• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 
57 struct sfp_bus;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 /* UDP Tunnel offloads */
64 struct udp_tunnel_info;
65 struct bpf_prog;
66 struct xdp_buff;
67 
68 void netdev_set_default_ethtool_ops(struct net_device *dev,
69 				    const struct ethtool_ops *ops);
70 
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
73 #define NET_RX_DROP		1	/* packet dropped */
74 
75 /*
76  * Transmit return codes: transmit return codes originate from three different
77  * namespaces:
78  *
79  * - qdisc return codes
80  * - driver transmit return codes
81  * - errno values
82  *
83  * Drivers are allowed to return any one of those in their hard_start_xmit()
84  * function. Real network devices commonly used with qdiscs should only return
85  * the driver transmit return codes though - when qdiscs are used, the actual
86  * transmission happens asynchronously, so the value is not propagated to
87  * higher layers. Virtual network devices transmit synchronously; in this case
88  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
89  * others are propagated to higher layers.
90  */
91 
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS	0x00
94 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
95 #define NET_XMIT_CN		0x02	/* congestion notification	*/
96 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
97 
98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
99  * indicates that the device will soon be dropping packets, or already drops
100  * some packets of the same priority; prompting us to send less aggressively. */
101 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
102 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
103 
104 /* Driver transmit return codes */
105 #define NETDEV_TX_MASK		0xf0
106 
107 enum netdev_tx {
108 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
109 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
110 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
111 };
112 typedef enum netdev_tx netdev_tx_t;
113 
114 /*
115  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
116  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
117  */
dev_xmit_complete(int rc)118 static inline bool dev_xmit_complete(int rc)
119 {
120 	/*
121 	 * Positive cases with an skb consumed by a driver:
122 	 * - successful transmission (rc == NETDEV_TX_OK)
123 	 * - error while transmitting (rc < 0)
124 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
125 	 */
126 	if (likely(rc < NET_XMIT_MASK))
127 		return true;
128 
129 	return false;
130 }
131 
132 /*
133  *	Compute the worst-case header length according to the protocols
134  *	used.
135  */
136 
137 #if defined(CONFIG_HYPERV_NET)
138 # define LL_MAX_HEADER 128
139 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
140 # if defined(CONFIG_MAC80211_MESH)
141 #  define LL_MAX_HEADER 128
142 # else
143 #  define LL_MAX_HEADER 96
144 # endif
145 #else
146 # define LL_MAX_HEADER 32
147 #endif
148 
149 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
150     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
151 #define MAX_HEADER LL_MAX_HEADER
152 #else
153 #define MAX_HEADER (LL_MAX_HEADER + 48)
154 #endif
155 
156 /*
157  *	Old network device statistics. Fields are native words
158  *	(unsigned long) so they can be read and written atomically.
159  */
160 
161 struct net_device_stats {
162 	unsigned long	rx_packets;
163 	unsigned long	tx_packets;
164 	unsigned long	rx_bytes;
165 	unsigned long	tx_bytes;
166 	unsigned long	rx_errors;
167 	unsigned long	tx_errors;
168 	unsigned long	rx_dropped;
169 	unsigned long	tx_dropped;
170 	unsigned long	multicast;
171 	unsigned long	collisions;
172 	unsigned long	rx_length_errors;
173 	unsigned long	rx_over_errors;
174 	unsigned long	rx_crc_errors;
175 	unsigned long	rx_frame_errors;
176 	unsigned long	rx_fifo_errors;
177 	unsigned long	rx_missed_errors;
178 	unsigned long	tx_aborted_errors;
179 	unsigned long	tx_carrier_errors;
180 	unsigned long	tx_fifo_errors;
181 	unsigned long	tx_heartbeat_errors;
182 	unsigned long	tx_window_errors;
183 	unsigned long	rx_compressed;
184 	unsigned long	tx_compressed;
185 };
186 
187 
188 #include <linux/cache.h>
189 #include <linux/skbuff.h>
190 
191 #ifdef CONFIG_RPS
192 #include <linux/static_key.h>
193 extern struct static_key_false rps_needed;
194 extern struct static_key_false rfs_needed;
195 #endif
196 
197 struct neighbour;
198 struct neigh_parms;
199 struct sk_buff;
200 
201 struct netdev_hw_addr {
202 	struct list_head	list;
203 	unsigned char		addr[MAX_ADDR_LEN];
204 	unsigned char		type;
205 #define NETDEV_HW_ADDR_T_LAN		1
206 #define NETDEV_HW_ADDR_T_SAN		2
207 #define NETDEV_HW_ADDR_T_SLAVE		3
208 #define NETDEV_HW_ADDR_T_UNICAST	4
209 #define NETDEV_HW_ADDR_T_MULTICAST	5
210 	bool			global_use;
211 	int			sync_cnt;
212 	int			refcount;
213 	int			synced;
214 	struct rcu_head		rcu_head;
215 };
216 
217 struct netdev_hw_addr_list {
218 	struct list_head	list;
219 	int			count;
220 };
221 
222 #define netdev_hw_addr_list_count(l) ((l)->count)
223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
224 #define netdev_hw_addr_list_for_each(ha, l) \
225 	list_for_each_entry(ha, &(l)->list, list)
226 
227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
229 #define netdev_for_each_uc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
231 
232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
234 #define netdev_for_each_mc_addr(ha, dev) \
235 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
236 
237 struct hh_cache {
238 	unsigned int	hh_len;
239 	seqlock_t	hh_lock;
240 
241 	/* cached hardware header; allow for machine alignment needs.        */
242 #define HH_DATA_MOD	16
243 #define HH_DATA_OFF(__len) \
244 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
245 #define HH_DATA_ALIGN(__len) \
246 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
247 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
248 };
249 
250 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
251  * Alternative is:
252  *   dev->hard_header_len ? (dev->hard_header_len +
253  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
254  *
255  * We could use other alignment values, but we must maintain the
256  * relationship HH alignment <= LL alignment.
257  */
258 #define LL_RESERVED_SPACE(dev) \
259 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
261 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 
263 struct header_ops {
264 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
265 			   unsigned short type, const void *daddr,
266 			   const void *saddr, unsigned int len);
267 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
268 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
269 	void	(*cache_update)(struct hh_cache *hh,
270 				const struct net_device *dev,
271 				const unsigned char *haddr);
272 	bool	(*validate)(const char *ll_header, unsigned int len);
273 	__be16	(*parse_protocol)(const struct sk_buff *skb);
274 };
275 
276 /* These flag bits are private to the generic network queueing
277  * layer; they may not be explicitly referenced by any other
278  * code.
279  */
280 
281 enum netdev_state_t {
282 	__LINK_STATE_START,
283 	__LINK_STATE_PRESENT,
284 	__LINK_STATE_NOCARRIER,
285 	__LINK_STATE_LINKWATCH_PENDING,
286 	__LINK_STATE_DORMANT,
287 };
288 
289 
290 /*
291  * This structure holds boot-time configured netdevice settings. They
292  * are then used in the device probing.
293  */
294 struct netdev_boot_setup {
295 	char name[IFNAMSIZ];
296 	struct ifmap map;
297 };
298 #define NETDEV_BOOT_SETUP_MAX 8
299 
300 int __init netdev_boot_setup(char *str);
301 
302 struct gro_list {
303 	struct list_head	list;
304 	int			count;
305 };
306 
307 /*
308  * size of gro hash buckets, must less than bit number of
309  * napi_struct::gro_bitmask
310  */
311 #define GRO_HASH_BUCKETS	8
312 
313 /*
314  * Structure for NAPI scheduling similar to tasklet but with weighting
315  */
316 struct napi_struct {
317 	/* The poll_list must only be managed by the entity which
318 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
319 	 * whoever atomically sets that bit can add this napi_struct
320 	 * to the per-CPU poll_list, and whoever clears that bit
321 	 * can remove from the list right before clearing the bit.
322 	 */
323 	struct list_head	poll_list;
324 
325 	unsigned long		state;
326 	int			weight;
327 	unsigned long		gro_bitmask;
328 	int			(*poll)(struct napi_struct *, int);
329 #ifdef CONFIG_NETPOLL
330 	int			poll_owner;
331 #endif
332 	struct net_device	*dev;
333 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
334 	struct sk_buff		*skb;
335 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
336 	int			rx_count; /* length of rx_list */
337 	struct hrtimer		timer;
338 	struct list_head	dev_list;
339 	struct hlist_node	napi_hash_node;
340 	unsigned int		napi_id;
341 };
342 
343 enum {
344 	NAPI_STATE_SCHED,	/* Poll is scheduled */
345 	NAPI_STATE_MISSED,	/* reschedule a napi */
346 	NAPI_STATE_DISABLE,	/* Disable pending */
347 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
348 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
349 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
350 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
351 };
352 
353 enum {
354 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
355 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
356 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
357 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
358 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
359 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
360 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
361 };
362 
363 enum gro_result {
364 	GRO_MERGED,
365 	GRO_MERGED_FREE,
366 	GRO_HELD,
367 	GRO_NORMAL,
368 	GRO_DROP,
369 	GRO_CONSUMED,
370 };
371 typedef enum gro_result gro_result_t;
372 
373 /*
374  * enum rx_handler_result - Possible return values for rx_handlers.
375  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
376  * further.
377  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
378  * case skb->dev was changed by rx_handler.
379  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
380  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
381  *
382  * rx_handlers are functions called from inside __netif_receive_skb(), to do
383  * special processing of the skb, prior to delivery to protocol handlers.
384  *
385  * Currently, a net_device can only have a single rx_handler registered. Trying
386  * to register a second rx_handler will return -EBUSY.
387  *
388  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
389  * To unregister a rx_handler on a net_device, use
390  * netdev_rx_handler_unregister().
391  *
392  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
393  * do with the skb.
394  *
395  * If the rx_handler consumed the skb in some way, it should return
396  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
397  * the skb to be delivered in some other way.
398  *
399  * If the rx_handler changed skb->dev, to divert the skb to another
400  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
401  * new device will be called if it exists.
402  *
403  * If the rx_handler decides the skb should be ignored, it should return
404  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
405  * are registered on exact device (ptype->dev == skb->dev).
406  *
407  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
408  * delivered, it should return RX_HANDLER_PASS.
409  *
410  * A device without a registered rx_handler will behave as if rx_handler
411  * returned RX_HANDLER_PASS.
412  */
413 
414 enum rx_handler_result {
415 	RX_HANDLER_CONSUMED,
416 	RX_HANDLER_ANOTHER,
417 	RX_HANDLER_EXACT,
418 	RX_HANDLER_PASS,
419 };
420 typedef enum rx_handler_result rx_handler_result_t;
421 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
422 
423 void __napi_schedule(struct napi_struct *n);
424 void __napi_schedule_irqoff(struct napi_struct *n);
425 
napi_disable_pending(struct napi_struct * n)426 static inline bool napi_disable_pending(struct napi_struct *n)
427 {
428 	return test_bit(NAPI_STATE_DISABLE, &n->state);
429 }
430 
431 bool napi_schedule_prep(struct napi_struct *n);
432 
433 /**
434  *	napi_schedule - schedule NAPI poll
435  *	@n: NAPI context
436  *
437  * Schedule NAPI poll routine to be called if it is not already
438  * running.
439  */
napi_schedule(struct napi_struct * n)440 static inline void napi_schedule(struct napi_struct *n)
441 {
442 	if (napi_schedule_prep(n))
443 		__napi_schedule(n);
444 }
445 
446 /**
447  *	napi_schedule_irqoff - schedule NAPI poll
448  *	@n: NAPI context
449  *
450  * Variant of napi_schedule(), assuming hard irqs are masked.
451  */
napi_schedule_irqoff(struct napi_struct * n)452 static inline void napi_schedule_irqoff(struct napi_struct *n)
453 {
454 	if (napi_schedule_prep(n))
455 		__napi_schedule_irqoff(n);
456 }
457 
458 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)459 static inline bool napi_reschedule(struct napi_struct *napi)
460 {
461 	if (napi_schedule_prep(napi)) {
462 		__napi_schedule(napi);
463 		return true;
464 	}
465 	return false;
466 }
467 
468 bool napi_complete_done(struct napi_struct *n, int work_done);
469 /**
470  *	napi_complete - NAPI processing complete
471  *	@n: NAPI context
472  *
473  * Mark NAPI processing as complete.
474  * Consider using napi_complete_done() instead.
475  * Return false if device should avoid rearming interrupts.
476  */
napi_complete(struct napi_struct * n)477 static inline bool napi_complete(struct napi_struct *n)
478 {
479 	return napi_complete_done(n, 0);
480 }
481 
482 /**
483  *	napi_hash_del - remove a NAPI from global table
484  *	@napi: NAPI context
485  *
486  * Warning: caller must observe RCU grace period
487  * before freeing memory containing @napi, if
488  * this function returns true.
489  * Note: core networking stack automatically calls it
490  * from netif_napi_del().
491  * Drivers might want to call this helper to combine all
492  * the needed RCU grace periods into a single one.
493  */
494 bool napi_hash_del(struct napi_struct *napi);
495 
496 /**
497  *	napi_disable - prevent NAPI from scheduling
498  *	@n: NAPI context
499  *
500  * Stop NAPI from being scheduled on this context.
501  * Waits till any outstanding processing completes.
502  */
503 void napi_disable(struct napi_struct *n);
504 
505 /**
506  *	napi_enable - enable NAPI scheduling
507  *	@n: NAPI context
508  *
509  * Resume NAPI from being scheduled on this context.
510  * Must be paired with napi_disable.
511  */
napi_enable(struct napi_struct * n)512 static inline void napi_enable(struct napi_struct *n)
513 {
514 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
515 	smp_mb__before_atomic();
516 	clear_bit(NAPI_STATE_SCHED, &n->state);
517 	clear_bit(NAPI_STATE_NPSVC, &n->state);
518 }
519 
520 /**
521  *	napi_synchronize - wait until NAPI is not running
522  *	@n: NAPI context
523  *
524  * Wait until NAPI is done being scheduled on this context.
525  * Waits till any outstanding processing completes but
526  * does not disable future activations.
527  */
napi_synchronize(const struct napi_struct * n)528 static inline void napi_synchronize(const struct napi_struct *n)
529 {
530 	if (IS_ENABLED(CONFIG_SMP))
531 		while (test_bit(NAPI_STATE_SCHED, &n->state))
532 			msleep(1);
533 	else
534 		barrier();
535 }
536 
537 /**
538  *	napi_if_scheduled_mark_missed - if napi is running, set the
539  *	NAPIF_STATE_MISSED
540  *	@n: NAPI context
541  *
542  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
543  * NAPI is scheduled.
544  **/
napi_if_scheduled_mark_missed(struct napi_struct * n)545 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
546 {
547 	unsigned long val, new;
548 
549 	do {
550 		val = READ_ONCE(n->state);
551 		if (val & NAPIF_STATE_DISABLE)
552 			return true;
553 
554 		if (!(val & NAPIF_STATE_SCHED))
555 			return false;
556 
557 		new = val | NAPIF_STATE_MISSED;
558 	} while (cmpxchg(&n->state, val, new) != val);
559 
560 	return true;
561 }
562 
563 enum netdev_queue_state_t {
564 	__QUEUE_STATE_DRV_XOFF,
565 	__QUEUE_STATE_STACK_XOFF,
566 	__QUEUE_STATE_FROZEN,
567 };
568 
569 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
570 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
571 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
572 
573 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
574 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
575 					QUEUE_STATE_FROZEN)
576 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
577 					QUEUE_STATE_FROZEN)
578 
579 /*
580  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
581  * netif_tx_* functions below are used to manipulate this flag.  The
582  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
583  * queue independently.  The netif_xmit_*stopped functions below are called
584  * to check if the queue has been stopped by the driver or stack (either
585  * of the XOFF bits are set in the state).  Drivers should not need to call
586  * netif_xmit*stopped functions, they should only be using netif_tx_*.
587  */
588 
589 struct netdev_queue {
590 /*
591  * read-mostly part
592  */
593 	struct net_device	*dev;
594 	struct Qdisc __rcu	*qdisc;
595 	struct Qdisc		*qdisc_sleeping;
596 #ifdef CONFIG_SYSFS
597 	struct kobject		kobj;
598 #endif
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 	int			numa_node;
601 #endif
602 	unsigned long		tx_maxrate;
603 	/*
604 	 * Number of TX timeouts for this queue
605 	 * (/sys/class/net/DEV/Q/trans_timeout)
606 	 */
607 	unsigned long		trans_timeout;
608 
609 	/* Subordinate device that the queue has been assigned to */
610 	struct net_device	*sb_dev;
611 #ifdef CONFIG_XDP_SOCKETS
612 	struct xdp_umem         *umem;
613 #endif
614 /*
615  * write-mostly part
616  */
617 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
618 	int			xmit_lock_owner;
619 	/*
620 	 * Time (in jiffies) of last Tx
621 	 */
622 	unsigned long		trans_start;
623 
624 	unsigned long		state;
625 
626 #ifdef CONFIG_BQL
627 	struct dql		dql;
628 #endif
629 } ____cacheline_aligned_in_smp;
630 
631 extern int sysctl_fb_tunnels_only_for_init_net;
632 extern int sysctl_devconf_inherit_init_net;
633 
net_has_fallback_tunnels(const struct net * net)634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636 	return net == &init_net ||
637 	       !IS_ENABLED(CONFIG_SYSCTL) ||
638 	       !sysctl_fb_tunnels_only_for_init_net;
639 }
640 
netdev_queue_numa_node_read(const struct netdev_queue * q)641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644 	return q->numa_node;
645 #else
646 	return NUMA_NO_NODE;
647 #endif
648 }
649 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 	q->numa_node = node;
654 #endif
655 }
656 
657 #ifdef CONFIG_RPS
658 /*
659  * This structure holds an RPS map which can be of variable length.  The
660  * map is an array of CPUs.
661  */
662 struct rps_map {
663 	unsigned int len;
664 	struct rcu_head rcu;
665 	u16 cpus[0];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668 
669 /*
670  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671  * tail pointer for that CPU's input queue at the time of last enqueue, and
672  * a hardware filter index.
673  */
674 struct rps_dev_flow {
675 	u16 cpu;
676 	u16 filter;
677 	unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680 
681 /*
682  * The rps_dev_flow_table structure contains a table of flow mappings.
683  */
684 struct rps_dev_flow_table {
685 	unsigned int mask;
686 	struct rcu_head rcu;
687 	struct rps_dev_flow flows[0];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690     ((_num) * sizeof(struct rps_dev_flow)))
691 
692 /*
693  * The rps_sock_flow_table contains mappings of flows to the last CPU
694  * on which they were processed by the application (set in recvmsg).
695  * Each entry is a 32bit value. Upper part is the high-order bits
696  * of flow hash, lower part is CPU number.
697  * rps_cpu_mask is used to partition the space, depending on number of
698  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700  * meaning we use 32-6=26 bits for the hash.
701  */
702 struct rps_sock_flow_table {
703 	u32	mask;
704 
705 	u32	ents[0] ____cacheline_aligned_in_smp;
706 };
707 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708 
709 #define RPS_NO_CPU 0xffff
710 
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715 					u32 hash)
716 {
717 	if (table && hash) {
718 		unsigned int index = hash & table->mask;
719 		u32 val = hash & ~rps_cpu_mask;
720 
721 		/* We only give a hint, preemption can change CPU under us */
722 		val |= raw_smp_processor_id();
723 
724 		if (table->ents[index] != val)
725 			table->ents[index] = val;
726 	}
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731 			 u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734 
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738 	struct rps_map __rcu		*rps_map;
739 	struct rps_dev_flow_table __rcu	*rps_flow_table;
740 #endif
741 	struct kobject			kobj;
742 	struct net_device		*dev;
743 	struct xdp_rxq_info		xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745 	struct xdp_umem                 *umem;
746 #endif
747 } ____cacheline_aligned_in_smp;
748 
749 /*
750  * RX queue sysfs structures and functions.
