• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
46 
47 #include <net/tcp.h>
48 #include <net/strparser.h>
49 #include <crypto/aead.h>
50 #include <uapi/linux/tls.h>
51 
52 
53 /* Maximum data size carried in a TLS record */
54 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
55 
56 #define TLS_HEADER_SIZE			5
57 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
58 
59 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
60 
61 #define TLS_RECORD_TYPE_DATA		0x17
62 
63 #define TLS_AAD_SPACE_SIZE		13
64 #define TLS_DEVICE_NAME_MAX		32
65 
66 #define MAX_IV_SIZE			16
67 #define TLS_MAX_REC_SEQ_SIZE		8
68 
69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
70  *
71  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72  *
73  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74  * Hence b0 contains (3 - 1) = 2.
75  */
76 #define TLS_AES_CCM_IV_B0_BYTE		2
77 
78 /*
79  * This structure defines the routines for Inline TLS driver.
80  * The following routines are optional and filled with a
81  * null pointer if not defined.
82  *
83  * @name: Its the name of registered Inline tls device
84  * @dev_list: Inline tls device list
85  * int (*feature)(struct tls_device *device);
86  *     Called to return Inline TLS driver capability
87  *
88  * int (*hash)(struct tls_device *device, struct sock *sk);
89  *     This function sets Inline driver for listen and program
90  *     device specific functioanlity as required
91  *
92  * void (*unhash)(struct tls_device *device, struct sock *sk);
93  *     This function cleans listen state set by Inline TLS driver
94  *
95  * void (*release)(struct kref *kref);
96  *     Release the registered device and allocated resources
97  * @kref: Number of reference to tls_device
98  */
99 struct tls_device {
100 	char name[TLS_DEVICE_NAME_MAX];
101 	struct list_head dev_list;
102 	int  (*feature)(struct tls_device *device);
103 	int  (*hash)(struct tls_device *device, struct sock *sk);
104 	void (*unhash)(struct tls_device *device, struct sock *sk);
105 	void (*release)(struct kref *kref);
106 	struct kref kref;
107 };
108 
109 enum {
110 	TLS_BASE,
111 	TLS_SW,
112 	TLS_HW,
113 	TLS_HW_RECORD,
114 	TLS_NUM_CONFIG,
115 };
116 
117 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
118  * allocated or mapped for each TLS record. After encryption, the records are
119  * stores in a linked list.
120  */
121 struct tls_rec {
122 	struct list_head list;
123 	int tx_ready;
124 	int tx_flags;
125 
126 	struct sk_msg msg_plaintext;
127 	struct sk_msg msg_encrypted;
128 
129 	/* AAD | msg_plaintext.sg.data | sg_tag */
130 	struct scatterlist sg_aead_in[2];
131 	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
132 	struct scatterlist sg_aead_out[2];
133 
134 	char content_type;
135 	struct scatterlist sg_content_type;
136 
137 	char aad_space[TLS_AAD_SPACE_SIZE];
138 	u8 iv_data[MAX_IV_SIZE];
139 	struct aead_request aead_req;
140 	u8 aead_req_ctx[];
141 };
142 
143 struct tls_msg {
144 	struct strp_msg rxm;
145 	u8 control;
146 };
147 
148 struct tx_work {
149 	struct delayed_work work;
150 	struct sock *sk;
151 };
152 
153 struct tls_sw_context_tx {
154 	struct crypto_aead *aead_send;
155 	struct crypto_wait async_wait;
156 	struct tx_work tx_work;
157 	struct tls_rec *open_rec;
158 	struct list_head tx_list;
159 	atomic_t encrypt_pending;
160 	int async_notify;
161 	int async_capable;
162 
163 #define BIT_TX_SCHEDULED	0
164 #define BIT_TX_CLOSING		1
165 	unsigned long tx_bitmask;
166 };
167 
168 struct tls_sw_context_rx {
169 	struct crypto_aead *aead_recv;
170 	struct crypto_wait async_wait;
171 	struct strparser strp;
172 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
173 	void (*saved_data_ready)(struct sock *sk);
174 
175 	struct sk_buff *recv_pkt;
176 	u8 control;
177 	int async_capable;
178 	bool decrypted;
179 	atomic_t decrypt_pending;
180 	bool async_notify;
181 };
182 
183 struct tls_record_info {
184 	struct list_head list;
185 	u32 end_seq;
186 	int len;
187 	int num_frags;
188 	skb_frag_t frags[MAX_SKB_FRAGS];
189 };
190 
191 struct tls_offload_context_tx {
192 	struct crypto_aead *aead_send;
193 	spinlock_t lock;	/* protects records list */
194 	struct list_head records_list;
195 	struct tls_record_info *open_record;
196 	struct tls_record_info *retransmit_hint;
197 	u64 hint_record_sn;
198 	u64 unacked_record_sn;
199 
200 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
201 	void (*sk_destruct)(struct sock *sk);
