1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Cryptographic API.
4 //
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
6 //
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9 //
10 // Hash part based on omap-sham.c driver.
11
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25
26 #include <crypto/ctr.h>
27 #include <crypto/aes.h>
28 #include <crypto/algapi.h>
29 #include <crypto/scatterwalk.h>
30
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/sha.h>
34 #include <crypto/internal/hash.h>
35
36 #define _SBF(s, v) ((v) << (s))
37
38 /* Feed control registers */
39 #define SSS_REG_FCINTSTAT 0x0000
40 #define SSS_FCINTSTAT_HPARTINT BIT(7)
41 #define SSS_FCINTSTAT_HDONEINT BIT(5)
42 #define SSS_FCINTSTAT_BRDMAINT BIT(3)
43 #define SSS_FCINTSTAT_BTDMAINT BIT(2)
44 #define SSS_FCINTSTAT_HRDMAINT BIT(1)
45 #define SSS_FCINTSTAT_PKDMAINT BIT(0)
46
47 #define SSS_REG_FCINTENSET 0x0004
48 #define SSS_FCINTENSET_HPARTINTENSET BIT(7)
49 #define SSS_FCINTENSET_HDONEINTENSET BIT(5)
50 #define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
51 #define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
52 #define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
53 #define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
54
55 #define SSS_REG_FCINTENCLR 0x0008
56 #define SSS_FCINTENCLR_HPARTINTENCLR BIT(7)
57 #define SSS_FCINTENCLR_HDONEINTENCLR BIT(5)
58 #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
59 #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
60 #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
61 #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
62
63 #define SSS_REG_FCINTPEND 0x000C
64 #define SSS_FCINTPEND_HPARTINTP BIT(7)
65 #define SSS_FCINTPEND_HDONEINTP BIT(5)
66 #define SSS_FCINTPEND_BRDMAINTP BIT(3)
67 #define SSS_FCINTPEND_BTDMAINTP BIT(2)
68 #define SSS_FCINTPEND_HRDMAINTP BIT(1)
69 #define SSS_FCINTPEND_PKDMAINTP BIT(0)
70
71 #define SSS_REG_FCFIFOSTAT 0x0010
72 #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
73 #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
74 #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
75 #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
76 #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
77 #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
78 #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
79 #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
80
81 #define SSS_REG_FCFIFOCTRL 0x0014
82 #define SSS_FCFIFOCTRL_DESSEL BIT(2)
83 #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
84 #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
85 #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
86 #define SSS_HASHIN_MASK _SBF(0, 0x03)
87
88 #define SSS_REG_FCBRDMAS 0x0020
89 #define SSS_REG_FCBRDMAL 0x0024
90 #define SSS_REG_FCBRDMAC 0x0028
91 #define SSS_FCBRDMAC_BYTESWAP BIT(1)
92 #define SSS_FCBRDMAC_FLUSH BIT(0)
93
94 #define SSS_REG_FCBTDMAS 0x0030
95 #define SSS_REG_FCBTDMAL 0x0034
96 #define SSS_REG_FCBTDMAC 0x0038
97 #define SSS_FCBTDMAC_BYTESWAP BIT(1)
98 #define SSS_FCBTDMAC_FLUSH BIT(0)
99
100 #define SSS_REG_FCHRDMAS 0x0040
101 #define SSS_REG_FCHRDMAL 0x0044
102 #define SSS_REG_FCHRDMAC 0x0048
103 #define SSS_FCHRDMAC_BYTESWAP BIT(1)
104 #define SSS_FCHRDMAC_FLUSH BIT(0)
105
106 #define SSS_REG_FCPKDMAS 0x0050
107 #define SSS_REG_FCPKDMAL 0x0054
108 #define SSS_REG_FCPKDMAC 0x0058
109 #define SSS_FCPKDMAC_BYTESWAP BIT(3)
110 #define SSS_FCPKDMAC_DESCEND BIT(2)
111 #define SSS_FCPKDMAC_TRANSMIT BIT(1)
112 #define SSS_FCPKDMAC_FLUSH BIT(0)
113
114 #define SSS_REG_FCPKDMAO 0x005C
115
116 /* AES registers */
117 #define SSS_REG_AES_CONTROL 0x00
118 #define SSS_AES_BYTESWAP_DI BIT(11)
119 #define SSS_AES_BYTESWAP_DO BIT(10)
120 #define SSS_AES_BYTESWAP_IV BIT(9)
121 #define SSS_AES_BYTESWAP_CNT BIT(8)
122 #define SSS_AES_BYTESWAP_KEY BIT(7)
123 #define SSS_AES_KEY_CHANGE_MODE BIT(6)
124 #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
125 #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
126 #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
127 #define SSS_AES_FIFO_MODE BIT(3)
128 #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
129 #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
130 #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
131 #define SSS_AES_MODE_DECRYPT BIT(0)
132
133 #define SSS_REG_AES_STATUS 0x04
134 #define SSS_AES_BUSY BIT(2)
135 #define SSS_AES_INPUT_READY BIT(1)
136 #define SSS_AES_OUTPUT_READY BIT(0)
137
138 #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
139 #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
140 #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
141 #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
142 #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
143
144 #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
145 #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
146 #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
147
148 #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
149 #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
150 SSS_AES_REG(dev, reg))
151
152 /* HW engine modes */
153 #define FLAGS_AES_DECRYPT BIT(0)
154 #define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
155 #define FLAGS_AES_CBC _SBF(1, 0x01)
156 #define FLAGS_AES_CTR _SBF(1, 0x02)
157
158 #define AES_KEY_LEN 16
159 #define CRYPTO_QUEUE_LEN 1
160
161 /* HASH registers */
162 #define SSS_REG_HASH_CTRL 0x00
163
164 #define SSS_HASH_USER_IV_EN BIT(5)
165 #define SSS_HASH_INIT_BIT BIT(4)
166 #define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00)
167 #define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01)
168 #define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02)
169
170 #define SSS_HASH_ENGINE_MASK _SBF(1, 0x03)
171
172 #define SSS_REG_HASH_CTRL_PAUSE 0x04
173
174 #define SSS_HASH_PAUSE BIT(0)
175
176 #define SSS_REG_HASH_CTRL_FIFO 0x08
177
178 #define SSS_HASH_FIFO_MODE_DMA BIT(0)
179 #define SSS_HASH_FIFO_MODE_CPU 0
180
181 #define SSS_REG_HASH_CTRL_SWAP 0x0C
182
183 #define SSS_HASH_BYTESWAP_DI BIT(3)
184 #define SSS_HASH_BYTESWAP_DO BIT(2)
185 #define SSS_HASH_BYTESWAP_IV BIT(1)
186 #define SSS_HASH_BYTESWAP_KEY BIT(0)
187
188 #define SSS_REG_HASH_STATUS 0x10
189
190 #define SSS_HASH_STATUS_MSG_DONE BIT(6)
191 #define SSS_HASH_STATUS_PARTIAL_DONE BIT(4)
192 #define SSS_HASH_STATUS_BUFFER_READY BIT(0)
193
194 #define SSS_REG_HASH_MSG_SIZE_LOW 0x20
195 #define SSS_REG_HASH_MSG_SIZE_HIGH 0x24
196
197 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28
198 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C
199
200 #define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2))
201 #define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2))
202
203 #define HASH_BLOCK_SIZE 64
204 #define HASH_REG_SIZEOF 4
205 #define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
206 #define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
207 #define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
208
209 /*
210 * HASH bit numbers, used by device, setting in dev->hash_flags with
211 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
212 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
213 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
214 */
215 #define HASH_FLAGS_BUSY 0
216 #define HASH_FLAGS_FINAL 1
217 #define HASH_FLAGS_DMA_ACTIVE 2
218 #define HASH_FLAGS_OUTPUT_READY 3
219 #define HASH_FLAGS_DMA_READY 4
220 #define HASH_FLAGS_SGS_COPIED 5
221 #define HASH_FLAGS_SGS_ALLOCED 6
222
223 /* HASH HW constants */
224 #define BUFLEN HASH_BLOCK_SIZE
225
226 #define SSS_HASH_DMA_LEN_ALIGN 8
227 #define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1)
228
229 #define SSS_HASH_QUEUE_LENGTH 10
230
231 /**
232 * struct samsung_aes_variant - platform specific SSS driver data
233 * @aes_offset: AES register offset from SSS module's base.
234 * @hash_offset: HASH register offset from SSS module's base.
235 * @clk_names: names of clocks needed to run SSS IP
236 *
237 * Specifies platform specific configuration of SSS module.
238 * Note: A structure for driver specific platform data is used for future
239 * expansion of its usage.
240 */
241 struct samsung_aes_variant {
242 unsigned int aes_offset;
243 unsigned int hash_offset;
244 const char *clk_names[2];
245 };
246
247 struct s5p_aes_reqctx {
248 unsigned long mode;
249 };
250
251 struct s5p_aes_ctx {
252 struct s5p_aes_dev *dev;
253
254 u8 aes_key[AES_MAX_KEY_SIZE];
255 u8 nonce[CTR_RFC3686_NONCE_SIZE];
256 int keylen;
257 };
258
259 /**
260 * struct s5p_aes_dev - Crypto device state container
261 * @dev: Associated device
262 * @clk: Clock for accessing hardware
263 * @ioaddr: Mapped IO memory region
264 * @aes_ioaddr: Per-varian offset for AES block IO memory
265 * @irq_fc: Feed control interrupt line
266 * @req: Crypto request currently handled by the device
267 * @ctx: Configuration for currently handled crypto request
268 * @sg_src: Scatter list with source data for currently handled block
269 * in device. This is DMA-mapped into device.
