1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Arch specific cpu topology information
4 *
5 * Copyright (C) 2016, ARM Ltd.
6 * Written by: Juri Lelli, ARM Ltd.
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/device.h>
13 #include <linux/of.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/sched/topology.h>
17 #include <linux/cpuset.h>
18 #include <linux/cpumask.h>
19 #include <linux/init.h>
20 #include <linux/percpu.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
23
24 DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
25 DEFINE_PER_CPU(unsigned long, max_cpu_freq);
26 DEFINE_PER_CPU(unsigned long, max_freq_scale) = SCHED_CAPACITY_SCALE;
27
arch_set_freq_scale(struct cpumask * cpus,unsigned long cur_freq,unsigned long max_freq)28 void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
29 unsigned long max_freq)
30 {
31 unsigned long scale;
32 int i;
33
34 scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
35
36 for_each_cpu(i, cpus) {
37 per_cpu(freq_scale, i) = scale;
38 per_cpu(max_cpu_freq, i) = max_freq;
39 }
40 }
41
arch_set_max_freq_scale(struct cpumask * cpus,unsigned long policy_max_freq)42 void arch_set_max_freq_scale(struct cpumask *cpus,
43 unsigned long policy_max_freq)
44 {
45 unsigned long scale, max_freq;
46 int cpu = cpumask_first(cpus);
47
48 if (cpu > nr_cpu_ids)
49 return;
50
51 max_freq = per_cpu(max_cpu_freq, cpu);
52 if (!max_freq)
53 return;
54
55 scale = (policy_max_freq << SCHED_CAPACITY_SHIFT) / max_freq;
56
57 for_each_cpu(cpu, cpus)
58 per_cpu(max_freq_scale, cpu) = scale;
59 }
60
61 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
62
topology_set_cpu_scale(unsigned int cpu,unsigned long capacity)63 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
64 {
65 per_cpu(cpu_scale, cpu) = capacity;
66 }
67
cpu_capacity_show(struct device * dev,struct device_attribute * attr,char * buf)68 static ssize_t cpu_capacity_show(struct device *dev,
69 struct device_attribute *attr,
70 char *buf)
71 {
72 struct cpu *cpu = container_of(dev, struct cpu, dev);
73
74 return sprintf(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
75 }
76
77 static void update_topology_flags_workfn(struct work_struct *work);
78 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
79
80 static DEVICE_ATTR_RO(cpu_capacity);
81
register_cpu_capacity_sysctl(void)82 static int register_cpu_capacity_sysctl(void)
83 {
84 int i;
85 struct device *cpu;
86
87 for_each_possible_cpu(i) {
88 cpu = get_cpu_device(i);
89 if (!cpu) {
90 pr_err("%s: too early to get CPU%d device!\n",
91 __func__, i);
92 continue;
93 }
94 device_create_file(cpu, &dev_attr_cpu_capacity);
95 }
96
97 return 0;
98 }
99 subsys_initcall(register_cpu_capacity_sysctl);
100
101 static int update_topology;
102
topology_update_cpu_topology(void)103 int topology_update_cpu_topology(void)
104 {
105 return update_topology;
106 }
107
108 /*
109 * Updating the sched_domains can't be done directly from cpufreq callbacks
110 * due to locking, so queue the work for later.