751  */
752 struct rx_queue_attribute {
753 	struct attribute attr;
754 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755 	ssize_t (*store)(struct netdev_rx_queue *queue,
756 			 const char *buf, size_t len);
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765 	unsigned int len;
766 	unsigned int alloc_len;
767 	struct rcu_head rcu;
768 	u16 queues[0];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  */
777 struct xps_dev_maps {
778 	struct rcu_head rcu;
779 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
780 };
781 
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
783 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784 
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
787 
788 #endif /* CONFIG_XPS */
789 
790 #define TC_MAX_QUEUE	16
791 #define TC_BITMASK	15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794 	u16 count;
795 	u16 offset;
796 };
797 
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800  * This structure is to hold information about the device
801  * configured to run FCoE protocol stack.
802  */
803 struct netdev_fcoe_hbainfo {
804 	char	manufacturer[64];
805 	char	serial_number[64];
806 	char	hardware_version[64];
807 	char	driver_version[64];
808 	char	optionrom_version[64];
809 	char	firmware_version[64];
810 	char	model[256];
811 	char	model_description[256];
812 };
813 #endif
814 
815 #define MAX_PHYS_ITEM_ID_LEN 32
816 
817 /* This structure holds a unique identifier to identify some
818  * physical item (port for example) used by a netdevice.
819  */
820 struct netdev_phys_item_id {
821 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822 	unsigned char id_len;
823 };
824 
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826 					    struct netdev_phys_item_id *b)
827 {
828 	return a->id_len == b->id_len &&
829 	       memcmp(a->id, b->id, a->id_len) == 0;
830 }
831 
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833 				       struct sk_buff *skb,
834 				       struct net_device *sb_dev);
835 
836 enum tc_setup_type {
837 	TC_SETUP_QDISC_MQPRIO,
838 	TC_SETUP_CLSU32,
839 	TC_SETUP_CLSFLOWER,
840 	TC_SETUP_CLSMATCHALL,
841 	TC_SETUP_CLSBPF,
842 	TC_SETUP_BLOCK,
843 	TC_SETUP_QDISC_CBS,
844 	TC_SETUP_QDISC_RED,
845 	TC_SETUP_QDISC_PRIO,
846 	TC_SETUP_QDISC_MQ,
847 	TC_SETUP_QDISC_ETF,
848 	TC_SETUP_ROOT_QDISC,
849 	TC_SETUP_QDISC_GRED,
850 	TC_SETUP_QDISC_TAPRIO,
851 };
852 
853 /* These structures hold the attributes of bpf state that are being passed
854  * to the netdevice through the bpf op.
855  */
856 enum bpf_netdev_command {
857 	/* Set or clear a bpf program used in the earliest stages of packet
858 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
859 	 * is responsible for calling bpf_prog_put on any old progs that are
860 	 * stored. In case of error, the callee need not release the new prog
861 	 * reference, but on success it takes ownership and must bpf_prog_put
862 	 * when it is no longer used.
863 	 */
864 	XDP_SETUP_PROG,
865 	XDP_SETUP_PROG_HW,
866 	XDP_QUERY_PROG,
867 	XDP_QUERY_PROG_HW,
868 	/* BPF program for offload callbacks, invoked at program load time. */
869 	BPF_OFFLOAD_MAP_ALLOC,
870 	BPF_OFFLOAD_MAP_FREE,
871 	XDP_SETUP_XSK_UMEM,
872 };
873 
874 struct bpf_prog_offload_ops;
875 struct netlink_ext_ack;
876 struct xdp_umem;
877 
878 struct netdev_bpf {
879 	enum bpf_netdev_command command;
880 	union {
881 		/* XDP_SETUP_PROG */
882 		struct {
883 			u32 flags;
884 			struct bpf_prog *prog;
885 			struct netlink_ext_ack *extack;
886 		};
887 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
888 		struct {
889 			u32 prog_id;
890 			/* flags with which program was installed */
891 			u32 prog_flags;
892 		};
893 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
894 		struct {
895 			struct bpf_offloaded_map *offmap;
896 		};
897 		/* XDP_SETUP_XSK_UMEM */
898 		struct {
899 			struct xdp_umem *umem;
900 			u16 queue_id;
901 		} xsk;
902 	};
903 };
904 
905 /* Flags for ndo_xsk_wakeup. */
906 #define XDP_WAKEUP_RX (1 << 0)
907 #define XDP_WAKEUP_TX (1 << 1)
908 
909 #ifdef CONFIG_XFRM_OFFLOAD
910 struct xfrmdev_ops {
911 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
912 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
913 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
914 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
915 				       struct xfrm_state *x);
916 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
917 };
918 #endif
919 
920 struct dev_ifalias {
921 	struct rcu_head rcuhead;
922 	char ifalias[];
923 };
924 
925 struct devlink;
926 struct tlsdev_ops;
927 
928 
929 /*
930  * This structure defines the management hooks for network devices.
931  * The following hooks can be defined; unless noted otherwise, they are
932  * optional and can be filled with a null pointer.
933  *
934  * int (*ndo_init)(struct net_device *dev);
935  *     This function is called once when a network device is registered.
936  *     The network device can use this for any late stage initialization
937  *     or semantic validation. It can fail with an error code which will
938  *     be propagated back to register_netdev.
939  *
940  * void (*ndo_uninit)(struct net_device *dev);
941  *     This function is called when device is unregistered or when registration
942  *     fails. It is not called if init fails.
943  *
944  * int (*ndo_open)(struct net_device *dev);
945  *     This function is called when a network device transitions to the up
946  *     state.
947  *
948  * int (*ndo_stop)(struct net_device *dev);
949  *     This function is called when a network device transitions to the down
950  *     state.
951  *
952  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
953  *                               struct net_device *dev);
954  *	Called when a packet needs to be transmitted.
955  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
956  *	the queue before that can happen; it's for obsolete devices and weird
957  *	corner cases, but the stack really does a non-trivial amount
958  *	of useless work if you return NETDEV_TX_BUSY.
959  *	Required; cannot be NULL.
960  *
961  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
962  *					   struct net_device *dev
963  *					   netdev_features_t features);
964  *	Called by core transmit path to determine if device is capable of
965  *	performing offload operations on a given packet. This is to give
966  *	the device an opportunity to implement any restrictions that cannot
967  *	be otherwise expressed by feature flags. The check is called with
968  *	the set of features that the stack has calculated and it returns
969  *	those the driver believes to be appropriate.
970  *
971  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
972  *                         struct net_device *sb_dev);
973  *	Called to decide which queue to use when device supports multiple
974  *	transmit queues.
975  *
976  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
977  *	This function is called to allow device receiver to make
978  *	changes to configuration when multicast or promiscuous is enabled.
979  *
980  * void (*ndo_set_rx_mode)(struct net_device *dev);
981  *	This function is called device changes address list filtering.
982  *	If driver handles unicast address filtering, it should set
983  *	IFF_UNICAST_FLT in its priv_flags.
984  *
985  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
986  *	This function  is called when the Media Access Control address
987  *	needs to be changed. If this interface is not defined, the
988  *	MAC address can not be changed.
989  *
990  * int (*ndo_validate_addr)(struct net_device *dev);
991  *	Test if Media Access Control address is valid for the device.
992  *
993  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
994  *	Called when a user requests an ioctl which can't be handled by
995  *	the generic interface code. If not defined ioctls return
996  *	not supported error code.
997  *
998  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
999  *	Used to set network devices bus interface parameters. This interface
1000  *	is retained for legacy reasons; new devices should use the bus
1001  *	interface (PCI) for low level management.
1002  *
1003  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1004  *	Called when a user wants to change the Maximum Transfer Unit
1005  *	of a device.
1006  *
1007  * void (*ndo_tx_timeout)(struct net_device *dev);
1008  *	Callback used when the transmitter has not made any progress
1009  *	for dev->watchdog ticks.
1010  *
1011  * void (*ndo_get_stats64)(struct net_device *dev,
1012  *                         struct rtnl_link_stats64 *storage);
1013  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1014  *	Called when a user wants to get the network device usage
1015  *	statistics. Drivers must do one of the following:
1016  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1017  *	   rtnl_link_stats64 structure passed by the caller.
1018  *	2. Define @ndo_get_stats to update a net_device_stats structure
1019  *	   (which should normally be dev->stats) and return a pointer to
1020  *	   it. The structure may be changed asynchronously only if each
1021  *	   field is written atomically.
1022  *	3. Update dev->stats asynchronously and atomically, and define
1023  *	   neither operation.
1024  *
1025  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1026  *	Return true if this device supports offload stats of this attr_id.
1027  *
1028  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1029  *	void *attr_data)
1030  *	Get statistics for offload operations by attr_id. Write it into the
1031  *	attr_data pointer.
1032  *
1033  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1034  *	If device supports VLAN filtering this function is called when a
1035  *	VLAN id is registered.
1036  *
1037  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1038  *	If device supports VLAN filtering this function is called when a
1039  *	VLAN id is unregistered.
1040  *
1041  * void (*ndo_poll_controller)(struct net_device *dev);
1042  *
1043  *	SR-IOV management functions.
1044  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1045  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1046  *			  u8 qos, __be16 proto);
1047  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1048  *			  int max_tx_rate);
1049  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1050  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1051  * int (*ndo_get_vf_config)(struct net_device *dev,
1052  *			    int vf, struct ifla_vf_info *ivf);
1053  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1054  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1055  *			  struct nlattr *port[]);
1056  *
1057  *      Enable or disable the VF ability to query its RSS Redirection Table and
1058  *      Hash Key. This is needed since on some devices VF share this information
1059  *      with PF and querying it may introduce a theoretical security risk.
1060  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1061  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1062  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1063  *		       void *type_data);
1064  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1065  *	This is always called from the stack with the rtnl lock held and netif
1066  *	tx queues stopped. This allows the netdevice to perform queue
1067  *	management safely.
1068  *
1069  *	Fiber Channel over Ethernet (FCoE) offload functions.
1070  * int (*ndo_fcoe_enable)(struct net_device *dev);
1071  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1072  *	so the underlying device can perform whatever needed configuration or
1073  *	initialization to support acceleration of FCoE traffic.
1074  *
1075  * int (*ndo_fcoe_disable)(struct net_device *dev);
1076  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1077  *	so the underlying device can perform whatever needed clean-ups to
1078  *	stop supporting acceleration of FCoE traffic.
1079  *
1080  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1081  *			     struct scatterlist *sgl, unsigned int sgc);
1082  *	Called when the FCoE Initiator wants to initialize an I/O that
1083  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1084  *	perform necessary setup and returns 1 to indicate the device is set up
1085  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1086  *
1087  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1088  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1089  *	indicated by the FC exchange id 'xid', so the underlying device can
1090  *	clean up and reuse resources for later DDP requests.
1091  *
1092  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1093  *			      struct scatterlist *sgl, unsigned int sgc);
1094  *	Called when the FCoE Target wants to initialize an I/O that
1095  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1096  *	perform necessary setup and returns 1 to indicate the device is set up
1097  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1098  *
1099  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1100  *			       struct netdev_fcoe_hbainfo *hbainfo);
1101  *	Called when the FCoE Protocol stack wants information on the underlying
1102  *	device. This information is utilized by the FCoE protocol stack to
1103  *	register attributes with Fiber Channel management service as per the
1104  *	FC-GS Fabric Device Management Information(FDMI) specification.
1105  *
1106  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1107  *	Called when the underlying device wants to override default World Wide
1108  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1109  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1110  *	protocol stack to use.
1111  *
1112  *	RFS acceleration.
1113  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1114  *			    u16 rxq_index, u32 flow_id);
1115  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1116  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1117  *	Return the filter ID on success, or a negative error code.
1118  *
1119  *	Slave management functions (for bridge, bonding, etc).
1120  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1121  *	Called to make another netdev an underling.
1122  *
1123  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1124  *	Called to release previously enslaved netdev.
1125  *
1126  *      Feature/offload setting functions.
1127  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1128  *		netdev_features_t features);
1129  *	Adjusts the requested feature flags according to device-specific
1130  *	constraints, and returns the resulting flags. Must not modify
1131  *	the device state.
1132  *
1133  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1134  *	Called to update device configuration to new features. Passed
1135  *	feature set might be less than what was returned by ndo_fix_features()).
1136  *	Must return >0 or -errno if it changed dev->features itself.
1137  *
1138  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1139  *		      struct net_device *dev,
1140  *		      const unsigned char *addr, u16 vid, u16 flags,
1141  *		      struct netlink_ext_ack *extack);
1142  *	Adds an FDB entry to dev for addr.
1143  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1144  *		      struct net_device *dev,
1145  *		      const unsigned char *addr, u16 vid)
1146  *	Deletes the FDB entry from dev coresponding to addr.
1147  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1148  *		       struct net_device *dev, struct net_device *filter_dev,
1149  *		       int *idx)
1150  *	Used to add FDB entries to dump requests. Implementers should add
1151  *	entries to skb and update idx with the number of entries.
1152  *
1153  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1154  *			     u16 flags, struct netlink_ext_ack *extack)
1155  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1156  *			     struct net_device *dev, u32 filter_mask,
1157  *			     int nlflags)
1158  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1159  *			     u16 flags);
1160  *
1161  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1162  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1163  *	which do not represent real hardware may define this to allow their
1164  *	userspace components to manage their virtual carrier state. Devices
1165  *	that determine carrier state from physical hardware properties (eg
1166  *	network cables) or protocol-dependent mechanisms (eg
1167  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1168  *
1169  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1170  *			       struct netdev_phys_item_id *ppid);
1171  *	Called to get ID of physical port of this device. If driver does
1172  *	not implement this, it is assumed that the hw is not able to have
1173  *	multiple net devices on single physical port.
1174  *
1175  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1176  *				 struct netdev_phys_item_id *ppid)
1177  *	Called to get the parent ID of the physical port of this device.
1178  *
1179  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1180  *			      struct udp_tunnel_info *ti);
1181  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1182  *	address family that a UDP tunnel is listnening to. It is called only
1183  *	when a new port starts listening. The operation is protected by the
1184  *	RTNL.
1185  *
1186  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1187  *			      struct udp_tunnel_info *ti);
1188  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1189  *	address family that the UDP tunnel is not listening to anymore. The
1190  *	operation is protected by the RTNL.
1191  *
1192  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1193  *				 struct net_device *dev)
1194  *	Called by upper layer devices to accelerate switching or other
1195  *	station functionality into hardware. 'pdev is the lowerdev
1196  *	to use for the offload and 'dev' is the net device that will
1197  *	back the offload. Returns a pointer to the private structure
1198  *	the upper layer will maintain.
1199  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1200  *	Called by upper layer device to delete the station created
1201  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1202  *	the station and priv is the structure returned by the add
1203  *	operation.
1204  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1205  *			     int queue_index, u32 maxrate);
1206  *	Called when a user wants to set a max-rate limitation of specific
1207  *	TX queue.
1208  * int (*ndo_get_iflink)(const struct net_device *dev);
1209  *	Called to get the iflink value of this device.
1210  * void (*ndo_change_proto_down)(struct net_device *dev,
1211  *				 bool proto_down);
1212  *	This function is used to pass protocol port error state information
1213  *	to the switch driver. The switch driver can react to the proto_down
1214  *      by doing a phys down on the associated switch port.
1215  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1216  *	This function is used to get egress tunnel information for given skb.
1217  *	This is useful for retrieving outer tunnel header parameters while
1218  *	sampling packet.
1219  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1220  *	This function is used to specify the headroom that the skb must
1221  *	consider when allocation skb during packet reception. Setting
1222  *	appropriate rx headroom value allows avoiding skb head copy on
1223  *	forward. Setting a negative value resets the rx headroom to the
1224  *	default value.
1225  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1226  *	This function is used to set or query state related to XDP on the
1227  *	netdevice and manage BPF offload. See definition of
1228  *	enum bpf_netdev_command for details.
1229  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1230  *			u32 flags);
1231  *	This function is used to submit @n XDP packets for transmit on a
1232  *	netdevice. Returns number of frames successfully transmitted, frames
1233  *	that got dropped are freed/returned via xdp_return_frame().
1234  *	Returns negative number, means general error invoking ndo, meaning
1235  *	no frames were xmit'ed and core-caller will free all frames.
1236  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1237  *      This function is used to wake up the softirq, ksoftirqd or kthread
1238  *	responsible for sending and/or receiving packets on a specific
1239  *	queue id bound to an AF_XDP socket. The flags field specifies if
1240  *	only RX, only Tx, or both should be woken up using the flags
1241  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1242  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1243  *	Get devlink port instance associated with a given netdev.
1244  *	Called with a reference on the netdevice and devlink locks only,
1245  *	rtnl_lock is not held.
