1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32 #include <linux/shmem_fs.h>
33
34 #include "pnode.h"
35 #include "internal.h"
36
37 /* Maximum number of mounts in a mount namespace */
38 unsigned int sysctl_mount_max __read_mostly = 100000;
39
40 static unsigned int m_hash_mask __read_mostly;
41 static unsigned int m_hash_shift __read_mostly;
42 static unsigned int mp_hash_mask __read_mostly;
43 static unsigned int mp_hash_shift __read_mostly;
44
45 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)46 static int __init set_mhash_entries(char *str)
47 {
48 if (!str)
49 return 0;
50 mhash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52 }
53 __setup("mhash_entries=", set_mhash_entries);
54
55 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)56 static int __init set_mphash_entries(char *str)
57 {
58 if (!str)
59 return 0;
60 mphash_entries = simple_strtoul(str, &str, 0);
61 return 1;
62 }
63 __setup("mphash_entries=", set_mphash_entries);
64
65 static u64 event;
66 static DEFINE_IDA(mnt_id_ida);
67 static DEFINE_IDA(mnt_group_ida);
68
69 static struct hlist_head *mount_hashtable __read_mostly;
70 static struct hlist_head *mountpoint_hashtable __read_mostly;
71 static struct kmem_cache *mnt_cache __read_mostly;
72 static DECLARE_RWSEM(namespace_sem);
73 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
75
76 /* /sys/fs */
77 struct kobject *fs_kobj;
78 EXPORT_SYMBOL_GPL(fs_kobj);
79
80 /*
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
83 * up the tree.
84 *
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
87 */
88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
89
m_hash(struct vfsmount * mnt,struct dentry * dentry)90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
91 {
92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
94 tmp = tmp + (tmp >> m_hash_shift);
95 return &mount_hashtable[tmp & m_hash_mask];
96 }
97
mp_hash(struct dentry * dentry)98 static inline struct hlist_head *mp_hash(struct dentry *dentry)
99 {
100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 tmp = tmp + (tmp >> mp_hash_shift);
102 return &mountpoint_hashtable[tmp & mp_hash_mask];
103 }
104
mnt_alloc_id(struct mount * mnt)105 static int mnt_alloc_id(struct mount *mnt)
106 {
107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108
109 if (res < 0)
110 return res;
111 mnt->mnt_id = res;
112 return 0;
113 }
114
mnt_free_id(struct mount * mnt)115 static void mnt_free_id(struct mount *mnt)
116 {
117 ida_free(&mnt_id_ida, mnt->mnt_id);
118 }
119
120 /*
121 * Allocate a new peer group ID
122 */
mnt_alloc_group_id(struct mount * mnt)123 static int mnt_alloc_group_id(struct mount *mnt)
124 {
125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
126
127 if (res < 0)
128 return res;
129 mnt->mnt_group_id = res;
130 return 0;
131 }
132
133 /*
134 * Release a peer group ID
135 */
mnt_release_group_id(struct mount * mnt)136 void mnt_release_group_id(struct mount *mnt)
137 {
138 ida_free(&mnt_group_ida, mnt->mnt_group_id);
139 mnt->mnt_group_id = 0;
140 }
141
142 /*
143 * vfsmount lock must be held for read
144 */
mnt_add_count(struct mount * mnt,int n)145 static inline void mnt_add_count(struct mount *mnt, int n)
146 {
147 #ifdef CONFIG_SMP
148 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
149 #else
150 preempt_disable();
151 mnt->mnt_count += n;
152 preempt_enable();
153 #endif
154 }
155
156 /*
157 * vfsmount lock must be held for write
158 */
mnt_get_count(struct mount * mnt)159 unsigned int mnt_get_count(struct mount *mnt)
160 {
161 #ifdef CONFIG_SMP
162 unsigned int count = 0;
163 int cpu;
164
165 for_each_possible_cpu(cpu) {
166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
167 }
168
169 return count;
170 #else
171 return mnt->mnt_count;
172 #endif
173 }
174
alloc_vfsmnt(const char * name)175 static struct mount *alloc_vfsmnt(const char *name)
176 {
177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 if (mnt) {
179 int err;
180
181 err = mnt_alloc_id(mnt);
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
187 if (!mnt->mnt_devname)
188 goto out_free_id;
189 }
190
191 #ifdef CONFIG_SMP
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
194 goto out_free_devname;
195
196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
197 #else
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
200 #endif
201 mnt->mnt.data = NULL;
202
203 INIT_HLIST_NODE(&mnt->mnt_hash);
204 INIT_LIST_HEAD(&mnt->mnt_child);
205 INIT_LIST_HEAD(&mnt->mnt_mounts);
206 INIT_LIST_HEAD(&mnt->mnt_list);
207 INIT_LIST_HEAD(&mnt->mnt_expire);
208 INIT_LIST_HEAD(&mnt->mnt_share);
209 INIT_LIST_HEAD(&mnt->mnt_slave_list);
210 INIT_LIST_HEAD(&mnt->mnt_slave);
211 INIT_HLIST_NODE(&mnt->mnt_mp_list);
212 INIT_LIST_HEAD(&mnt->mnt_umounting);
213 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
214 }
215 return mnt;
216
217 #ifdef CONFIG_SMP
218 out_free_devname:
219 kfree_const(mnt->mnt_devname);
220 #endif
221 out_free_id:
222 mnt_free_id(mnt);
223 out_free_cache:
224 kmem_cache_free(mnt_cache, mnt);
225 return NULL;
226 }
227
228 /*
229 * Most r/o checks on a fs are for operations that take
230 * discrete amounts of time, like a write() or unlink().
231 * We must keep track of when those operations start
232 * (for permission checks) and when they end, so that
233 * we can determine when writes are able to occur to
234 * a filesystem.
235 */
236 /*
237 * __mnt_is_readonly: check whether a mount is read-only
238 * @mnt: the mount to check for its write status
239 *
240 * This shouldn't be used directly ouside of the VFS.
241 * It does not guarantee that the filesystem will stay
242 * r/w, just that it is right *now*. This can not and
243 * should not be used in place of IS_RDONLY(inode).
244 * mnt_want/drop_write() will _keep_ the filesystem
245 * r/w.
246 */
__mnt_is_readonly(struct vfsmount * mnt)247 bool __mnt_is_readonly(struct vfsmount *mnt)
248 {
249 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
250 }
251 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
252
mnt_inc_writers(struct mount * mnt)253 static inline void mnt_inc_writers(struct mount *mnt)
254 {
255 #ifdef CONFIG_SMP
256 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
257 #else
258 mnt->mnt_writers++;
259 #endif
260 }
261
mnt_dec_writers(struct mount * mnt)262 static inline void mnt_dec_writers(struct mount *mnt)
263 {
264 #ifdef CONFIG_SMP
265 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
266 #else
267 mnt->mnt_writers--;
268 #endif
269 }
270
mnt_get_writers(struct mount * mnt)271 static unsigned int mnt_get_writers(struct mount *mnt)
272 {
273 #ifdef CONFIG_SMP
274 unsigned int count = 0;
275 int cpu;
276
277 for_each_possible_cpu(cpu) {
278 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
279 }
280
281 return count;
282 #else
283 return mnt->mnt_writers;
284 #endif
285 }
286
mnt_is_readonly(struct vfsmount * mnt)287 static int mnt_is_readonly(struct vfsmount *mnt)
288 {
289 if (mnt->mnt_sb->s_readonly_remount)
290 return 1;
291 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
292 smp_rmb();
293 return __mnt_is_readonly(mnt);
294 }
295
296 /*
297 * Most r/o & frozen checks on a fs are for operations that take discrete
298 * amounts of time, like a write() or unlink(). We must keep track of when
299 * those operations start (for permission checks) and when they end, so that we
300 * can determine when writes are able to occur to a filesystem.
301 */
302 /**
303 * __mnt_want_write - get write access to a mount without freeze protection
304 * @m: the mount on which to take a write
305 *
306 * This tells the low-level filesystem that a write is about to be performed to
307 * it, and makes sure that writes are allowed (mnt it read-write) before
308 * returning success. This operation does not protect against filesystem being
309 * frozen. When the write operation is finished, __mnt_drop_write() must be
310 * called. This is effectively a refcount.
311 */
__mnt_want_write(struct vfsmount * m)312 int __mnt_want_write(struct vfsmount *m)
313 {
314 struct mount *mnt = real_mount(m);
315 int ret = 0;
316
317 preempt_disable();
318 mnt_inc_writers(mnt);
319 /*
320 * The store to mnt_inc_writers must be visible before we pass
321 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
322 * incremented count after it has set MNT_WRITE_HOLD.
323 */
324 smp_mb();
325 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
326 cpu_relax();
327 /*
328 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
329 * be set to match its requirements. So we must not load that until
330 * MNT_WRITE_HOLD is cleared.
331 */
332 smp_rmb();
333 if (mnt_is_readonly(m)) {
334 mnt_dec_writers(mnt);
335 ret = -EROFS;
336 }
337 preempt_enable();
338
339 return ret;
340 }
341
342 /**
343 * mnt_want_write - get write access to a mount
344 * @m: the mount on which to take a write
345 *
346 * This tells the low-level filesystem that a write is about to be performed to
347 * it, and makes sure that writes are allowed (mount is read-write, filesystem
348 * is not frozen) before returning success. When the write operation is
349 * finished, mnt_drop_write() must be called. This is effectively a refcount.
350 */
mnt_want_write(struct vfsmount * m)351 int mnt_want_write(struct vfsmount *m)
352 {
353 int ret;
354
355 sb_start_write(m->mnt_sb);
356 ret = __mnt_want_write(m);
357 if (ret)
358 sb_end_write(m->mnt_sb);
359 return ret;
360 }
361 EXPORT_SYMBOL_GPL(mnt_want_write);
362
363 /**
364 * mnt_clone_write - get write access to a mount
365 * @mnt: the mount on which to take a write
366 *
367 * This is effectively like mnt_want_write, except
368 * it must only be used to take an extra write reference
369 * on a mountpoint that we already know has a write reference
370 * on it. This allows some optimisation.
371 *
372 * After finished, mnt_drop_write must be called as usual to
373 * drop the reference.
374 */
mnt_clone_write(struct vfsmount * mnt)375 int mnt_clone_write(struct vfsmount *mnt)
376 {
377 /* superblock may be r/o */
378 if (__mnt_is_readonly(mnt))
379 return -EROFS;
380 preempt_disable();
381 mnt_inc_writers(real_mount(mnt));
382 preempt_enable();
383 return 0;
384 }
385 EXPORT_SYMBOL_GPL(mnt_clone_write);
386
387 /**
388 * __mnt_want_write_file - get write access to a file's mount
389 * @file: the file who's mount on which to take a write
390 *
391 * This is like __mnt_want_write, but it takes a file and can
392 * do some optimisations if the file is open for write already
393 */
__mnt_want_write_file(struct file * file)394 int __mnt_want_write_file(struct file *file)
395 {
396 if (!(file->f_mode & FMODE_WRITER))
397 return __mnt_want_write(file->f_path.mnt);
398 else
399 return mnt_clone_write(file->f_path.mnt);
400 }
401
402 /**
403 * mnt_want_write_file - get write access to a file's mount
404 * @file: the file who's mount on which to take a write
405 *
406 * This is like mnt_want_write, but it takes a file and can
407 * do some optimisations if the file is open for write already
408 */
mnt_want_write_file(struct file * file)409 int mnt_want_write_file(struct file *file)
410 {
411 int ret;
412
413 sb_start_write(file_inode(file)->i_sb);
414 ret = __mnt_want_write_file(file);
415 if (ret)
416 sb_end_write(file_inode(file)->i_sb);
417 return ret;
418 }
419 EXPORT_SYMBOL_GPL(mnt_want_write_file);
420
421 /**
422 * __mnt_drop_write - give up write access to a mount
423 * @mnt: the mount on which to give up write access
424 *
425 * Tells the low-level filesystem that we are done
426 * performing writes to it. Must be matched with
427 * __mnt_want_write() call above.
428 */
__mnt_drop_write(struct vfsmount * mnt)429 void __mnt_drop_write(struct vfsmount *mnt)
430 {
431 preempt_disable();
432 mnt_dec_writers(real_mount(mnt));
433 preempt_enable();
434 }
435
436 /**
437 * mnt_drop_write - give up write access to a mount
438 * @mnt: the mount on which to give up write access
439 *
440 * Tells the low-level filesystem that we are done performing writes to it and
441 * also allows filesystem to be frozen again. Must be matched with
442 * mnt_want_write() call above.
443 */
mnt_drop_write(struct vfsmount * mnt)444 void mnt_drop_write(struct vfsmount *mnt)
445 {
446 __mnt_drop_write(mnt);
447 sb_end_write(mnt->mnt_sb);
448 }
449 EXPORT_SYMBOL_GPL(mnt_drop_write);
450
__mnt_drop_write_file(struct file * file)451 void __mnt_drop_write_file(struct file *file)
452 {
453 __mnt_drop_write(file->f_path.mnt);
454 }
455
mnt_drop_write_file(struct file * file)456 void mnt_drop_write_file(struct file *file)
457 {
458 __mnt_drop_write_file(file);
459 sb_end_write(file_inode(file)->i_sb);
460 }
461 EXPORT_SYMBOL(mnt_drop_write_file);
462
mnt_make_readonly(struct mount * mnt)463 static int mnt_make_readonly(struct mount *mnt)
464 {
465 int ret = 0;
466
467 lock_mount_hash();
468 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
469 /*
470 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
471 * should be visible before we do.
472 */
473 smp_mb();
474
475 /*
476 * With writers on hold, if this value is zero, then there are
477 * definitely no active writers (although held writers may subsequently
478 * increment the count, they'll have to wait, and decrement it after
479 * seeing MNT_READONLY).
480 *
481 * It is OK to have counter incremented on one CPU and decremented on
482 * another: the sum will add up correctly. The danger would be when we
483 * sum up each counter, if we read a counter before it is incremented,
484 * but then read another CPU's count which it has been subsequently
485 * decremented from -- we would see more decrements than we should.
486 * MNT_WRITE_HOLD protects against this scenario, because
487 * mnt_want_write first increments count, then smp_mb, then spins on
488 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
489 * we're counting up here.
490 */
491 if (mnt_get_writers(mnt) > 0)
492 ret = -EBUSY;
493 else
494 mnt->mnt.mnt_flags |= MNT_READONLY;
495 /*
496 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
497 * that become unheld will see MNT_READONLY.
