1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
46
47 #include <net/tcp.h>
48 #include <net/strparser.h>
49 #include <crypto/aead.h>
50 #include <uapi/linux/tls.h>
51
52
53 /* Maximum data size carried in a TLS record */
54 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
55
56 #define TLS_HEADER_SIZE 5
57 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE
58
59 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
60
61 #define TLS_RECORD_TYPE_DATA 0x17
62
63 #define TLS_AAD_SPACE_SIZE 13
64 #define TLS_DEVICE_NAME_MAX 32
65
66 #define MAX_IV_SIZE 16
67 #define TLS_MAX_REC_SEQ_SIZE 8
68
69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
70 *
71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72 *
73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74 * Hence b0 contains (3 - 1) = 2.
75 */
76 #define TLS_AES_CCM_IV_B0_BYTE 2
77
78 /*
79 * This structure defines the routines for Inline TLS driver.
80 * The following routines are optional and filled with a
81 * null pointer if not defined.
82 *
83 * @name: Its the name of registered Inline tls device
84 * @dev_list: Inline tls device list
85 * int (*feature)(struct tls_device *device);
86 * Called to return Inline TLS driver capability
87 *
88 * int (*hash)(struct tls_device *device, struct sock *sk);
89 * This function sets Inline driver for listen and program
90 * device specific functioanlity as required
91 *
92 * void (*unhash)(struct tls_device *device, struct sock *sk);
93 * This function cleans listen state set by Inline TLS driver
94 *
95 * void (*release)(struct kref *kref);
96 * Release the registered device and allocated resources
97 * @kref: Number of reference to tls_device
98 */
99 struct tls_device {
100 char name[TLS_DEVICE_NAME_MAX];
101 struct list_head dev_list;
102 int (*feature)(struct tls_device *device);
103 int (*hash)(struct tls_device *device, struct sock *sk);
104 void (*unhash)(struct tls_device *device, struct sock *sk);
105 void (*release)(struct kref *kref);
106 struct kref kref;
107 };
108
109 enum {
110 TLS_BASE,
111 TLS_SW,
112 TLS_HW,
113 TLS_HW_RECORD,
114 TLS_NUM_CONFIG,
115 };
116
117 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
118 * allocated or mapped for each TLS record. After encryption, the records are
119 * stores in a linked list.
120 */
121 struct tls_rec {
122 struct list_head list;
123 int tx_ready;
124 int tx_flags;
125
126 struct sk_msg msg_plaintext;
127 struct sk_msg msg_encrypted;
128
129 /* AAD | msg_plaintext.sg.data | sg_tag */
130 struct scatterlist sg_aead_in[2];
131 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
132 struct scatterlist sg_aead_out[2];
133
134 char content_type;
135 struct scatterlist sg_content_type;
136
137 char aad_space[TLS_AAD_SPACE_SIZE];
138 u8 iv_data[MAX_IV_SIZE];
139 struct aead_request aead_req;
140 u8 aead_req_ctx[];
141 };
142
143 struct tls_msg {
144 struct strp_msg rxm;
145 u8 control;
146 };
147
148 struct tx_work {
149 struct delayed_work work;
150 struct sock *sk;
151 };
152
153 struct tls_sw_context_tx {
154 struct crypto_aead *aead_send;
155 struct crypto_wait async_wait;
156 struct tx_work tx_work;
157 struct tls_rec *open_rec;
158 struct list_head tx_list;
159 atomic_t encrypt_pending;
160 int async_notify;
161 int async_capable;
162
163 #define BIT_TX_SCHEDULED 0
164 #define BIT_TX_CLOSING 1
165 unsigned long tx_bitmask;
166 };
167
168 struct tls_sw_context_rx {
169 struct crypto_aead *aead_recv;
170 struct crypto_wait async_wait;
171 struct strparser strp;
172 struct sk_buff_head rx_list; /* list of decrypted 'data' records */
173 void (*saved_data_ready)(struct sock *sk);
174
175 struct sk_buff *recv_pkt;
176 u8 control;
177 int async_capable;
178 bool decrypted;
179 atomic_t decrypt_pending;
180 bool async_notify;
181 };
182
183 struct tls_record_info {
184 struct list_head list;
185 u32 end_seq;
186 int len;
187 int num_frags;
188 skb_frag_t frags[MAX_SKB_FRAGS];
189 };
190
191 struct tls_offload_context_tx {
192 struct crypto_aead *aead_send;
193 spinlock_t lock; /* protects records list */
194 struct list_head records_list;
195 struct tls_record_info *open_record;
196 struct tls_record_info *retransmit_hint;
197 u64 hint_record_sn;
198 u64 unacked_record_sn;
199
200 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
