1 /*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
36
37 #include "zram_drv.h"
38
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
42
43 static int zram_major;
44 static const char *default_compressor = "lzo-rle";
45
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
48 /*
49 * Pages that compress to sizes equals or greater than this are stored
50 * uncompressed in memory.
51 */
52 static size_t huge_class_size;
53
54 static void zram_free_page(struct zram *zram, size_t index);
55 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
56 u32 index, int offset, struct bio *bio);
57
58
zram_slot_trylock(struct zram * zram,u32 index)59 static int zram_slot_trylock(struct zram *zram, u32 index)
60 {
61 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
62 }
63
zram_slot_lock(struct zram * zram,u32 index)64 static void zram_slot_lock(struct zram *zram, u32 index)
65 {
66 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
67 }
68
zram_slot_unlock(struct zram * zram,u32 index)69 static void zram_slot_unlock(struct zram *zram, u32 index)
70 {
71 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
72 }
73
init_done(struct zram * zram)74 static inline bool init_done(struct zram *zram)
75 {
76 return zram->disksize;
77 }
78
dev_to_zram(struct device * dev)79 static inline struct zram *dev_to_zram(struct device *dev)
80 {
81 return (struct zram *)dev_to_disk(dev)->private_data;
82 }
83
zram_get_handle(struct zram * zram,u32 index)84 static unsigned long zram_get_handle(struct zram *zram, u32 index)
85 {
86 return zram->table[index].handle;
87 }
88
zram_set_handle(struct zram * zram,u32 index,unsigned long handle)89 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
90 {
91 zram->table[index].handle = handle;
92 }
93
94 /* flag operations require table entry bit_spin_lock() being held */
zram_test_flag(struct zram * zram,u32 index,enum zram_pageflags flag)95 static bool zram_test_flag(struct zram *zram, u32 index,
96 enum zram_pageflags flag)
97 {
98 return zram->table[index].flags & BIT(flag);
99 }
100
zram_set_flag(struct zram * zram,u32 index,enum zram_pageflags flag)101 static void zram_set_flag(struct zram *zram, u32 index,
102 enum zram_pageflags flag)
103 {
104 zram->table[index].flags |= BIT(flag);
105 }
106
zram_clear_flag(struct zram * zram,u32 index,enum zram_pageflags flag)107 static void zram_clear_flag(struct zram *zram, u32 index,
108 enum zram_pageflags flag)
109 {
110 zram->table[index].flags &= ~BIT(flag);
111 }
112
zram_set_element(struct zram * zram,u32 index,unsigned long element)113 static inline void zram_set_element(struct zram *zram, u32 index,
114 unsigned long element)
115 {
116 zram->table[index].element = element;
117 }
118
zram_get_element(struct zram * zram,u32 index)119 static unsigned long zram_get_element(struct zram *zram, u32 index)
120 {
121 return zram->table[index].element;
122 }
123
zram_get_obj_size(struct zram * zram,u32 index)124 static size_t zram_get_obj_size(struct zram *zram, u32 index)
125 {
126 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
127 }
128
zram_set_obj_size(struct zram * zram,u32 index,size_t size)129 static void zram_set_obj_size(struct zram *zram,
130 u32 index, size_t size)
131 {
132 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
133
134 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
135 }
136
zram_allocated(struct zram * zram,u32 index)137 static inline bool zram_allocated(struct zram *zram, u32 index)
138 {
139 return zram_get_obj_size(zram, index) ||
140 zram_test_flag(zram, index, ZRAM_SAME) ||
141 zram_test_flag(zram, index, ZRAM_WB);
142 }
143
144 #if PAGE_SIZE != 4096
is_partial_io(struct bio_vec * bvec)145 static inline bool is_partial_io(struct bio_vec *bvec)
146 {
147 return bvec->bv_len != PAGE_SIZE;
148 }
149 #else
is_partial_io(struct bio_vec * bvec)150 static inline bool is_partial_io(struct bio_vec *bvec)
151 {
152 return false;
153 }
154 #endif
155
156 /*
157 * Check if request is within bounds and aligned on zram logical blocks.
158 */
valid_io_request(struct zram * zram,sector_t start,unsigned int size)159 static inline bool valid_io_request(struct zram *zram,
160 sector_t start, unsigned int size)
161 {
162 u64 end, bound;
163
164 /* unaligned request */
165 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
166 return false;
167 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
168 return false;
169
170 end = start + (size >> SECTOR_SHIFT);
171 bound = zram->disksize >> SECTOR_SHIFT;
172 /* out of range range */
173 if (unlikely(start >= bound || end > bound || start > end))
174 return false;
175
176 /* I/O request is valid */
177 return true;
178 }
179
update_position(u32 * index,int * offset,struct bio_vec * bvec)180 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
181 {
182 *index += (*offset + bvec->bv_len) / PAGE_SIZE;
183 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
184 }
185
update_used_max(struct zram * zram,const unsigned long pages)186 static inline void update_used_max(struct zram *zram,
187 const unsigned long pages)
188 {
189 unsigned long old_max, cur_max;
190
191 old_max = atomic_long_read(&zram->stats.max_used_pages);
192
193 do {
194 cur_max = old_max;
195 if (pages > cur_max)
196 old_max = atomic_long_cmpxchg(
197 &zram->stats.max_used_pages, cur_max, pages);
198 } while (old_max != cur_max);
199 }
200
zram_fill_page(void * ptr,unsigned long len,unsigned long value)201 static inline void zram_fill_page(void *ptr, unsigned long len,
202 unsigned long value)
203 {
204 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
205 memset_l(ptr, value, len / sizeof(unsigned long));
206 }
207
page_same_filled(void * ptr,unsigned long * element)208 static bool page_same_filled(void *ptr, unsigned long *element)
209 {
210 unsigned int pos;
211 unsigned long *page;
212 unsigned long val;
213
214 page = (unsigned long *)ptr;
215 val = page[0];
216
217 for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
218 if (val != page[pos])
219 return false;
220 }
221
222 *element = val;
223
224 return true;
225 }
226
initstate_show(struct device * dev,struct device_attribute * attr,char * buf)227 static ssize_t initstate_show(struct device *dev,
228 struct device_attribute *attr, char *buf)
229 {
230 u32 val;
231 struct zram *zram = dev_to_zram(dev);
232
233 down_read(&zram->init_lock);
234 val = init_done(zram);
235 up_read(&zram->init_lock);
236
237 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
238 }
239
disksize_show(struct device * dev,struct device_attribute * attr,char * buf)240 static ssize_t disksize_show(struct device *dev,
241 struct device_attribute *attr, char *buf)
242 {
243 struct zram *zram = dev_to_zram(dev);
244
245 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
246 }
247
mem_limit_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)248 static ssize_t mem_limit_store(struct device *dev,
249 struct device_attribute *attr, const char *buf, size_t len)
250 {
251 u64 limit;
252 char *tmp;
253 struct zram *zram = dev_to_zram(dev);
254
255 limit = memparse(buf, &tmp);
256 if (buf == tmp) /* no chars parsed, invalid input */
257 return -EINVAL;
258
259 down_write(&zram->init_lock);
260 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
261 up_write(&zram->init_lock);
262
263 return len;
264 }
265
mem_used_max_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)266 static ssize_t mem_used_max_store(struct device *dev,
267 struct device_attribute *attr, const char *buf, size_t len)
268 {
269 int err;
270 unsigned long val;
271 struct zram *zram = dev_to_zram(dev);
272
273 err = kstrtoul(buf, 10, &val);
274 if (err || val != 0)
275 return -EINVAL;
276
277 down_read(&zram->init_lock);
278 if (init_done(zram)) {
279 atomic_long_set(&zram->stats.max_used_pages,
280 zs_get_total_pages(zram->mem_pool));
281 }
282 up_read(&zram->init_lock);
283
284 return len;
285 }
286
idle_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)287 static ssize_t idle_store(struct device *dev,
288 struct device_attribute *attr, const char *buf, size_t len)
289 {
290 struct zram *zram = dev_to_zram(dev);
291 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
292 int index;
293
294 if (!sysfs_streq(buf, "all"))
295 return -EINVAL;
296
297 down_read(&zram->init_lock);
298 if (!init_done(zram)) {
299 up_read(&zram->init_lock);
300 return -EINVAL;
301 }
302
303 for (index = 0; index < nr_pages; index++) {
304 /*
305 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
306 * See the comment in writeback_store.
