1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_pstate.c: Native P state management for Intel processors
4 *
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35
36 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
37
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
40
41 #ifdef CONFIG_ACPI
42 #include <acpi/processor.h>
43 #include <acpi/cppc_acpi.h>
44 #endif
45
46 #define FRAC_BITS 8
47 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
48 #define fp_toint(X) ((X) >> FRAC_BITS)
49
50 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
51
52 #define EXT_BITS 6
53 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
55 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
56
mul_fp(int32_t x,int32_t y)57 static inline int32_t mul_fp(int32_t x, int32_t y)
58 {
59 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
60 }
61
div_fp(s64 x,s64 y)62 static inline int32_t div_fp(s64 x, s64 y)
63 {
64 return div64_s64((int64_t)x << FRAC_BITS, y);
65 }
66
ceiling_fp(int32_t x)67 static inline int ceiling_fp(int32_t x)
68 {
69 int mask, ret;
70
71 ret = fp_toint(x);
72 mask = (1 << FRAC_BITS) - 1;
73 if (x & mask)
74 ret += 1;
75 return ret;
76 }
77
percent_fp(int percent)78 static inline int32_t percent_fp(int percent)
79 {
80 return div_fp(percent, 100);
81 }
82
mul_ext_fp(u64 x,u64 y)83 static inline u64 mul_ext_fp(u64 x, u64 y)
84 {
85 return (x * y) >> EXT_FRAC_BITS;
86 }
87
div_ext_fp(u64 x,u64 y)88 static inline u64 div_ext_fp(u64 x, u64 y)
89 {
90 return div64_u64(x << EXT_FRAC_BITS, y);
91 }
92
percent_ext_fp(int percent)93 static inline int32_t percent_ext_fp(int percent)
94 {
95 return div_ext_fp(percent, 100);
96 }
97
98 /**
99 * struct sample - Store performance sample
100 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
101 * performance during last sample period
102 * @busy_scaled: Scaled busy value which is used to calculate next
103 * P state. This can be different than core_avg_perf
104 * to account for cpu idle period
105 * @aperf: Difference of actual performance frequency clock count
106 * read from APERF MSR between last and current sample
107 * @mperf: Difference of maximum performance frequency clock count
108 * read from MPERF MSR between last and current sample
109 * @tsc: Difference of time stamp counter between last and
110 * current sample
111 * @time: Current time from scheduler
112 *
113 * This structure is used in the cpudata structure to store performance sample
114 * data for choosing next P State.
115 */
116 struct sample {
117 int32_t core_avg_perf;
118 int32_t busy_scaled;
119 u64 aperf;
120 u64 mperf;
121 u64 tsc;
122 u64 time;
123 };
124
125 /**
126 * struct pstate_data - Store P state data
127 * @current_pstate: Current requested P state
128 * @min_pstate: Min P state possible for this platform
129 * @max_pstate: Max P state possible for this platform
130 * @max_pstate_physical:This is physical Max P state for a processor
131 * This can be higher than the max_pstate which can
132 * be limited by platform thermal design power limits
133 * @scaling: Scaling factor to convert frequency to cpufreq
134 * frequency units
135 * @turbo_pstate: Max Turbo P state possible for this platform
136 * @max_freq: @max_pstate frequency in cpufreq units
137 * @turbo_freq: @turbo_pstate frequency in cpufreq units
138 *
139 * Stores the per cpu model P state limits and current P state.
140 */
141 struct pstate_data {
142 int current_pstate;
143 int min_pstate;
144 int max_pstate;
145 int max_pstate_physical;
146 int scaling;
147 int turbo_pstate;
148 unsigned int max_freq;
149 unsigned int turbo_freq;
150 };
151
152 /**
153 * struct vid_data - Stores voltage information data
154 * @min: VID data for this platform corresponding to
155 * the lowest P state
156 * @max: VID data corresponding to the highest P State.
157 * @turbo: VID data for turbo P state
158 * @ratio: Ratio of (vid max - vid min) /
159 * (max P state - Min P State)
160 *
161 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
162 * This data is used in Atom platforms, where in addition to target P state,
163 * the voltage data needs to be specified to select next P State.
164 */
165 struct vid_data {
166 int min;
167 int max;
168 int turbo;
169 int32_t ratio;
170 };
171
172 /**
173 * struct global_params - Global parameters, mostly tunable via sysfs.
174 * @no_turbo: Whether or not to use turbo P-states.
175 * @turbo_disabled: Whethet or not turbo P-states are available at all,
176 * based on the MSR_IA32_MISC_ENABLE value and whether or
177 * not the maximum reported turbo P-state is different from
178 * the maximum reported non-turbo one.
179 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq.
180 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
181 * P-state capacity.
182 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
183 * P-state capacity.
184 */
185 struct global_params {
186 bool no_turbo;
187 bool turbo_disabled;
188 bool turbo_disabled_mf;
189 int max_perf_pct;
190 int min_perf_pct;
191 };
192
193 /**
194 * struct cpudata - Per CPU instance data storage
195 * @cpu: CPU number for this instance data
196 * @policy: CPUFreq policy value
197 * @update_util: CPUFreq utility callback information
198 * @update_util_set: CPUFreq utility callback is set
199 * @iowait_boost: iowait-related boost fraction
200 * @last_update: Time of the last update.
201 * @pstate: Stores P state limits for this CPU
202 * @vid: Stores VID limits for this CPU
203 * @last_sample_time: Last Sample time
204 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented
205 * This shift is a multiplier to mperf delta to
206 * calculate CPU busy.
207 * @prev_aperf: Last APERF value read from APERF MSR
208 * @prev_mperf: Last MPERF value read from MPERF MSR
209 * @prev_tsc: Last timestamp counter (TSC) value
210 * @prev_cummulative_iowait: IO Wait time difference from last and
211 * current sample
212 * @sample: Storage for storing last Sample data
213 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
214 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
215 * @acpi_perf_data: Stores ACPI perf information read from _PSS
216 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
217 * @epp_powersave: Last saved HWP energy performance preference
218 * (EPP) or energy performance bias (EPB),
219 * when policy switched to performance
220 * @epp_policy: Last saved policy used to set EPP/EPB
221 * @epp_default: Power on default HWP energy performance
222 * preference/bias
223 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
224 * operation
225 * @hwp_req_cached: Cached value of the last HWP Request MSR
226 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
227 * @last_io_update: Last time when IO wake flag was set
228 * @sched_flags: Store scheduler flags for possible cross CPU update
229 * @hwp_boost_min: Last HWP boosted min performance
230 *
231 * This structure stores per CPU instance data for all CPUs.
232 */
233 struct cpudata {
234 int cpu;
235
236 unsigned int policy;
237 struct update_util_data update_util;
238 bool update_util_set;
239
240 struct pstate_data pstate;
241 struct vid_data vid;
242
243 u64 last_update;
244 u64 last_sample_time;
245 u64 aperf_mperf_shift;
246 u64 prev_aperf;
247 u64 prev_mperf;
248 u64 prev_tsc;
249 u64 prev_cummulative_iowait;
250 struct sample sample;
251 int32_t min_perf_ratio;
252 int32_t max_perf_ratio;
253 #ifdef CONFIG_ACPI
254 struct acpi_processor_performance acpi_perf_data;
255 bool valid_pss_table;
256 #endif
257 unsigned int iowait_boost;
258 s16 epp_powersave;
259 s16 epp_policy;
260 s16 epp_default;
261 s16 epp_saved;
262 u64 hwp_req_cached;
263 u64 hwp_cap_cached;
264 u64 last_io_update;
265 unsigned int sched_flags;
266 u32 hwp_boost_min;
267 };
268
269 static struct cpudata **all_cpu_data;
270
271 /**
272 * struct pstate_funcs - Per CPU model specific callbacks
273 * @get_max: Callback to get maximum non turbo effective P state
274 * @get_max_physical: Callback to get maximum non turbo physical P state
275 * @get_min: Callback to get minimum P state
276 * @get_turbo: Callback to get turbo P state
277 * @get_scaling: Callback to get frequency scaling factor
278 * @get_val: Callback to convert P state to actual MSR write value
279 * @get_vid: Callback to get VID data for Atom platforms
280 *
281 * Core and Atom CPU models have different way to get P State limits. This
282 * structure is used to store those callbacks.
283 */
284 struct pstate_funcs {
285 int (*get_max)(void);
286 int (*get_max_physical)(void);
287 int (*get_min)(void);
288 int (*get_turbo)(void);
289 int (*get_scaling)(void);
290 int (*get_aperf_mperf_shift)(void);
291 u64 (*get_val)(struct cpudata*, int pstate);
292 void (*get_vid)(struct cpudata *);
293 };
294
295 static struct pstate_funcs pstate_funcs __read_mostly;
296
297 static int hwp_active __read_mostly;
298 static int hwp_mode_bdw __read_mostly;
299 static bool per_cpu_limits __read_mostly;
300 static bool hwp_boost __read_mostly;
301
302 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
303
304 #ifdef CONFIG_ACPI
305 static bool acpi_ppc;
306 #endif
307
308 static struct global_params global;
309
310 static DEFINE_MUTEX(intel_pstate_driver_lock);
311 static DEFINE_MUTEX(intel_pstate_limits_lock);
312
313 #ifdef CONFIG_ACPI
314
intel_pstate_acpi_pm_profile_server(void)315 static bool intel_pstate_acpi_pm_profile_server(void)
316 {
317 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
318 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
319 return true;
320
321 return false;
322 }
323
intel_pstate_get_ppc_enable_status(void)324 static bool intel_pstate_get_ppc_enable_status(void)
325 {
326 if (intel_pstate_acpi_pm_profile_server())
327 return true;
328
329 return acpi_ppc;
330 }
331
332 #ifdef CONFIG_ACPI_CPPC_LIB
333
334 /* The work item is needed to avoid CPU hotplug locking issues */
intel_pstste_sched_itmt_work_fn(struct work_struct * work)335 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
336 {
337 sched_set_itmt_support();
338 }
339
340 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
341
intel_pstate_set_itmt_prio(int cpu)342 static void intel_pstate_set_itmt_prio(int cpu)
343 {
344 struct cppc_perf_caps cppc_perf;
345 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
346 int ret;
347
348 ret = cppc_get_perf_caps(cpu, &cppc_perf);
349 if (ret)
350 return;
351
352 /*
353 * The priorities can be set regardless of whether or not
354 * sched_set_itmt_support(true) has been called and it is valid to
355 * update them at any time after it has been called.