1246  */
1247 struct net_device_ops {
1248 	int			(*ndo_init)(struct net_device *dev);
1249 	void			(*ndo_uninit)(struct net_device *dev);
1250 	int			(*ndo_open)(struct net_device *dev);
1251 	int			(*ndo_stop)(struct net_device *dev);
1252 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1253 						  struct net_device *dev);
1254 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1255 						      struct net_device *dev,
1256 						      netdev_features_t features);
1257 	u16			(*ndo_select_queue)(struct net_device *dev,
1258 						    struct sk_buff *skb,
1259 						    struct net_device *sb_dev);
1260 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1261 						       int flags);
1262 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1263 	int			(*ndo_set_mac_address)(struct net_device *dev,
1264 						       void *addr);
1265 	int			(*ndo_validate_addr)(struct net_device *dev);
1266 	int			(*ndo_do_ioctl)(struct net_device *dev,
1267 					        struct ifreq *ifr, int cmd);
1268 	int			(*ndo_set_config)(struct net_device *dev,
1269 					          struct ifmap *map);
1270 	int			(*ndo_change_mtu)(struct net_device *dev,
1271 						  int new_mtu);
1272 	int			(*ndo_neigh_setup)(struct net_device *dev,
1273 						   struct neigh_parms *);
1274 	void			(*ndo_tx_timeout) (struct net_device *dev);
1275 
1276 	void			(*ndo_get_stats64)(struct net_device *dev,
1277 						   struct rtnl_link_stats64 *storage);
1278 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1279 	int			(*ndo_get_offload_stats)(int attr_id,
1280 							 const struct net_device *dev,
1281 							 void *attr_data);
1282 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1283 
1284 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1285 						       __be16 proto, u16 vid);
1286 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1287 						        __be16 proto, u16 vid);
1288 #ifdef CONFIG_NET_POLL_CONTROLLER
1289 	void                    (*ndo_poll_controller)(struct net_device *dev);
1290 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1291 						     struct netpoll_info *info);
1292 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1293 #endif
1294 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1295 						  int queue, u8 *mac);
1296 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1297 						   int queue, u16 vlan,
1298 						   u8 qos, __be16 proto);
1299 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1300 						   int vf, int min_tx_rate,
1301 						   int max_tx_rate);
1302 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1303 						       int vf, bool setting);
1304 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1305 						    int vf, bool setting);
1306 	int			(*ndo_get_vf_config)(struct net_device *dev,
1307 						     int vf,
1308 						     struct ifla_vf_info *ivf);
1309 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1310 							 int vf, int link_state);
1311 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1312 						    int vf,
1313 						    struct ifla_vf_stats
1314 						    *vf_stats);
1315 	int			(*ndo_set_vf_port)(struct net_device *dev,
1316 						   int vf,
1317 						   struct nlattr *port[]);
1318 	int			(*ndo_get_vf_port)(struct net_device *dev,
1319 						   int vf, struct sk_buff *skb);
1320 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1321 						   int vf, u64 guid,
1322 						   int guid_type);
1323 	int			(*ndo_set_vf_rss_query_en)(
1324 						   struct net_device *dev,
1325 						   int vf, bool setting);
1326 	int			(*ndo_setup_tc)(struct net_device *dev,
1327 						enum tc_setup_type type,
1328 						void *type_data);
1329 #if IS_ENABLED(CONFIG_FCOE)
1330 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1331 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1332 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1333 						      u16 xid,
1334 						      struct scatterlist *sgl,
1335 						      unsigned int sgc);
1336 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1337 						     u16 xid);
1338 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1339 						       u16 xid,
1340 						       struct scatterlist *sgl,
1341 						       unsigned int sgc);
1342 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1343 							struct netdev_fcoe_hbainfo *hbainfo);
1344 #endif
1345 
1346 #if IS_ENABLED(CONFIG_LIBFCOE)
1347 #define NETDEV_FCOE_WWNN 0
1348 #define NETDEV_FCOE_WWPN 1
1349 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1350 						    u64 *wwn, int type);
1351 #endif
1352 
1353 #ifdef CONFIG_RFS_ACCEL
1354 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1355 						     const struct sk_buff *skb,
1356 						     u16 rxq_index,
1357 						     u32 flow_id);
1358 #endif
1359 	int			(*ndo_add_slave)(struct net_device *dev,
1360 						 struct net_device *slave_dev,
1361 						 struct netlink_ext_ack *extack);
1362 	int			(*ndo_del_slave)(struct net_device *dev,
1363 						 struct net_device *slave_dev);
1364 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1365 						    netdev_features_t features);
1366 	int			(*ndo_set_features)(struct net_device *dev,
1367 						    netdev_features_t features);
1368 	int			(*ndo_neigh_construct)(struct net_device *dev,
1369 						       struct neighbour *n);
1370 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1371 						     struct neighbour *n);
1372 
1373 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1374 					       struct nlattr *tb[],
1375 					       struct net_device *dev,
1376 					       const unsigned char *addr,
1377 					       u16 vid,
1378 					       u16 flags,
1379 					       struct netlink_ext_ack *extack);
1380 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1381 					       struct nlattr *tb[],
1382 					       struct net_device *dev,
1383 					       const unsigned char *addr,
1384 					       u16 vid);
1385 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1386 						struct netlink_callback *cb,
1387 						struct net_device *dev,
1388 						struct net_device *filter_dev,
1389 						int *idx);
1390 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1391 					       struct nlattr *tb[],
1392 					       struct net_device *dev,
1393 					       const unsigned char *addr,
1394 					       u16 vid, u32 portid, u32 seq,
1395 					       struct netlink_ext_ack *extack);
1396 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1397 						      struct nlmsghdr *nlh,
1398 						      u16 flags,
1399 						      struct netlink_ext_ack *extack);
1400 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1401 						      u32 pid, u32 seq,
1402 						      struct net_device *dev,
1403 						      u32 filter_mask,
1404 						      int nlflags);
1405 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1406 						      struct nlmsghdr *nlh,
1407 						      u16 flags);
1408 	int			(*ndo_change_carrier)(struct net_device *dev,
1409 						      bool new_carrier);
1410 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1411 							struct netdev_phys_item_id *ppid);
1412 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1413 							  struct netdev_phys_item_id *ppid);
1414 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1415 							  char *name, size_t len);
1416 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1417 						      struct udp_tunnel_info *ti);
1418 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1419 						      struct udp_tunnel_info *ti);
1420 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1421 							struct net_device *dev);
1422 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1423 							void *priv);
1424 
1425 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1426 						      int queue_index,
1427 						      u32 maxrate);
1428 	int			(*ndo_get_iflink)(const struct net_device *dev);
1429 	int			(*ndo_change_proto_down)(struct net_device *dev,
1430 							 bool proto_down);
1431 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1432 						       struct sk_buff *skb);
1433 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1434 						       int needed_headroom);
1435 	int			(*ndo_bpf)(struct net_device *dev,
1436 					   struct netdev_bpf *bpf);
1437 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1438 						struct xdp_frame **xdp,
1439 						u32 flags);
1440 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1441 						  u32 queue_id, u32 flags);
1442 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1443 };
1444 
1445 /**
1446  * enum net_device_priv_flags - &struct net_device priv_flags
1447  *
1448  * These are the &struct net_device, they are only set internally
1449  * by drivers and used in the kernel. These flags are invisible to
1450  * userspace; this means that the order of these flags can change
1451  * during any kernel release.
1452  *
1453  * You should have a pretty good reason to be extending these flags.
1454  *
1455  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1456  * @IFF_EBRIDGE: Ethernet bridging device
1457  * @IFF_BONDING: bonding master or slave
1458  * @IFF_ISATAP: ISATAP interface (RFC4214)
1459  * @IFF_WAN_HDLC: WAN HDLC device
1460  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1461  *	release skb->dst
1462  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1463  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1464  * @IFF_MACVLAN_PORT: device used as macvlan port
1465  * @IFF_BRIDGE_PORT: device used as bridge port
1466  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1467  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1468  * @IFF_UNICAST_FLT: Supports unicast filtering
1469  * @IFF_TEAM_PORT: device used as team port
1470  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1471  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1472  *	change when it's running
1473  * @IFF_MACVLAN: Macvlan device
1474  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1475  *	underlying stacked devices
1476  * @IFF_L3MDEV_MASTER: device is an L3 master device
1477  * @IFF_NO_QUEUE: device can run without qdisc attached
1478  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1479  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1480  * @IFF_TEAM: device is a team device
1481  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1482  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1483  *	entity (i.e. the master device for bridged veth)
1484  * @IFF_MACSEC: device is a MACsec device
1485  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1486  * @IFF_FAILOVER: device is a failover master device
1487  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1488  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1489  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1490  */
1491 enum netdev_priv_flags {
1492 	IFF_802_1Q_VLAN			= 1<<0,
1493 	IFF_EBRIDGE			= 1<<1,
1494 	IFF_BONDING			= 1<<2,
1495 	IFF_ISATAP			= 1<<3,
1496 	IFF_WAN_HDLC			= 1<<4,
1497 	IFF_XMIT_DST_RELEASE		= 1<<5,
1498 	IFF_DONT_BRIDGE			= 1<<6,
1499 	IFF_DISABLE_NETPOLL		= 1<<7,
1500 	IFF_MACVLAN_PORT		= 1<<8,
1501 	IFF_BRIDGE_PORT			= 1<<9,
1502 	IFF_OVS_DATAPATH		= 1<<10,
1503 	IFF_TX_SKB_SHARING		= 1<<11,
1504 	IFF_UNICAST_FLT			= 1<<12,
1505 	IFF_TEAM_PORT			= 1<<13,
1506 	IFF_SUPP_NOFCS			= 1<<14,
1507 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1508 	IFF_MACVLAN			= 1<<16,
1509 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1510 	IFF_L3MDEV_MASTER		= 1<<18,
1511 	IFF_NO_QUEUE			= 1<<19,
1512 	IFF_OPENVSWITCH			= 1<<20,
1513 	IFF_L3MDEV_SLAVE		= 1<<21,
1514 	IFF_TEAM			= 1<<22,
1515 	IFF_RXFH_CONFIGURED		= 1<<23,
1516 	IFF_PHONY_HEADROOM		= 1<<24,
1517 	IFF_MACSEC			= 1<<25,
1518 	IFF_NO_RX_HANDLER		= 1<<26,
1519 	IFF_FAILOVER			= 1<<27,
1520 	IFF_FAILOVER_SLAVE		= 1<<28,
1521 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1522 	IFF_LIVE_RENAME_OK		= 1<<30,
1523 };
1524 
1525 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1526 #define IFF_EBRIDGE			IFF_EBRIDGE
1527 #define IFF_BONDING			IFF_BONDING
1528 #define IFF_ISATAP			IFF_ISATAP
1529 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1530 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1531 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1532 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1533 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1534 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1535 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1536 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1537 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1538 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1539 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1540 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1541 #define IFF_MACVLAN			IFF_MACVLAN
1542 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1543 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1544 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1545 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1546 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1547 #define IFF_TEAM			IFF_TEAM
1548 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1549 #define IFF_MACSEC			IFF_MACSEC
1550 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1551 #define IFF_FAILOVER			IFF_FAILOVER
1552 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1553 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1554 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1555 
1556 /**
1557  *	struct net_device - The DEVICE structure.
1558  *
1559  *	Actually, this whole structure is a big mistake.  It mixes I/O
1560  *	data with strictly "high-level" data, and it has to know about
1561  *	almost every data structure used in the INET module.
1562  *
1563  *	@name:	This is the first field of the "visible" part of this structure
1564  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1565  *		of the interface.
1566  *
1567  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1568  *	@ifalias:	SNMP alias
1569  *	@mem_end:	Shared memory end
1570  *	@mem_start:	Shared memory start
1571  *	@base_addr:	Device I/O address
1572  *	@irq:		Device IRQ number
1573  *
1574  *	@state:		Generic network queuing layer state, see netdev_state_t
1575  *	@dev_list:	The global list of network devices
1576  *	@napi_list:	List entry used for polling NAPI devices
1577  *	@unreg_list:	List entry  when we are unregistering the
1578  *			device; see the function unregister_netdev
1579  *	@close_list:	List entry used when we are closing the device
1580  *	@ptype_all:     Device-specific packet handlers for all protocols
1581  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1582  *
1583  *	@adj_list:	Directly linked devices, like slaves for bonding
1584  *	@features:	Currently active device features
1585  *	@hw_features:	User-changeable features
1586  *
1587  *	@wanted_features:	User-requested features
1588  *	@vlan_features:		Mask of features inheritable by VLAN devices
1589  *
1590  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1591  *				This field indicates what encapsulation
1592  *				offloads the hardware is capable of doing,
1593  *				and drivers will need to set them appropriately.
1594  *
1595  *	@mpls_features:	Mask of features inheritable by MPLS
1596  *
1597  *	@ifindex:	interface index
1598  *	@group:		The group the device belongs to
1599  *
1600  *	@stats:		Statistics struct, which was left as a legacy, use
1601  *			rtnl_link_stats64 instead
1602  *
1603  *	@rx_dropped:	Dropped packets by core network,
1604  *			do not use this in drivers
1605  *	@tx_dropped:	Dropped packets by core network,
1606  *			do not use this in drivers
1607  *	@rx_nohandler:	nohandler dropped packets by core network on
1608  *			inactive devices, do not use this in drivers
1609  *	@carrier_up_count:	Number of times the carrier has been up
1610  *	@carrier_down_count:	Number of times the carrier has been down
1611  *
1612  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1613  *				instead of ioctl,
1614  *				see <net/iw_handler.h> for details.
1615  *	@wireless_data:	Instance data managed by the core of wireless extensions
1616  *
1617  *	@netdev_ops:	Includes several pointers to callbacks,
1618  *			if one wants to override the ndo_*() functions
1619  *	@ethtool_ops:	Management operations
1620  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1621  *			discovery handling. Necessary for e.g. 6LoWPAN.
1622  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1623  *			of Layer 2 headers.
1624  *
1625  *	@flags:		Interface flags (a la BSD)
1626  *	@priv_flags:	Like 'flags' but invisible to userspace,
1627  *			see if.h for the definitions
1628  *	@gflags:	Global flags ( kept as legacy )
1629  *	@padded:	How much padding added by alloc_netdev()
1630  *	@operstate:	RFC2863 operstate
1631  *	@link_mode:	Mapping policy to operstate
1632  *	@if_port:	Selectable AUI, TP, ...
1633  *	@dma:		DMA channel
1634  *	@mtu:		Interface MTU value
1635  *	@min_mtu:	Interface Minimum MTU value
1636  *	@max_mtu:	Interface Maximum MTU value
1637  *	@type:		Interface hardware type
1638  *	@hard_header_len: Maximum hardware header length.
1639  *	@min_header_len:  Minimum hardware header length
1640  *
1641  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1642  *			  cases can this be guaranteed
1643  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1644  *			  cases can this be guaranteed. Some cases also use
1645  *			  LL_MAX_HEADER instead to allocate the skb
1646  *
1647  *	interface address info:
1648  *
1649  * 	@perm_addr:		Permanent hw address
1650  * 	@addr_assign_type:	Hw address assignment type
1651  * 	@addr_len:		Hardware address length
1652  *	@upper_level:		Maximum depth level of upper devices.
1653  *	@lower_level:		Maximum depth level of lower devices.
1654  *	@neigh_priv_len:	Used in neigh_alloc()
1655  * 	@dev_id:		Used to differentiate devices that share
1656  * 				the same link layer address
1657  * 	@dev_port:		Used to differentiate devices that share
1658  * 				the same function
1659  *	@addr_list_lock:	XXX: need comments on this one
1660  *	@uc_promisc:		Counter that indicates promiscuous mode
1661  *				has been enabled due to the need to listen to
1662  *				additional unicast addresses in a device that
1663  *				does not implement ndo_set_rx_mode()
1664  *	@uc:			unicast mac addresses
1665  *	@mc:			multicast mac addresses
1666  *	@dev_addrs:		list of device hw addresses
1667  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1668  *	@promiscuity:		Number of times the NIC is told to work in
1669  *				promiscuous mode; if it becomes 0 the NIC will
1670  *				exit promiscuous mode
1671  *	@allmulti:		Counter, enables or disables allmulticast mode
1672  *
1673  *	@vlan_info:	VLAN info
1674  *	@dsa_ptr:	dsa specific data
1675  *	@tipc_ptr:	TIPC specific data
1676  *	@atalk_ptr:	AppleTalk link
1677  *	@ip_ptr:	IPv4 specific data
1678  *	@dn_ptr:	DECnet specific data
1679  *	@ip6_ptr:	IPv6 specific data
1680  *	@ax25_ptr:	AX.25 specific data
1681  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1682  *
1683  *	@dev_addr:	Hw address (before bcast,
1684  *			because most packets are unicast)
1685  *
1686  *	@_rx:			Array of RX queues
1687  *	@num_rx_queues:		Number of RX queues
1688  *				allocated at register_netdev() time
1689  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1690  *
1691  *	@rx_handler:		handler for received packets
1692  *	@rx_handler_data: 	XXX: need comments on this one
1693  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1694  *				ingress processing
1695  *	@ingress_queue:		XXX: need comments on this one
1696  *	@broadcast:		hw bcast address
1697  *
1698  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1699  *			indexed by RX queue number. Assigned by driver.
1700  *			This must only be set if the ndo_rx_flow_steer
1701  *			operation is defined
1702  *	@index_hlist:		Device index hash chain
1703  *
1704  *	@_tx:			Array of TX queues
1705  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1706  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1707  *	@qdisc:			Root qdisc from userspace point of view
1708  *	@tx_queue_len:		Max frames per queue allowed
1709  *	@tx_global_lock: 	XXX: need comments on this one
1710  *
1711  *	@xps_maps:	XXX: need comments on this one
1712  *	@miniq_egress:		clsact qdisc specific data for
1713  *				egress processing
1714  *	@watchdog_timeo:	Represents the timeout that is used by
1715  *				the watchdog (see dev_watchdog())
1716  *	@watchdog_timer:	List of timers
1717  *
1718  *	@pcpu_refcnt:		Number of references to this device
1719  *	@todo_list:		Delayed register/unregister
1720  *	@link_watch_list:	XXX: need comments on this one
1721  *
1722  *	@reg_state:		Register/unregister state machine
1723  *	@dismantle:		Device is going to be freed
1724  *	@rtnl_link_state:	This enum represents the phases of creating
1725  *				a new link
1726  *
1727  *	@needs_free_netdev:	Should unregister perform free_netdev?
1728  *	@priv_destructor:	Called from unregister
1729  *	@npinfo:		XXX: need comments on this one
1730  * 	@nd_net:		Network namespace this network device is inside
1731  *
1732  * 	@ml_priv:	Mid-layer private
1733  * 	@lstats:	Loopback statistics
1734  * 	@tstats:	Tunnel statistics
1735  * 	@dstats:	Dummy statistics
1736  * 	@vstats:	Virtual ethernet statistics
1737  *
1738  *	@garp_port:	GARP
1739  *	@mrp_port:	MRP
1740  *
1741  *	@dev:		Class/net/name entry
1742  *	@sysfs_groups:	Space for optional device, statistics and wireless
1743  *			sysfs groups
1744  *
1745  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1746  *	@rtnl_link_ops:	Rtnl_link_ops
1747  *
1748  *	@gso_max_size:	Maximum size of generic segmentation offload
1749  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1750  *			NIC for GSO
1751  *
1752  *	@dcbnl_ops:	Data Center Bridging netlink ops
1753  *	@num_tc:	Number of traffic classes in the net device
1754  *	@tc_to_txq:	XXX: need comments on this one
1755  *	@prio_tc_map:	XXX: need comments on this one
1756  *
1757  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1758  *
1759  *	@priomap:	XXX: need comments on this one
1760  *	@phydev:	Physical device may attach itself
1761  *			for hardware timestamping
1762  *	@sfp_bus:	attached &struct sfp_bus structure.
1763  *	@qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock
1764  *				spinlock
1765  *	@qdisc_running_key:	lockdep class annotating Qdisc->running seqcount
1766  *	@qdisc_xmit_lock_key:	lockdep class annotating
1767  *				netdev_queue->_xmit_lock spinlock
1768  *	@addr_list_lock_key:	lockdep class annotating
1769  *				net_device->addr_list_lock spinlock
1770  *
1771  *	@proto_down:	protocol port state information can be sent to the
1772  *			switch driver and used to set the phys state of the
1773  *			switch port.
1774  *
1775  *	@wol_enabled:	Wake-on-LAN is enabled
1776  *
1777  *	FIXME: cleanup struct net_device such that network protocol info
1778  *	moves out.
1779  */
1780 
1781 struct net_device {
1782 	char			name[IFNAMSIZ];
1783 	struct hlist_node	name_hlist;
1784 	struct dev_ifalias	__rcu *ifalias;
1785 	/*
1786 	 *	I/O specific fields
1787 	 *	FIXME: Merge these and struct ifmap into one
1788 	 */
1789 	unsigned long		mem_end;
1790 	unsigned long		mem_start;
1791 	unsigned long		base_addr;
1792 	int			irq;
1793 
1794 	/*
1795 	 *	Some hardware also needs these fields (state,dev_list,
1796 	 *	napi_list,unreg_list,close_list) but they are not
1797 	 *	part of the usual set specified in Space.c.