307 */
308 zram_slot_lock(zram, index);
309 if (zram_allocated(zram, index) &&
310 !zram_test_flag(zram, index, ZRAM_UNDER_WB))
311 zram_set_flag(zram, index, ZRAM_IDLE);
312 zram_slot_unlock(zram, index);
313 }
314
315 up_read(&zram->init_lock);
316
317 return len;
318 }
319
320 #ifdef CONFIG_ZRAM_WRITEBACK
writeback_limit_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)321 static ssize_t writeback_limit_enable_store(struct device *dev,
322 struct device_attribute *attr, const char *buf, size_t len)
323 {
324 struct zram *zram = dev_to_zram(dev);
325 u64 val;
326 ssize_t ret = -EINVAL;
327
328 if (kstrtoull(buf, 10, &val))
329 return ret;
330
331 down_read(&zram->init_lock);
332 spin_lock(&zram->wb_limit_lock);
333 zram->wb_limit_enable = val;
334 spin_unlock(&zram->wb_limit_lock);
335 up_read(&zram->init_lock);
336 ret = len;
337
338 return ret;
339 }
340
writeback_limit_enable_show(struct device * dev,struct device_attribute * attr,char * buf)341 static ssize_t writeback_limit_enable_show(struct device *dev,
342 struct device_attribute *attr, char *buf)
343 {
344 bool val;
345 struct zram *zram = dev_to_zram(dev);
346
347 down_read(&zram->init_lock);
348 spin_lock(&zram->wb_limit_lock);
349 val = zram->wb_limit_enable;
350 spin_unlock(&zram->wb_limit_lock);
351 up_read(&zram->init_lock);
352
353 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
354 }
355
writeback_limit_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)356 static ssize_t writeback_limit_store(struct device *dev,
357 struct device_attribute *attr, const char *buf, size_t len)
358 {
359 struct zram *zram = dev_to_zram(dev);
360 u64 val;
361 ssize_t ret = -EINVAL;
362
363 if (kstrtoull(buf, 10, &val))
364 return ret;
365
366 down_read(&zram->init_lock);
367 spin_lock(&zram->wb_limit_lock);
368 zram->bd_wb_limit = val;
369 spin_unlock(&zram->wb_limit_lock);
370 up_read(&zram->init_lock);
371 ret = len;
372
373 return ret;
374 }
375
writeback_limit_show(struct device * dev,struct device_attribute * attr,char * buf)376 static ssize_t writeback_limit_show(struct device *dev,
377 struct device_attribute *attr, char *buf)
378 {
379 u64 val;
380 struct zram *zram = dev_to_zram(dev);
381
382 down_read(&zram->init_lock);
383 spin_lock(&zram->wb_limit_lock);
384 val = zram->bd_wb_limit;
385 spin_unlock(&zram->wb_limit_lock);
386 up_read(&zram->init_lock);
387
388 return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
389 }
390
reset_bdev(struct zram * zram)391 static void reset_bdev(struct zram *zram)
392 {
393 struct block_device *bdev;
394
395 if (!zram->backing_dev)
396 return;
397
398 bdev = zram->bdev;
399 if (zram->old_block_size)
400 set_blocksize(bdev, zram->old_block_size);
401 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
402 /* hope filp_close flush all of IO */
403 filp_close(zram->backing_dev, NULL);
404 zram->backing_dev = NULL;
405 zram->old_block_size = 0;
406 zram->bdev = NULL;
407 zram->disk->queue->backing_dev_info->capabilities |=
408 BDI_CAP_SYNCHRONOUS_IO;
409 kvfree(zram->bitmap);
410 zram->bitmap = NULL;
411 }
412
backing_dev_show(struct device * dev,struct device_attribute * attr,char * buf)413 static ssize_t backing_dev_show(struct device *dev,
414 struct device_attribute *attr, char *buf)
415 {
416 struct file *file;
417 struct zram *zram = dev_to_zram(dev);
418 char *p;
419 ssize_t ret;
420
421 down_read(&zram->init_lock);
422 file = zram->backing_dev;
423 if (!file) {
424 memcpy(buf, "none\n", 5);
425 up_read(&zram->init_lock);
426 return 5;
427 }
428
429 p = file_path(file, buf, PAGE_SIZE - 1);
430 if (IS_ERR(p)) {
431 ret = PTR_ERR(p);
432 goto out;
433 }
434
435 ret = strlen(p);
436 memmove(buf, p, ret);
437 buf[ret++] = '\n';
438 out:
439 up_read(&zram->init_lock);
440 return ret;
441 }
442
backing_dev_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)443 static ssize_t backing_dev_store(struct device *dev,
444 struct device_attribute *attr, const char *buf, size_t len)
445 {
446 char *file_name;
447 size_t sz;
448 struct file *backing_dev = NULL;
449 struct inode *inode;
450 struct address_space *mapping;
451 unsigned int bitmap_sz, old_block_size = 0;
452 unsigned long nr_pages, *bitmap = NULL;
453 struct block_device *bdev = NULL;
454 int err;
455 struct zram *zram = dev_to_zram(dev);
456
457 file_name = kmalloc(PATH_MAX, GFP_KERNEL);
458 if (!file_name)
459 return -ENOMEM;
460
461 down_write(&zram->init_lock);
462 if (init_done(zram)) {
463 pr_info("Can't setup backing device for initialized device\n");
464 err = -EBUSY;
465 goto out;
466 }
467
468 strlcpy(file_name, buf, PATH_MAX);
469 /* ignore trailing newline */
470 sz = strlen(file_name);
471 if (sz > 0 && file_name[sz - 1] == '\n')
472 file_name[sz - 1] = 0x00;
473
474 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
475 if (IS_ERR(backing_dev)) {
476 err = PTR_ERR(backing_dev);
477 backing_dev = NULL;
478 goto out;
479 }
480
481 mapping = backing_dev->f_mapping;
482 inode = mapping->host;
483
484 /* Support only block device in this moment */
485 if (!S_ISBLK(inode->i_mode)) {
486 err = -ENOTBLK;
487 goto out;
488 }
489
490 bdev = bdgrab(I_BDEV(inode));
491 err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
492 if (err < 0) {
493 bdev = NULL;
494 goto out;
495 }
496
497 nr_pages = i_size_read(inode) >> PAGE_SHIFT;
498 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
499 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
500 if (!bitmap) {
501 err = -ENOMEM;
502 goto out;
503 }
504
505 old_block_size = block_size(bdev);
506 err = set_blocksize(bdev, PAGE_SIZE);
507 if (err)
508 goto out;
509
510 reset_bdev(zram);
511
512 zram->old_block_size = old_block_size;
513 zram->bdev = bdev;
514 zram->backing_dev = backing_dev;
515 zram->bitmap = bitmap;
516 zram->nr_pages = nr_pages;
517 /*
518 * With writeback feature, zram does asynchronous IO so it's no longer
519 * synchronous device so let's remove synchronous io flag. Othewise,
520 * upper layer(e.g., swap) could wait IO completion rather than
521 * (submit and return), which will cause system sluggish.
522 * Furthermore, when the IO function returns(e.g., swap_readpage),
523 * upper layer expects IO was done so it could deallocate the page
524 * freely but in fact, IO is going on so finally could cause
525 * use-after-free when the IO is really done.
526 */
527 zram->disk->queue->backing_dev_info->capabilities &=
528 ~BDI_CAP_SYNCHRONOUS_IO;
529 up_write(&zram->init_lock);
530
531 pr_info("setup backing device %s\n", file_name);
532 kfree(file_name);
533
534 return len;
535 out:
536 if (bitmap)
537 kvfree(bitmap);
538
539 if (bdev)
540 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
541
542 if (backing_dev)
543 filp_close(backing_dev, NULL);
544
545 up_write(&zram->init_lock);
546
547 kfree(file_name);
548
549 return err;
550 }
551
alloc_block_bdev(struct zram * zram)552 static unsigned long alloc_block_bdev(struct zram *zram)
553 {
554 unsigned long blk_idx = 1;
555 retry:
556 /* skip 0 bit to confuse zram.handle = 0 */
557 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
558 if (blk_idx == zram->nr_pages)
559 return 0;
560
561 if (test_and_set_bit(blk_idx, zram->bitmap))
562 goto retry;
563
564 atomic64_inc(&zram->stats.bd_count);
565 return blk_idx;
566 }
567
free_block_bdev(struct zram * zram,unsigned long blk_idx)568 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
569 {
570 int was_set;
571
572 was_set = test_and_clear_bit(blk_idx, zram->bitmap);
573 WARN_ON_ONCE(!was_set);
574 atomic64_dec(&zram->stats.bd_count);
575 }
576
zram_page_end_io(struct bio * bio)577 static void zram_page_end_io(struct bio *bio)
578 {
579 struct page *page = bio_first_page_all(bio);
580
581 page_endio(page, op_is_write(bio_op(bio)),
582 blk_status_to_errno(bio->bi_status));
583 bio_put(bio);
584 }
585
586 /*
587 * Returns 1 if the submission is successful.