498 */
499 smp_wmb();
500 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
501 unlock_mount_hash();
502 return ret;
503 }
504
__mnt_unmake_readonly(struct mount * mnt)505 static int __mnt_unmake_readonly(struct mount *mnt)
506 {
507 lock_mount_hash();
508 mnt->mnt.mnt_flags &= ~MNT_READONLY;
509 unlock_mount_hash();
510 return 0;
511 }
512
sb_prepare_remount_readonly(struct super_block * sb)513 int sb_prepare_remount_readonly(struct super_block *sb)
514 {
515 struct mount *mnt;
516 int err = 0;
517
518 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
519 if (atomic_long_read(&sb->s_remove_count))
520 return -EBUSY;
521
522 lock_mount_hash();
523 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
524 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
525 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
526 smp_mb();
527 if (mnt_get_writers(mnt) > 0) {
528 err = -EBUSY;
529 break;
530 }
531 }
532 }
533 if (!err && atomic_long_read(&sb->s_remove_count))
534 err = -EBUSY;
535
536 if (!err) {
537 sb->s_readonly_remount = 1;
538 smp_wmb();
539 }
540 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
541 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
542 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
543 }
544 unlock_mount_hash();
545
546 return err;
547 }
548
free_vfsmnt(struct mount * mnt)549 static void free_vfsmnt(struct mount *mnt)
550 {
551 kfree(mnt->mnt.data);
552 kfree_const(mnt->mnt_devname);
553 #ifdef CONFIG_SMP
554 free_percpu(mnt->mnt_pcp);
555 #endif
556 kmem_cache_free(mnt_cache, mnt);
557 }
558
delayed_free_vfsmnt(struct rcu_head * head)559 static void delayed_free_vfsmnt(struct rcu_head *head)
560 {
561 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
562 }
563
564 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)565 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
566 {
567 struct mount *mnt;
568 if (read_seqretry(&mount_lock, seq))
569 return 1;
570 if (bastard == NULL)
571 return 0;
572 mnt = real_mount(bastard);
573 mnt_add_count(mnt, 1);
574 smp_mb(); // see mntput_no_expire()
575 if (likely(!read_seqretry(&mount_lock, seq)))
576 return 0;
577 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
578 mnt_add_count(mnt, -1);
579 return 1;
580 }
581 lock_mount_hash();
582 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
583 mnt_add_count(mnt, -1);
584 unlock_mount_hash();
585 return 1;
586 }
587 unlock_mount_hash();
588 /* caller will mntput() */
589 return -1;
590 }
591
592 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)593 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594 {
595 int res = __legitimize_mnt(bastard, seq);
596 if (likely(!res))
597 return true;
598 if (unlikely(res < 0)) {
599 rcu_read_unlock();
600 mntput(bastard);
601 rcu_read_lock();
602 }
603 return false;
604 }
605
606 /*
607 * find the first mount at @dentry on vfsmount @mnt.
608 * call under rcu_read_lock()
609 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)610 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
611 {
612 struct hlist_head *head = m_hash(mnt, dentry);
613 struct mount *p;
614
615 hlist_for_each_entry_rcu(p, head, mnt_hash)
616 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
617 return p;
618 return NULL;
619 }
620
621 /*
622 * lookup_mnt - Return the first child mount mounted at path
623 *
624 * "First" means first mounted chronologically. If you create the
625 * following mounts:
626 *
627 * mount /dev/sda1 /mnt
628 * mount /dev/sda2 /mnt
629 * mount /dev/sda3 /mnt
630 *
631 * Then lookup_mnt() on the base /mnt dentry in the root mount will
632 * return successively the root dentry and vfsmount of /dev/sda1, then
633 * /dev/sda2, then /dev/sda3, then NULL.
634 *
635 * lookup_mnt takes a reference to the found vfsmount.
636 */
lookup_mnt(const struct path * path)637 struct vfsmount *lookup_mnt(const struct path *path)
638 {
639 struct mount *child_mnt;
640 struct vfsmount *m;
641 unsigned seq;
642
643 rcu_read_lock();
644 do {
645 seq = read_seqbegin(&mount_lock);
646 child_mnt = __lookup_mnt(path->mnt, path->dentry);
647 m = child_mnt ? &child_mnt->mnt : NULL;
648 } while (!legitimize_mnt(m, seq));
649 rcu_read_unlock();
650 return m;
651 }
652
653 /*
654 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
655 * current mount namespace.
656 *
657 * The common case is dentries are not mountpoints at all and that
658 * test is handled inline. For the slow case when we are actually
659 * dealing with a mountpoint of some kind, walk through all of the
660 * mounts in the current mount namespace and test to see if the dentry
661 * is a mountpoint.
662 *
663 * The mount_hashtable is not usable in the context because we
664 * need to identify all mounts that may be in the current mount
665 * namespace not just a mount that happens to have some specified
666 * parent mount.
667 */
__is_local_mountpoint(struct dentry * dentry)668 bool __is_local_mountpoint(struct dentry *dentry)
669 {
670 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
671 struct mount *mnt;
672 bool is_covered = false;
673
674 if (!d_mountpoint(dentry))
675 goto out;
676
677 down_read(&namespace_sem);
678 list_for_each_entry(mnt, &ns->list, mnt_list) {
679 is_covered = (mnt->mnt_mountpoint == dentry);
680 if (is_covered)
681 break;
682 }
683 up_read(&namespace_sem);
684 out:
685 return is_covered;
686 }
687
lookup_mountpoint(struct dentry * dentry)688 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
689 {
690 struct hlist_head *chain = mp_hash(dentry);
691 struct mountpoint *mp;
692
693 hlist_for_each_entry(mp, chain, m_hash) {
694 if (mp->m_dentry == dentry) {
695 mp->m_count++;
696 return mp;
697 }
698 }
699 return NULL;
700 }
701
get_mountpoint(struct dentry * dentry)702 static struct mountpoint *get_mountpoint(struct dentry *dentry)
703 {
704 struct mountpoint *mp, *new = NULL;
705 int ret;
706
707 if (d_mountpoint(dentry)) {
708 /* might be worth a WARN_ON() */
709 if (d_unlinked(dentry))
710 return ERR_PTR(-ENOENT);
711 mountpoint:
712 read_seqlock_excl(&mount_lock);
713 mp = lookup_mountpoint(dentry);
714 read_sequnlock_excl(&mount_lock);
715 if (mp)
716 goto done;
717 }
718
719 if (!new)
720 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
721 if (!new)
722 return ERR_PTR(-ENOMEM);
723
724
725 /* Exactly one processes may set d_mounted */
726 ret = d_set_mounted(dentry);
727
728 /* Someone else set d_mounted? */
729 if (ret == -EBUSY)
730 goto mountpoint;
731
732 /* The dentry is not available as a mountpoint? */
733 mp = ERR_PTR(ret);
734 if (ret)
735 goto done;
736
737 /* Add the new mountpoint to the hash table */
738 read_seqlock_excl(&mount_lock);
739 new->m_dentry = dget(dentry);
740 new->m_count = 1;
741 hlist_add_head(&new->m_hash, mp_hash(dentry));
742 INIT_HLIST_HEAD(&new->m_list);
743 read_sequnlock_excl(&mount_lock);
744
745 mp = new;
746 new = NULL;
747 done:
748 kfree(new);
749 return mp;
750 }
751
752 /*
753 * vfsmount lock must be held. Additionally, the caller is responsible
754 * for serializing calls for given disposal list.
755 */
__put_mountpoint(struct mountpoint * mp,struct list_head * list)756 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
757 {
758 if (!--mp->m_count) {
759 struct dentry *dentry = mp->m_dentry;
760 BUG_ON(!hlist_empty(&mp->m_list));
761 spin_lock(&dentry->d_lock);
762 dentry->d_flags &= ~DCACHE_MOUNTED;
763 spin_unlock(&dentry->d_lock);
764 dput_to_list(dentry, list);
765 hlist_del(&mp->m_hash);
766 kfree(mp);
767 }
768 }
769
770 /* called with namespace_lock and vfsmount lock */
put_mountpoint(struct mountpoint * mp)771 static void put_mountpoint(struct mountpoint *mp)
772 {
773 __put_mountpoint(mp, &ex_mountpoints);
774 }
775
check_mnt(struct mount * mnt)776 static inline int check_mnt(struct mount *mnt)
777 {
778 return mnt->mnt_ns == current->nsproxy->mnt_ns;
779 }
780
781 /*
782 * vfsmount lock must be held for write
783 */
touch_mnt_namespace(struct mnt_namespace * ns)784 static void touch_mnt_namespace(struct mnt_namespace *ns)
785 {
786 if (ns) {
787 ns->event = ++event;
788 wake_up_interruptible(&ns->poll);
789 }
790 }
791
792 /*
793 * vfsmount lock must be held for write
794 */
__touch_mnt_namespace(struct mnt_namespace * ns)795 static void __touch_mnt_namespace(struct mnt_namespace *ns)
796 {
797 if (ns && ns->event != event) {
798 ns->event = event;
799 wake_up_interruptible(&ns->poll);
800 }
801 }
802
803 /*
804 * vfsmount lock must be held for write
805 */
unhash_mnt(struct mount * mnt)806 static struct mountpoint *unhash_mnt(struct mount *mnt)
807 {
808 struct mountpoint *mp;
809 mnt->mnt_parent = mnt;
810 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
811 list_del_init(&mnt->mnt_child);
812 hlist_del_init_rcu(&mnt->mnt_hash);
813 hlist_del_init(&mnt->mnt_mp_list);
814 mp = mnt->mnt_mp;
815 mnt->mnt_mp = NULL;
816 return mp;
817 }
818
819 /*
820 * vfsmount lock must be held for write
821 */
umount_mnt(struct mount * mnt)822 static void umount_mnt(struct mount *mnt)
823 {
824 put_mountpoint(unhash_mnt(mnt));
825 }
826
827 /*
828 * vfsmount lock must be held for write
829 */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)830 void mnt_set_mountpoint(struct mount *mnt,
831 struct mountpoint *mp,
832 struct mount *child_mnt)
833 {
834 mp->m_count++;
835 mnt_add_count(mnt, 1); /* essentially, that's mntget */
836 child_mnt->mnt_mountpoint = mp->m_dentry;
837 child_mnt->mnt_parent = mnt;
838 child_mnt->mnt_mp = mp;
839 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
840 }
841
__attach_mnt(struct mount * mnt,struct mount * parent)842 static void __attach_mnt(struct mount *mnt, struct mount *parent)
843 {
844 hlist_add_head_rcu(&mnt->mnt_hash,
845 m_hash(&parent->mnt, mnt->mnt_mountpoint));
846 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
847 }
848
849 /*
850 * vfsmount lock must be held for write
851 */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)852 static void attach_mnt(struct mount *mnt,
853 struct mount *parent,
854 struct mountpoint *mp)
855 {
856 mnt_set_mountpoint(parent, mp, mnt);
857 __attach_mnt(mnt, parent);
858 }
859
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)860 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
861 {
862 struct mountpoint *old_mp = mnt->mnt_mp;
863 struct mount *old_parent = mnt->mnt_parent;
864
865 list_del_init(&mnt->mnt_child);
866 hlist_del_init(&mnt->mnt_mp_list);
867 hlist_del_init_rcu(&mnt->mnt_hash);
868
869 attach_mnt(mnt, parent, mp);
870
871 put_mountpoint(old_mp);
872 mnt_add_count(old_parent, -1);
873 }
874
875 /*
876 * vfsmount lock must be held for write
877 */
commit_tree(struct mount * mnt)878 static void commit_tree(struct mount *mnt)
879 {
880 struct mount *parent = mnt->mnt_parent;
881 struct mount *m;
882 LIST_HEAD(head);
883 struct mnt_namespace *n = parent->mnt_ns;
884
885 BUG_ON(parent == mnt);
886
887 list_add_tail(&head, &mnt->mnt_list);
888 list_for_each_entry(m, &head, mnt_list)
889 m->mnt_ns = n;
890
891 list_splice(&head, n->list.prev);
892
893 n->mounts += n->pending_mounts;
894 n->pending_mounts = 0;
895
896 __attach_mnt(mnt, parent);
897 touch_mnt_namespace(n);
898 }
899
next_mnt(struct mount * p,struct mount * root)900 static struct mount *next_mnt(struct mount *p, struct mount *root)
901 {
902 struct list_head *next = p->mnt_mounts.next;
903 if (next == &p->mnt_mounts) {
904 while (1) {
905 if (p == root)
906 return NULL;
907 next = p->mnt_child.next;
908 if (next != &p->mnt_parent->mnt_mounts)
909 break;
910 p = p->mnt_parent;
911 }
912 }
913 return list_entry(next, struct mount, mnt_child);
914 }
915
skip_mnt_tree(struct mount * p)916 static struct mount *skip_mnt_tree(struct mount *p)
917 {
918 struct list_head *prev = p->mnt_mounts.prev;
919 while (prev != &p->mnt_mounts) {
920 p = list_entry(prev, struct mount, mnt_child);
921 prev = p->mnt_mounts.prev;
922 }
923 return p;
924 }
925
926 /**
927 * vfs_create_mount - Create a mount for a configured superblock
928 * @fc: The configuration context with the superblock attached
929 *
930 * Create a mount to an already configured superblock. If necessary, the
931 * caller should invoke vfs_get_tree() before calling this.
932 *
933 * Note that this does not attach the mount to anything.
934 */
vfs_create_mount(struct fs_context * fc)935 struct vfsmount *vfs_create_mount(struct fs_context *fc)
936 {
937 struct mount *mnt;
938 struct super_block *sb;
939
940 if (!fc->root)
941 return ERR_PTR(-EINVAL);
942 sb = fc->root->d_sb;
943
944 mnt = alloc_vfsmnt(fc->source ?: "none");
945 if (!mnt)
946 return ERR_PTR(-ENOMEM);
947
948 if (fc->fs_type->alloc_mnt_data) {
949 mnt->mnt.data = fc->fs_type->alloc_mnt_data();
950 if (!mnt->mnt.data) {
951 mnt_free_id(mnt);
952 free_vfsmnt(mnt);
953 return ERR_PTR(-ENOMEM);
954 }
955 if (sb->s_op->update_mnt_data)
956 sb->s_op->update_mnt_data(mnt->mnt.data, fc);
957 }
958 if (fc->sb_flags & SB_KERNMOUNT)
959 mnt->mnt.mnt_flags = MNT_INTERNAL;
960
961 atomic_inc(&fc->root->d_sb->s_active);
962 mnt->mnt.mnt_sb = fc->root->d_sb;
963 mnt->mnt.mnt_root = dget(fc->root);
964 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
965 mnt->mnt_parent = mnt;
966
967 lock_mount_hash();
968 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
969 unlock_mount_hash();
970 return &mnt->mnt;
971 }
972 EXPORT_SYMBOL(vfs_create_mount);
973
fc_mount(struct fs_context * fc)974 struct vfsmount *fc_mount(struct fs_context *fc)
975 {
976 int err = vfs_get_tree(fc);
977 if (!err) {
978 up_write(&fc->root->d_sb->s_umount);
979 return vfs_create_mount(fc);
980 }
981 return ERR_PTR(err);
982 }
983 EXPORT_SYMBOL(fc_mount);
984
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)985 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
986 int flags, const char *name,
987 void *data)
988 {
989 struct fs_context *fc;
990 struct vfsmount *mnt;
991 int ret = 0;
992
993 if (!type)
994 return ERR_PTR(-EINVAL);
995
996 fc = fs_context_for_mount(type, flags);
997 if (IS_ERR(fc))
998 return ERR_CAST(fc);
999
1000 if (name)
1001 ret = vfs_parse_fs_string(fc, "source",
1002 name, strlen(name));
1003 if (!ret)
1004 ret = parse_monolithic_mount_data(fc, data);
1005 if (!ret)
1006 mnt = fc_mount(fc);
1007 else
1008 mnt = ERR_PTR(ret);
1009
1010 put_fs_context(fc);
1011 return mnt;
1012 }
1013 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1014
1015 struct vfsmount *
vfs_submount(const struct dentry * mountpoint,struct file_system_type * type,const char * name,void * data)1016 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1017 const char *name, void *data)
1018 {
1019 /* Until it is worked out how to pass the user namespace
1020 * through from the parent mount to the submount don't support
1021 * unprivileged mounts with submounts.
