• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4  *
5  * (C) SGI 2006, Christoph Lameter
6  * 	Cleaned up and restructured to ease the addition of alternative
7  * 	implementations of SLAB allocators.
8  * (C) Linux Foundation 2008-2013
9  *      Unified interface for all slab allocators
10  */
11 
12 #ifndef _LINUX_SLAB_H
13 #define	_LINUX_SLAB_H
14 
15 #include <linux/gfp.h>
16 #include <linux/overflow.h>
17 #include <linux/types.h>
18 #include <linux/workqueue.h>
19 #include <linux/percpu-refcount.h>
20 
21 
22 /*
23  * Flags to pass to kmem_cache_create().
24  * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
25  */
26 /* DEBUG: Perform (expensive) checks on alloc/free */
27 #define SLAB_CONSISTENCY_CHECKS	((slab_flags_t __force)0x00000100U)
28 /* DEBUG: Red zone objs in a cache */
29 #define SLAB_RED_ZONE		((slab_flags_t __force)0x00000400U)
30 /* DEBUG: Poison objects */
31 #define SLAB_POISON		((slab_flags_t __force)0x00000800U)
32 /* Align objs on cache lines */
33 #define SLAB_HWCACHE_ALIGN	((slab_flags_t __force)0x00002000U)
34 /* Use GFP_DMA memory */
35 #define SLAB_CACHE_DMA		((slab_flags_t __force)0x00004000U)
36 /* Use GFP_DMA32 memory */
37 #define SLAB_CACHE_DMA32	((slab_flags_t __force)0x00008000U)
38 /* DEBUG: Store the last owner for bug hunting */
39 #define SLAB_STORE_USER		((slab_flags_t __force)0x00010000U)
40 /* Panic if kmem_cache_create() fails */
41 #define SLAB_PANIC		((slab_flags_t __force)0x00040000U)
42 /*
43  * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
44  *
45  * This delays freeing the SLAB page by a grace period, it does _NOT_
46  * delay object freeing. This means that if you do kmem_cache_free()
47  * that memory location is free to be reused at any time. Thus it may
48  * be possible to see another object there in the same RCU grace period.
49  *
50  * This feature only ensures the memory location backing the object
51  * stays valid, the trick to using this is relying on an independent
52  * object validation pass. Something like:
53  *
54  *  rcu_read_lock()
55  * again:
56  *  obj = lockless_lookup(key);
57  *  if (obj) {
58  *    if (!try_get_ref(obj)) // might fail for free objects
59  *      goto again;
60  *
61  *    if (obj->key != key) { // not the object we expected
62  *      put_ref(obj);
63  *      goto again;
64  *    }
65  *  }
66  *  rcu_read_unlock();
67  *
68  * This is useful if we need to approach a kernel structure obliquely,
69  * from its address obtained without the usual locking. We can lock
70  * the structure to stabilize it and check it's still at the given address,
71  * only if we can be sure that the memory has not been meanwhile reused
72  * for some other kind of object (which our subsystem's lock might corrupt).
73  *
74  * rcu_read_lock before reading the address, then rcu_read_unlock after
75  * taking the spinlock within the structure expected at that address.