588 */
read_from_bdev_async(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * parent)589 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
590 unsigned long entry, struct bio *parent)
591 {
592 struct bio *bio;
593
594 bio = bio_alloc(GFP_ATOMIC, 1);
595 if (!bio)
596 return -ENOMEM;
597
598 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
599 bio_set_dev(bio, zram->bdev);
600 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
601 bio_put(bio);
602 return -EIO;
603 }
604
605 if (!parent) {
606 bio->bi_opf = REQ_OP_READ;
607 bio->bi_end_io = zram_page_end_io;
608 } else {
609 bio->bi_opf = parent->bi_opf;
610 bio_chain(bio, parent);
611 }
612
613 submit_bio(bio);
614 return 1;
615 }
616
617 #define HUGE_WRITEBACK 1
618 #define IDLE_WRITEBACK 2
619
writeback_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)620 static ssize_t writeback_store(struct device *dev,
621 struct device_attribute *attr, const char *buf, size_t len)
622 {
623 struct zram *zram = dev_to_zram(dev);
624 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
625 unsigned long index;
626 struct bio bio;
627 struct bio_vec bio_vec;
628 struct page *page;
629 ssize_t ret;
630 int mode;
631 unsigned long blk_idx = 0;
632
633 if (sysfs_streq(buf, "idle"))
634 mode = IDLE_WRITEBACK;
635 else if (sysfs_streq(buf, "huge"))
636 mode = HUGE_WRITEBACK;
637 else
638 return -EINVAL;
639
640 down_read(&zram->init_lock);
641 if (!init_done(zram)) {
642 ret = -EINVAL;
643 goto release_init_lock;
644 }
645
646 if (!zram->backing_dev) {
647 ret = -ENODEV;
648 goto release_init_lock;
649 }
650
651 page = alloc_page(GFP_KERNEL);
652 if (!page) {
653 ret = -ENOMEM;
654 goto release_init_lock;
655 }
656
657 for (index = 0; index < nr_pages; index++) {
658 struct bio_vec bvec;
659
660 bvec.bv_page = page;
661 bvec.bv_len = PAGE_SIZE;
662 bvec.bv_offset = 0;
663
664 spin_lock(&zram->wb_limit_lock);
665 if (zram->wb_limit_enable && !zram->bd_wb_limit) {
666 spin_unlock(&zram->wb_limit_lock);
667 ret = -EIO;
668 break;
669 }
670 spin_unlock(&zram->wb_limit_lock);
671
672 if (!blk_idx) {
673 blk_idx = alloc_block_bdev(zram);
674 if (!blk_idx) {
675 ret = -ENOSPC;
676 break;
677 }
678 }
679
680 zram_slot_lock(zram, index);
681 if (!zram_allocated(zram, index))
682 goto next;
683
684 if (zram_test_flag(zram, index, ZRAM_WB) ||
685 zram_test_flag(zram, index, ZRAM_SAME) ||
686 zram_test_flag(zram, index, ZRAM_UNDER_WB))
687 goto next;
688
689 if (mode == IDLE_WRITEBACK &&
690 !zram_test_flag(zram, index, ZRAM_IDLE))
691 goto next;
692 if (mode == HUGE_WRITEBACK &&
693 !zram_test_flag(zram, index, ZRAM_HUGE))
694 goto next;
695 /*
696 * Clearing ZRAM_UNDER_WB is duty of caller.
697 * IOW, zram_free_page never clear it.
698 */
699 zram_set_flag(zram, index, ZRAM_UNDER_WB);
700 /* Need for hugepage writeback racing */
701 zram_set_flag(zram, index, ZRAM_IDLE);
702 zram_slot_unlock(zram, index);
703 if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
704 zram_slot_lock(zram, index);
705 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
706 zram_clear_flag(zram, index, ZRAM_IDLE);
707 zram_slot_unlock(zram, index);
708 continue;
709 }
710
711 bio_init(&bio, &bio_vec, 1);
712 bio_set_dev(&bio, zram->bdev);
713 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
714 bio.bi_opf = REQ_OP_WRITE | REQ_SYNC;
715
716 bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
717 bvec.bv_offset);
718 /*
719 * XXX: A single page IO would be inefficient for write
720 * but it would be not bad as starter.
721 */
722 ret = submit_bio_wait(&bio);
723 if (ret) {
724 zram_slot_lock(zram, index);
725 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
726 zram_clear_flag(zram, index, ZRAM_IDLE);
727 zram_slot_unlock(zram, index);
728 continue;
729 }
730
731 atomic64_inc(&zram->stats.bd_writes);
732 /*
733 * We released zram_slot_lock so need to check if the slot was
734 * changed. If there is freeing for the slot, we can catch it
735 * easily by zram_allocated.
736 * A subtle case is the slot is freed/reallocated/marked as
737 * ZRAM_IDLE again. To close the race, idle_store doesn't
738 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
739 * Thus, we could close the race by checking ZRAM_IDLE bit.
740 */
741 zram_slot_lock(zram, index);
742 if (!zram_allocated(zram, index) ||
743 !zram_test_flag(zram, index, ZRAM_IDLE)) {
744 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
745 zram_clear_flag(zram, index, ZRAM_IDLE);
746 goto next;
747 }
748
749 zram_free_page(zram, index);
750 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
751 zram_set_flag(zram, index, ZRAM_WB);
752 zram_set_element(zram, index, blk_idx);
753 blk_idx = 0;
754 atomic64_inc(&zram->stats.pages_stored);
755 spin_lock(&zram->wb_limit_lock);
756 if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
757 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12);
758 spin_unlock(&zram->wb_limit_lock);
759 next:
760 zram_slot_unlock(zram, index);
761 }
762
763 if (blk_idx)
764 free_block_bdev(zram, blk_idx);
765 ret = len;
766 __free_page(page);
767 release_init_lock:
768 up_read(&zram->init_lock);
769
770 return ret;
771 }
772
773 struct zram_work {
774 struct work_struct work;
775 struct zram *zram;
776 unsigned long entry;
777 struct bio *bio;
778 struct bio_vec bvec;
779 };
780
781 #if PAGE_SIZE != 4096
zram_sync_read(struct work_struct * work)782 static void zram_sync_read(struct work_struct *work)
783 {
784 struct zram_work *zw = container_of(work, struct zram_work, work);
785 struct zram *zram = zw->zram;
786 unsigned long entry = zw->entry;
787 struct bio *bio = zw->bio;
788
789 read_from_bdev_async(zram, &zw->bvec, entry, bio);
790 }
791
792 /*
793 * Block layer want one ->make_request_fn to be active at a time
794 * so if we use chained IO with parent IO in same context,
795 * it's a deadlock. To avoid, it, it uses worker thread context.