356 */
357 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
358
359 if (max_highest_perf <= min_highest_perf) {
360 if (cppc_perf.highest_perf > max_highest_perf)
361 max_highest_perf = cppc_perf.highest_perf;
362
363 if (cppc_perf.highest_perf < min_highest_perf)
364 min_highest_perf = cppc_perf.highest_perf;
365
366 if (max_highest_perf > min_highest_perf) {
367 /*
368 * This code can be run during CPU online under the
369 * CPU hotplug locks, so sched_set_itmt_support()
370 * cannot be called from here. Queue up a work item
371 * to invoke it.
372 */
373 schedule_work(&sched_itmt_work);
374 }
375 }
376 }
377
intel_pstate_get_cppc_guranteed(int cpu)378 static int intel_pstate_get_cppc_guranteed(int cpu)
379 {
380 struct cppc_perf_caps cppc_perf;
381 int ret;
382
383 ret = cppc_get_perf_caps(cpu, &cppc_perf);
384 if (ret)
385 return ret;
386
387 if (cppc_perf.guaranteed_perf)
388 return cppc_perf.guaranteed_perf;
389
390 return cppc_perf.nominal_perf;
391 }
392
393 #else /* CONFIG_ACPI_CPPC_LIB */
intel_pstate_set_itmt_prio(int cpu)394 static void intel_pstate_set_itmt_prio(int cpu)
395 {
396 }
397 #endif /* CONFIG_ACPI_CPPC_LIB */
398
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)399 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
400 {
401 struct cpudata *cpu;
402 int ret;
403 int i;
404
405 if (hwp_active) {
406 intel_pstate_set_itmt_prio(policy->cpu);
407 return;
408 }
409
410 if (!intel_pstate_get_ppc_enable_status())
411 return;
412
413 cpu = all_cpu_data[policy->cpu];
414
415 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
416 policy->cpu);
417 if (ret)
418 return;
419
420 /*
421 * Check if the control value in _PSS is for PERF_CTL MSR, which should
422 * guarantee that the states returned by it map to the states in our
423 * list directly.
424 */
425 if (cpu->acpi_perf_data.control_register.space_id !=
426 ACPI_ADR_SPACE_FIXED_HARDWARE)
427 goto err;
428
429 /*
430 * If there is only one entry _PSS, simply ignore _PSS and continue as
431 * usual without taking _PSS into account
432 */
433 if (cpu->acpi_perf_data.state_count < 2)
434 goto err;
435
436 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
437 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
438 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
439 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
440 (u32) cpu->acpi_perf_data.states[i].core_frequency,
441 (u32) cpu->acpi_perf_data.states[i].power,
442 (u32) cpu->acpi_perf_data.states[i].control);
443 }
444
445 /*
446 * The _PSS table doesn't contain whole turbo frequency range.
447 * This just contains +1 MHZ above the max non turbo frequency,
448 * with control value corresponding to max turbo ratio. But
449 * when cpufreq set policy is called, it will call with this
450 * max frequency, which will cause a reduced performance as
451 * this driver uses real max turbo frequency as the max
452 * frequency. So correct this frequency in _PSS table to
453 * correct max turbo frequency based on the turbo state.
454 * Also need to convert to MHz as _PSS freq is in MHz.
455 */
456 if (!global.turbo_disabled)
457 cpu->acpi_perf_data.states[0].core_frequency =
458 policy->cpuinfo.max_freq / 1000;
459 cpu->valid_pss_table = true;
460 pr_debug("_PPC limits will be enforced\n");
461
462 return;
463
464 err:
465 cpu->valid_pss_table = false;
466 acpi_processor_unregister_performance(policy->cpu);
467 }
468
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)469 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
470 {
471 struct cpudata *cpu;
472
473 cpu = all_cpu_data[policy->cpu];
474 if (!cpu->valid_pss_table)
475 return;
476
477 acpi_processor_unregister_performance(policy->cpu);
478 }
479 #else /* CONFIG_ACPI */
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)480 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
481 {
482 }
483
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)484 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
485 {
486 }
487
intel_pstate_acpi_pm_profile_server(void)488 static inline bool intel_pstate_acpi_pm_profile_server(void)
489 {
490 return false;
491 }
492 #endif /* CONFIG_ACPI */
493
494 #ifndef CONFIG_ACPI_CPPC_LIB
intel_pstate_get_cppc_guranteed(int cpu)495 static int intel_pstate_get_cppc_guranteed(int cpu)
496 {
497 return -ENOTSUPP;
498 }
499 #endif /* CONFIG_ACPI_CPPC_LIB */
500
update_turbo_state(void)501 static inline void update_turbo_state(void)
502 {
503 u64 misc_en;
504 struct cpudata *cpu;
505
506 cpu = all_cpu_data[0];
507 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
508 global.turbo_disabled =
509 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
510 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
511 }
512
min_perf_pct_min(void)513 static int min_perf_pct_min(void)
514 {
515 struct cpudata *cpu = all_cpu_data[0];
516 int turbo_pstate = cpu->pstate.turbo_pstate;
517
518 return turbo_pstate ?
519 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
520 }
521
intel_pstate_get_epb(struct cpudata * cpu_data)522 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
523 {
524 u64 epb;
525 int ret;
526
527 if (!boot_cpu_has(X86_FEATURE_EPB))
528 return -ENXIO;
529
530 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
531 if (ret)
532 return (s16)ret;
533
534 return (s16)(epb & 0x0f);
535 }
536
intel_pstate_get_epp(struct cpudata * cpu_data,u64 hwp_req_data)537 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
538 {
539 s16 epp;
540
541 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
542 /*
543 * When hwp_req_data is 0, means that caller didn't read
544 * MSR_HWP_REQUEST, so need to read and get EPP.
545 */
546 if (!hwp_req_data) {
547 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
548 &hwp_req_data);
549 if (epp)
550 return epp;
551 }
552 epp = (hwp_req_data >> 24) & 0xff;
553 } else {
554 /* When there is no EPP present, HWP uses EPB settings */
555 epp = intel_pstate_get_epb(cpu_data);
556 }
557
558 return epp;
559 }
560
intel_pstate_set_epb(int cpu,s16 pref)561 static int intel_pstate_set_epb(int cpu, s16 pref)
562 {
563 u64 epb;
564 int ret;
565
566 if (!boot_cpu_has(X86_FEATURE_EPB))
567 return -ENXIO;
568
569 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
570 if (ret)
571 return ret;
572
573 epb = (epb & ~0x0f) | pref;
574 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
575
576 return 0;
577 }
578
579 /*
580 * EPP/EPB display strings corresponding to EPP index in the
581 * energy_perf_strings[]
582 * index String
583 *-------------------------------------
584 * 0 default
585 * 1 performance
586 * 2 balance_performance
587 * 3 balance_power
588 * 4 power
589 */
590 static const char * const energy_perf_strings[] = {
591 "default",
592 "performance",
593 "balance_performance",
594 "balance_power",
595 "power",
596 NULL
597 };
598 static const unsigned int epp_values[] = {
599 HWP_EPP_PERFORMANCE,
600 HWP_EPP_BALANCE_PERFORMANCE,
601 HWP_EPP_BALANCE_POWERSAVE,
602 HWP_EPP_POWERSAVE
603 };
604
intel_pstate_get_energy_pref_index(struct cpudata * cpu_data)605 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
606 {
607 s16 epp;
608 int index = -EINVAL;
609
610 epp = intel_pstate_get_epp(cpu_data, 0);
611 if (epp < 0)
612 return epp;
613
614 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
615 if (epp == HWP_EPP_PERFORMANCE)
616 return 1;
617 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
618 return 2;
619 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
620 return 3;
621 else
622 return 4;
623 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
624 /*
625 * Range:
626 * 0x00-0x03 : Performance
627 * 0x04-0x07 : Balance performance
628 * 0x08-0x0B : Balance power
629 * 0x0C-0x0F : Power
630 * The EPB is a 4 bit value, but our ranges restrict the
631 * value which can be set. Here only using top two bits
632 * effectively.