270 * @sg_dst: Scatter list with destination data for currently handled block
271 * in device. This is DMA-mapped into device.
272 * @sg_src_cpy: In case of unaligned access, copied scatter list
273 * with source data.
274 * @sg_dst_cpy: In case of unaligned access, copied scatter list
275 * with destination data.
276 * @tasklet: New request scheduling jib
277 * @queue: Crypto queue
278 * @busy: Indicates whether the device is currently handling some request
279 * thus it uses some of the fields from this state, like:
280 * req, ctx, sg_src/dst (and copies). This essentially
281 * protects against concurrent access to these fields.
282 * @lock: Lock for protecting both access to device hardware registers
283 * and fields related to current request (including the busy field).
284 * @res: Resources for hash.
285 * @io_hash_base: Per-variant offset for HASH block IO memory.
286 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags
287 * variable.
288 * @hash_flags: Flags for current HASH op.
289 * @hash_queue: Async hash queue.
290 * @hash_tasklet: New HASH request scheduling job.
291 * @xmit_buf: Buffer for current HASH request transfer into SSS block.
292 * @hash_req: Current request sending to SSS HASH block.
293 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
294 * @hash_sg_cnt: Counter for hash_sg_iter.
295 *
296 * @use_hash: true if HASH algs enabled
297 */
298 struct s5p_aes_dev {
299 struct device *dev;
300 struct clk *clk;
301 struct clk *pclk;
302 void __iomem *ioaddr;
303 void __iomem *aes_ioaddr;
304 int irq_fc;
305
306 struct ablkcipher_request *req;
307 struct s5p_aes_ctx *ctx;
308 struct scatterlist *sg_src;
309 struct scatterlist *sg_dst;
310
311 struct scatterlist *sg_src_cpy;
312 struct scatterlist *sg_dst_cpy;
313
314 struct tasklet_struct tasklet;
315 struct crypto_queue queue;
316 bool busy;
317 spinlock_t lock;
318
319 struct resource *res;
320 void __iomem *io_hash_base;
321
322 spinlock_t hash_lock; /* protect hash_ vars */
323 unsigned long hash_flags;
324 struct crypto_queue hash_queue;
325 struct tasklet_struct hash_tasklet;
326
327 u8 xmit_buf[BUFLEN];
328 struct ahash_request *hash_req;
329 struct scatterlist *hash_sg_iter;
330 unsigned int hash_sg_cnt;
331
332 bool use_hash;
333 };
334
335 /**
336 * struct s5p_hash_reqctx - HASH request context
337 * @dd: Associated device
338 * @op_update: Current request operation (OP_UPDATE or OP_FINAL)
339 * @digcnt: Number of bytes processed by HW (without buffer[] ones)
340 * @digest: Digest message or IV for partial result
341 * @nregs: Number of HW registers for digest or IV read/write
342 * @engine: Bits for selecting type of HASH in SSS block
343 * @sg: sg for DMA transfer
344 * @sg_len: Length of sg for DMA transfer
345 * @sgl[]: sg for joining buffer and req->src scatterlist
346 * @skip: Skip offset in req->src for current op
347 * @total: Total number of bytes for current request
348 * @finup: Keep state for finup or final.
349 * @error: Keep track of error.
350 * @bufcnt: Number of bytes holded in buffer[]
351 * @buffer[]: For byte(s) from end of req->src in UPDATE op
352 */
353 struct s5p_hash_reqctx {
354 struct s5p_aes_dev *dd;
355 bool op_update;
356
357 u64 digcnt;
358 u8 digest[SHA256_DIGEST_SIZE];
359
360 unsigned int nregs; /* digest_size / sizeof(reg) */
361 u32 engine;
362
363 struct scatterlist *sg;
364 unsigned int sg_len;
365 struct scatterlist sgl[2];
366 unsigned int skip;
367 unsigned int total;
368 bool finup;
369 bool error;
370
371 u32 bufcnt;
372 u8 buffer[0];
373 };
374
375 /**
376 * struct s5p_hash_ctx - HASH transformation context
377 * @dd: Associated device
378 * @flags: Bits for algorithm HASH.
379 * @fallback: Software transformation for zero message or size < BUFLEN.
380 */
381 struct s5p_hash_ctx {
382 struct s5p_aes_dev *dd;
383 unsigned long flags;
384 struct crypto_shash *fallback;
385 };
386
387 static const struct samsung_aes_variant s5p_aes_data = {
388 .aes_offset = 0x4000,
389 .hash_offset = 0x6000,
390 .clk_names = { "secss", },
391 };
392
393 static const struct samsung_aes_variant exynos_aes_data = {
394 .aes_offset = 0x200,
395 .hash_offset = 0x400,
396 .clk_names = { "secss", },
397 };
398
399 static const struct samsung_aes_variant exynos5433_slim_aes_data = {
400 .aes_offset = 0x400,
401 .hash_offset = 0x800,
402 .clk_names = { "pclk", "aclk", },
403 };
404
405 static const struct of_device_id s5p_sss_dt_match[] = {
406 {
407 .compatible = "samsung,s5pv210-secss",
408 .data = &s5p_aes_data,
409 },
410 {
411 .compatible = "samsung,exynos4210-secss",
412 .data = &exynos_aes_data,
413 },
414 {
415 .compatible = "samsung,exynos5433-slim-sss",
416 .data = &exynos5433_slim_aes_data,
417 },
418 { },
419 };
420 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
421
find_s5p_sss_version(const struct platform_device * pdev)422 static inline const struct samsung_aes_variant *find_s5p_sss_version
423 (const struct platform_device *pdev)
424 {
425 if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
426 const struct of_device_id *match;
427
428 match = of_match_node(s5p_sss_dt_match,
429 pdev->dev.of_node);
430 return (const struct samsung_aes_variant *)match->data;
431 }
432 return (const struct samsung_aes_variant *)
433 platform_get_device_id(pdev)->driver_data;
434 }
435
436 static struct s5p_aes_dev *s5p_dev;
437
s5p_set_dma_indata(struct s5p_aes_dev * dev,const struct scatterlist * sg)438 static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
439 const struct scatterlist *sg)
440 {
441 SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
442 SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
443 }
444
s5p_set_dma_outdata(struct s5p_aes_dev * dev,const struct scatterlist * sg)445 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
446 const struct scatterlist *sg)
447 {
448 SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
449 SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
450 }
451
s5p_free_sg_cpy(struct s5p_aes_dev * dev,struct scatterlist ** sg)452 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
453 {
454 int len;
455
456 if (!*sg)
457 return;
458
459 len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
460 free_pages((unsigned long)sg_virt(*sg), get_order(len));
461
462 kfree(*sg);
463 *sg = NULL;
464 }
465
s5p_sg_copy_buf(void * buf,struct scatterlist * sg,unsigned int nbytes,int out)466 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
467 unsigned int nbytes, int out)
468 {
469 struct scatter_walk walk;
470
471 if (!nbytes)
472 return;
473
474 scatterwalk_start(&walk, sg);
475 scatterwalk_copychunks(buf, &walk, nbytes, out);
476 scatterwalk_done(&walk, out, 0);
477 }
478
s5p_sg_done(struct s5p_aes_dev * dev)479 static void s5p_sg_done(struct s5p_aes_dev *dev)
480 {
481 struct ablkcipher_request *req = dev->req;
482 struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
483
484 if (dev->sg_dst_cpy) {
485 dev_dbg(dev->dev,
486 "Copying %d bytes of output data back to original place\n",
487 dev->req->nbytes);
488 s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
489 dev->req->nbytes, 1);
490 }
491 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
492 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
493 if (reqctx->mode & FLAGS_AES_CBC)
494 memcpy_fromio(req->info, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
495
496 else if (reqctx->mode & FLAGS_AES_CTR)
497 memcpy_fromio(req->info, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
498 }
499
500 /* Calls the completion. Cannot be called with dev->lock hold. */
s5p_aes_complete(struct ablkcipher_request * req,int err)501 static void s5p_aes_complete(struct ablkcipher_request *req, int err)
502 {
503 req->base.complete(&req->base, err);
504 }
505
s5p_unset_outdata(struct s5p_aes_dev * dev)506 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
507 {
508 dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
509 }
510
s5p_unset_indata(struct s5p_aes_dev * dev)511 static void s5p_unset_indata(struct s5p_aes_dev *dev)
512 {
513 dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
514 }
515
s5p_make_sg_cpy(struct s5p_aes_dev * dev,struct scatterlist * src,struct scatterlist ** dst)516 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
517 struct scatterlist **dst)
518 {
519 void *pages;
520 int len;
521
522 *dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
523 if (!*dst)
524 return -ENOMEM;
525
526 len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
527 pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
528 if (!pages) {
529 kfree(*dst);
530 *dst = NULL;
531 return -ENOMEM;
532 }
533
534 s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0);
535
536 sg_init_table(*dst, 1);
537 sg_set_buf(*dst, pages, len);
538
539 return 0;
540 }
541
s5p_set_outdata(struct s5p_aes_dev * dev,struct scatterlist * sg)542 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
543 {
544 if (!sg->length)
545 return -EINVAL;
546
547 if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
548 return -ENOMEM;
549
550 dev->sg_dst = sg;
551
552 return 0;
553 }
554
s5p_set_indata(struct s5p_aes_dev * dev,struct scatterlist * sg)555 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
556 {
557 if (!sg->length)
558 return -EINVAL;
559
560 if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
561 return -ENOMEM;
562
563 dev->sg_src = sg;
564
565 return 0;
566 }
567
568 /*
569 * Returns -ERRNO on error (mapping of new data failed).