1798 	 */
1799 
1800 	unsigned long		state;
1801 
1802 	struct list_head	dev_list;
1803 	struct list_head	napi_list;
1804 	struct list_head	unreg_list;
1805 	struct list_head	close_list;
1806 	struct list_head	ptype_all;
1807 	struct list_head	ptype_specific;
1808 
1809 	struct {
1810 		struct list_head upper;
1811 		struct list_head lower;
1812 	} adj_list;
1813 
1814 	netdev_features_t	features;
1815 	netdev_features_t	hw_features;
1816 	netdev_features_t	wanted_features;
1817 	netdev_features_t	vlan_features;
1818 	netdev_features_t	hw_enc_features;
1819 	netdev_features_t	mpls_features;
1820 	netdev_features_t	gso_partial_features;
1821 
1822 	int			ifindex;
1823 	int			group;
1824 
1825 	struct net_device_stats	stats;
1826 
1827 	atomic_long_t		rx_dropped;
1828 	atomic_long_t		tx_dropped;
1829 	atomic_long_t		rx_nohandler;
1830 
1831 	/* Stats to monitor link on/off, flapping */
1832 	atomic_t		carrier_up_count;
1833 	atomic_t		carrier_down_count;
1834 
1835 #ifdef CONFIG_WIRELESS_EXT
1836 	const struct iw_handler_def *wireless_handlers;
1837 	struct iw_public_data	*wireless_data;
1838 #endif
1839 	const struct net_device_ops *netdev_ops;
1840 	const struct ethtool_ops *ethtool_ops;
1841 #ifdef CONFIG_NET_L3_MASTER_DEV
1842 	const struct l3mdev_ops	*l3mdev_ops;
1843 #endif
1844 #if IS_ENABLED(CONFIG_IPV6)
1845 	const struct ndisc_ops *ndisc_ops;
1846 #endif
1847 
1848 #ifdef CONFIG_XFRM_OFFLOAD
1849 	const struct xfrmdev_ops *xfrmdev_ops;
1850 #endif
1851 
1852 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1853 	const struct tlsdev_ops *tlsdev_ops;
1854 #endif
1855 
1856 	const struct header_ops *header_ops;
1857 
1858 	unsigned int		flags;
1859 	unsigned int		priv_flags;
1860 
1861 	unsigned short		gflags;
1862 	unsigned short		padded;
1863 
1864 	unsigned char		operstate;
1865 	unsigned char		link_mode;
1866 
1867 	unsigned char		if_port;
1868 	unsigned char		dma;
1869 
1870 	/* Note : dev->mtu is often read without holding a lock.
1871 	 * Writers usually hold RTNL.
1872 	 * It is recommended to use READ_ONCE() to annotate the reads,
1873 	 * and to use WRITE_ONCE() to annotate the writes.
1874 	 */
1875 	unsigned int		mtu;
1876 	unsigned int		min_mtu;
1877 	unsigned int		max_mtu;
1878 	unsigned short		type;
1879 	unsigned short		hard_header_len;
1880 	unsigned char		min_header_len;
1881 
1882 	unsigned short		needed_headroom;
1883 	unsigned short		needed_tailroom;
1884 
1885 	/* Interface address info. */
1886 	unsigned char		perm_addr[MAX_ADDR_LEN];
1887 	unsigned char		addr_assign_type;
1888 	unsigned char		addr_len;
1889 	unsigned char		upper_level;
1890 	unsigned char		lower_level;
1891 	unsigned short		neigh_priv_len;
1892 	unsigned short          dev_id;
1893 	unsigned short          dev_port;
1894 	spinlock_t		addr_list_lock;
1895 	unsigned char		name_assign_type;
1896 	bool			uc_promisc;
1897 	struct netdev_hw_addr_list	uc;
1898 	struct netdev_hw_addr_list	mc;
1899 	struct netdev_hw_addr_list	dev_addrs;
1900 
1901 #ifdef CONFIG_SYSFS
1902 	struct kset		*queues_kset;
1903 #endif
1904 	unsigned int		promiscuity;
1905 	unsigned int		allmulti;
1906 
1907 
1908 	/* Protocol-specific pointers */
1909 
1910 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1911 	struct vlan_info __rcu	*vlan_info;
1912 #endif
1913 #if IS_ENABLED(CONFIG_NET_DSA)
1914 	struct dsa_port		*dsa_ptr;
1915 #endif
1916 #if IS_ENABLED(CONFIG_TIPC)
1917 	struct tipc_bearer __rcu *tipc_ptr;
1918 #endif
1919 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1920 	void 			*atalk_ptr;
1921 #endif
1922 	struct in_device __rcu	*ip_ptr;
1923 #if IS_ENABLED(CONFIG_DECNET)
1924 	struct dn_dev __rcu     *dn_ptr;
1925 #endif
1926 	struct inet6_dev __rcu	*ip6_ptr;
1927 #if IS_ENABLED(CONFIG_AX25)
1928 	void			*ax25_ptr;
1929 #endif
1930 	struct wireless_dev	*ieee80211_ptr;
1931 	struct wpan_dev		*ieee802154_ptr;
1932 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1933 	struct mpls_dev __rcu	*mpls_ptr;
1934 #endif
1935 
1936 /*
1937  * Cache lines mostly used on receive path (including eth_type_trans())
1938  */
1939 	/* Interface address info used in eth_type_trans() */
1940 	unsigned char		*dev_addr;
1941 
1942 	struct netdev_rx_queue	*_rx;
1943 	unsigned int		num_rx_queues;
1944 	unsigned int		real_num_rx_queues;
1945 
1946 	struct bpf_prog __rcu	*xdp_prog;
1947 	unsigned long		gro_flush_timeout;
1948 	rx_handler_func_t __rcu	*rx_handler;
1949 	void __rcu		*rx_handler_data;
1950 
1951 #ifdef CONFIG_NET_CLS_ACT
1952 	struct mini_Qdisc __rcu	*miniq_ingress;
1953 #endif
1954 	struct netdev_queue __rcu *ingress_queue;
1955 #ifdef CONFIG_NETFILTER_INGRESS
1956 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1957 #endif
1958 
1959 	unsigned char		broadcast[MAX_ADDR_LEN];
1960 #ifdef CONFIG_RFS_ACCEL
1961 	struct cpu_rmap		*rx_cpu_rmap;
1962 #endif
1963 	struct hlist_node	index_hlist;
1964 
1965 /*
1966  * Cache lines mostly used on transmit path
1967  */
1968 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1969 	unsigned int		num_tx_queues;
1970 	unsigned int		real_num_tx_queues;
1971 	struct Qdisc		*qdisc;
1972 #ifdef CONFIG_NET_SCHED
1973 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1974 #endif
1975 	unsigned int		tx_queue_len;
1976 	spinlock_t		tx_global_lock;
1977 	int			watchdog_timeo;
1978 
1979 #ifdef CONFIG_XPS
1980 	struct xps_dev_maps __rcu *xps_cpus_map;
1981 	struct xps_dev_maps __rcu *xps_rxqs_map;
1982 #endif
1983 #ifdef CONFIG_NET_CLS_ACT
1984 	struct mini_Qdisc __rcu	*miniq_egress;
1985 #endif
1986 
1987 	/* These may be needed for future network-power-down code. */
1988 	struct timer_list	watchdog_timer;
1989 
1990 	int __percpu		*pcpu_refcnt;
1991 	struct list_head	todo_list;
1992 
1993 	struct list_head	link_watch_list;
1994 
1995 	enum { NETREG_UNINITIALIZED=0,
1996 	       NETREG_REGISTERED,	/* completed register_netdevice */
1997 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1998 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1999 	       NETREG_RELEASED,		/* called free_netdev */
2000 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2001 	} reg_state:8;
2002 
2003 	bool dismantle;
2004 
2005 	enum {
2006 		RTNL_LINK_INITIALIZED,
2007 		RTNL_LINK_INITIALIZING,
2008 	} rtnl_link_state:16;
2009 
2010 	bool needs_free_netdev;
2011 	void (*priv_destructor)(struct net_device *dev);
2012 
2013 #ifdef CONFIG_NETPOLL
2014 	struct netpoll_info __rcu	*npinfo;
2015 #endif
2016 
2017 	possible_net_t			nd_net;
2018 
2019 	/* mid-layer private */
2020 	union {
2021 		void					*ml_priv;
2022 		struct pcpu_lstats __percpu		*lstats;
2023 		struct pcpu_sw_netstats __percpu	*tstats;
2024 		struct pcpu_dstats __percpu		*dstats;
2025 	};
2026 
2027 #if IS_ENABLED(CONFIG_GARP)
2028 	struct garp_port __rcu	*garp_port;
2029 #endif
2030 #if IS_ENABLED(CONFIG_MRP)
2031 	struct mrp_port __rcu	*mrp_port;
2032 #endif
2033 
2034 	struct device		dev;
2035 	const struct attribute_group *sysfs_groups[4];
2036 	const struct attribute_group *sysfs_rx_queue_group;
2037 
2038 	const struct rtnl_link_ops *rtnl_link_ops;
2039 
2040 	/* for setting kernel sock attribute on TCP connection setup */
2041 #define GSO_MAX_SIZE		65536
2042 	unsigned int		gso_max_size;
2043 #define GSO_MAX_SEGS		65535
2044 	u16			gso_max_segs;
2045 
2046 #ifdef CONFIG_DCB
2047 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2048 #endif
2049 	s16			num_tc;
2050 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2051 	u8			prio_tc_map[TC_BITMASK + 1];
2052 
2053 #if IS_ENABLED(CONFIG_FCOE)
2054 	unsigned int		fcoe_ddp_xid;
2055 #endif
2056 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2057 	struct netprio_map __rcu *priomap;
2058 #endif
2059 	struct phy_device	*phydev;
2060 	struct sfp_bus		*sfp_bus;
2061 	struct lock_class_key	qdisc_tx_busylock_key;
2062 	struct lock_class_key	qdisc_running_key;
2063 	struct lock_class_key	qdisc_xmit_lock_key;
2064 	struct lock_class_key	addr_list_lock_key;
2065 	bool			proto_down;
2066 	unsigned		wol_enabled:1;
2067 };
2068 #define to_net_dev(d) container_of(d, struct net_device, dev)
2069 
netif_elide_gro(const struct net_device * dev)2070 static inline bool netif_elide_gro(const struct net_device *dev)
2071 {
2072 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2073 		return true;
2074 	return false;
2075 }
2076 
2077 #define	NETDEV_ALIGN		32
2078 
2079 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2080 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2081 {
2082 	return dev->prio_tc_map[prio & TC_BITMASK];
2083 }
2084 
2085 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2086 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2087 {
2088 	if (tc >= dev->num_tc)
2089 		return -EINVAL;
2090 
2091 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2092 	return 0;
2093 }
2094 
2095 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2096 void netdev_reset_tc(struct net_device *dev);
2097 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2098 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2099 
2100 static inline
netdev_get_num_tc(struct net_device * dev)2101 int netdev_get_num_tc(struct net_device *dev)
2102 {
2103 	return dev->num_tc;
2104 }
2105 
2106 void netdev_unbind_sb_channel(struct net_device *dev,
2107 			      struct net_device *sb_dev);
2108 int netdev_bind_sb_channel_queue(struct net_device *dev,
2109 				 struct net_device *sb_dev,
2110 				 u8 tc, u16 count, u16 offset);
2111 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2112 static inline int netdev_get_sb_channel(struct net_device *dev)
2113 {
2114 	return max_t(int, -dev->num_tc, 0);
2115 }
2116 
2117 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2118 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2119 					 unsigned int index)
2120 {
2121 	return &dev->_tx[index];
2122 }
2123 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2124 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2125 						    const struct sk_buff *skb)
2126 {
2127 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2128 }
2129 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2130 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2131 					    void (*f)(struct net_device *,
2132 						      struct netdev_queue *,
2133 						      void *),
2134 					    void *arg)
2135 {
2136 	unsigned int i;
2137 
2138 	for (i = 0; i < dev->num_tx_queues; i++)
2139 		f(dev, &dev->_tx[i], arg);
2140 }
2141 
2142 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2143 		     struct net_device *sb_dev);
2144 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2145 					 struct sk_buff *skb,
2146 					 struct net_device *sb_dev);
2147 
2148 /* returns the headroom that the master device needs to take in account
2149  * when forwarding to this dev
2150  */
netdev_get_fwd_headroom(struct net_device * dev)2151 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2152 {
2153 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2154 }
2155 
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2156 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2157 {
2158 	if (dev->netdev_ops->ndo_set_rx_headroom)
2159 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2160 }
2161 
2162 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2163 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2164 {
2165 	netdev_set_rx_headroom(dev, -1);
2166 }
2167 
2168 /*
2169  * Net namespace inlines
2170  */
2171 static inline
dev_net(const struct net_device * dev)2172 struct net *dev_net(const struct net_device *dev)
2173 {
2174 	return read_pnet(&dev->nd_net);
2175 }
2176 
2177 static inline
dev_net_set(struct net_device * dev,struct net * net)2178 void dev_net_set(struct net_device *dev, struct net *net)
2179 {
2180 	write_pnet(&dev->nd_net, net);
2181 }
2182 
2183 /**
2184  *	netdev_priv - access network device private data
2185  *	@dev: network device
2186  *
2187  * Get network device private data
2188  */
netdev_priv(const struct net_device * dev)2189 static inline void *netdev_priv(const struct net_device *dev)
2190 {
2191 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2192 }
2193 
2194 /* Set the sysfs physical device reference for the network logical device
2195  * if set prior to registration will cause a symlink during initialization.
2196  */
2197 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2198 
2199 /* Set the sysfs device type for the network logical device to allow
2200  * fine-grained identification of different network device types. For
2201  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2202  */
2203 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2204 
2205 /* Default NAPI poll() weight
2206  * Device drivers are strongly advised to not use bigger value
2207  */
2208 #define NAPI_POLL_WEIGHT 64
2209 
2210 /**
2211  *	netif_napi_add - initialize a NAPI context
2212  *	@dev:  network device
2213  *	@napi: NAPI context
2214  *	@poll: polling function
2215  *	@weight: default weight
2216  *
2217  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2218  * *any* of the other NAPI-related functions.
2219  */
2220 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2221 		    int (*poll)(struct napi_struct *, int), int weight);
2222 
2223 /**
2224  *	netif_tx_napi_add - initialize a NAPI context
2225  *	@dev:  network device
2226  *	@napi: NAPI context
2227  *	@poll: polling function
2228  *	@weight: default weight
2229  *
2230  * This variant of netif_napi_add() should be used from drivers using NAPI
2231  * to exclusively poll a TX queue.
2232  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2233  */
netif_tx_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2234 static inline void netif_tx_napi_add(struct net_device *dev,
2235 				     struct napi_struct *napi,
2236 				     int (*poll)(struct napi_struct *, int),
2237 				     int weight)
2238 {
2239 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2240 	netif_napi_add(dev, napi, poll, weight);
2241 }
2242 
2243 /**
2244  *  netif_napi_del - remove a NAPI context
2245  *  @napi: NAPI context
2246  *
2247  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2248  */
2249 void netif_napi_del(struct napi_struct *napi);
2250 
2251 struct napi_gro_cb {
2252 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2253 	void	*frag0;
2254 
2255 	/* Length of frag0. */
2256 	unsigned int frag0_len;
2257 
2258 	/* This indicates where we are processing relative to skb->data. */
2259 	int	data_offset;
2260 
2261 	/* This is non-zero if the packet cannot be merged with the new skb. */
2262 	u16	flush;
2263 
2264 	/* Save the IP ID here and check when we get to the transport layer */
2265 	u16	flush_id;
2266 
2267 	/* Number of segments aggregated. */
2268 	u16	count;
2269 
2270 	/* Start offset for remote checksum offload */
2271 	u16	gro_remcsum_start;
2272 
2273 	/* jiffies when first packet was created/queued */
2274 	unsigned long age;
2275 
2276 	/* Used in ipv6_gro_receive() and foo-over-udp */
2277 	u16	proto;
2278 
2279 	/* This is non-zero if the packet may be of the same flow. */
2280 	u8	same_flow:1;
2281 
2282 	/* Used in tunnel GRO receive */
2283 	u8	encap_mark:1;
2284 
2285 	/* GRO checksum is valid */
2286 	u8	csum_valid:1;
2287 
2288 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2289 	u8	csum_cnt:3;
2290 
2291 	/* Free the skb? */
2292 	u8	free:2;
2293 #define NAPI_GRO_FREE		  1
2294 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2295 
2296 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2297 	u8	is_ipv6:1;
2298 
2299 	/* Used in GRE, set in fou/gue_gro_receive */
2300 	u8	is_fou:1;
2301 
2302 	/* Used to determine if flush_id can be ignored */
2303 	u8	is_atomic:1;
2304 
2305 	/* Number of gro_receive callbacks this packet already went through */
2306 	u8 recursion_counter:4;
2307 
2308 	/* 1 bit hole */
2309 
2310 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2311 	__wsum	csum;
2312 
2313 	/* used in skb_gro_receive() slow path */
2314 	struct sk_buff *last;
2315 };
2316 
2317 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2318 
2319 #define GRO_RECURSION_LIMIT 15
gro_recursion_inc_test(struct sk_buff * skb)2320 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2321 {
2322 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2323 }
2324 
2325 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
call_gro_receive(gro_receive_t cb,struct list_head * head,struct sk_buff * skb)2326 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2327 					       struct list_head *head,
2328 					       struct sk_buff *skb)
2329 {
2330 	if (unlikely(gro_recursion_inc_test(skb))) {
2331 		NAPI_GRO_CB(skb)->flush |= 1;
2332 		return NULL;
2333 	}
2334 
2335 	return cb(head, skb);
2336 }
2337 
2338 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2339 					    struct sk_buff *);
call_gro_receive_sk(gro_receive_sk_t cb,struct sock * sk,struct list_head * head,struct sk_buff * skb)2340 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2341 						  struct sock *sk,
2342 						  struct list_head *head,
2343 						  struct sk_buff *skb)
2344 {
2345 	if (unlikely(gro_recursion_inc_test(skb))) {
2346 		NAPI_GRO_CB(skb)->flush |= 1;
2347 		return NULL;
2348 	}
2349 
2350 	return cb(sk, head, skb);
2351 }
2352 
2353 struct packet_type {
2354 	__be16			type;	/* This is really htons(ether_type). */
2355 	bool			ignore_outgoing;
2356 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2357 	int			(*func) (struct sk_buff *,
2358 					 struct net_device *,
2359 					 struct packet_type *,
2360 					 struct net_device *);
2361 	void			(*list_func) (struct list_head *,
2362 					      struct packet_type *,
2363 					      struct net_device *);
2364 	bool			(*id_match)(struct packet_type *ptype,
2365 					    struct sock *sk);
2366 	void			*af_packet_priv;
2367 	struct list_head	list;
2368 };
2369 
2370 struct offload_callbacks {
2371 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2372 						netdev_features_t features);
2373 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2374 						struct sk_buff *skb);
2375 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2376 };
2377 
2378 struct packet_offload {
2379 	__be16			 type;	/* This is really htons(ether_type). */
2380 	u16			 priority;
2381 	struct offload_callbacks callbacks;
2382 	struct list_head	 list;
2383 };
2384 
2385 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2386 struct pcpu_sw_netstats {
2387 	u64     rx_packets;
2388 	u64     rx_bytes;
2389 	u64     tx_packets;
2390 	u64     tx_bytes;
2391 	struct u64_stats_sync   syncp;
2392 } __aligned(4 * sizeof(u64));
2393 
2394 struct pcpu_lstats {
2395 	u64 packets;
2396 	u64 bytes;
2397 	struct u64_stats_sync syncp;
2398 } __aligned(2 * sizeof(u64));
2399 
2400 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2401 ({									\
2402 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2403 	if (pcpu_stats)	{						\
2404 		int __cpu;						\
2405 		for_each_possible_cpu(__cpu) {				\
2406 			typeof(type) *stat;				\
2407 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2408 			u64_stats_init(&stat->syncp);			\
2409 		}							\
2410 	}								\
2411 	pcpu_stats;							\
2412 })
2413 
2414 #define netdev_alloc_pcpu_stats(type)					\
2415 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2416 
2417 enum netdev_lag_tx_type {
2418 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2419 	NETDEV_LAG_TX_TYPE_RANDOM,
2420 	NETDEV_LAG_TX_TYPE_BROADCAST,
2421 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2422 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2423 	NETDEV_LAG_TX_TYPE_HASH,
2424 };
2425 
2426 enum netdev_lag_hash {
2427 	NETDEV_LAG_HASH_NONE,
2428 	NETDEV_LAG_HASH_L2,
2429 	NETDEV_LAG_HASH_L34,
2430 	NETDEV_LAG_HASH_L23,
2431 	NETDEV_LAG_HASH_E23,
2432 	NETDEV_LAG_HASH_E34,
2433 	NETDEV_LAG_HASH_UNKNOWN,
2434 };
2435 
2436 struct netdev_lag_upper_info {
2437 	enum netdev_lag_tx_type tx_type;
2438 	enum netdev_lag_hash hash_type;
2439 };
2440 
2441 struct netdev_lag_lower_state_info {
2442 	u8 link_up : 1,
2443 	   tx_enabled : 1;
2444 };
2445 
2446 #include <linux/notifier.h>
2447 
2448 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2449  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2450  * adding new types.