796 */
read_from_bdev_sync(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * bio)797 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
798 unsigned long entry, struct bio *bio)
799 {
800 struct zram_work work;
801
802 work.bvec = *bvec;
803 work.zram = zram;
804 work.entry = entry;
805 work.bio = bio;
806
807 INIT_WORK_ONSTACK(&work.work, zram_sync_read);
808 queue_work(system_unbound_wq, &work.work);
809 flush_work(&work.work);
810 destroy_work_on_stack(&work.work);
811
812 return 1;
813 }
814 #else
read_from_bdev_sync(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * bio)815 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
816 unsigned long entry, struct bio *bio)
817 {
818 WARN_ON(1);
819 return -EIO;
820 }
821 #endif
822
read_from_bdev(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * parent,bool sync)823 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
824 unsigned long entry, struct bio *parent, bool sync)
825 {
826 atomic64_inc(&zram->stats.bd_reads);
827 if (sync)
828 return read_from_bdev_sync(zram, bvec, entry, parent);
829 else
830 return read_from_bdev_async(zram, bvec, entry, parent);
831 }
832 #else
reset_bdev(struct zram * zram)833 static inline void reset_bdev(struct zram *zram) {};
read_from_bdev(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * parent,bool sync)834 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
835 unsigned long entry, struct bio *parent, bool sync)
836 {
837 return -EIO;
838 }
839
free_block_bdev(struct zram * zram,unsigned long blk_idx)840 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
841 #endif
842
843 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
844
845 static struct dentry *zram_debugfs_root;
846
zram_debugfs_create(void)847 static void zram_debugfs_create(void)
848 {
849 zram_debugfs_root = debugfs_create_dir("zram", NULL);
850 }
851
zram_debugfs_destroy(void)852 static void zram_debugfs_destroy(void)
853 {
854 debugfs_remove_recursive(zram_debugfs_root);
855 }
856
zram_accessed(struct zram * zram,u32 index)857 static void zram_accessed(struct zram *zram, u32 index)
858 {
859 zram_clear_flag(zram, index, ZRAM_IDLE);
860 zram->table[index].ac_time = ktime_get_boottime();
861 }
862
read_block_state(struct file * file,char __user * buf,size_t count,loff_t * ppos)863 static ssize_t read_block_state(struct file *file, char __user *buf,
864 size_t count, loff_t *ppos)
865 {
866 char *kbuf;
867 ssize_t index, written = 0;
868 struct zram *zram = file->private_data;
869 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
870 struct timespec64 ts;
871
872 kbuf = kvmalloc(count, GFP_KERNEL);
873 if (!kbuf)
874 return -ENOMEM;
875
876 down_read(&zram->init_lock);
877 if (!init_done(zram)) {
878 up_read(&zram->init_lock);
879 kvfree(kbuf);
880 return -EINVAL;
881 }
882
883 for (index = *ppos; index < nr_pages; index++) {
884 int copied;
885
886 zram_slot_lock(zram, index);
887 if (!zram_allocated(zram, index))
888 goto next;
889
890 ts = ktime_to_timespec64(zram->table[index].ac_time);
891 copied = snprintf(kbuf + written, count,
892 "%12zd %12lld.%06lu %c%c%c%c\n",
893 index, (s64)ts.tv_sec,
894 ts.tv_nsec / NSEC_PER_USEC,
895 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
896 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
897 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
898 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
899
900 if (count < copied) {
901 zram_slot_unlock(zram, index);
902 break;
903 }
904 written += copied;
905 count -= copied;
906 next:
907 zram_slot_unlock(zram, index);
908 *ppos += 1;
909 }
910
911 up_read(&zram->init_lock);
912 if (copy_to_user(buf, kbuf, written))
913 written = -EFAULT;
914 kvfree(kbuf);
915
916 return written;
917 }
918
919 static const struct file_operations proc_zram_block_state_op = {
920 .open = simple_open,
921 .read = read_block_state,
922 .llseek = default_llseek,
923 };
924
zram_debugfs_register(struct zram * zram)925 static void zram_debugfs_register(struct zram *zram)
926 {
927 if (!zram_debugfs_root)
928 return;
929
930 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
931 zram_debugfs_root);
932 debugfs_create_file("block_state", 0400, zram->debugfs_dir,
933 zram, &proc_zram_block_state_op);
934 }
935
zram_debugfs_unregister(struct zram * zram)936 static void zram_debugfs_unregister(struct zram *zram)
937 {
938 debugfs_remove_recursive(zram->debugfs_dir);
939 }
940 #else
zram_debugfs_create(void)941 static void zram_debugfs_create(void) {};
zram_debugfs_destroy(void)942 static void zram_debugfs_destroy(void) {};
zram_accessed(struct zram * zram,u32 index)943 static void zram_accessed(struct zram *zram, u32 index)
944 {
945 zram_clear_flag(zram, index, ZRAM_IDLE);
946 };
zram_debugfs_register(struct zram * zram)947 static void zram_debugfs_register(struct zram *zram) {};
zram_debugfs_unregister(struct zram * zram)948 static void zram_debugfs_unregister(struct zram *zram) {};
949 #endif
950
951 /*
952 * We switched to per-cpu streams and this attr is not needed anymore.
953 * However, we will keep it around for some time, because:
954 * a) we may revert per-cpu streams in the future
955 * b) it's visible to user space and we need to follow our 2 years
956 * retirement rule; but we already have a number of 'soon to be
957 * altered' attrs, so max_comp_streams need to wait for the next
958 * layoff cycle.
959 */
max_comp_streams_show(struct device * dev,struct device_attribute * attr,char * buf)960 static ssize_t max_comp_streams_show(struct device *dev,
961 struct device_attribute *attr, char *buf)
962 {
963 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
964 }
965
max_comp_streams_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)966 static ssize_t max_comp_streams_store(struct device *dev,
967 struct device_attribute *attr, const char *buf, size_t len)
968 {
969 return len;
970 }
971
comp_algorithm_show(struct device * dev,struct device_attribute * attr,char * buf)972 static ssize_t comp_algorithm_show(struct device *dev,
973 struct device_attribute *attr, char *buf)
974 {
975 size_t sz;
976 struct zram *zram = dev_to_zram(dev);
977
978 down_read(&zram->init_lock);
979 sz = zcomp_available_show(zram->compressor, buf);
980 up_read(&zram->init_lock);
981
982 return sz;
983 }
984
comp_algorithm_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)985 static ssize_t comp_algorithm_store(struct device *dev,
986 struct device_attribute *attr, const char *buf, size_t len)
987 {
988 struct zram *zram = dev_to_zram(dev);
989 char compressor[ARRAY_SIZE(zram->compressor)];
990 size_t sz;
991
992 strlcpy(compressor, buf, sizeof(compressor));
993 /* ignore trailing newline */
994 sz = strlen(compressor);
995 if (sz > 0 && compressor[sz - 1] == '\n')
996 compressor[sz - 1] = 0x00;
997
998 if (!zcomp_available_algorithm(compressor))
999 return -EINVAL;
1000
1001 down_write(&zram->init_lock);
1002 if (init_done(zram)) {
1003 up_write(&zram->init_lock);
1004 pr_info("Can't change algorithm for initialized device\n");
1005 return -EBUSY;
1006 }
1007
1008 strcpy(zram->compressor, compressor);
1009 up_write(&zram->init_lock);
1010 return len;
1011 }
1012
compact_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1013 static ssize_t compact_store(struct device *dev,
1014 struct device_attribute *attr, const char *buf, size_t len)
1015 {
1016 struct zram *zram = dev_to_zram(dev);
1017
1018 down_read(&zram->init_lock);
1019 if (!init_done(zram)) {
1020 up_read(&zram->init_lock);
1021 return -EINVAL;
1022 }
1023
1024 zs_compact(zram->mem_pool);
1025 up_read(&zram->init_lock);
1026
1027 return len;
1028 }
1029
io_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1030 static ssize_t io_stat_show(struct device *dev,
1031 struct device_attribute *attr, char *buf)
1032 {
1033 struct zram *zram = dev_to_zram(dev);
1034 ssize_t ret;
1035
1036 down_read(&zram->init_lock);
1037 ret = scnprintf(buf, PAGE_SIZE,
1038 "%8llu %8llu %8llu %8llu\n",
1039 (u64)atomic64_read(&zram->stats.failed_reads),
1040 (u64)atomic64_read(&zram->stats.failed_writes),
1041 (u64)atomic64_read(&zram->stats.invalid_io),
1042 (u64)atomic64_read(&zram->stats.notify_free));
1043 up_read(&zram->init_lock);
1044
1045 return ret;
1046 }
1047
mm_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1048 static ssize_t mm_stat_show(struct device *dev,
1049 struct device_attribute *attr, char *buf)
1050 {
1051 struct zram *zram = dev_to_zram(dev);
1052 struct zs_pool_stats pool_stats;
1053 u64 orig_size, mem_used = 0;
1054 long max_used;
1055 ssize_t ret;
1056
1057 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1058
1059 down_read(&zram->init_lock);
1060 if (init_done(zram)) {
1061 mem_used = zs_get_total_pages(zram->mem_pool);
1062 zs_pool_stats(zram->mem_pool, &pool_stats);
1063 }
1064
1065 orig_size = atomic64_read(&zram->stats.pages_stored);
1066 max_used = atomic_long_read(&zram->stats.max_used_pages);
1067
1068 ret = scnprintf(buf, PAGE_SIZE,
1069 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n",
1070 orig_size << PAGE_SHIFT,
1071 (u64)atomic64_read(&zram->stats.compr_data_size),
1072 mem_used << PAGE_SHIFT,
1073 zram->limit_pages << PAGE_SHIFT,
1074 max_used << PAGE_SHIFT,
1075 (u64)atomic64_read(&zram->stats.same_pages),
1076 pool_stats.pages_compacted,
1077 (u64)atomic64_read(&zram->stats.huge_pages));
1078 up_read(&zram->init_lock);
1079
1080 return ret;
1081 }
1082
1083 #ifdef CONFIG_ZRAM_WRITEBACK
1084 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
bd_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1085 static ssize_t bd_stat_show(struct device *dev,
1086 struct device_attribute *attr, char *buf)
1087 {
1088 struct zram *zram = dev_to_zram(dev);
1089 ssize_t ret;
1090
1091 down_read(&zram->init_lock);
1092 ret = scnprintf(buf, PAGE_SIZE,
1093 "%8llu %8llu %8llu\n",
1094 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1095 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1096 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1097 up_read(&zram->init_lock);
1098
1099 return ret;
1100 }
1101 #endif
1102
debug_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1103 static ssize_t debug_stat_show(struct device *dev,
1104 struct device_attribute *attr, char *buf)
1105 {
1106 int version = 1;
1107 struct zram *zram = dev_to_zram(dev);
1108 ssize_t ret;
1109
1110 down_read(&zram->init_lock);
1111 ret = scnprintf(buf, PAGE_SIZE,
1112 "version: %d\n%8llu %8llu\n",
1113 version,
1114 (u64)atomic64_read(&zram->stats.writestall),
1115 (u64)atomic64_read(&zram->stats.miss_free));
1116 up_read(&zram->init_lock);
1117
1118 return ret;
1119 }
1120
1121 static DEVICE_ATTR_RO(io_stat);
1122 static DEVICE_ATTR_RO(mm_stat);
1123 #ifdef CONFIG_ZRAM_WRITEBACK
1124 static DEVICE_ATTR_RO(bd_stat);
1125 #endif
1126 static DEVICE_ATTR_RO(debug_stat);
1127
zram_meta_free(struct zram * zram,u64 disksize)1128 static void zram_meta_free(struct zram *zram, u64 disksize)
1129 {
1130 size_t num_pages = disksize >> PAGE_SHIFT;
1131 size_t index;
1132
1133 /* Free all pages that are still in this zram device */
1134 for (index = 0; index < num_pages; index++)
1135 zram_free_page(zram, index);
1136
1137 zs_destroy_pool(zram->mem_pool);
1138 vfree(zram->table);
1139 }
1140
zram_meta_alloc(struct zram * zram,u64 disksize)1141 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1142 {
1143 size_t num_pages;
1144
1145 num_pages = disksize >> PAGE_SHIFT;
1146 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1147 if (!zram->table)
1148 return false;
1149
1150 zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1151 if (!zram->mem_pool) {
1152 vfree(zram->table);
1153 return false;
1154 }
1155
1156 if (!huge_class_size)
1157 huge_class_size = zs_huge_class_size(zram->mem_pool);
1158 return true;
1159 }
1160
1161 /*
1162 * To protect concurrent access to the same index entry,
1163 * caller should hold this table index entry's bit_spinlock to
1164 * indicate this index entry is accessing.
