1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 *
4 * Copyright (c) 2011, Microsoft Corporation.
5 *
6 * Authors:
7 * Haiyang Zhang <haiyangz@microsoft.com>
8 * Hank Janssen <hjanssen@microsoft.com>
9 * K. Y. Srinivasan <kys@microsoft.com>
10 */
11
12 #ifndef _HYPERV_H
13 #define _HYPERV_H
14
15 #include <uapi/linux/hyperv.h>
16
17 #include <linux/types.h>
18 #include <linux/scatterlist.h>
19 #include <linux/list.h>
20 #include <linux/timer.h>
21 #include <linux/completion.h>
22 #include <linux/device.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/reciprocal_div.h>
26
27 #define MAX_PAGE_BUFFER_COUNT 32
28 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
29
30 #pragma pack(push, 1)
31
32 /* Single-page buffer */
33 struct hv_page_buffer {
34 u32 len;
35 u32 offset;
36 u64 pfn;
37 };
38
39 /* Multiple-page buffer */
40 struct hv_multipage_buffer {
41 /* Length and Offset determines the # of pfns in the array */
42 u32 len;
43 u32 offset;
44 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
45 };
46
47 /*
48 * Multiple-page buffer array; the pfn array is variable size:
49 * The number of entries in the PFN array is determined by
50 * "len" and "offset".
51 */
52 struct hv_mpb_array {
53 /* Length and Offset determines the # of pfns in the array */
54 u32 len;
55 u32 offset;
56 u64 pfn_array[];
57 };
58
59 /* 0x18 includes the proprietary packet header */
60 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
61 (sizeof(struct hv_page_buffer) * \
62 MAX_PAGE_BUFFER_COUNT))
63 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
64 sizeof(struct hv_multipage_buffer))
65
66
67 #pragma pack(pop)
68
69 struct hv_ring_buffer {
70 /* Offset in bytes from the start of ring data below */
71 u32 write_index;
72
73 /* Offset in bytes from the start of ring data below */
74 u32 read_index;
75
76 u32 interrupt_mask;
77
78 /*
79 * WS2012/Win8 and later versions of Hyper-V implement interrupt
80 * driven flow management. The feature bit feat_pending_send_sz
81 * is set by the host on the host->guest ring buffer, and by the
82 * guest on the guest->host ring buffer.
83 *
84 * The meaning of the feature bit is a bit complex in that it has
85 * semantics that apply to both ring buffers. If the guest sets
86 * the feature bit in the guest->host ring buffer, the guest is
87 * telling the host that:
88 * 1) It will set the pending_send_sz field in the guest->host ring
89 * buffer when it is waiting for space to become available, and
90 * 2) It will read the pending_send_sz field in the host->guest
91 * ring buffer and interrupt the host when it frees enough space
92 *
93 * Similarly, if the host sets the feature bit in the host->guest
94 * ring buffer, the host is telling the guest that:
95 * 1) It will set the pending_send_sz field in the host->guest ring
96 * buffer when it is waiting for space to become available, and
97 * 2) It will read the pending_send_sz field in the guest->host
98 * ring buffer and interrupt the guest when it frees enough space
99 *
100 * If either the guest or host does not set the feature bit that it
101 * owns, that guest or host must do polling if it encounters a full
102 * ring buffer, and not signal the other end with an interrupt.
103 */
104 u32 pending_send_sz;
105 u32 reserved1[12];
106 union {
107 struct {
108 u32 feat_pending_send_sz:1;
109 };
110 u32 value;
111 } feature_bits;
112
113 /* Pad it to PAGE_SIZE so that data starts on page boundary */
114 u8 reserved2[4028];
115
116 /*
117 * Ring data starts here + RingDataStartOffset
118 * !!! DO NOT place any fields below this !!!
119 */
120 u8 buffer[0];
121 } __packed;
122
123 struct hv_ring_buffer_info {
124 struct hv_ring_buffer *ring_buffer;
125 u32 ring_size; /* Include the shared header */
126 struct reciprocal_value ring_size_div10_reciprocal;
127 spinlock_t ring_lock;
128
129 u32 ring_datasize; /* < ring_size */
130 u32 priv_read_index;
131 /*
132 * The ring buffer mutex lock. This lock prevents the ring buffer from
133 * being freed while the ring buffer is being accessed.
134 */
135 struct mutex ring_buffer_mutex;
136 };
137
138
hv_get_bytes_to_read(const struct hv_ring_buffer_info * rbi)139 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
140 {
141 u32 read_loc, write_loc, dsize, read;
142
143 dsize = rbi->ring_datasize;
144 read_loc = rbi->ring_buffer->read_index;
145 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
146
147 read = write_loc >= read_loc ? (write_loc - read_loc) :
148 (dsize - read_loc) + write_loc;
149
150 return read;
151 }
152
hv_get_bytes_to_write(const struct hv_ring_buffer_info * rbi)153 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
154 {
155 u32 read_loc, write_loc, dsize, write;
156
157 dsize = rbi->ring_datasize;
158 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
159 write_loc = rbi->ring_buffer->write_index;
160
161 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
162 read_loc - write_loc;
163 return write;
164 }
165
hv_get_avail_to_write_percent(const struct hv_ring_buffer_info * rbi)166 static inline u32 hv_get_avail_to_write_percent(
167 const struct hv_ring_buffer_info *rbi)
168 {
169 u32 avail_write = hv_get_bytes_to_write(rbi);
170
171 return reciprocal_divide(
172 (avail_write << 3) + (avail_write << 1),
173 rbi->ring_size_div10_reciprocal);
174 }
175
176 /*
177 * VMBUS version is 32 bit entity broken up into
178 * two 16 bit quantities: major_number. minor_number.