1022 */
1023 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1024 return ERR_PTR(-EPERM);
1025
1026 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1027 }
1028 EXPORT_SYMBOL_GPL(vfs_submount);
1029
clone_mnt(struct mount * old,struct dentry * root,int flag)1030 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1031 int flag)
1032 {
1033 struct super_block *sb = old->mnt.mnt_sb;
1034 struct mount *mnt;
1035 int err;
1036
1037 mnt = alloc_vfsmnt(old->mnt_devname);
1038 if (!mnt)
1039 return ERR_PTR(-ENOMEM);
1040
1041 if (sb->s_op->clone_mnt_data) {
1042 mnt->mnt.data = sb->s_op->clone_mnt_data(old->mnt.data);
1043 if (!mnt->mnt.data) {
1044 err = -ENOMEM;
1045 goto out_free;
1046 }
1047 }
1048
1049 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1050 mnt->mnt_group_id = 0; /* not a peer of original */
1051 else
1052 mnt->mnt_group_id = old->mnt_group_id;
1053
1054 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1055 err = mnt_alloc_group_id(mnt);
1056 if (err)
1057 goto out_free;
1058 }
1059
1060 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1061 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1062
1063 atomic_inc(&sb->s_active);
1064 mnt->mnt.mnt_sb = sb;
1065 mnt->mnt.mnt_root = dget(root);
1066 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1067 mnt->mnt_parent = mnt;
1068 lock_mount_hash();
1069 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1070 unlock_mount_hash();
1071
1072 if ((flag & CL_SLAVE) ||
1073 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1074 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1075 mnt->mnt_master = old;
1076 CLEAR_MNT_SHARED(mnt);
1077 } else if (!(flag & CL_PRIVATE)) {
1078 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1079 list_add(&mnt->mnt_share, &old->mnt_share);
1080 if (IS_MNT_SLAVE(old))
1081 list_add(&mnt->mnt_slave, &old->mnt_slave);
1082 mnt->mnt_master = old->mnt_master;
1083 } else {
1084 CLEAR_MNT_SHARED(mnt);
1085 }
1086 if (flag & CL_MAKE_SHARED)
1087 set_mnt_shared(mnt);
1088
1089 /* stick the duplicate mount on the same expiry list
1090 * as the original if that was on one */
1091 if (flag & CL_EXPIRE) {
1092 if (!list_empty(&old->mnt_expire))
1093 list_add(&mnt->mnt_expire, &old->mnt_expire);
1094 }
1095
1096 return mnt;
1097
1098 out_free:
1099 mnt_free_id(mnt);
1100 free_vfsmnt(mnt);
1101 return ERR_PTR(err);
1102 }
1103
cleanup_mnt(struct mount * mnt)1104 static void cleanup_mnt(struct mount *mnt)
1105 {
1106 struct hlist_node *p;
1107 struct mount *m;
1108 /*
1109 * The warning here probably indicates that somebody messed
1110 * up a mnt_want/drop_write() pair. If this happens, the
1111 * filesystem was probably unable to make r/w->r/o transitions.
1112 * The locking used to deal with mnt_count decrement provides barriers,
1113 * so mnt_get_writers() below is safe.
1114 */
1115 WARN_ON(mnt_get_writers(mnt));
1116 if (unlikely(mnt->mnt_pins.first))
1117 mnt_pin_kill(mnt);
1118 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1119 hlist_del(&m->mnt_umount);
1120 mntput(&m->mnt);
1121 }
1122 fsnotify_vfsmount_delete(&mnt->mnt);
1123 dput(mnt->mnt.mnt_root);
1124 deactivate_super(mnt->mnt.mnt_sb);
1125 mnt_free_id(mnt);
1126 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1127 }
1128
__cleanup_mnt(struct rcu_head * head)1129 static void __cleanup_mnt(struct rcu_head *head)
1130 {
1131 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1132 }
1133
1134 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1135 static void delayed_mntput(struct work_struct *unused)
1136 {
1137 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1138 struct mount *m, *t;
1139
1140 llist_for_each_entry_safe(m, t, node, mnt_llist)
1141 cleanup_mnt(m);
1142 }
1143 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1144
mntput_no_expire(struct mount * mnt)1145 static void mntput_no_expire(struct mount *mnt)
1146 {
1147 LIST_HEAD(list);
1148
1149 rcu_read_lock();
1150 if (likely(READ_ONCE(mnt->mnt_ns))) {
1151 /*
1152 * Since we don't do lock_mount_hash() here,
1153 * ->mnt_ns can change under us. However, if it's
1154 * non-NULL, then there's a reference that won't
1155 * be dropped until after an RCU delay done after
1156 * turning ->mnt_ns NULL. So if we observe it
1157 * non-NULL under rcu_read_lock(), the reference
1158 * we are dropping is not the final one.
1159 */
1160 mnt_add_count(mnt, -1);
1161 rcu_read_unlock();
1162 return;
1163 }
1164 lock_mount_hash();
1165 /*
1166 * make sure that if __legitimize_mnt() has not seen us grab
1167 * mount_lock, we'll see their refcount increment here.
1168 */
1169 smp_mb();
1170 mnt_add_count(mnt, -1);
1171 if (mnt_get_count(mnt)) {
1172 rcu_read_unlock();
1173 unlock_mount_hash();
1174 return;
1175 }
1176 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1177 rcu_read_unlock();
1178 unlock_mount_hash();
1179 return;
1180 }
1181 mnt->mnt.mnt_flags |= MNT_DOOMED;
1182 rcu_read_unlock();
1183
1184 list_del(&mnt->mnt_instance);
1185
1186 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1187 struct mount *p, *tmp;
1188 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1189 __put_mountpoint(unhash_mnt(p), &list);
1190 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1191 }
1192 }
1193 unlock_mount_hash();
1194 shrink_dentry_list(&list);
1195
1196 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1197 struct task_struct *task = current;
1198 if (likely(!(task->flags & PF_KTHREAD))) {
1199 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1200 if (!task_work_add(task, &mnt->mnt_rcu, true))
1201 return;
1202 }
1203 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1204 schedule_delayed_work(&delayed_mntput_work, 1);
1205 return;
1206 }
1207 cleanup_mnt(mnt);
1208 }
1209
mntput(struct vfsmount * mnt)1210 void mntput(struct vfsmount *mnt)
1211 {
1212 if (mnt) {
1213 struct mount *m = real_mount(mnt);
1214 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1215 if (unlikely(m->mnt_expiry_mark))
1216 m->mnt_expiry_mark = 0;
1217 mntput_no_expire(m);
1218 }
1219 }
1220 EXPORT_SYMBOL(mntput);
1221
mntget(struct vfsmount * mnt)1222 struct vfsmount *mntget(struct vfsmount *mnt)
1223 {
1224 if (mnt)
1225 mnt_add_count(real_mount(mnt), 1);
1226 return mnt;
1227 }
1228 EXPORT_SYMBOL(mntget);
1229
1230 /* path_is_mountpoint() - Check if path is a mount in the current
1231 * namespace.
1232 *
1233 * d_mountpoint() can only be used reliably to establish if a dentry is
1234 * not mounted in any namespace and that common case is handled inline.
1235 * d_mountpoint() isn't aware of the possibility there may be multiple
1236 * mounts using a given dentry in a different namespace. This function
1237 * checks if the passed in path is a mountpoint rather than the dentry
1238 * alone.
1239 */
path_is_mountpoint(const struct path * path)1240 bool path_is_mountpoint(const struct path *path)
1241 {
1242 unsigned seq;
1243 bool res;
1244
1245 if (!d_mountpoint(path->dentry))
1246 return false;
1247
1248 rcu_read_lock();
1249 do {
1250 seq = read_seqbegin(&mount_lock);
1251 res = __path_is_mountpoint(path);
1252 } while (read_seqretry(&mount_lock, seq));
1253 rcu_read_unlock();
1254
1255 return res;
1256 }
1257 EXPORT_SYMBOL(path_is_mountpoint);
1258
mnt_clone_internal(const struct path * path)1259 struct vfsmount *mnt_clone_internal(const struct path *path)
1260 {
1261 struct mount *p;
1262 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1263 if (IS_ERR(p))
1264 return ERR_CAST(p);
1265 p->mnt.mnt_flags |= MNT_INTERNAL;
1266 return &p->mnt;
1267 }
1268
1269 #ifdef CONFIG_PROC_FS
1270 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1271 static void *m_start(struct seq_file *m, loff_t *pos)
1272 {
1273 struct proc_mounts *p = m->private;
1274
1275 down_read(&namespace_sem);
1276 if (p->cached_event == p->ns->event) {
1277 void *v = p->cached_mount;
1278 if (*pos == p->cached_index)
1279 return v;
1280 if (*pos == p->cached_index + 1) {
1281 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1282 return p->cached_mount = v;
1283 }
1284 }
1285
1286 p->cached_event = p->ns->event;
1287 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1288 p->cached_index = *pos;
1289 return p->cached_mount;
1290 }
1291
m_next(struct seq_file * m,void * v,loff_t * pos)1292 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1293 {
1294 struct proc_mounts *p = m->private;
1295
1296 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1297 p->cached_index = *pos;
1298 return p->cached_mount;
1299 }
1300
m_stop(struct seq_file * m,void * v)1301 static void m_stop(struct seq_file *m, void *v)
1302 {
1303 up_read(&namespace_sem);
1304 }
1305
m_show(struct seq_file * m,void * v)1306 static int m_show(struct seq_file *m, void *v)
1307 {
1308 struct proc_mounts *p = m->private;
1309 struct mount *r = list_entry(v, struct mount, mnt_list);
1310 return p->show(m, &r->mnt);
1311 }
1312
1313 const struct seq_operations mounts_op = {
1314 .start = m_start,
1315 .next = m_next,
1316 .stop = m_stop,
1317 .show = m_show,
1318 };
1319 #endif /* CONFIG_PROC_FS */
1320
1321 /**
1322 * may_umount_tree - check if a mount tree is busy
1323 * @mnt: root of mount tree
1324 *
1325 * This is called to check if a tree of mounts has any
1326 * open files, pwds, chroots or sub mounts that are
1327 * busy.
1328 */
may_umount_tree(struct vfsmount * m)1329 int may_umount_tree(struct vfsmount *m)
1330 {
1331 struct mount *mnt = real_mount(m);
1332 int actual_refs = 0;
1333 int minimum_refs = 0;
1334 struct mount *p;
1335 BUG_ON(!m);
1336
1337 /* write lock needed for mnt_get_count */
1338 lock_mount_hash();
1339 for (p = mnt; p; p = next_mnt(p, mnt)) {
1340 actual_refs += mnt_get_count(p);
1341 minimum_refs += 2;
1342 }
1343 unlock_mount_hash();
1344
1345 if (actual_refs > minimum_refs)
1346 return 0;
1347
1348 return 1;
1349 }
1350
1351 EXPORT_SYMBOL(may_umount_tree);
1352
1353 /**
1354 * may_umount - check if a mount point is busy
1355 * @mnt: root of mount
1356 *
1357 * This is called to check if a mount point has any
1358 * open files, pwds, chroots or sub mounts. If the
1359 * mount has sub mounts this will return busy
1360 * regardless of whether the sub mounts are busy.
1361 *
1362 * Doesn't take quota and stuff into account. IOW, in some cases it will
1363 * give false negatives. The main reason why it's here is that we need
1364 * a non-destructive way to look for easily umountable filesystems.
1365 */
may_umount(struct vfsmount * mnt)1366 int may_umount(struct vfsmount *mnt)
1367 {
1368 int ret = 1;
1369 down_read(&namespace_sem);
1370 lock_mount_hash();
1371 if (propagate_mount_busy(real_mount(mnt), 2))
1372 ret = 0;
1373 unlock_mount_hash();
1374 up_read(&namespace_sem);
1375 return ret;
1376 }
1377
1378 EXPORT_SYMBOL(may_umount);
1379
namespace_unlock(void)1380 static void namespace_unlock(void)
1381 {
1382 struct hlist_head head;
1383 struct hlist_node *p;
1384 struct mount *m;
1385 LIST_HEAD(list);
1386
1387 hlist_move_list(&unmounted, &head);
1388 list_splice_init(&ex_mountpoints, &list);
1389
1390 up_write(&namespace_sem);
1391
1392 shrink_dentry_list(&list);
1393
1394 if (likely(hlist_empty(&head)))
1395 return;
1396
1397 synchronize_rcu_expedited();
1398
1399 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1400 hlist_del(&m->mnt_umount);
1401 mntput(&m->mnt);
1402 }
1403 }
1404
namespace_lock(void)1405 static inline void namespace_lock(void)
1406 {
1407 down_write(&namespace_sem);
1408 }
1409
1410 enum umount_tree_flags {
1411 UMOUNT_SYNC = 1,
1412 UMOUNT_PROPAGATE = 2,
1413 UMOUNT_CONNECTED = 4,
1414 };
1415
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1416 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1417 {
1418 /* Leaving mounts connected is only valid for lazy umounts */
1419 if (how & UMOUNT_SYNC)
1420 return true;
1421
1422 /* A mount without a parent has nothing to be connected to */
1423 if (!mnt_has_parent(mnt))
1424 return true;
1425
1426 /* Because the reference counting rules change when mounts are
1427 * unmounted and connected, umounted mounts may not be
1428 * connected to mounted mounts.
1429 */
1430 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1431 return true;
1432
1433 /* Has it been requested that the mount remain connected? */
1434 if (how & UMOUNT_CONNECTED)
1435 return false;
1436
1437 /* Is the mount locked such that it needs to remain connected? */
1438 if (IS_MNT_LOCKED(mnt))
1439 return false;
1440
1441 /* By default disconnect the mount */
1442 return true;
1443 }
1444
1445 /*
1446 * mount_lock must be held
1447 * namespace_sem must be held for write
1448 */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1449 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1450 {
1451 LIST_HEAD(tmp_list);
1452 struct mount *p;
1453
1454 if (how & UMOUNT_PROPAGATE)
1455 propagate_mount_unlock(mnt);
1456
1457 /* Gather the mounts to umount */
1458 for (p = mnt; p; p = next_mnt(p, mnt)) {
1459 p->mnt.mnt_flags |= MNT_UMOUNT;
1460 list_move(&p->mnt_list, &tmp_list);
1461 }
1462
1463 /* Hide the mounts from mnt_mounts */
1464 list_for_each_entry(p, &tmp_list, mnt_list) {
1465 list_del_init(&p->mnt_child);
1466 }
1467
1468 /* Add propogated mounts to the tmp_list */
1469 if (how & UMOUNT_PROPAGATE)
1470 propagate_umount(&tmp_list);
1471
1472 while (!list_empty(&tmp_list)) {
1473 struct mnt_namespace *ns;
1474 bool disconnect;
1475 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1476 list_del_init(&p->mnt_expire);
1477 list_del_init(&p->mnt_list);
1478 ns = p->mnt_ns;
1479 if (ns) {
1480 ns->mounts--;
1481 __touch_mnt_namespace(ns);
1482 }
1483 p->mnt_ns = NULL;
1484 if (how & UMOUNT_SYNC)
1485 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1486
1487 disconnect = disconnect_mount(p, how);
1488 if (mnt_has_parent(p)) {
1489 mnt_add_count(p->mnt_parent, -1);
1490 if (!disconnect) {
1491 /* Don't forget about p */
1492 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1493 } else {
1494 umount_mnt(p);
1495 }
1496 }
1497 change_mnt_propagation(p, MS_PRIVATE);
1498 if (disconnect)
1499 hlist_add_head(&p->mnt_umount, &unmounted);
1500 }
1501 }
1502
1503 static void shrink_submounts(struct mount *mnt);
1504
do_umount_root(struct super_block * sb)1505 static int do_umount_root(struct super_block *sb)
1506 {
1507 int ret = 0;
1508
1509 down_write(&sb->s_umount);
1510 if (!sb_rdonly(sb)) {
1511 struct fs_context *fc;
1512
1513 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1514 SB_RDONLY);
1515 if (IS_ERR(fc)) {
1516 ret = PTR_ERR(fc);
1517 } else {
1518 ret = parse_monolithic_mount_data(fc, NULL);
1519 if (!ret)
1520 ret = reconfigure_super(fc);
1521 put_fs_context(fc);
1522 }
1523 }
1524 up_write(&sb->s_umount);
1525 return ret;
1526 }
1527
do_umount(struct mount * mnt,int flags)1528 static int do_umount(struct mount *mnt, int flags)
1529 {
1530 struct super_block *sb = mnt->mnt.mnt_sb;
1531 int retval;
1532
1533 retval = security_sb_umount(&mnt->mnt, flags);
1534 if (retval)
1535 return retval;
1536
1537 /*
1538 * Allow userspace to request a mountpoint be expired rather than
1539 * unmounting unconditionally. Unmount only happens if:
1540 * (1) the mark is already set (the mark is cleared by mntput())
1541 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1542 */
1543 if (flags & MNT_EXPIRE) {
1544 if (&mnt->mnt == current->fs->root.mnt ||
1545 flags & (MNT_FORCE | MNT_DETACH))
1546 return -EINVAL;
1547
1548 /*
1549 * probably don't strictly need the lock here if we examined
1550 * all race cases, but it's a slowpath.