1165 */
zram_free_page(struct zram * zram,size_t index)1166 static void zram_free_page(struct zram *zram, size_t index)
1167 {
1168 unsigned long handle;
1169
1170 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1171 zram->table[index].ac_time = 0;
1172 #endif
1173 if (zram_test_flag(zram, index, ZRAM_IDLE))
1174 zram_clear_flag(zram, index, ZRAM_IDLE);
1175
1176 if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1177 zram_clear_flag(zram, index, ZRAM_HUGE);
1178 atomic64_dec(&zram->stats.huge_pages);
1179 }
1180
1181 if (zram_test_flag(zram, index, ZRAM_WB)) {
1182 zram_clear_flag(zram, index, ZRAM_WB);
1183 free_block_bdev(zram, zram_get_element(zram, index));
1184 goto out;
1185 }
1186
1187 /*
1188 * No memory is allocated for same element filled pages.
1189 * Simply clear same page flag.
1190 */
1191 if (zram_test_flag(zram, index, ZRAM_SAME)) {
1192 zram_clear_flag(zram, index, ZRAM_SAME);
1193 atomic64_dec(&zram->stats.same_pages);
1194 goto out;
1195 }
1196
1197 handle = zram_get_handle(zram, index);
1198 if (!handle)
1199 return;
1200
1201 zs_free(zram->mem_pool, handle);
1202
1203 atomic64_sub(zram_get_obj_size(zram, index),
1204 &zram->stats.compr_data_size);
1205 out:
1206 atomic64_dec(&zram->stats.pages_stored);
1207 zram_set_handle(zram, index, 0);
1208 zram_set_obj_size(zram, index, 0);
1209 WARN_ON_ONCE(zram->table[index].flags &
1210 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1211 }
1212
__zram_bvec_read(struct zram * zram,struct page * page,u32 index,struct bio * bio,bool partial_io)1213 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1214 struct bio *bio, bool partial_io)
1215 {
1216 int ret;
1217 unsigned long handle;
1218 unsigned int size;
1219 void *src, *dst;
1220
1221 zram_slot_lock(zram, index);
1222 if (zram_test_flag(zram, index, ZRAM_WB)) {
1223 struct bio_vec bvec;
1224
1225 zram_slot_unlock(zram, index);
1226
1227 bvec.bv_page = page;
1228 bvec.bv_len = PAGE_SIZE;
1229 bvec.bv_offset = 0;
1230 return read_from_bdev(zram, &bvec,
1231 zram_get_element(zram, index),
1232 bio, partial_io);
1233 }
1234
1235 handle = zram_get_handle(zram, index);
1236 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1237 unsigned long value;
1238 void *mem;
1239
1240 value = handle ? zram_get_element(zram, index) : 0;
1241 mem = kmap_atomic(page);
1242 zram_fill_page(mem, PAGE_SIZE, value);
1243 kunmap_atomic(mem);
1244 zram_slot_unlock(zram, index);
1245 return 0;
1246 }
1247
1248 size = zram_get_obj_size(zram, index);
1249
1250 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1251 if (size == PAGE_SIZE) {
1252 dst = kmap_atomic(page);
1253 memcpy(dst, src, PAGE_SIZE);
1254 kunmap_atomic(dst);
1255 ret = 0;
1256 } else {
1257 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
1258
1259 dst = kmap_atomic(page);
1260 ret = zcomp_decompress(zstrm, src, size, dst);
1261 kunmap_atomic(dst);
1262 zcomp_stream_put(zram->comp);
1263 }
1264 zs_unmap_object(zram->mem_pool, handle);
1265 zram_slot_unlock(zram, index);
1266
1267 /* Should NEVER happen. Return bio error if it does. */
1268 if (unlikely(ret))
1269 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1270
1271 return ret;
1272 }
1273
zram_bvec_read(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,struct bio * bio)1274 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1275 u32 index, int offset, struct bio *bio)
1276 {
1277 int ret;
1278 struct page *page;
1279
1280 page = bvec->bv_page;
1281 if (is_partial_io(bvec)) {
1282 /* Use a temporary buffer to decompress the page */
1283 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1284 if (!page)
1285 return -ENOMEM;
1286 }
1287
1288 ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1289 if (unlikely(ret))
1290 goto out;
1291
1292 if (is_partial_io(bvec)) {
1293 void *dst = kmap_atomic(bvec->bv_page);
1294 void *src = kmap_atomic(page);
1295
1296 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1297 kunmap_atomic(src);
1298 kunmap_atomic(dst);
1299 }
1300 out:
1301 if (is_partial_io(bvec))
1302 __free_page(page);
1303
1304 return ret;
1305 }
1306
__zram_bvec_write(struct zram * zram,struct bio_vec * bvec,u32 index,struct bio * bio)1307 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1308 u32 index, struct bio *bio)
1309 {
1310 int ret = 0;
1311 unsigned long alloced_pages;
1312 unsigned long handle = 0;
1313 unsigned int comp_len = 0;
1314 void *src, *dst, *mem;
1315 struct zcomp_strm *zstrm;
1316 struct page *page = bvec->bv_page;
1317 unsigned long element = 0;
1318 enum zram_pageflags flags = 0;
1319
1320 mem = kmap_atomic(page);
1321 if (page_same_filled(mem, &element)) {
1322 kunmap_atomic(mem);
1323 /* Free memory associated with this sector now. */
1324 flags = ZRAM_SAME;
1325 atomic64_inc(&zram->stats.same_pages);
1326 goto out;
1327 }
1328 kunmap_atomic(mem);
1329
1330 compress_again:
1331 zstrm = zcomp_stream_get(zram->comp);
1332 src = kmap_atomic(page);
1333 ret = zcomp_compress(zstrm, src, &comp_len);
1334 kunmap_atomic(src);
1335
1336 if (unlikely(ret)) {
1337 zcomp_stream_put(zram->comp);
1338 pr_err("Compression failed! err=%d\n", ret);
1339 zs_free(zram->mem_pool, handle);
1340 return ret;
1341 }
1342
1343 if (comp_len >= huge_class_size)
1344 comp_len = PAGE_SIZE;
1345 /*
1346 * handle allocation has 2 paths:
1347 * a) fast path is executed with preemption disabled (for
1348 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1349 * since we can't sleep;
1350 * b) slow path enables preemption and attempts to allocate
1351 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
1352 * put per-cpu compression stream and, thus, to re-do
1353 * the compression once handle is allocated.