570 * On success returns:
571 * - 0 if there is no more data,
572 * - 1 if new transmitting (output) data is ready and its address+length
573 * have to be written to device (by calling s5p_set_dma_outdata()).
574 */
s5p_aes_tx(struct s5p_aes_dev * dev)575 static int s5p_aes_tx(struct s5p_aes_dev *dev)
576 {
577 int ret = 0;
578
579 s5p_unset_outdata(dev);
580
581 if (!sg_is_last(dev->sg_dst)) {
582 ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
583 if (!ret)
584 ret = 1;
585 }
586
587 return ret;
588 }
589
590 /*
591 * Returns -ERRNO on error (mapping of new data failed).
592 * On success returns:
593 * - 0 if there is no more data,
594 * - 1 if new receiving (input) data is ready and its address+length
595 * have to be written to device (by calling s5p_set_dma_indata()).
596 */
s5p_aes_rx(struct s5p_aes_dev * dev)597 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
598 {
599 int ret = 0;
600
601 s5p_unset_indata(dev);
602
603 if (!sg_is_last(dev->sg_src)) {
604 ret = s5p_set_indata(dev, sg_next(dev->sg_src));
605 if (!ret)
606 ret = 1;
607 }
608
609 return ret;
610 }
611
s5p_hash_read(struct s5p_aes_dev * dd,u32 offset)612 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
613 {
614 return __raw_readl(dd->io_hash_base + offset);
615 }
616
s5p_hash_write(struct s5p_aes_dev * dd,u32 offset,u32 value)617 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
618 u32 offset, u32 value)
619 {
620 __raw_writel(value, dd->io_hash_base + offset);
621 }
622
623 /**
624 * s5p_set_dma_hashdata() - start DMA with sg
625 * @dev: device
626 * @sg: scatterlist ready to DMA transmit
627 */
s5p_set_dma_hashdata(struct s5p_aes_dev * dev,const struct scatterlist * sg)628 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
629 const struct scatterlist *sg)
630 {
631 dev->hash_sg_cnt--;
632 SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
633 SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
634 }
635
636 /**
637 * s5p_hash_rx() - get next hash_sg_iter
638 * @dev: device
639 *
640 * Return:
641 * 2 if there is no more data and it is UPDATE op
642 * 1 if new receiving (input) data is ready and can be written to device
643 * 0 if there is no more data and it is FINAL op
644 */
s5p_hash_rx(struct s5p_aes_dev * dev)645 static int s5p_hash_rx(struct s5p_aes_dev *dev)
646 {
647 if (dev->hash_sg_cnt > 0) {
648 dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
649 return 1;
650 }
651
652 set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
653 if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
654 return 0;
655
656 return 2;
657 }
658
s5p_aes_interrupt(int irq,void * dev_id)659 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
660 {
661 struct platform_device *pdev = dev_id;
662 struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
663 struct ablkcipher_request *req;
664 int err_dma_tx = 0;
665 int err_dma_rx = 0;
666 int err_dma_hx = 0;
667 bool tx_end = false;
668 bool hx_end = false;
669 unsigned long flags;
670 u32 status, st_bits;
671 int err;
672
673 spin_lock_irqsave(&dev->lock, flags);
674
675 /*
676 * Handle rx or tx interrupt. If there is still data (scatterlist did not
677 * reach end), then map next scatterlist entry.
678 * In case of such mapping error, s5p_aes_complete() should be called.
679 *
680 * If there is no more data in tx scatter list, call s5p_aes_complete()
681 * and schedule new tasklet.
682 *
683 * Handle hx interrupt. If there is still data map next entry.
684 */
685 status = SSS_READ(dev, FCINTSTAT);
686 if (status & SSS_FCINTSTAT_BRDMAINT)
687 err_dma_rx = s5p_aes_rx(dev);
688
689 if (status & SSS_FCINTSTAT_BTDMAINT) {
690 if (sg_is_last(dev->sg_dst))
691 tx_end = true;
692 err_dma_tx = s5p_aes_tx(dev);
693 }
694
695 if (status & SSS_FCINTSTAT_HRDMAINT)
696 err_dma_hx = s5p_hash_rx(dev);
697
698 st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
699 SSS_FCINTSTAT_HRDMAINT);
700 /* clear DMA bits */
701 SSS_WRITE(dev, FCINTPEND, st_bits);
702
703 /* clear HASH irq bits */
704 if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
705 /* cannot have both HPART and HDONE */
706 if (status & SSS_FCINTSTAT_HPARTINT)
707 st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
708
709 if (status & SSS_FCINTSTAT_HDONEINT)
710 st_bits = SSS_HASH_STATUS_MSG_DONE;
711
712 set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
713 s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
714 hx_end = true;
715 /* when DONE or PART, do not handle HASH DMA */
716 err_dma_hx = 0;
717 }
718
719 if (err_dma_rx < 0) {
720 err = err_dma_rx;
721 goto error;
722 }
723 if (err_dma_tx < 0) {
724 err = err_dma_tx;
725 goto error;
726 }
727
728 if (tx_end) {
729 s5p_sg_done(dev);
730 if (err_dma_hx == 1)
731 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
732
733 spin_unlock_irqrestore(&dev->lock, flags);
734
735 s5p_aes_complete(dev->req, 0);
736 /* Device is still busy */
737 tasklet_schedule(&dev->tasklet);
738 } else {
739 /*
740 * Writing length of DMA block (either receiving or
741 * transmitting) will start the operation immediately, so this
742 * should be done at the end (even after clearing pending
743 * interrupts to not miss the interrupt).
744 */
745 if (err_dma_tx == 1)
746 s5p_set_dma_outdata(dev, dev->sg_dst);
747 if (err_dma_rx == 1)
748 s5p_set_dma_indata(dev, dev->sg_src);
749 if (err_dma_hx == 1)
750 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
751
752 spin_unlock_irqrestore(&dev->lock, flags);
753 }
754
755 goto hash_irq_end;
756
757 error:
758 s5p_sg_done(dev);
759 dev->busy = false;
760 req = dev->req;
761 if (err_dma_hx == 1)
762 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
763
764 spin_unlock_irqrestore(&dev->lock, flags);
765 s5p_aes_complete(req, err);
766
767 hash_irq_end:
768 /*
769 * Note about else if:
770 * when hash_sg_iter reaches end and its UPDATE op,
771 * issue SSS_HASH_PAUSE and wait for HPART irq
772 */
773 if (hx_end)
774 tasklet_schedule(&dev->hash_tasklet);
775 else if (err_dma_hx == 2)
776 s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
777 SSS_HASH_PAUSE);
778
779 return IRQ_HANDLED;
780 }
781
782 /**
783 * s5p_hash_read_msg() - read message or IV from HW
784 * @req: AHASH request
785 */
s5p_hash_read_msg(struct ahash_request * req)786 static void s5p_hash_read_msg(struct ahash_request *req)
787 {
788 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
789 struct s5p_aes_dev *dd = ctx->dd;
790 u32 *hash = (u32 *)ctx->digest;
791 unsigned int i;
792
793 for (i = 0; i < ctx->nregs; i++)
794 hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
795 }
796
797 /**
798 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
799 * @dd: device
800 * @ctx: request context
801 */
s5p_hash_write_ctx_iv(struct s5p_aes_dev * dd,const struct s5p_hash_reqctx * ctx)802 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
803 const struct s5p_hash_reqctx *ctx)
804 {
805 const u32 *hash = (const u32 *)ctx->digest;
806 unsigned int i;
807
808 for (i = 0; i < ctx->nregs; i++)
809 s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
810 }
811
812 /**
813 * s5p_hash_write_iv() - write IV for next partial/finup op.
814 * @req: AHASH request
815 */
s5p_hash_write_iv(struct ahash_request * req)816 static void s5p_hash_write_iv(struct ahash_request *req)
817 {
818 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
819
820 s5p_hash_write_ctx_iv(ctx->dd, ctx);
821 }
822
823 /**
824 * s5p_hash_copy_result() - copy digest into req->result
825 * @req: AHASH request
826 */
s5p_hash_copy_result(struct ahash_request * req)827 static void s5p_hash_copy_result(struct ahash_request *req)
828 {
829 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
830
831 if (!req->result)
832 return;
833
834 memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
835 }
836
837 /**
838 * s5p_hash_dma_flush() - flush HASH DMA
839 * @dev: secss device
840 */
s5p_hash_dma_flush(struct s5p_aes_dev * dev)841 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
842 {
843 SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
844 }
845
846 /**
847 * s5p_hash_dma_enable() - enable DMA mode for HASH
848 * @dev: secss device
849 *
850 * enable DMA mode for HASH
851 */
s5p_hash_dma_enable(struct s5p_aes_dev * dev)852 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
853 {
854 s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
855 }
856
857 /**
858 * s5p_hash_irq_disable() - disable irq HASH signals
859 * @dev: secss device
860 * @flags: bitfield with irq's to be disabled
861 */
s5p_hash_irq_disable(struct s5p_aes_dev * dev,u32 flags)862 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
863 {
864 SSS_WRITE(dev, FCINTENCLR, flags);
865 }
866
867 /**
868 * s5p_hash_irq_enable() - enable irq signals
869 * @dev: secss device
870 * @flags: bitfield with irq's to be enabled
871 */
s5p_hash_irq_enable(struct s5p_aes_dev * dev,int flags)872 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
873 {
874 SSS_WRITE(dev, FCINTENSET, flags);
875 }
876
877 /**
878 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
879 * @dev: secss device
880 * @hashflow: HASH stream flow with/without crypto AES/DES
881 */
s5p_hash_set_flow(struct s5p_aes_dev * dev,u32 hashflow)882 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
883 {
884 unsigned long flags;
885 u32 flow;
886
887 spin_lock_irqsave(&dev->lock, flags);
888
889 flow = SSS_READ(dev, FCFIFOCTRL);
890 flow &= ~SSS_HASHIN_MASK;
891 flow |= hashflow;
892 SSS_WRITE(dev, FCFIFOCTRL, flow);
893
894 spin_unlock_irqrestore(&dev->lock, flags);
895 }
896
897 /**
898 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
899 * @dev: secss device
900 * @hashflow: HASH stream flow with/without AES/DES
901 *
902 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
903 * enable HASH irq's HRDMA, HDONE, HPART
904 */
s5p_ahash_dma_init(struct s5p_aes_dev * dev,u32 hashflow)905 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
906 {
907 s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
908 SSS_FCINTENCLR_HDONEINTENCLR |
909 SSS_FCINTENCLR_HPARTINTENCLR);
910 s5p_hash_dma_flush(dev);
911
912 s5p_hash_dma_enable(dev);
913 s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
914 s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
915 SSS_FCINTENSET_HDONEINTENSET |
916 SSS_FCINTENSET_HPARTINTENSET);
917 }
918
919 /**
920 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
921 * @dd: secss device
922 * @length: length for request
923 * @final: true if final op
924 *
925 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
926 * after previous updates, fill up IV words. For final, calculate and set
927 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
928 * length as 2^63 so it will be never reached and set to zero prelow and
929 * prehigh.