179 *
180 * 0 . 13 (Windows Server 2008)
181 * 1 . 1 (Windows 7)
182 * 2 . 4 (Windows 8)
183 * 3 . 0 (Windows 8 R2)
184 * 4 . 0 (Windows 10)
185 * 5 . 0 (Newer Windows 10)
186 */
187
188 #define VERSION_WS2008 ((0 << 16) | (13))
189 #define VERSION_WIN7 ((1 << 16) | (1))
190 #define VERSION_WIN8 ((2 << 16) | (4))
191 #define VERSION_WIN8_1 ((3 << 16) | (0))
192 #define VERSION_WIN10 ((4 << 16) | (0))
193 #define VERSION_WIN10_V5 ((5 << 16) | (0))
194
195 #define VERSION_INVAL -1
196
197 #define VERSION_CURRENT VERSION_WIN10_V5
198
199 /* Make maximum size of pipe payload of 16K */
200 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
201
202 /* Define PipeMode values. */
203 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
204 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
205
206 /* The size of the user defined data buffer for non-pipe offers. */
207 #define MAX_USER_DEFINED_BYTES 120
208
209 /* The size of the user defined data buffer for pipe offers. */
210 #define MAX_PIPE_USER_DEFINED_BYTES 116
211
212 /*
213 * At the center of the Channel Management library is the Channel Offer. This
214 * struct contains the fundamental information about an offer.
215 */
216 struct vmbus_channel_offer {
217 guid_t if_type;
218 guid_t if_instance;
219
220 /*
221 * These two fields are not currently used.
222 */
223 u64 reserved1;
224 u64 reserved2;
225
226 u16 chn_flags;
227 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
228
229 union {
230 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
231 struct {
232 unsigned char user_def[MAX_USER_DEFINED_BYTES];
233 } std;
234
235 /*
236 * Pipes:
237 * The following sructure is an integrated pipe protocol, which
238 * is implemented on top of standard user-defined data. Pipe
239 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
240 * use.
241 */
242 struct {
243 u32 pipe_mode;
244 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
245 } pipe;
246 } u;
247 /*
248 * The sub_channel_index is defined in Win8: a value of zero means a
249 * primary channel and a value of non-zero means a sub-channel.
250 *
251 * Before Win8, the field is reserved, meaning it's always zero.
252 */
253 u16 sub_channel_index;
254 u16 reserved3;
255 } __packed;
256
257 /* Server Flags */
258 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
259 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
260 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
261 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
262 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
263 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
264 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
265 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
266
267 struct vmpacket_descriptor {
268 u16 type;
269 u16 offset8;
270 u16 len8;
271 u16 flags;
272 u64 trans_id;
273 } __packed;
274
275 struct vmpacket_header {
276 u32 prev_pkt_start_offset;
277 struct vmpacket_descriptor descriptor;
278 } __packed;
279
280 struct vmtransfer_page_range {
281 u32 byte_count;
282 u32 byte_offset;
283 } __packed;
284
285 struct vmtransfer_page_packet_header {
286 struct vmpacket_descriptor d;
287 u16 xfer_pageset_id;
288 u8 sender_owns_set;
289 u8 reserved;
290 u32 range_cnt;
291 struct vmtransfer_page_range ranges[1];
292 } __packed;
293
294 struct vmgpadl_packet_header {
295 struct vmpacket_descriptor d;
296 u32 gpadl;
297 u32 reserved;
298 } __packed;
299
300 struct vmadd_remove_transfer_page_set {
301 struct vmpacket_descriptor d;
302 u32 gpadl;
303 u16 xfer_pageset_id;
304 u16 reserved;
305 } __packed;
306
307 /*
308 * This structure defines a range in guest physical space that can be made to
309 * look virtually contiguous.
310 */
311 struct gpa_range {
312 u32 byte_count;
313 u32 byte_offset;
314 u64 pfn_array[0];
315 };
316
317 /*
318 * This is the format for an Establish Gpadl packet, which contains a handle by
319 * which this GPADL will be known and a set of GPA ranges associated with it.
320 * This can be converted to a MDL by the guest OS. If there are multiple GPA
321 * ranges, then the resulting MDL will be "chained," representing multiple VA
322 * ranges.
323 */
324 struct vmestablish_gpadl {
325 struct vmpacket_descriptor d;
326 u32 gpadl;
327 u32 range_cnt;
328 struct gpa_range range[1];
329 } __packed;
330
331 /*
332 * This is the format for a Teardown Gpadl packet, which indicates that the
333 * GPADL handle in the Establish Gpadl packet will never be referenced again.
334 */
335 struct vmteardown_gpadl {
336 struct vmpacket_descriptor d;
337 u32 gpadl;
338 u32 reserved; /* for alignment to a 8-byte boundary */
339 } __packed;
340
341 /*
342 * This is the format for a GPA-Direct packet, which contains a set of GPA
343 * ranges, in addition to commands and/or data.
344 */
345 struct vmdata_gpa_direct {
346 struct vmpacket_descriptor d;
347 u32 reserved;
348 u32 range_cnt;
349 struct gpa_range range[1];
350 } __packed;
351
352 /* This is the format for a Additional Data Packet. */
353 struct vmadditional_data {
354 struct vmpacket_descriptor d;
355 u64 total_bytes;
356 u32 offset;
357 u32 byte_cnt;
358 unsigned char data[1];
359 } __packed;
360
361 union vmpacket_largest_possible_header {
362 struct vmpacket_descriptor simple_hdr;
363 struct vmtransfer_page_packet_header xfer_page_hdr;
364 struct vmgpadl_packet_header gpadl_hdr;
365 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
366 struct vmestablish_gpadl establish_gpadl_hdr;
367 struct vmteardown_gpadl teardown_gpadl_hdr;
368 struct vmdata_gpa_direct data_gpa_direct_hdr;
369 };
370
371 #define VMPACKET_DATA_START_ADDRESS(__packet) \
372 (void *)(((unsigned char *)__packet) + \
373 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
374
375 #define VMPACKET_DATA_LENGTH(__packet) \