2451  */
2452 enum netdev_cmd {
2453 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2454 	NETDEV_DOWN,
2455 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2456 				   detected a hardware crash and restarted
2457 				   - we can use this eg to kick tcp sessions
2458 				   once done */
2459 	NETDEV_CHANGE,		/* Notify device state change */
2460 	NETDEV_REGISTER,
2461 	NETDEV_UNREGISTER,
2462 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2463 	NETDEV_CHANGEADDR,	/* notify after the address change */
2464 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2465 	NETDEV_GOING_DOWN,
2466 	NETDEV_CHANGENAME,
2467 	NETDEV_FEAT_CHANGE,
2468 	NETDEV_BONDING_FAILOVER,
2469 	NETDEV_PRE_UP,
2470 	NETDEV_PRE_TYPE_CHANGE,
2471 	NETDEV_POST_TYPE_CHANGE,
2472 	NETDEV_POST_INIT,
2473 	NETDEV_RELEASE,
2474 	NETDEV_NOTIFY_PEERS,
2475 	NETDEV_JOIN,
2476 	NETDEV_CHANGEUPPER,
2477 	NETDEV_RESEND_IGMP,
2478 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2479 	NETDEV_CHANGEINFODATA,
2480 	NETDEV_BONDING_INFO,
2481 	NETDEV_PRECHANGEUPPER,
2482 	NETDEV_CHANGELOWERSTATE,
2483 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2484 	NETDEV_UDP_TUNNEL_DROP_INFO,
2485 	NETDEV_CHANGE_TX_QUEUE_LEN,
2486 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2487 	NETDEV_CVLAN_FILTER_DROP_INFO,
2488 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2489 	NETDEV_SVLAN_FILTER_DROP_INFO,
2490 };
2491 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2492 
2493 int register_netdevice_notifier(struct notifier_block *nb);
2494 int unregister_netdevice_notifier(struct notifier_block *nb);
2495 
2496 struct netdev_notifier_info {
2497 	struct net_device	*dev;
2498 	struct netlink_ext_ack	*extack;
2499 };
2500 
2501 struct netdev_notifier_info_ext {
2502 	struct netdev_notifier_info info; /* must be first */
2503 	union {
2504 		u32 mtu;
2505 	} ext;
2506 };
2507 
2508 struct netdev_notifier_change_info {
2509 	struct netdev_notifier_info info; /* must be first */
2510 	unsigned int flags_changed;
2511 };
2512 
2513 struct netdev_notifier_changeupper_info {
2514 	struct netdev_notifier_info info; /* must be first */
2515 	struct net_device *upper_dev; /* new upper dev */
2516 	bool master; /* is upper dev master */
2517 	bool linking; /* is the notification for link or unlink */
2518 	void *upper_info; /* upper dev info */
2519 };
2520 
2521 struct netdev_notifier_changelowerstate_info {
2522 	struct netdev_notifier_info info; /* must be first */
2523 	void *lower_state_info; /* is lower dev state */
2524 };
2525 
2526 struct netdev_notifier_pre_changeaddr_info {
2527 	struct netdev_notifier_info info; /* must be first */
2528 	const unsigned char *dev_addr;
2529 };
2530 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2531 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2532 					     struct net_device *dev)
2533 {
2534 	info->dev = dev;
2535 	info->extack = NULL;
2536 }
2537 
2538 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2539 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2540 {
2541 	return info->dev;
2542 }
2543 
2544 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2545 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2546 {
2547 	return info->extack;
2548 }
2549 
2550 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2551 
2552 
2553 extern rwlock_t				dev_base_lock;		/* Device list lock */
2554 
2555 #define for_each_netdev(net, d)		\
2556 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2557 #define for_each_netdev_reverse(net, d)	\
2558 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2559 #define for_each_netdev_rcu(net, d)		\
2560 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2561 #define for_each_netdev_safe(net, d, n)	\
2562 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2563 #define for_each_netdev_continue(net, d)		\
2564 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2565 #define for_each_netdev_continue_rcu(net, d)		\
2566 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2567 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2568 		for_each_netdev_rcu(&init_net, slave)	\
2569 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2570 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2571 
next_net_device(struct net_device * dev)2572 static inline struct net_device *next_net_device(struct net_device *dev)
2573 {
2574 	struct list_head *lh;
2575 	struct net *net;
2576 
2577 	net = dev_net(dev);
2578 	lh = dev->dev_list.next;
2579 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2580 }
2581 
next_net_device_rcu(struct net_device * dev)2582 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2583 {
2584 	struct list_head *lh;
2585 	struct net *net;
2586 
2587 	net = dev_net(dev);
2588 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2589 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2590 }
2591 
first_net_device(struct net * net)2592 static inline struct net_device *first_net_device(struct net *net)
2593 {
2594 	return list_empty(&net->dev_base_head) ? NULL :
2595 		net_device_entry(net->dev_base_head.next);
2596 }
2597 
first_net_device_rcu(struct net * net)2598 static inline struct net_device *first_net_device_rcu(struct net *net)
2599 {
2600 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2601 
2602 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2603 }
2604 
2605 int netdev_boot_setup_check(struct net_device *dev);
2606 unsigned long netdev_boot_base(const char *prefix, int unit);
2607 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2608 				       const char *hwaddr);
2609 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2610 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2611 void dev_add_pack(struct packet_type *pt);
2612 void dev_remove_pack(struct packet_type *pt);
2613 void __dev_remove_pack(struct packet_type *pt);
2614 void dev_add_offload(struct packet_offload *po);
2615 void dev_remove_offload(struct packet_offload *po);
2616 
2617 int dev_get_iflink(const struct net_device *dev);
2618 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2619 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2620 				      unsigned short mask);
2621 struct net_device *dev_get_by_name(struct net *net, const char *name);
2622 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2623 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2624 int dev_alloc_name(struct net_device *dev, const char *name);
2625 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2626 void dev_close(struct net_device *dev);
2627 void dev_close_many(struct list_head *head, bool unlink);
2628 void dev_disable_lro(struct net_device *dev);
2629 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2630 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2631 		     struct net_device *sb_dev);
2632 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2633 		       struct net_device *sb_dev);
2634 int dev_queue_xmit(struct sk_buff *skb);
2635 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2636 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2637 int register_netdevice(struct net_device *dev);
2638 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2639 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2640 static inline void unregister_netdevice(struct net_device *dev)
2641 {
2642 	unregister_netdevice_queue(dev, NULL);
2643 }
2644 
2645 int netdev_refcnt_read(const struct net_device *dev);
2646 void free_netdev(struct net_device *dev);
2647 void netdev_freemem(struct net_device *dev);
2648 void synchronize_net(void);
2649 int init_dummy_netdev(struct net_device *dev);
2650 
2651 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2652 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2653 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2654 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2655 int netdev_get_name(struct net *net, char *name, int ifindex);
2656 int dev_restart(struct net_device *dev);
2657 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2658 
skb_gro_offset(const struct sk_buff * skb)2659 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2660 {
2661 	return NAPI_GRO_CB(skb)->data_offset;
2662 }
2663 
skb_gro_len(const struct sk_buff * skb)2664 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2665 {
2666 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2667 }
2668 
skb_gro_pull(struct sk_buff * skb,unsigned int len)2669 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2670 {
2671 	NAPI_GRO_CB(skb)->data_offset += len;
2672 }
2673 
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2674 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2675 					unsigned int offset)
2676 {
2677 	return NAPI_GRO_CB(skb)->frag0 + offset;
2678 }
2679 
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2680 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2681 {
2682 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2683 }
2684 
skb_gro_frag0_invalidate(struct sk_buff * skb)2685 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2686 {
2687 	NAPI_GRO_CB(skb)->frag0 = NULL;
2688 	NAPI_GRO_CB(skb)->frag0_len = 0;
2689 }
2690 
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2691 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2692 					unsigned int offset)
2693 {
2694 	if (!pskb_may_pull(skb, hlen))
2695 		return NULL;
2696 
2697 	skb_gro_frag0_invalidate(skb);
2698 	return skb->data + offset;
2699 }
2700 
skb_gro_network_header(struct sk_buff * skb)2701 static inline void *skb_gro_network_header(struct sk_buff *skb)
2702 {
2703 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2704 	       skb_network_offset(skb);
2705 }
2706 
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2707 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2708 					const void *start, unsigned int len)
2709 {
2710 	if (NAPI_GRO_CB(skb)->csum_valid)
2711 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2712 						  csum_partial(start, len, 0));
2713 }
2714 
2715 /* GRO checksum functions. These are logical equivalents of the normal
2716  * checksum functions (in skbuff.h) except that they operate on the GRO
2717  * offsets and fields in sk_buff.
2718  */
2719 
2720 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2721 
skb_at_gro_remcsum_start(struct sk_buff * skb)2722 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2723 {
2724 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2725 }
2726 
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)2727 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2728 						      bool zero_okay,
2729 						      __sum16 check)
2730 {
2731 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2732 		skb_checksum_start_offset(skb) <
2733 		 skb_gro_offset(skb)) &&
2734 		!skb_at_gro_remcsum_start(skb) &&
2735 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2736 		(!zero_okay || check));
2737 }
2738 
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)2739 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2740 							   __wsum psum)
2741 {
2742 	if (NAPI_GRO_CB(skb)->csum_valid &&
2743 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2744 		return 0;
2745 
2746 	NAPI_GRO_CB(skb)->csum = psum;
2747 
2748 	return __skb_gro_checksum_complete(skb);
2749 }
2750 
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)2751 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2752 {
2753 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2754 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2755 		NAPI_GRO_CB(skb)->csum_cnt--;
2756 	} else {
2757 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2758 		 * verified a new top level checksum or an encapsulated one
2759 		 * during GRO. This saves work if we fallback to normal path.
2760 		 */
2761 		__skb_incr_checksum_unnecessary(skb);
2762 	}
2763 }
2764 
2765 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2766 				    compute_pseudo)			\
2767 ({									\
2768 	__sum16 __ret = 0;						\
2769 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2770 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2771 				compute_pseudo(skb, proto));		\
2772 	if (!__ret)							\
2773 		skb_gro_incr_csum_unnecessary(skb);			\
2774 	__ret;								\
2775 })
2776 
2777 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2778 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2779 
2780 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2781 					     compute_pseudo)		\
2782 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2783 
2784 #define skb_gro_checksum_simple_validate(skb)				\
2785 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2786 
__skb_gro_checksum_convert_check(struct sk_buff * skb)2787 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2788 {
2789 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2790 		!NAPI_GRO_CB(skb)->csum_valid);
2791 }
2792 
__skb_gro_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)2793 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2794 					      __sum16 check, __wsum pseudo)
2795 {
2796 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2797 	NAPI_GRO_CB(skb)->csum_valid = 1;
2798 }
2799 
2800 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2801 do {									\
2802 	if (__skb_gro_checksum_convert_check(skb))			\
2803 		__skb_gro_checksum_convert(skb, check,			\
2804 					   compute_pseudo(skb, proto));	\
2805 } while (0)
2806 
2807 struct gro_remcsum {
2808 	int offset;
2809 	__wsum delta;
2810 };
2811 
skb_gro_remcsum_init(struct gro_remcsum * grc)2812 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2813 {
2814 	grc->offset = 0;
2815 	grc->delta = 0;
2816 }
2817 
skb_gro_remcsum_process(struct sk_buff * skb,void * ptr,unsigned int off,size_t hdrlen,int start,int offset,struct gro_remcsum * grc,bool nopartial)2818 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2819 					    unsigned int off, size_t hdrlen,
2820 					    int start, int offset,
2821 					    struct gro_remcsum *grc,
2822 					    bool nopartial)
2823 {
2824 	__wsum delta;
2825 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2826 
2827 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2828 
2829 	if (!nopartial) {
2830 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2831 		return ptr;
2832 	}
2833 
2834 	ptr = skb_gro_header_fast(skb, off);
2835 	if (skb_gro_header_hard(skb, off + plen)) {
2836 		ptr = skb_gro_header_slow(skb, off + plen, off);
2837 		if (!ptr)
2838 			return NULL;
2839 	}
2840 
2841 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2842 			       start, offset);
2843 
2844 	/* Adjust skb->csum since we changed the packet */
2845 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2846 
2847 	grc->offset = off + hdrlen + offset;
2848 	grc->delta = delta;
2849 
2850 	return ptr;
2851 }
2852 
skb_gro_remcsum_cleanup(struct sk_buff * skb,struct gro_remcsum * grc)2853 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2854 					   struct gro_remcsum *grc)
2855 {
2856 	void *ptr;
2857 	size_t plen = grc->offset + sizeof(u16);
2858 
2859 	if (!grc->delta)
2860 		return;
2861 
2862 	ptr = skb_gro_header_fast(skb, grc->offset);
2863 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2864 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2865 		if (!ptr)
2866 			return;
2867 	}
2868 
2869 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2870 }
2871 
2872 #ifdef CONFIG_XFRM_OFFLOAD
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)2873 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2874 {
2875 	if (PTR_ERR(pp) != -EINPROGRESS)
2876 		NAPI_GRO_CB(skb)->flush |= flush;
2877 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)2878 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2879 					       struct sk_buff *pp,
2880 					       int flush,
2881 					       struct gro_remcsum *grc)
2882 {
2883 	if (PTR_ERR(pp) != -EINPROGRESS) {
2884 		NAPI_GRO_CB(skb)->flush |= flush;
2885 		skb_gro_remcsum_cleanup(skb, grc);
2886 		skb->remcsum_offload = 0;
2887 	}
2888 }
2889 #else
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)2890 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2891 {
2892 	NAPI_GRO_CB(skb)->flush |= flush;
2893 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)2894 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2895 					       struct sk_buff *pp,
2896 					       int flush,
2897 					       struct gro_remcsum *grc)
2898 {
2899 	NAPI_GRO_CB(skb)->flush |= flush;
2900 	skb_gro_remcsum_cleanup(skb, grc);
2901 	skb->remcsum_offload = 0;
2902 }
2903 #endif
2904 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)2905 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2906 				  unsigned short type,
2907 				  const void *daddr, const void *saddr,
2908 				  unsigned int len)
2909 {
2910 	if (!dev->header_ops || !dev->header_ops->create)
2911 		return 0;
2912 
2913 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2914 }
2915 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)2916 static inline int dev_parse_header(const struct sk_buff *skb,
2917 				   unsigned char *haddr)
2918 {
2919 	const struct net_device *dev = skb->dev;
2920 
2921 	if (!dev->header_ops || !dev->header_ops->parse)
2922 		return 0;
2923 	return dev->header_ops->parse(skb, haddr);
2924 }
2925 
dev_parse_header_protocol(const struct sk_buff * skb)2926 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2927 {
2928 	const struct net_device *dev = skb->dev;
2929 
2930 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
2931 		return 0;
2932 	return dev->header_ops->parse_protocol(skb);
2933 }
2934 
2935 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)2936 static inline bool dev_validate_header(const struct net_device *dev,
2937 				       char *ll_header, int len)
2938 {
2939 	if (likely(len >= dev->hard_header_len))
2940 		return true;
2941 	if (len < dev->min_header_len)
2942 		return false;
2943 
2944 	if (capable(CAP_SYS_RAWIO)) {
2945 		memset(ll_header + len, 0, dev->hard_header_len - len);
2946 		return true;
2947 	}
2948 
2949 	if (dev->header_ops && dev->header_ops->validate)
2950 		return dev->header_ops->validate(ll_header, len);
2951 
2952 	return false;
2953 }
2954 
2955 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2956 			   int len, int size);
2957 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
unregister_gifconf(unsigned int family)2958 static inline int unregister_gifconf(unsigned int family)
2959 {
2960 	return register_gifconf(family, NULL);
2961 }
2962 
2963 #ifdef CONFIG_NET_FLOW_LIMIT
2964 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2965 struct sd_flow_limit {
2966 	u64			count;
2967 	unsigned int		num_buckets;
2968 	unsigned int		history_head;
2969 	u16			history[FLOW_LIMIT_HISTORY];
2970 	u8			buckets[];
2971 };
2972 
2973 extern int netdev_flow_limit_table_len;
2974 #endif /* CONFIG_NET_FLOW_LIMIT */
2975 
2976 /*
2977  * Incoming packets are placed on per-CPU queues
2978  */
2979 struct softnet_data {
2980 	struct list_head	poll_list;
2981 	struct sk_buff_head	process_queue;
2982 
2983 	/* stats */
2984 	unsigned int		processed;
2985 	unsigned int		time_squeeze;
2986 	unsigned int		received_rps;
2987 #ifdef CONFIG_RPS
2988 	struct softnet_data	*rps_ipi_list;
2989 #endif
2990 #ifdef CONFIG_NET_FLOW_LIMIT
2991 	struct sd_flow_limit __rcu *flow_limit;
2992 #endif
2993 	struct Qdisc		*output_queue;
2994 	struct Qdisc		**output_queue_tailp;
2995 	struct sk_buff		*completion_queue;
2996 #ifdef CONFIG_XFRM_OFFLOAD
2997 	struct sk_buff_head	xfrm_backlog;
2998 #endif
2999 	/* written and read only by owning cpu: */
3000 	struct {
3001 		u16 recursion;
3002 		u8  more;
3003 	} xmit;
3004 #ifdef CONFIG_RPS
3005 	/* input_queue_head should be written by cpu owning this struct,
3006 	 * and only read by other cpus. Worth using a cache line.
3007 	 */
3008 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3009 
3010 	/* Elements below can be accessed between CPUs for RPS/RFS */
3011 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3012 	struct softnet_data	*rps_ipi_next;
3013 	unsigned int		cpu;
3014 	unsigned int		input_queue_tail;
3015 #endif
3016 	unsigned int		dropped;
3017 	struct sk_buff_head	input_pkt_queue;
3018 	struct napi_struct	backlog;
3019 
3020 };
3021 
input_queue_head_incr(struct softnet_data * sd)3022 static inline void input_queue_head_incr(struct softnet_data *sd)
3023 {
3024 #ifdef CONFIG_RPS
3025 	sd->input_queue_head++;
3026 #endif
3027 }
3028 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3029 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3030 					      unsigned int *qtail)
3031 {
3032 #ifdef CONFIG_RPS
3033 	*qtail = ++sd->input_queue_tail;
3034 #endif
3035 }
3036 
3037 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3038 
dev_recursion_level(void)3039 static inline int dev_recursion_level(void)
3040 {
3041 	return this_cpu_read(softnet_data.xmit.recursion);
3042 }
3043 
3044 #define XMIT_RECURSION_LIMIT	10
dev_xmit_recursion(void)3045 static inline bool dev_xmit_recursion(void)
3046 {
3047 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3048 			XMIT_RECURSION_LIMIT);
3049 }
3050 
dev_xmit_recursion_inc(void)3051 static inline void dev_xmit_recursion_inc(void)
3052 {
3053 	__this_cpu_inc(softnet_data.xmit.recursion);
3054 }
3055 
dev_xmit_recursion_dec(void)3056 static inline void dev_xmit_recursion_dec(void)
3057 {
3058 	__this_cpu_dec(softnet_data.xmit.recursion);
3059 }
3060 
3061 void __netif_schedule(struct Qdisc *q);
3062 void netif_schedule_queue(struct netdev_queue *txq);
3063 
netif_tx_schedule_all(struct net_device * dev)3064 static inline void netif_tx_schedule_all(struct net_device *dev)
3065 {
3066 	unsigned int i;
3067 
3068 	for (i = 0; i < dev->num_tx_queues; i++)
3069 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3070 }
3071 
netif_tx_start_queue(struct netdev_queue * dev_queue)3072 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3073 {
3074 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3075 }
3076 
3077 /**
3078  *	netif_start_queue - allow transmit
3079  *	@dev: network device
3080  *
3081  *	Allow upper layers to call the device hard_start_xmit routine.
