1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SuperH MSIOF SPI Controller Interface
4 *
5 * Copyright (c) 2009 Magnus Damm
6 * Copyright (C) 2014 Renesas Electronics Corporation
7 * Copyright (C) 2014-2017 Glider bvba
8 */
9
10 #include <linux/bitmap.h>
11 #include <linux/clk.h>
12 #include <linux/completion.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmaengine.h>
16 #include <linux/err.h>
17 #include <linux/gpio.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/iopoll.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/sh_dma.h>
29
30 #include <linux/spi/sh_msiof.h>
31 #include <linux/spi/spi.h>
32
33 #include <asm/unaligned.h>
34
35 struct sh_msiof_chipdata {
36 u32 bits_per_word_mask;
37 u16 tx_fifo_size;
38 u16 rx_fifo_size;
39 u16 ctlr_flags;
40 u16 min_div_pow;
41 };
42
43 struct sh_msiof_spi_priv {
44 struct spi_controller *ctlr;
45 void __iomem *mapbase;
46 struct clk *clk;
47 struct platform_device *pdev;
48 struct sh_msiof_spi_info *info;
49 struct completion done;
50 struct completion done_txdma;
51 unsigned int tx_fifo_size;
52 unsigned int rx_fifo_size;
53 unsigned int min_div_pow;
54 void *tx_dma_page;
55 void *rx_dma_page;
56 dma_addr_t tx_dma_addr;
57 dma_addr_t rx_dma_addr;
58 unsigned short unused_ss;
59 bool native_cs_inited;
60 bool native_cs_high;
61 bool slave_aborted;
62 };
63
64 #define MAX_SS 3 /* Maximum number of native chip selects */
65
66 #define TMDR1 0x00 /* Transmit Mode Register 1 */
67 #define TMDR2 0x04 /* Transmit Mode Register 2 */
68 #define TMDR3 0x08 /* Transmit Mode Register 3 */
69 #define RMDR1 0x10 /* Receive Mode Register 1 */
70 #define RMDR2 0x14 /* Receive Mode Register 2 */
71 #define RMDR3 0x18 /* Receive Mode Register 3 */
72 #define TSCR 0x20 /* Transmit Clock Select Register */
73 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
74 #define CTR 0x28 /* Control Register */
75 #define FCTR 0x30 /* FIFO Control Register */
76 #define STR 0x40 /* Status Register */
77 #define IER 0x44 /* Interrupt Enable Register */
78 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
79 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
80 #define TFDR 0x50 /* Transmit FIFO Data Register */
81 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
82 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
83 #define RFDR 0x60 /* Receive FIFO Data Register */
84
85 /* TMDR1 and RMDR1 */
86 #define MDR1_TRMD BIT(31) /* Transfer Mode (1 = Master mode) */
87 #define MDR1_SYNCMD_MASK GENMASK(29, 28) /* SYNC Mode */
88 #define MDR1_SYNCMD_SPI (2 << 28)/* Level mode/SPI */
89 #define MDR1_SYNCMD_LR (3 << 28)/* L/R mode */
90 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
91 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
92 #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
93 #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
94 #define MDR1_FLD_MASK GENMASK(3, 2) /* Frame Sync Signal Interval (0-3) */
95 #define MDR1_FLD_SHIFT 2
96 #define MDR1_XXSTP BIT(0) /* Transmission/Reception Stop on FIFO */
97 /* TMDR1 */
98 #define TMDR1_PCON BIT(30) /* Transfer Signal Connection */
99 #define TMDR1_SYNCCH_MASK GENMASK(27, 26) /* Sync Signal Channel Select */
100 #define TMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
101
102 /* TMDR2 and RMDR2 */
103 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
104 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
105 #define MDR2_GRPMASK1 BIT(0) /* Group Output Mask 1 (SH, A1) */
106
107 /* TSCR and RSCR */
108 #define SCR_BRPS_MASK GENMASK(12, 8) /* Prescaler Setting (1-32) */
109 #define SCR_BRPS(i) (((i) - 1) << 8)
110 #define SCR_BRDV_MASK GENMASK(2, 0) /* Baud Rate Generator's Division Ratio */
111 #define SCR_BRDV_DIV_2 0
112 #define SCR_BRDV_DIV_4 1
113 #define SCR_BRDV_DIV_8 2
114 #define SCR_BRDV_DIV_16 3
115 #define SCR_BRDV_DIV_32 4
116 #define SCR_BRDV_DIV_1 7
117
118 /* CTR */
119 #define CTR_TSCKIZ_MASK GENMASK(31, 30) /* Transmit Clock I/O Polarity Select */
120 #define CTR_TSCKIZ_SCK BIT(31) /* Disable SCK when TX disabled */
121 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
122 #define CTR_RSCKIZ_MASK GENMASK(29, 28) /* Receive Clock Polarity Select */
123 #define CTR_RSCKIZ_SCK BIT(29) /* Must match CTR_TSCKIZ_SCK */
124 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
125 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
126 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
127 #define CTR_TXDIZ_MASK GENMASK(23, 22) /* Pin Output When TX is Disabled */
128 #define CTR_TXDIZ_LOW (0 << 22) /* 0 */
129 #define CTR_TXDIZ_HIGH (1 << 22) /* 1 */
130 #define CTR_TXDIZ_HIZ (2 << 22) /* High-impedance */
131 #define CTR_TSCKE BIT(15) /* Transmit Serial Clock Output Enable */
132 #define CTR_TFSE BIT(14) /* Transmit Frame Sync Signal Output Enable */
133 #define CTR_TXE BIT(9) /* Transmit Enable */
134 #define CTR_RXE BIT(8) /* Receive Enable */
135 #define CTR_TXRST BIT(1) /* Transmit Reset */
136 #define CTR_RXRST BIT(0) /* Receive Reset */
137
138 /* FCTR */
139 #define FCTR_TFWM_MASK GENMASK(31, 29) /* Transmit FIFO Watermark */
140 #define FCTR_TFWM_64 (0 << 29) /* Transfer Request when 64 empty stages */
141 #define FCTR_TFWM_32 (1 << 29) /* Transfer Request when 32 empty stages */
142 #define FCTR_TFWM_24 (2 << 29) /* Transfer Request when 24 empty stages */
143 #define FCTR_TFWM_16 (3 << 29) /* Transfer Request when 16 empty stages */
144 #define FCTR_TFWM_12 (4 << 29) /* Transfer Request when 12 empty stages */
145 #define FCTR_TFWM_8 (5 << 29) /* Transfer Request when 8 empty stages */
146 #define FCTR_TFWM_4 (6 << 29) /* Transfer Request when 4 empty stages */
147 #define FCTR_TFWM_1 (7 << 29) /* Transfer Request when 1 empty stage */
148 #define FCTR_TFUA_MASK GENMASK(26, 20) /* Transmit FIFO Usable Area */
149 #define FCTR_TFUA_SHIFT 20
150 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
151 #define FCTR_RFWM_MASK GENMASK(15, 13) /* Receive FIFO Watermark */
152 #define FCTR_RFWM_1 (0 << 13) /* Transfer Request when 1 valid stages */