76  *
77  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
78  */
79 /* Defer freeing slabs to RCU */
80 #define SLAB_TYPESAFE_BY_RCU	((slab_flags_t __force)0x00080000U)
81 /* Spread some memory over cpuset */
82 #define SLAB_MEM_SPREAD		((slab_flags_t __force)0x00100000U)
83 /* Trace allocations and frees */
84 #define SLAB_TRACE		((slab_flags_t __force)0x00200000U)
85 
86 /* Flag to prevent checks on free */
87 #ifdef CONFIG_DEBUG_OBJECTS
88 # define SLAB_DEBUG_OBJECTS	((slab_flags_t __force)0x00400000U)
89 #else
90 # define SLAB_DEBUG_OBJECTS	0
91 #endif
92 
93 /* Avoid kmemleak tracing */
94 #define SLAB_NOLEAKTRACE	((slab_flags_t __force)0x00800000U)
95 
96 /* Fault injection mark */
97 #ifdef CONFIG_FAILSLAB
98 # define SLAB_FAILSLAB		((slab_flags_t __force)0x02000000U)
99 #else
100 # define SLAB_FAILSLAB		0
101 #endif
102 /* Account to memcg */
103 #ifdef CONFIG_MEMCG_KMEM
104 # define SLAB_ACCOUNT		((slab_flags_t __force)0x04000000U)
105 #else
106 # define SLAB_ACCOUNT		0
107 #endif
108 
109 #ifdef CONFIG_KASAN
110 #define SLAB_KASAN		((slab_flags_t __force)0x08000000U)
111 #else
112 #define SLAB_KASAN		0
113 #endif
114 
115 /* The following flags affect the page allocator grouping pages by mobility */
116 /* Objects are reclaimable */
117 #define SLAB_RECLAIM_ACCOUNT	((slab_flags_t __force)0x00020000U)
118 #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
119 
120 /* Slab deactivation flag */
121 #define SLAB_DEACTIVATED	((slab_flags_t __force)0x10000000U)
122 
123 /*
124  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
125  *
126  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
127  *
128  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
129  * Both make kfree a no-op.
130  */
131 #define ZERO_SIZE_PTR ((void *)16)
132 
133 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
134 				(unsigned long)ZERO_SIZE_PTR)
135 
136 #include <linux/kasan.h>
137 
138 struct mem_cgroup;
139 /*
140  * struct kmem_cache related prototypes
141  */
142 void __init kmem_cache_init(void);
143 bool slab_is_available(void);
144 
145 extern bool usercopy_fallback;
146 
147 struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
148 			unsigned int align, slab_flags_t flags,
149 			void (*ctor)(void *));
150 struct kmem_cache *kmem_cache_create_usercopy(const char *name,
151 			unsigned int size, unsigned int align,
152 			slab_flags_t flags,
153 			unsigned int useroffset, unsigned int usersize,
154 			void (*ctor)(void *));
155 void kmem_cache_destroy(struct kmem_cache *);
156 int kmem_cache_shrink(struct kmem_cache *);
157 
158 void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
159 void memcg_deactivate_kmem_caches(struct mem_cgroup *, struct mem_cgroup *);
160 
161 /*
162  * Please use this macro to create slab caches. Simply specify the
163  * name of the structure and maybe some flags that are listed above.
164  *
165  * The alignment of the struct determines object alignment. If you
166  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
167  * then the objects will be properly aligned in SMP configurations.
168  */
169 #define KMEM_CACHE(__struct, __flags)					\
170 		kmem_cache_create(#__struct, sizeof(struct __struct),	\
171 			__alignof__(struct __struct), (__flags), NULL)
172 
173 /*
174  * To whitelist a single field for copying to/from usercopy, use this
175  * macro instead for KMEM_CACHE() above.
176  */
177 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)			\
178 		kmem_cache_create_usercopy(#__struct,			\
179 			sizeof(struct __struct),			\
180 			__alignof__(struct __struct), (__flags),	\
181 			offsetof(struct __struct, __field),		\
182 			sizeof_field(struct __struct, __field), NULL)
183 
184 /*
185  * Common kmalloc functions provided by all allocators
186  */
187 void * __must_check __krealloc(const void *, size_t, gfp_t);
188 void * __must_check krealloc(const void *, size_t, gfp_t);
189 void kfree(const void *);
190 void kzfree(const void *);
191 size_t __ksize(const void *);
192 size_t ksize(const void *);
193 
194 #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
195 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
196 			bool to_user);
197 #else
__check_heap_object(const void * ptr,unsigned long n,struct page * page,bool to_user)198 static inline void __check_heap_object(const void *ptr, unsigned long n,
199 				       struct page *page, bool to_user) { }
200 #endif
201 
202 /*
203  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
204  * alignment larger than the alignment of a 64-bit integer.
205  * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
206  */
207 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
208 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
209 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
210 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
211 #else
212 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
213 #endif
214 
215 /*
216  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
217  * Intended for arches that get misalignment faults even for 64 bit integer
218  * aligned buffers.
219  */
220 #ifndef ARCH_SLAB_MINALIGN
221 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
222 #endif
223 
224 /*
225  * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
226  * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
227  * aligned pointers.