201 void (*sk_destruct)(struct sock *sk);
202 u8 driver_state[] __aligned(8);
203 /* The TLS layer reserves room for driver specific state
204 * Currently the belief is that there is not enough
205 * driver specific state to justify another layer of indirection
206 */
207 #define TLS_DRIVER_STATE_SIZE_TX 16
208 };
209
210 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \
211 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
212
213 enum tls_context_flags {
214 TLS_RX_SYNC_RUNNING = 0,
215 /* Unlike RX where resync is driven entirely by the core in TX only
216 * the driver knows when things went out of sync, so we need the flag
217 * to be atomic.
218 */
219 TLS_TX_SYNC_SCHED = 1,
220 };
221
222 struct cipher_context {
223 char *iv;
224 char *rec_seq;
225 };
226
227 union tls_crypto_context {
228 struct tls_crypto_info info;
229 union {
230 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
231 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
232 };
233 };
234
235 struct tls_prot_info {
236 u16 version;
237 u16 cipher_type;
238 u16 prepend_size;
239 u16 tag_size;
240 u16 overhead_size;
241 u16 iv_size;
242 u16 salt_size;
243 u16 rec_seq_size;
244 u16 aad_size;
245 u16 tail_size;
246 };
247
248 struct tls_context {
249 /* read-only cache line */
250 struct tls_prot_info prot_info;
251
252 u8 tx_conf:3;
253 u8 rx_conf:3;
254
255 int (*push_pending_record)(struct sock *sk, int flags);
256 void (*sk_write_space)(struct sock *sk);
257
258 void *priv_ctx_tx;
259 void *priv_ctx_rx;
260
261 struct net_device *netdev;
262
263 /* rw cache line */
264 struct cipher_context tx;
265 struct cipher_context rx;
266
267 struct scatterlist *partially_sent_record;
268 u16 partially_sent_offset;
269
270 bool in_tcp_sendpages;
271 bool pending_open_record_frags;
272
273 struct mutex tx_lock; /* protects partially_sent_* fields and
274 * per-type TX fields
275 */
276 unsigned long flags;
277
278 /* cache cold stuff */
279 struct proto *sk_proto;
280
281 void (*sk_destruct)(struct sock *sk);
282
283 union tls_crypto_context crypto_send;
284 union tls_crypto_context crypto_recv;
285
286 struct list_head list;
287 refcount_t refcount;
288 struct rcu_head rcu;
289 };
290
291 enum tls_offload_ctx_dir {
292 TLS_OFFLOAD_CTX_DIR_RX,
293 TLS_OFFLOAD_CTX_DIR_TX,
294 };
295
296 struct tlsdev_ops {
297 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
298 enum tls_offload_ctx_dir direction,
299 struct tls_crypto_info *crypto_info,
300 u32 start_offload_tcp_sn);
301 void (*tls_dev_del)(struct net_device *netdev,
302 struct tls_context *ctx,
303 enum tls_offload_ctx_dir direction);
304 int (*tls_dev_resync)(struct net_device *netdev,
305 struct sock *sk, u32 seq, u8 *rcd_sn,
306 enum tls_offload_ctx_dir direction);
307 };
308
309 enum tls_offload_sync_type {
310 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
311 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
312 };
313
314 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2
315 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128
316
317 struct tls_offload_context_rx {
318 /* sw must be the first member of tls_offload_context_rx */
319 struct tls_sw_context_rx sw;
320 enum tls_offload_sync_type resync_type;
321 /* this member is set regardless of resync_type, to avoid branches */
322 u8 resync_nh_reset:1;
323 /* CORE_NEXT_HINT-only member, but use the hole here */
324 u8 resync_nh_do_now:1;
325 union {
326 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
327 struct {
328 atomic64_t resync_req;
329 };
330 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
331 struct {
332 u32 decrypted_failed;
333 u32 decrypted_tgt;
334 } resync_nh;
335 };
336 u8 driver_state[] __aligned(8);
337 /* The TLS layer reserves room for driver specific state
338 * Currently the belief is that there is not enough
339 * driver specific state to justify another layer of indirection
340 */
341 #define TLS_DRIVER_STATE_SIZE_RX 8
342 };
343
344 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \
345 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
346
347 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
348 int wait_on_pending_writer(struct sock *sk, long *timeo);
349 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
350 int __user *optlen);
351 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