153 #define FCTR_RFWM_4 (1 << 13) /* Transfer Request when 4 valid stages */
154 #define FCTR_RFWM_8 (2 << 13) /* Transfer Request when 8 valid stages */
155 #define FCTR_RFWM_16 (3 << 13) /* Transfer Request when 16 valid stages */
156 #define FCTR_RFWM_32 (4 << 13) /* Transfer Request when 32 valid stages */
157 #define FCTR_RFWM_64 (5 << 13) /* Transfer Request when 64 valid stages */
158 #define FCTR_RFWM_128 (6 << 13) /* Transfer Request when 128 valid stages */
159 #define FCTR_RFWM_256 (7 << 13) /* Transfer Request when 256 valid stages */
160 #define FCTR_RFUA_MASK GENMASK(12, 4) /* Receive FIFO Usable Area (0x40 = full) */
161 #define FCTR_RFUA_SHIFT 4
162 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
163
164 /* STR */
165 #define STR_TFEMP BIT(29) /* Transmit FIFO Empty */
166 #define STR_TDREQ BIT(28) /* Transmit Data Transfer Request */
167 #define STR_TEOF BIT(23) /* Frame Transmission End */
168 #define STR_TFSERR BIT(21) /* Transmit Frame Synchronization Error */
169 #define STR_TFOVF BIT(20) /* Transmit FIFO Overflow */
170 #define STR_TFUDF BIT(19) /* Transmit FIFO Underflow */
171 #define STR_RFFUL BIT(13) /* Receive FIFO Full */
172 #define STR_RDREQ BIT(12) /* Receive Data Transfer Request */
173 #define STR_REOF BIT(7) /* Frame Reception End */
174 #define STR_RFSERR BIT(5) /* Receive Frame Synchronization Error */
175 #define STR_RFUDF BIT(4) /* Receive FIFO Underflow */
176 #define STR_RFOVF BIT(3) /* Receive FIFO Overflow */
177
178 /* IER */
179 #define IER_TDMAE BIT(31) /* Transmit Data DMA Transfer Req. Enable */
180 #define IER_TFEMPE BIT(29) /* Transmit FIFO Empty Enable */
181 #define IER_TDREQE BIT(28) /* Transmit Data Transfer Request Enable */
182 #define IER_TEOFE BIT(23) /* Frame Transmission End Enable */
183 #define IER_TFSERRE BIT(21) /* Transmit Frame Sync Error Enable */
184 #define IER_TFOVFE BIT(20) /* Transmit FIFO Overflow Enable */
185 #define IER_TFUDFE BIT(19) /* Transmit FIFO Underflow Enable */
186 #define IER_RDMAE BIT(15) /* Receive Data DMA Transfer Req. Enable */
187 #define IER_RFFULE BIT(13) /* Receive FIFO Full Enable */
188 #define IER_RDREQE BIT(12) /* Receive Data Transfer Request Enable */
189 #define IER_REOFE BIT(7) /* Frame Reception End Enable */
190 #define IER_RFSERRE BIT(5) /* Receive Frame Sync Error Enable */
191 #define IER_RFUDFE BIT(4) /* Receive FIFO Underflow Enable */
192 #define IER_RFOVFE BIT(3) /* Receive FIFO Overflow Enable */
193
194
sh_msiof_read(struct sh_msiof_spi_priv * p,int reg_offs)195 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
196 {
197 switch (reg_offs) {
198 case TSCR:
199 case RSCR:
200 return ioread16(p->mapbase + reg_offs);
201 default:
202 return ioread32(p->mapbase + reg_offs);
203 }
204 }
205
sh_msiof_write(struct sh_msiof_spi_priv * p,int reg_offs,u32 value)206 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
207 u32 value)
208 {
209 switch (reg_offs) {
210 case TSCR:
211 case RSCR:
212 iowrite16(value, p->mapbase + reg_offs);
213 break;
214 default:
215 iowrite32(value, p->mapbase + reg_offs);
216 break;
217 }
218 }
219
sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv * p,u32 clr,u32 set)220 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
221 u32 clr, u32 set)
222 {
223 u32 mask = clr | set;
224 u32 data;
225
226 data = sh_msiof_read(p, CTR);
227 data &= ~clr;
228 data |= set;
229 sh_msiof_write(p, CTR, data);
230
231 return readl_poll_timeout_atomic(p->mapbase + CTR, data,
232 (data & mask) == set, 1, 100);
233 }
234
sh_msiof_spi_irq(int irq,void * data)235 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
236 {
237 struct sh_msiof_spi_priv *p = data;
238
239 /* just disable the interrupt and wake up */
240 sh_msiof_write(p, IER, 0);
241 complete(&p->done);
242
243 return IRQ_HANDLED;
244 }
245
sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv * p)246 static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
247 {
248 u32 mask = CTR_TXRST | CTR_RXRST;
249 u32 data;
250
251 data = sh_msiof_read(p, CTR);
252 data |= mask;
253 sh_msiof_write(p, CTR, data);
254
255 readl_poll_timeout_atomic(p->mapbase + CTR, data, !(data & mask), 1,
256 100);
257 }
258
259 static const u32 sh_msiof_spi_div_array[] = {
260 SCR_BRDV_DIV_1, SCR_BRDV_DIV_2, SCR_BRDV_DIV_4,
261 SCR_BRDV_DIV_8, SCR_BRDV_DIV_16, SCR_BRDV_DIV_32,
262 };
263
sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv * p,unsigned long parent_rate,u32 spi_hz)264 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
265 unsigned long parent_rate, u32 spi_hz)
266 {
267 unsigned long div;
268 u32 brps, scr;
269 unsigned int div_pow = p->min_div_pow;
270
271 if (!spi_hz || !parent_rate) {
272 WARN(1, "Invalid clock rate parameters %lu and %u\n",
273 parent_rate, spi_hz);
274 return;
275 }
276
277 div = DIV_ROUND_UP(parent_rate, spi_hz);
278 if (div <= 1024) {
279 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
280 if (!div_pow && div <= 32 && div > 2)
281 div_pow = 1;
282
283 if (div_pow)
284 brps = (div + 1) >> div_pow;
285 else
286 brps = div;
287
288 for (; brps > 32; div_pow++)
289 brps = (brps + 1) >> 1;
290 } else {
291 /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
292 dev_err(&p->pdev->dev,
293 "Requested SPI transfer rate %d is too low\n", spi_hz);
294 div_pow = 5;
295 brps = 32;
296 }
297
298 scr = sh_msiof_spi_div_array[div_pow] | SCR_BRPS(brps);
299 sh_msiof_write(p, TSCR, scr);
300 if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
301 sh_msiof_write(p, RSCR, scr);
302 }
303
sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)304 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
305 {
306 /*
307 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
308 * b'000 : 0
309 * b'001 : 100
310 * b'010 : 200
311 * b'011 (SYNCDL only) : 300
312 * b'101 : 50
313 * b'110 : 150
314 */
315 if (dtdl_or_syncdl % 100)
316 return dtdl_or_syncdl / 100 + 5;
317 else
318 return dtdl_or_syncdl / 100;
319 }
320
sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv * p)321 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
322 {
323 u32 val;
324