376 ((((struct vmpacket_descriptor)__packet)->len8 - \
377 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
378
379 #define VMPACKET_TRANSFER_MODE(__packet) \
380 (((struct IMPACT)__packet)->type)
381
382 enum vmbus_packet_type {
383 VM_PKT_INVALID = 0x0,
384 VM_PKT_SYNCH = 0x1,
385 VM_PKT_ADD_XFER_PAGESET = 0x2,
386 VM_PKT_RM_XFER_PAGESET = 0x3,
387 VM_PKT_ESTABLISH_GPADL = 0x4,
388 VM_PKT_TEARDOWN_GPADL = 0x5,
389 VM_PKT_DATA_INBAND = 0x6,
390 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
391 VM_PKT_DATA_USING_GPADL = 0x8,
392 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
393 VM_PKT_CANCEL_REQUEST = 0xa,
394 VM_PKT_COMP = 0xb,
395 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
396 VM_PKT_ADDITIONAL_DATA = 0xd
397 };
398
399 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
400
401
402 /* Version 1 messages */
403 enum vmbus_channel_message_type {
404 CHANNELMSG_INVALID = 0,
405 CHANNELMSG_OFFERCHANNEL = 1,
406 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
407 CHANNELMSG_REQUESTOFFERS = 3,
408 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
409 CHANNELMSG_OPENCHANNEL = 5,
410 CHANNELMSG_OPENCHANNEL_RESULT = 6,
411 CHANNELMSG_CLOSECHANNEL = 7,
412 CHANNELMSG_GPADL_HEADER = 8,
413 CHANNELMSG_GPADL_BODY = 9,
414 CHANNELMSG_GPADL_CREATED = 10,
415 CHANNELMSG_GPADL_TEARDOWN = 11,
416 CHANNELMSG_GPADL_TORNDOWN = 12,
417 CHANNELMSG_RELID_RELEASED = 13,
418 CHANNELMSG_INITIATE_CONTACT = 14,
419 CHANNELMSG_VERSION_RESPONSE = 15,
420 CHANNELMSG_UNLOAD = 16,
421 CHANNELMSG_UNLOAD_RESPONSE = 17,
422 CHANNELMSG_18 = 18,
423 CHANNELMSG_19 = 19,
424 CHANNELMSG_20 = 20,
425 CHANNELMSG_TL_CONNECT_REQUEST = 21,
426 CHANNELMSG_COUNT
427 };
428
429 /* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */
430 #define INVALID_RELID U32_MAX
431
432 struct vmbus_channel_message_header {
433 enum vmbus_channel_message_type msgtype;
434 u32 padding;
435 } __packed;
436
437 /* Query VMBus Version parameters */
438 struct vmbus_channel_query_vmbus_version {
439 struct vmbus_channel_message_header header;
440 u32 version;
441 } __packed;
442
443 /* VMBus Version Supported parameters */
444 struct vmbus_channel_version_supported {
445 struct vmbus_channel_message_header header;
446 u8 version_supported;
447 } __packed;
448
449 /* Offer Channel parameters */
450 struct vmbus_channel_offer_channel {
451 struct vmbus_channel_message_header header;
452 struct vmbus_channel_offer offer;
453 u32 child_relid;
454 u8 monitorid;
455 /*
456 * win7 and beyond splits this field into a bit field.
457 */
458 u8 monitor_allocated:1;
459 u8 reserved:7;
460 /*
461 * These are new fields added in win7 and later.
462 * Do not access these fields without checking the
463 * negotiated protocol.
464 *
465 * If "is_dedicated_interrupt" is set, we must not set the
466 * associated bit in the channel bitmap while sending the
467 * interrupt to the host.
468 *
469 * connection_id is to be used in signaling the host.
470 */
471 u16 is_dedicated_interrupt:1;
472 u16 reserved1:15;
473 u32 connection_id;
474 } __packed;
475
476 /* Rescind Offer parameters */
477 struct vmbus_channel_rescind_offer {
478 struct vmbus_channel_message_header header;
479 u32 child_relid;
480 } __packed;
481
482 static inline u32
hv_ringbuffer_pending_size(const struct hv_ring_buffer_info * rbi)483 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
484 {
485 return rbi->ring_buffer->pending_send_sz;
486 }
487
488 /*
489 * Request Offer -- no parameters, SynIC message contains the partition ID
490 * Set Snoop -- no parameters, SynIC message contains the partition ID
491 * Clear Snoop -- no parameters, SynIC message contains the partition ID
492 * All Offers Delivered -- no parameters, SynIC message contains the partition
493 * ID
494 * Flush Client -- no parameters, SynIC message contains the partition ID
495 */
496
497 /* Open Channel parameters */
498 struct vmbus_channel_open_channel {
499 struct vmbus_channel_message_header header;
500
501 /* Identifies the specific VMBus channel that is being opened. */
502 u32 child_relid;
503
504 /* ID making a particular open request at a channel offer unique. */
505 u32 openid;
506
507 /* GPADL for the channel's ring buffer. */
508 u32 ringbuffer_gpadlhandle;
509
510 /*
511 * Starting with win8, this field will be used to specify
512 * the target virtual processor on which to deliver the interrupt for
513 * the host to guest communication.
514 * Prior to win8, incoming channel interrupts would only
515 * be delivered on cpu 0. Setting this value to 0 would
516 * preserve the earlier behavior.
517 */
518 u32 target_vp;
519
520 /*
521 * The upstream ring buffer begins at offset zero in the memory
522 * described by RingBufferGpadlHandle. The downstream ring buffer
523 * follows it at this offset (in pages).
524 */
525 u32 downstream_ringbuffer_pageoffset;
526
527 /* User-specific data to be passed along to the server endpoint. */
528 unsigned char userdata[MAX_USER_DEFINED_BYTES];
529 } __packed;
530
531 /* Open Channel Result parameters */
532 struct vmbus_channel_open_result {
533 struct vmbus_channel_message_header header;
534 u32 child_relid;
535 u32 openid;
536 u32 status;
537 } __packed;
538
539 /* Close channel parameters; */
540 struct vmbus_channel_close_channel {
541 struct vmbus_channel_message_header header;
542 u32 child_relid;
543 } __packed;
544
545 /* Channel Message GPADL */
546 #define GPADL_TYPE_RING_BUFFER 1
547 #define GPADL_TYPE_SERVER_SAVE_AREA 2
548 #define GPADL_TYPE_TRANSACTION 8
549
550 /*
551 * The number of PFNs in a GPADL message is defined by the number of
552 * pages that would be spanned by ByteCount and ByteOffset. If the
553 * implied number of PFNs won't fit in this packet, there will be a
554 * follow-up packet that contains more.