352 unsigned int optlen);
353
354 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
355 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
356 void tls_sw_strparser_done(struct tls_context *tls_ctx);
357 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
358 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
359 int offset, size_t size, int flags);
360 int tls_sw_sendpage(struct sock *sk, struct page *page,
361 int offset, size_t size, int flags);
362 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
363 void tls_sw_release_resources_tx(struct sock *sk);
364 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
365 void tls_sw_free_resources_rx(struct sock *sk);
366 void tls_sw_release_resources_rx(struct sock *sk);
367 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
368 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
369 int nonblock, int flags, int *addr_len);
370 bool tls_sw_stream_read(const struct sock *sk);
371 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
372 struct pipe_inode_info *pipe,
373 size_t len, unsigned int flags);
374
375 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
376 int tls_device_sendpage(struct sock *sk, struct page *page,
377 int offset, size_t size, int flags);
378 int tls_tx_records(struct sock *sk, int flags);
379
380 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
381 u32 seq, u64 *p_record_sn);
382
tls_record_is_start_marker(struct tls_record_info * rec)383 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
384 {
385 return rec->len == 0;
386 }
387
tls_record_start_seq(struct tls_record_info * rec)388 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
389 {
390 return rec->end_seq - rec->len;
391 }
392
393 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
394 struct scatterlist *sg, u16 first_offset,
395 int flags);
396 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
397 int flags);
398 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
399
tls_msg(struct sk_buff * skb)400 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
401 {
402 return (struct tls_msg *)strp_msg(skb);
403 }
404
tls_is_partially_sent_record(struct tls_context * ctx)405 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
406 {
407 return !!ctx->partially_sent_record;
408 }
409
tls_is_pending_open_record(struct tls_context * tls_ctx)410 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
411 {
412 return tls_ctx->pending_open_record_frags;
413 }
414
is_tx_ready(struct tls_sw_context_tx * ctx)415 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
416 {
417 struct tls_rec *rec;
418
419 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
420 if (!rec)
421 return false;
422
423 return READ_ONCE(rec->tx_ready);
424 }
425
tls_user_config(struct tls_context * ctx,bool tx)426 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
427 {
428 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
429
430 switch (config) {
431 case TLS_BASE:
432 return TLS_CONF_BASE;
433 case TLS_SW:
434 return TLS_CONF_SW;
435 case TLS_HW:
436 return TLS_CONF_HW;
437 case TLS_HW_RECORD:
438 return TLS_CONF_HW_RECORD;
439 }
440 return 0;
441 }
442
443 struct sk_buff *
444 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
445 struct sk_buff *skb);
446
tls_is_sk_tx_device_offloaded(struct sock * sk)447 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
448 {
449 #ifdef CONFIG_SOCK_VALIDATE_XMIT
450 return sk_fullsock(sk) &&
451 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
452 &tls_validate_xmit_skb);
453 #else
454 return false;
455 #endif
456 }
457
tls_err_abort(struct sock * sk,int err)458 static inline void tls_err_abort(struct sock *sk, int err)
459 {
460 sk->sk_err = err;
461 sk->sk_error_report(sk);
462 }
463
tls_bigint_increment(unsigned char * seq,int len)464 static inline bool tls_bigint_increment(unsigned char *seq, int len)
465 {
466 int i;
467
468 for (i = len - 1; i >= 0; i--) {
469 ++seq[i];
470 if (seq[i] != 0)
471 break;
472 }
473
474 return (i == -1);
475 }
476
tls_get_ctx(const struct sock * sk)477 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
478 {
479 struct inet_connection_sock *icsk = inet_csk(sk);
480
481 /* Use RCU on icsk_ulp_data only for sock diag code,
482 * TLS data path doesn't need rcu_dereference().