325 if (!p->info)
326 return 0;
327
328 /* check if DTDL and SYNCDL is allowed value */
329 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
330 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
331 return 0;
332 }
333
334 /* check if the sum of DTDL and SYNCDL becomes an integer value */
335 if ((p->info->dtdl + p->info->syncdl) % 100) {
336 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
337 return 0;
338 }
339
340 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
341 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
342
343 return val;
344 }
345
sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv * p,u32 ss,u32 cpol,u32 cpha,u32 tx_hi_z,u32 lsb_first,u32 cs_high)346 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
347 u32 cpol, u32 cpha,
348 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
349 {
350 u32 tmp;
351 int edge;
352
353 /*
354 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
355 * 0 0 10 10 1 1
356 * 0 1 10 10 0 0
357 * 1 0 11 11 0 0
358 * 1 1 11 11 1 1
359 */
360 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
361 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
362 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
363 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
364 if (spi_controller_is_slave(p->ctlr)) {
365 sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
366 } else {
367 sh_msiof_write(p, TMDR1,
368 tmp | MDR1_TRMD | TMDR1_PCON |
369 (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
370 }
371 if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
372 /* These bits are reserved if RX needs TX */
373 tmp &= ~0x0000ffff;
374 }
375 sh_msiof_write(p, RMDR1, tmp);
376
377 tmp = 0;
378 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
379 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
380
381 edge = cpol ^ !cpha;
382
383 tmp |= edge << CTR_TEDG_SHIFT;
384 tmp |= edge << CTR_REDG_SHIFT;
385 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
386 sh_msiof_write(p, CTR, tmp);
387 }
388
sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv * p,const void * tx_buf,void * rx_buf,u32 bits,u32 words)389 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
390 const void *tx_buf, void *rx_buf,
391 u32 bits, u32 words)
392 {
393 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
394
395 if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
396 sh_msiof_write(p, TMDR2, dr2);
397 else
398 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
399
400 if (rx_buf)
401 sh_msiof_write(p, RMDR2, dr2);
402 }
403
sh_msiof_reset_str(struct sh_msiof_spi_priv * p)404 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
405 {
406 sh_msiof_write(p, STR,
407 sh_msiof_read(p, STR) & ~(STR_TDREQ | STR_RDREQ));
408 }
409
sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)410 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
411 const void *tx_buf, int words, int fs)
412 {
413 const u8 *buf_8 = tx_buf;
414 int k;
415
416 for (k = 0; k < words; k++)
417 sh_msiof_write(p, TFDR, buf_8[k] << fs);
418 }
419
sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)420 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
421 const void *tx_buf, int words, int fs)
422 {
423 const u16 *buf_16 = tx_buf;
424 int k;
425
426 for (k = 0; k < words; k++)
427 sh_msiof_write(p, TFDR, buf_16[k] << fs);
428 }
429
sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)430 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
431 const void *tx_buf, int words, int fs)
432 {
433 const u16 *buf_16 = tx_buf;
434 int k;
435
436 for (k = 0; k < words; k++)
437 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
438 }
439
sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)440 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
441 const void *tx_buf, int words, int fs)
442 {
443 const u32 *buf_32 = tx_buf;
444 int k;
445
446 for (k = 0; k < words; k++)
447 sh_msiof_write(p, TFDR, buf_32[k] << fs);
448 }
449
sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)450 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
451 const void *tx_buf, int words, int fs)
452 {
453 const u32 *buf_32 = tx_buf;
454 int k;
455
456 for (k = 0; k < words; k++)
457 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
458 }
459
sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)460 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
461 const void *tx_buf, int words, int fs)
462 {
463 const u32 *buf_32 = tx_buf;
464 int k;
465
466 for (k = 0; k < words; k++)
467 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
468 }
469
sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)470 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
471 const void *tx_buf, int words, int fs)
472 {
473 const u32 *buf_32 = tx_buf;
474 int k;
475
476 for (k = 0; k < words; k++)
477 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
478 }
479
sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)480 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
481 void *rx_buf, int words, int fs)
482 {
483 u8 *buf_8 = rx_buf;
484 int k;
485
486 for (k = 0; k < words; k++)
487 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
488 }
489
sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)490 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
491 void *rx_buf, int words, int fs)
492 {
493 u16 *buf_16 = rx_buf;
494 int k;
495
496 for (k = 0; k < words; k++)
497 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
498 }
499
sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)500 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
501 void *rx_buf, int words, int fs)
502 {
503 u16 *buf_16 = rx_buf;
504 int k;
505
506 for (k = 0; k < words; k++)
507 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
508 }
509
sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)510 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
511 void *rx_buf, int words, int fs)
512 {
513 u32 *buf_32 = rx_buf;
514 int k;
515
516 for (k = 0; k < words; k++)
517 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
518 }
519
sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)520 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
521 void *rx_buf, int words, int fs)
522 {
523 u32 *buf_32 = rx_buf;
524 int k;
525
526 for (k = 0; k < words; k++)
527 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
528 }
529
sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)530 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
531 void *rx_buf, int words, int fs)
532 {
533 u32 *buf_32 = rx_buf;
534 int k;
535
536 for (k = 0; k < words; k++)
537 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
538 }
539
sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)540 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
541 void *rx_buf, int words, int fs)
542 {
543 u32 *buf_32 = rx_buf;
544 int k;
545
546 for (k = 0; k < words; k++)
547 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
548 }
549
sh_msiof_spi_setup(struct spi_device * spi)550 static int sh_msiof_spi_setup(struct spi_device *spi)
551 {
552 struct sh_msiof_spi_priv *p =
553 spi_controller_get_devdata(spi->controller);
554 u32 clr, set, tmp;
555
556 if (spi->cs_gpiod || spi_controller_is_slave(p->ctlr))
557 return 0;
558
559 if (p->native_cs_inited &&
560 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
561 return 0;
562
563 /* Configure native chip select mode/polarity early */
564 clr = MDR1_SYNCMD_MASK;
565 set = MDR1_SYNCMD_SPI;
566 if (spi->mode & SPI_CS_HIGH)
567 clr |= BIT(MDR1_SYNCAC_SHIFT);
568 else
569 set |= BIT(MDR1_SYNCAC_SHIFT);
570 pm_runtime_get_sync(&p->pdev->dev);
571 tmp = sh_msiof_read(p, TMDR1) & ~clr;
572 sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON);
573 tmp = sh_msiof_read(p, RMDR1) & ~clr;
574 sh_msiof_write(p, RMDR1, tmp | set);
575 pm_runtime_put(&p->pdev->dev);
576 p->native_cs_high = spi->mode & SPI_CS_HIGH;
577 p->native_cs_inited = true;
578 return 0;
579 }
580
sh_msiof_prepare_message(struct spi_controller * ctlr,struct spi_message * msg)581 static int sh_msiof_prepare_message(struct spi_controller *ctlr,
582 struct spi_message *msg)
583 {
584 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
585 const struct spi_device *spi = msg->spi;
586 u32 ss, cs_high;
587
588 /* Configure pins before asserting CS */
589 if (spi->cs_gpiod) {
590 ss = p->unused_ss;
591 cs_high = p->native_cs_high;
592 } else {
593 ss = spi->chip_select;
594 cs_high = !!(spi->mode & SPI_CS_HIGH);
595 }
596 sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
597 !!(spi->mode & SPI_CPHA),
598 !!(spi->mode & SPI_3WIRE),
599 !!(spi->mode & SPI_LSB_FIRST), cs_high);
600 return 0;
601 }
602
sh_msiof_spi_start(struct sh_msiof_spi_priv * p,void * rx_buf)603 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
604 {
605 bool slave = spi_controller_is_slave(p->ctlr);
606 int ret = 0;
607
608 /* setup clock and rx/tx signals */
609 if (!slave)
610 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
611 if (rx_buf && !ret)
612 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
613 if (!ret)
614 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
615
616 /* start by setting frame bit */
617 if (!ret && !slave)
618 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
619
620 return ret;
621 }
622
sh_msiof_spi_stop(struct sh_msiof_spi_priv * p,void * rx_buf)623 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
624 {
625 bool slave = spi_controller_is_slave(p->ctlr);
626 int ret = 0;
627
628 /* shut down frame, rx/tx and clock signals */
629 if (!slave)
630 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
631 if (!ret)
632 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
633 if (rx_buf && !ret)
634 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
635 if (!ret && !slave)
636 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
637
638 return ret;
639 }
640
sh_msiof_slave_abort(struct spi_controller * ctlr)641 static int sh_msiof_slave_abort(struct spi_controller *ctlr)
642 {
643 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
644
645 p->slave_aborted = true;
646 complete(&p->done);
647 complete(&p->done_txdma);
648 return 0;
649 }
650
sh_msiof_wait_for_completion(struct sh_msiof_spi_priv * p,struct completion * x)651 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
652 struct completion *x)
653 {
654 if (spi_controller_is_slave(p->ctlr)) {
655 if (wait_for_completion_interruptible(x) ||
656 p->slave_aborted) {
657 dev_dbg(&p->pdev->dev, "interrupted\n");
658 return -EINTR;
659 }
660 } else {
661 if (!wait_for_completion_timeout(x, HZ)) {
662 dev_err(&p->pdev->dev, "timeout\n");
663 return -ETIMEDOUT;
664 }
665 }
666
667 return 0;
668 }
669
sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv * p,void (* tx_fifo)(struct sh_msiof_spi_priv *,const void *,int,int),void (* rx_fifo)(struct sh_msiof_spi_priv *,void *,int,int),const void * tx_buf,void * rx_buf,int words,int bits)670 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
671 void (*tx_fifo)(struct sh_msiof_spi_priv *,
672 const void *, int, int),
673 void (*rx_fifo)(struct sh_msiof_spi_priv *,
674 void *, int, int),
675 const void *tx_buf, void *rx_buf,
676 int words, int bits)
677 {
678 int fifo_shift;
679 int ret;
680
681 /* limit maximum word transfer to rx/tx fifo size */
682 if (tx_buf)
683 words = min_t(int, words, p->tx_fifo_size);
684 if (rx_buf)
685 words = min_t(int, words, p->rx_fifo_size);
686
687 /* the fifo contents need shifting */
688 fifo_shift = 32 - bits;
689
690 /* default FIFO watermarks for PIO */
691 sh_msiof_write(p, FCTR, 0);
692
693 /* setup msiof transfer mode registers */
694 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
695 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
696
697 /* write tx fifo */
698 if (tx_buf)
699 tx_fifo(p, tx_buf, words, fifo_shift);
700
701 reinit_completion(&p->done);
702 p->slave_aborted = false;
703
704 ret = sh_msiof_spi_start(p, rx_buf);
705 if (ret) {
706 dev_err(&p->pdev->dev, "failed to start hardware\n");
707 goto stop_ier;
708 }
709
710 /* wait for tx fifo to be emptied / rx fifo to be filled */