1551 */
1552 lock_mount_hash();
1553 if (mnt_get_count(mnt) != 2) {
1554 unlock_mount_hash();
1555 return -EBUSY;
1556 }
1557 unlock_mount_hash();
1558
1559 if (!xchg(&mnt->mnt_expiry_mark, 1))
1560 return -EAGAIN;
1561 }
1562
1563 /*
1564 * If we may have to abort operations to get out of this
1565 * mount, and they will themselves hold resources we must
1566 * allow the fs to do things. In the Unix tradition of
1567 * 'Gee thats tricky lets do it in userspace' the umount_begin
1568 * might fail to complete on the first run through as other tasks
1569 * must return, and the like. Thats for the mount program to worry
1570 * about for the moment.
1571 */
1572
1573 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1574 sb->s_op->umount_begin(sb);
1575 }
1576
1577 /*
1578 * No sense to grab the lock for this test, but test itself looks
1579 * somewhat bogus. Suggestions for better replacement?
1580 * Ho-hum... In principle, we might treat that as umount + switch
1581 * to rootfs. GC would eventually take care of the old vfsmount.
1582 * Actually it makes sense, especially if rootfs would contain a
1583 * /reboot - static binary that would close all descriptors and
1584 * call reboot(9). Then init(8) could umount root and exec /reboot.
1585 */
1586 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1587 /*
1588 * Special case for "unmounting" root ...
1589 * we just try to remount it readonly.
1590 */
1591 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1592 return -EPERM;
1593 return do_umount_root(sb);
1594 }
1595
1596 namespace_lock();
1597 lock_mount_hash();
1598
1599 /* Recheck MNT_LOCKED with the locks held */
1600 retval = -EINVAL;
1601 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1602 goto out;
1603
1604 event++;
1605 if (flags & MNT_DETACH) {
1606 if (!list_empty(&mnt->mnt_list))
1607 umount_tree(mnt, UMOUNT_PROPAGATE);
1608 retval = 0;
1609 } else {
1610 shrink_submounts(mnt);
1611 retval = -EBUSY;
1612 if (!propagate_mount_busy(mnt, 2)) {
1613 if (!list_empty(&mnt->mnt_list))
1614 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1615 retval = 0;
1616 }
1617 }
1618 out:
1619 unlock_mount_hash();
1620 namespace_unlock();
1621 return retval;
1622 }
1623
1624 /*
1625 * __detach_mounts - lazily unmount all mounts on the specified dentry
1626 *
1627 * During unlink, rmdir, and d_drop it is possible to loose the path
1628 * to an existing mountpoint, and wind up leaking the mount.
1629 * detach_mounts allows lazily unmounting those mounts instead of
1630 * leaking them.
1631 *
1632 * The caller may hold dentry->d_inode->i_mutex.
1633 */
__detach_mounts(struct dentry * dentry)1634 void __detach_mounts(struct dentry *dentry)
1635 {
1636 struct mountpoint *mp;
1637 struct mount *mnt;
1638
1639 namespace_lock();
1640 lock_mount_hash();
1641 mp = lookup_mountpoint(dentry);
1642 if (!mp)
1643 goto out_unlock;
1644
1645 event++;
1646 while (!hlist_empty(&mp->m_list)) {
1647 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1648 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1649 umount_mnt(mnt);
1650 hlist_add_head(&mnt->mnt_umount, &unmounted);
1651 }
1652 else umount_tree(mnt, UMOUNT_CONNECTED);
1653 }
1654 put_mountpoint(mp);
1655 out_unlock:
1656 unlock_mount_hash();
1657 namespace_unlock();
1658 }
1659
1660 /*
1661 * Is the caller allowed to modify his namespace?
1662 */
may_mount(void)1663 static inline bool may_mount(void)
1664 {
1665 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1666 }
1667
1668 #ifdef CONFIG_MANDATORY_FILE_LOCKING
may_mandlock(void)1669 static inline bool may_mandlock(void)
1670 {
1671 return capable(CAP_SYS_ADMIN);
1672 }
1673 #else
may_mandlock(void)1674 static inline bool may_mandlock(void)
1675 {
1676 pr_warn("VFS: \"mand\" mount option not supported");
1677 return false;
1678 }
1679 #endif
1680
1681 /*
1682 * Now umount can handle mount points as well as block devices.
1683 * This is important for filesystems which use unnamed block devices.
1684 *
1685 * We now support a flag for forced unmount like the other 'big iron'
1686 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1687 */
1688
ksys_umount(char __user * name,int flags)1689 int ksys_umount(char __user *name, int flags)
1690 {
1691 struct path path;
1692 struct mount *mnt;
1693 int retval;
1694 int lookup_flags = 0;
1695
1696 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1697 return -EINVAL;
1698
1699 if (!may_mount())
1700 return -EPERM;
1701
1702 if (!(flags & UMOUNT_NOFOLLOW))
1703 lookup_flags |= LOOKUP_FOLLOW;
1704
1705 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1706 if (retval)
1707 goto out;
1708 mnt = real_mount(path.mnt);
1709 retval = -EINVAL;
1710 if (path.dentry != path.mnt->mnt_root)
1711 goto dput_and_out;
1712 if (!check_mnt(mnt))
1713 goto dput_and_out;
1714 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1715 goto dput_and_out;
1716 retval = -EPERM;
1717 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1718 goto dput_and_out;
1719
1720 retval = do_umount(mnt, flags);
1721 dput_and_out:
1722 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1723 dput(path.dentry);
1724 mntput_no_expire(mnt);
1725 out:
1726 return retval;
1727 }
1728
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1729 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1730 {
1731 return ksys_umount(name, flags);
1732 }
1733
1734 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1735
1736 /*
1737 * The 2.0 compatible umount. No flags.
1738 */
SYSCALL_DEFINE1(oldumount,char __user *,name)1739 SYSCALL_DEFINE1(oldumount, char __user *, name)
1740 {
1741 return ksys_umount(name, 0);
1742 }
1743
1744 #endif
1745
is_mnt_ns_file(struct dentry * dentry)1746 static bool is_mnt_ns_file(struct dentry *dentry)
1747 {
1748 /* Is this a proxy for a mount namespace? */
1749 return dentry->d_op == &ns_dentry_operations &&
1750 dentry->d_fsdata == &mntns_operations;
1751 }
1752
to_mnt_ns(struct ns_common * ns)1753 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1754 {
1755 return container_of(ns, struct mnt_namespace, ns);
1756 }
1757
mnt_ns_loop(struct dentry * dentry)1758 static bool mnt_ns_loop(struct dentry *dentry)
1759 {
1760 /* Could bind mounting the mount namespace inode cause a
1761 * mount namespace loop?
1762 */
1763 struct mnt_namespace *mnt_ns;
1764 if (!is_mnt_ns_file(dentry))
1765 return false;
1766
1767 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1768 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1769 }
1770
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1771 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1772 int flag)
1773 {
1774 struct mount *res, *p, *q, *r, *parent;
1775
1776 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1777 return ERR_PTR(-EINVAL);
1778
1779 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1780 return ERR_PTR(-EINVAL);
1781
1782 res = q = clone_mnt(mnt, dentry, flag);
1783 if (IS_ERR(q))
1784 return q;
1785
1786 q->mnt_mountpoint = mnt->mnt_mountpoint;
1787
1788 p = mnt;
1789 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1790 struct mount *s;
1791 if (!is_subdir(r->mnt_mountpoint, dentry))
1792 continue;
1793
1794 for (s = r; s; s = next_mnt(s, r)) {
1795 if (!(flag & CL_COPY_UNBINDABLE) &&
1796 IS_MNT_UNBINDABLE(s)) {
1797 if (s->mnt.mnt_flags & MNT_LOCKED) {
1798 /* Both unbindable and locked. */
1799 q = ERR_PTR(-EPERM);
1800 goto out;
1801 } else {
1802 s = skip_mnt_tree(s);
1803 continue;
1804 }
1805 }
1806 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1807 is_mnt_ns_file(s->mnt.mnt_root)) {
1808 s = skip_mnt_tree(s);
1809 continue;
1810 }
1811 while (p != s->mnt_parent) {
1812 p = p->mnt_parent;
1813 q = q->mnt_parent;
1814 }
1815 p = s;
1816 parent = q;
1817 q = clone_mnt(p, p->mnt.mnt_root, flag);
1818 if (IS_ERR(q))
1819 goto out;
1820 lock_mount_hash();
1821 list_add_tail(&q->mnt_list, &res->mnt_list);
1822 attach_mnt(q, parent, p->mnt_mp);
1823 unlock_mount_hash();
1824 }
1825 }
1826 return res;
1827 out:
1828 if (res) {
1829 lock_mount_hash();
1830 umount_tree(res, UMOUNT_SYNC);
1831 unlock_mount_hash();
1832 }
1833 return q;
1834 }
1835
1836 /* Caller should check returned pointer for errors */
1837
collect_mounts(const struct path * path)1838 struct vfsmount *collect_mounts(const struct path *path)
1839 {
1840 struct mount *tree;
1841 namespace_lock();
1842 if (!check_mnt(real_mount(path->mnt)))
1843 tree = ERR_PTR(-EINVAL);
1844 else
1845 tree = copy_tree(real_mount(path->mnt), path->dentry,
1846 CL_COPY_ALL | CL_PRIVATE);
1847 namespace_unlock();
1848 if (IS_ERR(tree))
1849 return ERR_CAST(tree);
1850 return &tree->mnt;
1851 }
1852
1853 static void free_mnt_ns(struct mnt_namespace *);
1854 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1855
dissolve_on_fput(struct vfsmount * mnt)1856 void dissolve_on_fput(struct vfsmount *mnt)
1857 {
1858 struct mnt_namespace *ns;
1859 namespace_lock();
1860 lock_mount_hash();
1861 ns = real_mount(mnt)->mnt_ns;
1862 if (ns) {
1863 if (is_anon_ns(ns))
1864 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1865 else
1866 ns = NULL;
1867 }
1868 unlock_mount_hash();
1869 namespace_unlock();
1870 if (ns)
1871 free_mnt_ns(ns);
1872 }
1873
drop_collected_mounts(struct vfsmount * mnt)1874 void drop_collected_mounts(struct vfsmount *mnt)
1875 {
1876 namespace_lock();
1877 lock_mount_hash();
1878 umount_tree(real_mount(mnt), 0);
1879 unlock_mount_hash();
1880 namespace_unlock();
1881 }
1882
1883 /**
1884 * clone_private_mount - create a private clone of a path
1885 *
1886 * This creates a new vfsmount, which will be the clone of @path. The new will
1887 * not be attached anywhere in the namespace and will be private (i.e. changes
1888 * to the originating mount won't be propagated into this).
1889 *
1890 * Release with mntput().
1891 */
clone_private_mount(const struct path * path)1892 struct vfsmount *clone_private_mount(const struct path *path)
1893 {
1894 struct mount *old_mnt = real_mount(path->mnt);
1895 struct mount *new_mnt;
1896
1897 if (IS_MNT_UNBINDABLE(old_mnt))
1898 return ERR_PTR(-EINVAL);
1899
1900 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1901 if (IS_ERR(new_mnt))
1902 return ERR_CAST(new_mnt);
1903
1904 return &new_mnt->mnt;
1905 }
1906 EXPORT_SYMBOL_GPL(clone_private_mount);
1907
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)1908 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1909 struct vfsmount *root)
1910 {
1911 struct mount *mnt;
1912 int res = f(root, arg);
1913 if (res)
1914 return res;
1915 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1916 res = f(&mnt->mnt, arg);
1917 if (res)
1918 return res;
1919 }
1920 return 0;
1921 }
1922
lock_mnt_tree(struct mount * mnt)1923 static void lock_mnt_tree(struct mount *mnt)
1924 {
1925 struct mount *p;
1926
1927 for (p = mnt; p; p = next_mnt(p, mnt)) {
1928 int flags = p->mnt.mnt_flags;
1929 /* Don't allow unprivileged users to change mount flags */
1930 flags |= MNT_LOCK_ATIME;
1931
1932 if (flags & MNT_READONLY)
1933 flags |= MNT_LOCK_READONLY;
1934
1935 if (flags & MNT_NODEV)
1936 flags |= MNT_LOCK_NODEV;
1937
1938 if (flags & MNT_NOSUID)
1939 flags |= MNT_LOCK_NOSUID;
1940
1941 if (flags & MNT_NOEXEC)
1942 flags |= MNT_LOCK_NOEXEC;
1943 /* Don't allow unprivileged users to reveal what is under a mount */
1944 if (list_empty(&p->mnt_expire))
1945 flags |= MNT_LOCKED;
1946 p->mnt.mnt_flags = flags;
1947 }
1948 }
1949
cleanup_group_ids(struct mount * mnt,struct mount * end)1950 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1951 {
1952 struct mount *p;
1953
1954 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1955 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1956 mnt_release_group_id(p);
1957 }
1958 }
1959
invent_group_ids(struct mount * mnt,bool recurse)1960 static int invent_group_ids(struct mount *mnt, bool recurse)
1961 {
1962 struct mount *p;
1963
1964 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1965 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1966 int err = mnt_alloc_group_id(p);
1967 if (err) {
1968 cleanup_group_ids(mnt, p);
1969 return err;
1970 }
1971 }
1972 }
1973
1974 return 0;
1975 }
1976
count_mounts(struct mnt_namespace * ns,struct mount * mnt)1977 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1978 {
1979 unsigned int max = READ_ONCE(sysctl_mount_max);
1980 unsigned int mounts = 0, old, pending, sum;
1981 struct mount *p;
1982
1983 for (p = mnt; p; p = next_mnt(p, mnt))
1984 mounts++;
1985
1986 old = ns->mounts;
1987 pending = ns->pending_mounts;
1988 sum = old + pending;
1989 if ((old > sum) ||
1990 (pending > sum) ||
1991 (max < sum) ||
1992 (mounts > (max - sum)))
1993 return -ENOSPC;
1994
1995 ns->pending_mounts = pending + mounts;
1996 return 0;
1997 }
1998
1999 /*
2000 * @source_mnt : mount tree to be attached
2001 * @nd : place the mount tree @source_mnt is attached
2002 * @parent_nd : if non-null, detach the source_mnt from its parent and
2003 * store the parent mount and mountpoint dentry.
2004 * (done when source_mnt is moved)
2005 *
2006 * NOTE: in the table below explains the semantics when a source mount
2007 * of a given type is attached to a destination mount of a given type.
2008 * ---------------------------------------------------------------------------
2009 * | BIND MOUNT OPERATION |
2010 * |**************************************************************************
2011 * | source-->| shared | private | slave | unbindable |
2012 * | dest | | | | |
2013 * | | | | | | |
2014 * | v | | | | |
2015 * |**************************************************************************
2016 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2017 * | | | | | |
2018 * |non-shared| shared (+) | private | slave (*) | invalid |
2019 * ***************************************************************************
2020 * A bind operation clones the source mount and mounts the clone on the
2021 * destination mount.