483 */
484 return (__force void *)icsk->icsk_ulp_data;
485 }
486
tls_advance_record_sn(struct sock * sk,struct tls_prot_info * prot,struct cipher_context * ctx)487 static inline void tls_advance_record_sn(struct sock *sk,
488 struct tls_prot_info *prot,
489 struct cipher_context *ctx)
490 {
491 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
492 tls_err_abort(sk, EBADMSG);
493
494 if (prot->version != TLS_1_3_VERSION)
495 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
496 prot->iv_size);
497 }
498
tls_fill_prepend(struct tls_context * ctx,char * buf,size_t plaintext_len,unsigned char record_type,int version)499 static inline void tls_fill_prepend(struct tls_context *ctx,
500 char *buf,
501 size_t plaintext_len,
502 unsigned char record_type,
503 int version)
504 {
505 struct tls_prot_info *prot = &ctx->prot_info;
506 size_t pkt_len, iv_size = prot->iv_size;
507
508 pkt_len = plaintext_len + prot->tag_size;
509 if (version != TLS_1_3_VERSION) {
510 pkt_len += iv_size;
511
512 memcpy(buf + TLS_NONCE_OFFSET,
513 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
514 }
515
516 /* we cover nonce explicit here as well, so buf should be of
517 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
518 */
519 buf[0] = version == TLS_1_3_VERSION ?
520 TLS_RECORD_TYPE_DATA : record_type;
521 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
522 buf[1] = TLS_1_2_VERSION_MINOR;
523 buf[2] = TLS_1_2_VERSION_MAJOR;
524 /* we can use IV for nonce explicit according to spec */
525 buf[3] = pkt_len >> 8;
526 buf[4] = pkt_len & 0xFF;
527 }
528
tls_make_aad(char * buf,size_t size,char * record_sequence,int record_sequence_size,unsigned char record_type,int version)529 static inline void tls_make_aad(char *buf,
530 size_t size,
531 char *record_sequence,
532 int record_sequence_size,
533 unsigned char record_type,
534 int version)
535 {
536 if (version != TLS_1_3_VERSION) {
537 memcpy(buf, record_sequence, record_sequence_size);
538 buf += 8;
539 } else {
540 size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
541 }
542
543 buf[0] = version == TLS_1_3_VERSION ?