555 */
556 struct vmbus_channel_gpadl_header {
557 struct vmbus_channel_message_header header;
558 u32 child_relid;
559 u32 gpadl;
560 u16 range_buflen;
561 u16 rangecount;
562 struct gpa_range range[0];
563 } __packed;
564
565 /* This is the followup packet that contains more PFNs. */
566 struct vmbus_channel_gpadl_body {
567 struct vmbus_channel_message_header header;
568 u32 msgnumber;
569 u32 gpadl;
570 u64 pfn[0];
571 } __packed;
572
573 struct vmbus_channel_gpadl_created {
574 struct vmbus_channel_message_header header;
575 u32 child_relid;
576 u32 gpadl;
577 u32 creation_status;
578 } __packed;
579
580 struct vmbus_channel_gpadl_teardown {
581 struct vmbus_channel_message_header header;
582 u32 child_relid;
583 u32 gpadl;
584 } __packed;
585
586 struct vmbus_channel_gpadl_torndown {
587 struct vmbus_channel_message_header header;
588 u32 gpadl;
589 } __packed;
590
591 struct vmbus_channel_relid_released {
592 struct vmbus_channel_message_header header;
593 u32 child_relid;
594 } __packed;
595
596 struct vmbus_channel_initiate_contact {
597 struct vmbus_channel_message_header header;
598 u32 vmbus_version_requested;
599 u32 target_vcpu; /* The VCPU the host should respond to */
600 union {
601 u64 interrupt_page;
602 struct {
603 u8 msg_sint;
604 u8 padding1[3];
605 u32 padding2;
606 };
607 };
608 u64 monitor_page1;
609 u64 monitor_page2;
610 } __packed;
611
612 /* Hyper-V socket: guest's connect()-ing to host */
613 struct vmbus_channel_tl_connect_request {
614 struct vmbus_channel_message_header header;
615 guid_t guest_endpoint_id;
616 guid_t host_service_id;
617 } __packed;
618
619 struct vmbus_channel_version_response {
620 struct vmbus_channel_message_header header;
621 u8 version_supported;
622
623 u8 connection_state;
624 u16 padding;
625
626 /*
627 * On new hosts that support VMBus protocol 5.0, we must use
628 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
629 * and for subsequent messages, we must use the Message Connection ID
630 * field in the host-returned Version Response Message.
631 *
632 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
633 */
634 u32 msg_conn_id;
635 } __packed;
636
637 enum vmbus_channel_state {
638 CHANNEL_OFFER_STATE,
639 CHANNEL_OPENING_STATE,
640 CHANNEL_OPEN_STATE,
641 CHANNEL_OPENED_STATE,
642 };
643
644 /*
645 * Represents each channel msg on the vmbus connection This is a
646 * variable-size data structure depending on the msg type itself
647 */
648 struct vmbus_channel_msginfo {
649 /* Bookkeeping stuff */
650 struct list_head msglistentry;
651
652 /* So far, this is only used to handle gpadl body message */
653 struct list_head submsglist;
654
655 /* Synchronize the request/response if needed */
656 struct completion waitevent;
657 struct vmbus_channel *waiting_channel;
658 union {
659 struct vmbus_channel_version_supported version_supported;
660 struct vmbus_channel_open_result open_result;
661 struct vmbus_channel_gpadl_torndown gpadl_torndown;
662 struct vmbus_channel_gpadl_created gpadl_created;
663 struct vmbus_channel_version_response version_response;
664 } response;
665
666 u32 msgsize;
667 /*
668 * The channel message that goes out on the "wire".
669 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
670 */
671 unsigned char msg[0];
672 };
673
674 struct vmbus_close_msg {
675 struct vmbus_channel_msginfo info;
676 struct vmbus_channel_close_channel msg;
677 };
678
679 /* Define connection identifier type. */
680 union hv_connection_id {
681 u32 asu32;
682 struct {
683 u32 id:24;
684 u32 reserved:8;
685 } u;
686 };
687
688 enum hv_numa_policy {
689 HV_BALANCED = 0,
690 HV_LOCALIZED,
691 };
692
693 enum vmbus_device_type {
694 HV_IDE = 0,
695 HV_SCSI,
696 HV_FC,
697 HV_NIC,
698 HV_ND,
699 HV_PCIE,
700 HV_FB,
701 HV_KBD,
702 HV_MOUSE,
703 HV_KVP,
704 HV_TS,
705 HV_HB,
706 HV_SHUTDOWN,
707 HV_FCOPY,
708 HV_BACKUP,
709 HV_DM,
710 HV_UNKNOWN,
711 };
712
713 struct vmbus_device {
714 u16 dev_type;
715 guid_t guid;
716 bool perf_device;
717 };
718
719 struct vmbus_channel {
720 struct list_head listentry;
721
722 struct hv_device *device_obj;
723
724 enum vmbus_channel_state state;
725
726 struct vmbus_channel_offer_channel offermsg;
727 /*
728 * These are based on the OfferMsg.MonitorId.
729 * Save it here for easy access.
730 */
731 u8 monitor_grp;
732 u8 monitor_bit;
733
734 bool rescind; /* got rescind msg */
735 struct completion rescind_event;
736
737 u32 ringbuffer_gpadlhandle;
738
739 /* Allocated memory for ring buffer */
740 struct page *ringbuffer_page;
741 u32 ringbuffer_pagecount;
742 u32 ringbuffer_send_offset;
743 struct hv_ring_buffer_info outbound; /* send to parent */
744 struct hv_ring_buffer_info inbound; /* receive from parent */
745
746 struct vmbus_close_msg close_msg;
747
748 /* Statistics */
749 u64 interrupts; /* Host to Guest interrupts */
750 u64 sig_events; /* Guest to Host events */
751
752 /*
753 * Guest to host interrupts caused by the outbound ring buffer changing
754 * from empty to not empty.
755 */
756 u64 intr_out_empty;
757
758 /*
759 * Indicates that a full outbound ring buffer was encountered. The flag
760 * is set to true when a full outbound ring buffer is encountered and
761 * set to false when a write to the outbound ring buffer is completed.
762 */
763 bool out_full_flag;
764
765 /* Channel callback's invoked in softirq context */
766 struct tasklet_struct callback_event;
767 void (*onchannel_callback)(void *context);
768 void *channel_callback_context;
769
770 /*
771 * A channel can be marked for one of three modes of reading:
772 * BATCHED - callback called from taslket and should read
773 * channel until empty. Interrupts from the host
774 * are masked while read is in process (default).
775 * DIRECT - callback called from tasklet (softirq).
776 * ISR - callback called in interrupt context and must
777 * invoke its own deferred processing.
778 * Host interrupts are disabled and must be re-enabled
779 * when ring is empty.