633 */
634 index = (epp >> 2) + 1;
635 }
636
637 return index;
638 }
639
intel_pstate_set_energy_pref_index(struct cpudata * cpu_data,int pref_index)640 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
641 int pref_index)
642 {
643 int epp = -EINVAL;
644 int ret;
645
646 if (!pref_index)
647 epp = cpu_data->epp_default;
648
649 mutex_lock(&intel_pstate_limits_lock);
650
651 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
652 u64 value;
653
654 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
655 if (ret)
656 goto return_pref;
657
658 value &= ~GENMASK_ULL(31, 24);
659
660 if (epp == -EINVAL)
661 epp = epp_values[pref_index - 1];
662
663 value |= (u64)epp << 24;
664 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
665 } else {
666 if (epp == -EINVAL)
667 epp = (pref_index - 1) << 2;
668 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
669 }
670 return_pref:
671 mutex_unlock(&intel_pstate_limits_lock);
672
673 return ret;
674 }
675
show_energy_performance_available_preferences(struct cpufreq_policy * policy,char * buf)676 static ssize_t show_energy_performance_available_preferences(
677 struct cpufreq_policy *policy, char *buf)
678 {
679 int i = 0;
680 int ret = 0;
681
682 while (energy_perf_strings[i] != NULL)
683 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
684
685 ret += sprintf(&buf[ret], "\n");
686
687 return ret;
688 }
689
690 cpufreq_freq_attr_ro(energy_performance_available_preferences);
691
store_energy_performance_preference(struct cpufreq_policy * policy,const char * buf,size_t count)692 static ssize_t store_energy_performance_preference(
693 struct cpufreq_policy *policy, const char *buf, size_t count)
694 {
695 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
696 char str_preference[21];
697 int ret;
698
699 ret = sscanf(buf, "%20s", str_preference);
700 if (ret != 1)
701 return -EINVAL;
702
703 ret = match_string(energy_perf_strings, -1, str_preference);
704 if (ret < 0)
705 return ret;
706
707 intel_pstate_set_energy_pref_index(cpu_data, ret);
708 return count;
709 }
710
show_energy_performance_preference(struct cpufreq_policy * policy,char * buf)711 static ssize_t show_energy_performance_preference(
712 struct cpufreq_policy *policy, char *buf)
713 {
714 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
715 int preference;
716
717 preference = intel_pstate_get_energy_pref_index(cpu_data);
718 if (preference < 0)
719 return preference;
720
721 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
722 }
723
724 cpufreq_freq_attr_rw(energy_performance_preference);
725
show_base_frequency(struct cpufreq_policy * policy,char * buf)726 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
727 {
728 struct cpudata *cpu;
729 u64 cap;
730 int ratio;
731
732 ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
733 if (ratio <= 0) {
734 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
735 ratio = HWP_GUARANTEED_PERF(cap);
736 }
737
738 cpu = all_cpu_data[policy->cpu];
739
740 return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
741 }
742
743 cpufreq_freq_attr_ro(base_frequency);
744
745 static struct freq_attr *hwp_cpufreq_attrs[] = {
746 &energy_performance_preference,
747 &energy_performance_available_preferences,
748 &base_frequency,
749 NULL,
750 };
751
intel_pstate_get_hwp_max(unsigned int cpu,int * phy_max,int * current_max)752 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
753 int *current_max)
754 {
755 u64 cap;
756
757 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
758 WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
759 if (global.no_turbo)
760 *current_max = HWP_GUARANTEED_PERF(cap);
761 else
762 *current_max = HWP_HIGHEST_PERF(cap);
763
764 *phy_max = HWP_HIGHEST_PERF(cap);
765 }
766
intel_pstate_hwp_set(unsigned int cpu)767 static void intel_pstate_hwp_set(unsigned int cpu)
768 {
769 struct cpudata *cpu_data = all_cpu_data[cpu];
770 int max, min;
771 u64 value;
772 s16 epp;
773
774 max = cpu_data->max_perf_ratio;
775 min = cpu_data->min_perf_ratio;
776
777 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
778 min = max;
779
780 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
781
782 value &= ~HWP_MIN_PERF(~0L);
783 value |= HWP_MIN_PERF(min);
784
785 value &= ~HWP_MAX_PERF(~0L);
786 value |= HWP_MAX_PERF(max);
787
788 if (cpu_data->epp_policy == cpu_data->policy)
789 goto skip_epp;
790
791 cpu_data->epp_policy = cpu_data->policy;
792
793 if (cpu_data->epp_saved >= 0) {
794 epp = cpu_data->epp_saved;
795 cpu_data->epp_saved = -EINVAL;
796 goto update_epp;
797 }
798
799 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
800 epp = intel_pstate_get_epp(cpu_data, value);
801 cpu_data->epp_powersave = epp;
802 /* If EPP read was failed, then don't try to write */
803 if (epp < 0)
804 goto skip_epp;
805
806 epp = 0;
807 } else {
808 /* skip setting EPP, when saved value is invalid */
809 if (cpu_data->epp_powersave < 0)
810 goto skip_epp;
811
812 /*
813 * No need to restore EPP when it is not zero. This
814 * means:
815 * - Policy is not changed
816 * - user has manually changed
817 * - Error reading EPB
818 */
819 epp = intel_pstate_get_epp(cpu_data, value);
820 if (epp)
821 goto skip_epp;
822
823 epp = cpu_data->epp_powersave;
824 }
825 update_epp:
826 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
827 value &= ~GENMASK_ULL(31, 24);
828 value |= (u64)epp << 24;
829 } else {
830 intel_pstate_set_epb(cpu, epp);
831 }
832 skip_epp:
833 WRITE_ONCE(cpu_data->hwp_req_cached, value);
834 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
835 }
836
intel_pstate_hwp_force_min_perf(int cpu)837 static void intel_pstate_hwp_force_min_perf(int cpu)
838 {
839 u64 value;
840 int min_perf;
841
842 value = all_cpu_data[cpu]->hwp_req_cached;
843 value &= ~GENMASK_ULL(31, 0);
844 min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
845
846 /* Set hwp_max = hwp_min */
847 value |= HWP_MAX_PERF(min_perf);
848 value |= HWP_MIN_PERF(min_perf);
849
850 /* Set EPP to min */
851 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
852 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
853
854 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
855 }
856
intel_pstate_hwp_save_state(struct cpufreq_policy * policy)857 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
858 {
859 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
860
861 if (!hwp_active)
862 return 0;
863
864 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
865
866 return 0;
867 }
868
869 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
870
intel_pstate_resume(struct cpufreq_policy * policy)871 static int intel_pstate_resume(struct cpufreq_policy *policy)
872 {
873 if (!hwp_active)
874 return 0;
875
876 mutex_lock(&intel_pstate_limits_lock);
877
878 if (policy->cpu == 0)
879 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
880
881 all_cpu_data[policy->cpu]->epp_policy = 0;
882 intel_pstate_hwp_set(policy->cpu);
883
884 mutex_unlock(&intel_pstate_limits_lock);
885
886 return 0;
887 }
888
intel_pstate_update_policies(void)889 static void intel_pstate_update_policies(void)
890 {
891 int cpu;
892
893 for_each_possible_cpu(cpu)
894 cpufreq_update_policy(cpu);
895 }
896
intel_pstate_update_max_freq(unsigned int cpu)897 static void intel_pstate_update_max_freq(unsigned int cpu)
898 {
899 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
900 struct cpudata *cpudata;
901
902 if (!policy)
903 return;
904
905 cpudata = all_cpu_data[cpu];
906 policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
907 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
908
909 refresh_frequency_limits(policy);
910
911 cpufreq_cpu_release(policy);
912 }
913
intel_pstate_update_limits(unsigned int cpu)914 static void intel_pstate_update_limits(unsigned int cpu)
915 {
916 mutex_lock(&intel_pstate_driver_lock);
917
918 update_turbo_state();
919 /*
920 * If turbo has been turned on or off globally, policy limits for
921 * all CPUs need to be updated to reflect that.
922 */
923 if (global.turbo_disabled_mf != global.turbo_disabled) {
924 global.turbo_disabled_mf = global.turbo_disabled;
925 for_each_possible_cpu(cpu)
926 intel_pstate_update_max_freq(cpu);
927 } else {
928 cpufreq_update_policy(cpu);
929 }
930
931 mutex_unlock(&intel_pstate_driver_lock);
932 }
933
934 /************************** sysfs begin ************************/
935 #define show_one(file_name, object) \
936 static ssize_t show_##file_name \
937 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
938 { \
939 return sprintf(buf, "%u\n", global.object); \
940 }
941
942 static ssize_t intel_pstate_show_status(char *buf);
943 static int intel_pstate_update_status(const char *buf, size_t size);
944
show_status(struct kobject * kobj,struct kobj_attribute * attr,char * buf)945 static ssize_t show_status(struct kobject *kobj,
946 struct kobj_attribute *attr, char *buf)
947 {
948 ssize_t ret;
949
950 mutex_lock(&intel_pstate_driver_lock);
951 ret = intel_pstate_show_status(buf);
952 mutex_unlock(&intel_pstate_driver_lock);
953
954 return ret;
955 }
956
store_status(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)957 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
958 const char *buf, size_t count)
959 {
960 char *p = memchr(buf, '\n', count);
961 int ret;
962
963 mutex_lock(&intel_pstate_driver_lock);
964 ret = intel_pstate_update_status(buf, p ? p - buf : count);
965 mutex_unlock(&intel_pstate_driver_lock);
966
967 return ret < 0 ? ret : count;
968 }
969
show_turbo_pct(struct kobject * kobj,struct kobj_attribute * attr,char * buf)970 static ssize_t show_turbo_pct(struct kobject *kobj,
971 struct kobj_attribute *attr, char *buf)
972 {
973 struct cpudata *cpu;
974 int total, no_turbo, turbo_pct;
975 uint32_t turbo_fp;
976
977 mutex_lock(&intel_pstate_driver_lock);
978
979 if (!intel_pstate_driver) {
980 mutex_unlock(&intel_pstate_driver_lock);
981 return -EAGAIN;
982 }
983
984 cpu = all_cpu_data[0];
985
986 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
987 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
988 turbo_fp = div_fp(no_turbo, total);
989 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
990
991 mutex_unlock(&intel_pstate_driver_lock);
992
993 return sprintf(buf, "%u\n", turbo_pct);
994 }
995
show_num_pstates(struct kobject * kobj,struct kobj_attribute * attr,char * buf)996 static ssize_t show_num_pstates(struct kobject *kobj,
997 struct kobj_attribute *attr, char *buf)
998 {
999 struct cpudata *cpu;
1000 int total;
1001
1002 mutex_lock(&intel_pstate_driver_lock);
1003
1004 if (!intel_pstate_driver) {
1005 mutex_unlock(&intel_pstate_driver_lock);
1006 return -EAGAIN;
1007 }
1008
1009 cpu = all_cpu_data[0];
1010 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1011
1012 mutex_unlock(&intel_pstate_driver_lock);
1013
1014 return sprintf(buf, "%u\n", total);
1015 }
1016
show_no_turbo(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1017 static ssize_t show_no_turbo(struct kobject *kobj,
1018 struct kobj_attribute *attr, char *buf)
1019 {
1020 ssize_t ret;
1021
1022 mutex_lock(&intel_pstate_driver_lock);
1023
1024 if (!intel_pstate_driver) {
1025 mutex_unlock(&intel_pstate_driver_lock);
1026 return -EAGAIN;
1027 }
1028
1029 update_turbo_state();
1030 if (global.turbo_disabled)
1031 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1032 else
1033 ret = sprintf(buf, "%u\n", global.no_turbo);
1034
1035 mutex_unlock(&intel_pstate_driver_lock);
1036
1037 return ret;
1038 }
1039
store_no_turbo(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1040 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1041 const char *buf, size_t count)
1042 {
1043 unsigned int input;
1044 int ret;
1045
1046 ret = sscanf(buf, "%u", &input);
1047 if (ret != 1)
1048 return -EINVAL;
1049
1050 mutex_lock(&intel_pstate_driver_lock);
1051
1052 if (!intel_pstate_driver) {
1053 mutex_unlock(&intel_pstate_driver_lock);
1054 return -EAGAIN;
1055 }
1056
1057 mutex_lock(&intel_pstate_limits_lock);
1058
1059 update_turbo_state();
1060 if (global.turbo_disabled) {
1061 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1062 mutex_unlock(&intel_pstate_limits_lock);
1063 mutex_unlock(&intel_pstate_driver_lock);
1064 return -EPERM;
1065 }
1066
1067 global.no_turbo = clamp_t(int, input, 0, 1);
1068
1069 if (global.no_turbo) {
1070 struct cpudata *cpu = all_cpu_data[0];
1071 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1072
1073 /* Squash the global minimum into the permitted range. */
1074 if (global.min_perf_pct > pct)
1075 global.min_perf_pct = pct;
1076 }
1077
1078 mutex_unlock(&intel_pstate_limits_lock);
1079