202 	u8 driver_state[] __aligned(8);
203 	/* The TLS layer reserves room for driver specific state
204 	 * Currently the belief is that there is not enough
205 	 * driver specific state to justify another layer of indirection
206 	 */
207 #define TLS_DRIVER_STATE_SIZE_TX	16
208 };
209 
210 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
211 	(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
212 
213 enum tls_context_flags {
214 	TLS_RX_SYNC_RUNNING = 0,
215 	/* Unlike RX where resync is driven entirely by the core in TX only
216 	 * the driver knows when things went out of sync, so we need the flag
217 	 * to be atomic.
218 	 */
219 	TLS_TX_SYNC_SCHED = 1,
220 };
221 
222 struct cipher_context {
223 	char *iv;
224 	char *rec_seq;
225 };
226 
227 union tls_crypto_context {
228 	struct tls_crypto_info info;
229 	union {
230 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
231 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
232 	};
233 };
234 
235 struct tls_prot_info {
236 	u16 version;
237 	u16 cipher_type;
238 	u16 prepend_size;
239 	u16 tag_size;
240 	u16 overhead_size;
241 	u16 iv_size;
242 	u16 salt_size;
243 	u16 rec_seq_size;
244 	u16 aad_size;
245 	u16 tail_size;
246 };
247 
248 struct tls_context {
249 	/* read-only cache line */
250 	struct tls_prot_info prot_info;
251 
252 	u8 tx_conf:3;
253 	u8 rx_conf:3;
254 
255 	int (*push_pending_record)(struct sock *sk, int flags);
256 	void (*sk_write_space)(struct sock *sk);
257 
258 	void *priv_ctx_tx;
259 	void *priv_ctx_rx;
260 
261 	struct net_device *netdev;
262 
263 	/* rw cache line */
264 	struct cipher_context tx;
265 	struct cipher_context rx;
266 
267 	struct scatterlist *partially_sent_record;
268 	u16 partially_sent_offset;
269 
270 	bool in_tcp_sendpages;
271 	bool pending_open_record_frags;
272 
273 	struct mutex tx_lock; /* protects partially_sent_* fields and
274 			       * per-type TX fields
275 			       */
276 	unsigned long flags;
277 
278 	/* cache cold stuff */
279 	struct proto *sk_proto;
280 
281 	void (*sk_destruct)(struct sock *sk);
282 
283 	union tls_crypto_context crypto_send;
284 	union tls_crypto_context crypto_recv;
285 
286 	struct list_head list;
287 	refcount_t refcount;
288 	struct rcu_head rcu;
289 };
290 
291 enum tls_offload_ctx_dir {
292 	TLS_OFFLOAD_CTX_DIR_RX,
293 	TLS_OFFLOAD_CTX_DIR_TX,
294 };
295 
296 struct tlsdev_ops {
297 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
298 			   enum tls_offload_ctx_dir direction,
299 			   struct tls_crypto_info *crypto_info,
300 			   u32 start_offload_tcp_sn);
301 	void (*tls_dev_del)(struct net_device *netdev,
302 			    struct tls_context *ctx,
303 			    enum tls_offload_ctx_dir direction);
304 	int (*tls_dev_resync)(struct net_device *netdev,
305 			      struct sock *sk, u32 seq, u8 *rcd_sn,
306 			      enum tls_offload_ctx_dir direction);
307 };
308 
309 enum tls_offload_sync_type {
310 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
311 	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
312 };
313 
314 #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
315 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
316 
317 struct tls_offload_context_rx {
318 	/* sw must be the first member of tls_offload_context_rx */
319 	struct tls_sw_context_rx sw;
320 	enum tls_offload_sync_type resync_type;
321 	/* this member is set regardless of resync_type, to avoid branches */
322 	u8 resync_nh_reset:1;
323 	/* CORE_NEXT_HINT-only member, but use the hole here */
324 	u8 resync_nh_do_now:1;
325 	union {
326 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
327 		struct {
328 			atomic64_t resync_req;
329 		};
330 		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
331 		struct {
332 			u32 decrypted_failed;
333 			u32 decrypted_tgt;
334 		} resync_nh;
335 	};
336 	u8 driver_state[] __aligned(8);
337 	/* The TLS layer reserves room for driver specific state
338 	 * Currently the belief is that there is not enough
339 	 * driver specific state to justify another layer of indirection
340 	 */
341 #define TLS_DRIVER_STATE_SIZE_RX	8
342 };
343 
344 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
345 	(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
346 
347 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
348 int wait_on_pending_writer(struct sock *sk, long *timeo);
349 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
350 		int __user *optlen);