780 */
781 enum hv_callback_mode {
782 HV_CALL_BATCHED,
783 HV_CALL_DIRECT,
784 HV_CALL_ISR
785 } callback_mode;
786
787 bool is_dedicated_interrupt;
788 u64 sig_event;
789
790 /*
791 * Starting with win8, this field will be used to specify
792 * the target virtual processor on which to deliver the interrupt for
793 * the host to guest communication.
794 * Prior to win8, incoming channel interrupts would only
795 * be delivered on cpu 0. Setting this value to 0 would
796 * preserve the earlier behavior.
797 */
798 u32 target_vp;
799 /* The corresponding CPUID in the guest */
800 u32 target_cpu;
801 /*
802 * State to manage the CPU affiliation of channels.
803 */
804 struct cpumask alloced_cpus_in_node;
805 int numa_node;
806 /*
807 * Support for sub-channels. For high performance devices,
808 * it will be useful to have multiple sub-channels to support
809 * a scalable communication infrastructure with the host.
810 * The support for sub-channels is implemented as an extention
811 * to the current infrastructure.
812 * The initial offer is considered the primary channel and this
813 * offer message will indicate if the host supports sub-channels.
814 * The guest is free to ask for sub-channels to be offerred and can
815 * open these sub-channels as a normal "primary" channel. However,
816 * all sub-channels will have the same type and instance guids as the
817 * primary channel. Requests sent on a given channel will result in a
818 * response on the same channel.
819 */
820
821 /*
822 * Sub-channel creation callback. This callback will be called in
823 * process context when a sub-channel offer is received from the host.
824 * The guest can open the sub-channel in the context of this callback.
825 */
826 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
827
828 /*
829 * Channel rescind callback. Some channels (the hvsock ones), need to
830 * register a callback which is invoked in vmbus_onoffer_rescind().
831 */
832 void (*chn_rescind_callback)(struct vmbus_channel *channel);
833
834 /*
835 * The spinlock to protect the structure. It is being used to protect
836 * test-and-set access to various attributes of the structure as well
837 * as all sc_list operations.
838 */
839 spinlock_t lock;
840 /*
841 * All Sub-channels of a primary channel are linked here.
842 */
843 struct list_head sc_list;
844 /*
845 * The primary channel this sub-channel belongs to.
846 * This will be NULL for the primary channel.
847 */
848 struct vmbus_channel *primary_channel;
849 /*
850 * Support per-channel state for use by vmbus drivers.
851 */
852 void *per_channel_state;
853 /*
854 * To support per-cpu lookup mapping of relid to channel,
855 * link up channels based on their CPU affinity.
856 */
857 struct list_head percpu_list;
858
859 /*
860 * Defer freeing channel until after all cpu's have
861 * gone through grace period.
862 */
863 struct rcu_head rcu;
864
865 /*
866 * For sysfs per-channel properties.
867 */
868 struct kobject kobj;
869
870 /*
871 * For performance critical channels (storage, networking
872 * etc,), Hyper-V has a mechanism to enhance the throughput
873 * at the expense of latency:
874 * When the host is to be signaled, we just set a bit in a shared page
875 * and this bit will be inspected by the hypervisor within a certain
876 * window and if the bit is set, the host will be signaled. The window
877 * of time is the monitor latency - currently around 100 usecs. This
878 * mechanism improves throughput by:
879 *
880 * A) Making the host more efficient - each time it wakes up,
881 * potentially it will process morev number of packets. The
882 * monitor latency allows a batch to build up.
883 * B) By deferring the hypercall to signal, we will also minimize
884 * the interrupts.
885 *
886 * Clearly, these optimizations improve throughput at the expense of
887 * latency. Furthermore, since the channel is shared for both
888 * control and data messages, control messages currently suffer
889 * unnecessary latency adversley impacting performance and boot
890 * time. To fix this issue, permit tagging the channel as being
891 * in "low latency" mode. In this mode, we will bypass the monitor
892 * mechanism.
893 */
894 bool low_latency;
895
896 /*
897 * NUMA distribution policy:
898 * We support two policies:
899 * 1) Balanced: Here all performance critical channels are
900 * distributed evenly amongst all the NUMA nodes.
901 * This policy will be the default policy.
902 * 2) Localized: All channels of a given instance of a
903 * performance critical service will be assigned CPUs
904 * within a selected NUMA node.
905 */
906 enum hv_numa_policy affinity_policy;
907
908 bool probe_done;
909
910 /*
911 * We must offload the handling of the primary/sub channels
912 * from the single-threaded vmbus_connection.work_queue to
913 * two different workqueue, otherwise we can block
914 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
915 */
916 struct work_struct add_channel_work;
917
918 /*
919 * Guest to host interrupts caused by the inbound ring buffer changing
920 * from full to not full while a packet is waiting.
921 */
922 u64 intr_in_full;
923
924 /*
925 * The total number of write operations that encountered a full
926 * outbound ring buffer.
927 */
928 u64 out_full_total;
929
930 /*
931 * The number of write operations that were the first to encounter a
932 * full outbound ring buffer.
933 */
934 u64 out_full_first;
935 };
936
is_hvsock_channel(const struct vmbus_channel * c)937 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
938 {
939 return !!(c->offermsg.offer.chn_flags &
940 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
941 }
942
is_sub_channel(const struct vmbus_channel * c)943 static inline bool is_sub_channel(const struct vmbus_channel *c)
944 {
945 return c->offermsg.offer.sub_channel_index != 0;
946 }
947
set_channel_affinity_state(struct vmbus_channel * c,enum hv_numa_policy policy)948 static inline void set_channel_affinity_state(struct vmbus_channel *c,
949 enum hv_numa_policy policy)
950 {
951 c->affinity_policy = policy;
952 }
953
set_channel_read_mode(struct vmbus_channel * c,enum hv_callback_mode mode)954 static inline void set_channel_read_mode(struct vmbus_channel *c,
955 enum hv_callback_mode mode)
956 {
957 c->callback_mode = mode;
958 }
959
set_per_channel_state(struct vmbus_channel * c,void * s)960 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
961 {
962 c->per_channel_state = s;
963 }
964
get_per_channel_state(struct vmbus_channel * c)965 static inline void *get_per_channel_state(struct vmbus_channel *c)
966 {
967 return c->per_channel_state;
968 }
969
set_channel_pending_send_size(struct vmbus_channel * c,u32 size)970 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
971 u32 size)
972 {
973 unsigned long flags;
974
975 if (size) {
976 spin_lock_irqsave(&c->outbound.ring_lock, flags);
977 ++c->out_full_total;
978
979 if (!c->out_full_flag) {
980 ++c->out_full_first;
981 c->out_full_flag = true;
982 }
983 spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
984 } else {
985 c->out_full_flag = false;
986 }
987
988 c->outbound.ring_buffer->pending_send_sz = size;
989 }
990
set_low_latency_mode(struct vmbus_channel * c)991 static inline void set_low_latency_mode(struct vmbus_channel *c)
992 {
993 c->low_latency = true;
994 }
995
clear_low_latency_mode(struct vmbus_channel * c)996 static inline void clear_low_latency_mode(struct vmbus_channel *c)
997 {
998 c->low_latency = false;
999 }
1000
1001 void vmbus_onmessage(void *context);
1002
1003 int vmbus_request_offers(void);
1004
1005 /*
1006 * APIs for managing sub-channels.