3082  */
netif_start_queue(struct net_device * dev)3083 static inline void netif_start_queue(struct net_device *dev)
3084 {
3085 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3086 }
3087 
netif_tx_start_all_queues(struct net_device * dev)3088 static inline void netif_tx_start_all_queues(struct net_device *dev)
3089 {
3090 	unsigned int i;
3091 
3092 	for (i = 0; i < dev->num_tx_queues; i++) {
3093 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3094 		netif_tx_start_queue(txq);
3095 	}
3096 }
3097 
3098 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3099 
3100 /**
3101  *	netif_wake_queue - restart transmit
3102  *	@dev: network device
3103  *
3104  *	Allow upper layers to call the device hard_start_xmit routine.
3105  *	Used for flow control when transmit resources are available.
3106  */
netif_wake_queue(struct net_device * dev)3107 static inline void netif_wake_queue(struct net_device *dev)
3108 {
3109 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3110 }
3111 
netif_tx_wake_all_queues(struct net_device * dev)3112 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3113 {
3114 	unsigned int i;
3115 
3116 	for (i = 0; i < dev->num_tx_queues; i++) {
3117 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3118 		netif_tx_wake_queue(txq);
3119 	}
3120 }
3121 
netif_tx_stop_queue(struct netdev_queue * dev_queue)3122 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3123 {
3124 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3125 }
3126 
3127 /**
3128  *	netif_stop_queue - stop transmitted packets
3129  *	@dev: network device
3130  *
3131  *	Stop upper layers calling the device hard_start_xmit routine.
3132  *	Used for flow control when transmit resources are unavailable.
3133  */
netif_stop_queue(struct net_device * dev)3134 static inline void netif_stop_queue(struct net_device *dev)
3135 {
3136 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3137 }
3138 
3139 void netif_tx_stop_all_queues(struct net_device *dev);
3140 void netdev_update_lockdep_key(struct net_device *dev);
3141 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3142 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3143 {
3144 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3145 }
3146 
3147 /**
3148  *	netif_queue_stopped - test if transmit queue is flowblocked
3149  *	@dev: network device
3150  *
3151  *	Test if transmit queue on device is currently unable to send.
3152  */
netif_queue_stopped(const struct net_device * dev)3153 static inline bool netif_queue_stopped(const struct net_device *dev)
3154 {
3155 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3156 }
3157 
netif_xmit_stopped(const struct netdev_queue * dev_queue)3158 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3159 {
3160 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3161 }
3162 
3163 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3164 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3165 {
3166 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3167 }
3168 
3169 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3170 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3171 {
3172 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3173 }
3174 
3175 /**
3176  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3177  *	@dev_queue: pointer to transmit queue
3178  *
3179  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3180  * to give appropriate hint to the CPU.
3181  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3182 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3183 {
3184 #ifdef CONFIG_BQL
3185 	prefetchw(&dev_queue->dql.num_queued);
3186 #endif
3187 }
3188 
3189 /**
3190  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3191  *	@dev_queue: pointer to transmit queue
3192  *
3193  * BQL enabled drivers might use this helper in their TX completion path,
3194  * to give appropriate hint to the CPU.
3195  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3196 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3197 {
3198 #ifdef CONFIG_BQL
3199 	prefetchw(&dev_queue->dql.limit);
3200 #endif
3201 }
3202 
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3203 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3204 					unsigned int bytes)
3205 {
3206 #ifdef CONFIG_BQL
3207 	dql_queued(&dev_queue->dql, bytes);
3208 
3209 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3210 		return;
3211 
3212 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3213 
3214 	/*
3215 	 * The XOFF flag must be set before checking the dql_avail below,
3216 	 * because in netdev_tx_completed_queue we update the dql_completed
3217 	 * before checking the XOFF flag.
3218 	 */
3219 	smp_mb();
3220 
3221 	/* check again in case another CPU has just made room avail */
3222 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3223 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3224 #endif
3225 }
3226 
3227 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3228  * that they should not test BQL status themselves.
3229  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3230  * skb of a batch.
3231  * Returns true if the doorbell must be used to kick the NIC.
3232  */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3233 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3234 					  unsigned int bytes,
3235 					  bool xmit_more)
3236 {
3237 	if (xmit_more) {
3238 #ifdef CONFIG_BQL
3239 		dql_queued(&dev_queue->dql, bytes);
3240 #endif
3241 		return netif_tx_queue_stopped(dev_queue);
3242 	}
3243 	netdev_tx_sent_queue(dev_queue, bytes);
3244 	return true;
3245 }
3246 
3247 /**
3248  * 	netdev_sent_queue - report the number of bytes queued to hardware
3249  * 	@dev: network device
3250  * 	@bytes: number of bytes queued to the hardware device queue
3251  *
3252  * 	Report the number of bytes queued for sending/completion to the network
3253  * 	device hardware queue. @bytes should be a good approximation and should
3254  * 	exactly match netdev_completed_queue() @bytes
3255  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3256 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3257 {
3258 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3259 }
3260 
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3261 static inline bool __netdev_sent_queue(struct net_device *dev,
3262 				       unsigned int bytes,
3263 				       bool xmit_more)
3264 {
3265 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3266 				      xmit_more);
3267 }
3268 
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3269 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3270 					     unsigned int pkts, unsigned int bytes)
3271 {
3272 #ifdef CONFIG_BQL
3273 	if (unlikely(!bytes))
3274 		return;
3275 
3276 	dql_completed(&dev_queue->dql, bytes);
3277 
3278 	/*
3279 	 * Without the memory barrier there is a small possiblity that
3280 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3281 	 * be stopped forever
3282 	 */
3283 	smp_mb();
3284 
3285 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3286 		return;
3287 
3288 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3289 		netif_schedule_queue(dev_queue);
3290 #endif
3291 }
3292 
3293 /**
3294  * 	netdev_completed_queue - report bytes and packets completed by device
3295  * 	@dev: network device
3296  * 	@pkts: actual number of packets sent over the medium
3297  * 	@bytes: actual number of bytes sent over the medium
3298  *
3299  * 	Report the number of bytes and packets transmitted by the network device
3300  * 	hardware queue over the physical medium, @bytes must exactly match the
3301  * 	@bytes amount passed to netdev_sent_queue()
3302  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3303 static inline void netdev_completed_queue(struct net_device *dev,
3304 					  unsigned int pkts, unsigned int bytes)
3305 {
3306 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3307 }
3308 
netdev_tx_reset_queue(struct netdev_queue * q)3309 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3310 {
3311 #ifdef CONFIG_BQL
3312 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3313 	dql_reset(&q->dql);
3314 #endif
3315 }
3316 
3317 /**
3318  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3319  * 	@dev_queue: network device
3320  *
3321  * 	Reset the bytes and packet count of a network device and clear the
3322  * 	software flow control OFF bit for this network device
3323  */
netdev_reset_queue(struct net_device * dev_queue)3324 static inline void netdev_reset_queue(struct net_device *dev_queue)
3325 {
3326 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3327 }
3328 
3329 /**
3330  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3331  * 	@dev: network device
3332  * 	@queue_index: given tx queue index
3333  *
3334  * 	Returns 0 if given tx queue index >= number of device tx queues,
3335  * 	otherwise returns the originally passed tx queue index.
3336  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3337 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3338 {
3339 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3340 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3341 				     dev->name, queue_index,
3342 				     dev->real_num_tx_queues);
3343 		return 0;
3344 	}
3345 
3346 	return queue_index;
3347 }
3348 
3349 /**
3350  *	netif_running - test if up
3351  *	@dev: network device
3352  *
3353  *	Test if the device has been brought up.
3354  */
netif_running(const struct net_device * dev)3355 static inline bool netif_running(const struct net_device *dev)
3356 {
3357 	return test_bit(__LINK_STATE_START, &dev->state);
3358 }
3359 
3360 /*
3361  * Routines to manage the subqueues on a device.  We only need start,
3362  * stop, and a check if it's stopped.  All other device management is
3363  * done at the overall netdevice level.
3364  * Also test the device if we're multiqueue.
3365  */
3366 
3367 /**
3368  *	netif_start_subqueue - allow sending packets on subqueue
3369  *	@dev: network device
3370  *	@queue_index: sub queue index
3371  *
3372  * Start individual transmit queue of a device with multiple transmit queues.
3373  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3374 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3375 {
3376 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3377 
3378 	netif_tx_start_queue(txq);
3379 }
3380 
3381 /**
3382  *	netif_stop_subqueue - stop sending packets on subqueue
3383  *	@dev: network device
3384  *	@queue_index: sub queue index
3385  *
3386  * Stop individual transmit queue of a device with multiple transmit queues.
3387  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3388 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3389 {
3390 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3391 	netif_tx_stop_queue(txq);
3392 }
3393 
3394 /**
3395  *	netif_subqueue_stopped - test status of subqueue
3396  *	@dev: network device
3397  *	@queue_index: sub queue index
3398  *
3399  * Check individual transmit queue of a device with multiple transmit queues.
3400  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3401 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3402 					    u16 queue_index)
3403 {
3404 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3405 
3406 	return netif_tx_queue_stopped(txq);
3407 }
3408 
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3409 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3410 					  struct sk_buff *skb)
3411 {
3412 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3413 }
3414 
3415 /**
3416  *	netif_wake_subqueue - allow sending packets on subqueue
3417  *	@dev: network device
3418  *	@queue_index: sub queue index
3419  *
3420  * Resume individual transmit queue of a device with multiple transmit queues.
3421  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3422 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3423 {
3424 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3425 
3426 	netif_tx_wake_queue(txq);
3427 }
3428 
3429 #ifdef CONFIG_XPS
3430 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3431 			u16 index);
3432 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3433 			  u16 index, bool is_rxqs_map);
3434 
3435 /**
3436  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3437  *	@j: CPU/Rx queue index
3438  *	@mask: bitmask of all cpus/rx queues
3439  *	@nr_bits: number of bits in the bitmask
3440  *
3441  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3442  */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3443 static inline bool netif_attr_test_mask(unsigned long j,
3444 					const unsigned long *mask,
3445 					unsigned int nr_bits)
3446 {
3447 	cpu_max_bits_warn(j, nr_bits);
3448 	return test_bit(j, mask);
3449 }
3450 
3451 /**
3452  *	netif_attr_test_online - Test for online CPU/Rx queue
3453  *	@j: CPU/Rx queue index
3454  *	@online_mask: bitmask for CPUs/Rx queues that are online
3455  *	@nr_bits: number of bits in the bitmask
3456  *
3457  * Returns true if a CPU/Rx queue is online.
3458  */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3459 static inline bool netif_attr_test_online(unsigned long j,
3460 					  const unsigned long *online_mask,
3461 					  unsigned int nr_bits)
3462 {
3463 	cpu_max_bits_warn(j, nr_bits);
3464 
3465 	if (online_mask)
3466 		return test_bit(j, online_mask);
3467 
3468 	return (j < nr_bits);
3469 }
3470 
3471 /**
3472  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3473  *	@n: CPU/Rx queue index
3474  *	@srcp: the cpumask/Rx queue mask pointer
3475  *	@nr_bits: number of bits in the bitmask
3476  *
3477  * Returns >= nr_bits if no further CPUs/Rx queues set.
3478  */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3479 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3480 					       unsigned int nr_bits)
3481 {
3482 	/* -1 is a legal arg here. */
3483 	if (n != -1)
3484 		cpu_max_bits_warn(n, nr_bits);
3485 
3486 	if (srcp)
3487 		return find_next_bit(srcp, nr_bits, n + 1);
3488 
3489 	return n + 1;
3490 }
3491 
3492 /**
3493  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3494  *	@n: CPU/Rx queue index
3495  *	@src1p: the first CPUs/Rx queues mask pointer
3496  *	@src2p: the second CPUs/Rx queues mask pointer
3497  *	@nr_bits: number of bits in the bitmask
3498  *
3499  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3500  */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3501 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3502 					  const unsigned long *src2p,
3503 					  unsigned int nr_bits)
3504 {
3505 	/* -1 is a legal arg here. */
3506 	if (n != -1)
3507 		cpu_max_bits_warn(n, nr_bits);
3508 
3509 	if (src1p && src2p)
3510 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3511 	else if (src1p)
3512 		return find_next_bit(src1p, nr_bits, n + 1);
3513 	else if (src2p)
3514 		return find_next_bit(src2p, nr_bits, n + 1);
3515 
3516 	return n + 1;
3517 }
3518 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3519 static inline int netif_set_xps_queue(struct net_device *dev,
3520 				      const struct cpumask *mask,
3521 				      u16 index)
3522 {
3523 	return 0;
3524 }
3525 
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)3526 static inline int __netif_set_xps_queue(struct net_device *dev,
3527 					const unsigned long *mask,
3528 					u16 index, bool is_rxqs_map)
3529 {
3530 	return 0;
3531 }
3532 #endif
3533 
3534 /**
3535  *	netif_is_multiqueue - test if device has multiple transmit queues
3536  *	@dev: network device
3537  *
3538  * Check if device has multiple transmit queues
3539  */
netif_is_multiqueue(const struct net_device * dev)3540 static inline bool netif_is_multiqueue(const struct net_device *dev)
3541 {
3542 	return dev->num_tx_queues > 1;
3543 }
3544 
3545 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3546 
3547 #ifdef CONFIG_SYSFS
3548 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3549 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3550 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3551 						unsigned int rxqs)
3552 {
3553 	dev->real_num_rx_queues = rxqs;
3554 	return 0;
3555 }
3556 #endif
3557 
3558 static inline struct netdev_rx_queue *
__netif_get_rx_queue(struct net_device * dev,unsigned int rxq)3559 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3560 {
3561 	return dev->_rx + rxq;
3562 }
3563 
3564 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3565 static inline unsigned int get_netdev_rx_queue_index(
3566 		struct netdev_rx_queue *queue)
3567 {
3568 	struct net_device *dev = queue->dev;
3569 	int index = queue - dev->_rx;
3570 
3571 	BUG_ON(index >= dev->num_rx_queues);
3572 	return index;
3573 }
3574 #endif
3575 
3576 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3577 int netif_get_num_default_rss_queues(void);
3578 
3579 enum skb_free_reason {
3580 	SKB_REASON_CONSUMED,
3581 	SKB_REASON_DROPPED,
3582 };
3583 
3584 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3585 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3586 
3587 /*
3588  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3589  * interrupt context or with hardware interrupts being disabled.
3590  * (in_irq() || irqs_disabled())
3591  *
3592  * We provide four helpers that can be used in following contexts :
3593  *
3594  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3595  *  replacing kfree_skb(skb)
3596  *
3597  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3598  *  Typically used in place of consume_skb(skb) in TX completion path
3599  *
3600  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3601  *  replacing kfree_skb(skb)
3602  *
3603  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3604  *  and consumed a packet. Used in place of consume_skb(skb)
3605  */
dev_kfree_skb_irq(struct sk_buff * skb)3606 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3607 {
3608 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3609 }
3610 
dev_consume_skb_irq(struct sk_buff * skb)3611 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3612 {
3613 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3614 }
3615 
dev_kfree_skb_any(struct sk_buff * skb)3616 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3617 {
3618 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3619 }
3620 
dev_consume_skb_any(struct sk_buff * skb)3621 static inline void dev_consume_skb_any(struct sk_buff *skb)
3622 {
3623 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3624 }
3625 
3626 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3627 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3628 int netif_rx(struct sk_buff *skb);
3629 int netif_rx_ni(struct sk_buff *skb);
3630 int netif_receive_skb(struct sk_buff *skb);
3631 int netif_receive_skb_core(struct sk_buff *skb);
3632 void netif_receive_skb_list(struct list_head *head);
3633 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3634 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3635 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3636 gro_result_t napi_gro_frags(struct napi_struct *napi);
3637 struct packet_offload *gro_find_receive_by_type(__be16 type);
3638 struct packet_offload *gro_find_complete_by_type(__be16 type);
3639 
napi_free_frags(struct napi_struct * napi)3640 static inline void napi_free_frags(struct napi_struct *napi)
3641 {
3642 	kfree_skb(napi->skb);
3643 	napi->skb = NULL;
3644 }
3645 
3646 bool netdev_is_rx_handler_busy(struct net_device *dev);
3647 int netdev_rx_handler_register(struct net_device *dev,
3648 			       rx_handler_func_t *rx_handler,
3649 			       void *rx_handler_data);
3650 void netdev_rx_handler_unregister(struct net_device *dev);
3651 
3652 bool dev_valid_name(const char *name);
3653 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3654 		bool *need_copyout);
3655 int dev_ifconf(struct net *net, struct ifconf *, int);
3656 int dev_ethtool(struct net *net, struct ifreq *);
3657 unsigned int dev_get_flags(const struct net_device *);
3658 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3659 		       struct netlink_ext_ack *extack);
3660 int dev_change_flags(struct net_device *dev, unsigned int flags,
3661 		     struct netlink_ext_ack *extack);
3662 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3663 			unsigned int gchanges);
3664 int dev_change_name(struct net_device *, const char *);
3665 int dev_set_alias(struct net_device *, const char *, size_t);
3666 int dev_get_alias(const struct net_device *, char *, size_t);
3667 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3668 int __dev_set_mtu(struct net_device *, int);
3669 int dev_validate_mtu(struct net_device *dev, int mtu,
3670 		     struct netlink_ext_ack *extack);
3671 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3672 		    struct netlink_ext_ack *extack);
3673 int dev_set_mtu(struct net_device *, int);
3674 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3675 void dev_set_group(struct net_device *, int);
3676 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3677 			      struct netlink_ext_ack *extack);
3678 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3679 			struct netlink_ext_ack *extack);
3680 int dev_change_carrier(struct net_device *, bool new_carrier);
3681 int dev_get_phys_port_id(struct net_device *dev,
3682 			 struct netdev_phys_item_id *ppid);
3683 int dev_get_phys_port_name(struct net_device *dev,
3684 			   char *name, size_t len);
3685 int dev_get_port_parent_id(struct net_device *dev,
3686 			   struct netdev_phys_item_id *ppid, bool recurse);
3687 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3688 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3689 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3690 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3691 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3692 				    struct netdev_queue *txq, int *ret);
3693 
3694 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3695 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3696 		      int fd, u32 flags);
3697 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3698 		    enum bpf_netdev_command cmd);
3699 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3700 
3701 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3702 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3703 bool is_skb_forwardable(const struct net_device *dev,
3704 			const struct sk_buff *skb);
3705 
____dev_forward_skb(struct net_device * dev,struct sk_buff * skb)3706 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3707 					       struct sk_buff *skb)
3708 {
3709 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3710 	    unlikely(!is_skb_forwardable(dev, skb))) {
3711 		atomic_long_inc(&dev->rx_dropped);
3712 		kfree_skb(skb);
3713 		return NET_RX_DROP;
3714 	}
3715 
3716 	skb_scrub_packet(skb, true);
3717 	skb->priority = 0;
3718 	return 0;
3719 }
3720 
3721 bool dev_nit_active(struct net_device *dev);
3722 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3723 
3724 extern int		netdev_budget;
3725 extern unsigned int	netdev_budget_usecs;
3726 
3727 /* Called by rtnetlink.c:rtnl_unlock() */
3728 void netdev_run_todo(void);
3729 
3730 /**
3731  *	dev_put - release reference to device
3732  *	@dev: network device
3733  *
3734  * Release reference to device to allow it to be freed.