351 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
352 		  unsigned int optlen);
353 
354 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
355 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
356 void tls_sw_strparser_done(struct tls_context *tls_ctx);
357 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
358 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
359 			   int offset, size_t size, int flags);
360 int tls_sw_sendpage(struct sock *sk, struct page *page,
361 		    int offset, size_t size, int flags);
362 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
363 void tls_sw_release_resources_tx(struct sock *sk);
364 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
365 void tls_sw_free_resources_rx(struct sock *sk);
366 void tls_sw_release_resources_rx(struct sock *sk);
367 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
368 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
369 		   int nonblock, int flags, int *addr_len);
370 bool tls_sw_stream_read(const struct sock *sk);
371 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
372 			   struct pipe_inode_info *pipe,
373 			   size_t len, unsigned int flags);
374 
375 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
376 int tls_device_sendpage(struct sock *sk, struct page *page,
377 			int offset, size_t size, int flags);
378 int tls_tx_records(struct sock *sk, int flags);
379 
380 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
381 				       u32 seq, u64 *p_record_sn);
382 
tls_record_is_start_marker(struct tls_record_info * rec)383 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
384 {
385 	return rec->len == 0;
386 }
387 
tls_record_start_seq(struct tls_record_info * rec)388 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
389 {
390 	return rec->end_seq - rec->len;
391 }
392 
393 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
394 		struct scatterlist *sg, u16 first_offset,
395 		int flags);
396 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
397 			    int flags);
398 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
399 
tls_msg(struct sk_buff * skb)400 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
401 {
402 	return (struct tls_msg *)strp_msg(skb);
403 }
404 
tls_is_partially_sent_record(struct tls_context * ctx)405 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
406 {
407 	return !!ctx->partially_sent_record;
408 }
409 
tls_is_pending_open_record(struct tls_context * tls_ctx)410 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
411 {
412 	return tls_ctx->pending_open_record_frags;
413 }
414 
is_tx_ready(struct tls_sw_context_tx * ctx)415 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
416 {
417 	struct tls_rec *rec;
418 
419 	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
420 	if (!rec)
421 		return false;
422 
423 	return READ_ONCE(rec->tx_ready);
424 }
425 
tls_user_config(struct tls_context * ctx,bool tx)426 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
427 {
428 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
429 
430 	switch (config) {
431 	case TLS_BASE:
432 		return TLS_CONF_BASE;
433 	case TLS_SW:
434 		return TLS_CONF_SW;
435 	case TLS_HW:
436 		return TLS_CONF_HW;
437 	case TLS_HW_RECORD:
438 		return TLS_CONF_HW_RECORD;
439 	}
440 	return 0;
441 }
442 
443 struct sk_buff *
444 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
445 		      struct sk_buff *skb);
446 
tls_is_sk_tx_device_offloaded(struct sock * sk)447 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
448 {
449 #ifdef CONFIG_SOCK_VALIDATE_XMIT
450 	return sk_fullsock(sk) &&
451 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
452 	       &tls_validate_xmit_skb);
453 #else
454 	return false;
455 #endif
456 }
457 
tls_err_abort(struct sock * sk,int err)458 static inline void tls_err_abort(struct sock *sk, int err)
459 {
460 	sk->sk_err = err;
461 	sk->sk_error_report(sk);
462 }
463 
tls_bigint_increment(unsigned char * seq,int len)464 static inline bool tls_bigint_increment(unsigned char *seq, int len)
465 {
466 	int i;
467 
468 	for (i = len - 1; i >= 0; i--) {
469 		++seq[i];
470 		if (seq[i] != 0)
471 			break;
472 	}
473 
474 	return (i == -1);
475 }
476 
tls_get_ctx(const struct sock * sk)477 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
478 {
479 	struct inet_connection_sock *icsk = inet_csk(sk);
480 
481 	/* Use RCU on icsk_ulp_data only for sock diag code,
482 	 * TLS data path doesn't need rcu_dereference().