1007 */
1008
1009 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1010 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1011
1012 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1013 void (*chn_rescind_cb)(struct vmbus_channel *));
1014
1015 /*
1016 * Check if sub-channels have already been offerred. This API will be useful
1017 * when the driver is unloaded after establishing sub-channels. In this case,
1018 * when the driver is re-loaded, the driver would have to check if the
1019 * subchannels have already been established before attempting to request
1020 * the creation of sub-channels.
1021 * This function returns TRUE to indicate that subchannels have already been
1022 * created.
1023 * This function should be invoked after setting the callback function for
1024 * sub-channel creation.
1025 */
1026 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1027
1028 /* The format must be the same as struct vmdata_gpa_direct */
1029 struct vmbus_channel_packet_page_buffer {
1030 u16 type;
1031 u16 dataoffset8;
1032 u16 length8;
1033 u16 flags;
1034 u64 transactionid;
1035 u32 reserved;
1036 u32 rangecount;
1037 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1038 } __packed;
1039
1040 /* The format must be the same as struct vmdata_gpa_direct */
1041 struct vmbus_channel_packet_multipage_buffer {
1042 u16 type;
1043 u16 dataoffset8;
1044 u16 length8;
1045 u16 flags;
1046 u64 transactionid;
1047 u32 reserved;
1048 u32 rangecount; /* Always 1 in this case */
1049 struct hv_multipage_buffer range;
1050 } __packed;
1051
1052 /* The format must be the same as struct vmdata_gpa_direct */
1053 struct vmbus_packet_mpb_array {
1054 u16 type;
1055 u16 dataoffset8;
1056 u16 length8;
1057 u16 flags;
1058 u64 transactionid;
1059 u32 reserved;
1060 u32 rangecount; /* Always 1 in this case */
1061 struct hv_mpb_array range;
1062 } __packed;
1063
1064 int vmbus_alloc_ring(struct vmbus_channel *channel,
1065 u32 send_size, u32 recv_size);
1066 void vmbus_free_ring(struct vmbus_channel *channel);
1067
1068 int vmbus_connect_ring(struct vmbus_channel *channel,
1069 void (*onchannel_callback)(void *context),
1070 void *context);
1071 int vmbus_disconnect_ring(struct vmbus_channel *channel);
1072
1073 extern int vmbus_open(struct vmbus_channel *channel,
1074 u32 send_ringbuffersize,
1075 u32 recv_ringbuffersize,
1076 void *userdata,
1077 u32 userdatalen,
1078 void (*onchannel_callback)(void *context),
1079 void *context);
1080
1081 extern void vmbus_close(struct vmbus_channel *channel);
1082
1083 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1084 void *buffer,
1085 u32 bufferLen,
1086 u64 requestid,
1087 enum vmbus_packet_type type,
1088 u32 flags);
1089
1090 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1091 struct hv_page_buffer pagebuffers[],
1092 u32 pagecount,
1093 void *buffer,
1094 u32 bufferlen,
1095 u64 requestid);
1096
1097 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1098 struct vmbus_packet_mpb_array *mpb,
1099 u32 desc_size,
1100 void *buffer,
1101 u32 bufferlen,
1102 u64 requestid);
1103
1104 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1105 void *kbuffer,
1106 u32 size,
1107 u32 *gpadl_handle);
1108
1109 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1110 u32 gpadl_handle);
1111
1112 void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1113
1114 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1115 void *buffer,
1116 u32 bufferlen,
1117 u32 *buffer_actual_len,
1118 u64 *requestid);
1119
1120 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1121 void *buffer,
1122 u32 bufferlen,
1123 u32 *buffer_actual_len,
1124 u64 *requestid);
1125
1126
1127 extern void vmbus_ontimer(unsigned long data);
1128
1129 /* Base driver object */
1130 struct hv_driver {
1131 const char *name;
1132
1133 /*
1134 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1135 * channel flag, actually doesn't mean a synthetic device because the
1136 * offer's if_type/if_instance can change for every new hvsock
1137 * connection.
1138 *
1139 * However, to facilitate the notification of new-offer/rescind-offer
1140 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1141 * a special vmbus device, and hence we need the below flag to
1142 * indicate if the driver is the hvsock driver or not: we need to
1143 * specially treat the hvosck offer & driver in vmbus_match().
