallback_show(struct device * dev,struct device_attribute * attr,char * buf)2003 static ssize_t fallback_show(struct device *dev, struct device_attribute *attr,
2004 char *buf)
2005 {
2006 struct omap_sham_dev *dd = dev_get_drvdata(dev);
2007
2008 return sprintf(buf, "%d\n", dd->fallback_sz);
2009 }
2010
fallback_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2011 static ssize_t fallback_store(struct device *dev, struct device_attribute *attr,
2012 const char *buf, size_t size)
2013 {
2014 struct omap_sham_dev *dd = dev_get_drvdata(dev);
2015 ssize_t status;
2016 long value;
2017
2018 status = kstrtol(buf, 0, &value);
2019 if (status)
2020 return status;
2021
2022 /* HW accelerator only works with buffers > 9 */
2023 if (value < 9) {
2024 dev_err(dev, "minimum fallback size 9\n");
2025 return -EINVAL;
2026 }
2027
2028 dd->fallback_sz = value;
2029
2030 return size;
2031 }
2032
queue_len_show(struct device * dev,struct device_attribute * attr,char * buf)2033 static ssize_t queue_len_show(struct device *dev, struct device_attribute *attr,
2034 char *buf)
2035 {
2036 struct omap_sham_dev *dd = dev_get_drvdata(dev);
2037
2038 return sprintf(buf, "%d\n", dd->queue.max_qlen);
2039 }
2040
queue_len_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2041 static ssize_t queue_len_store(struct device *dev,
2042 struct device_attribute *attr, const char *buf,
2043 size_t size)
2044 {
2045 struct omap_sham_dev *dd = dev_get_drvdata(dev);
2046 ssize_t status;
2047 long value;
2048 unsigned long flags;
2049
2050 status = kstrtol(buf, 0, &value);
2051 if (status)
2052 return status;
2053
2054 if (value < 1)
2055 return -EINVAL;
2056
2057 /*
2058 * Changing the queue size in fly is safe, if size becomes smaller
2059 * than current size, it will just not accept new entries until
2060 * it has shrank enough.
2061 */
2062 spin_lock_irqsave(&dd->lock, flags);
2063 dd->queue.max_qlen = value;
2064 spin_unlock_irqrestore(&dd->lock, flags);
2065
2066 return size;
2067 }
2068
2069 static DEVICE_ATTR_RW(queue_len);
2070 static DEVICE_ATTR_RW(fallback);
2071
2072 static struct attribute *omap_sham_attrs[] = {
2073 &dev_attr_queue_len.attr,
2074 &dev_attr_fallback.attr,
2075 NULL,
2076 };
2077
2078 static struct attribute_group omap_sham_attr_group = {
2079 .attrs = omap_sham_attrs,
2080 };
2081
omap_sham_probe(struct platform_device * pdev)2082 static int omap_sham_probe(struct platform_device *pdev)
2083 {
2084 struct omap_sham_dev *dd;
2085 struct device *dev = &pdev->dev;
2086 struct resource res;
2087 dma_cap_mask_t mask;
2088 int err, i, j;
2089 u32 rev;
2090
2091 dd = devm_kzalloc(dev, sizeof(struct omap_sham_dev), GFP_KERNEL);
2092 if (dd == NULL) {
2093 dev_err(dev, "unable to alloc data struct.\n");
2094 err = -ENOMEM;
2095 goto data_err;
2096 }
2097 dd->dev = dev;
2098 platform_set_drvdata(pdev, dd);
2099
2100 INIT_LIST_HEAD(&dd->list);
2101 spin_lock_init(&dd->lock);
2102 tasklet_init(&dd->done_task, omap_sham_done_task, (unsigned long)dd);
2103 crypto_init_queue(&dd->queue, OMAP_SHAM_QUEUE_LENGTH);
2104
2105 err = (dev->of_node) ? omap_sham_get_res_of(dd, dev, &res) :
2106 omap_sham_get_res_pdev(dd, pdev, &res);
2107 if (err)
2108 goto data_err;
2109
2110 dd->io_base = devm_ioremap_resource(dev, &res);
2111 if (IS_ERR(dd->io_base)) {
2112 err = PTR_ERR(dd->io_base);
2113 goto data_err;
2114 }
2115 dd->phys_base = res.start;
2116
2117 err = devm_request_irq(dev, dd->irq, dd->pdata->intr_hdlr,
2118 IRQF_TRIGGER_NONE, dev_name(dev), dd);
2119 if (err) {
2120 dev_err(dev, "unable to request irq %d, err = %d\n",
2121 dd->irq, err);
2122 goto data_err;
2123 }
2124
2125 dma_cap_zero(mask);
2126 dma_cap_set(DMA_SLAVE, mask);
2127
2128 dd->dma_lch = dma_request_chan(dev, "rx");
2129 if (IS_ERR(dd->dma_lch)) {
2130 err = PTR_ERR(dd->dma_lch);