930 *
931 * This function does not start DMA transfer.
932 */
s5p_hash_write_ctrl(struct s5p_aes_dev * dd,size_t length,bool final)933 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
934 bool final)
935 {
936 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
937 u32 prelow, prehigh, low, high;
938 u32 configflags, swapflags;
939 u64 tmplen;
940
941 configflags = ctx->engine | SSS_HASH_INIT_BIT;
942
943 if (likely(ctx->digcnt)) {
944 s5p_hash_write_ctx_iv(dd, ctx);
945 configflags |= SSS_HASH_USER_IV_EN;
946 }
947
948 if (final) {
949 /* number of bytes for last part */
950 low = length;
951 high = 0;
952 /* total number of bits prev hashed */
953 tmplen = ctx->digcnt * 8;
954 prelow = (u32)tmplen;
955 prehigh = (u32)(tmplen >> 32);
956 } else {
957 prelow = 0;
958 prehigh = 0;
959 low = 0;
960 high = BIT(31);
961 }
962
963 swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
964 SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
965
966 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
967 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
968 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
969 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
970
971 s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
972 s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
973 }
974
975 /**
976 * s5p_hash_xmit_dma() - start DMA hash processing
977 * @dd: secss device
978 * @length: length for request
979 * @final: true if final op
980 *
981 * Update digcnt here, as it is needed for finup/final op.
982 */
s5p_hash_xmit_dma(struct s5p_aes_dev * dd,size_t length,bool final)983 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
984 bool final)
985 {
986 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
987 unsigned int cnt;
988
989 cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
990 if (!cnt) {
991 dev_err(dd->dev, "dma_map_sg error\n");
992 ctx->error = true;
993 return -EINVAL;
994 }
995
996 set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
997 dd->hash_sg_iter = ctx->sg;
998 dd->hash_sg_cnt = cnt;
999 s5p_hash_write_ctrl(dd, length, final);
1000 ctx->digcnt += length;
1001 ctx->total -= length;
1002
1003 /* catch last interrupt */
1004 if (final)
1005 set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1006
1007 s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1008
1009 return -EINPROGRESS;
1010 }
1011
1012 /**
1013 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1014 * @ctx: request context
1015 * @sg: source scatterlist request
1016 * @new_len: number of bytes to process from sg
1017 *
1018 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1019 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1020 * with allocated buffer.
1021 *
1022 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1023 */
s5p_hash_copy_sgs(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len)1024 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1025 struct scatterlist *sg, unsigned int new_len)
1026 {
1027 unsigned int pages, len;
1028 void *buf;
1029
1030 len = new_len + ctx->bufcnt;
1031 pages = get_order(len);
1032
1033 buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1034 if (!buf) {
1035 dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1036 ctx->error = true;
1037 return -ENOMEM;
1038 }
1039
1040 if (ctx->bufcnt)
1041 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1042
1043 scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1044 new_len, 0);
1045 sg_init_table(ctx->sgl, 1);
1046 sg_set_buf(ctx->sgl, buf, len);
1047 ctx->sg = ctx->sgl;
1048 ctx->sg_len = 1;
1049 ctx->bufcnt = 0;
1050 ctx->skip = 0;
1051 set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1052
1053 return 0;
1054 }
1055
1056 /**
1057 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1058 * @ctx: request context
1059 * @sg: source scatterlist request
1060 * @new_len: number of bytes to process from sg
1061 *
1062 * Allocate new scatterlist table, copy data for HASH into it. If there was
1063 * xmit_buf filled, prepare it first, then copy page, length and offset from
1064 * source sg into it, adjusting begin and/or end for skip offset and
1065 * hash_later value.
1066 *
1067 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1068 * it after irq ends processing.
1069 */
s5p_hash_copy_sg_lists(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len)1070 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1071 struct scatterlist *sg, unsigned int new_len)
1072 {
1073 unsigned int skip = ctx->skip, n = sg_nents(sg);
1074 struct scatterlist *tmp;
1075 unsigned int len;
1076
1077 if (ctx->bufcnt)
1078 n++;
1079
1080 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1081 if (!ctx->sg) {
1082 ctx->error = true;
1083 return -ENOMEM;
1084 }
1085
1086 sg_init_table(ctx->sg, n);
1087
1088 tmp = ctx->sg;
1089
1090 ctx->sg_len = 0;
1091
1092 if (ctx->bufcnt) {
1093 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1094 tmp = sg_next(tmp);
1095 ctx->sg_len++;
1096 }
1097
1098 while (sg && skip >= sg->length) {
1099 skip -= sg->length;
1100 sg = sg_next(sg);
1101 }
1102
1103 while (sg && new_len) {
1104 len = sg->length - skip;
1105 if (new_len < len)
1106 len = new_len;
1107
1108 new_len -= len;
1109 sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1110 skip = 0;
1111 if (new_len <= 0)
1112 sg_mark_end(tmp);
1113
1114 tmp = sg_next(tmp);
1115 ctx->sg_len++;
1116 sg = sg_next(sg);
1117 }
1118
1119 set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1120
1121 return 0;
1122 }
1123
1124 /**
1125 * s5p_hash_prepare_sgs() - prepare sg for processing
1126 * @ctx: request context
1127 * @sg: source scatterlist request
1128 * @nbytes: number of bytes to process from sg
1129 * @final: final flag
1130 *
1131 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1132 * sg table have good aligned elements (list_ok). If one of this checks fails,
1133 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1134 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1135 * table and prepare sg elements.
1136 *
1137 * For digest or finup all conditions can be good, and we may not need any
1138 * fixes.
1139 */
s5p_hash_prepare_sgs(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len,bool final)1140 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1141 struct scatterlist *sg,
1142 unsigned int new_len, bool final)
1143 {
1144 unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1145 bool aligned = true, list_ok = true;
1146 struct scatterlist *sg_tmp = sg;
1147
1148 if (!sg || !sg->length || !new_len)
1149 return 0;
1150
1151 if (skip || !final)
1152 list_ok = false;
1153
1154 while (nbytes > 0 && sg_tmp) {
1155 n++;
1156 if (skip >= sg_tmp->length) {
1157 skip -= sg_tmp->length;
1158 if (!sg_tmp->length) {
1159 aligned = false;
1160 break;
1161 }
1162 } else {
1163 if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1164 aligned = false;
1165 break;
1166 }
1167
1168 if (nbytes < sg_tmp->length - skip) {
1169 list_ok = false;
1170 break;
1171 }
1172
1173 nbytes -= sg_tmp->length - skip;
1174 skip = 0;
1175 }
1176
1177 sg_tmp = sg_next(sg_tmp);
1178 }
1179
1180 if (!aligned)
1181 return s5p_hash_copy_sgs(ctx, sg, new_len);
1182 else if (!list_ok)
1183 return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1184
1185 /*
1186 * Have aligned data from previous operation and/or current
1187 * Note: will enter here only if (digest or finup) and aligned
1188 */
1189 if (ctx->bufcnt) {
1190 ctx->sg_len = n;
1191 sg_init_table(ctx->sgl, 2);
1192 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1193 sg_chain(ctx->sgl, 2, sg);
1194 ctx->sg = ctx->sgl;
1195 ctx->sg_len++;
1196 } else {
1197 ctx->sg = sg;
1198 ctx->sg_len = n;
1199 }
1200
1201 return 0;
1202 }
1203
1204 /**
1205 * s5p_hash_prepare_request() - prepare request for processing
1206 * @req: AHASH request
1207 * @update: true if UPDATE op
1208 *
1209 * Note 1: we can have update flag _and_ final flag at the same time.