2022 *
2023 * (++) the cloned mount is propagated to all the mounts in the propagation
2024 * tree of the destination mount and the cloned mount is added to
2025 * the peer group of the source mount.
2026 * (+) the cloned mount is created under the destination mount and is marked
2027 * as shared. The cloned mount is added to the peer group of the source
2028 * mount.
2029 * (+++) the mount is propagated to all the mounts in the propagation tree
2030 * of the destination mount and the cloned mount is made slave
2031 * of the same master as that of the source mount. The cloned mount
2032 * is marked as 'shared and slave'.
2033 * (*) the cloned mount is made a slave of the same master as that of the
2034 * source mount.
2035 *
2036 * ---------------------------------------------------------------------------
2037 * | MOVE MOUNT OPERATION |
2038 * |**************************************************************************
2039 * | source-->| shared | private | slave | unbindable |
2040 * | dest | | | | |
2041 * | | | | | | |
2042 * | v | | | | |
2043 * |**************************************************************************
2044 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2045 * | | | | | |
2046 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2047 * ***************************************************************************
2048 *
2049 * (+) the mount is moved to the destination. And is then propagated to
2050 * all the mounts in the propagation tree of the destination mount.
2051 * (+*) the mount is moved to the destination.
2052 * (+++) the mount is moved to the destination and is then propagated to
2053 * all the mounts belonging to the destination mount's propagation tree.
2054 * the mount is marked as 'shared and slave'.
2055 * (*) the mount continues to be a slave at the new location.
2056 *
2057 * if the source mount is a tree, the operations explained above is
2058 * applied to each mount in the tree.
2059 * Must be called without spinlocks held, since this function can sleep
2060 * in allocations.
2061 */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp,bool moving)2062 static int attach_recursive_mnt(struct mount *source_mnt,
2063 struct mount *dest_mnt,
2064 struct mountpoint *dest_mp,
2065 bool moving)
2066 {
2067 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2068 HLIST_HEAD(tree_list);
2069 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2070 struct mountpoint *smp;
2071 struct mount *child, *p;
2072 struct hlist_node *n;
2073 int err;
2074
2075 /* Preallocate a mountpoint in case the new mounts need
2076 * to be tucked under other mounts.
2077 */
2078 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2079 if (IS_ERR(smp))
2080 return PTR_ERR(smp);
2081
2082 /* Is there space to add these mounts to the mount namespace? */
2083 if (!moving) {
2084 err = count_mounts(ns, source_mnt);
2085 if (err)
2086 goto out;
2087 }
2088
2089 if (IS_MNT_SHARED(dest_mnt)) {
2090 err = invent_group_ids(source_mnt, true);
2091 if (err)
2092 goto out;
2093 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2094 lock_mount_hash();
2095 if (err)
2096 goto out_cleanup_ids;
2097 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2098 set_mnt_shared(p);
2099 } else {
2100 lock_mount_hash();
2101 }
2102 if (moving) {
2103 unhash_mnt(source_mnt);
2104 attach_mnt(source_mnt, dest_mnt, dest_mp);
2105 touch_mnt_namespace(source_mnt->mnt_ns);
2106 } else {
2107 if (source_mnt->mnt_ns) {
2108 /* move from anon - the caller will destroy */
2109 list_del_init(&source_mnt->mnt_ns->list);
2110 }
2111 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2112 commit_tree(source_mnt);
2113 }
2114
2115 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2116 struct mount *q;
2117 hlist_del_init(&child->mnt_hash);
2118 q = __lookup_mnt(&child->mnt_parent->mnt,
2119 child->mnt_mountpoint);
2120 if (q)
2121 mnt_change_mountpoint(child, smp, q);
2122 /* Notice when we are propagating across user namespaces */
2123 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2124 lock_mnt_tree(child);
2125 child->mnt.mnt_flags &= ~MNT_LOCKED;
2126 commit_tree(child);
2127 }
2128 put_mountpoint(smp);
2129 unlock_mount_hash();
2130
2131 return 0;
2132
2133 out_cleanup_ids:
2134 while (!hlist_empty(&tree_list)) {
2135 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2136 child->mnt_parent->mnt_ns->pending_mounts = 0;
2137 umount_tree(child, UMOUNT_SYNC);
2138 }
2139 unlock_mount_hash();
2140 cleanup_group_ids(source_mnt, NULL);
2141 out:
2142 ns->pending_mounts = 0;
2143
2144 read_seqlock_excl(&mount_lock);
2145 put_mountpoint(smp);
2146 read_sequnlock_excl(&mount_lock);
2147
2148 return err;
2149 }
2150
lock_mount(struct path * path)2151 static struct mountpoint *lock_mount(struct path *path)
2152 {
2153 struct vfsmount *mnt;
2154 struct dentry *dentry = path->dentry;
2155 retry:
2156 inode_lock(dentry->d_inode);
2157 if (unlikely(cant_mount(dentry))) {
2158 inode_unlock(dentry->d_inode);
2159 return ERR_PTR(-ENOENT);
2160 }
2161 namespace_lock();
2162 mnt = lookup_mnt(path);
2163 if (likely(!mnt)) {
2164 struct mountpoint *mp = get_mountpoint(dentry);
2165 if (IS_ERR(mp)) {
2166 namespace_unlock();
2167 inode_unlock(dentry->d_inode);
2168 return mp;
2169 }
2170 return mp;
2171 }
2172 namespace_unlock();
2173 inode_unlock(path->dentry->d_inode);
2174 path_put(path);
2175 path->mnt = mnt;
2176 dentry = path->dentry = dget(mnt->mnt_root);
2177 goto retry;
2178 }
2179
unlock_mount(struct mountpoint * where)2180 static void unlock_mount(struct mountpoint *where)
2181 {
2182 struct dentry *dentry = where->m_dentry;
2183
2184 read_seqlock_excl(&mount_lock);
2185 put_mountpoint(where);
2186 read_sequnlock_excl(&mount_lock);
2187
2188 namespace_unlock();
2189 inode_unlock(dentry->d_inode);
2190 }
2191
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2192 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2193 {
2194 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2195 return -EINVAL;
2196
2197 if (d_is_dir(mp->m_dentry) !=
2198 d_is_dir(mnt->mnt.mnt_root))
2199 return -ENOTDIR;
2200
2201 return attach_recursive_mnt(mnt, p, mp, false);
2202 }
2203
2204 /*
2205 * Sanity check the flags to change_mnt_propagation.
2206 */
2207
flags_to_propagation_type(int ms_flags)2208 static int flags_to_propagation_type(int ms_flags)
2209 {
2210 int type = ms_flags & ~(MS_REC | MS_SILENT);
2211
2212 /* Fail if any non-propagation flags are set */
2213 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2214 return 0;
2215 /* Only one propagation flag should be set */
2216 if (!is_power_of_2(type))
2217 return 0;
2218 return type;
2219 }
2220
2221 /*
2222 * recursively change the type of the mountpoint.
2223 */
do_change_type(struct path * path,int ms_flags)2224 static int do_change_type(struct path *path, int ms_flags)
2225 {
2226 struct mount *m;
2227 struct mount *mnt = real_mount(path->mnt);
2228 int recurse = ms_flags & MS_REC;
2229 int type;
2230 int err = 0;
2231
2232 if (path->dentry != path->mnt->mnt_root)
2233 return -EINVAL;
2234
2235 type = flags_to_propagation_type(ms_flags);
2236 if (!type)
2237 return -EINVAL;
2238
2239 namespace_lock();
2240 if (type == MS_SHARED) {
2241 err = invent_group_ids(mnt, recurse);
2242 if (err)
2243 goto out_unlock;
2244 }
2245
2246 lock_mount_hash();
2247 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2248 change_mnt_propagation(m, type);
2249 unlock_mount_hash();
2250
2251 out_unlock:
2252 namespace_unlock();
2253 return err;
2254 }
2255
has_locked_children(struct mount * mnt,struct dentry * dentry)2256 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2257 {
2258 struct mount *child;
2259 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2260 if (!is_subdir(child->mnt_mountpoint, dentry))
2261 continue;
2262
2263 if (child->mnt.mnt_flags & MNT_LOCKED)
2264 return true;
2265 }
2266 return false;
2267 }
2268
__do_loopback(struct path * old_path,int recurse)2269 static struct mount *__do_loopback(struct path *old_path, int recurse)
2270 {
2271 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2272
2273 if (IS_MNT_UNBINDABLE(old))
2274 return mnt;
2275
2276 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2277 return mnt;
2278
2279 if (!recurse && has_locked_children(old, old_path->dentry))
2280 return mnt;
2281
2282 if (recurse)
2283 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2284 else
2285 mnt = clone_mnt(old, old_path->dentry, 0);
2286
2287 if (!IS_ERR(mnt))
2288 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2289
2290 return mnt;
2291 }
2292
2293 /*
2294 * do loopback mount.
2295 */
do_loopback(struct path * path,const char * old_name,int recurse)2296 static int do_loopback(struct path *path, const char *old_name,
2297 int recurse)
2298 {
2299 struct path old_path;
2300 struct mount *mnt = NULL, *parent;
2301 struct mountpoint *mp;
2302 int err;
2303 if (!old_name || !*old_name)
2304 return -EINVAL;
2305 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2306 if (err)
2307 return err;
2308
2309 err = -EINVAL;
2310 if (mnt_ns_loop(old_path.dentry))
2311 goto out;
2312
2313 mp = lock_mount(path);
2314 if (IS_ERR(mp)) {
2315 err = PTR_ERR(mp);
2316 goto out;
2317 }
2318
2319 parent = real_mount(path->mnt);
2320 if (!check_mnt(parent))
2321 goto out2;
2322
2323 mnt = __do_loopback(&old_path, recurse);
2324 if (IS_ERR(mnt)) {
2325 err = PTR_ERR(mnt);
2326 goto out2;
2327 }
2328
2329 err = graft_tree(mnt, parent, mp);
2330 if (err) {
2331 lock_mount_hash();
2332 umount_tree(mnt, UMOUNT_SYNC);
2333 unlock_mount_hash();
2334 }
2335 out2:
2336 unlock_mount(mp);
2337 out:
2338 path_put(&old_path);
2339 return err;
2340 }
2341
open_detached_copy(struct path * path,bool recursive)2342 static struct file *open_detached_copy(struct path *path, bool recursive)
2343 {
2344 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2345 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2346 struct mount *mnt, *p;
2347 struct file *file;
2348
2349 if (IS_ERR(ns))
2350 return ERR_CAST(ns);
2351
2352 namespace_lock();
2353 mnt = __do_loopback(path, recursive);
2354 if (IS_ERR(mnt)) {
2355 namespace_unlock();
2356 free_mnt_ns(ns);
2357 return ERR_CAST(mnt);
2358 }
2359
2360 lock_mount_hash();
2361 for (p = mnt; p; p = next_mnt(p, mnt)) {
2362 p->mnt_ns = ns;
2363 ns->mounts++;
2364 }
2365 ns->root = mnt;
2366 list_add_tail(&ns->list, &mnt->mnt_list);
2367 mntget(&mnt->mnt);
2368 unlock_mount_hash();
2369 namespace_unlock();
2370
2371 mntput(path->mnt);
2372 path->mnt = &mnt->mnt;
2373 file = dentry_open(path, O_PATH, current_cred());
2374 if (IS_ERR(file))
2375 dissolve_on_fput(path->mnt);
2376 else
2377 file->f_mode |= FMODE_NEED_UNMOUNT;
2378 return file;
2379 }
2380
SYSCALL_DEFINE3(open_tree,int,dfd,const char *,filename,unsigned,flags)2381 SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2382 {
2383 struct file *file;
2384 struct path path;
2385 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2386 bool detached = flags & OPEN_TREE_CLONE;
2387 int error;
2388 int fd;
2389
2390 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2391
2392 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2393 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2394 OPEN_TREE_CLOEXEC))
2395 return -EINVAL;
2396
2397 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2398 return -EINVAL;
2399
2400 if (flags & AT_NO_AUTOMOUNT)
2401 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2402 if (flags & AT_SYMLINK_NOFOLLOW)
2403 lookup_flags &= ~LOOKUP_FOLLOW;
2404 if (flags & AT_EMPTY_PATH)
2405 lookup_flags |= LOOKUP_EMPTY;
2406
2407 if (detached && !may_mount())
2408 return -EPERM;
2409
2410 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2411 if (fd < 0)
2412 return fd;
2413
2414 error = user_path_at(dfd, filename, lookup_flags, &path);
2415 if (unlikely(error)) {
2416 file = ERR_PTR(error);
2417 } else {
2418 if (detached)
2419 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2420 else
2421 file = dentry_open(&path, O_PATH, current_cred());
2422 path_put(&path);
2423 }
2424 if (IS_ERR(file)) {
2425 put_unused_fd(fd);
2426 return PTR_ERR(file);
2427 }
2428 fd_install(fd, file);
2429 return fd;
2430 }
2431
2432 /*
2433 * Don't allow locked mount flags to be cleared.
2434 *
2435 * No locks need to be held here while testing the various MNT_LOCK
2436 * flags because those flags can never be cleared once they are set.
2437 */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)2438 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2439 {
2440 unsigned int fl = mnt->mnt.mnt_flags;
2441
2442 if ((fl & MNT_LOCK_READONLY) &&
2443 !(mnt_flags & MNT_READONLY))
2444 return false;
2445
2446 if ((fl & MNT_LOCK_NODEV) &&
2447 !(mnt_flags & MNT_NODEV))
2448 return false;
2449
2450 if ((fl & MNT_LOCK_NOSUID) &&
2451 !(mnt_flags & MNT_NOSUID))
2452 return false;
2453
2454 if ((fl & MNT_LOCK_NOEXEC) &&
2455 !(mnt_flags & MNT_NOEXEC))
2456 return false;
2457
2458 if ((fl & MNT_LOCK_ATIME) &&
2459 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2460 return false;
2461
2462 return true;
2463 }
2464
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)2465 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2466 {
2467 bool readonly_request = (mnt_flags & MNT_READONLY);
2468
2469 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2470 return 0;
2471
2472 if (readonly_request)
2473 return mnt_make_readonly(mnt);
2474
2475 return __mnt_unmake_readonly(mnt);
2476 }
2477
2478 /*
2479 * Update the user-settable attributes on a mount. The caller must hold
2480 * sb->s_umount for writing.
2481 */
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)2482 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2483 {
2484 lock_mount_hash();
2485 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2486 mnt->mnt.mnt_flags = mnt_flags;
2487 touch_mnt_namespace(mnt->mnt_ns);
2488 unlock_mount_hash();
2489 }
2490
mnt_warn_timestamp_expiry(struct path * mountpoint,struct vfsmount * mnt)2491 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2492 {
2493 struct super_block *sb = mnt->mnt_sb;
2494
2495 if (!__mnt_is_readonly(mnt) &&
2496 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2497 char *buf = (char *)__get_free_page(GFP_KERNEL);
2498 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2499 struct tm tm;
2500
2501 time64_to_tm(sb->s_time_max, 0, &tm);
2502
2503 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2504 sb->s_type->name,
2505 is_mounted(mnt) ? "remounted" : "mounted",
2506 mntpath,
2507 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2508
2509 free_page((unsigned long)buf);
2510 }
2511 }
2512
2513 /*
2514 * Handle reconfiguration of the mountpoint only without alteration of the
2515 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2516 * to mount(2).
2517 */
do_reconfigure_mnt(struct path * path,unsigned int mnt_flags)2518 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2519 {
2520 struct super_block *sb = path->mnt->mnt_sb;
2521 struct mount *mnt = real_mount(path->mnt);
2522 int ret;
2523
2524 if (!check_mnt(mnt))
2525 return -EINVAL;
2526
2527 if (path->dentry != mnt->mnt.mnt_root)
2528 return -EINVAL;
2529
2530 if (!can_change_locked_flags(mnt, mnt_flags))
2531 return -EPERM;
2532
2533 down_write(&sb->s_umount);
2534 ret = change_mount_ro_state(mnt, mnt_flags);
2535 if (ret == 0)
2536 set_mount_attributes(mnt, mnt_flags);
2537 up_write(&sb->s_umount);
2538
2539 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2540
2541 return ret;
2542 }
2543
2544 /*
2545 * change filesystem flags. dir should be a physical root of filesystem.