228  */
229 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
230 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
231 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
232 
233 /*
234  * Kmalloc array related definitions
235  */
236 
237 #ifdef CONFIG_SLAB
238 /*
239  * The largest kmalloc size supported by the SLAB allocators is
240  * 32 megabyte (2^25) or the maximum allocatable page order if that is
241  * less than 32 MB.
242  *
243  * WARNING: Its not easy to increase this value since the allocators have
244  * to do various tricks to work around compiler limitations in order to
245  * ensure proper constant folding.
246  */
247 #define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
248 				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
249 #define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
250 #ifndef KMALLOC_SHIFT_LOW
251 #define KMALLOC_SHIFT_LOW	5
252 #endif
253 #endif
254 
255 #ifdef CONFIG_SLUB
256 /*
257  * SLUB directly allocates requests fitting in to an order-1 page
258  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
259  */
260 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
261 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
262 #ifndef KMALLOC_SHIFT_LOW
263 #define KMALLOC_SHIFT_LOW	3
264 #endif
265 #endif
266 
267 #ifdef CONFIG_SLOB
268 /*
269  * SLOB passes all requests larger than one page to the page allocator.
270  * No kmalloc array is necessary since objects of different sizes can
271  * be allocated from the same page.
272  */
273 #define KMALLOC_SHIFT_HIGH	PAGE_SHIFT
274 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
275 #ifndef KMALLOC_SHIFT_LOW
276 #define KMALLOC_SHIFT_LOW	3
277 #endif
278 #endif
279 
280 /* Maximum allocatable size */
281 #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
282 /* Maximum size for which we actually use a slab cache */
283 #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
284 /* Maximum order allocatable via the slab allocagtor */
285 #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
286 
287 /*
288  * Kmalloc subsystem.
289  */
290 #ifndef KMALLOC_MIN_SIZE
291 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
292 #endif
293 
294 /*
295  * This restriction comes from byte sized index implementation.
296  * Page size is normally 2^12 bytes and, in this case, if we want to use
297  * byte sized index which can represent 2^8 entries, the size of the object
298  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
299  * If minimum size of kmalloc is less than 16, we use it as minimum object
300  * size and give up to use byte sized index.
301  */
302 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
303                                (KMALLOC_MIN_SIZE) : 16)
304 
305 /*
306  * Whenever changing this, take care of that kmalloc_type() and
307  * create_kmalloc_caches() still work as intended.
308  */
309 enum kmalloc_cache_type {
310 	KMALLOC_NORMAL = 0,
311 	KMALLOC_RECLAIM,
312 #ifdef CONFIG_ZONE_DMA
313 	KMALLOC_DMA,
314 #endif
315 	NR_KMALLOC_TYPES
316 };
317 
318 #ifndef CONFIG_SLOB
319 extern struct kmem_cache *
320 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
321 
kmalloc_type(gfp_t flags)322 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
323 {
324 #ifdef CONFIG_ZONE_DMA
325 	/*
326 	 * The most common case is KMALLOC_NORMAL, so test for it
327 	 * with a single branch for both flags.
328 	 */
329 	if (likely((flags & (__GFP_DMA | __GFP_RECLAIMABLE)) == 0))
330 		return KMALLOC_NORMAL;
331 
332 	/*
333 	 * At least one of the flags has to be set. If both are, __GFP_DMA
334 	 * is more important.
335 	 */
336 	return flags & __GFP_DMA ? KMALLOC_DMA : KMALLOC_RECLAIM;
337 #else
338 	return flags & __GFP_RECLAIMABLE ? KMALLOC_RECLAIM : KMALLOC_NORMAL;
339 #endif
340 }
341 
342 /*
343  * Figure out which kmalloc slab an allocation of a certain size
344  * belongs to.