1080 intel_pstate_update_policies();
1081
1082 mutex_unlock(&intel_pstate_driver_lock);
1083
1084 return count;
1085 }
1086
1087 static struct cpufreq_driver intel_pstate;
1088
update_qos_request(enum freq_qos_req_type type)1089 static void update_qos_request(enum freq_qos_req_type type)
1090 {
1091 int max_state, turbo_max, freq, i, perf_pct;
1092 struct freq_qos_request *req;
1093 struct cpufreq_policy *policy;
1094
1095 for_each_possible_cpu(i) {
1096 struct cpudata *cpu = all_cpu_data[i];
1097
1098 policy = cpufreq_cpu_get(i);
1099 if (!policy)
1100 continue;
1101
1102 req = policy->driver_data;
1103 cpufreq_cpu_put(policy);
1104
1105 if (!req)
1106 continue;
1107
1108 if (hwp_active)
1109 intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
1110 else
1111 turbo_max = cpu->pstate.turbo_pstate;
1112
1113 if (type == FREQ_QOS_MIN) {
1114 perf_pct = global.min_perf_pct;
1115 } else {
1116 req++;
1117 perf_pct = global.max_perf_pct;
1118 }
1119
1120 freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1121 freq *= cpu->pstate.scaling;
1122
1123 if (freq_qos_update_request(req, freq) < 0)
1124 pr_warn("Failed to update freq constraint: CPU%d\n", i);
1125 }
1126 }
1127
store_max_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1128 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1129 const char *buf, size_t count)
1130 {
1131 unsigned int input;
1132 int ret;
1133
1134 ret = sscanf(buf, "%u", &input);
1135 if (ret != 1)
1136 return -EINVAL;
1137
1138 mutex_lock(&intel_pstate_driver_lock);
1139
1140 if (!intel_pstate_driver) {
1141 mutex_unlock(&intel_pstate_driver_lock);
1142 return -EAGAIN;
1143 }
1144
1145 mutex_lock(&intel_pstate_limits_lock);
1146
1147 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1148
1149 mutex_unlock(&intel_pstate_limits_lock);
1150
1151 if (intel_pstate_driver == &intel_pstate)
1152 intel_pstate_update_policies();
1153 else
1154 update_qos_request(FREQ_QOS_MAX);
1155
1156 mutex_unlock(&intel_pstate_driver_lock);
1157
1158 return count;
1159 }
1160
store_min_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1161 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1162 const char *buf, size_t count)
1163 {
1164 unsigned int input;
1165 int ret;
1166
1167 ret = sscanf(buf, "%u", &input);
1168 if (ret != 1)
1169 return -EINVAL;
1170
1171 mutex_lock(&intel_pstate_driver_lock);
1172
1173 if (!intel_pstate_driver) {
1174 mutex_unlock(&intel_pstate_driver_lock);
1175 return -EAGAIN;
1176 }
1177
1178 mutex_lock(&intel_pstate_limits_lock);
1179
1180 global.min_perf_pct = clamp_t(int, input,
1181 min_perf_pct_min(), global.max_perf_pct);
1182
1183 mutex_unlock(&intel_pstate_limits_lock);
1184
1185 if (intel_pstate_driver == &intel_pstate)
1186 intel_pstate_update_policies();
1187 else
1188 update_qos_request(FREQ_QOS_MIN);
1189
1190 mutex_unlock(&intel_pstate_driver_lock);
1191
1192 return count;
1193 }
1194
show_hwp_dynamic_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1195 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1196 struct kobj_attribute *attr, char *buf)
1197 {
1198 return sprintf(buf, "%u\n", hwp_boost);
1199 }
1200
store_hwp_dynamic_boost(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1201 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1202 struct kobj_attribute *b,
1203 const char *buf, size_t count)
1204 {
1205 unsigned int input;
1206 int ret;
1207
1208 ret = kstrtouint(buf, 10, &input);
1209 if (ret)
1210 return ret;
1211
1212 mutex_lock(&intel_pstate_driver_lock);
1213 hwp_boost = !!input;
1214 intel_pstate_update_policies();
1215 mutex_unlock(&intel_pstate_driver_lock);
1216
1217 return count;
1218 }
1219
1220 show_one(max_perf_pct, max_perf_pct);
1221 show_one(min_perf_pct, min_perf_pct);
1222
1223 define_one_global_rw(status);
1224 define_one_global_rw(no_turbo);
1225 define_one_global_rw(max_perf_pct);
1226 define_one_global_rw(min_perf_pct);
1227 define_one_global_ro(turbo_pct);
1228 define_one_global_ro(num_pstates);
1229 define_one_global_rw(hwp_dynamic_boost);
1230
1231 static struct attribute *intel_pstate_attributes[] = {
1232 &status.attr,
1233 &no_turbo.attr,
1234 &turbo_pct.attr,
1235 &num_pstates.attr,
1236 NULL
1237 };
1238
1239 static const struct attribute_group intel_pstate_attr_group = {
1240 .attrs = intel_pstate_attributes,
1241 };
1242
intel_pstate_sysfs_expose_params(void)1243 static void __init intel_pstate_sysfs_expose_params(void)
1244 {
1245 struct kobject *intel_pstate_kobject;
1246 int rc;
1247
1248 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1249 &cpu_subsys.dev_root->kobj);
1250 if (WARN_ON(!intel_pstate_kobject))
1251 return;
1252
1253 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1254 if (WARN_ON(rc))
1255 return;
1256
1257 /*
1258 * If per cpu limits are enforced there are no global limits, so
1259 * return without creating max/min_perf_pct attributes
1260 */
1261 if (per_cpu_limits)
1262 return;
1263
1264 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1265 WARN_ON(rc);
1266
1267 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1268 WARN_ON(rc);
1269
1270 if (hwp_active) {
1271 rc = sysfs_create_file(intel_pstate_kobject,
1272 &hwp_dynamic_boost.attr);
1273 WARN_ON(rc);
1274 }
1275 }
1276 /************************** sysfs end ************************/
1277
intel_pstate_hwp_enable(struct cpudata * cpudata)1278 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1279 {
1280 /* First disable HWP notification interrupt as we don't process them */
1281 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1282 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1283
1284 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1285 cpudata->epp_policy = 0;
1286 if (cpudata->epp_default == -EINVAL)
1287 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1288 }
1289
1290 #define MSR_IA32_POWER_CTL_BIT_EE 19
1291
1292 /* Disable energy efficiency optimization */
intel_pstate_disable_ee(int cpu)1293 static void intel_pstate_disable_ee(int cpu)
1294 {
1295 u64 power_ctl;
1296 int ret;
1297
1298 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1299 if (ret)
1300 return;
1301
1302 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1303 pr_info("Disabling energy efficiency optimization\n");
1304 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1305 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1306 }
1307 }
1308
atom_get_min_pstate(void)1309 static int atom_get_min_pstate(void)
1310 {
1311 u64 value;
1312
1313 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1314 return (value >> 8) & 0x7F;
1315 }
1316
atom_get_max_pstate(void)1317 static int atom_get_max_pstate(void)
1318 {
1319 u64 value;
1320
1321 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1322 return (value >> 16) & 0x7F;
1323 }
1324
atom_get_turbo_pstate(void)1325 static int atom_get_turbo_pstate(void)
1326 {
1327 u64 value;
1328
1329 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1330 return value & 0x7F;
1331 }
1332
atom_get_val(struct cpudata * cpudata,int pstate)1333 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1334 {
1335 u64 val;
1336 int32_t vid_fp;
1337 u32 vid;
1338
1339 val = (u64)pstate << 8;
1340 if (global.no_turbo && !global.turbo_disabled)
1341 val |= (u64)1 << 32;
1342
1343 vid_fp = cpudata->vid.min + mul_fp(
1344 int_tofp(pstate - cpudata->pstate.min_pstate),
1345 cpudata->vid.ratio);
1346
1347 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1348 vid = ceiling_fp(vid_fp);
1349
1350 if (pstate > cpudata->pstate.max_pstate)
1351 vid = cpudata->vid.turbo;
1352
1353 return val | vid;
1354 }
1355
silvermont_get_scaling(void)1356 static int silvermont_get_scaling(void)
1357 {
1358 u64 value;
1359 int i;
1360 /* Defined in Table 35-6 from SDM (Sept 2015) */
1361 static int silvermont_freq_table[] = {
1362 83300, 100000, 133300, 116700, 80000};
1363
1364 rdmsrl(MSR_FSB_FREQ, value);
1365 i = value & 0x7;
1366 WARN_ON(i > 4);
1367
1368 return silvermont_freq_table[i];
1369 }
1370
airmont_get_scaling(void)1371 static int airmont_get_scaling(void)
1372 {
1373 u64 value;
1374 int i;
1375 /* Defined in Table 35-10 from SDM (Sept 2015) */
1376 static int airmont_freq_table[] = {
1377 83300, 100000, 133300, 116700, 80000,
1378 93300, 90000, 88900, 87500};
1379
1380 rdmsrl(MSR_FSB_FREQ, value);
1381 i = value & 0xF;
1382 WARN_ON(i > 8);
1383
1384 return airmont_freq_table[i];
1385 }
1386
atom_get_vid(struct cpudata * cpudata)1387 static void atom_get_vid(struct cpudata *cpudata)
1388 {
1389 u64 value;
1390
1391 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1392 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1393 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1394 cpudata->vid.ratio = div_fp(
1395 cpudata->vid.max - cpudata->vid.min,
1396 int_tofp(cpudata->pstate.max_pstate -
1397 cpudata->pstate.min_pstate));
1398
1399 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1400 cpudata->vid.turbo = value & 0x7f;
1401 }
1402
core_get_min_pstate(void)1403 static int core_get_min_pstate(void)
1404 {
1405 u64 value;
1406
1407 rdmsrl(MSR_PLATFORM_INFO, value);
1408 return (value >> 40) & 0xFF;
1409 }
1410
core_get_max_pstate_physical(void)1411 static int core_get_max_pstate_physical(void)
1412 {
1413 u64 value;
1414
1415 rdmsrl(MSR_PLATFORM_INFO, value);
1416 return (value >> 8) & 0xFF;
1417 }
1418
core_get_tdp_ratio(u64 plat_info)1419 static int core_get_tdp_ratio(u64 plat_info)
1420 {
1421 /* Check how many TDP levels present */
1422 if (plat_info & 0x600000000) {
1423 u64 tdp_ctrl;
1424 u64 tdp_ratio;
1425 int tdp_msr;
1426 int err;
1427
1428 /* Get the TDP level (0, 1, 2) to get ratios */
1429 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1430 if (err)
1431 return err;
1432
1433 /* TDP MSR are continuous starting at 0x648 */
1434 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1435 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1436 if (err)
1437 return err;
1438
1439 /* For level 1 and 2, bits[23:16] contain the ratio */
1440 if (tdp_ctrl & 0x03)
1441 tdp_ratio >>= 16;
1442
1443 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1444 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1445
1446 return (int)tdp_ratio;
1447 }
1448
1449 return -ENXIO;
1450 }
1451
core_get_max_pstate(void)1452 static int core_get_max_pstate(void)
1453 {
1454 u64 tar;
1455 u64 plat_info;
1456 int max_pstate;
1457 int tdp_ratio;
1458 int err;
1459
1460 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1461 max_pstate = (plat_info >> 8) & 0xFF;
1462
1463 tdp_ratio = core_get_tdp_ratio(plat_info);
1464 if (tdp_ratio <= 0)
1465 return max_pstate;
1466
1467 if (hwp_active) {
1468 /* Turbo activation ratio is not used on HWP platforms */
1469 return tdp_ratio;
1470 }
1471
1472 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1473 if (!err) {
1474 int tar_levels;
1475
1476 /* Do some sanity checking for safety */
1477 tar_levels = tar & 0xff;
1478 if (tdp_ratio - 1 == tar_levels) {
1479 max_pstate = tar_levels;
1480 pr_debug("max_pstate=TAC %x\n", max_pstate);
1481 }
1482 }
1483
1484 return max_pstate;
1485 }
1486
core_get_turbo_pstate(void)1487 static int core_get_turbo_pstate(void)
1488 {
1489 u64 value;
1490 int nont, ret;
1491
1492 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1493 nont = core_get_max_pstate();
1494 ret = (value) & 255;
1495 if (ret <= nont)
1496 ret = nont;
1497 return ret;
1498 }
1499
core_get_scaling(void)1500 static inline int core_get_scaling(void)
1501 {
1502 return 100000;
1503 }
1504
core_get_val(struct cpudata * cpudata,int pstate)1505 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1506 {
1507 u64 val;
1508
1509 val = (u64)pstate << 8;
1510 if (global.no_turbo && !global.turbo_disabled)
1511 val |= (u64)1 << 32;
1512
1513 return val;
1514 }
1515
knl_get_aperf_mperf_shift(void)1516 static int knl_get_aperf_mperf_shift(void)
1517 {
1518 return 10;
1519 }
1520
knl_get_turbo_pstate(void)1521 static int knl_get_turbo_pstate(void)
1522 {
1523 u64 value;
1524 int nont, ret;
1525
1526 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1527 nont = core_get_max_pstate();
1528 ret = (((value) >> 8) & 0xFF);
1529 if (ret <= nont)
1530 ret = nont;
1531 return ret;
1532 }
1533
intel_pstate_set_pstate(struct cpudata * cpu,int pstate)1534 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1535 {
1536 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1537 cpu->pstate.current_pstate = pstate;
1538 /*
1539 * Generally, there is no guarantee that this code will always run on
1540 * the CPU being updated, so force the register update to run on the
1541 * right CPU.