3735  */
dev_put(struct net_device * dev)3736 static inline void dev_put(struct net_device *dev)
3737 {
3738 	this_cpu_dec(*dev->pcpu_refcnt);
3739 }
3740 
3741 /**
3742  *	dev_hold - get reference to device
3743  *	@dev: network device
3744  *
3745  * Hold reference to device to keep it from being freed.
3746  */
dev_hold(struct net_device * dev)3747 static inline void dev_hold(struct net_device *dev)
3748 {
3749 	this_cpu_inc(*dev->pcpu_refcnt);
3750 }
3751 
3752 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3753  * and _off may be called from IRQ context, but it is caller
3754  * who is responsible for serialization of these calls.
3755  *
3756  * The name carrier is inappropriate, these functions should really be
3757  * called netif_lowerlayer_*() because they represent the state of any
3758  * kind of lower layer not just hardware media.
3759  */
3760 
3761 void linkwatch_init_dev(struct net_device *dev);
3762 void linkwatch_fire_event(struct net_device *dev);
3763 void linkwatch_forget_dev(struct net_device *dev);
3764 
3765 /**
3766  *	netif_carrier_ok - test if carrier present
3767  *	@dev: network device
3768  *
3769  * Check if carrier is present on device
3770  */
netif_carrier_ok(const struct net_device * dev)3771 static inline bool netif_carrier_ok(const struct net_device *dev)
3772 {
3773 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3774 }
3775 
3776 unsigned long dev_trans_start(struct net_device *dev);
3777 
3778 void __netdev_watchdog_up(struct net_device *dev);
3779 
3780 void netif_carrier_on(struct net_device *dev);
3781 
3782 void netif_carrier_off(struct net_device *dev);
3783 
3784 /**
3785  *	netif_dormant_on - mark device as dormant.
3786  *	@dev: network device
3787  *
3788  * Mark device as dormant (as per RFC2863).
3789  *
3790  * The dormant state indicates that the relevant interface is not
3791  * actually in a condition to pass packets (i.e., it is not 'up') but is
3792  * in a "pending" state, waiting for some external event.  For "on-
3793  * demand" interfaces, this new state identifies the situation where the
3794  * interface is waiting for events to place it in the up state.
3795  */
netif_dormant_on(struct net_device * dev)3796 static inline void netif_dormant_on(struct net_device *dev)
3797 {
3798 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3799 		linkwatch_fire_event(dev);
3800 }
3801 
3802 /**
3803  *	netif_dormant_off - set device as not dormant.
3804  *	@dev: network device
3805  *
3806  * Device is not in dormant state.
3807  */
netif_dormant_off(struct net_device * dev)3808 static inline void netif_dormant_off(struct net_device *dev)
3809 {
3810 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3811 		linkwatch_fire_event(dev);
3812 }
3813 
3814 /**
3815  *	netif_dormant - test if device is dormant
3816  *	@dev: network device
3817  *
3818  * Check if device is dormant.
3819  */
netif_dormant(const struct net_device * dev)3820 static inline bool netif_dormant(const struct net_device *dev)
3821 {
3822 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3823 }
3824 
3825 
3826 /**
3827  *	netif_oper_up - test if device is operational
3828  *	@dev: network device
3829  *
3830  * Check if carrier is operational
3831  */
netif_oper_up(const struct net_device * dev)3832 static inline bool netif_oper_up(const struct net_device *dev)
3833 {
3834 	return (dev->operstate == IF_OPER_UP ||
3835 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3836 }
3837 
3838 /**
3839  *	netif_device_present - is device available or removed
3840  *	@dev: network device
3841  *
3842  * Check if device has not been removed from system.
3843  */
netif_device_present(struct net_device * dev)3844 static inline bool netif_device_present(struct net_device *dev)
3845 {
3846 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3847 }
3848 
3849 void netif_device_detach(struct net_device *dev);
3850 
3851 void netif_device_attach(struct net_device *dev);
3852 
3853 /*
3854  * Network interface message level settings
3855  */
3856 
3857 enum {
3858 	NETIF_MSG_DRV		= 0x0001,
3859 	NETIF_MSG_PROBE		= 0x0002,
3860 	NETIF_MSG_LINK		= 0x0004,
3861 	NETIF_MSG_TIMER		= 0x0008,
3862 	NETIF_MSG_IFDOWN	= 0x0010,
3863 	NETIF_MSG_IFUP		= 0x0020,
3864 	NETIF_MSG_RX_ERR	= 0x0040,
3865 	NETIF_MSG_TX_ERR	= 0x0080,
3866 	NETIF_MSG_TX_QUEUED	= 0x0100,
3867 	NETIF_MSG_INTR		= 0x0200,
3868 	NETIF_MSG_TX_DONE	= 0x0400,
3869 	NETIF_MSG_RX_STATUS	= 0x0800,
3870 	NETIF_MSG_PKTDATA	= 0x1000,
3871 	NETIF_MSG_HW		= 0x2000,
3872 	NETIF_MSG_WOL		= 0x4000,
3873 };
3874 
3875 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3876 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3877 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3878 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3879 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3880 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3881 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3882 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3883 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3884 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3885 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3886 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3887 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3888 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3889 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3890 
netif_msg_init(int debug_value,int default_msg_enable_bits)3891 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3892 {
3893 	/* use default */
3894 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3895 		return default_msg_enable_bits;
3896 	if (debug_value == 0)	/* no output */
3897 		return 0;
3898 	/* set low N bits */
3899 	return (1U << debug_value) - 1;
3900 }
3901 
__netif_tx_lock(struct netdev_queue * txq,int cpu)3902 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3903 {
3904 	spin_lock(&txq->_xmit_lock);
3905 	txq->xmit_lock_owner = cpu;
3906 }
3907 
__netif_tx_acquire(struct netdev_queue * txq)3908 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3909 {
3910 	__acquire(&txq->_xmit_lock);
3911 	return true;
3912 }
3913 
__netif_tx_release(struct netdev_queue * txq)3914 static inline void __netif_tx_release(struct netdev_queue *txq)
3915 {
3916 	__release(&txq->_xmit_lock);
3917 }
3918 
__netif_tx_lock_bh(struct netdev_queue * txq)3919 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3920 {
3921 	spin_lock_bh(&txq->_xmit_lock);
3922 	txq->xmit_lock_owner = smp_processor_id();
3923 }
3924 
__netif_tx_trylock(struct netdev_queue * txq)3925 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3926 {
3927 	bool ok = spin_trylock(&txq->_xmit_lock);
3928 	if (likely(ok))
3929 		txq->xmit_lock_owner = smp_processor_id();
3930 	return ok;
3931 }
3932 
__netif_tx_unlock(struct netdev_queue * txq)3933 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3934 {
3935 	txq->xmit_lock_owner = -1;
3936 	spin_unlock(&txq->_xmit_lock);
3937 }
3938 
__netif_tx_unlock_bh(struct netdev_queue * txq)3939 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3940 {
3941 	txq->xmit_lock_owner = -1;
3942 	spin_unlock_bh(&txq->_xmit_lock);
3943 }
3944 
txq_trans_update(struct netdev_queue * txq)3945 static inline void txq_trans_update(struct netdev_queue *txq)
3946 {
3947 	if (txq->xmit_lock_owner != -1)
3948 		txq->trans_start = jiffies;
3949 }
3950 
3951 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)3952 static inline void netif_trans_update(struct net_device *dev)
3953 {
3954 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3955 
3956 	if (txq->trans_start != jiffies)
3957 		txq->trans_start = jiffies;
3958 }
3959 
3960 /**
3961  *	netif_tx_lock - grab network device transmit lock
3962  *	@dev: network device
3963  *
3964  * Get network device transmit lock
3965  */
netif_tx_lock(struct net_device * dev)3966 static inline void netif_tx_lock(struct net_device *dev)
3967 {
3968 	unsigned int i;
3969 	int cpu;
3970 
3971 	spin_lock(&dev->tx_global_lock);
3972 	cpu = smp_processor_id();
3973 	for (i = 0; i < dev->num_tx_queues; i++) {
3974 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3975 
3976 		/* We are the only thread of execution doing a
3977 		 * freeze, but we have to grab the _xmit_lock in
3978 		 * order to synchronize with threads which are in
3979 		 * the ->hard_start_xmit() handler and already
3980 		 * checked the frozen bit.
3981 		 */
3982 		__netif_tx_lock(txq, cpu);
3983 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3984 		__netif_tx_unlock(txq);
3985 	}
3986 }
3987 
netif_tx_lock_bh(struct net_device * dev)3988 static inline void netif_tx_lock_bh(struct net_device *dev)
3989 {
3990 	local_bh_disable();
3991 	netif_tx_lock(dev);
3992 }
3993 
netif_tx_unlock(struct net_device * dev)3994 static inline void netif_tx_unlock(struct net_device *dev)
3995 {
3996 	unsigned int i;
3997 
3998 	for (i = 0; i < dev->num_tx_queues; i++) {
3999 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4000 
4001 		/* No need to grab the _xmit_lock here.  If the
4002 		 * queue is not stopped for another reason, we
4003 		 * force a schedule.
4004 		 */
4005 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4006 		netif_schedule_queue(txq);
4007 	}
4008 	spin_unlock(&dev->tx_global_lock);
4009 }
4010 
netif_tx_unlock_bh(struct net_device * dev)4011 static inline void netif_tx_unlock_bh(struct net_device *dev)
4012 {
4013 	netif_tx_unlock(dev);
4014 	local_bh_enable();
4015 }
4016 
4017 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4018 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4019 		__netif_tx_lock(txq, cpu);		\
4020 	} else {					\
4021 		__netif_tx_acquire(txq);		\
4022 	}						\
4023 }
4024 
4025 #define HARD_TX_TRYLOCK(dev, txq)			\
4026 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4027 		__netif_tx_trylock(txq) :		\
4028 		__netif_tx_acquire(txq))
4029 
4030 #define HARD_TX_UNLOCK(dev, txq) {			\
4031 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4032 		__netif_tx_unlock(txq);			\
4033 	} else {					\
4034 		__netif_tx_release(txq);		\
4035 	}						\
4036 }
4037 
netif_tx_disable(struct net_device * dev)4038 static inline void netif_tx_disable(struct net_device *dev)
4039 {
4040 	unsigned int i;
4041 	int cpu;
4042 
4043 	local_bh_disable();
4044 	cpu = smp_processor_id();
4045 	for (i = 0; i < dev->num_tx_queues; i++) {
4046 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4047 
4048 		__netif_tx_lock(txq, cpu);
4049 		netif_tx_stop_queue(txq);
4050 		__netif_tx_unlock(txq);
4051 	}
4052 	local_bh_enable();
4053 }
4054 
netif_addr_lock(struct net_device * dev)4055 static inline void netif_addr_lock(struct net_device *dev)
4056 {
4057 	spin_lock(&dev->addr_list_lock);
4058 }
4059 
netif_addr_lock_bh(struct net_device * dev)4060 static inline void netif_addr_lock_bh(struct net_device *dev)
4061 {
4062 	spin_lock_bh(&dev->addr_list_lock);
4063 }
4064 
netif_addr_unlock(struct net_device * dev)4065 static inline void netif_addr_unlock(struct net_device *dev)
4066 {
4067 	spin_unlock(&dev->addr_list_lock);
4068 }
4069 
netif_addr_unlock_bh(struct net_device * dev)4070 static inline void netif_addr_unlock_bh(struct net_device *dev)
4071 {
4072 	spin_unlock_bh(&dev->addr_list_lock);
4073 }
4074 
4075 /*
4076  * dev_addrs walker. Should be used only for read access. Call with
4077  * rcu_read_lock held.
4078  */
4079 #define for_each_dev_addr(dev, ha) \
4080 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4081 
4082 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4083 
4084 void ether_setup(struct net_device *dev);
4085 
4086 /* Support for loadable net-drivers */
4087 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4088 				    unsigned char name_assign_type,
4089 				    void (*setup)(struct net_device *),
4090 				    unsigned int txqs, unsigned int rxqs);
4091 int dev_get_valid_name(struct net *net, struct net_device *dev,
4092 		       const char *name);
4093 
4094 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4095 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4096 
4097 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4098 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4099 			 count)
4100 
4101 int register_netdev(struct net_device *dev);
4102 void unregister_netdev(struct net_device *dev);
4103 
4104 /* General hardware address lists handling functions */
4105 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4106 		   struct netdev_hw_addr_list *from_list, int addr_len);
4107 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4108 		      struct netdev_hw_addr_list *from_list, int addr_len);
4109 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4110 		       struct net_device *dev,
4111 		       int (*sync)(struct net_device *, const unsigned char *),
4112 		       int (*unsync)(struct net_device *,
4113 				     const unsigned char *));
4114 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4115 			   struct net_device *dev,
4116 			   int (*sync)(struct net_device *,
4117 				       const unsigned char *, int),
4118 			   int (*unsync)(struct net_device *,
4119 					 const unsigned char *, int));
4120 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4121 			      struct net_device *dev,
4122 			      int (*unsync)(struct net_device *,
4123 					    const unsigned char *, int));
4124 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4125 			  struct net_device *dev,
4126 			  int (*unsync)(struct net_device *,
4127 					const unsigned char *));
4128 void __hw_addr_init(struct netdev_hw_addr_list *list);
4129 
4130 /* Functions used for device addresses handling */
4131 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4132 		 unsigned char addr_type);
4133 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4134 		 unsigned char addr_type);
4135 void dev_addr_flush(struct net_device *dev);
4136 int dev_addr_init(struct net_device *dev);
4137 
4138 /* Functions used for unicast addresses handling */
4139 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4140 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4141 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4142 int dev_uc_sync(struct net_device *to, struct net_device *from);
4143 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4144 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4145 void dev_uc_flush(struct net_device *dev);
4146 void dev_uc_init(struct net_device *dev);
4147 
4148 /**
4149  *  __dev_uc_sync - Synchonize device's unicast list
4150  *  @dev:  device to sync
4151  *  @sync: function to call if address should be added
4152  *  @unsync: function to call if address should be removed
4153  *
4154  *  Add newly added addresses to the interface, and release
4155  *  addresses that have been deleted.
4156  */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4157 static inline int __dev_uc_sync(struct net_device *dev,
4158 				int (*sync)(struct net_device *,
4159 					    const unsigned char *),
4160 				int (*unsync)(struct net_device *,
4161 					      const unsigned char *))
4162 {
4163 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4164 }
4165 
4166 /**
4167  *  __dev_uc_unsync - Remove synchronized addresses from device
4168  *  @dev:  device to sync
4169  *  @unsync: function to call if address should be removed
4170  *
4171  *  Remove all addresses that were added to the device by dev_uc_sync().
4172  */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4173 static inline void __dev_uc_unsync(struct net_device *dev,
4174 				   int (*unsync)(struct net_device *,
4175 						 const unsigned char *))
4176 {
4177 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4178 }
4179 
4180 /* Functions used for multicast addresses handling */
4181 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4182 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4183 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4184 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4185 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4186 int dev_mc_sync(struct net_device *to, struct net_device *from);
4187 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4188 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4189 void dev_mc_flush(struct net_device *dev);
4190 void dev_mc_init(struct net_device *dev);
4191 
4192 /**
4193  *  __dev_mc_sync - Synchonize device's multicast list
4194  *  @dev:  device to sync
4195  *  @sync: function to call if address should be added
4196  *  @unsync: function to call if address should be removed
4197  *
4198  *  Add newly added addresses to the interface, and release
4199  *  addresses that have been deleted.
4200  */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4201 static inline int __dev_mc_sync(struct net_device *dev,
4202 				int (*sync)(struct net_device *,
4203 					    const unsigned char *),
4204 				int (*unsync)(struct net_device *,
4205 					      const unsigned char *))
4206 {
4207 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4208 }
4209 
4210 /**
4211  *  __dev_mc_unsync - Remove synchronized addresses from device
4212  *  @dev:  device to sync
4213  *  @unsync: function to call if address should be removed
4214  *
4215  *  Remove all addresses that were added to the device by dev_mc_sync().