111 */
update_topology_flags_workfn(struct work_struct * work)112 static void update_topology_flags_workfn(struct work_struct *work)
113 {
114 update_topology = 1;
115 rebuild_sched_domains();
116 pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
117 update_topology = 0;
118 }
119
120 static u32 capacity_scale;
121 static u32 *raw_capacity;
122
free_raw_capacity(void)123 static int free_raw_capacity(void)
124 {
125 kfree(raw_capacity);
126 raw_capacity = NULL;
127
128 return 0;
129 }
130
topology_normalize_cpu_scale(void)131 void topology_normalize_cpu_scale(void)
132 {
133 u64 capacity;
134 int cpu;
135
136 if (!raw_capacity)
137 return;
138
139 pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
140 for_each_possible_cpu(cpu) {
141 pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
142 cpu, raw_capacity[cpu]);
143 capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
144 / capacity_scale;
145 topology_set_cpu_scale(cpu, capacity);
146 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
147 cpu, topology_get_cpu_scale(cpu));
148 }
149 }
150
topology_parse_cpu_capacity(struct device_node * cpu_node,int cpu)151 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
152 {
153 static bool cap_parsing_failed;
154 int ret;
155 u32 cpu_capacity;
156
157 if (cap_parsing_failed)
158 return false;
159
160 ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
161 &cpu_capacity);
162 if (!ret) {
163 if (!raw_capacity) {
164 raw_capacity = kcalloc(num_possible_cpus(),
165 sizeof(*raw_capacity),
166 GFP_KERNEL);
167 if (!raw_capacity) {
168 cap_parsing_failed = true;
169 return false;
170 }
171 }
172 capacity_scale = max(cpu_capacity, capacity_scale);
173 raw_capacity[cpu] = cpu_capacity;
174 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
175 cpu_node, raw_capacity[cpu]);
176 } else {
177 if (raw_capacity) {
178 pr_err("cpu_capacity: missing %pOF raw capacity\n",
179 cpu_node);
180 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
181 }
182 cap_parsing_failed = true;
183 free_raw_capacity();
184 }
185
186 return !ret;
187 }
188
189 #ifdef CONFIG_CPU_FREQ
190 static cpumask_var_t cpus_to_visit;
191 static void parsing_done_workfn(struct work_struct *work);
192 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
193
194 static int
init_cpu_capacity_callback(struct notifier_block * nb,unsigned long val,void * data)195 init_cpu_capacity_callback(struct notifier_block *nb,
196 unsigned long val,
197 void *data)
198 {
199 struct cpufreq_policy *policy = data;
200 int cpu;
201
202 if (!raw_capacity)
203 return 0;
204
205 if (val != CPUFREQ_CREATE_POLICY)
206 return 0;
207
208 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
209 cpumask_pr_args(policy->related_cpus),
210 cpumask_pr_args(cpus_to_visit));
211
212 cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
213
214 for_each_cpu(cpu, policy->related_cpus) {
215 raw_capacity[cpu] = topology_get_cpu_scale(cpu) *
216 policy->cpuinfo.max_freq / 1000UL;
217 capacity_scale = max(raw_capacity[cpu], capacity_scale);
218 }
219
220 if (cpumask_empty(cpus_to_visit)) {
221 topology_normalize_cpu_scale();
222 schedule_work(&update_topology_flags_work);
223 free_raw_capacity();
224 pr_debug("cpu_capacity: parsing done\n");
225 schedule_work(&parsing_done_work);
226 }
227
228 return 0;
229 }
230
231 static struct notifier_block init_cpu_capacity_notifier = {
232 .notifier_call = init_cpu_capacity_callback,
233 };
234
register_cpufreq_notifier(void)235 static int __init register_cpufreq_notifier(void)
236 {
237 int ret;
238
239 /*
240 * on ACPI-based systems we need to use the default cpu capacity
241 * until we have the necessary code to parse the cpu capacity, so
242 * skip registering cpufreq notifier.