1542 */
1543 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1544 pstate_funcs.get_val(cpu, pstate));
1545 }
1546
intel_pstate_set_min_pstate(struct cpudata * cpu)1547 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1548 {
1549 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1550 }
1551
intel_pstate_max_within_limits(struct cpudata * cpu)1552 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1553 {
1554 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1555
1556 update_turbo_state();
1557 intel_pstate_set_pstate(cpu, pstate);
1558 }
1559
intel_pstate_get_cpu_pstates(struct cpudata * cpu)1560 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1561 {
1562 cpu->pstate.min_pstate = pstate_funcs.get_min();
1563 cpu->pstate.max_pstate = pstate_funcs.get_max();
1564 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1565 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1566 cpu->pstate.scaling = pstate_funcs.get_scaling();
1567 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1568
1569 if (hwp_active && !hwp_mode_bdw) {
1570 unsigned int phy_max, current_max;
1571
1572 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, ¤t_max);
1573 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1574 } else {
1575 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1576 }
1577
1578 if (pstate_funcs.get_aperf_mperf_shift)
1579 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1580
1581 if (pstate_funcs.get_vid)
1582 pstate_funcs.get_vid(cpu);
1583
1584 intel_pstate_set_min_pstate(cpu);
1585 }
1586
1587 /*
1588 * Long hold time will keep high perf limits for long time,
1589 * which negatively impacts perf/watt for some workloads,
1590 * like specpower. 3ms is based on experiements on some
1591 * workoads.
1592 */
1593 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1594
intel_pstate_hwp_boost_up(struct cpudata * cpu)1595 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1596 {
1597 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1598 u32 max_limit = (hwp_req & 0xff00) >> 8;
1599 u32 min_limit = (hwp_req & 0xff);
1600 u32 boost_level1;
1601
1602 /*
1603 * Cases to consider (User changes via sysfs or boot time):
1604 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1605 * No boost, return.
1606 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1607 * Should result in one level boost only for P0.
1608 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1609 * Should result in two level boost:
1610 * (min + p1)/2 and P1.
1611 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1612 * Should result in three level boost:
1613 * (min + p1)/2, P1 and P0.
1614 */
1615
1616 /* If max and min are equal or already at max, nothing to boost */
1617 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1618 return;
1619
1620 if (!cpu->hwp_boost_min)
1621 cpu->hwp_boost_min = min_limit;
1622
1623 /* level at half way mark between min and guranteed */
1624 boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1625
1626 if (cpu->hwp_boost_min < boost_level1)
1627 cpu->hwp_boost_min = boost_level1;
1628 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1629 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1630 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1631 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1632 cpu->hwp_boost_min = max_limit;
1633 else
1634 return;
1635
1636 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1637 wrmsrl(MSR_HWP_REQUEST, hwp_req);
1638 cpu->last_update = cpu->sample.time;
1639 }
1640
intel_pstate_hwp_boost_down(struct cpudata * cpu)1641 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1642 {
1643 if (cpu->hwp_boost_min) {
1644 bool expired;
1645
1646 /* Check if we are idle for hold time to boost down */
1647 expired = time_after64(cpu->sample.time, cpu->last_update +
1648 hwp_boost_hold_time_ns);
1649 if (expired) {
1650 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1651 cpu->hwp_boost_min = 0;
1652 }
1653 }
1654 cpu->last_update = cpu->sample.time;
1655 }
1656
intel_pstate_update_util_hwp_local(struct cpudata * cpu,u64 time)1657 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1658 u64 time)
1659 {
1660 cpu->sample.time = time;
1661
1662 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1663 bool do_io = false;
1664
1665 cpu->sched_flags = 0;
1666 /*
1667 * Set iowait_boost flag and update time. Since IO WAIT flag
1668 * is set all the time, we can't just conclude that there is
1669 * some IO bound activity is scheduled on this CPU with just
1670 * one occurrence. If we receive at least two in two
1671 * consecutive ticks, then we treat as boost candidate.
1672 */
1673 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1674 do_io = true;
1675
1676 cpu->last_io_update = time;
1677
1678 if (do_io)
1679 intel_pstate_hwp_boost_up(cpu);
1680
1681 } else {
1682 intel_pstate_hwp_boost_down(cpu);
1683 }
1684 }
1685
intel_pstate_update_util_hwp(struct update_util_data * data,u64 time,unsigned int flags)1686 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1687 u64 time, unsigned int flags)
1688 {
1689 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1690
1691 cpu->sched_flags |= flags;
1692
1693 if (smp_processor_id() == cpu->cpu)
1694 intel_pstate_update_util_hwp_local(cpu, time);
1695 }
1696
intel_pstate_calc_avg_perf(struct cpudata * cpu)1697 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1698 {
1699 struct sample *sample = &cpu->sample;
1700
1701 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1702 }
1703
intel_pstate_sample(struct cpudata * cpu,u64 time)1704 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1705 {
1706 u64 aperf, mperf;
1707 unsigned long flags;
1708 u64 tsc;
1709
1710 local_irq_save(flags);
1711 rdmsrl(MSR_IA32_APERF, aperf);
1712 rdmsrl(MSR_IA32_MPERF, mperf);
1713 tsc = rdtsc();
1714 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1715 local_irq_restore(flags);
1716 return false;
1717 }
1718 local_irq_restore(flags);
1719
1720 cpu->last_sample_time = cpu->sample.time;
1721 cpu->sample.time = time;
1722 cpu->sample.aperf = aperf;
1723 cpu->sample.mperf = mperf;
1724 cpu->sample.tsc = tsc;
1725 cpu->sample.aperf -= cpu->prev_aperf;
1726 cpu->sample.mperf -= cpu->prev_mperf;
1727 cpu->sample.tsc -= cpu->prev_tsc;
1728
1729 cpu->prev_aperf = aperf;
1730 cpu->prev_mperf = mperf;
1731 cpu->prev_tsc = tsc;
1732 /*
1733 * First time this function is invoked in a given cycle, all of the
1734 * previous sample data fields are equal to zero or stale and they must
1735 * be populated with meaningful numbers for things to work, so assume
1736 * that sample.time will always be reset before setting the utilization
1737 * update hook and make the caller skip the sample then.
1738 */
1739 if (cpu->last_sample_time) {
1740 intel_pstate_calc_avg_perf(cpu);
1741 return true;
1742 }
1743 return false;
1744 }
1745
get_avg_frequency(struct cpudata * cpu)1746 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1747 {
1748 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1749 }
1750
get_avg_pstate(struct cpudata * cpu)1751 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1752 {
1753 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1754 cpu->sample.core_avg_perf);
1755 }
1756
get_target_pstate(struct cpudata * cpu)1757 static inline int32_t get_target_pstate(struct cpudata *cpu)
1758 {
1759 struct sample *sample = &cpu->sample;
1760 int32_t busy_frac;
1761 int target, avg_pstate;
1762
1763 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1764 sample->tsc);
1765
1766 if (busy_frac < cpu->iowait_boost)
1767 busy_frac = cpu->iowait_boost;
1768
1769 sample->busy_scaled = busy_frac * 100;
1770
1771 target = global.no_turbo || global.turbo_disabled ?
1772 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1773 target += target >> 2;
1774 target = mul_fp(target, busy_frac);
1775 if (target < cpu->pstate.min_pstate)
1776 target = cpu->pstate.min_pstate;
1777
1778 /*
1779 * If the average P-state during the previous cycle was higher than the
1780 * current target, add 50% of the difference to the target to reduce
1781 * possible performance oscillations and offset possible performance
1782 * loss related to moving the workload from one CPU to another within
1783 * a package/module.