1210 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1211 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1212 * we have final op
1213 */
s5p_hash_prepare_request(struct ahash_request * req,bool update)1214 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1215 {
1216 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1217 bool final = ctx->finup;
1218 int xmit_len, hash_later, nbytes;
1219 int ret;
1220
1221 if (update)
1222 nbytes = req->nbytes;
1223 else
1224 nbytes = 0;
1225
1226 ctx->total = nbytes + ctx->bufcnt;
1227 if (!ctx->total)
1228 return 0;
1229
1230 if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1231 /* bytes left from previous request, so fill up to BUFLEN */
1232 int len = BUFLEN - ctx->bufcnt % BUFLEN;
1233
1234 if (len > nbytes)
1235 len = nbytes;
1236
1237 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1238 0, len, 0);
1239 ctx->bufcnt += len;
1240 nbytes -= len;
1241 ctx->skip = len;
1242 } else {
1243 ctx->skip = 0;
1244 }
1245
1246 if (ctx->bufcnt)
1247 memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1248
1249 xmit_len = ctx->total;
1250 if (final) {
1251 hash_later = 0;
1252 } else {
1253 if (IS_ALIGNED(xmit_len, BUFLEN))
1254 xmit_len -= BUFLEN;
1255 else
1256 xmit_len -= xmit_len & (BUFLEN - 1);
1257
1258 hash_later = ctx->total - xmit_len;
1259 /* copy hash_later bytes from end of req->src */
1260 /* previous bytes are in xmit_buf, so no overwrite */
1261 scatterwalk_map_and_copy(ctx->buffer, req->src,
1262 req->nbytes - hash_later,
1263 hash_later, 0);
1264 }
1265
1266 if (xmit_len > BUFLEN) {
1267 ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1268 final);
1269 if (ret)
1270 return ret;
1271 } else {
1272 /* have buffered data only */
1273 if (unlikely(!ctx->bufcnt)) {
1274 /* first update didn't fill up buffer */
1275 scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1276 0, xmit_len, 0);
1277 }
1278
1279 sg_init_table(ctx->sgl, 1);
1280 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1281
1282 ctx->sg = ctx->sgl;
1283 ctx->sg_len = 1;
1284 }
1285
1286 ctx->bufcnt = hash_later;
1287 if (!final)
1288 ctx->total = xmit_len;
1289
1290 return 0;
1291 }
1292
1293 /**
1294 * s5p_hash_update_dma_stop() - unmap DMA
1295 * @dd: secss device
1296 *
1297 * Unmap scatterlist ctx->sg.
1298 */
s5p_hash_update_dma_stop(struct s5p_aes_dev * dd)1299 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1300 {
1301 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1302
1303 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1304 clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1305 }
1306
1307 /**
1308 * s5p_hash_finish() - copy calculated digest to crypto layer
1309 * @req: AHASH request
1310 */
s5p_hash_finish(struct ahash_request * req)1311 static void s5p_hash_finish(struct ahash_request *req)
1312 {
1313 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1314 struct s5p_aes_dev *dd = ctx->dd;
1315
1316 if (ctx->digcnt)
1317 s5p_hash_copy_result(req);
1318
1319 dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1320 }
1321
1322 /**
1323 * s5p_hash_finish_req() - finish request
1324 * @req: AHASH request
1325 * @err: error
1326 */
s5p_hash_finish_req(struct ahash_request * req,int err)1327 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1328 {
1329 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1330 struct s5p_aes_dev *dd = ctx->dd;
1331 unsigned long flags;
1332
1333 if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1334 free_pages((unsigned long)sg_virt(ctx->sg),
1335 get_order(ctx->sg->length));
1336
1337 if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1338 kfree(ctx->sg);
1339
1340 ctx->sg = NULL;
1341 dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1342 BIT(HASH_FLAGS_SGS_COPIED));
1343
1344 if (!err && !ctx->error) {
1345 s5p_hash_read_msg(req);
1346 if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1347 s5p_hash_finish(req);
1348 } else {
1349 ctx->error = true;
1350 }
1351
1352 spin_lock_irqsave(&dd->hash_lock, flags);
1353 dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1354 BIT(HASH_FLAGS_DMA_READY) |
1355 BIT(HASH_FLAGS_OUTPUT_READY));
1356 spin_unlock_irqrestore(&dd->hash_lock, flags);
1357
1358 if (req->base.complete)
1359 req->base.complete(&req->base, err);
1360 }
1361
1362 /**
1363 * s5p_hash_handle_queue() - handle hash queue
1364 * @dd: device s5p_aes_dev
1365 * @req: AHASH request
1366 *
1367 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1368 * device then processes the first request from the dd->queue
1369 *
1370 * Returns: see s5p_hash_final below.
1371 */
s5p_hash_handle_queue(struct s5p_aes_dev * dd,struct ahash_request * req)1372 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1373 struct ahash_request *req)
1374 {
1375 struct crypto_async_request *async_req, *backlog;
1376 struct s5p_hash_reqctx *ctx;
1377 unsigned long flags;
1378 int err = 0, ret = 0;
1379
1380 retry:
1381 spin_lock_irqsave(&dd->hash_lock, flags);
1382 if (req)
1383 ret = ahash_enqueue_request(&dd->hash_queue, req);
1384
1385 if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1386 spin_unlock_irqrestore(&dd->hash_lock, flags);
1387 return ret;
1388 }
1389
1390 backlog = crypto_get_backlog(&dd->hash_queue);
1391 async_req = crypto_dequeue_request(&dd->hash_queue);
1392 if (async_req)
1393 set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1394
1395 spin_unlock_irqrestore(&dd->hash_lock, flags);
1396
1397 if (!async_req)
1398 return ret;
1399
1400 if (backlog)
1401 backlog->complete(backlog, -EINPROGRESS);
1402
1403 req = ahash_request_cast(async_req);
1404 dd->hash_req = req;
1405 ctx = ahash_request_ctx(req);
1406
1407 err = s5p_hash_prepare_request(req, ctx->op_update);
1408 if (err || !ctx->total)
1409 goto out;
1410
1411 dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1412 ctx->op_update, req->nbytes);
1413
1414 s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1415 if (ctx->digcnt)
1416 s5p_hash_write_iv(req); /* restore hash IV */
1417
1418 if (ctx->op_update) { /* HASH_OP_UPDATE */
1419 err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1420 if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1421 /* no final() after finup() */
1422 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1423 } else { /* HASH_OP_FINAL */
1424 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1425 }
1426 out:
1427 if (err != -EINPROGRESS) {
1428 /* hash_tasklet_cb will not finish it, so do it here */
1429 s5p_hash_finish_req(req, err);
1430 req = NULL;
1431
1432 /*
1433 * Execute next request immediately if there is anything
1434 * in queue.
1435 */
1436 goto retry;
1437 }
1438
1439 return ret;
1440 }
1441
1442 /**
1443 * s5p_hash_tasklet_cb() - hash tasklet
1444 * @data: ptr to s5p_aes_dev
1445 */
s5p_hash_tasklet_cb(unsigned long data)1446 static void s5p_hash_tasklet_cb(unsigned long data)
1447 {
1448 struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1449
1450 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1451 s5p_hash_handle_queue(dd, NULL);
1452 return;
1453 }
1454
1455 if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1456 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1457 &dd->hash_flags)) {
1458 s5p_hash_update_dma_stop(dd);
1459 }
1460
1461 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1462 &dd->hash_flags)) {
1463 /* hash or semi-hash ready */
1464 clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1465 goto finish;
1466 }
1467 }
1468
1469 return;
1470
1471 finish:
1472 /* finish curent request */
1473 s5p_hash_finish_req(dd->hash_req, 0);
1474
1475 /* If we are not busy, process next req */
1476 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1477 s5p_hash_handle_queue(dd, NULL);
1478 }
1479
1480 /**
1481 * s5p_hash_enqueue() - enqueue request
1482 * @req: AHASH request
1483 * @op: operation UPDATE (true) or FINAL (false)
1484 *
1485 * Returns: see s5p_hash_final below.
1486 */
s5p_hash_enqueue(struct ahash_request * req,bool op)1487 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1488 {
1489 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1490 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1491
1492 ctx->op_update = op;
1493
1494 return s5p_hash_handle_queue(tctx->dd, req);
1495 }
1496
1497 /**
1498 * s5p_hash_update() - process the hash input data
1499 * @req: AHASH request
1500 *
1501 * If request will fit in buffer, copy it and return immediately
1502 * else enqueue it with OP_UPDATE.
1503 *
1504 * Returns: see s5p_hash_final below.
1505 */
s5p_hash_update(struct ahash_request * req)1506 static int s5p_hash_update(struct ahash_request *req)
1507 {
1508 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1509
1510 if (!req->nbytes)
1511 return 0;
1512
1513 if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1514 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1515 0, req->nbytes, 0);
1516 ctx->bufcnt += req->nbytes;
1517 return 0;
1518 }
1519
1520 return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1521 }
1522
1523 /**
1524 * s5p_hash_shash_digest() - calculate shash digest
1525 * @tfm: crypto transformation
1526 * @flags: tfm flags
1527 * @data: input data
1528 * @len: length of data
1529 * @out: output buffer
1530 */
s5p_hash_shash_digest(struct crypto_shash * tfm,u32 flags,const u8 * data,unsigned int len,u8 * out)1531 static int s5p_hash_shash_digest(struct crypto_shash *tfm, u32 flags,
1532 const u8 *data, unsigned int len, u8 *out)
1533 {
1534 SHASH_DESC_ON_STACK(shash, tfm);
1535
1536 shash->tfm = tfm;
1537
1538 return crypto_shash_digest(shash, data, len, out);
1539 }
1540
1541 /**
1542 * s5p_hash_final_shash() - calculate shash digest
1543 * @req: AHASH request
1544 */
s5p_hash_final_shash(struct ahash_request * req)1545 static int s5p_hash_final_shash(struct ahash_request *req)
1546 {
1547 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1548 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1549
1550 return s5p_hash_shash_digest(tctx->fallback, req->base.flags,
1551 ctx->buffer, ctx->bufcnt, req->result);
1552 }
1553
1554 /**
1555 * s5p_hash_final() - close up hash and calculate digest
1556 * @req: AHASH request
1557 *
1558 * Note: in final req->src do not have any data, and req->nbytes can be
1559 * non-zero.