243 */
244 if (!acpi_disabled || !raw_capacity)
245 return -EINVAL;
246
247 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
248 return -ENOMEM;
249
250 cpumask_copy(cpus_to_visit, cpu_possible_mask);
251
252 ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
253 CPUFREQ_POLICY_NOTIFIER);
254
255 if (ret)
256 free_cpumask_var(cpus_to_visit);
257
258 return ret;
259 }
260 core_initcall(register_cpufreq_notifier);
261
parsing_done_workfn(struct work_struct * work)262 static void parsing_done_workfn(struct work_struct *work)
263 {
264 cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
265 CPUFREQ_POLICY_NOTIFIER);
266 free_cpumask_var(cpus_to_visit);
267 }
268
269 #else
270 core_initcall(free_raw_capacity);
271 #endif
272
273 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
get_cpu_for_node(struct device_node * node)274 static int __init get_cpu_for_node(struct device_node *node)
275 {
276 struct device_node *cpu_node;
277 int cpu;
278
279 cpu_node = of_parse_phandle(node, "cpu", 0);
280 if (!cpu_node)
281 return -1;
282
283 cpu = of_cpu_node_to_id(cpu_node);
284 if (cpu >= 0)
285 topology_parse_cpu_capacity(cpu_node, cpu);
286 else
287 pr_crit("Unable to find CPU node for %pOF\n", cpu_node);
288
289 of_node_put(cpu_node);
290 return cpu;
291 }
292
parse_core(struct device_node * core,int package_id,int core_id)293 static int __init parse_core(struct device_node *core, int package_id,
294 int core_id)
295 {
296 char name[10];
297 bool leaf = true;
298 int i = 0;
299 int cpu;
300 struct device_node *t;
301
302 do {
303 snprintf(name, sizeof(name), "thread%d", i);
304 t = of_get_child_by_name(core, name);
305 if (t) {
306 leaf = false;
307 cpu = get_cpu_for_node(t);
308 if (cpu >= 0) {
309 cpu_topology[cpu].package_id = package_id;
310 cpu_topology[cpu].core_id = core_id;
311 cpu_topology[cpu].thread_id = i;
312 } else {
313 pr_err("%pOF: Can't get CPU for thread\n",
314 t);
315 of_node_put(t);
316 return -EINVAL;
317 }
318 of_node_put(t);
319 }
320 i++;
321 } while (t);
322
323 cpu = get_cpu_for_node(core);
324 if (cpu >= 0) {
325 if (!leaf) {
326 pr_err("%pOF: Core has both threads and CPU\n",
327 core);
328 return -EINVAL;
329 }
330
331 cpu_topology[cpu].package_id = package_id;
332 cpu_topology[cpu].core_id = core_id;
333 } else if (leaf) {
334 pr_err("%pOF: Can't get CPU for leaf core\n", core);
335 return -EINVAL;
336 }
337
338 return 0;
339 }
340
parse_cluster(struct device_node * cluster,int depth)341 static int __init parse_cluster(struct device_node *cluster, int depth)
342 {
343 char name[10];
344 bool leaf = true;
345 bool has_cores = false;
346 struct device_node *c;
347 static int package_id __initdata;
348 int core_id = 0;
349 int i, ret;
350
351 /*
352 * First check for child clusters; we currently ignore any
353 * information about the nesting of clusters and present the
354 * scheduler with a flat list of them.
355 */
356 i = 0;
357 do {
358 snprintf(name, sizeof(name), "cluster%d", i);
359 c = of_get_child_by_name(cluster, name);
360 if (c) {
361 leaf = false;
362 ret = parse_cluster(c, depth + 1);
363 of_node_put(c);
364 if (ret != 0)
365 return ret;
366 }
367 i++;
368 } while (c);
369
370 /* Now check for cores */
371 i = 0;
372 do {
373 snprintf(name, sizeof(name), "core%d", i);
374 c = of_get_child_by_name(cluster, name);
375 if (c) {
376 has_cores = true;
377
378 if (depth == 0) {
379 pr_err("%pOF: cpu-map children should be clusters\n",
380 c);
381 of_node_put(c);
382 return -EINVAL;
383 }
384
385 if (leaf) {
386 ret = parse_core(c, package_id, core_id++);
387 } else {
388 pr_err("%pOF: Non-leaf cluster with core %s\n",
389 cluster, name);
390 ret = -EINVAL;
391 }
392
393 of_node_put(c);
394 if (ret != 0)
395 return ret;
396 }
397 i++;
398 } while (c);
399
400 if (leaf && !has_cores)
401 pr_warn("%pOF: empty cluster\n", cluster);
402
403 if (leaf)
404 package_id++;
405
406 return 0;
407 }
408
parse_dt_topology(void)409 static int __init parse_dt_topology(void)
410 {
411 struct device_node *cn, *map;
412 int ret = 0;
413 int cpu;
414
415 cn = of_find_node_by_path("/cpus");
416 if (!cn) {
417 pr_err("No CPU information found in DT\n");
418 return 0;
419 }
420
421 /*
422 * When topology is provided cpu-map is essentially a root
423 * cluster with restricted subnodes.