1354 *
1355 * if we have a 'non-null' handle here then we are coming
1356 * from the slow path and handle has already been allocated.
1357 */
1358 if (!handle)
1359 handle = zs_malloc(zram->mem_pool, comp_len,
1360 __GFP_KSWAPD_RECLAIM |
1361 __GFP_NOWARN |
1362 __GFP_HIGHMEM |
1363 __GFP_MOVABLE);
1364 if (!handle) {
1365 zcomp_stream_put(zram->comp);
1366 atomic64_inc(&zram->stats.writestall);
1367 handle = zs_malloc(zram->mem_pool, comp_len,
1368 GFP_NOIO | __GFP_HIGHMEM |
1369 __GFP_MOVABLE);
1370 if (handle)
1371 goto compress_again;
1372 return -ENOMEM;
1373 }
1374
1375 alloced_pages = zs_get_total_pages(zram->mem_pool);
1376 update_used_max(zram, alloced_pages);
1377
1378 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1379 zcomp_stream_put(zram->comp);
1380 zs_free(zram->mem_pool, handle);
1381 return -ENOMEM;
1382 }
1383
1384 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1385
1386 src = zstrm->buffer;
1387 if (comp_len == PAGE_SIZE)
1388 src = kmap_atomic(page);
1389 memcpy(dst, src, comp_len);
1390 if (comp_len == PAGE_SIZE)
1391 kunmap_atomic(src);
1392
1393 zcomp_stream_put(zram->comp);
1394 zs_unmap_object(zram->mem_pool, handle);
1395 atomic64_add(comp_len, &zram->stats.compr_data_size);
1396 out:
1397 /*
1398 * Free memory associated with this sector
1399 * before overwriting unused sectors.
1400 */
1401 zram_slot_lock(zram, index);
1402 zram_free_page(zram, index);
1403
1404 if (comp_len == PAGE_SIZE) {
1405 zram_set_flag(zram, index, ZRAM_HUGE);
1406 atomic64_inc(&zram->stats.huge_pages);
1407 }
1408
1409 if (flags) {
1410 zram_set_flag(zram, index, flags);
1411 zram_set_element(zram, index, element);
1412 } else {
1413 zram_set_handle(zram, index, handle);
1414 zram_set_obj_size(zram, index, comp_len);
1415 }
1416 zram_slot_unlock(zram, index);
1417
1418 /* Update stats */
1419 atomic64_inc(&zram->stats.pages_stored);
1420 return ret;
1421 }
1422
zram_bvec_write(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,struct bio * bio)1423 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1424 u32 index, int offset, struct bio *bio)
1425 {
1426 int ret;
1427 struct page *page = NULL;
1428 void *src;
1429 struct bio_vec vec;
1430
1431 vec = *bvec;
1432 if (is_partial_io(bvec)) {
1433 void *dst;
1434 /*
1435 * This is a partial IO. We need to read the full page
1436 * before to write the changes.
1437 */
1438 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1439 if (!page)
1440 return -ENOMEM;
1441
1442 ret = __zram_bvec_read(zram, page, index, bio, true);
1443 if (ret)
1444 goto out;
1445
1446 src = kmap_atomic(bvec->bv_page);
1447 dst = kmap_atomic(page);
1448 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1449 kunmap_atomic(dst);
1450 kunmap_atomic(src);
1451
1452 vec.bv_page = page;
1453 vec.bv_len = PAGE_SIZE;
1454 vec.bv_offset = 0;
1455 }
1456
1457 ret = __zram_bvec_write(zram, &vec, index, bio);
1458 out:
1459 if (is_partial_io(bvec))
1460 __free_page(page);
1461 return ret;
1462 }
1463
1464 /*
1465 * zram_bio_discard - handler on discard request
1466 * @index: physical block index in PAGE_SIZE units
1467 * @offset: byte offset within physical block
1468 */
zram_bio_discard(struct zram * zram,u32 index,int offset,struct bio * bio)1469 static void zram_bio_discard(struct zram *zram, u32 index,
1470 int offset, struct bio *bio)
1471 {
1472 size_t n = bio->bi_iter.bi_size;
1473
1474 /*
1475 * zram manages data in physical block size units. Because logical block
1476 * size isn't identical with physical block size on some arch, we
1477 * could get a discard request pointing to a specific offset within a
1478 * certain physical block. Although we can handle this request by
1479 * reading that physiclal block and decompressing and partially zeroing
1480 * and re-compressing and then re-storing it, this isn't reasonable
1481 * because our intent with a discard request is to save memory. So
1482 * skipping this logical block is appropriate here.
1483 */
1484 if (offset) {
1485 if (n <= (PAGE_SIZE - offset))
1486 return;
1487
1488 n -= (PAGE_SIZE - offset);
1489 index++;
1490 }
1491
1492 while (n >= PAGE_SIZE) {
1493 zram_slot_lock(zram, index);
1494 zram_free_page(zram, index);
1495 zram_slot_unlock(zram, index);
1496 atomic64_inc(&zram->stats.notify_free);
1497 index++;
1498 n -= PAGE_SIZE;
1499 }
1500 }
1501
1502 /*
1503 * Returns errno if it has some problem. Otherwise return 0 or 1.
1504 * Returns 0 if IO request was done synchronously
1505 * Returns 1 if IO request was successfully submitted.
1506 */
zram_bvec_rw(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,unsigned int op,struct bio * bio)1507 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1508 int offset, unsigned int op, struct bio *bio)
1509 {
1510 unsigned long start_time = jiffies;
1511 struct request_queue *q = zram->disk->queue;
1512 int ret;
1513
1514 generic_start_io_acct(q, op, bvec->bv_len >> SECTOR_SHIFT,
1515 &zram->disk->part0);
1516
1517 if (!op_is_write(op)) {
1518 atomic64_inc(&zram->stats.num_reads);
1519 ret = zram_bvec_read(zram, bvec, index, offset, bio);
1520 flush_dcache_page(bvec->bv_page);
1521 } else {
1522 atomic64_inc(&zram->stats.num_writes);
1523 ret = zram_bvec_write(zram, bvec, index, offset, bio);
1524 }
1525
1526 generic_end_io_acct(q, op, &zram->disk->part0, start_time);
1527
1528 zram_slot_lock(zram, index);
1529 zram_accessed(zram, index);
1530 zram_slot_unlock(zram, index);
1531
1532 if (unlikely(ret < 0)) {
1533 if (!op_is_write(op))
1534 atomic64_inc(&zram->stats.failed_reads);
1535 else
1536 atomic64_inc(&zram->stats.failed_writes);
1537 }
1538
1539 return ret;
1540 }
1541
__zram_make_request(struct zram * zram,struct bio * bio)1542 static void __zram_make_request(struct zram *zram, struct bio *bio)
1543 {
1544 int offset;
1545 u32 index;
1546 struct bio_vec bvec;
1547 struct bvec_iter iter;
1548
1549 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1550 offset = (bio->bi_iter.bi_sector &
1551 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1552
1553 switch (bio_op(bio)) {
1554 case REQ_OP_DISCARD:
1555 case REQ_OP_WRITE_ZEROES:
1556 zram_bio_discard(zram, index, offset, bio);
1557 bio_endio(bio);
1558 return;
1559 default:
1560 break;
1561 }
1562
1563 bio_for_each_segment(bvec, bio, iter) {
1564 struct bio_vec bv = bvec;
1565 unsigned int unwritten = bvec.bv_len;
1566
1567 do {
1568 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1569 unwritten);
1570 if (zram_bvec_rw(zram, &bv, index, offset,
1571 bio_op(bio), bio) < 0)
1572 goto out;
1573
1574 bv.bv_offset += bv.bv_len;
1575 unwritten -= bv.bv_len;
1576
1577 update_position(&index, &offset, &bv);
1578 } while (unwritten);
1579 }
1580
1581 bio_endio(bio);
1582 return;
1583
1584 out:
1585 bio_io_error(bio);
1586 }
1587
1588 /*
1589 * Handler function for all zram I/O requests.