1560 *
1561 * If there were no input data processed yet and the buffered hash data is
1562 * less than BUFLEN (64) then calculate the final hash immediately by using
1563 * SW algorithm fallback.
1564 *
1565 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1566 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1567 * previous update op, so there are always some buffered bytes in ctx->buffer,
1568 * which means that ctx->bufcnt!=0
1569 *
1570 * Returns:
1571 * 0 if the request has been processed immediately,
1572 * -EINPROGRESS if the operation has been queued for later execution or is set
1573 * to processing by HW,
1574 * -EBUSY if queue is full and request should be resubmitted later,
1575 * other negative values denotes an error.
1576 */
s5p_hash_final(struct ahash_request * req)1577 static int s5p_hash_final(struct ahash_request *req)
1578 {
1579 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1580
1581 ctx->finup = true;
1582 if (ctx->error)
1583 return -EINVAL; /* uncompleted hash is not needed */
1584
1585 if (!ctx->digcnt && ctx->bufcnt < BUFLEN)
1586 return s5p_hash_final_shash(req);
1587
1588 return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1589 }
1590
1591 /**
1592 * s5p_hash_finup() - process last req->src and calculate digest
1593 * @req: AHASH request containing the last update data
1594 *
1595 * Return values: see s5p_hash_final above.
1596 */
s5p_hash_finup(struct ahash_request * req)1597 static int s5p_hash_finup(struct ahash_request *req)
1598 {
1599 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1600 int err1, err2;
1601
1602 ctx->finup = true;
1603
1604 err1 = s5p_hash_update(req);
1605 if (err1 == -EINPROGRESS || err1 == -EBUSY)
1606 return err1;
1607
1608 /*
1609 * final() has to be always called to cleanup resources even if
1610 * update() failed, except EINPROGRESS or calculate digest for small
1611 * size
1612 */
1613 err2 = s5p_hash_final(req);
1614
1615 return err1 ?: err2;
1616 }
1617
1618 /**
1619 * s5p_hash_init() - initialize AHASH request contex
1620 * @req: AHASH request
1621 *
1622 * Init async hash request context.
1623 */
s5p_hash_init(struct ahash_request * req)1624 static int s5p_hash_init(struct ahash_request *req)
1625 {
1626 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1627 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1628 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1629
1630 ctx->dd = tctx->dd;
1631 ctx->error = false;
1632 ctx->finup = false;
1633 ctx->bufcnt = 0;
1634 ctx->digcnt = 0;
1635 ctx->total = 0;
1636 ctx->skip = 0;
1637
1638 dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1639 crypto_ahash_digestsize(tfm));
1640
1641 switch (crypto_ahash_digestsize(tfm)) {
1642 case MD5_DIGEST_SIZE:
1643 ctx->engine = SSS_HASH_ENGINE_MD5;
1644 ctx->nregs = HASH_MD5_MAX_REG;
1645 break;
1646 case SHA1_DIGEST_SIZE:
1647 ctx->engine = SSS_HASH_ENGINE_SHA1;
1648 ctx->nregs = HASH_SHA1_MAX_REG;
1649 break;
1650 case SHA256_DIGEST_SIZE:
1651 ctx->engine = SSS_HASH_ENGINE_SHA256;
1652 ctx->nregs = HASH_SHA256_MAX_REG;
1653 break;
1654 default:
1655 ctx->error = true;
1656 return -EINVAL;
1657 }
1658
1659 return 0;
1660 }
1661
1662 /**
1663 * s5p_hash_digest - calculate digest from req->src
1664 * @req: AHASH request
1665 *
1666 * Return values: see s5p_hash_final above.
1667 */
s5p_hash_digest(struct ahash_request * req)1668 static int s5p_hash_digest(struct ahash_request *req)
1669 {
1670 return s5p_hash_init(req) ?: s5p_hash_finup(req);
1671 }
1672
1673 /**
1674 * s5p_hash_cra_init_alg - init crypto alg transformation
1675 * @tfm: crypto transformation
1676 */
s5p_hash_cra_init_alg(struct crypto_tfm * tfm)1677 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1678 {
1679 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1680 const char *alg_name = crypto_tfm_alg_name(tfm);
1681
1682 tctx->dd = s5p_dev;
1683 /* Allocate a fallback and abort if it failed. */
1684 tctx->fallback = crypto_alloc_shash(alg_name, 0,
1685 CRYPTO_ALG_NEED_FALLBACK);
1686 if (IS_ERR(tctx->fallback)) {
1687 pr_err("fallback alloc fails for '%s'\n", alg_name);
1688 return PTR_ERR(tctx->fallback);
1689 }
1690
1691 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1692 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1693
1694 return 0;
1695 }
1696
1697 /**
1698 * s5p_hash_cra_init - init crypto tfm
1699 * @tfm: crypto transformation
1700 */
s5p_hash_cra_init(struct crypto_tfm * tfm)1701 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1702 {
1703 return s5p_hash_cra_init_alg(tfm);
1704 }
1705
1706 /**
1707 * s5p_hash_cra_exit - exit crypto tfm
1708 * @tfm: crypto transformation
1709 *
1710 * free allocated fallback
1711 */
s5p_hash_cra_exit(struct crypto_tfm * tfm)1712 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1713 {
1714 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1715
1716 crypto_free_shash(tctx->fallback);
1717 tctx->fallback = NULL;
1718 }
1719
1720 /**
1721 * s5p_hash_export - export hash state
1722 * @req: AHASH request
1723 * @out: buffer for exported state
1724 */
s5p_hash_export(struct ahash_request * req,void * out)1725 static int s5p_hash_export(struct ahash_request *req, void *out)
1726 {
1727 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1728
1729 memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1730
1731 return 0;
1732 }
1733
1734 /**
1735 * s5p_hash_import - import hash state
1736 * @req: AHASH request
1737 * @in: buffer with state to be imported from
1738 */
s5p_hash_import(struct ahash_request * req,const void * in)1739 static int s5p_hash_import(struct ahash_request *req, const void *in)
1740 {
1741 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1742 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1743 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1744 const struct s5p_hash_reqctx *ctx_in = in;
1745
1746 memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1747 if (ctx_in->bufcnt > BUFLEN) {
1748 ctx->error = true;
1749 return -EINVAL;
1750 }
1751
1752 ctx->dd = tctx->dd;
1753 ctx->error = false;
1754
1755 return 0;
1756 }
1757
1758 static struct ahash_alg algs_sha1_md5_sha256[] = {
1759 {
1760 .init = s5p_hash_init,
1761 .update = s5p_hash_update,
1762 .final = s5p_hash_final,
1763 .finup = s5p_hash_finup,
1764 .digest = s5p_hash_digest,
1765 .export = s5p_hash_export,
1766 .import = s5p_hash_import,
1767 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1768 .halg.digestsize = SHA1_DIGEST_SIZE,
1769 .halg.base = {
1770 .cra_name = "sha1",
1771 .cra_driver_name = "exynos-sha1",
1772 .cra_priority = 100,
1773 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1774 CRYPTO_ALG_ASYNC |
1775 CRYPTO_ALG_NEED_FALLBACK,
1776 .cra_blocksize = HASH_BLOCK_SIZE,
1777 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1778 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1779 .cra_module = THIS_MODULE,
1780 .cra_init = s5p_hash_cra_init,
1781 .cra_exit = s5p_hash_cra_exit,
1782 }
1783 },
1784 {
1785 .init = s5p_hash_init,
1786 .update = s5p_hash_update,
1787 .final = s5p_hash_final,
1788 .finup = s5p_hash_finup,
1789 .digest = s5p_hash_digest,
1790 .export = s5p_hash_export,
1791 .import = s5p_hash_import,
1792 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1793 .halg.digestsize = MD5_DIGEST_SIZE,
1794 .halg.base = {
1795 .cra_name = "md5",
1796 .cra_driver_name = "exynos-md5",
1797 .cra_priority = 100,
1798 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1799 CRYPTO_ALG_ASYNC |
1800 CRYPTO_ALG_NEED_FALLBACK,
1801 .cra_blocksize = HASH_BLOCK_SIZE,
1802 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1803 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1804 .cra_module = THIS_MODULE,
1805 .cra_init = s5p_hash_cra_init,
1806 .cra_exit = s5p_hash_cra_exit,
1807 }
1808 },
1809 {
1810 .init = s5p_hash_init,
1811 .update = s5p_hash_update,
1812 .final = s5p_hash_final,
1813 .finup = s5p_hash_finup,
1814 .digest = s5p_hash_digest,
1815 .export = s5p_hash_export,
1816 .import = s5p_hash_import,
1817 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1818 .halg.digestsize = SHA256_DIGEST_SIZE,
1819 .halg.base = {
1820 .cra_name = "sha256",
1821 .cra_driver_name = "exynos-sha256",
1822 .cra_priority = 100,
1823 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1824 CRYPTO_ALG_ASYNC |
1825 CRYPTO_ALG_NEED_FALLBACK,
1826 .cra_blocksize = HASH_BLOCK_SIZE,