1784 */
1785 avg_pstate = get_avg_pstate(cpu);
1786 if (avg_pstate > target)
1787 target += (avg_pstate - target) >> 1;
1788
1789 return target;
1790 }
1791
intel_pstate_prepare_request(struct cpudata * cpu,int pstate)1792 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1793 {
1794 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1795 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1796
1797 return clamp_t(int, pstate, min_pstate, max_pstate);
1798 }
1799
intel_pstate_update_pstate(struct cpudata * cpu,int pstate)1800 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1801 {
1802 if (pstate == cpu->pstate.current_pstate)
1803 return;
1804
1805 cpu->pstate.current_pstate = pstate;
1806 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1807 }
1808
intel_pstate_adjust_pstate(struct cpudata * cpu)1809 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1810 {
1811 int from = cpu->pstate.current_pstate;
1812 struct sample *sample;
1813 int target_pstate;
1814
1815 update_turbo_state();
1816
1817 target_pstate = get_target_pstate(cpu);
1818 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1819 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1820 intel_pstate_update_pstate(cpu, target_pstate);
1821
1822 sample = &cpu->sample;
1823 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1824 fp_toint(sample->busy_scaled),
1825 from,
1826 cpu->pstate.current_pstate,
1827 sample->mperf,
1828 sample->aperf,
1829 sample->tsc,
1830 get_avg_frequency(cpu),
1831 fp_toint(cpu->iowait_boost * 100));
1832 }
1833
intel_pstate_update_util(struct update_util_data * data,u64 time,unsigned int flags)1834 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1835 unsigned int flags)
1836 {
1837 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1838 u64 delta_ns;
1839
1840 /* Don't allow remote callbacks */
1841 if (smp_processor_id() != cpu->cpu)
1842 return;
1843
1844 delta_ns = time - cpu->last_update;
1845 if (flags & SCHED_CPUFREQ_IOWAIT) {
1846 /* Start over if the CPU may have been idle. */
1847 if (delta_ns > TICK_NSEC) {
1848 cpu->iowait_boost = ONE_EIGHTH_FP;
1849 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1850 cpu->iowait_boost <<= 1;
1851 if (cpu->iowait_boost > int_tofp(1))
1852 cpu->iowait_boost = int_tofp(1);
1853 } else {
1854 cpu->iowait_boost = ONE_EIGHTH_FP;
1855 }
1856 } else if (cpu->iowait_boost) {
1857 /* Clear iowait_boost if the CPU may have been idle. */
1858 if (delta_ns > TICK_NSEC)
1859 cpu->iowait_boost = 0;
1860 else
1861 cpu->iowait_boost >>= 1;
1862 }
1863 cpu->last_update = time;
1864 delta_ns = time - cpu->sample.time;
1865 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1866 return;
1867
1868 if (intel_pstate_sample(cpu, time))
1869 intel_pstate_adjust_pstate(cpu);
1870 }
1871
1872 static struct pstate_funcs core_funcs = {
1873 .get_max = core_get_max_pstate,
1874 .get_max_physical = core_get_max_pstate_physical,
1875 .get_min = core_get_min_pstate,
1876 .get_turbo = core_get_turbo_pstate,
1877 .get_scaling = core_get_scaling,
1878 .get_val = core_get_val,
1879 };
1880
1881 static const struct pstate_funcs silvermont_funcs = {
1882 .get_max = atom_get_max_pstate,
1883 .get_max_physical = atom_get_max_pstate,
1884 .get_min = atom_get_min_pstate,
1885 .get_turbo = atom_get_turbo_pstate,
1886 .get_val = atom_get_val,
1887 .get_scaling = silvermont_get_scaling,
1888 .get_vid = atom_get_vid,
1889 };
1890
1891 static const struct pstate_funcs airmont_funcs = {
1892 .get_max = atom_get_max_pstate,
1893 .get_max_physical = atom_get_max_pstate,
1894 .get_min = atom_get_min_pstate,
1895 .get_turbo = atom_get_turbo_pstate,
1896 .get_val = atom_get_val,
1897 .get_scaling = airmont_get_scaling,
1898 .get_vid = atom_get_vid,
1899 };
1900
1901 static const struct pstate_funcs knl_funcs = {
1902 .get_max = core_get_max_pstate,
1903 .get_max_physical = core_get_max_pstate_physical,
1904 .get_min = core_get_min_pstate,
1905 .get_turbo = knl_get_turbo_pstate,
1906 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1907 .get_scaling = core_get_scaling,
1908 .get_val = core_get_val,
1909 };
1910
1911 #define ICPU(model, policy) \
1912 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1913 (unsigned long)&policy }
1914
1915 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1916 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs),
1917 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs),
1918 ICPU(INTEL_FAM6_ATOM_SILVERMONT, silvermont_funcs),
1919 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs),
1920 ICPU(INTEL_FAM6_HASWELL, core_funcs),
1921 ICPU(INTEL_FAM6_BROADWELL, core_funcs),
1922 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs),
1923 ICPU(INTEL_FAM6_HASWELL_X, core_funcs),
1924 ICPU(INTEL_FAM6_HASWELL_L, core_funcs),
1925 ICPU(INTEL_FAM6_HASWELL_G, core_funcs),
1926 ICPU(INTEL_FAM6_BROADWELL_G, core_funcs),
1927 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs),
1928 ICPU(INTEL_FAM6_SKYLAKE_L, core_funcs),
1929 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1930 ICPU(INTEL_FAM6_SKYLAKE, core_funcs),
1931 ICPU(INTEL_FAM6_BROADWELL_D, core_funcs),
1932 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs),
1933 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs),
1934 ICPU(INTEL_FAM6_ATOM_GOLDMONT, core_funcs),
1935 ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS, core_funcs),
1936 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1937 {}
1938 };
1939 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1940
1941 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1942 ICPU(INTEL_FAM6_BROADWELL_D, core_funcs),
1943 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1944 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1945 {}
1946 };
1947
1948 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1949 ICPU(INTEL_FAM6_KABYLAKE, core_funcs),
1950 {}
1951 };
1952
1953 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1954 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1955 ICPU(INTEL_FAM6_SKYLAKE, core_funcs),
1956 {}
1957 };
1958
intel_pstate_init_cpu(unsigned int cpunum)1959 static int intel_pstate_init_cpu(unsigned int cpunum)
1960 {
1961 struct cpudata *cpu;
1962
1963 cpu = all_cpu_data[cpunum];
1964
1965 if (!cpu) {
1966 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1967 if (!cpu)
1968 return -ENOMEM;
1969
1970 all_cpu_data[cpunum] = cpu;
1971
1972 cpu->epp_default = -EINVAL;
1973 cpu->epp_powersave = -EINVAL;
1974 cpu->epp_saved = -EINVAL;
1975 }
1976
1977 cpu = all_cpu_data[cpunum];
1978
1979 cpu->cpu = cpunum;
1980
1981 if (hwp_active) {
1982 const struct x86_cpu_id *id;
1983
1984 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1985 if (id)
1986 intel_pstate_disable_ee(cpunum);
1987
1988 intel_pstate_hwp_enable(cpu);
1989
1990 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1991 if (id && intel_pstate_acpi_pm_profile_server())
1992 hwp_boost = true;
1993 }
1994
1995 intel_pstate_get_cpu_pstates(cpu);
1996
1997 pr_debug("controlling: cpu %d\n", cpunum);
1998
1999 return 0;
2000 }
2001
intel_pstate_set_update_util_hook(unsigned int cpu_num)2002 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2003 {
2004 struct cpudata *cpu = all_cpu_data[cpu_num];
2005
2006 if (hwp_active && !hwp_boost)
2007 return;
2008
2009 if (cpu->update_util_set)
2010 return;
2011
2012 /* Prevent intel_pstate_update_util() from using stale data. */
2013 cpu->sample.time = 0;
2014 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2015 (hwp_active ?
2016 intel_pstate_update_util_hwp :
2017 intel_pstate_update_util));
2018 cpu->update_util_set = true;
2019 }
2020
intel_pstate_clear_update_util_hook(unsigned int cpu)2021 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2022 {
2023 struct cpudata *cpu_data = all_cpu_data[cpu];
2024
2025 if (!cpu_data->update_util_set)
2026 return;
2027
2028 cpufreq_remove_update_util_hook(cpu);
2029 cpu_data->update_util_set = false;
2030 synchronize_rcu();
2031 }
2032
intel_pstate_get_max_freq(struct cpudata * cpu)2033 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2034 {
2035 return global.turbo_disabled || global.no_turbo ?
2036 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2037 }
2038
intel_pstate_update_perf_limits(struct cpufreq_policy * policy,struct cpudata * cpu)2039 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2040 struct cpudata *cpu)
2041 {
2042 int max_freq = intel_pstate_get_max_freq(cpu);
2043 int32_t max_policy_perf, min_policy_perf;
2044 int max_state, turbo_max;
2045
2046 /*
2047 * HWP needs some special consideration, because on BDX the
2048 * HWP_REQUEST uses abstract value to represent performance
2049 * rather than pure ratios.
2050 */
2051 if (hwp_active) {
2052 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2053 } else {
2054 max_state = global.no_turbo || global.turbo_disabled ?
2055 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2056 turbo_max = cpu->pstate.turbo_pstate;
2057 }
2058
2059 max_policy_perf = max_state * policy->max / max_freq;
2060 if (policy->max == policy->min) {
2061 min_policy_perf = max_policy_perf;
2062 } else {
2063 min_policy_perf = max_state * policy->min / max_freq;
2064 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2065 0, max_policy_perf);
2066 }
2067
2068 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2069 policy->cpu, max_state,
2070 min_policy_perf, max_policy_perf);
2071
2072 /* Normalize user input to [min_perf, max_perf] */
2073 if (per_cpu_limits) {
2074 cpu->min_perf_ratio = min_policy_perf;
2075 cpu->max_perf_ratio = max_policy_perf;
2076 } else {
2077 int32_t global_min, global_max;
2078
2079 /* Global limits are in percent of the maximum turbo P-state. */
2080 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2081 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2082 global_min = clamp_t(int32_t, global_min, 0, global_max);
2083
2084 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2085 global_min, global_max);
2086
2087 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2088 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2089 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2090 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2091
2092 /* Make sure min_perf <= max_perf */
2093 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2094 cpu->max_perf_ratio);
2095
2096 }
2097 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2098 cpu->max_perf_ratio,
2099 cpu->min_perf_ratio);
2100 }
2101
intel_pstate_set_policy(struct cpufreq_policy * policy)2102 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2103 {
2104 struct cpudata *cpu;
2105
2106 if (!policy->cpuinfo.max_freq)
2107 return -ENODEV;
2108
2109 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2110 policy->cpuinfo.max_freq, policy->max);
2111
2112 cpu = all_cpu_data[policy->cpu];
2113 cpu->policy = policy->policy;
2114
2115 mutex_lock(&intel_pstate_limits_lock);
2116
2117 intel_pstate_update_perf_limits(policy, cpu);
2118
2119 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2120 /*
2121 * NOHZ_FULL CPUs need this as the governor callback may not
2122 * be invoked on them.
2123 */
2124 intel_pstate_clear_update_util_hook(policy->cpu);
2125 intel_pstate_max_within_limits(cpu);
2126 } else {
2127 intel_pstate_set_update_util_hook(policy->cpu);
2128 }
2129
2130 if (hwp_active) {
2131 /*
2132 * When hwp_boost was active before and dynamically it
2133 * was turned off, in that case we need to clear the
2134 * update util hook.