345  * 0 = zero alloc
346  * 1 =  65 .. 96 bytes
347  * 2 = 129 .. 192 bytes
348  * n = 2^(n-1)+1 .. 2^n
349  */
kmalloc_index(size_t size)350 static __always_inline unsigned int kmalloc_index(size_t size)
351 {
352 	if (!size)
353 		return 0;
354 
355 	if (size <= KMALLOC_MIN_SIZE)
356 		return KMALLOC_SHIFT_LOW;
357 
358 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
359 		return 1;
360 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
361 		return 2;
362 	if (size <=          8) return 3;
363 	if (size <=         16) return 4;
364 	if (size <=         32) return 5;
365 	if (size <=         64) return 6;
366 	if (size <=        128) return 7;
367 	if (size <=        256) return 8;
368 	if (size <=        512) return 9;
369 	if (size <=       1024) return 10;
370 	if (size <=   2 * 1024) return 11;
371 	if (size <=   4 * 1024) return 12;
372 	if (size <=   8 * 1024) return 13;
373 	if (size <=  16 * 1024) return 14;
374 	if (size <=  32 * 1024) return 15;
375 	if (size <=  64 * 1024) return 16;
376 	if (size <= 128 * 1024) return 17;
377 	if (size <= 256 * 1024) return 18;
378 	if (size <= 512 * 1024) return 19;
379 	if (size <= 1024 * 1024) return 20;
380 	if (size <=  2 * 1024 * 1024) return 21;
381 	if (size <=  4 * 1024 * 1024) return 22;
382 	if (size <=  8 * 1024 * 1024) return 23;
383 	if (size <=  16 * 1024 * 1024) return 24;
384 	if (size <=  32 * 1024 * 1024) return 25;
385 	if (size <=  64 * 1024 * 1024) return 26;
386 	BUG();
387 
388 	/* Will never be reached. Needed because the compiler may complain */
389 	return -1;
390 }
391 #endif /* !CONFIG_SLOB */
392 
393 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
394 void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
395 void kmem_cache_free(struct kmem_cache *, void *);
396 
397 /*
398  * Bulk allocation and freeing operations. These are accelerated in an
399  * allocator specific way to avoid taking locks repeatedly or building
400  * metadata structures unnecessarily.
401  *
402  * Note that interrupts must be enabled when calling these functions.
403  */
404 void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
405 int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
406 
407 /*
408  * Caller must not use kfree_bulk() on memory not originally allocated
409  * by kmalloc(), because the SLOB allocator cannot handle this.
410  */
kfree_bulk(size_t size,void ** p)411 static __always_inline void kfree_bulk(size_t size, void **p)
412 {
413 	kmem_cache_free_bulk(NULL, size, p);
414 }
415 
416 #ifdef CONFIG_NUMA
417 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
418 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
419 #else
__kmalloc_node(size_t size,gfp_t flags,int node)420 static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
421 {
422 	return __kmalloc(size, flags);
423 }
424 
kmem_cache_alloc_node(struct kmem_cache * s,gfp_t flags,int node)425 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
426 {
427 	return kmem_cache_alloc(s, flags);
428 }
429 #endif
430 
431 #ifdef CONFIG_TRACING
432 extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
433 
434 #ifdef CONFIG_NUMA
435 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
436 					   gfp_t gfpflags,
437 					   int node, size_t size) __assume_slab_alignment __malloc;
438 #else
439 static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)440 kmem_cache_alloc_node_trace(struct kmem_cache *s,
441 			      gfp_t gfpflags,
442 			      int node, size_t size)
443 {
444 	return kmem_cache_alloc_trace(s, gfpflags, size);
445 }
446 #endif /* CONFIG_NUMA */
447 
448 #else /* CONFIG_TRACING */
kmem_cache_alloc_trace(struct kmem_cache * s,gfp_t flags,size_t size)449 static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
450 		gfp_t flags, size_t size)
451 {
452 	void *ret = kmem_cache_alloc(s, flags);
453 
454 	ret = kasan_kmalloc(s, ret, size, flags);
455 	return ret;
456 }
457 
458 static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)459 kmem_cache_alloc_node_trace(struct kmem_cache *s,
460 			      gfp_t gfpflags,
461 			      int node, size_t size)
462 {
463 	void *ret = kmem_cache_alloc_node(s, gfpflags, node);
464 
465 	ret = kasan_kmalloc(s, ret, size, gfpflags);
466 	return ret;
467 }
468 #endif /* CONFIG_TRACING */
469 
470 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
471 
472 #ifdef CONFIG_TRACING
473 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
474 #else
475 static __always_inline void *
kmalloc_order_trace(size_t size,gfp_t flags,unsigned int order)476 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
477 {
478 	return kmalloc_order(size, flags, order);
479 }
480 #endif
481 
kmalloc_large(size_t size,gfp_t flags)482 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
483 {
484 	unsigned int order = get_order(size);
485 	return kmalloc_order_trace(size, flags, order);
486 }
487 
488 /**
489  * kmalloc - allocate memory
490  * @size: how many bytes of memory are required.