2546 * If you've mounted a non-root directory somewhere and want to do remount
2547 * on it - tough luck.
2548 */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)2549 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2550 int mnt_flags, void *data)
2551 {
2552 int err;
2553 struct super_block *sb = path->mnt->mnt_sb;
2554 struct mount *mnt = real_mount(path->mnt);
2555 struct fs_context *fc;
2556
2557 if (!check_mnt(mnt))
2558 return -EINVAL;
2559
2560 if (path->dentry != path->mnt->mnt_root)
2561 return -EINVAL;
2562
2563 if (!can_change_locked_flags(mnt, mnt_flags))
2564 return -EPERM;
2565
2566 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2567 if (IS_ERR(fc))
2568 return PTR_ERR(fc);
2569
2570 err = parse_monolithic_mount_data(fc, data);
2571 if (!err) {
2572 down_write(&sb->s_umount);
2573 err = -EPERM;
2574 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2575 err = reconfigure_super(fc);
2576 if (!err && sb->s_op->update_mnt_data) {
2577 sb->s_op->update_mnt_data(mnt->mnt.data, fc);
2578 set_mount_attributes(mnt, mnt_flags);
2579 namespace_lock();
2580 lock_mount_hash();
2581 propagate_remount(mnt);
2582 unlock_mount_hash();
2583 namespace_unlock();
2584 } else if (!err)
2585 set_mount_attributes(mnt, mnt_flags);
2586 }
2587 up_write(&sb->s_umount);
2588 }
2589
2590 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2591
2592 put_fs_context(fc);
2593 return err;
2594 }
2595
tree_contains_unbindable(struct mount * mnt)2596 static inline int tree_contains_unbindable(struct mount *mnt)
2597 {
2598 struct mount *p;
2599 for (p = mnt; p; p = next_mnt(p, mnt)) {
2600 if (IS_MNT_UNBINDABLE(p))
2601 return 1;
2602 }
2603 return 0;
2604 }
2605
2606 /*
2607 * Check that there aren't references to earlier/same mount namespaces in the
2608 * specified subtree. Such references can act as pins for mount namespaces
2609 * that aren't checked by the mount-cycle checking code, thereby allowing
2610 * cycles to be made.
2611 */
check_for_nsfs_mounts(struct mount * subtree)2612 static bool check_for_nsfs_mounts(struct mount *subtree)
2613 {
2614 struct mount *p;
2615 bool ret = false;
2616
2617 lock_mount_hash();
2618 for (p = subtree; p; p = next_mnt(p, subtree))
2619 if (mnt_ns_loop(p->mnt.mnt_root))
2620 goto out;
2621
2622 ret = true;
2623 out:
2624 unlock_mount_hash();
2625 return ret;
2626 }
2627
do_move_mount(struct path * old_path,struct path * new_path)2628 static int do_move_mount(struct path *old_path, struct path *new_path)
2629 {
2630 struct mnt_namespace *ns;
2631 struct mount *p;
2632 struct mount *old;
2633 struct mount *parent;
2634 struct mountpoint *mp, *old_mp;
2635 int err;
2636 bool attached;
2637
2638 mp = lock_mount(new_path);
2639 if (IS_ERR(mp))
2640 return PTR_ERR(mp);
2641
2642 old = real_mount(old_path->mnt);
2643 p = real_mount(new_path->mnt);
2644 parent = old->mnt_parent;
2645 attached = mnt_has_parent(old);
2646 old_mp = old->mnt_mp;
2647 ns = old->mnt_ns;
2648
2649 err = -EINVAL;
2650 /* The mountpoint must be in our namespace. */
2651 if (!check_mnt(p))
2652 goto out;
2653
2654 /* The thing moved must be mounted... */
2655 if (!is_mounted(&old->mnt))
2656 goto out;
2657
2658 /* ... and either ours or the root of anon namespace */
2659 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2660 goto out;
2661
2662 if (old->mnt.mnt_flags & MNT_LOCKED)
2663 goto out;
2664
2665 if (old_path->dentry != old_path->mnt->mnt_root)
2666 goto out;
2667
2668 if (d_is_dir(new_path->dentry) !=
2669 d_is_dir(old_path->dentry))
2670 goto out;
2671 /*
2672 * Don't move a mount residing in a shared parent.
2673 */
2674 if (attached && IS_MNT_SHARED(parent))
2675 goto out;
2676 /*
2677 * Don't move a mount tree containing unbindable mounts to a destination
2678 * mount which is shared.
2679 */
2680 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2681 goto out;
2682 err = -ELOOP;
2683 if (!check_for_nsfs_mounts(old))
2684 goto out;
2685 for (; mnt_has_parent(p); p = p->mnt_parent)
2686 if (p == old)
2687 goto out;
2688
2689 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2690 attached);
2691 if (err)
2692 goto out;
2693
2694 /* if the mount is moved, it should no longer be expire
2695 * automatically */
2696 list_del_init(&old->mnt_expire);
2697 if (attached)
2698 put_mountpoint(old_mp);
2699 out:
2700 unlock_mount(mp);
2701 if (!err) {
2702 if (attached)
2703 mntput_no_expire(parent);
2704 else
2705 free_mnt_ns(ns);
2706 }
2707 return err;
2708 }
2709
do_move_mount_old(struct path * path,const char * old_name)2710 static int do_move_mount_old(struct path *path, const char *old_name)
2711 {
2712 struct path old_path;
2713 int err;
2714
2715 if (!old_name || !*old_name)
2716 return -EINVAL;
2717
2718 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2719 if (err)
2720 return err;
2721
2722 err = do_move_mount(&old_path, path);
2723 path_put(&old_path);
2724 return err;
2725 }
2726
2727 /*
2728 * add a mount into a namespace's mount tree
2729 */
do_add_mount(struct mount * newmnt,struct path * path,int mnt_flags)2730 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2731 {
2732 struct mountpoint *mp;
2733 struct mount *parent;
2734 int err;
2735
2736 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2737
2738 mp = lock_mount(path);
2739 if (IS_ERR(mp))
2740 return PTR_ERR(mp);
2741
2742 parent = real_mount(path->mnt);
2743 err = -EINVAL;
2744 if (unlikely(!check_mnt(parent))) {
2745 /* that's acceptable only for automounts done in private ns */
2746 if (!(mnt_flags & MNT_SHRINKABLE))
2747 goto unlock;
2748 /* ... and for those we'd better have mountpoint still alive */
2749 if (!parent->mnt_ns)
2750 goto unlock;
2751 }
2752
2753 /* Refuse the same filesystem on the same mount point */
2754 err = -EBUSY;
2755 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2756 path->mnt->mnt_root == path->dentry)
2757 goto unlock;
2758
2759 err = -EINVAL;
2760 if (d_is_symlink(newmnt->mnt.mnt_root))
2761 goto unlock;
2762
2763 newmnt->mnt.mnt_flags = mnt_flags;
2764 err = graft_tree(newmnt, parent, mp);
2765
2766 unlock:
2767 unlock_mount(mp);
2768 return err;
2769 }
2770
2771 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2772
2773 /*
2774 * Create a new mount using a superblock configuration and request it
2775 * be added to the namespace tree.
2776 */
do_new_mount_fc(struct fs_context * fc,struct path * mountpoint,unsigned int mnt_flags)2777 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2778 unsigned int mnt_flags)
2779 {
2780 struct vfsmount *mnt;
2781 struct super_block *sb = fc->root->d_sb;
2782 int error;
2783
2784 error = security_sb_kern_mount(sb);
2785 if (!error && mount_too_revealing(sb, &mnt_flags))
2786 error = -EPERM;
2787
2788 if (unlikely(error)) {
2789 fc_drop_locked(fc);
2790 return error;
2791 }
2792
2793 up_write(&sb->s_umount);
2794
2795 mnt = vfs_create_mount(fc);
2796 if (IS_ERR(mnt))
2797 return PTR_ERR(mnt);
2798
2799 mnt_warn_timestamp_expiry(mountpoint, mnt);
2800
2801 error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2802 if (error < 0)
2803 mntput(mnt);
2804 return error;
2805 }
2806
2807 /*
2808 * create a new mount for userspace and request it to be added into the
2809 * namespace's tree
2810 */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)2811 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2812 int mnt_flags, const char *name, void *data)
2813 {
2814 struct file_system_type *type;
2815 struct fs_context *fc;
2816 const char *subtype = NULL;
2817 int err = 0;
2818
2819 if (!fstype)
2820 return -EINVAL;
2821
2822 type = get_fs_type(fstype);
2823 if (!type)
2824 return -ENODEV;
2825
2826 if (type->fs_flags & FS_HAS_SUBTYPE) {
2827 subtype = strchr(fstype, '.');
2828 if (subtype) {
2829 subtype++;
2830 if (!*subtype) {
2831 put_filesystem(type);
2832 return -EINVAL;
2833 }
2834 }
2835 }
2836
2837 fc = fs_context_for_mount(type, sb_flags);
2838 put_filesystem(type);
2839 if (IS_ERR(fc))
2840 return PTR_ERR(fc);
2841
2842 if (subtype)
2843 err = vfs_parse_fs_string(fc, "subtype",
2844 subtype, strlen(subtype));
2845 if (!err && name)
2846 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2847 if (!err)
2848 err = parse_monolithic_mount_data(fc, data);
2849 if (!err && !mount_capable(fc))
2850 err = -EPERM;
2851 if (!err)
2852 err = vfs_get_tree(fc);
2853 if (!err)
2854 err = do_new_mount_fc(fc, path, mnt_flags);
2855
2856 put_fs_context(fc);
2857 return err;
2858 }
2859
finish_automount(struct vfsmount * m,struct path * path)2860 int finish_automount(struct vfsmount *m, struct path *path)
2861 {
2862 struct mount *mnt = real_mount(m);
2863 int err;
2864 /* The new mount record should have at least 2 refs to prevent it being
2865 * expired before we get a chance to add it
2866 */
2867 BUG_ON(mnt_get_count(mnt) < 2);
2868
2869 if (m->mnt_sb == path->mnt->mnt_sb &&
2870 m->mnt_root == path->dentry) {
2871 err = -ELOOP;
2872 goto fail;
2873 }
2874
2875 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2876 if (!err)
2877 return 0;
2878 fail:
2879 /* remove m from any expiration list it may be on */
2880 if (!list_empty(&mnt->mnt_expire)) {
2881 namespace_lock();
2882 list_del_init(&mnt->mnt_expire);
2883 namespace_unlock();
2884 }
2885 mntput(m);
2886 mntput(m);
2887 return err;
2888 }
2889
2890 /**
2891 * mnt_set_expiry - Put a mount on an expiration list
2892 * @mnt: The mount to list.
2893 * @expiry_list: The list to add the mount to.
2894 */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)2895 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2896 {
2897 namespace_lock();
2898
2899 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2900
2901 namespace_unlock();
2902 }
2903 EXPORT_SYMBOL(mnt_set_expiry);
2904
2905 /*
2906 * process a list of expirable mountpoints with the intent of discarding any
2907 * mountpoints that aren't in use and haven't been touched since last we came
2908 * here
2909 */
mark_mounts_for_expiry(struct list_head * mounts)2910 void mark_mounts_for_expiry(struct list_head *mounts)
2911 {
2912 struct mount *mnt, *next;
2913 LIST_HEAD(graveyard);
2914
2915 if (list_empty(mounts))
2916 return;
2917
2918 namespace_lock();
2919 lock_mount_hash();
2920
2921 /* extract from the expiration list every vfsmount that matches the
2922 * following criteria:
2923 * - only referenced by its parent vfsmount
2924 * - still marked for expiry (marked on the last call here; marks are
2925 * cleared by mntput())
2926 */
2927 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2928 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2929 propagate_mount_busy(mnt, 1))
2930 continue;
2931 list_move(&mnt->mnt_expire, &graveyard);
2932 }
2933 while (!list_empty(&graveyard)) {
2934 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2935 touch_mnt_namespace(mnt->mnt_ns);
2936 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2937 }
2938 unlock_mount_hash();
2939 namespace_unlock();
2940 }
2941
2942 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2943
2944 /*
2945 * Ripoff of 'select_parent()'
2946 *
2947 * search the list of submounts for a given mountpoint, and move any
2948 * shrinkable submounts to the 'graveyard' list.
2949 */
select_submounts(struct mount * parent,struct list_head * graveyard)2950 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2951 {
2952 struct mount *this_parent = parent;
2953 struct list_head *next;
2954 int found = 0;
2955
2956 repeat:
2957 next = this_parent->mnt_mounts.next;
2958 resume:
2959 while (next != &this_parent->mnt_mounts) {
2960 struct list_head *tmp = next;
2961 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2962
2963 next = tmp->next;
2964 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2965 continue;
2966 /*
2967 * Descend a level if the d_mounts list is non-empty.
2968 */
2969 if (!list_empty(&mnt->mnt_mounts)) {
2970 this_parent = mnt;
2971 goto repeat;
2972 }
2973
2974 if (!propagate_mount_busy(mnt, 1)) {
2975 list_move_tail(&mnt->mnt_expire, graveyard);
2976 found++;
2977 }
2978 }
2979 /*
2980 * All done at this level ... ascend and resume the search
2981 */
2982 if (this_parent != parent) {
2983 next = this_parent->mnt_child.next;
2984 this_parent = this_parent->mnt_parent;
2985 goto resume;
2986 }
2987 return found;
2988 }
2989
2990 /*
2991 * process a list of expirable mountpoints with the intent of discarding any
2992 * submounts of a specific parent mountpoint
2993 *
2994 * mount_lock must be held for write
2995 */
shrink_submounts(struct mount * mnt)2996 static void shrink_submounts(struct mount *mnt)
2997 {
2998 LIST_HEAD(graveyard);
2999 struct mount *m;
3000
3001 /* extract submounts of 'mountpoint' from the expiration list */
3002 while (select_submounts(mnt, &graveyard)) {
3003 while (!list_empty(&graveyard)) {
3004 m = list_first_entry(&graveyard, struct mount,
3005 mnt_expire);
3006 touch_mnt_namespace(m->mnt_ns);
3007 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3008 }
3009 }
3010 }
3011
3012 /*
3013 * Some copy_from_user() implementations do not return the exact number of
3014 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
3015 * Note that this function differs from copy_from_user() in that it will oops
3016 * on bad values of `to', rather than returning a short copy.
3017 */
exact_copy_from_user(void * to,const void __user * from,unsigned long n)3018 static long exact_copy_from_user(void *to, const void __user * from,
3019 unsigned long n)
3020 {
3021 char *t = to;
3022 const char __user *f = from;
3023 char c;
3024
3025 if (!access_ok(from, n))
3026 return n;
3027
3028 while (n) {
3029 if (__get_user(c, f)) {
3030 memset(t, 0, n);
3031 break;
3032 }
3033 *t++ = c;
3034 f++;
3035 n--;
3036 }
3037 return n;
3038 }
3039
copy_mount_options(const void __user * data)3040 void *copy_mount_options(const void __user * data)
3041 {
3042 int i;
3043 unsigned long size;
3044 char *copy;
3045
3046 if (!data)
3047 return NULL;
3048
3049 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3050 if (!copy)
3051 return ERR_PTR(-ENOMEM);
3052
3053 /* We only care that *some* data at the address the user
3054 * gave us is valid. Just in case, we'll zero
3055 * the remainder of the page.