483 	 */
484 	return (__force void *)icsk->icsk_ulp_data;
485 }
486 
tls_advance_record_sn(struct sock * sk,struct tls_prot_info * prot,struct cipher_context * ctx)487 static inline void tls_advance_record_sn(struct sock *sk,
488 					 struct tls_prot_info *prot,
489 					 struct cipher_context *ctx)
490 {
491 	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
492 		tls_err_abort(sk, EBADMSG);
493 
494 	if (prot->version != TLS_1_3_VERSION)
495 		tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
496 				     prot->iv_size);
497 }
498 
tls_fill_prepend(struct tls_context * ctx,char * buf,size_t plaintext_len,unsigned char record_type,int version)499 static inline void tls_fill_prepend(struct tls_context *ctx,
500 			     char *buf,
501 			     size_t plaintext_len,
502 			     unsigned char record_type,
503 			     int version)
504 {
505 	struct tls_prot_info *prot = &ctx->prot_info;
506 	size_t pkt_len, iv_size = prot->iv_size;
507 
508 	pkt_len = plaintext_len + prot->tag_size;
509 	if (version != TLS_1_3_VERSION) {
510 		pkt_len += iv_size;
511 
512 		memcpy(buf + TLS_NONCE_OFFSET,
513 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
514 	}
515 
516 	/* we cover nonce explicit here as well, so buf should be of
517 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
518 	 */
519 	buf[0] = version == TLS_1_3_VERSION ?
520 		   TLS_RECORD_TYPE_DATA : record_type;
521 	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
522 	buf[1] = TLS_1_2_VERSION_MINOR;
523 	buf[2] = TLS_1_2_VERSION_MAJOR;
524 	/* we can use IV for nonce explicit according to spec */
525 	buf[3] = pkt_len >> 8;
526 	buf[4] = pkt_len & 0xFF;
527 }
528 
tls_make_aad(char * buf,size_t size,char * record_sequence,int record_sequence_size,unsigned char record_type,int version)529 static inline void tls_make_aad(char *buf,
530 				size_t size,
531 				char *record_sequence,
532 				int record_sequence_size,
533 				unsigned char record_type,
534 				int version)
535 {
536 	if (version != TLS_1_3_VERSION) {
537 		memcpy(buf, record_sequence, record_sequence_size);
538 		buf += 8;
539 	} else {
540 		size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
541 	}
542 
543 	buf[0] = version == TLS_1_3_VERSION ?