1144 */
1145 bool hvsock;
1146
1147 /* the device type supported by this driver */
1148 guid_t dev_type;
1149 const struct hv_vmbus_device_id *id_table;
1150
1151 struct device_driver driver;
1152
1153 /* dynamic device GUID's */
1154 struct {
1155 spinlock_t lock;
1156 struct list_head list;
1157 } dynids;
1158
1159 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1160 int (*remove)(struct hv_device *);
1161 void (*shutdown)(struct hv_device *);
1162
1163 int (*suspend)(struct hv_device *);
1164 int (*resume)(struct hv_device *);
1165
1166 };
1167
1168 /* Base device object */
1169 struct hv_device {
1170 /* the device type id of this device */
1171 guid_t dev_type;
1172
1173 /* the device instance id of this device */
1174 guid_t dev_instance;
1175 u16 vendor_id;
1176 u16 device_id;
1177
1178 struct device device;
1179 char *driver_override; /* Driver name to force a match */
1180
1181 struct vmbus_channel *channel;
1182 struct kset *channels_kset;
1183 };
1184
1185
device_to_hv_device(struct device * d)1186 static inline struct hv_device *device_to_hv_device(struct device *d)
1187 {
1188 return container_of(d, struct hv_device, device);
1189 }
1190
drv_to_hv_drv(struct device_driver * d)1191 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1192 {
1193 return container_of(d, struct hv_driver, driver);
1194 }
1195
hv_set_drvdata(struct hv_device * dev,void * data)1196 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1197 {
1198 dev_set_drvdata(&dev->device, data);
1199 }
1200
hv_get_drvdata(struct hv_device * dev)1201 static inline void *hv_get_drvdata(struct hv_device *dev)
1202 {
1203 return dev_get_drvdata(&dev->device);
1204 }
1205
1206 struct hv_ring_buffer_debug_info {
1207 u32 current_interrupt_mask;
1208 u32 current_read_index;
1209 u32 current_write_index;
1210 u32 bytes_avail_toread;
1211 u32 bytes_avail_towrite;
1212 };
1213
1214
1215 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1216 struct hv_ring_buffer_debug_info *debug_info);
1217
1218 /* Vmbus interface */
1219 #define vmbus_driver_register(driver) \
1220 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1221 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1222 struct module *owner,
1223 const char *mod_name);
1224 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1225
1226 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1227
1228 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1229 resource_size_t min, resource_size_t max,
1230 resource_size_t size, resource_size_t align,
1231 bool fb_overlap_ok);
1232 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1233
1234 /*
1235 * GUID definitions of various offer types - services offered to the guest.
1236 */
1237
1238 /*
1239 * Network GUID
1240 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1241 */
1242 #define HV_NIC_GUID \
1243 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1244 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1245
1246 /*
1247 * IDE GUID
1248 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1249 */
1250 #define HV_IDE_GUID \
1251 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1252 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1253
1254 /*
1255 * SCSI GUID
1256 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1257 */
1258 #define HV_SCSI_GUID \
1259 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1260 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1261
1262 /*
1263 * Shutdown GUID
1264 * {0e0b6031-5213-4934-818b-38d90ced39db}
1265 */
1266 #define HV_SHUTDOWN_GUID \
1267 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1268 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1269
1270 /*
1271 * Time Synch GUID
1272 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1273 */
1274 #define HV_TS_GUID \
1275 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1276 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1277
1278 /*
1279 * Heartbeat GUID
1280 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1281 */
1282 #define HV_HEART_BEAT_GUID \
1283 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1284 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1285
1286 /*
1287 * KVP GUID
1288 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1289 */
1290 #define HV_KVP_GUID \
1291 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1292 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1293
1294 /*
1295 * Dynamic memory GUID
1296 * {525074dc-8985-46e2-8057-a307dc18a502}
1297 */
1298 #define HV_DM_GUID \
1299 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1300 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1301
1302 /*
1303 * Mouse GUID
1304 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1305 */
1306 #define HV_MOUSE_GUID \
1307 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1308 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1309
1310 /*
1311 * Keyboard GUID
1312 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1313 */
1314 #define HV_KBD_GUID \
1315 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1316 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1317
1318 /*
1319 * VSS (Backup/Restore) GUID
1320 */
1321 #define HV_VSS_GUID \
1322 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1323 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1324 /*
1325 * Synthetic Video GUID
1326 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1327 */
1328 #define HV_SYNTHVID_GUID \
1329 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1330 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1331
1332 /*
1333 * Synthetic FC GUID
1334 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1335 */
1336 #define HV_SYNTHFC_GUID \
1337 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1338 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1339
1340 /*
1341 * Guest File Copy Service
1342 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1343 */
1344
1345 #define HV_FCOPY_GUID \
1346 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1347 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1348
1349 /*
1350 * NetworkDirect. This is the guest RDMA service.
1351 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1352 */
1353 #define HV_ND_GUID \
1354 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1355 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1356
1357 /*
1358 * PCI Express Pass Through
1359 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1360 */
1361
1362 #define HV_PCIE_GUID \
1363 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1364 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1365
1366 /*
1367 * Linux doesn't support the 3 devices: the first two are for
1368 * Automatic Virtual Machine Activation, and the third is for
1369 * Remote Desktop Virtualization.
1370 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1371 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1372 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1373 */
1374
1375 #define HV_AVMA1_GUID \
1376 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1377 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1378
1379 #define HV_AVMA2_GUID \
1380 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1381 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1382
1383 #define HV_RDV_GUID \
1384 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1385 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1386
1387 /*
1388 * Common header for Hyper-V ICs
1389 */
1390
1391 #define ICMSGTYPE_NEGOTIATE 0
1392 #define ICMSGTYPE_HEARTBEAT 1
1393 #define ICMSGTYPE_KVPEXCHANGE 2
1394 #define ICMSGTYPE_SHUTDOWN 3
1395 #define ICMSGTYPE_TIMESYNC 4
1396 #define ICMSGTYPE_VSS 5
1397
1398 #define ICMSGHDRFLAG_TRANSACTION 1
1399 #define ICMSGHDRFLAG_REQUEST 2
1400 #define ICMSGHDRFLAG_RESPONSE 4
1401
1402
1403 /*
1404 * While we want to handle util services as regular devices,
1405 * there is only one instance of each of these services; so
1406 * we statically allocate the service specific state.