711 ret = sh_msiof_wait_for_completion(p, &p->done);
712 if (ret)
713 goto stop_reset;
714
715 /* read rx fifo */
716 if (rx_buf)
717 rx_fifo(p, rx_buf, words, fifo_shift);
718
719 /* clear status bits */
720 sh_msiof_reset_str(p);
721
722 ret = sh_msiof_spi_stop(p, rx_buf);
723 if (ret) {
724 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
725 return ret;
726 }
727
728 return words;
729
730 stop_reset:
731 sh_msiof_reset_str(p);
732 sh_msiof_spi_stop(p, rx_buf);
733 stop_ier:
734 sh_msiof_write(p, IER, 0);
735 return ret;
736 }
737
sh_msiof_dma_complete(void * arg)738 static void sh_msiof_dma_complete(void *arg)
739 {
740 complete(arg);
741 }
742
sh_msiof_dma_once(struct sh_msiof_spi_priv * p,const void * tx,void * rx,unsigned int len)743 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
744 void *rx, unsigned int len)
745 {
746 u32 ier_bits = 0;
747 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
748 dma_cookie_t cookie;
749 int ret;
750
751 /* First prepare and submit the DMA request(s), as this may fail */
752 if (rx) {
753 ier_bits |= IER_RDREQE | IER_RDMAE;
754 desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
755 p->rx_dma_addr, len, DMA_DEV_TO_MEM,
756 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
757 if (!desc_rx)
758 return -EAGAIN;
759
760 desc_rx->callback = sh_msiof_dma_complete;
761 desc_rx->callback_param = &p->done;
762 cookie = dmaengine_submit(desc_rx);
763 if (dma_submit_error(cookie))
764 return cookie;
765 }
766
767 if (tx) {
768 ier_bits |= IER_TDREQE | IER_TDMAE;
769 dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
770 p->tx_dma_addr, len, DMA_TO_DEVICE);
771 desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
772 p->tx_dma_addr, len, DMA_MEM_TO_DEV,
773 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
774 if (!desc_tx) {
775 ret = -EAGAIN;
776 goto no_dma_tx;
777 }
778
779 desc_tx->callback = sh_msiof_dma_complete;
780 desc_tx->callback_param = &p->done_txdma;
781 cookie = dmaengine_submit(desc_tx);
782 if (dma_submit_error(cookie)) {
783 ret = cookie;
784 goto no_dma_tx;
785 }
786 }
787
788 /* 1 stage FIFO watermarks for DMA */
789 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
790
791 /* setup msiof transfer mode registers (32-bit words) */
792 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
793
794 sh_msiof_write(p, IER, ier_bits);
795
796 reinit_completion(&p->done);
797 if (tx)
798 reinit_completion(&p->done_txdma);
799 p->slave_aborted = false;
800
801 /* Now start DMA */
802 if (rx)
803 dma_async_issue_pending(p->ctlr->dma_rx);
804 if (tx)
805 dma_async_issue_pending(p->ctlr->dma_tx);
806
807 ret = sh_msiof_spi_start(p, rx);
808 if (ret) {
809 dev_err(&p->pdev->dev, "failed to start hardware\n");
810 goto stop_dma;
811 }
812
813 if (tx) {
814 /* wait for tx DMA completion */
815 ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
816 if (ret)
817 goto stop_reset;
818 }
819
820 if (rx) {
821 /* wait for rx DMA completion */
822 ret = sh_msiof_wait_for_completion(p, &p->done);
823 if (ret)
824 goto stop_reset;
825
826 sh_msiof_write(p, IER, 0);
827 } else {
828 /* wait for tx fifo to be emptied */
829 sh_msiof_write(p, IER, IER_TEOFE);
830 ret = sh_msiof_wait_for_completion(p, &p->done);
831 if (ret)
832 goto stop_reset;
833 }
834
835 /* clear status bits */
836 sh_msiof_reset_str(p);
837
838 ret = sh_msiof_spi_stop(p, rx);
839 if (ret) {
840 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
841 return ret;
842 }
843
844 if (rx)
845 dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
846 p->rx_dma_addr, len, DMA_FROM_DEVICE);
847
848 return 0;
849
850 stop_reset:
851 sh_msiof_reset_str(p);
852 sh_msiof_spi_stop(p, rx);
853 stop_dma:
854 if (tx)
855 dmaengine_terminate_all(p->ctlr->dma_tx);
856 no_dma_tx:
857 if (rx)
858 dmaengine_terminate_all(p->ctlr->dma_rx);
859 sh_msiof_write(p, IER, 0);
860 return ret;
861 }
862
copy_bswap32(u32 * dst,const u32 * src,unsigned int words)863 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
864 {
865 /* src or dst can be unaligned, but not both */
866 if ((unsigned long)src & 3) {
867 while (words--) {
868 *dst++ = swab32(get_unaligned(src));
869 src++;
870 }
871 } else if ((unsigned long)dst & 3) {
872 while (words--) {
873 put_unaligned(swab32(*src++), dst);
874 dst++;
875 }
876 } else {
877 while (words--)
878 *dst++ = swab32(*src++);
879 }
880 }
881
copy_wswap32(u32 * dst,const u32 * src,unsigned int words)882 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
883 {
884 /* src or dst can be unaligned, but not both */
885 if ((unsigned long)src & 3) {
886 while (words--) {
887 *dst++ = swahw32(get_unaligned(src));
888 src++;
889 }
890 } else if ((unsigned long)dst & 3) {
891 while (words--) {
892 put_unaligned(swahw32(*src++), dst);
893 dst++;
894 }
895 } else {
896 while (words--)
897 *dst++ = swahw32(*src++);
898 }
899 }
900
copy_plain32(u32 * dst,const u32 * src,unsigned int words)901 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
902 {
903 memcpy(dst, src, words * 4);
904 }
905
sh_msiof_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * t)906 static int sh_msiof_transfer_one(struct spi_controller *ctlr,
907 struct spi_device *spi,
908 struct spi_transfer *t)
909 {
910 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
911 void (*copy32)(u32 *, const u32 *, unsigned int);
912 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
913 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
914 const void *tx_buf = t->tx_buf;
915 void *rx_buf = t->rx_buf;
916 unsigned int len = t->len;
917 unsigned int bits = t->bits_per_word;
918 unsigned int bytes_per_word;
919 unsigned int words;
920 int n;
921 bool swab;
922 int ret;
923
924 /* reset registers */
925 sh_msiof_spi_reset_regs(p);
926
927 /* setup clocks (clock already enabled in chipselect()) */
928 if (!spi_controller_is_slave(p->ctlr))
929 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
930
931 while (ctlr->dma_tx && len > 15) {
932 /*
933 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
934 * words, with byte resp. word swapping.