3056 */
3057 /* copy_from_user cannot cross TASK_SIZE ! */
3058 size = TASK_SIZE - (unsigned long)untagged_addr(data);
3059 if (size > PAGE_SIZE)
3060 size = PAGE_SIZE;
3061
3062 i = size - exact_copy_from_user(copy, data, size);
3063 if (!i) {
3064 kfree(copy);
3065 return ERR_PTR(-EFAULT);
3066 }
3067 if (i != PAGE_SIZE)
3068 memset(copy + i, 0, PAGE_SIZE - i);
3069 return copy;
3070 }
3071
copy_mount_string(const void __user * data)3072 char *copy_mount_string(const void __user *data)
3073 {
3074 return data ? strndup_user(data, PATH_MAX) : NULL;
3075 }
3076
3077 /*
3078 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3079 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3080 *
3081 * data is a (void *) that can point to any structure up to
3082 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3083 * information (or be NULL).
3084 *
3085 * Pre-0.97 versions of mount() didn't have a flags word.
3086 * When the flags word was introduced its top half was required
3087 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3088 * Therefore, if this magic number is present, it carries no information
3089 * and must be discarded.
3090 */
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)3091 long do_mount(const char *dev_name, const char __user *dir_name,
3092 const char *type_page, unsigned long flags, void *data_page)
3093 {
3094 struct path path;
3095 unsigned int mnt_flags = 0, sb_flags;
3096 int retval = 0;
3097
3098 /* Discard magic */
3099 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3100 flags &= ~MS_MGC_MSK;
3101
3102 /* Basic sanity checks */
3103 if (data_page)
3104 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3105
3106 if (flags & MS_NOUSER)
3107 return -EINVAL;
3108
3109 /* ... and get the mountpoint */
3110 retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3111 if (retval)
3112 return retval;
3113
3114 retval = security_sb_mount(dev_name, &path,
3115 type_page, flags, data_page);
3116 if (!retval && !may_mount())
3117 retval = -EPERM;
3118 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
3119 retval = -EPERM;
3120 if (retval)
3121 goto dput_out;
3122
3123 /* Default to relatime unless overriden */
3124 if (!(flags & MS_NOATIME))
3125 mnt_flags |= MNT_RELATIME;
3126
3127 /* Separate the per-mountpoint flags */
3128 if (flags & MS_NOSUID)
3129 mnt_flags |= MNT_NOSUID;
3130 if (flags & MS_NODEV)
3131 mnt_flags |= MNT_NODEV;
3132 if (flags & MS_NOEXEC)
3133 mnt_flags |= MNT_NOEXEC;
3134 if (flags & MS_NOATIME)
3135 mnt_flags |= MNT_NOATIME;
3136 if (flags & MS_NODIRATIME)
3137 mnt_flags |= MNT_NODIRATIME;
3138 if (flags & MS_STRICTATIME)
3139 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3140 if (flags & MS_RDONLY)
3141 mnt_flags |= MNT_READONLY;
3142
3143 /* The default atime for remount is preservation */
3144 if ((flags & MS_REMOUNT) &&
3145 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3146 MS_STRICTATIME)) == 0)) {
3147 mnt_flags &= ~MNT_ATIME_MASK;
3148 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3149 }
3150
3151 sb_flags = flags & (SB_RDONLY |
3152 SB_SYNCHRONOUS |
3153 SB_MANDLOCK |
3154 SB_DIRSYNC |
3155 SB_SILENT |
3156 SB_POSIXACL |
3157 SB_LAZYTIME |
3158 SB_I_VERSION);
3159
3160 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3161 retval = do_reconfigure_mnt(&path, mnt_flags);
3162 else if (flags & MS_REMOUNT)
3163 retval = do_remount(&path, flags, sb_flags, mnt_flags,
3164 data_page);
3165 else if (flags & MS_BIND)
3166 retval = do_loopback(&path, dev_name, flags & MS_REC);
3167 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3168 retval = do_change_type(&path, flags);
3169 else if (flags & MS_MOVE)
3170 retval = do_move_mount_old(&path, dev_name);
3171 else
3172 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
3173 dev_name, data_page);
3174 dput_out:
3175 path_put(&path);
3176 return retval;
3177 }
3178
inc_mnt_namespaces(struct user_namespace * ns)3179 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3180 {
3181 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3182 }
3183
dec_mnt_namespaces(struct ucounts * ucounts)3184 static void dec_mnt_namespaces(struct ucounts *ucounts)
3185 {
3186 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3187 }
3188
free_mnt_ns(struct mnt_namespace * ns)3189 static void free_mnt_ns(struct mnt_namespace *ns)
3190 {
3191 if (!is_anon_ns(ns))
3192 ns_free_inum(&ns->ns);
3193 dec_mnt_namespaces(ns->ucounts);
3194 put_user_ns(ns->user_ns);
3195 kfree(ns);
3196 }
3197
3198 /*
3199 * Assign a sequence number so we can detect when we attempt to bind
3200 * mount a reference to an older mount namespace into the current
3201 * mount namespace, preventing reference counting loops. A 64bit
3202 * number incrementing at 10Ghz will take 12,427 years to wrap which
3203 * is effectively never, so we can ignore the possibility.
3204 */
3205 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3206
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)3207 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3208 {
3209 struct mnt_namespace *new_ns;
3210 struct ucounts *ucounts;
3211 int ret;
3212
3213 ucounts = inc_mnt_namespaces(user_ns);
3214 if (!ucounts)
3215 return ERR_PTR(-ENOSPC);
3216
3217 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3218 if (!new_ns) {
3219 dec_mnt_namespaces(ucounts);
3220 return ERR_PTR(-ENOMEM);
3221 }
3222 if (!anon) {
3223 ret = ns_alloc_inum(&new_ns->ns);
3224 if (ret) {
3225 kfree(new_ns);
3226 dec_mnt_namespaces(ucounts);
3227 return ERR_PTR(ret);
3228 }
3229 }
3230 new_ns->ns.ops = &mntns_operations;
3231 if (!anon)
3232 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3233 atomic_set(&new_ns->count, 1);
3234 INIT_LIST_HEAD(&new_ns->list);
3235 init_waitqueue_head(&new_ns->poll);
3236 new_ns->user_ns = get_user_ns(user_ns);
3237 new_ns->ucounts = ucounts;
3238 return new_ns;
3239 }
3240
3241 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)3242 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3243 struct user_namespace *user_ns, struct fs_struct *new_fs)
3244 {
3245 struct mnt_namespace *new_ns;
3246 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3247 struct mount *p, *q;
3248 struct mount *old;
3249 struct mount *new;
3250 int copy_flags;
3251
3252 BUG_ON(!ns);
3253
3254 if (likely(!(flags & CLONE_NEWNS))) {
3255 get_mnt_ns(ns);
3256 return ns;
3257 }
3258
3259 old = ns->root;
3260
3261 new_ns = alloc_mnt_ns(user_ns, false);
3262 if (IS_ERR(new_ns))
3263 return new_ns;
3264
3265 namespace_lock();
3266 /* First pass: copy the tree topology */
3267 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3268 if (user_ns != ns->user_ns)
3269 copy_flags |= CL_SHARED_TO_SLAVE;
3270 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3271 if (IS_ERR(new)) {
3272 namespace_unlock();
3273 free_mnt_ns(new_ns);
3274 return ERR_CAST(new);
3275 }
3276 if (user_ns != ns->user_ns) {
3277 lock_mount_hash();
3278 lock_mnt_tree(new);
3279 unlock_mount_hash();
3280 }
3281 new_ns->root = new;
3282 list_add_tail(&new_ns->list, &new->mnt_list);
3283
3284 /*
3285 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3286 * as belonging to new namespace. We have already acquired a private
3287 * fs_struct, so tsk->fs->lock is not needed.
3288 */
3289 p = old;
3290 q = new;
3291 while (p) {
3292 q->mnt_ns = new_ns;
3293 new_ns->mounts++;
3294 if (new_fs) {
3295 if (&p->mnt == new_fs->root.mnt) {
3296 new_fs->root.mnt = mntget(&q->mnt);
3297 rootmnt = &p->mnt;
3298 }
3299 if (&p->mnt == new_fs->pwd.mnt) {
3300 new_fs->pwd.mnt = mntget(&q->mnt);
3301 pwdmnt = &p->mnt;
3302 }
3303 }
3304 p = next_mnt(p, old);
3305 q = next_mnt(q, new);
3306 if (!q)
3307 break;
3308 while (p->mnt.mnt_root != q->mnt.mnt_root)
3309 p = next_mnt(p, old);
3310 }
3311 namespace_unlock();
3312
3313 if (rootmnt)
3314 mntput(rootmnt);
3315 if (pwdmnt)
3316 mntput(pwdmnt);
3317
3318 return new_ns;
3319 }
3320
mount_subtree(struct vfsmount * m,const char * name)3321 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3322 {
3323 struct mount *mnt = real_mount(m);
3324 struct mnt_namespace *ns;
3325 struct super_block *s;
3326 struct path path;
3327 int err;
3328
3329 ns = alloc_mnt_ns(&init_user_ns, true);
3330 if (IS_ERR(ns)) {
3331 mntput(m);
3332 return ERR_CAST(ns);
3333 }
3334 mnt->mnt_ns = ns;
3335 ns->root = mnt;
3336 ns->mounts++;
3337 list_add(&mnt->mnt_list, &ns->list);
3338
3339 err = vfs_path_lookup(m->mnt_root, m,
3340 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3341
3342 put_mnt_ns(ns);
3343
3344 if (err)
3345 return ERR_PTR(err);
3346
3347 /* trade a vfsmount reference for active sb one */
3348 s = path.mnt->mnt_sb;
3349 atomic_inc(&s->s_active);
3350 mntput(path.mnt);
3351 /* lock the sucker */
3352 down_write(&s->s_umount);
3353 /* ... and return the root of (sub)tree on it */
3354 return path.dentry;
3355 }
3356 EXPORT_SYMBOL(mount_subtree);
3357
ksys_mount(const char __user * dev_name,const char __user * dir_name,const char __user * type,unsigned long flags,void __user * data)3358 int ksys_mount(const char __user *dev_name, const char __user *dir_name,
3359 const char __user *type, unsigned long flags, void __user *data)
3360 {
3361 int ret;
3362 char *kernel_type;
3363 char *kernel_dev;
3364 void *options;
3365
3366 kernel_type = copy_mount_string(type);
3367 ret = PTR_ERR(kernel_type);
3368 if (IS_ERR(kernel_type))
3369 goto out_type;
3370
3371 kernel_dev = copy_mount_string(dev_name);
3372 ret = PTR_ERR(kernel_dev);
3373 if (IS_ERR(kernel_dev))
3374 goto out_dev;
3375
3376 options = copy_mount_options(data);
3377 ret = PTR_ERR(options);
3378 if (IS_ERR(options))
3379 goto out_data;
3380
3381 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3382
3383 kfree(options);
3384 out_data:
3385 kfree(kernel_dev);
3386 out_dev:
3387 kfree(kernel_type);
3388 out_type:
3389 return ret;
3390 }
3391
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)3392 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3393 char __user *, type, unsigned long, flags, void __user *, data)
3394 {
3395 return ksys_mount(dev_name, dir_name, type, flags, data);
3396 }
3397
3398 /*
3399 * Create a kernel mount representation for a new, prepared superblock
3400 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3401 */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)3402 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3403 unsigned int, attr_flags)
3404 {
3405 struct mnt_namespace *ns;
3406 struct fs_context *fc;
3407 struct file *file;
3408 struct path newmount;
3409 struct mount *mnt;
3410 struct fd f;
3411 unsigned int mnt_flags = 0;
3412 long ret;
3413
3414 if (!may_mount())
3415 return -EPERM;
3416
3417 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3418 return -EINVAL;
3419
3420 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3421 MOUNT_ATTR_NOSUID |
3422 MOUNT_ATTR_NODEV |
3423 MOUNT_ATTR_NOEXEC |
3424 MOUNT_ATTR__ATIME |
3425 MOUNT_ATTR_NODIRATIME))
3426 return -EINVAL;
3427
3428 if (attr_flags & MOUNT_ATTR_RDONLY)
3429 mnt_flags |= MNT_READONLY;
3430 if (attr_flags & MOUNT_ATTR_NOSUID)
3431 mnt_flags |= MNT_NOSUID;
3432 if (attr_flags & MOUNT_ATTR_NODEV)
3433 mnt_flags |= MNT_NODEV;
3434 if (attr_flags & MOUNT_ATTR_NOEXEC)
3435 mnt_flags |= MNT_NOEXEC;
3436 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3437 mnt_flags |= MNT_NODIRATIME;
3438
3439 switch (attr_flags & MOUNT_ATTR__ATIME) {
3440 case MOUNT_ATTR_STRICTATIME:
3441 break;
3442 case MOUNT_ATTR_NOATIME:
3443 mnt_flags |= MNT_NOATIME;
3444 break;
3445 case MOUNT_ATTR_RELATIME:
3446 mnt_flags |= MNT_RELATIME;
3447 break;
3448 default:
3449 return -EINVAL;
3450 }
3451
3452 f = fdget(fs_fd);
3453 if (!f.file)
3454 return -EBADF;
3455
3456 ret = -EINVAL;
3457 if (f.file->f_op != &fscontext_fops)
3458 goto err_fsfd;
3459
3460 fc = f.file->private_data;
3461
3462 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3463 if (ret < 0)
3464 goto err_fsfd;
3465
3466 /* There must be a valid superblock or we can't mount it */
3467 ret = -EINVAL;
3468 if (!fc->root)
3469 goto err_unlock;
3470
3471 ret = -EPERM;
3472 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3473 pr_warn("VFS: Mount too revealing\n");
3474 goto err_unlock;
3475 }
3476
3477 ret = -EBUSY;
3478 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3479 goto err_unlock;
3480
3481 ret = -EPERM;
3482 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3483 goto err_unlock;
3484
3485 newmount.mnt = vfs_create_mount(fc);
3486 if (IS_ERR(newmount.mnt)) {
3487 ret = PTR_ERR(newmount.mnt);
3488 goto err_unlock;
3489 }
3490 newmount.dentry = dget(fc->root);
3491 newmount.mnt->mnt_flags = mnt_flags;
3492
3493 /* We've done the mount bit - now move the file context into more or
3494 * less the same state as if we'd done an fspick(). We don't want to
3495 * do any memory allocation or anything like that at this point as we
3496 * don't want to have to handle any errors incurred.
3497 */
3498 vfs_clean_context(fc);
3499
3500 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3501 if (IS_ERR(ns)) {
3502 ret = PTR_ERR(ns);
3503 goto err_path;
3504 }
3505 mnt = real_mount(newmount.mnt);
3506 mnt->mnt_ns = ns;
3507 ns->root = mnt;
3508 ns->mounts = 1;
3509 list_add(&mnt->mnt_list, &ns->list);
3510 mntget(newmount.mnt);
3511
3512 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3513 * it, not just simply put it.
3514 */
3515 file = dentry_open(&newmount, O_PATH, fc->cred);
3516 if (IS_ERR(file)) {
3517 dissolve_on_fput(newmount.mnt);
3518 ret = PTR_ERR(file);
3519 goto err_path;
3520 }
3521 file->f_mode |= FMODE_NEED_UNMOUNT;
3522
3523 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3524 if (ret >= 0)
3525 fd_install(ret, file);
3526 else
3527 fput(file);
3528
3529 err_path:
3530 path_put(&newmount);
3531 err_unlock:
3532 mutex_unlock(&fc->uapi_mutex);
3533 err_fsfd:
3534 fdput(f);
3535 return ret;
3536 }
3537
3538 /*
3539 * Move a mount from one place to another. In combination with
3540 * fsopen()/fsmount() this is used to install a new mount and in combination
3541 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3542 * a mount subtree.