1407 */
1408
1409 struct hv_util_service {
1410 u8 *recv_buffer;
1411 void *channel;
1412 void (*util_cb)(void *);
1413 int (*util_init)(struct hv_util_service *);
1414 void (*util_deinit)(void);
1415 };
1416
1417 struct vmbuspipe_hdr {
1418 u32 flags;
1419 u32 msgsize;
1420 } __packed;
1421
1422 struct ic_version {
1423 u16 major;
1424 u16 minor;
1425 } __packed;
1426
1427 struct icmsg_hdr {
1428 struct ic_version icverframe;
1429 u16 icmsgtype;
1430 struct ic_version icvermsg;
1431 u16 icmsgsize;
1432 u32 status;
1433 u8 ictransaction_id;
1434 u8 icflags;
1435 u8 reserved[2];
1436 } __packed;
1437
1438 struct icmsg_negotiate {
1439 u16 icframe_vercnt;
1440 u16 icmsg_vercnt;
1441 u32 reserved;
1442 struct ic_version icversion_data[1]; /* any size array */
1443 } __packed;
1444
1445 struct shutdown_msg_data {
1446 u32 reason_code;
1447 u32 timeout_seconds;
1448 u32 flags;
1449 u8 display_message[2048];
1450 } __packed;
1451
1452 struct heartbeat_msg_data {
1453 u64 seq_num;
1454 u32 reserved[8];
1455 } __packed;
1456
1457 /* Time Sync IC defs */
1458 #define ICTIMESYNCFLAG_PROBE 0
1459 #define ICTIMESYNCFLAG_SYNC 1
1460 #define ICTIMESYNCFLAG_SAMPLE 2
1461
1462 #ifdef __x86_64__
1463 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1464 #else
1465 #define WLTIMEDELTA 116444736000000000LL
1466 #endif
1467
1468 struct ictimesync_data {
1469 u64 parenttime;
1470 u64 childtime;
1471 u64 roundtriptime;
1472 u8 flags;
1473 } __packed;
1474
1475 struct ictimesync_ref_data {
1476 u64 parenttime;
1477 u64 vmreferencetime;
1478 u8 flags;
1479 char leapflags;
1480 char stratum;
1481 u8 reserved[3];
1482 } __packed;
1483
1484 struct hyperv_service_callback {
1485 u8 msg_type;
1486 char *log_msg;
1487 guid_t data;
1488 struct vmbus_channel *channel;
1489 void (*callback)(void *context);
1490 };
1491
1492 #define MAX_SRV_VER 0x7ffffff
1493 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1494 const int *fw_version, int fw_vercnt,
1495 const int *srv_version, int srv_vercnt,
1496 int *nego_fw_version, int *nego_srv_version);
1497
1498 void hv_process_channel_removal(struct vmbus_channel *channel);
1499
1500 void vmbus_setevent(struct vmbus_channel *channel);
1501 /*
1502 * Negotiated version with the Host.
1503 */
1504
1505 extern __u32 vmbus_proto_version;
1506
1507 int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1508 const guid_t *shv_host_servie_id);
1509 void vmbus_set_event(struct vmbus_channel *channel);
1510
1511 /* Get the start of the ring buffer. */
1512 static inline void *
hv_get_ring_buffer(const struct hv_ring_buffer_info * ring_info)1513 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1514 {
1515 return ring_info->ring_buffer->buffer;
1516 }
1517
1518 /*
1519 * Mask off host interrupt callback notifications
1520 */
hv_begin_read(struct hv_ring_buffer_info * rbi)1521 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1522 {
1523 rbi->ring_buffer->interrupt_mask = 1;
1524
1525 /* make sure mask update is not reordered */
1526 virt_mb();
1527 }
1528
1529 /*
1530 * Re-enable host callback and return number of outstanding bytes
1531 */
hv_end_read(struct hv_ring_buffer_info * rbi)1532 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1533 {
1534
1535 rbi->ring_buffer->interrupt_mask = 0;
1536
1537 /* make sure mask update is not reordered */
1538 virt_mb();
1539
1540 /*
1541 * Now check to see if the ring buffer is still empty.
1542 * If it is not, we raced and we need to process new
1543 * incoming messages.
1544 */
1545 return hv_get_bytes_to_read(rbi);
1546 }
1547
1548 /*
1549 * An API to support in-place processing of incoming VMBUS packets.
1550 */
1551
1552 /* Get data payload associated with descriptor */
hv_pkt_data(const struct vmpacket_descriptor * desc)1553 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1554 {
1555 return (void *)((unsigned long)desc + (desc->offset8 << 3));
1556 }
1557
1558 /* Get data size associated with descriptor */
hv_pkt_datalen(const struct vmpacket_descriptor * desc)1559 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1560 {
1561 return (desc->len8 << 3) - (desc->offset8 << 3);
1562 }
1563
1564
1565 struct vmpacket_descriptor *
1566 hv_pkt_iter_first(struct vmbus_channel *channel);
1567
1568 struct vmpacket_descriptor *
1569 __hv_pkt_iter_next(struct vmbus_channel *channel,
1570 const struct vmpacket_descriptor *pkt);
1571
1572 void hv_pkt_iter_close(struct vmbus_channel *channel);
1573
1574 /*
1575 * Get next packet descriptor from iterator
1576 * If at end of list, return NULL and update host.
1577 */
1578 static inline struct vmpacket_descriptor *
hv_pkt_iter_next(struct vmbus_channel * channel,const struct vmpacket_descriptor * pkt)1579 hv_pkt_iter_next(struct vmbus_channel *channel,
1580 const struct vmpacket_descriptor *pkt)
1581 {
1582 struct vmpacket_descriptor *nxt;
1583
1584 nxt = __hv_pkt_iter_next(channel, pkt);
1585 if (!nxt)
1586 hv_pkt_iter_close(channel);
1587
1588 return nxt;
1589 }
1590
1591 #define foreach_vmbus_pkt(pkt, channel) \
1592 for (pkt = hv_pkt_iter_first(channel); pkt; \
1593 pkt = hv_pkt_iter_next(channel, pkt))
1594
1595 /*
1596 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver
1597 * sends requests to read and write blocks. Each block must be 128 bytes or
1598 * smaller. Optionally, the VF driver can register a callback function which
1599 * will be invoked when the host says that one or more of the first 64 block
1600 * IDs is "invalid" which means that the VF driver should reread them.
1601 */
1602 #define HV_CONFIG_BLOCK_SIZE_MAX 128
1603
1604 int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len,
1605 unsigned int block_id, unsigned int *bytes_returned);
1606 int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len,
1607 unsigned int block_id);
1608 int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context,
1609 void (*block_invalidate)(void *context,
1610 u64 block_mask));
1611
1612 struct hyperv_pci_block_ops {
1613 int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len,
1614 unsigned int block_id, unsigned int *bytes_returned);
1615 int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len,
1616 unsigned int block_id);
1617 int (*reg_blk_invalidate)(struct pci_dev *dev, void *context,
1618 void (*block_invalidate)(void *context,
1619 u64 block_mask));
1620 };
1621
1622 extern struct hyperv_pci_block_ops hvpci_block_ops;
1623
1624 #endif /* _HYPERV_H */
1625