1590 */
zram_make_request(struct request_queue * queue,struct bio * bio)1591 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
1592 {
1593 struct zram *zram = queue->queuedata;
1594
1595 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1596 bio->bi_iter.bi_size)) {
1597 atomic64_inc(&zram->stats.invalid_io);
1598 goto error;
1599 }
1600
1601 __zram_make_request(zram, bio);
1602 return BLK_QC_T_NONE;
1603
1604 error:
1605 bio_io_error(bio);
1606 return BLK_QC_T_NONE;
1607 }
1608
zram_slot_free_notify(struct block_device * bdev,unsigned long index)1609 static void zram_slot_free_notify(struct block_device *bdev,
1610 unsigned long index)
1611 {
1612 struct zram *zram;
1613
1614 zram = bdev->bd_disk->private_data;
1615
1616 atomic64_inc(&zram->stats.notify_free);
1617 if (!zram_slot_trylock(zram, index)) {
1618 atomic64_inc(&zram->stats.miss_free);
1619 return;
1620 }
1621
1622 zram_free_page(zram, index);
1623 zram_slot_unlock(zram, index);
1624 }
1625
zram_rw_page(struct block_device * bdev,sector_t sector,struct page * page,unsigned int op)1626 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1627 struct page *page, unsigned int op)
1628 {
1629 int offset, ret;
1630 u32 index;
1631 struct zram *zram;
1632 struct bio_vec bv;
1633
1634 if (PageTransHuge(page))
1635 return -ENOTSUPP;
1636 zram = bdev->bd_disk->private_data;
1637
1638 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1639 atomic64_inc(&zram->stats.invalid_io);
1640 ret = -EINVAL;
1641 goto out;
1642 }
1643
1644 index = sector >> SECTORS_PER_PAGE_SHIFT;
1645 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1646
1647 bv.bv_page = page;
1648 bv.bv_len = PAGE_SIZE;
1649 bv.bv_offset = 0;
1650
1651 ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1652 out:
1653 /*
1654 * If I/O fails, just return error(ie, non-zero) without
1655 * calling page_endio.
1656 * It causes resubmit the I/O with bio request by upper functions
1657 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1658 * bio->bi_end_io does things to handle the error
1659 * (e.g., SetPageError, set_page_dirty and extra works).
1660 */
1661 if (unlikely(ret < 0))
1662 return ret;
1663
1664 switch (ret) {
1665 case 0:
1666 page_endio(page, op_is_write(op), 0);
1667 break;
1668 case 1:
1669 ret = 0;
1670 break;
1671 default:
1672 WARN_ON(1);
1673 }
1674 return ret;
1675 }
1676
zram_reset_device(struct zram * zram)1677 static void zram_reset_device(struct zram *zram)
1678 {
1679 struct zcomp *comp;
1680 u64 disksize;
1681
1682 down_write(&zram->init_lock);
1683
1684 zram->limit_pages = 0;
1685
1686 if (!init_done(zram)) {
1687 up_write(&zram->init_lock);
1688 return;
1689 }
1690
1691 comp = zram->comp;
1692 disksize = zram->disksize;
1693 zram->disksize = 0;
1694
1695 set_capacity(zram->disk, 0);
1696 part_stat_set_all(&zram->disk->part0, 0);
1697
1698 up_write(&zram->init_lock);
1699 /* I/O operation under all of CPU are done so let's free */
1700 zram_meta_free(zram, disksize);
1701 memset(&zram->stats, 0, sizeof(zram->stats));
1702 zcomp_destroy(comp);
1703 reset_bdev(zram);
1704 }
1705
disksize_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1706 static ssize_t disksize_store(struct device *dev,
1707 struct device_attribute *attr, const char *buf, size_t len)
1708 {
1709 u64 disksize;
1710 struct zcomp *comp;
1711 struct zram *zram = dev_to_zram(dev);
1712 int err;
1713
1714 disksize = memparse(buf, NULL);
1715 if (!disksize)
1716 return -EINVAL;
1717
1718 down_write(&zram->init_lock);
1719 if (init_done(zram)) {
1720 pr_info("Cannot change disksize for initialized device\n");
1721 err = -EBUSY;
1722 goto out_unlock;
1723 }
1724
1725 disksize = PAGE_ALIGN(disksize);
1726 if (!zram_meta_alloc(zram, disksize)) {
1727 err = -ENOMEM;
1728 goto out_unlock;
1729 }
1730
1731 comp = zcomp_create(zram->compressor);
1732 if (IS_ERR(comp)) {
1733 pr_err("Cannot initialise %s compressing backend\n",
1734 zram->compressor);
1735 err = PTR_ERR(comp);
1736 goto out_free_meta;
1737 }
1738
1739 zram->comp = comp;
1740 zram->disksize = disksize;
1741 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1742
1743 revalidate_disk(zram->disk);
1744 up_write(&zram->init_lock);
1745
1746 return len;
1747
1748 out_free_meta:
1749 zram_meta_free(zram, disksize);
1750 out_unlock:
1751 up_write(&zram->init_lock);
1752 return err;
1753 }
1754
reset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1755 static ssize_t reset_store(struct device *dev,
1756 struct device_attribute *attr, const char *buf, size_t len)
1757 {
1758 int ret;
1759 unsigned short do_reset;
1760 struct zram *zram;
1761 struct block_device *bdev;
1762
1763 ret = kstrtou16(buf, 10, &do_reset);
1764 if (ret)
1765 return ret;
1766
1767 if (!do_reset)
1768 return -EINVAL;
1769
1770 zram = dev_to_zram(dev);
1771 bdev = bdget_disk(zram->disk, 0);
1772 if (!bdev)
1773 return -ENOMEM;
1774
1775 mutex_lock(&bdev->bd_mutex);
1776 /* Do not reset an active device or claimed device */
1777 if (bdev->bd_openers || zram->claim) {
1778 mutex_unlock(&bdev->bd_mutex);
1779 bdput(bdev);
1780 return -EBUSY;
1781 }
1782
1783 /* From now on, anyone can't open /dev/zram[0-9] */
1784 zram->claim = true;
1785 mutex_unlock(&bdev->bd_mutex);
1786
1787 /* Make sure all the pending I/O are finished */
1788 fsync_bdev(bdev);
1789 zram_reset_device(zram);
1790 revalidate_disk(zram->disk);
1791 bdput(bdev);
1792
1793 mutex_lock(&bdev->bd_mutex);
1794 zram->claim = false;
1795 mutex_unlock(&bdev->bd_mutex);
1796
1797 return len;
1798 }
1799
zram_open(struct block_device * bdev,fmode_t mode)1800 static int zram_open(struct block_device *bdev, fmode_t mode)
1801 {
1802 int ret = 0;
1803 struct zram *zram;
1804
1805 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1806
1807 zram = bdev->bd_disk->private_data;
1808 /* zram was claimed to reset so open request fails */
1809 if (zram->claim)
1810 ret = -EBUSY;
1811
1812 return ret;
1813 }
1814
1815 static const struct block_device_operations zram_devops = {
1816 .open = zram_open,
1817 .swap_slot_free_notify = zram_slot_free_notify,
1818 .rw_page = zram_rw_page,
1819 .owner = THIS_MODULE
1820 };
1821
1822 static DEVICE_ATTR_WO(compact);
1823 static DEVICE_ATTR_RW(disksize);
1824 static DEVICE_ATTR_RO(initstate);
1825 static DEVICE_ATTR_WO(reset);
1826 static DEVICE_ATTR_WO(mem_limit);
1827 static DEVICE_ATTR_WO(mem_used_max);
1828 static DEVICE_ATTR_WO(idle);
1829 static DEVICE_ATTR_RW(max_comp_streams);
1830 static DEVICE_ATTR_RW(comp_algorithm);
1831 #ifdef CONFIG_ZRAM_WRITEBACK
1832 static DEVICE_ATTR_RW(backing_dev);
1833 static DEVICE_ATTR_WO(writeback);
1834 static DEVICE_ATTR_RW(writeback_limit);
1835 static DEVICE_ATTR_RW(writeback_limit_enable);
1836 #endif
1837
1838 static struct attribute *zram_disk_attrs[] = {
1839 &dev_attr_disksize.attr,
1840 &dev_attr_initstate.attr,
1841 &dev_attr_reset.attr,
1842 &dev_attr_compact.attr,
1843 &dev_attr_mem_limit.attr,
1844 &dev_attr_mem_used_max.attr,
1845 &dev_attr_idle.attr,
1846 &dev_attr_max_comp_streams.attr,
1847 &dev_attr_comp_algorithm.attr,
1848 #ifdef CONFIG_ZRAM_WRITEBACK
1849 &dev_attr_backing_dev.attr,
1850 &dev_attr_writeback.attr,
1851 &dev_attr_writeback_limit.attr,
1852 &dev_attr_writeback_limit_enable.attr,
1853 #endif
1854 &dev_attr_io_stat.attr,
1855 &dev_attr_mm_stat.attr,
1856 #ifdef CONFIG_ZRAM_WRITEBACK
1857 &dev_attr_bd_stat.attr,
1858 #endif
1859 &dev_attr_debug_stat.attr,
1860 NULL,
1861 };
1862
1863 static const struct attribute_group zram_disk_attr_group = {
1864 .attrs = zram_disk_attrs,
1865 };
1866
1867 static const struct attribute_group *zram_disk_attr_groups[] = {
1868 &zram_disk_attr_group,
1869 NULL,
1870 };
1871
1872 /*
1873 * Allocate and initialize new zram device. the function returns
1874 * '>= 0' device_id upon success, and negative value otherwise.