491  * @flags: the type of memory to allocate.
492  *
493  * kmalloc is the normal method of allocating memory
494  * for objects smaller than page size in the kernel.
495  *
496  * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
497  * bytes. For @size of power of two bytes, the alignment is also guaranteed
498  * to be at least to the size.
499  *
500  * The @flags argument may be one of the GFP flags defined at
501  * include/linux/gfp.h and described at
502  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
503  *
504  * The recommended usage of the @flags is described at
505  * :ref:`Documentation/core-api/memory-allocation.rst <memory-allocation>`
506  *
507  * Below is a brief outline of the most useful GFP flags
508  *
509  * %GFP_KERNEL
510  *	Allocate normal kernel ram. May sleep.
511  *
512  * %GFP_NOWAIT
513  *	Allocation will not sleep.
514  *
515  * %GFP_ATOMIC
516  *	Allocation will not sleep.  May use emergency pools.
517  *
518  * %GFP_HIGHUSER
519  *	Allocate memory from high memory on behalf of user.
520  *
521  * Also it is possible to set different flags by OR'ing
522  * in one or more of the following additional @flags:
523  *
524  * %__GFP_HIGH
525  *	This allocation has high priority and may use emergency pools.
526  *
527  * %__GFP_NOFAIL
528  *	Indicate that this allocation is in no way allowed to fail
529  *	(think twice before using).
530  *
531  * %__GFP_NORETRY
532  *	If memory is not immediately available,
533  *	then give up at once.
534  *
535  * %__GFP_NOWARN
536  *	If allocation fails, don't issue any warnings.
537  *
538  * %__GFP_RETRY_MAYFAIL
539  *	Try really hard to succeed the allocation but fail
540  *	eventually.
541  */
kmalloc(size_t size,gfp_t flags)542 static __always_inline void *kmalloc(size_t size, gfp_t flags)
543 {
544 	if (__builtin_constant_p(size)) {
545 #ifndef CONFIG_SLOB
546 		unsigned int index;
547 #endif
548 		if (size > KMALLOC_MAX_CACHE_SIZE)
549 			return kmalloc_large(size, flags);
550 #ifndef CONFIG_SLOB
551 		index = kmalloc_index(size);
552 
553 		if (!index)
554 			return ZERO_SIZE_PTR;
555 
556 		return kmem_cache_alloc_trace(
557 				kmalloc_caches[kmalloc_type(flags)][index],
558 				flags, size);
559 #endif
560 	}
561 	return __kmalloc(size, flags);
562 }
563 
564 /*
565  * Determine size used for the nth kmalloc cache.
566  * return size or 0 if a kmalloc cache for that
567  * size does not exist
568  */
kmalloc_size(unsigned int n)569 static __always_inline unsigned int kmalloc_size(unsigned int n)
570 {
571 #ifndef CONFIG_SLOB
572 	if (n > 2)
573 		return 1U << n;
574 
575 	if (n == 1 && KMALLOC_MIN_SIZE <= 32)
576 		return 96;
577 
578 	if (n == 2 && KMALLOC_MIN_SIZE <= 64)
579 		return 192;
580 #endif
581 	return 0;
582 }
583 
kmalloc_node(size_t size,gfp_t flags,int node)584 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
585 {
586 #ifndef CONFIG_SLOB
587 	if (__builtin_constant_p(size) &&
588 		size <= KMALLOC_MAX_CACHE_SIZE) {
589 		unsigned int i = kmalloc_index(size);
590 
591 		if (!i)
592 			return ZERO_SIZE_PTR;
593 
594 		return kmem_cache_alloc_node_trace(
595 				kmalloc_caches[kmalloc_type(flags)][i],
596 						flags, node, size);
597 	}
598 #endif
599 	return __kmalloc_node(size, flags, node);
600 }
601 
602 int memcg_update_all_caches(int num_memcgs);
603 
604 /**
605  * kmalloc_array - allocate memory for an array.