1827 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1828 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1829 .cra_module = THIS_MODULE,
1830 .cra_init = s5p_hash_cra_init,
1831 .cra_exit = s5p_hash_cra_exit,
1832 }
1833 }
1834
1835 };
1836
s5p_set_aes(struct s5p_aes_dev * dev,const u8 * key,const u8 * iv,const u8 * ctr,unsigned int keylen)1837 static void s5p_set_aes(struct s5p_aes_dev *dev,
1838 const u8 *key, const u8 *iv, const u8 *ctr,
1839 unsigned int keylen)
1840 {
1841 void __iomem *keystart;
1842
1843 if (iv)
1844 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1845 AES_BLOCK_SIZE);
1846
1847 if (ctr)
1848 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1849 AES_BLOCK_SIZE);
1850
1851 if (keylen == AES_KEYSIZE_256)
1852 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1853 else if (keylen == AES_KEYSIZE_192)
1854 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1855 else
1856 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1857
1858 memcpy_toio(keystart, key, keylen);
1859 }
1860
s5p_is_sg_aligned(struct scatterlist * sg)1861 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1862 {
1863 while (sg) {
1864 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1865 return false;
1866 sg = sg_next(sg);
1867 }
1868
1869 return true;
1870 }
1871
s5p_set_indata_start(struct s5p_aes_dev * dev,struct ablkcipher_request * req)1872 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1873 struct ablkcipher_request *req)
1874 {
1875 struct scatterlist *sg;
1876 int err;
1877
1878 dev->sg_src_cpy = NULL;
1879 sg = req->src;
1880 if (!s5p_is_sg_aligned(sg)) {
1881 dev_dbg(dev->dev,
1882 "At least one unaligned source scatter list, making a copy\n");
1883 err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1884 if (err)
1885 return err;
1886
1887 sg = dev->sg_src_cpy;
1888 }
1889
1890 err = s5p_set_indata(dev, sg);
1891 if (err) {
1892 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1893 return err;
1894 }
1895
1896 return 0;
1897 }
1898
s5p_set_outdata_start(struct s5p_aes_dev * dev,struct ablkcipher_request * req)1899 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1900 struct ablkcipher_request *req)
1901 {
1902 struct scatterlist *sg;
1903 int err;
1904
1905 dev->sg_dst_cpy = NULL;
1906 sg = req->dst;
1907 if (!s5p_is_sg_aligned(sg)) {
1908 dev_dbg(dev->dev,
1909 "At least one unaligned dest scatter list, making a copy\n");
1910 err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1911 if (err)
1912 return err;
1913
1914 sg = dev->sg_dst_cpy;
1915 }
1916
1917 err = s5p_set_outdata(dev, sg);
1918 if (err) {
1919 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1920 return err;
1921 }
1922
1923 return 0;
1924 }
1925
s5p_aes_crypt_start(struct s5p_aes_dev * dev,unsigned long mode)1926 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1927 {
1928 struct ablkcipher_request *req = dev->req;
1929 u32 aes_control;
1930 unsigned long flags;
1931 int err;
1932 u8 *iv, *ctr;
1933
1934 /* This sets bit [13:12] to 00, which selects 128-bit counter */
1935 aes_control = SSS_AES_KEY_CHANGE_MODE;
1936 if (mode & FLAGS_AES_DECRYPT)
1937 aes_control |= SSS_AES_MODE_DECRYPT;
1938
1939 if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1940 aes_control |= SSS_AES_CHAIN_MODE_CBC;
1941 iv = req->info;
1942 ctr = NULL;
1943 } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1944 aes_control |= SSS_AES_CHAIN_MODE_CTR;
1945 iv = NULL;
1946 ctr = req->info;
1947 } else {
1948 iv = NULL; /* AES_ECB */
1949 ctr = NULL;
1950 }
1951
1952 if (dev->ctx->keylen == AES_KEYSIZE_192)
1953 aes_control |= SSS_AES_KEY_SIZE_192;
1954 else if (dev->ctx->keylen == AES_KEYSIZE_256)
1955 aes_control |= SSS_AES_KEY_SIZE_256;
1956
1957 aes_control |= SSS_AES_FIFO_MODE;
1958
1959 /* as a variant it is possible to use byte swapping on DMA side */
1960 aes_control |= SSS_AES_BYTESWAP_DI
1961 | SSS_AES_BYTESWAP_DO
1962 | SSS_AES_BYTESWAP_IV
1963 | SSS_AES_BYTESWAP_KEY
1964 | SSS_AES_BYTESWAP_CNT;
1965
1966 spin_lock_irqsave(&dev->lock, flags);
1967
1968 SSS_WRITE(dev, FCINTENCLR,
1969 SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1970 SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1971
1972 err = s5p_set_indata_start(dev, req);
1973 if (err)
1974 goto indata_error;
1975
1976 err = s5p_set_outdata_start(dev, req);
1977 if (err)
1978 goto outdata_error;
1979
1980 SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1981 s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1982
1983 s5p_set_dma_indata(dev, dev->sg_src);
1984 s5p_set_dma_outdata(dev, dev->sg_dst);
1985
1986 SSS_WRITE(dev, FCINTENSET,
1987 SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1988
1989 spin_unlock_irqrestore(&dev->lock, flags);
1990
1991 return;
1992
1993 outdata_error:
1994 s5p_unset_indata(dev);
1995
1996 indata_error:
1997 s5p_sg_done(dev);
1998 dev->busy = false;
1999 spin_unlock_irqrestore(&dev->lock, flags);
2000 s5p_aes_complete(req, err);
2001 }
2002
s5p_tasklet_cb(unsigned long data)2003 static void s5p_tasklet_cb(unsigned long data)
2004 {
2005 struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
2006 struct crypto_async_request *async_req, *backlog;
2007 struct s5p_aes_reqctx *reqctx;
2008 unsigned long flags;
2009
2010 spin_lock_irqsave(&dev->lock, flags);
2011 backlog = crypto_get_backlog(&dev->queue);
2012 async_req = crypto_dequeue_request(&dev->queue);
2013
2014 if (!async_req) {
2015 dev->busy = false;
2016 spin_unlock_irqrestore(&dev->lock, flags);
2017 return;
2018 }
2019 spin_unlock_irqrestore(&dev->lock, flags);
2020
2021 if (backlog)
2022 backlog->complete(backlog, -EINPROGRESS);
2023
2024 dev->req = ablkcipher_request_cast(async_req);
2025 dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
2026 reqctx = ablkcipher_request_ctx(dev->req);
2027
2028 s5p_aes_crypt_start(dev, reqctx->mode);
2029 }
2030
s5p_aes_handle_req(struct s5p_aes_dev * dev,struct ablkcipher_request * req)2031 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2032 struct ablkcipher_request *req)
2033 {
2034 unsigned long flags;
2035 int err;
2036
2037 spin_lock_irqsave(&dev->lock, flags);
2038 err = ablkcipher_enqueue_request(&dev->queue, req);
2039 if (dev->busy) {
2040 spin_unlock_irqrestore(&dev->lock, flags);
2041 return err;
2042 }
2043 dev->busy = true;
2044
2045 spin_unlock_irqrestore(&dev->lock, flags);
2046
2047 tasklet_schedule(&dev->tasklet);
2048
2049 return err;
2050 }
2051
s5p_aes_crypt(struct ablkcipher_request * req,unsigned long mode)2052 static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
2053 {
2054 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
2055 struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
2056 struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
2057 struct s5p_aes_dev *dev = ctx->dev;
2058
2059 if (!req->nbytes)
2060 return 0;
2061
2062 if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE) &&
2063 ((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2064 dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
2065 return -EINVAL;
2066 }
2067
2068 reqctx->mode = mode;
2069
2070 return s5p_aes_handle_req(dev, req);
2071 }
2072
s5p_aes_setkey(struct crypto_ablkcipher * cipher,const u8 * key,unsigned int keylen)2073 static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
2074 const u8 *key, unsigned int keylen)
2075 {
2076 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2077 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2078
2079 if (keylen != AES_KEYSIZE_128 &&
2080 keylen != AES_KEYSIZE_192 &&
2081 keylen != AES_KEYSIZE_256)
2082 return -EINVAL;
2083
2084 memcpy(ctx->aes_key, key, keylen);
2085 ctx->keylen = keylen;
2086
2087 return 0;
2088 }
2089
s5p_aes_ecb_encrypt(struct ablkcipher_request * req)2090 static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
2091 {
2092 return s5p_aes_crypt(req, 0);
2093 }
2094
s5p_aes_ecb_decrypt(struct ablkcipher_request * req)2095 static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
2096 {
2097 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2098 }
2099
s5p_aes_cbc_encrypt(struct ablkcipher_request * req)2100 static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
2101 {
2102 return s5p_aes_crypt(req, FLAGS_AES_CBC);
2103 }
2104
s5p_aes_cbc_decrypt(struct ablkcipher_request * req)2105 static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
2106 {