2135 */
2136 if (!hwp_boost)
2137 intel_pstate_clear_update_util_hook(policy->cpu);
2138 intel_pstate_hwp_set(policy->cpu);
2139 }
2140
2141 mutex_unlock(&intel_pstate_limits_lock);
2142
2143 return 0;
2144 }
2145
intel_pstate_adjust_policy_max(struct cpufreq_policy * policy,struct cpudata * cpu)2146 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2147 struct cpudata *cpu)
2148 {
2149 if (!hwp_active &&
2150 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2151 policy->max < policy->cpuinfo.max_freq &&
2152 policy->max > cpu->pstate.max_freq) {
2153 pr_debug("policy->max > max non turbo frequency\n");
2154 policy->max = policy->cpuinfo.max_freq;
2155 }
2156 }
2157
intel_pstate_verify_policy(struct cpufreq_policy * policy)2158 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2159 {
2160 struct cpudata *cpu = all_cpu_data[policy->cpu];
2161
2162 update_turbo_state();
2163 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2164 intel_pstate_get_max_freq(cpu));
2165
2166 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2167 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2168 return -EINVAL;
2169
2170 intel_pstate_adjust_policy_max(policy, cpu);
2171
2172 return 0;
2173 }
2174
intel_cpufreq_stop_cpu(struct cpufreq_policy * policy)2175 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2176 {
2177 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2178 }
2179
intel_pstate_stop_cpu(struct cpufreq_policy * policy)2180 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2181 {
2182 pr_debug("CPU %d exiting\n", policy->cpu);
2183
2184 intel_pstate_clear_update_util_hook(policy->cpu);
2185 if (hwp_active) {
2186 intel_pstate_hwp_save_state(policy);
2187 intel_pstate_hwp_force_min_perf(policy->cpu);
2188 } else {
2189 intel_cpufreq_stop_cpu(policy);
2190 }
2191 }
2192
intel_pstate_cpu_exit(struct cpufreq_policy * policy)2193 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2194 {
2195 intel_pstate_exit_perf_limits(policy);
2196
2197 policy->fast_switch_possible = false;
2198
2199 return 0;
2200 }
2201
__intel_pstate_cpu_init(struct cpufreq_policy * policy)2202 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2203 {
2204 struct cpudata *cpu;
2205 int rc;
2206
2207 rc = intel_pstate_init_cpu(policy->cpu);
2208 if (rc)
2209 return rc;
2210
2211 cpu = all_cpu_data[policy->cpu];
2212
2213 cpu->max_perf_ratio = 0xFF;
2214 cpu->min_perf_ratio = 0;
2215
2216 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2217 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2218
2219 /* cpuinfo and default policy values */
2220 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2221 update_turbo_state();
2222 global.turbo_disabled_mf = global.turbo_disabled;
2223 policy->cpuinfo.max_freq = global.turbo_disabled ?
2224 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2225 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2226
2227 if (hwp_active) {
2228 unsigned int max_freq;
2229
2230 max_freq = global.turbo_disabled ?
2231 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2232 if (max_freq < policy->cpuinfo.max_freq)
2233 policy->cpuinfo.max_freq = max_freq;
2234 }
2235
2236 intel_pstate_init_acpi_perf_limits(policy);
2237
2238 policy->fast_switch_possible = true;
2239
2240 return 0;
2241 }
2242
intel_pstate_cpu_init(struct cpufreq_policy * policy)2243 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2244 {
2245 int ret = __intel_pstate_cpu_init(policy);
2246
2247 if (ret)
2248 return ret;
2249
2250 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2251 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2252 else
2253 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2254
2255 return 0;
2256 }
2257
2258 static struct cpufreq_driver intel_pstate = {
2259 .flags = CPUFREQ_CONST_LOOPS,
2260 .verify = intel_pstate_verify_policy,
2261 .setpolicy = intel_pstate_set_policy,
2262 .suspend = intel_pstate_hwp_save_state,
2263 .resume = intel_pstate_resume,
2264 .init = intel_pstate_cpu_init,
2265 .exit = intel_pstate_cpu_exit,
2266 .stop_cpu = intel_pstate_stop_cpu,
2267 .update_limits = intel_pstate_update_limits,
2268 .name = "intel_pstate",
2269 };
2270
intel_cpufreq_verify_policy(struct cpufreq_policy * policy)2271 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2272 {
2273 struct cpudata *cpu = all_cpu_data[policy->cpu];
2274
2275 update_turbo_state();
2276 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2277 intel_pstate_get_max_freq(cpu));
2278
2279 intel_pstate_adjust_policy_max(policy, cpu);
2280
2281 intel_pstate_update_perf_limits(policy, cpu);
2282
2283 return 0;
2284 }
2285
2286 /* Use of trace in passive mode:
2287 *
2288 * In passive mode the trace core_busy field (also known as the
2289 * performance field, and lablelled as such on the graphs; also known as
2290 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2291 * driver call was via the normal or fast switch path. Various graphs
2292 * output from the intel_pstate_tracer.py utility that include core_busy
2293 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2294 * so we use 10 to indicate the the normal path through the driver, and
2295 * 90 to indicate the fast switch path through the driver.
2296 * The scaled_busy field is not used, and is set to 0.
2297 */
2298
2299 #define INTEL_PSTATE_TRACE_TARGET 10
2300 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2301
intel_cpufreq_trace(struct cpudata * cpu,unsigned int trace_type,int old_pstate)2302 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2303 {
2304 struct sample *sample;
2305
2306 if (!trace_pstate_sample_enabled())
2307 return;
2308
2309 if (!intel_pstate_sample(cpu, ktime_get()))
2310 return;
2311
2312 sample = &cpu->sample;
2313 trace_pstate_sample(trace_type,
2314 0,
2315 old_pstate,
2316 cpu->pstate.current_pstate,
2317 sample->mperf,
2318 sample->aperf,
2319 sample->tsc,
2320 get_avg_frequency(cpu),
2321 fp_toint(cpu->iowait_boost * 100));
2322 }
2323
intel_cpufreq_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2324 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2325 unsigned int target_freq,
2326 unsigned int relation)
2327 {
2328 struct cpudata *cpu = all_cpu_data[policy->cpu];
2329 struct cpufreq_freqs freqs;
2330 int target_pstate, old_pstate;
2331
2332 update_turbo_state();
2333
2334 freqs.old = policy->cur;
2335 freqs.new = target_freq;
2336
2337 cpufreq_freq_transition_begin(policy, &freqs);
2338 switch (relation) {
2339 case CPUFREQ_RELATION_L:
2340 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2341 break;
2342 case CPUFREQ_RELATION_H:
2343 target_pstate = freqs.new / cpu->pstate.scaling;
2344 break;
2345 default:
2346 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2347 break;
2348 }
2349 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2350 old_pstate = cpu->pstate.current_pstate;
2351 if (target_pstate != cpu->pstate.current_pstate) {
2352 cpu->pstate.current_pstate = target_pstate;
2353 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2354 pstate_funcs.get_val(cpu, target_pstate));
2355 }
2356 freqs.new = target_pstate * cpu->pstate.scaling;
2357 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2358 cpufreq_freq_transition_end(policy, &freqs, false);
2359
2360 return 0;
2361 }
2362
intel_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2363 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2364 unsigned int target_freq)
2365 {
2366 struct cpudata *cpu = all_cpu_data[policy->cpu];
2367 int target_pstate, old_pstate;
2368
2369 update_turbo_state();
2370
2371 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2372 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2373 old_pstate = cpu->pstate.current_pstate;
2374 intel_pstate_update_pstate(cpu, target_pstate);
2375 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2376 return target_pstate * cpu->pstate.scaling;
2377 }
2378
intel_cpufreq_cpu_init(struct cpufreq_policy * policy)2379 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2380 {
2381 int max_state, turbo_max, min_freq, max_freq, ret;
2382 struct freq_qos_request *req;
2383 struct cpudata *cpu;
2384 struct device *dev;
2385
2386 dev = get_cpu_device(policy->cpu);
2387 if (!dev)
2388 return -ENODEV;
2389
2390 ret = __intel_pstate_cpu_init(policy);
2391 if (ret)
2392 return ret;
2393
2394 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2395 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2396 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2397 policy->cur = policy->cpuinfo.min_freq;
2398
2399 req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2400 if (!req) {
2401 ret = -ENOMEM;
2402 goto pstate_exit;
2403 }
2404
2405 cpu = all_cpu_data[policy->cpu];
2406
2407 if (hwp_active)
2408 intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2409 else
2410 turbo_max = cpu->pstate.turbo_pstate;
2411
2412 min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2413 min_freq *= cpu->pstate.scaling;
2414 max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2415 max_freq *= cpu->pstate.scaling;
2416
2417 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2418 min_freq);
2419 if (ret < 0) {
2420 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2421 goto free_req;
2422 }
2423
2424 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2425 max_freq);
2426 if (ret < 0) {
2427 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2428 goto remove_min_req;
2429 }
2430
2431 policy->driver_data = req;
2432
2433 return 0;
2434
2435 remove_min_req:
2436 freq_qos_remove_request(req);
2437 free_req:
2438 kfree(req);
2439 pstate_exit:
2440 intel_pstate_exit_perf_limits(policy);
2441
2442 return ret;
2443 }
2444
intel_cpufreq_cpu_exit(struct cpufreq_policy * policy)2445 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2446 {
2447 struct freq_qos_request *req;
2448
2449 req = policy->driver_data;
2450
2451 freq_qos_remove_request(req + 1);
2452 freq_qos_remove_request(req);
2453 kfree(req);
2454
2455 return intel_pstate_cpu_exit(policy);
2456 }
2457
2458 static struct cpufreq_driver intel_cpufreq = {
2459 .flags = CPUFREQ_CONST_LOOPS,
2460 .verify = intel_cpufreq_verify_policy,
2461 .target = intel_cpufreq_target,
2462 .fast_switch = intel_cpufreq_fast_switch,
2463 .init = intel_cpufreq_cpu_init,
2464 .exit = intel_cpufreq_cpu_exit,
2465 .stop_cpu = intel_cpufreq_stop_cpu,
2466 .update_limits = intel_pstate_update_limits,
2467 .name = "intel_cpufreq",
2468 };
2469
2470 static struct cpufreq_driver *default_driver = &intel_pstate;
2471
intel_pstate_driver_cleanup(void)2472 static void intel_pstate_driver_cleanup(void)
2473 {
2474 unsigned int cpu;
2475
2476 get_online_cpus();
2477 for_each_online_cpu(cpu) {
2478 if (all_cpu_data[cpu]) {
2479 if (intel_pstate_driver == &intel_pstate)
2480 intel_pstate_clear_update_util_hook(cpu);
2481
2482 kfree(all_cpu_data[cpu]);
2483 all_cpu_data[cpu] = NULL;
2484 }
2485 }
2486 put_online_cpus();
2487 intel_pstate_driver = NULL;
2488 }
2489
intel_pstate_register_driver(struct cpufreq_driver * driver)2490 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2491 {
2492 int ret;
2493
2494 memset(&global, 0, sizeof(global));
2495 global.max_perf_pct = 100;
2496
2497 intel_pstate_driver = driver;
2498 ret = cpufreq_register_driver(intel_pstate_driver);
2499 if (ret) {
2500 intel_pstate_driver_cleanup();
2501 return ret;
2502 }
2503
2504 global.min_perf_pct = min_perf_pct_min();
2505
2506 return 0;
2507 }
2508
intel_pstate_unregister_driver(void)2509 static int intel_pstate_unregister_driver(void)
2510 {
2511 if (hwp_active)
2512 return -EBUSY;
2513
2514 cpufreq_unregister_driver(intel_pstate_driver);
2515 intel_pstate_driver_cleanup();
2516
2517 return 0;
2518 }
2519
intel_pstate_show_status(char * buf)2520 static ssize_t intel_pstate_show_status(char *buf)
2521 {
2522 if (!intel_pstate_driver)
2523 return sprintf(buf, "off\n");
2524
2525 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2526 "active" : "passive");
2527 }
2528
intel_pstate_update_status(const char * buf,size_t size)2529 static int intel_pstate_update_status(const char *buf, size_t size)
2530 {
2531 int ret;
2532
2533 if (size == 3 && !strncmp(buf, "off", size))
2534 return intel_pstate_driver ?