424 */
425 map = of_get_child_by_name(cn, "cpu-map");
426 if (!map)
427 goto out;
428
429 ret = parse_cluster(map, 0);
430 if (ret != 0)
431 goto out_map;
432
433 topology_normalize_cpu_scale();
434
435 /*
436 * Check that all cores are in the topology; the SMP code will
437 * only mark cores described in the DT as possible.
438 */
439 for_each_possible_cpu(cpu)
440 if (cpu_topology[cpu].package_id == -1)
441 ret = -EINVAL;
442
443 out_map:
444 of_node_put(map);
445 out:
446 of_node_put(cn);
447 return ret;
448 }
449 #endif
450
451 /*
452 * cpu topology table
453 */
454 struct cpu_topology cpu_topology[NR_CPUS];
455 EXPORT_SYMBOL_GPL(cpu_topology);
456
cpu_coregroup_mask(int cpu)457 const struct cpumask *cpu_coregroup_mask(int cpu)
458 {
459 const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
460
461 /* Find the smaller of NUMA, core or LLC siblings */
462 if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
463 /* not numa in package, lets use the package siblings */
464 core_mask = &cpu_topology[cpu].core_sibling;
465 }
466 if (cpu_topology[cpu].llc_id != -1) {
467 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
468 core_mask = &cpu_topology[cpu].llc_sibling;
469 }
470
471 return core_mask;
472 }
473
update_siblings_masks(unsigned int cpuid)474 void update_siblings_masks(unsigned int cpuid)
475 {
476 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
477 int cpu;
478
479 /* update core and thread sibling masks */
480 for_each_online_cpu(cpu) {
481 cpu_topo = &cpu_topology[cpu];
482
483 if (cpuid_topo->llc_id == cpu_topo->llc_id) {
484 cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
485 cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
486 }
487
488 if (cpuid_topo->package_id != cpu_topo->package_id)
489 continue;
490
491 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
492 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
493
494 if (cpuid_topo->core_id != cpu_topo->core_id)
495 continue;
496
497 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
498 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
499 }
500 }
501
clear_cpu_topology(int cpu)502 static void clear_cpu_topology(int cpu)
503 {
504 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
505
506 cpumask_clear(&cpu_topo->llc_sibling);
507 cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
508
509 cpumask_clear(&cpu_topo->core_sibling);
510 cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
511 cpumask_clear(&cpu_topo->thread_sibling);
512 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
513 }
514
reset_cpu_topology(void)515 void __init reset_cpu_topology(void)
516 {
517 unsigned int cpu;
518
519 for_each_possible_cpu(cpu) {
520 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
521
522 cpu_topo->thread_id = -1;
523 cpu_topo->core_id = -1;
524 cpu_topo->package_id = -1;
525 cpu_topo->llc_id = -1;
526
527 clear_cpu_topology(cpu);
528 }
529 }
530
remove_cpu_topology(unsigned int cpu)531 void remove_cpu_topology(unsigned int cpu)
532 {
533 int sibling;
534
535 for_each_cpu(sibling, topology_core_cpumask(cpu))
536 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
537 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
538 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
539 for_each_cpu(sibling, topology_llc_cpumask(cpu))
540 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
541
542 clear_cpu_topology(cpu);
543 }
544
parse_acpi_topology(void)545 __weak int __init parse_acpi_topology(void)
546 {
547 return 0;
548 }
549
550 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
init_cpu_topology(void)551 void __init init_cpu_topology(void)
552 {
553 reset_cpu_topology();
554
555 /*
556 * Discard anything that was parsed if we hit an error so we
557 * don't use partial information.
558 */
559 if (parse_acpi_topology())
560 reset_cpu_topology();
561 else if (of_have_populated_dt() && parse_dt_topology())
562 reset_cpu_topology();
563 }
564 #endif
565