2107 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2108 }
2109
s5p_aes_ctr_crypt(struct ablkcipher_request * req)2110 static int s5p_aes_ctr_crypt(struct ablkcipher_request *req)
2111 {
2112 return s5p_aes_crypt(req, FLAGS_AES_CTR);
2113 }
2114
s5p_aes_cra_init(struct crypto_tfm * tfm)2115 static int s5p_aes_cra_init(struct crypto_tfm *tfm)
2116 {
2117 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2118
2119 ctx->dev = s5p_dev;
2120 tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);
2121
2122 return 0;
2123 }
2124
2125 static struct crypto_alg algs[] = {
2126 {
2127 .cra_name = "ecb(aes)",
2128 .cra_driver_name = "ecb-aes-s5p",
2129 .cra_priority = 100,
2130 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2131 CRYPTO_ALG_ASYNC |
2132 CRYPTO_ALG_KERN_DRIVER_ONLY,
2133 .cra_blocksize = AES_BLOCK_SIZE,
2134 .cra_ctxsize = sizeof(struct s5p_aes_ctx),
2135 .cra_alignmask = 0x0f,
2136 .cra_type = &crypto_ablkcipher_type,
2137 .cra_module = THIS_MODULE,
2138 .cra_init = s5p_aes_cra_init,
2139 .cra_u.ablkcipher = {
2140 .min_keysize = AES_MIN_KEY_SIZE,
2141 .max_keysize = AES_MAX_KEY_SIZE,
2142 .setkey = s5p_aes_setkey,
2143 .encrypt = s5p_aes_ecb_encrypt,
2144 .decrypt = s5p_aes_ecb_decrypt,
2145 }
2146 },
2147 {
2148 .cra_name = "cbc(aes)",
2149 .cra_driver_name = "cbc-aes-s5p",
2150 .cra_priority = 100,
2151 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2152 CRYPTO_ALG_ASYNC |
2153 CRYPTO_ALG_KERN_DRIVER_ONLY,
2154 .cra_blocksize = AES_BLOCK_SIZE,
2155 .cra_ctxsize = sizeof(struct s5p_aes_ctx),
2156 .cra_alignmask = 0x0f,
2157 .cra_type = &crypto_ablkcipher_type,
2158 .cra_module = THIS_MODULE,
2159 .cra_init = s5p_aes_cra_init,
2160 .cra_u.ablkcipher = {
2161 .min_keysize = AES_MIN_KEY_SIZE,
2162 .max_keysize = AES_MAX_KEY_SIZE,
2163 .ivsize = AES_BLOCK_SIZE,
2164 .setkey = s5p_aes_setkey,
2165 .encrypt = s5p_aes_cbc_encrypt,
2166 .decrypt = s5p_aes_cbc_decrypt,
2167 }
2168 },
2169 {
2170 .cra_name = "ctr(aes)",
2171 .cra_driver_name = "ctr-aes-s5p",
2172 .cra_priority = 100,
2173 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2174 CRYPTO_ALG_ASYNC |
2175 CRYPTO_ALG_KERN_DRIVER_ONLY,
2176 .cra_blocksize = 1,
2177 .cra_ctxsize = sizeof(struct s5p_aes_ctx),
2178 .cra_alignmask = 0x0f,
2179 .cra_type = &crypto_ablkcipher_type,
2180 .cra_module = THIS_MODULE,
2181 .cra_init = s5p_aes_cra_init,
2182 .cra_u.ablkcipher = {
2183 .min_keysize = AES_MIN_KEY_SIZE,
2184 .max_keysize = AES_MAX_KEY_SIZE,
2185 .ivsize = AES_BLOCK_SIZE,
2186 .setkey = s5p_aes_setkey,
2187 .encrypt = s5p_aes_ctr_crypt,
2188 .decrypt = s5p_aes_ctr_crypt,
2189 }
2190 },
2191 };
2192
s5p_aes_probe(struct platform_device * pdev)2193 static int s5p_aes_probe(struct platform_device *pdev)
2194 {
2195 struct device *dev = &pdev->dev;
2196 int i, j, err = -ENODEV;
2197 const struct samsung_aes_variant *variant;
2198 struct s5p_aes_dev *pdata;
2199 struct resource *res;
2200 unsigned int hash_i;
2201
2202 if (s5p_dev)
2203 return -EEXIST;
2204
2205 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2206 if (!pdata)
2207 return -ENOMEM;
2208
2209 variant = find_s5p_sss_version(pdev);
2210 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2211
2212 /*
2213 * Note: HASH and PRNG uses the same registers in secss, avoid
2214 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2215 * is enabled in config. We need larger size for HASH registers in
2216 * secss, current describe only AES/DES
2217 */
2218 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2219 if (variant == &exynos_aes_data) {
2220 res->end += 0x300;
2221 pdata->use_hash = true;
2222 }
2223 }
2224
2225 pdata->res = res;
2226 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2227 if (IS_ERR(pdata->ioaddr)) {
2228 if (!pdata->use_hash)
2229 return PTR_ERR(pdata->ioaddr);
2230 /* try AES without HASH */
2231 res->end -= 0x300;
2232 pdata->use_hash = false;
2233 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2234 if (IS_ERR(pdata->ioaddr))
2235 return PTR_ERR(pdata->ioaddr);
2236 }
2237
2238 pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2239 if (IS_ERR(pdata->clk)) {
2240 dev_err(dev, "failed to find secss clock %s\n",
2241 variant->clk_names[0]);
2242 return -ENOENT;
2243 }
2244
2245 err = clk_prepare_enable(pdata->clk);
2246 if (err < 0) {
2247 dev_err(dev, "Enabling clock %s failed, err %d\n",
2248 variant->clk_names[0], err);
2249 return err;
2250 }
2251
2252 if (variant->clk_names[1]) {
2253 pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2254 if (IS_ERR(pdata->pclk)) {
2255 dev_err(dev, "failed to find clock %s\n",
2256 variant->clk_names[1]);
2257 err = -ENOENT;
2258 goto err_clk;
2259 }
2260
2261 err = clk_prepare_enable(pdata->pclk);
2262 if (err < 0) {
2263 dev_err(dev, "Enabling clock %s failed, err %d\n",
2264 variant->clk_names[0], err);
2265 goto err_clk;
2266 }
2267 } else {
2268 pdata->pclk = NULL;
2269 }
2270
2271 spin_lock_init(&pdata->lock);
2272 spin_lock_init(&pdata->hash_lock);
2273
2274 pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2275 pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2276
2277 pdata->irq_fc = platform_get_irq(pdev, 0);
2278 if (pdata->irq_fc < 0) {
2279 err = pdata->irq_fc;
2280 dev_warn(dev, "feed control interrupt is not available.\n");
2281 goto err_irq;
2282 }
2283 err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2284 s5p_aes_interrupt, IRQF_ONESHOT,
2285 pdev->name, pdev);
2286 if (err < 0) {
2287 dev_warn(dev, "feed control interrupt is not available.\n");
2288 goto err_irq;
2289 }
2290
2291 pdata->busy = false;
2292 pdata->dev = dev;
2293 platform_set_drvdata(pdev, pdata);
2294 s5p_dev = pdata;
2295
2296 tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2297 crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2298
2299 for (i = 0; i < ARRAY_SIZE(algs); i++) {
2300 err = crypto_register_alg(&algs[i]);
2301 if (err)
2302 goto err_algs;
2303 }
2304
2305 if (pdata->use_hash) {
2306 tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2307 (unsigned long)pdata);
2308 crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2309
2310 for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2311 hash_i++) {
2312 struct ahash_alg *alg;
2313
2314 alg = &algs_sha1_md5_sha256[hash_i];
2315 err = crypto_register_ahash(alg);
2316 if (err) {
2317 dev_err(dev, "can't register '%s': %d\n",
2318 alg->halg.base.cra_driver_name, err);
2319 goto err_hash;
2320 }
2321 }
2322 }
2323
2324 dev_info(dev, "s5p-sss driver registered\n");
2325
2326 return 0;
2327
2328 err_hash:
2329 for (j = hash_i - 1; j >= 0; j--)
2330 crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2331
2332 tasklet_kill(&pdata->hash_tasklet);
2333 res->end -= 0x300;
2334
2335 err_algs:
2336 if (i < ARRAY_SIZE(algs))
2337 dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name,
2338 err);
2339
2340 for (j = 0; j < i; j++)
2341 crypto_unregister_alg(&algs[j]);
2342
2343 tasklet_kill(&pdata->tasklet);
2344
2345 err_irq:
2346 if (pdata->pclk)
2347 clk_disable_unprepare(pdata->pclk);
2348
2349 err_clk:
2350 clk_disable_unprepare(pdata->clk);
2351 s5p_dev = NULL;
2352
2353 return err;
2354 }
2355
s5p_aes_remove(struct platform_device * pdev)2356 static int s5p_aes_remove(struct platform_device *pdev)
2357 {
2358 struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2359 int i;
2360
2361 if (!pdata)
2362 return -ENODEV;
2363
2364 for (i = 0; i < ARRAY_SIZE(algs); i++)
2365 crypto_unregister_alg(&algs[i]);
2366
2367 tasklet_kill(&pdata->tasklet);
2368 if (pdata->use_hash) {
2369 for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2370 crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2371
2372 pdata->res->end -= 0x300;
2373 tasklet_kill(&pdata->hash_tasklet);
2374 pdata->use_hash = false;
2375 }
2376
2377 if (pdata->pclk)
2378 clk_disable_unprepare(pdata->pclk);
2379
2380 clk_disable_unprepare(pdata->clk);
2381 s5p_dev = NULL;
2382
2383 return 0;
2384 }
2385
2386 static struct platform_driver s5p_aes_crypto = {
2387 .probe = s5p_aes_probe,
2388 .remove = s5p_aes_remove,
2389 .driver = {
2390 .name = "s5p-secss",
2391 .of_match_table = s5p_sss_dt_match,
2392 },
2393 };
2394
2395 module_platform_driver(s5p_aes_crypto);
2396
2397 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2398 MODULE_LICENSE("GPL v2");
2399 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2400 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2401