1875 */
zram_add(void)1876 static int zram_add(void)
1877 {
1878 struct zram *zram;
1879 struct request_queue *queue;
1880 int ret, device_id;
1881
1882 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1883 if (!zram)
1884 return -ENOMEM;
1885
1886 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1887 if (ret < 0)
1888 goto out_free_dev;
1889 device_id = ret;
1890
1891 init_rwsem(&zram->init_lock);
1892 #ifdef CONFIG_ZRAM_WRITEBACK
1893 spin_lock_init(&zram->wb_limit_lock);
1894 #endif
1895 queue = blk_alloc_queue(GFP_KERNEL);
1896 if (!queue) {
1897 pr_err("Error allocating disk queue for device %d\n",
1898 device_id);
1899 ret = -ENOMEM;
1900 goto out_free_idr;
1901 }
1902
1903 blk_queue_make_request(queue, zram_make_request);
1904
1905 /* gendisk structure */
1906 zram->disk = alloc_disk(1);
1907 if (!zram->disk) {
1908 pr_err("Error allocating disk structure for device %d\n",
1909 device_id);
1910 ret = -ENOMEM;
1911 goto out_free_queue;
1912 }
1913
1914 zram->disk->major = zram_major;
1915 zram->disk->first_minor = device_id;
1916 zram->disk->fops = &zram_devops;
1917 zram->disk->queue = queue;
1918 zram->disk->queue->queuedata = zram;
1919 zram->disk->private_data = zram;
1920 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1921
1922 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1923 set_capacity(zram->disk, 0);
1924 /* zram devices sort of resembles non-rotational disks */
1925 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1926 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1927
1928 /*
1929 * To ensure that we always get PAGE_SIZE aligned
1930 * and n*PAGE_SIZED sized I/O requests.
1931 */
1932 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1933 blk_queue_logical_block_size(zram->disk->queue,
1934 ZRAM_LOGICAL_BLOCK_SIZE);
1935 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1936 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1937 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1938 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1939 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1940
1941 /*
1942 * zram_bio_discard() will clear all logical blocks if logical block
1943 * size is identical with physical block size(PAGE_SIZE). But if it is
1944 * different, we will skip discarding some parts of logical blocks in
1945 * the part of the request range which isn't aligned to physical block
1946 * size. So we can't ensure that all discarded logical blocks are
1947 * zeroed.
1948 */
1949 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1950 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1951
1952 zram->disk->queue->backing_dev_info->capabilities |=
1953 (BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO);
1954 device_add_disk(NULL, zram->disk, zram_disk_attr_groups);
1955
1956 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1957
1958 zram_debugfs_register(zram);
1959 pr_info("Added device: %s\n", zram->disk->disk_name);
1960 return device_id;
1961
1962 out_free_queue:
1963 blk_cleanup_queue(queue);
1964 out_free_idr:
1965 idr_remove(&zram_index_idr, device_id);
1966 out_free_dev:
1967 kfree(zram);
1968 return ret;
1969 }
1970
zram_remove(struct zram * zram)1971 static int zram_remove(struct zram *zram)
1972 {
1973 struct block_device *bdev;
1974
1975 bdev = bdget_disk(zram->disk, 0);
1976 if (!bdev)
1977 return -ENOMEM;
1978
1979 mutex_lock(&bdev->bd_mutex);
1980 if (bdev->bd_openers || zram->claim) {
1981 mutex_unlock(&bdev->bd_mutex);
1982 bdput(bdev);
1983 return -EBUSY;
1984 }
1985
1986 zram->claim = true;
1987 mutex_unlock(&bdev->bd_mutex);
1988
1989 zram_debugfs_unregister(zram);
1990
1991 /* Make sure all the pending I/O are finished */
1992 fsync_bdev(bdev);
1993 zram_reset_device(zram);
1994 bdput(bdev);
1995
1996 pr_info("Removed device: %s\n", zram->disk->disk_name);
1997
1998 del_gendisk(zram->disk);
1999 blk_cleanup_queue(zram->disk->queue);
2000 put_disk(zram->disk);
2001 kfree(zram);
2002 return 0;
2003 }
2004
2005 /* zram-control sysfs attributes */
2006
2007 /*
2008 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2009 * sense that reading from this file does alter the state of your system -- it
2010 * creates a new un-initialized zram device and returns back this device's
2011 * device_id (or an error code if it fails to create a new device).
2012 */
hot_add_show(struct class * class,struct class_attribute * attr,char * buf)2013 static ssize_t hot_add_show(struct class *class,
2014 struct class_attribute *attr,
2015 char *buf)
2016 {
2017 int ret;
2018
2019 mutex_lock(&zram_index_mutex);
2020 ret = zram_add();
2021 mutex_unlock(&zram_index_mutex);
2022
2023 if (ret < 0)
2024 return ret;
2025 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2026 }
2027 static CLASS_ATTR_RO(hot_add);
2028
hot_remove_store(struct class * class,struct class_attribute * attr,const char * buf,size_t count)2029 static ssize_t hot_remove_store(struct class *class,
2030 struct class_attribute *attr,
2031 const char *buf,
2032 size_t count)
2033 {
2034 struct zram *zram;
2035 int ret, dev_id;
2036
2037 /* dev_id is gendisk->first_minor, which is `int' */
2038 ret = kstrtoint(buf, 10, &dev_id);
2039 if (ret)
2040 return ret;
2041 if (dev_id < 0)
2042 return -EINVAL;
2043
2044 mutex_lock(&zram_index_mutex);
2045
2046 zram = idr_find(&zram_index_idr, dev_id);
2047 if (zram) {
2048 ret = zram_remove(zram);
2049 if (!ret)
2050 idr_remove(&zram_index_idr, dev_id);
2051 } else {
2052 ret = -ENODEV;
2053 }
2054
2055 mutex_unlock(&zram_index_mutex);
2056 return ret ? ret : count;
2057 }
2058 static CLASS_ATTR_WO(hot_remove);
2059
2060 static struct attribute *zram_control_class_attrs[] = {
2061 &class_attr_hot_add.attr,
2062 &class_attr_hot_remove.attr,
2063 NULL,
2064 };
2065 ATTRIBUTE_GROUPS(zram_control_class);
2066
2067 static struct class zram_control_class = {
2068 .name = "zram-control",
2069 .owner = THIS_MODULE,
2070 .class_groups = zram_control_class_groups,
2071 };
2072
zram_remove_cb(int id,void * ptr,void * data)2073 static int zram_remove_cb(int id, void *ptr, void *data)
2074 {
2075 zram_remove(ptr);
2076 return 0;
2077 }
2078
destroy_devices(void)2079 static void destroy_devices(void)
2080 {
2081 class_unregister(&zram_control_class);
2082 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2083 zram_debugfs_destroy();
2084 idr_destroy(&zram_index_idr);
2085 unregister_blkdev(zram_major, "zram");
2086 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2087 }
2088
zram_init(void)2089 static int __init zram_init(void)
2090 {
2091 int ret;
2092
2093 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2094 zcomp_cpu_up_prepare, zcomp_cpu_dead);
2095 if (ret < 0)
2096 return ret;
2097
2098 ret = class_register(&zram_control_class);
2099 if (ret) {
2100 pr_err("Unable to register zram-control class\n");
2101 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2102 return ret;
2103 }
2104
2105 zram_debugfs_create();
2106 zram_major = register_blkdev(0, "zram");
2107 if (zram_major <= 0) {
2108 pr_err("Unable to get major number\n");
2109 class_unregister(&zram_control_class);
2110 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2111 return -EBUSY;
2112 }
2113
2114 while (num_devices != 0) {
2115 mutex_lock(&zram_index_mutex);
2116 ret = zram_add();
2117 mutex_unlock(&zram_index_mutex);
2118 if (ret < 0)
2119 goto out_error;
2120 num_devices--;
2121 }
2122
2123 return 0;
2124
2125 out_error:
2126 destroy_devices();
2127 return ret;
2128 }
2129
zram_exit(void)2130 static void __exit zram_exit(void)
2131 {
2132 destroy_devices();
2133 }
2134
2135 module_init(zram_init);
2136 module_exit(zram_exit);
2137
2138 module_param(num_devices, uint, 0);
2139 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2140
2141 MODULE_LICENSE("Dual BSD/GPL");
2142 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2143 MODULE_DESCRIPTION("Compressed RAM Block Device");
2144