935 */
936 unsigned int l = 0;
937
938 if (tx_buf)
939 l = min(round_down(len, 4), p->tx_fifo_size * 4);
940 if (rx_buf)
941 l = min(round_down(len, 4), p->rx_fifo_size * 4);
942
943 if (bits <= 8) {
944 copy32 = copy_bswap32;
945 } else if (bits <= 16) {
946 copy32 = copy_wswap32;
947 } else {
948 copy32 = copy_plain32;
949 }
950
951 if (tx_buf)
952 copy32(p->tx_dma_page, tx_buf, l / 4);
953
954 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
955 if (ret == -EAGAIN) {
956 dev_warn_once(&p->pdev->dev,
957 "DMA not available, falling back to PIO\n");
958 break;
959 }
960 if (ret)
961 return ret;
962
963 if (rx_buf) {
964 copy32(rx_buf, p->rx_dma_page, l / 4);
965 rx_buf += l;
966 }
967 if (tx_buf)
968 tx_buf += l;
969
970 len -= l;
971 if (!len)
972 return 0;
973 }
974
975 if (bits <= 8 && len > 15) {
976 bits = 32;
977 swab = true;
978 } else {
979 swab = false;
980 }
981
982 /* setup bytes per word and fifo read/write functions */
983 if (bits <= 8) {
984 bytes_per_word = 1;
985 tx_fifo = sh_msiof_spi_write_fifo_8;
986 rx_fifo = sh_msiof_spi_read_fifo_8;
987 } else if (bits <= 16) {
988 bytes_per_word = 2;
989 if ((unsigned long)tx_buf & 0x01)
990 tx_fifo = sh_msiof_spi_write_fifo_16u;
991 else
992 tx_fifo = sh_msiof_spi_write_fifo_16;
993
994 if ((unsigned long)rx_buf & 0x01)
995 rx_fifo = sh_msiof_spi_read_fifo_16u;
996 else
997 rx_fifo = sh_msiof_spi_read_fifo_16;
998 } else if (swab) {
999 bytes_per_word = 4;
1000 if ((unsigned long)tx_buf & 0x03)
1001 tx_fifo = sh_msiof_spi_write_fifo_s32u;
1002 else
1003 tx_fifo = sh_msiof_spi_write_fifo_s32;
1004
1005 if ((unsigned long)rx_buf & 0x03)
1006 rx_fifo = sh_msiof_spi_read_fifo_s32u;
1007 else
1008 rx_fifo = sh_msiof_spi_read_fifo_s32;
1009 } else {
1010 bytes_per_word = 4;
1011 if ((unsigned long)tx_buf & 0x03)
1012 tx_fifo = sh_msiof_spi_write_fifo_32u;
1013 else
1014 tx_fifo = sh_msiof_spi_write_fifo_32;
1015
1016 if ((unsigned long)rx_buf & 0x03)
1017 rx_fifo = sh_msiof_spi_read_fifo_32u;
1018 else
1019 rx_fifo = sh_msiof_spi_read_fifo_32;
1020 }
1021
1022 /* transfer in fifo sized chunks */
1023 words = len / bytes_per_word;
1024
1025 while (words > 0) {
1026 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1027 words, bits);
1028 if (n < 0)
1029 return n;
1030
1031 if (tx_buf)
1032 tx_buf += n * bytes_per_word;
1033 if (rx_buf)
1034 rx_buf += n * bytes_per_word;
1035 words -= n;
1036
1037 if (words == 0 && (len % bytes_per_word)) {
1038 words = len % bytes_per_word;
1039 bits = t->bits_per_word;
1040 bytes_per_word = 1;
1041 tx_fifo = sh_msiof_spi_write_fifo_8;
1042 rx_fifo = sh_msiof_spi_read_fifo_8;
1043 }
1044 }
1045
1046 return 0;
1047 }
1048
1049 static const struct sh_msiof_chipdata sh_data = {
1050 .bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
1051 .tx_fifo_size = 64,
1052 .rx_fifo_size = 64,
1053 .ctlr_flags = 0,
1054 .min_div_pow = 0,
1055 };
1056
1057 static const struct sh_msiof_chipdata rcar_gen2_data = {
1058 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1059 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1060 .tx_fifo_size = 64,
1061 .rx_fifo_size = 64,
1062 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1063 .min_div_pow = 0,
1064 };
1065
1066 static const struct sh_msiof_chipdata rcar_gen3_data = {
1067 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1068 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1069 .tx_fifo_size = 64,
1070 .rx_fifo_size = 64,
1071 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1072 .min_div_pow = 1,
1073 };
1074
1075 static const struct of_device_id sh_msiof_match[] = {
1076 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1077 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
1078 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
1079 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
1080 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
1081 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
1082 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
1083 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
1084 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1085 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
1086 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1087 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
1088 {},
1089 };
1090 MODULE_DEVICE_TABLE(of, sh_msiof_match);
1091
1092 #ifdef CONFIG_OF
sh_msiof_spi_parse_dt(struct device * dev)1093 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1094 {
1095 struct sh_msiof_spi_info *info;
1096 struct device_node *np = dev->of_node;
1097 u32 num_cs = 1;
1098
1099 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1100 if (!info)
1101 return NULL;
1102
1103 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1104 : MSIOF_SPI_MASTER;
1105
1106 /* Parse the MSIOF properties */
1107 if (info->mode == MSIOF_SPI_MASTER)
1108 of_property_read_u32(np, "num-cs", &num_cs);
1109 of_property_read_u32(np, "renesas,tx-fifo-size",
1110 &info->tx_fifo_override);
1111 of_property_read_u32(np, "renesas,rx-fifo-size",
1112 &info->rx_fifo_override);
1113 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1114 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1115