544 TLS_RECORD_TYPE_DATA : record_type;
545 buf[1] = TLS_1_2_VERSION_MAJOR;
546 buf[2] = TLS_1_2_VERSION_MINOR;
547 buf[3] = size >> 8;
548 buf[4] = size & 0xFF;
549 }
550
xor_iv_with_seq(int version,char * iv,char * seq)551 static inline void xor_iv_with_seq(int version, char *iv, char *seq)
552 {
553 int i;
554
555 if (version == TLS_1_3_VERSION) {
556 for (i = 0; i < 8; i++)
557 iv[i + 4] ^= seq[i];
558 }
559 }
560
561
tls_sw_ctx_rx(const struct tls_context * tls_ctx)562 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
563 const struct tls_context *tls_ctx)
564 {
565 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
566 }
567
tls_sw_ctx_tx(const struct tls_context * tls_ctx)568 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
569 const struct tls_context *tls_ctx)
570 {
571 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
572 }
573
574 static inline struct tls_offload_context_tx *
tls_offload_ctx_tx(const struct tls_context * tls_ctx)575 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
576 {
577 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
578 }
579
tls_sw_has_ctx_tx(const struct sock * sk)580 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
581 {
582 struct tls_context *ctx = tls_get_ctx(sk);
583
584 if (!ctx)
585 return false;
586 return !!tls_sw_ctx_tx(ctx);
587 }
588
589 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
590 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
591
592 static inline struct tls_offload_context_rx *
tls_offload_ctx_rx(const struct tls_context * tls_ctx)593 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
594 {
595 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
596 }
597
598 #if IS_ENABLED(CONFIG_TLS_DEVICE)
__tls_driver_ctx(struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)599 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
600 enum tls_offload_ctx_dir direction)
601 {
602 if (direction == TLS_OFFLOAD_CTX_DIR_TX)
603 return tls_offload_ctx_tx(tls_ctx)->driver_state;
604 else
605 return tls_offload_ctx_rx(tls_ctx)->driver_state;
606 }
607
608 static inline void *
tls_driver_ctx(const struct sock * sk,enum tls_offload_ctx_dir direction)609 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
610 {
611 return __tls_driver_ctx(tls_get_ctx(sk), direction);
612 }
613 #endif
614
615 /* The TLS context is valid until sk_destruct is called */
tls_offload_rx_resync_request(struct sock * sk,__be32 seq)616 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
617 {
618 struct tls_context *tls_ctx = tls_get_ctx(sk);
619 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
620
621 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1);
622 }
623
624 static inline void
tls_offload_rx_resync_set_type(struct sock * sk,enum tls_offload_sync_type type)625 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
626 {
627 struct tls_context *tls_ctx = tls_get_ctx(sk);
628
629 tls_offload_ctx_rx(tls_ctx)->resync_type = type;
630 }
631
tls_offload_tx_resync_request(struct sock * sk)632 static inline void tls_offload_tx_resync_request(struct sock *sk)
633 {
634 struct tls_context *tls_ctx = tls_get_ctx(sk);
635
636 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
637 }
638
639 /* Driver's seq tracking has to be disabled until resync succeeded */
tls_offload_tx_resync_pending(struct sock * sk)640 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
641 {
642 struct tls_context *tls_ctx = tls_get_ctx(sk);
643 bool ret;
644
645 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
646 smp_mb__after_atomic();
647 return ret;
648 }
649
650 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
651 unsigned char *record_type);
652 void tls_register_device(struct tls_device *device);
653 void tls_unregister_device(struct tls_device *device);
654 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
655 struct scatterlist *sgout);
656 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
657
658 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
659 struct net_device *dev,
660 struct sk_buff *skb);
661
662 int tls_sw_fallback_init(struct sock *sk,
663 struct tls_offload_context_tx *offload_ctx,
664 struct tls_crypto_info *crypto_info);
665
666 #ifdef CONFIG_TLS_DEVICE
667 void tls_device_init(void);
668 void tls_device_cleanup(void);
669 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
670 void tls_device_free_resources_tx(struct sock *sk);
671 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
672 void tls_device_offload_cleanup_rx(struct sock *sk);
673 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
674 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
675 #else
tls_device_init(void)676 static inline void tls_device_init(void) {}
tls_device_cleanup(void)677 static inline void tls_device_cleanup(void) {}
678
679 static inline int
tls_set_device_offload(struct sock * sk,struct tls_context * ctx)680 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
681 {
682 return -EOPNOTSUPP;
683 }
684
tls_device_free_resources_tx(struct sock * sk)685 static inline void tls_device_free_resources_tx(struct sock *sk) {}
686
687 static inline int
tls_set_device_offload_rx(struct sock * sk,struct tls_context * ctx)688 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
689 {
690 return -EOPNOTSUPP;
691 }
692
tls_device_offload_cleanup_rx(struct sock * sk)693 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
694 static inline void
tls_device_rx_resync_new_rec(struct sock * sk,u32 rcd_len,u32 seq)695 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
696
tls_device_decrypted(struct sock * sk,struct sk_buff * skb)697 static inline int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
698 {
699 return 0;
700 }
701 #endif
702 #endif /* _TLS_OFFLOAD_H */
703