3543 *
3544 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3545 */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char *,from_pathname,int,to_dfd,const char *,to_pathname,unsigned int,flags)3546 SYSCALL_DEFINE5(move_mount,
3547 int, from_dfd, const char *, from_pathname,
3548 int, to_dfd, const char *, to_pathname,
3549 unsigned int, flags)
3550 {
3551 struct path from_path, to_path;
3552 unsigned int lflags;
3553 int ret = 0;
3554
3555 if (!may_mount())
3556 return -EPERM;
3557
3558 if (flags & ~MOVE_MOUNT__MASK)
3559 return -EINVAL;
3560
3561 /* If someone gives a pathname, they aren't permitted to move
3562 * from an fd that requires unmount as we can't get at the flag
3563 * to clear it afterwards.
3564 */
3565 lflags = 0;
3566 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3567 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3568 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3569
3570 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3571 if (ret < 0)
3572 return ret;
3573
3574 lflags = 0;
3575 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3576 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3577 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3578
3579 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3580 if (ret < 0)
3581 goto out_from;
3582
3583 ret = security_move_mount(&from_path, &to_path);
3584 if (ret < 0)
3585 goto out_to;
3586
3587 ret = do_move_mount(&from_path, &to_path);
3588
3589 out_to:
3590 path_put(&to_path);
3591 out_from:
3592 path_put(&from_path);
3593 return ret;
3594 }
3595
3596 /*
3597 * Return true if path is reachable from root
3598 *
3599 * namespace_sem or mount_lock is held
3600 */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)3601 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3602 const struct path *root)
3603 {
3604 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3605 dentry = mnt->mnt_mountpoint;
3606 mnt = mnt->mnt_parent;
3607 }
3608 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3609 }
3610
path_is_under(const struct path * path1,const struct path * path2)3611 bool path_is_under(const struct path *path1, const struct path *path2)
3612 {
3613 bool res;
3614 read_seqlock_excl(&mount_lock);
3615 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3616 read_sequnlock_excl(&mount_lock);
3617 return res;
3618 }
3619 EXPORT_SYMBOL(path_is_under);
3620
3621 /*
3622 * pivot_root Semantics:
3623 * Moves the root file system of the current process to the directory put_old,
3624 * makes new_root as the new root file system of the current process, and sets
3625 * root/cwd of all processes which had them on the current root to new_root.
3626 *
3627 * Restrictions:
3628 * The new_root and put_old must be directories, and must not be on the
3629 * same file system as the current process root. The put_old must be
3630 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3631 * pointed to by put_old must yield the same directory as new_root. No other
3632 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3633 *
3634 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3635 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3636 * in this situation.
3637 *
3638 * Notes:
3639 * - we don't move root/cwd if they are not at the root (reason: if something
3640 * cared enough to change them, it's probably wrong to force them elsewhere)
3641 * - it's okay to pick a root that isn't the root of a file system, e.g.
3642 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3643 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3644 * first.
3645 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)3646 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3647 const char __user *, put_old)
3648 {
3649 struct path new, old, root;
3650 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3651 struct mountpoint *old_mp, *root_mp;
3652 int error;
3653
3654 if (!may_mount())
3655 return -EPERM;
3656
3657 error = user_path_at(AT_FDCWD, new_root,
3658 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3659 if (error)
3660 goto out0;
3661
3662 error = user_path_at(AT_FDCWD, put_old,
3663 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3664 if (error)
3665 goto out1;
3666
3667 error = security_sb_pivotroot(&old, &new);
3668 if (error)
3669 goto out2;
3670
3671 get_fs_root(current->fs, &root);
3672 old_mp = lock_mount(&old);
3673 error = PTR_ERR(old_mp);
3674 if (IS_ERR(old_mp))
3675 goto out3;
3676
3677 error = -EINVAL;
3678 new_mnt = real_mount(new.mnt);
3679 root_mnt = real_mount(root.mnt);
3680 old_mnt = real_mount(old.mnt);
3681 ex_parent = new_mnt->mnt_parent;
3682 root_parent = root_mnt->mnt_parent;
3683 if (IS_MNT_SHARED(old_mnt) ||
3684 IS_MNT_SHARED(ex_parent) ||
3685 IS_MNT_SHARED(root_parent))
3686 goto out4;
3687 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3688 goto out4;
3689 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3690 goto out4;
3691 error = -ENOENT;
3692 if (d_unlinked(new.dentry))
3693 goto out4;
3694 error = -EBUSY;
3695 if (new_mnt == root_mnt || old_mnt == root_mnt)
3696 goto out4; /* loop, on the same file system */
3697 error = -EINVAL;
3698 if (root.mnt->mnt_root != root.dentry)
3699 goto out4; /* not a mountpoint */
3700 if (!mnt_has_parent(root_mnt))
3701 goto out4; /* not attached */
3702 if (new.mnt->mnt_root != new.dentry)
3703 goto out4; /* not a mountpoint */
3704 if (!mnt_has_parent(new_mnt))
3705 goto out4; /* not attached */
3706 /* make sure we can reach put_old from new_root */
3707 if (!is_path_reachable(old_mnt, old.dentry, &new))
3708 goto out4;
3709 /* make certain new is below the root */
3710 if (!is_path_reachable(new_mnt, new.dentry, &root))
3711 goto out4;
3712 lock_mount_hash();
3713 umount_mnt(new_mnt);
3714 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3715 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3716 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3717 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3718 }
3719 /* mount old root on put_old */
3720 attach_mnt(root_mnt, old_mnt, old_mp);
3721 /* mount new_root on / */
3722 attach_mnt(new_mnt, root_parent, root_mp);
3723 mnt_add_count(root_parent, -1);
3724 touch_mnt_namespace(current->nsproxy->mnt_ns);
3725 /* A moved mount should not expire automatically */
3726 list_del_init(&new_mnt->mnt_expire);
3727 put_mountpoint(root_mp);
3728 unlock_mount_hash();
3729 chroot_fs_refs(&root, &new);
3730 error = 0;
3731 out4:
3732 unlock_mount(old_mp);
3733 if (!error)
3734 mntput_no_expire(ex_parent);
3735 out3:
3736 path_put(&root);
3737 out2:
3738 path_put(&old);
3739 out1:
3740 path_put(&new);
3741 out0:
3742 return error;
3743 }
3744
init_mount_tree(void)3745 static void __init init_mount_tree(void)
3746 {
3747 struct vfsmount *mnt;
3748 struct mount *m;
3749 struct mnt_namespace *ns;
3750 struct path root;
3751
3752 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3753 if (IS_ERR(mnt))
3754 panic("Can't create rootfs");
3755
3756 ns = alloc_mnt_ns(&init_user_ns, false);
3757 if (IS_ERR(ns))
3758 panic("Can't allocate initial namespace");
3759 m = real_mount(mnt);
3760 m->mnt_ns = ns;
3761 ns->root = m;
3762 ns->mounts = 1;
3763 list_add(&m->mnt_list, &ns->list);
3764 init_task.nsproxy->mnt_ns = ns;
3765 get_mnt_ns(ns);
3766
3767 root.mnt = mnt;
3768 root.dentry = mnt->mnt_root;
3769 mnt->mnt_flags |= MNT_LOCKED;
3770
3771 set_fs_pwd(current->fs, &root);
3772 set_fs_root(current->fs, &root);
3773 }
3774
mnt_init(void)3775 void __init mnt_init(void)
3776 {
3777 int err;
3778
3779 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3780 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3781
3782 mount_hashtable = alloc_large_system_hash("Mount-cache",
3783 sizeof(struct hlist_head),
3784 mhash_entries, 19,
3785 HASH_ZERO,
3786 &m_hash_shift, &m_hash_mask, 0, 0);
3787 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3788 sizeof(struct hlist_head),
3789 mphash_entries, 19,
3790 HASH_ZERO,
3791 &mp_hash_shift, &mp_hash_mask, 0, 0);
3792
3793 if (!mount_hashtable || !mountpoint_hashtable)
3794 panic("Failed to allocate mount hash table\n");
3795
3796 kernfs_init();
3797
3798 err = sysfs_init();
3799 if (err)
3800 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3801 __func__, err);
3802 fs_kobj = kobject_create_and_add("fs", NULL);
3803 if (!fs_kobj)
3804 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3805 shmem_init();
3806 init_rootfs();
3807 init_mount_tree();
3808 }
3809
put_mnt_ns(struct mnt_namespace * ns)3810 void put_mnt_ns(struct mnt_namespace *ns)
3811 {
3812 if (!atomic_dec_and_test(&ns->count))
3813 return;
3814 drop_collected_mounts(&ns->root->mnt);
3815 free_mnt_ns(ns);
3816 }
3817
kern_mount(struct file_system_type * type)3818 struct vfsmount *kern_mount(struct file_system_type *type)
3819 {
3820 struct vfsmount *mnt;
3821 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3822 if (!IS_ERR(mnt)) {
3823 /*
3824 * it is a longterm mount, don't release mnt until
3825 * we unmount before file sys is unregistered
3826 */
3827 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3828 }
3829 return mnt;
3830 }
3831 EXPORT_SYMBOL_GPL(kern_mount);
3832
kern_unmount(struct vfsmount * mnt)3833 void kern_unmount(struct vfsmount *mnt)
3834 {
3835 /* release long term mount so mount point can be released */
3836 if (!IS_ERR_OR_NULL(mnt)) {
3837 real_mount(mnt)->mnt_ns = NULL;
3838 synchronize_rcu(); /* yecchhh... */
3839 mntput(mnt);
3840 }
3841 }
3842 EXPORT_SYMBOL(kern_unmount);
3843
our_mnt(struct vfsmount * mnt)3844 bool our_mnt(struct vfsmount *mnt)
3845 {
3846 return check_mnt(real_mount(mnt));
3847 }
3848
current_chrooted(void)3849 bool current_chrooted(void)
3850 {
3851 /* Does the current process have a non-standard root */
3852 struct path ns_root;
3853 struct path fs_root;
3854 bool chrooted;
3855
3856 /* Find the namespace root */
3857 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
3858 ns_root.dentry = ns_root.mnt->mnt_root;
3859 path_get(&ns_root);
3860 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3861 ;
3862
3863 get_fs_root(current->fs, &fs_root);
3864
3865 chrooted = !path_equal(&fs_root, &ns_root);
3866
3867 path_put(&fs_root);
3868 path_put(&ns_root);
3869
3870 return chrooted;
3871 }
3872
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)3873 static bool mnt_already_visible(struct mnt_namespace *ns,
3874 const struct super_block *sb,
3875 int *new_mnt_flags)
3876 {
3877 int new_flags = *new_mnt_flags;
3878 struct mount *mnt;
3879 bool visible = false;
3880
3881 down_read(&namespace_sem);
3882 list_for_each_entry(mnt, &ns->list, mnt_list) {
3883 struct mount *child;
3884 int mnt_flags;
3885
3886 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3887 continue;
3888
3889 /* This mount is not fully visible if it's root directory
3890 * is not the root directory of the filesystem.
3891 */
3892 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3893 continue;
3894
3895 /* A local view of the mount flags */
3896 mnt_flags = mnt->mnt.mnt_flags;
3897
3898 /* Don't miss readonly hidden in the superblock flags */
3899 if (sb_rdonly(mnt->mnt.mnt_sb))
3900 mnt_flags |= MNT_LOCK_READONLY;
3901
3902 /* Verify the mount flags are equal to or more permissive
3903 * than the proposed new mount.
3904 */
3905 if ((mnt_flags & MNT_LOCK_READONLY) &&
3906 !(new_flags & MNT_READONLY))
3907 continue;
3908 if ((mnt_flags & MNT_LOCK_ATIME) &&
3909 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3910 continue;
3911
3912 /* This mount is not fully visible if there are any
3913 * locked child mounts that cover anything except for
3914 * empty directories.
3915 */
3916 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3917 struct inode *inode = child->mnt_mountpoint->d_inode;
3918 /* Only worry about locked mounts */
3919 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3920 continue;
3921 /* Is the directory permanetly empty? */
3922 if (!is_empty_dir_inode(inode))
3923 goto next;
3924 }
3925 /* Preserve the locked attributes */
3926 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3927 MNT_LOCK_ATIME);
3928 visible = true;
3929 goto found;
3930 next: ;
3931 }
3932 found:
3933 up_read(&namespace_sem);
3934 return visible;
3935 }
3936
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)3937 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3938 {
3939 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3940 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3941 unsigned long s_iflags;
3942
3943 if (ns->user_ns == &init_user_ns)
3944 return false;
3945
3946 /* Can this filesystem be too revealing? */
3947 s_iflags = sb->s_iflags;
3948 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3949 return false;
3950
3951 if ((s_iflags & required_iflags) != required_iflags) {
3952 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3953 required_iflags);
3954 return true;
3955 }
3956
3957 return !mnt_already_visible(ns, sb, new_mnt_flags);
3958 }
3959
mnt_may_suid(struct vfsmount * mnt)3960 bool mnt_may_suid(struct vfsmount *mnt)
3961 {
3962 /*
3963 * Foreign mounts (accessed via fchdir or through /proc
3964 * symlinks) are always treated as if they are nosuid. This
3965 * prevents namespaces from trusting potentially unsafe
3966 * suid/sgid bits, file caps, or security labels that originate
3967 * in other namespaces.
3968 */
3969 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3970 current_in_userns(mnt->mnt_sb->s_user_ns);
3971 }
3972
mntns_get(struct task_struct * task)3973 static struct ns_common *mntns_get(struct task_struct *task)
3974 {
3975 struct ns_common *ns = NULL;
3976 struct nsproxy *nsproxy;
3977
3978 task_lock(task);
3979 nsproxy = task->nsproxy;
3980 if (nsproxy) {
3981 ns = &nsproxy->mnt_ns->ns;
3982 get_mnt_ns(to_mnt_ns(ns));
3983 }
3984 task_unlock(task);
3985
3986 return ns;
3987 }
3988
mntns_put(struct ns_common * ns)3989 static void mntns_put(struct ns_common *ns)
3990 {
3991 put_mnt_ns(to_mnt_ns(ns));
3992 }
3993
mntns_install(struct nsproxy * nsproxy,struct ns_common * ns)3994 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3995 {
3996 struct fs_struct *fs = current->fs;
3997 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3998 struct path root;
3999 int err;
4000
4001 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4002 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
4003 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
4004 return -EPERM;
4005
4006 if (is_anon_ns(mnt_ns))
4007 return -EINVAL;
4008
4009 if (fs->users != 1)
4010 return -EINVAL;
4011
4012 get_mnt_ns(mnt_ns);
4013 old_mnt_ns = nsproxy->mnt_ns;
4014 nsproxy->mnt_ns = mnt_ns;
4015
4016 /* Find the root */
4017 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4018 "/", LOOKUP_DOWN, &root);
4019 if (err) {
4020 /* revert to old namespace */
4021 nsproxy->mnt_ns = old_mnt_ns;
4022 put_mnt_ns(mnt_ns);
4023 return err;
4024 }
4025
4026 put_mnt_ns(old_mnt_ns);
4027
4028 /* Update the pwd and root */
4029 set_fs_pwd(fs, &root);
4030 set_fs_root(fs, &root);
4031
4032 path_put(&root);
4033 return 0;
4034 }
4035
mntns_owner(struct ns_common * ns)4036 static struct user_namespace *mntns_owner(struct ns_common *ns)
4037 {
4038 return to_mnt_ns(ns)->user_ns;
4039 }
4040
4041 const struct proc_ns_operations mntns_operations = {
4042 .name = "mnt",
4043 .type = CLONE_NEWNS,
4044 .get = mntns_get,
4045 .put = mntns_put,
4046 .install = mntns_install,
4047 .owner = mntns_owner,
4048 };
4049