2131 if (err == -EPROBE_DEFER)
2132 goto data_err;
2133
2134 dd->polling_mode = 1;
2135 dev_dbg(dev, "using polling mode instead of dma\n");
2136 }
2137
2138 dd->flags |= dd->pdata->flags;
2139
2140 pm_runtime_use_autosuspend(dev);
2141 pm_runtime_set_autosuspend_delay(dev, DEFAULT_AUTOSUSPEND_DELAY);
2142
2143 dd->fallback_sz = OMAP_SHA_DMA_THRESHOLD;
2144
2145 pm_runtime_enable(dev);
2146 pm_runtime_irq_safe(dev);
2147
2148 err = pm_runtime_get_sync(dev);
2149 if (err < 0) {
2150 dev_err(dev, "failed to get sync: %d\n", err);
2151 goto err_pm;
2152 }
2153
2154 rev = omap_sham_read(dd, SHA_REG_REV(dd));
2155 pm_runtime_put_sync(&pdev->dev);
2156
2157 dev_info(dev, "hw accel on OMAP rev %u.%u\n",
2158 (rev & dd->pdata->major_mask) >> dd->pdata->major_shift,
2159 (rev & dd->pdata->minor_mask) >> dd->pdata->minor_shift);
2160
2161 spin_lock(&sham.lock);
2162 list_add_tail(&dd->list, &sham.dev_list);
2163 spin_unlock(&sham.lock);
2164
2165 for (i = 0; i < dd->pdata->algs_info_size; i++) {
2166 for (j = 0; j < dd->pdata->algs_info[i].size; j++) {
2167 struct ahash_alg *alg;
2168
2169 alg = &dd->pdata->algs_info[i].algs_list[j];
2170 alg->export = omap_sham_export;
2171 alg->import = omap_sham_import;
2172 alg->halg.statesize = sizeof(struct omap_sham_reqctx) +
2173 BUFLEN;
2174 err = crypto_register_ahash(alg);
2175 if (err)
2176 goto err_algs;
2177
2178 dd->pdata->algs_info[i].registered++;
2179 }
2180 }
2181
2182 err = sysfs_create_group(&dev->kobj, &omap_sham_attr_group);
2183 if (err) {
2184 dev_err(dev, "could not create sysfs device attrs\n");
2185 goto err_algs;
2186 }
2187
2188 return 0;
2189
2190 err_algs:
2191 for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
2192 for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
2193 crypto_unregister_ahash(
2194 &dd->pdata->algs_info[i].algs_list[j]);
2195 err_pm:
2196 pm_runtime_disable(dev);
2197 if (!dd->polling_mode)
2198 dma_release_channel(dd->dma_lch);
2199 data_err:
2200 dev_err(dev, "initialization failed.\n");
2201
2202 return err;
2203 }
2204
omap_sham_remove(struct platform_device * pdev)2205 static int omap_sham_remove(struct platform_device *pdev)
2206 {
2207 struct omap_sham_dev *dd;
2208 int i, j;
2209
2210 dd = platform_get_drvdata(pdev);
2211 if (!dd)
2212 return -ENODEV;
2213 spin_lock(&sham.lock);
2214 list_del(&dd->list);
2215 spin_unlock(&sham.lock);
2216 for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
2217 for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
2218 crypto_unregister_ahash(
2219 &dd->pdata->algs_info[i].algs_list[j]);
2220 tasklet_kill(&dd->done_task);
2221 pm_runtime_disable(&pdev->dev);
2222
2223 if (!dd->polling_mode)
2224 dma_release_channel(dd->dma_lch);
2225
2226 return 0;
2227 }
2228
2229 #ifdef CONFIG_PM_SLEEP
omap_sham_suspend(struct device * dev)2230 static int omap_sham_suspend(struct device *dev)
2231 {
2232 pm_runtime_put_sync(dev);
2233 return 0;
2234 }
2235
omap_sham_resume(struct device * dev)2236 static int omap_sham_resume(struct device *dev)
2237 {
2238 int err = pm_runtime_get_sync(dev);
2239 if (err < 0) {
2240 dev_err(dev, "failed to get sync: %d\n", err);
2241 return err;
2242 }
2243 return 0;
2244 }
2245 #endif
2246
2247 static SIMPLE_DEV_PM_OPS(omap_sham_pm_ops, omap_sham_suspend, omap_sham_resume);
2248
2249 static struct platform_driver omap_sham_driver = {
2250 .probe = omap_sham_probe,
2251 .remove = omap_sham_remove,
2252 .driver = {
2253 .name = "omap-sham",
2254 .pm = &omap_sham_pm_ops,
2255 .of_match_table = omap_sham_of_match,
2256 },
2257 };
2258
2259 module_platform_driver(omap_sham_driver);
2260
2261 MODULE_DESCRIPTION("OMAP SHA1/MD5 hw acceleration support.");
2262 MODULE_LICENSE("GPL v2");
2263 MODULE_AUTHOR("Dmitry Kasatkin");
2264 MODULE_ALIAS("platform:omap-sham");
2265