1116 info->num_chipselect = num_cs;
1117
1118 return info;
1119 }
1120 #else
sh_msiof_spi_parse_dt(struct device * dev)1121 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1122 {
1123 return NULL;
1124 }
1125 #endif
1126
sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv * p)1127 static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p)
1128 {
1129 struct device *dev = &p->pdev->dev;
1130 unsigned int used_ss_mask = 0;
1131 unsigned int cs_gpios = 0;
1132 unsigned int num_cs, i;
1133 int ret;
1134
1135 ret = gpiod_count(dev, "cs");
1136 if (ret <= 0)
1137 return 0;
1138
1139 num_cs = max_t(unsigned int, ret, p->ctlr->num_chipselect);
1140 for (i = 0; i < num_cs; i++) {
1141 struct gpio_desc *gpiod;
1142
1143 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1144 if (!IS_ERR(gpiod)) {
1145 devm_gpiod_put(dev, gpiod);
1146 cs_gpios++;
1147 continue;
1148 }
1149
1150 if (PTR_ERR(gpiod) != -ENOENT)
1151 return PTR_ERR(gpiod);
1152
1153 if (i >= MAX_SS) {
1154 dev_err(dev, "Invalid native chip select %d\n", i);
1155 return -EINVAL;
1156 }
1157 used_ss_mask |= BIT(i);
1158 }
1159 p->unused_ss = ffz(used_ss_mask);
1160 if (cs_gpios && p->unused_ss >= MAX_SS) {
1161 dev_err(dev, "No unused native chip select available\n");
1162 return -EINVAL;
1163 }
1164 return 0;
1165 }
1166
sh_msiof_request_dma_chan(struct device * dev,enum dma_transfer_direction dir,unsigned int id,dma_addr_t port_addr)1167 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1168 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1169 {
1170 dma_cap_mask_t mask;
1171 struct dma_chan *chan;
1172 struct dma_slave_config cfg;
1173 int ret;
1174
1175 dma_cap_zero(mask);
1176 dma_cap_set(DMA_SLAVE, mask);
1177
1178 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1179 (void *)(unsigned long)id, dev,
1180 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1181 if (!chan) {
1182 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1183 return NULL;
1184 }
1185
1186 memset(&cfg, 0, sizeof(cfg));
1187 cfg.direction = dir;
1188 if (dir == DMA_MEM_TO_DEV) {
1189 cfg.dst_addr = port_addr;
1190 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1191 } else {
1192 cfg.src_addr = port_addr;
1193 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1194 }
1195
1196 ret = dmaengine_slave_config(chan, &cfg);
1197 if (ret) {
1198 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1199 dma_release_channel(chan);
1200 return NULL;
1201 }
1202
1203 return chan;
1204 }
1205
sh_msiof_request_dma(struct sh_msiof_spi_priv * p)1206 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1207 {
1208 struct platform_device *pdev = p->pdev;
1209 struct device *dev = &pdev->dev;
1210 const struct sh_msiof_spi_info *info = p->info;
1211 unsigned int dma_tx_id, dma_rx_id;
1212 const struct resource *res;
1213 struct spi_controller *ctlr;
1214 struct device *tx_dev, *rx_dev;
1215
1216 if (dev->of_node) {
1217 /* In the OF case we will get the slave IDs from the DT */
1218 dma_tx_id = 0;
1219 dma_rx_id = 0;
1220 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1221 dma_tx_id = info->dma_tx_id;
1222 dma_rx_id = info->dma_rx_id;
1223 } else {
1224 /* The driver assumes no error */
1225 return 0;
1226 }
1227
1228 /* The DMA engine uses the second register set, if present */
1229 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1230 if (!res)
1231 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1232
1233 ctlr = p->ctlr;
1234 ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1235 dma_tx_id, res->start + TFDR);
1236 if (!ctlr->dma_tx)
1237 return -ENODEV;
1238
1239 ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1240 dma_rx_id, res->start + RFDR);
1241 if (!ctlr->dma_rx)
1242 goto free_tx_chan;
1243
1244 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1245 if (!p->tx_dma_page)
1246 goto free_rx_chan;
1247
1248 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1249 if (!p->rx_dma_page)
1250 goto free_tx_page;
1251
1252 tx_dev = ctlr->dma_tx->device->dev;
1253 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1254 DMA_TO_DEVICE);
1255 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1256 goto free_rx_page;
1257
1258 rx_dev = ctlr->dma_rx->device->dev;
1259 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1260 DMA_FROM_DEVICE);
1261 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1262 goto unmap_tx_page;
1263
1264 dev_info(dev, "DMA available");
1265 return 0;
1266
1267 unmap_tx_page:
1268 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1269 free_rx_page:
1270 free_page((unsigned long)p->rx_dma_page);
1271 free_tx_page:
1272 free_page((unsigned long)p->tx_dma_page);
1273 free_rx_chan:
1274 dma_release_channel(ctlr->dma_rx);
1275 free_tx_chan:
1276 dma_release_channel(ctlr->dma_tx);
1277 ctlr->dma_tx = NULL;
1278 return -ENODEV;
1279 }
1280
sh_msiof_release_dma(struct sh_msiof_spi_priv * p)1281 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1282 {
1283 struct spi_controller *ctlr = p->ctlr;
1284
1285 if (!ctlr->dma_tx)
1286 return;
1287
1288 dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1289 DMA_FROM_DEVICE);
1290 dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1291 DMA_TO_DEVICE);
1292 free_page((unsigned long)p->rx_dma_page);