606  * @n: number of elements.
607  * @size: element size.
608  * @flags: the type of memory to allocate (see kmalloc).
609  */
kmalloc_array(size_t n,size_t size,gfp_t flags)610 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
611 {
612 	size_t bytes;
613 
614 	if (unlikely(check_mul_overflow(n, size, &bytes)))
615 		return NULL;
616 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
617 		return kmalloc(bytes, flags);
618 	return __kmalloc(bytes, flags);
619 }
620 
621 /**
622  * kcalloc - allocate memory for an array. The memory is set to zero.
623  * @n: number of elements.
624  * @size: element size.
625  * @flags: the type of memory to allocate (see kmalloc).
626  */
kcalloc(size_t n,size_t size,gfp_t flags)627 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
628 {
629 	return kmalloc_array(n, size, flags | __GFP_ZERO);
630 }
631 
632 /*
633  * kmalloc_track_caller is a special version of kmalloc that records the
634  * calling function of the routine calling it for slab leak tracking instead
635  * of just the calling function (confusing, eh?).
636  * It's useful when the call to kmalloc comes from a widely-used standard
637  * allocator where we care about the real place the memory allocation
638  * request comes from.
639  */
640 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
641 #define kmalloc_track_caller(size, flags) \
642 	__kmalloc_track_caller(size, flags, _RET_IP_)
643 
kmalloc_array_node(size_t n,size_t size,gfp_t flags,int node)644 static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
645 				       int node)
646 {
647 	size_t bytes;
648 
649 	if (unlikely(check_mul_overflow(n, size, &bytes)))
650 		return NULL;
651 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
652 		return kmalloc_node(bytes, flags, node);
653 	return __kmalloc_node(bytes, flags, node);
654 }
655 
kcalloc_node(size_t n,size_t size,gfp_t flags,int node)656 static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
657 {
658 	return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
659 }
660 
661 
662 #ifdef CONFIG_NUMA
663 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
664 #define kmalloc_node_track_caller(size, flags, node) \
665 	__kmalloc_node_track_caller(size, flags, node, \
666 			_RET_IP_)
667 
668 #else /* CONFIG_NUMA */
669 
670 #define kmalloc_node_track_caller(size, flags, node) \
671 	kmalloc_track_caller(size, flags)
672 
673 #endif /* CONFIG_NUMA */
674 
675 /*
676  * Shortcuts
677  */
kmem_cache_zalloc(struct kmem_cache * k,gfp_t flags)678 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
679 {
680 	return kmem_cache_alloc(k, flags | __GFP_ZERO);
681 }
682 
683 /**
684  * kzalloc - allocate memory. The memory is set to zero.
685  * @size: how many bytes of memory are required.
686  * @flags: the type of memory to allocate (see kmalloc).
687  */
kzalloc(size_t size,gfp_t flags)688 static inline void *kzalloc(size_t size, gfp_t flags)
689 {
690 	return kmalloc(size, flags | __GFP_ZERO);
691 }
692 
693 /**
694  * kzalloc_node - allocate zeroed memory from a particular memory node.
695  * @size: how many bytes of memory are required.
696  * @flags: the type of memory to allocate (see kmalloc).
697  * @node: memory node from which to allocate
698  */
kzalloc_node(size_t size,gfp_t flags,int node)699 static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
700 {
701 	return kmalloc_node(size, flags | __GFP_ZERO, node);
702 }
703 
704 unsigned int kmem_cache_size(struct kmem_cache *s);
705 void __init kmem_cache_init_late(void);
706 
707 #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
708 int slab_prepare_cpu(unsigned int cpu);
709 int slab_dead_cpu(unsigned int cpu);
710 #else
711 #define slab_prepare_cpu	NULL
712 #define slab_dead_cpu		NULL
713 #endif
714 
715 #endif	/* _LINUX_SLAB_H */
716