4216  */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4217 static inline void __dev_mc_unsync(struct net_device *dev,
4218 				   int (*unsync)(struct net_device *,
4219 						 const unsigned char *))
4220 {
4221 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4222 }
4223 
4224 /* Functions used for secondary unicast and multicast support */
4225 void dev_set_rx_mode(struct net_device *dev);
4226 void __dev_set_rx_mode(struct net_device *dev);
4227 int dev_set_promiscuity(struct net_device *dev, int inc);
4228 int dev_set_allmulti(struct net_device *dev, int inc);
4229 void netdev_state_change(struct net_device *dev);
4230 void netdev_notify_peers(struct net_device *dev);
4231 void netdev_features_change(struct net_device *dev);
4232 /* Load a device via the kmod */
4233 void dev_load(struct net *net, const char *name);
4234 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4235 					struct rtnl_link_stats64 *storage);
4236 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4237 			     const struct net_device_stats *netdev_stats);
4238 
4239 extern int		netdev_max_backlog;
4240 extern int		netdev_tstamp_prequeue;
4241 extern int		weight_p;
4242 extern int		dev_weight_rx_bias;
4243 extern int		dev_weight_tx_bias;
4244 extern int		dev_rx_weight;
4245 extern int		dev_tx_weight;
4246 extern int		gro_normal_batch;
4247 
4248 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4249 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4250 						     struct list_head **iter);
4251 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4252 						     struct list_head **iter);
4253 
4254 /* iterate through upper list, must be called under RCU read lock */
4255 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4256 	for (iter = &(dev)->adj_list.upper, \
4257 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4258 	     updev; \
4259 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4260 
4261 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4262 				  int (*fn)(struct net_device *upper_dev,
4263 					    void *data),
4264 				  void *data);
4265 
4266 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4267 				  struct net_device *upper_dev);
4268 
4269 bool netdev_has_any_upper_dev(struct net_device *dev);
4270 
4271 void *netdev_lower_get_next_private(struct net_device *dev,
4272 				    struct list_head **iter);
4273 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4274 					struct list_head **iter);
4275 
4276 #define netdev_for_each_lower_private(dev, priv, iter) \
4277 	for (iter = (dev)->adj_list.lower.next, \
4278 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4279 	     priv; \
4280 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4281 
4282 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4283 	for (iter = &(dev)->adj_list.lower, \
4284 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4285 	     priv; \
4286 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4287 
4288 void *netdev_lower_get_next(struct net_device *dev,
4289 				struct list_head **iter);
4290 
4291 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4292 	for (iter = (dev)->adj_list.lower.next, \
4293 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4294 	     ldev; \
4295 	     ldev = netdev_lower_get_next(dev, &(iter)))
4296 
4297 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4298 					     struct list_head **iter);
4299 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4300 						 struct list_head **iter);
4301 
4302 int netdev_walk_all_lower_dev(struct net_device *dev,
4303 			      int (*fn)(struct net_device *lower_dev,
4304 					void *data),
4305 			      void *data);
4306 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4307 				  int (*fn)(struct net_device *lower_dev,
4308 					    void *data),
4309 				  void *data);
4310 
4311 void *netdev_adjacent_get_private(struct list_head *adj_list);
4312 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4313 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4314 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4315 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4316 			  struct netlink_ext_ack *extack);
4317 int netdev_master_upper_dev_link(struct net_device *dev,
4318 				 struct net_device *upper_dev,
4319 				 void *upper_priv, void *upper_info,
4320 				 struct netlink_ext_ack *extack);
4321 void netdev_upper_dev_unlink(struct net_device *dev,
4322 			     struct net_device *upper_dev);
4323 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4324 				   struct net_device *new_dev,
4325 				   struct net_device *dev,
4326 				   struct netlink_ext_ack *extack);
4327 void netdev_adjacent_change_commit(struct net_device *old_dev,
4328 				   struct net_device *new_dev,
4329 				   struct net_device *dev);
4330 void netdev_adjacent_change_abort(struct net_device *old_dev,
4331 				  struct net_device *new_dev,
4332 				  struct net_device *dev);
4333 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4334 void *netdev_lower_dev_get_private(struct net_device *dev,
4335 				   struct net_device *lower_dev);
4336 void netdev_lower_state_changed(struct net_device *lower_dev,
4337 				void *lower_state_info);
4338 
4339 /* RSS keys are 40 or 52 bytes long */
4340 #define NETDEV_RSS_KEY_LEN 52
4341 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4342 void netdev_rss_key_fill(void *buffer, size_t len);
4343 
4344 int skb_checksum_help(struct sk_buff *skb);
4345 int skb_crc32c_csum_help(struct sk_buff *skb);
4346 int skb_csum_hwoffload_help(struct sk_buff *skb,
4347 			    const netdev_features_t features);
4348 
4349 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4350 				  netdev_features_t features, bool tx_path);
4351 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4352 				    netdev_features_t features);
4353 
4354 struct netdev_bonding_info {
4355 	ifslave	slave;
4356 	ifbond	master;
4357 };
4358 
4359 struct netdev_notifier_bonding_info {
4360 	struct netdev_notifier_info info; /* must be first */
4361 	struct netdev_bonding_info  bonding_info;
4362 };
4363 
4364 void netdev_bonding_info_change(struct net_device *dev,
4365 				struct netdev_bonding_info *bonding_info);
4366 
4367 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)4368 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4369 {
4370 	return __skb_gso_segment(skb, features, true);
4371 }
4372 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4373 
can_checksum_protocol(netdev_features_t features,__be16 protocol)4374 static inline bool can_checksum_protocol(netdev_features_t features,
4375 					 __be16 protocol)
4376 {
4377 	if (protocol == htons(ETH_P_FCOE))
4378 		return !!(features & NETIF_F_FCOE_CRC);
4379 
4380 	/* Assume this is an IP checksum (not SCTP CRC) */
4381 
4382 	if (features & NETIF_F_HW_CSUM) {
4383 		/* Can checksum everything */
4384 		return true;
4385 	}
4386 
4387 	switch (protocol) {
4388 	case htons(ETH_P_IP):
4389 		return !!(features & NETIF_F_IP_CSUM);
4390 	case htons(ETH_P_IPV6):
4391 		return !!(features & NETIF_F_IPV6_CSUM);
4392 	default:
4393 		return false;
4394 	}
4395 }
4396 
4397 #ifdef CONFIG_BUG
4398 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4399 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)4400 static inline void netdev_rx_csum_fault(struct net_device *dev,
4401 					struct sk_buff *skb)
4402 {
4403 }
4404 #endif
4405 /* rx skb timestamps */
4406 void net_enable_timestamp(void);
4407 void net_disable_timestamp(void);
4408 
4409 #ifdef CONFIG_PROC_FS
4410 int __init dev_proc_init(void);
4411 #else
4412 #define dev_proc_init() 0
4413 #endif
4414 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4415 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4416 					      struct sk_buff *skb, struct net_device *dev,
4417 					      bool more)
4418 {
4419 	__this_cpu_write(softnet_data.xmit.more, more);
4420 	return ops->ndo_start_xmit(skb, dev);
4421 }
4422 
netdev_xmit_more(void)4423 static inline bool netdev_xmit_more(void)
4424 {
4425 	return __this_cpu_read(softnet_data.xmit.more);
4426 }
4427 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4428 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4429 					    struct netdev_queue *txq, bool more)
4430 {
4431 	const struct net_device_ops *ops = dev->netdev_ops;
4432 	netdev_tx_t rc;
4433 
4434 	rc = __netdev_start_xmit(ops, skb, dev, more);
4435 	if (rc == NETDEV_TX_OK)
4436 		txq_trans_update(txq);
4437 
4438 	return rc;
4439 }
4440 
4441 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4442 				const void *ns);
4443 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4444 				 const void *ns);
4445 
netdev_class_create_file(const struct class_attribute * class_attr)4446 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4447 {
4448 	return netdev_class_create_file_ns(class_attr, NULL);
4449 }
4450 
netdev_class_remove_file(const struct class_attribute * class_attr)4451 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4452 {
4453 	netdev_class_remove_file_ns(class_attr, NULL);
4454 }
4455 
4456 extern const struct kobj_ns_type_operations net_ns_type_operations;
4457 
4458 const char *netdev_drivername(const struct net_device *dev);
4459 
4460 void linkwatch_run_queue(void);
4461 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4462 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4463 							  netdev_features_t f2)
4464 {
4465 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4466 		if (f1 & NETIF_F_HW_CSUM)
4467 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4468 		else
4469 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4470 	}
4471 
4472 	return f1 & f2;
4473 }
4474 
netdev_get_wanted_features(struct net_device * dev)4475 static inline netdev_features_t netdev_get_wanted_features(
4476 	struct net_device *dev)
4477 {
4478 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4479 }
4480 netdev_features_t netdev_increment_features(netdev_features_t all,
4481 	netdev_features_t one, netdev_features_t mask);
4482 
4483 /* Allow TSO being used on stacked device :
4484  * Performing the GSO segmentation before last device
4485  * is a performance improvement.
4486  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4487 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4488 							netdev_features_t mask)
4489 {
4490 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4491 }
4492 
4493 int __netdev_update_features(struct net_device *dev);
4494 void netdev_update_features(struct net_device *dev);
4495 void netdev_change_features(struct net_device *dev);
4496 
4497 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4498 					struct net_device *dev);
4499 
4500 netdev_features_t passthru_features_check(struct sk_buff *skb,
4501 					  struct net_device *dev,
4502 					  netdev_features_t features);
4503 netdev_features_t netif_skb_features(struct sk_buff *skb);
4504 
net_gso_ok(netdev_features_t features,int gso_type)4505 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4506 {
4507 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4508 
4509 	/* check flags correspondence */
4510 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4511 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4512 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4513 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4514 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4515 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4516 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4517 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4518 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4519 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4520 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4521 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4522 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4523 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4524 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4525 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4526 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4527 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4528 
4529 	return (features & feature) == feature;
4530 }
4531 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4532 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4533 {
4534 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4535 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4536 }
4537 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4538 static inline bool netif_needs_gso(struct sk_buff *skb,
4539 				   netdev_features_t features)
4540 {
4541 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4542 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4543 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4544 }
4545 
netif_set_gso_max_size(struct net_device * dev,unsigned int size)4546 static inline void netif_set_gso_max_size(struct net_device *dev,
4547 					  unsigned int size)
4548 {
4549 	dev->gso_max_size = size;
4550 }
4551 
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)4552 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4553 					int pulled_hlen, u16 mac_offset,
4554 					int mac_len)
4555 {
4556 	skb->protocol = protocol;
4557 	skb->encapsulation = 1;
4558 	skb_push(skb, pulled_hlen);
4559 	skb_reset_transport_header(skb);
4560 	skb->mac_header = mac_offset;
4561 	skb->network_header = skb->mac_header + mac_len;
4562 	skb->mac_len = mac_len;
4563 }
4564 
netif_is_macsec(const struct net_device * dev)4565 static inline bool netif_is_macsec(const struct net_device *dev)
4566 {
4567 	return dev->priv_flags & IFF_MACSEC;
4568 }
4569 
netif_is_macvlan(const struct net_device * dev)4570 static inline bool netif_is_macvlan(const struct net_device *dev)
4571 {
4572 	return dev->priv_flags & IFF_MACVLAN;
4573 }
4574 
netif_is_macvlan_port(const struct net_device * dev)4575 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4576 {
4577 	return dev->priv_flags & IFF_MACVLAN_PORT;
4578 }
4579 
netif_is_bond_master(const struct net_device * dev)4580 static inline bool netif_is_bond_master(const struct net_device *dev)
4581 {
4582 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4583 }
4584 
netif_is_bond_slave(const struct net_device * dev)4585 static inline bool netif_is_bond_slave(const struct net_device *dev)
4586 {
4587 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4588 }
4589 
netif_supports_nofcs(struct net_device * dev)4590 static inline bool netif_supports_nofcs(struct net_device *dev)
4591 {
4592 	return dev->priv_flags & IFF_SUPP_NOFCS;
4593 }
4594 
netif_has_l3_rx_handler(const struct net_device * dev)4595 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4596 {
4597 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4598 }
4599 
netif_is_l3_master(const struct net_device * dev)4600 static inline bool netif_is_l3_master(const struct net_device *dev)
4601 {
4602 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4603 }
4604 
netif_is_l3_slave(const struct net_device * dev)4605 static inline bool netif_is_l3_slave(const struct net_device *dev)
4606 {
4607 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4608 }
4609 
netif_is_bridge_master(const struct net_device * dev)4610 static inline bool netif_is_bridge_master(const struct net_device *dev)
4611 {
4612 	return dev->priv_flags & IFF_EBRIDGE;
4613 }
4614 
netif_is_bridge_port(const struct net_device * dev)4615 static inline bool netif_is_bridge_port(const struct net_device *dev)
4616 {
4617 	return dev->priv_flags & IFF_BRIDGE_PORT;
4618 }
4619 
netif_is_ovs_master(const struct net_device * dev)4620 static inline bool netif_is_ovs_master(const struct net_device *dev)
4621 {
4622 	return dev->priv_flags & IFF_OPENVSWITCH;
4623 }
4624 
netif_is_ovs_port(const struct net_device * dev)4625 static inline bool netif_is_ovs_port(const struct net_device *dev)
4626 {
4627 	return dev->priv_flags & IFF_OVS_DATAPATH;
4628 }
4629 
netif_is_team_master(const struct net_device * dev)4630 static inline bool netif_is_team_master(const struct net_device *dev)
4631 {
4632 	return dev->priv_flags & IFF_TEAM;
4633 }
4634 
netif_is_team_port(const struct net_device * dev)4635 static inline bool netif_is_team_port(const struct net_device *dev)
4636 {
4637 	return dev->priv_flags & IFF_TEAM_PORT;
4638 }
4639 
netif_is_lag_master(const struct net_device * dev)4640 static inline bool netif_is_lag_master(const struct net_device *dev)
4641 {
4642 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4643 }
4644 
netif_is_lag_port(const struct net_device * dev)4645 static inline bool netif_is_lag_port(const struct net_device *dev)
4646 {
4647 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4648 }
4649 
netif_is_rxfh_configured(const struct net_device * dev)4650 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4651 {
4652 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4653 }
4654 
netif_is_failover(const struct net_device * dev)4655 static inline bool netif_is_failover(const struct net_device *dev)
4656 {
4657 	return dev->priv_flags & IFF_FAILOVER;
4658 }
4659 
netif_is_failover_slave(const struct net_device * dev)4660 static inline bool netif_is_failover_slave(const struct net_device *dev)
4661 {
4662 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4663 }
4664 
4665 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)4666 static inline void netif_keep_dst(struct net_device *dev)
4667 {
4668 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4669 }
4670 
4671 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)4672 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4673 {
4674 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4675 	return dev->priv_flags & IFF_MACSEC;
4676 }
4677 
4678 extern struct pernet_operations __net_initdata loopback_net_ops;
4679 
4680 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4681 
4682 /* netdev_printk helpers, similar to dev_printk */
4683 
netdev_name(const struct net_device * dev)4684 static inline const char *netdev_name(const struct net_device *dev)
4685 {
4686 	if (!dev->name[0] || strchr(dev->name, '%'))
4687 		return "(unnamed net_device)";
4688 	return dev->name;
4689 }
4690 
netdev_unregistering(const struct net_device * dev)4691 static inline bool netdev_unregistering(const struct net_device *dev)
4692 {
4693 	return dev->reg_state == NETREG_UNREGISTERING;
4694 }
4695 
netdev_reg_state(const struct net_device * dev)4696 static inline const char *netdev_reg_state(const struct net_device *dev)
4697 {
4698 	switch (dev->reg_state) {
4699 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4700 	case NETREG_REGISTERED: return "";
4701 	case NETREG_UNREGISTERING: return " (unregistering)";
4702 	case NETREG_UNREGISTERED: return " (unregistered)";
4703 	case NETREG_RELEASED: return " (released)";
4704 	case NETREG_DUMMY: return " (dummy)";
4705 	}
4706 
4707 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4708 	return " (unknown)";
4709 }
4710 
4711 __printf(3, 4) __cold
4712 void netdev_printk(const char *level, const struct net_device *dev,
4713 		   const char *format, ...);
4714 __printf(2, 3) __cold
4715 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4716 __printf(2, 3) __cold
4717 void netdev_alert(const struct net_device *dev, const char *format, ...);
4718 __printf(2, 3) __cold
4719 void netdev_crit(const struct net_device *dev, const char *format, ...);
4720 __printf(2, 3) __cold
4721 void netdev_err(const struct net_device *dev, const char *format, ...);
4722 __printf(2, 3) __cold
4723 void netdev_warn(const struct net_device *dev, const char *format, ...);
4724 __printf(2, 3) __cold
4725 void netdev_notice(const struct net_device *dev, const char *format, ...);
4726 __printf(2, 3) __cold
4727 void netdev_info(const struct net_device *dev, const char *format, ...);
4728 
4729 #define netdev_level_once(level, dev, fmt, ...)			\
4730 do {								\
4731 	static bool __print_once __read_mostly;			\
4732 								\
4733 	if (!__print_once) {					\
4734 		__print_once = true;				\
4735 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4736 	}							\
4737 } while (0)
4738 
4739 #define netdev_emerg_once(dev, fmt, ...) \
4740 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4741 #define netdev_alert_once(dev, fmt, ...) \
4742 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4743 #define netdev_crit_once(dev, fmt, ...) \
4744 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4745 #define netdev_err_once(dev, fmt, ...) \
4746 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4747 #define netdev_warn_once(dev, fmt, ...) \
4748 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4749 #define netdev_notice_once(dev, fmt, ...) \
4750 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4751 #define netdev_info_once(dev, fmt, ...) \
4752 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4753 
4754 #define MODULE_ALIAS_NETDEV(device) \
4755 	MODULE_ALIAS("netdev-" device)
4756 
4757 #if defined(CONFIG_DYNAMIC_DEBUG)
4758 #define netdev_dbg(__dev, format, args...)			\
4759 do {								\
4760 	dynamic_netdev_dbg(__dev, format, ##args);		\
4761 } while (0)
4762 #elif defined(DEBUG)
4763 #define netdev_dbg(__dev, format, args...)			\
4764 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4765 #else
4766 #define netdev_dbg(__dev, format, args...)			\
4767 ({								\
4768 	if (0)							\
4769 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4770 })
4771 #endif
4772 
4773 #if defined(VERBOSE_DEBUG)
4774 #define netdev_vdbg	netdev_dbg
4775 #else
4776 
4777 #define netdev_vdbg(dev, format, args...)			\
4778 ({								\
4779 	if (0)							\
4780 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4781 	0;							\
4782 })
4783 #endif
4784 
4785 /*
4786  * netdev_WARN() acts like dev_printk(), but with the key difference
4787  * of using a WARN/WARN_ON to get the message out, including the
4788  * file/line information and a backtrace.
4789  */
4790 #define netdev_WARN(dev, format, args...)			\
4791 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4792 	     netdev_reg_state(dev), ##args)
4793 
4794 #define netdev_WARN_ONCE(dev, format, args...)				\
4795 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4796 		  netdev_reg_state(dev), ##args)
4797 
4798 /* netif printk helpers, similar to netdev_printk */
4799 
4800 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4801 do {					  			\
4802 	if (netif_msg_##type(priv))				\
4803 		netdev_printk(level, (dev), fmt, ##args);	\
4804 } while (0)
4805 
4806 #define netif_level(level, priv, type, dev, fmt, args...)	\
4807 do {								\
4808 	if (netif_msg_##type(priv))				\
4809 		netdev_##level(dev, fmt, ##args);		\
4810 } while (0)
4811 
4812 #define netif_emerg(priv, type, dev, fmt, args...)		\
4813 	netif_level(emerg, priv, type, dev, fmt, ##args)
4814 #define netif_alert(priv, type, dev, fmt, args...)		\
4815 	netif_level(alert, priv, type, dev, fmt, ##args)
4816 #define netif_crit(priv, type, dev, fmt, args...)		\
4817 	netif_level(crit, priv, type, dev, fmt, ##args)
4818 #define netif_err(priv, type, dev, fmt, args...)		\
4819 	netif_level(err, priv, type, dev, fmt, ##args)
4820 #define netif_warn(priv, type, dev, fmt, args...)		\
4821 	netif_level(warn, priv, type, dev, fmt, ##args)
4822 #define netif_notice(priv, type, dev, fmt, args...)		\
4823 	netif_level(notice, priv, type, dev, fmt, ##args)
4824 #define netif_info(priv, type, dev, fmt, args...)		\
4825 	netif_level(info, priv, type, dev, fmt, ##args)
4826 
4827 #if defined(CONFIG_DYNAMIC_DEBUG)
4828 #define netif_dbg(priv, type, netdev, format, args...)		\
4829 do {								\
4830 	if (netif_msg_##type(priv))				\
4831 		dynamic_netdev_dbg(netdev, format, ##args);	\
4832 } while (0)
4833 #elif defined(DEBUG)
4834 #define netif_dbg(priv, type, dev, format, args...)		\
4835 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4836 #else
4837 #define netif_dbg(priv, type, dev, format, args...)			\
4838 ({									\
4839 	if (0)								\
4840 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4841 	0;								\
4842 })
4843 #endif
4844 
4845 /* if @cond then downgrade to debug, else print at @level */
4846 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4847 	do {                                                              \
4848 		if (cond)                                                 \
4849 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4850 		else                                                      \
4851 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4852 	} while (0)
4853 
4854 #if defined(VERBOSE_DEBUG)
4855 #define netif_vdbg	netif_dbg
4856 #else
4857 #define netif_vdbg(priv, type, dev, format, args...)		\
4858 ({								\
4859 	if (0)							\
4860 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4861 	0;							\
4862 })
4863 #endif
4864 
4865 /*
4866  *	The list of packet types we will receive (as opposed to discard)
4867  *	and the routines to invoke.
4868  *
4869  *	Why 16. Because with 16 the only overlap we get on a hash of the
4870  *	low nibble of the protocol value is RARP/SNAP/X.25.
4871  *
4872  *		0800	IP
4873  *		0001	802.3
4874  *		0002	AX.25
4875  *		0004	802.2
4876  *		8035	RARP
4877  *		0005	SNAP
4878  *		0805	X.25
4879  *		0806	ARP
4880  *		8137	IPX
4881  *		0009	Localtalk
4882  *		86DD	IPv6
4883  */
4884 #define PTYPE_HASH_SIZE	(16)
4885 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4886 
4887 extern struct net_device *blackhole_netdev;
4888 
4889 #endif	/* _LINUX_NETDEVICE_H */
4890