1293 free_page((unsigned long)p->tx_dma_page);
1294 dma_release_channel(ctlr->dma_rx);
1295 dma_release_channel(ctlr->dma_tx);
1296 }
1297
sh_msiof_spi_probe(struct platform_device * pdev)1298 static int sh_msiof_spi_probe(struct platform_device *pdev)
1299 {
1300 struct spi_controller *ctlr;
1301 const struct sh_msiof_chipdata *chipdata;
1302 struct sh_msiof_spi_info *info;
1303 struct sh_msiof_spi_priv *p;
1304 int i;
1305 int ret;
1306
1307 chipdata = of_device_get_match_data(&pdev->dev);
1308 if (chipdata) {
1309 info = sh_msiof_spi_parse_dt(&pdev->dev);
1310 } else {
1311 chipdata = (const void *)pdev->id_entry->driver_data;
1312 info = dev_get_platdata(&pdev->dev);
1313 }
1314
1315 if (!info) {
1316 dev_err(&pdev->dev, "failed to obtain device info\n");
1317 return -ENXIO;
1318 }
1319
1320 if (info->mode == MSIOF_SPI_SLAVE)
1321 ctlr = spi_alloc_slave(&pdev->dev,
1322 sizeof(struct sh_msiof_spi_priv));
1323 else
1324 ctlr = spi_alloc_master(&pdev->dev,
1325 sizeof(struct sh_msiof_spi_priv));
1326 if (ctlr == NULL)
1327 return -ENOMEM;
1328
1329 p = spi_controller_get_devdata(ctlr);
1330
1331 platform_set_drvdata(pdev, p);
1332 p->ctlr = ctlr;
1333 p->info = info;
1334 p->min_div_pow = chipdata->min_div_pow;
1335
1336 init_completion(&p->done);
1337 init_completion(&p->done_txdma);
1338
1339 p->clk = devm_clk_get(&pdev->dev, NULL);
1340 if (IS_ERR(p->clk)) {
1341 dev_err(&pdev->dev, "cannot get clock\n");
1342 ret = PTR_ERR(p->clk);
1343 goto err1;
1344 }
1345
1346 i = platform_get_irq(pdev, 0);
1347 if (i < 0) {
1348 ret = i;
1349 goto err1;
1350 }
1351
1352 p->mapbase = devm_platform_ioremap_resource(pdev, 0);
1353 if (IS_ERR(p->mapbase)) {
1354 ret = PTR_ERR(p->mapbase);
1355 goto err1;
1356 }
1357
1358 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1359 dev_name(&pdev->dev), p);
1360 if (ret) {
1361 dev_err(&pdev->dev, "unable to request irq\n");
1362 goto err1;
1363 }
1364
1365 p->pdev = pdev;
1366 pm_runtime_enable(&pdev->dev);
1367
1368 /* Platform data may override FIFO sizes */
1369 p->tx_fifo_size = chipdata->tx_fifo_size;
1370 p->rx_fifo_size = chipdata->rx_fifo_size;
1371 if (p->info->tx_fifo_override)
1372 p->tx_fifo_size = p->info->tx_fifo_override;
1373 if (p->info->rx_fifo_override)
1374 p->rx_fifo_size = p->info->rx_fifo_override;
1375
1376 /* Setup GPIO chip selects */
1377 ctlr->num_chipselect = p->info->num_chipselect;
1378 ret = sh_msiof_get_cs_gpios(p);
1379 if (ret)
1380 goto err1;
1381
1382 /* init controller code */
1383 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1384 ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1385 ctlr->flags = chipdata->ctlr_flags;
1386 ctlr->bus_num = pdev->id;
1387 ctlr->dev.of_node = pdev->dev.of_node;
1388 ctlr->setup = sh_msiof_spi_setup;
1389 ctlr->prepare_message = sh_msiof_prepare_message;
1390 ctlr->slave_abort = sh_msiof_slave_abort;
1391 ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1392 ctlr->auto_runtime_pm = true;
1393 ctlr->transfer_one = sh_msiof_transfer_one;
1394 ctlr->use_gpio_descriptors = true;
1395
1396 ret = sh_msiof_request_dma(p);
1397 if (ret < 0)
1398 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1399
1400 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1401 if (ret < 0) {
1402 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1403 goto err2;
1404 }
1405
1406 return 0;
1407
1408 err2:
1409 sh_msiof_release_dma(p);
1410 pm_runtime_disable(&pdev->dev);
1411 err1:
1412 spi_controller_put(ctlr);
1413 return ret;
1414 }
1415
sh_msiof_spi_remove(struct platform_device * pdev)1416 static int sh_msiof_spi_remove(struct platform_device *pdev)
1417 {
1418 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1419
1420 sh_msiof_release_dma(p);
1421 pm_runtime_disable(&pdev->dev);
1422 return 0;
1423 }
1424
1425 static const struct platform_device_id spi_driver_ids[] = {
1426 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1427 {},
1428 };
1429 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1430
1431 #ifdef CONFIG_PM_SLEEP
sh_msiof_spi_suspend(struct device * dev)1432 static int sh_msiof_spi_suspend(struct device *dev)
1433 {
1434 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1435
1436 return spi_controller_suspend(p->ctlr);
1437 }
1438
sh_msiof_spi_resume(struct device * dev)1439 static int sh_msiof_spi_resume(struct device *dev)
1440 {
1441 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1442
1443 return spi_controller_resume(p->ctlr);
1444 }
1445
1446 static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1447 sh_msiof_spi_resume);
1448 #define DEV_PM_OPS &sh_msiof_spi_pm_ops
1449 #else
1450 #define DEV_PM_OPS NULL
1451 #endif /* CONFIG_PM_SLEEP */
1452
1453 static struct platform_driver sh_msiof_spi_drv = {
1454 .probe = sh_msiof_spi_probe,
1455 .remove = sh_msiof_spi_remove,
1456 .id_table = spi_driver_ids,
1457 .driver = {
1458 .name = "spi_sh_msiof",
1459 .pm = DEV_PM_OPS,
1460 .of_match_table = of_match_ptr(sh_msiof_match),
1461 },
1462 };
1463 module_platform_driver(sh_msiof_spi_drv);
1464
1465 MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1466 MODULE_AUTHOR("Magnus Damm");
1467 MODULE_LICENSE("GPL v2");
1468 MODULE_ALIAS("platform:spi_sh_msiof");
1469