2535 intel_pstate_unregister_driver() : -EINVAL;
2536
2537 if (size == 6 && !strncmp(buf, "active", size)) {
2538 if (intel_pstate_driver) {
2539 if (intel_pstate_driver == &intel_pstate)
2540 return 0;
2541
2542 ret = intel_pstate_unregister_driver();
2543 if (ret)
2544 return ret;
2545 }
2546
2547 return intel_pstate_register_driver(&intel_pstate);
2548 }
2549
2550 if (size == 7 && !strncmp(buf, "passive", size)) {
2551 if (intel_pstate_driver) {
2552 if (intel_pstate_driver == &intel_cpufreq)
2553 return 0;
2554
2555 ret = intel_pstate_unregister_driver();
2556 if (ret)
2557 return ret;
2558 }
2559
2560 return intel_pstate_register_driver(&intel_cpufreq);
2561 }
2562
2563 return -EINVAL;
2564 }
2565
2566 static int no_load __initdata;
2567 static int no_hwp __initdata;
2568 static int hwp_only __initdata;
2569 static unsigned int force_load __initdata;
2570
intel_pstate_msrs_not_valid(void)2571 static int __init intel_pstate_msrs_not_valid(void)
2572 {
2573 if (!pstate_funcs.get_max() ||
2574 !pstate_funcs.get_min() ||
2575 !pstate_funcs.get_turbo())
2576 return -ENODEV;
2577
2578 return 0;
2579 }
2580
copy_cpu_funcs(struct pstate_funcs * funcs)2581 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2582 {
2583 pstate_funcs.get_max = funcs->get_max;
2584 pstate_funcs.get_max_physical = funcs->get_max_physical;
2585 pstate_funcs.get_min = funcs->get_min;
2586 pstate_funcs.get_turbo = funcs->get_turbo;
2587 pstate_funcs.get_scaling = funcs->get_scaling;
2588 pstate_funcs.get_val = funcs->get_val;
2589 pstate_funcs.get_vid = funcs->get_vid;
2590 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2591 }
2592
2593 #ifdef CONFIG_ACPI
2594
intel_pstate_no_acpi_pss(void)2595 static bool __init intel_pstate_no_acpi_pss(void)
2596 {
2597 int i;
2598
2599 for_each_possible_cpu(i) {
2600 acpi_status status;
2601 union acpi_object *pss;
2602 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2603 struct acpi_processor *pr = per_cpu(processors, i);
2604
2605 if (!pr)
2606 continue;
2607
2608 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2609 if (ACPI_FAILURE(status))
2610 continue;
2611
2612 pss = buffer.pointer;
2613 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2614 kfree(pss);
2615 return false;
2616 }
2617
2618 kfree(pss);
2619 }
2620
2621 pr_debug("ACPI _PSS not found\n");
2622 return true;
2623 }
2624
intel_pstate_no_acpi_pcch(void)2625 static bool __init intel_pstate_no_acpi_pcch(void)
2626 {
2627 acpi_status status;
2628 acpi_handle handle;
2629
2630 status = acpi_get_handle(NULL, "\\_SB", &handle);
2631 if (ACPI_FAILURE(status))
2632 goto not_found;
2633
2634 if (acpi_has_method(handle, "PCCH"))
2635 return false;
2636
2637 not_found:
2638 pr_debug("ACPI PCCH not found\n");
2639 return true;
2640 }
2641
intel_pstate_has_acpi_ppc(void)2642 static bool __init intel_pstate_has_acpi_ppc(void)
2643 {
2644 int i;
2645
2646 for_each_possible_cpu(i) {
2647 struct acpi_processor *pr = per_cpu(processors, i);
2648
2649 if (!pr)
2650 continue;
2651 if (acpi_has_method(pr->handle, "_PPC"))
2652 return true;
2653 }
2654 pr_debug("ACPI _PPC not found\n");
2655 return false;
2656 }
2657
2658 enum {
2659 PSS,
2660 PPC,
2661 };
2662
2663 /* Hardware vendor-specific info that has its own power management modes */
2664 static struct acpi_platform_list plat_info[] __initdata = {
2665 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2666 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2667 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2668 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2669 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2670 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2671 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2672 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2673 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2674 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2675 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2676 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2677 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2678 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2679 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2680 { } /* End */
2681 };
2682
intel_pstate_platform_pwr_mgmt_exists(void)2683 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2684 {
2685 const struct x86_cpu_id *id;
2686 u64 misc_pwr;
2687 int idx;
2688
2689 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2690 if (id) {
2691 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2692 if (misc_pwr & (1 << 8)) {
2693 pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2694 return true;
2695 }
2696 }
2697
2698 idx = acpi_match_platform_list(plat_info);
2699 if (idx < 0)
2700 return false;
2701
2702 switch (plat_info[idx].data) {
2703 case PSS:
2704 if (!intel_pstate_no_acpi_pss())
2705 return false;
2706
2707 return intel_pstate_no_acpi_pcch();
2708 case PPC:
2709 return intel_pstate_has_acpi_ppc() && !force_load;
2710 }
2711
2712 return false;
2713 }
2714
intel_pstate_request_control_from_smm(void)2715 static void intel_pstate_request_control_from_smm(void)
2716 {
2717 /*
2718 * It may be unsafe to request P-states control from SMM if _PPC support
2719 * has not been enabled.
2720 */
2721 if (acpi_ppc)
2722 acpi_processor_pstate_control();
2723 }
2724 #else /* CONFIG_ACPI not enabled */
intel_pstate_platform_pwr_mgmt_exists(void)2725 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
intel_pstate_has_acpi_ppc(void)2726 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
intel_pstate_request_control_from_smm(void)2727 static inline void intel_pstate_request_control_from_smm(void) {}
2728 #endif /* CONFIG_ACPI */
2729
2730 #define INTEL_PSTATE_HWP_BROADWELL 0x01
2731
2732 #define ICPU_HWP(model, hwp_mode) \
2733 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2734
2735 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2736 ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2737 ICPU_HWP(INTEL_FAM6_BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
2738 ICPU_HWP(X86_MODEL_ANY, 0),
2739 {}
2740 };
2741
intel_pstate_init(void)2742 static int __init intel_pstate_init(void)
2743 {
2744 const struct x86_cpu_id *id;
2745 int rc;
2746
2747 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2748 return -ENODEV;
2749
2750 if (no_load)
2751 return -ENODEV;
2752
2753 id = x86_match_cpu(hwp_support_ids);
2754 if (id) {
2755 copy_cpu_funcs(&core_funcs);
2756 if (!no_hwp) {
2757 hwp_active++;
2758 hwp_mode_bdw = id->driver_data;
2759 intel_pstate.attr = hwp_cpufreq_attrs;
2760 goto hwp_cpu_matched;
2761 }
2762 } else {
2763 id = x86_match_cpu(intel_pstate_cpu_ids);
2764 if (!id) {
2765 pr_info("CPU model not supported\n");
2766 return -ENODEV;
2767 }
2768
2769 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2770 }
2771
2772 if (intel_pstate_msrs_not_valid()) {
2773 pr_info("Invalid MSRs\n");
2774 return -ENODEV;
2775 }
2776
2777 hwp_cpu_matched:
2778 /*
2779 * The Intel pstate driver will be ignored if the platform
2780 * firmware has its own power management modes.
2781 */
2782 if (intel_pstate_platform_pwr_mgmt_exists()) {
2783 pr_info("P-states controlled by the platform\n");
2784 return -ENODEV;
2785 }
2786
2787 if (!hwp_active && hwp_only)
2788 return -ENOTSUPP;
2789
2790 pr_info("Intel P-state driver initializing\n");
2791
2792 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2793 if (!all_cpu_data)
2794 return -ENOMEM;
2795
2796 intel_pstate_request_control_from_smm();
2797
2798 intel_pstate_sysfs_expose_params();
2799
2800 mutex_lock(&intel_pstate_driver_lock);
2801 rc = intel_pstate_register_driver(default_driver);
2802 mutex_unlock(&intel_pstate_driver_lock);
2803 if (rc)
2804 return rc;
2805
2806 if (hwp_active)
2807 pr_info("HWP enabled\n");
2808
2809 return 0;
2810 }
2811 device_initcall(intel_pstate_init);
2812
intel_pstate_setup(char * str)2813 static int __init intel_pstate_setup(char *str)
2814 {
2815 if (!str)
2816 return -EINVAL;
2817
2818 if (!strcmp(str, "disable")) {
2819 no_load = 1;
2820 } else if (!strcmp(str, "passive")) {
2821 pr_info("Passive mode enabled\n");
2822 default_driver = &intel_cpufreq;
2823 no_hwp = 1;
2824 }
2825 if (!strcmp(str, "no_hwp")) {
2826 pr_info("HWP disabled\n");
2827 no_hwp = 1;
2828 }
2829 if (!strcmp(str, "force"))
2830 force_load = 1;
2831 if (!strcmp(str, "hwp_only"))
2832 hwp_only = 1;
2833 if (!strcmp(str, "per_cpu_perf_limits"))
2834 per_cpu_limits = true;
2835
2836 #ifdef CONFIG_ACPI
2837 if (!strcmp(str, "support_acpi_ppc"))
2838 acpi_ppc = true;
2839 #endif
2840
2841 return 0;
2842 }
2843 early_param("intel_pstate", intel_pstate_setup);
2844
2845 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2846 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2847 MODULE_LICENSE("GPL");
2848