544 		  TLS_RECORD_TYPE_DATA : record_type;
545 	buf[1] = TLS_1_2_VERSION_MAJOR;
546 	buf[2] = TLS_1_2_VERSION_MINOR;
547 	buf[3] = size >> 8;
548 	buf[4] = size & 0xFF;
549 }
550 
xor_iv_with_seq(int version,char * iv,char * seq)551 static inline void xor_iv_with_seq(int version, char *iv, char *seq)
552 {
553 	int i;
554 
555 	if (version == TLS_1_3_VERSION) {
556 		for (i = 0; i < 8; i++)
557 			iv[i + 4] ^= seq[i];
558 	}
559 }
560 
561 
tls_sw_ctx_rx(const struct tls_context * tls_ctx)562 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
563 		const struct tls_context *tls_ctx)
564 {
565 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
566 }
567 
tls_sw_ctx_tx(const struct tls_context * tls_ctx)568 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
569 		const struct tls_context *tls_ctx)
570 {
571 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
572 }
573 
574 static inline struct tls_offload_context_tx *
tls_offload_ctx_tx(const struct tls_context * tls_ctx)575 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
576 {
577 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
578 }
579 
tls_sw_has_ctx_tx(const struct sock * sk)580 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
581 {
582 	struct tls_context *ctx = tls_get_ctx(sk);
583 
584 	if (!ctx)
585 		return false;
586 	return !!tls_sw_ctx_tx(ctx);
587 }
588 
589 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
590 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
591 
592 static inline struct tls_offload_context_rx *
tls_offload_ctx_rx(const struct tls_context * tls_ctx)593 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
594 {
595 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
596 }
597 
598 #if IS_ENABLED(CONFIG_TLS_DEVICE)
__tls_driver_ctx(struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)599 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
600 				     enum tls_offload_ctx_dir direction)
601 {
602 	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
603 		return tls_offload_ctx_tx(tls_ctx)->driver_state;
604 	else
605 		return tls_offload_ctx_rx(tls_ctx)->driver_state;
606 }
607 
608 static inline void *
tls_driver_ctx(const struct sock * sk,enum tls_offload_ctx_dir direction)609 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
610 {
611 	return __tls_driver_ctx(tls_get_ctx(sk), direction);
612 }
613 #endif
614 
615 /* The TLS context is valid until sk_destruct is called */
tls_offload_rx_resync_request(struct sock * sk,__be32 seq)616 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
617 {
618 	struct tls_context *tls_ctx = tls_get_ctx(sk);
619 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
620 
621 	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1);
622 }
623 
624 static inline void
tls_offload_rx_resync_set_type(struct sock * sk,enum tls_offload_sync_type type)625 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
626 {
627 	struct tls_context *tls_ctx = tls_get_ctx(sk);
628 
629 	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
630 }
631 
tls_offload_tx_resync_request(struct sock * sk)632 static inline void tls_offload_tx_resync_request(struct sock *sk)
633 {
634 	struct tls_context *tls_ctx = tls_get_ctx(sk);
635 
636 	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
637 }
638 
639 /* Driver's seq tracking has to be disabled until resync succeeded */
tls_offload_tx_resync_pending(struct sock * sk)640 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
641 {
642 	struct tls_context *tls_ctx = tls_get_ctx(sk);
643 	bool ret;
644 
645 	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
646 	smp_mb__after_atomic();
647 	return ret;
648 }
649 
650 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
651 		      unsigned char *record_type);
652 void tls_register_device(struct tls_device *device);
653 void tls_unregister_device(struct tls_device *device);
654 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
655 		struct scatterlist *sgout);
656 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
657 
658 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
659 				      struct net_device *dev,
660 				      struct sk_buff *skb);
661 
662 int tls_sw_fallback_init(struct sock *sk,
663 			 struct tls_offload_context_tx *offload_ctx,
664 			 struct tls_crypto_info *crypto_info);
665 
666 #ifdef CONFIG_TLS_DEVICE
667 void tls_device_init(void);
668 void tls_device_cleanup(void);
669 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
670 void tls_device_free_resources_tx(struct sock *sk);
671 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
672 void tls_device_offload_cleanup_rx(struct sock *sk);
673 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
674 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
675 #else
tls_device_init(void)676 static inline void tls_device_init(void) {}
tls_device_cleanup(void)677 static inline void tls_device_cleanup(void) {}
678 
679 static inline int
tls_set_device_offload(struct sock * sk,struct tls_context * ctx)680 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
681 {
682 	return -EOPNOTSUPP;
683 }
684 
tls_device_free_resources_tx(struct sock * sk)685 static inline void tls_device_free_resources_tx(struct sock *sk) {}
686 
687 static inline int
tls_set_device_offload_rx(struct sock * sk,struct tls_context * ctx)688 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
689 {
690 	return -EOPNOTSUPP;
691 }
692 
tls_device_offload_cleanup_rx(struct sock * sk)693 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
694 static inline void
tls_device_rx_resync_new_rec(struct sock * sk,u32 rcd_len,u32 seq)695 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
696 
tls_device_decrypted(struct sock * sk,struct sk_buff * skb)697 static inline int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
698 {
699 	return 0;
700 }
701 #endif
702 #endif /* _TLS_OFFLOAD_H */
703