• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *  Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
4  *                        Steven J. Hill <sjhill@realitydiluted.com>
5  *		          Thomas Gleixner <tglx@linutronix.de>
6  *
7  * Info:
8  *	Contains standard defines and IDs for NAND flash devices
9  *
10  * Changelog:
11  *	See git changelog.
12  */
13 #ifndef __LINUX_MTD_RAWNAND_H
14 #define __LINUX_MTD_RAWNAND_H
15 
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/flashchip.h>
18 #include <linux/mtd/bbm.h>
19 #include <linux/mtd/jedec.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/onfi.h>
22 #include <linux/mutex.h>
23 #include <linux/of.h>
24 #include <linux/types.h>
25 
26 struct nand_chip;
27 
28 /* The maximum number of NAND chips in an array */
29 #define NAND_MAX_CHIPS		8
30 
31 /*
32  * Constants for hardware specific CLE/ALE/NCE function
33  *
34  * These are bits which can be or'ed to set/clear multiple
35  * bits in one go.
36  */
37 /* Select the chip by setting nCE to low */
38 #define NAND_NCE		0x01
39 /* Select the command latch by setting CLE to high */
40 #define NAND_CLE		0x02
41 /* Select the address latch by setting ALE to high */
42 #define NAND_ALE		0x04
43 
44 #define NAND_CTRL_CLE		(NAND_NCE | NAND_CLE)
45 #define NAND_CTRL_ALE		(NAND_NCE | NAND_ALE)
46 #define NAND_CTRL_CHANGE	0x80
47 
48 /*
49  * Standard NAND flash commands
50  */
51 #define NAND_CMD_READ0		0
52 #define NAND_CMD_READ1		1
53 #define NAND_CMD_RNDOUT		5
54 #define NAND_CMD_PAGEPROG	0x10
55 #define NAND_CMD_READOOB	0x50
56 #define NAND_CMD_ERASE1		0x60
57 #define NAND_CMD_STATUS		0x70
58 #define NAND_CMD_SEQIN		0x80
59 #define NAND_CMD_RNDIN		0x85
60 #define NAND_CMD_READID		0x90
61 #define NAND_CMD_ERASE2		0xd0
62 #define NAND_CMD_PARAM		0xec
63 #define NAND_CMD_GET_FEATURES	0xee
64 #define NAND_CMD_SET_FEATURES	0xef
65 #define NAND_CMD_RESET		0xff
66 
67 /* Extended commands for large page devices */
68 #define NAND_CMD_READSTART	0x30
69 #define NAND_CMD_RNDOUTSTART	0xE0
70 #define NAND_CMD_CACHEDPROG	0x15
71 
72 #define NAND_CMD_NONE		-1
73 
74 /* Status bits */
75 #define NAND_STATUS_FAIL	0x01
76 #define NAND_STATUS_FAIL_N1	0x02
77 #define NAND_STATUS_TRUE_READY	0x20
78 #define NAND_STATUS_READY	0x40
79 #define NAND_STATUS_WP		0x80
80 
81 #define NAND_DATA_IFACE_CHECK_ONLY	-1
82 
83 /*
84  * Constants for ECC_MODES
85  */
86 typedef enum {
87 	NAND_ECC_NONE,
88 	NAND_ECC_SOFT,
89 	NAND_ECC_HW,
90 	NAND_ECC_HW_SYNDROME,
91 	NAND_ECC_HW_OOB_FIRST,
92 	NAND_ECC_ON_DIE,
93 } nand_ecc_modes_t;
94 
95 enum nand_ecc_algo {
96 	NAND_ECC_UNKNOWN,
97 	NAND_ECC_HAMMING,
98 	NAND_ECC_BCH,
99 	NAND_ECC_RS,
100 };
101 
102 /*
103  * Constants for Hardware ECC
104  */
105 /* Reset Hardware ECC for read */
106 #define NAND_ECC_READ		0
107 /* Reset Hardware ECC for write */
108 #define NAND_ECC_WRITE		1
109 /* Enable Hardware ECC before syndrome is read back from flash */
110 #define NAND_ECC_READSYN	2
111 
112 /*
113  * Enable generic NAND 'page erased' check. This check is only done when
114  * ecc.correct() returns -EBADMSG.
115  * Set this flag if your implementation does not fix bitflips in erased
116  * pages and you want to rely on the default implementation.
117  */
118 #define NAND_ECC_GENERIC_ERASED_CHECK	BIT(0)
119 #define NAND_ECC_MAXIMIZE		BIT(1)
120 
121 /*
122  * When using software implementation of Hamming, we can specify which byte
123  * ordering should be used.
124  */
125 #define NAND_ECC_SOFT_HAMMING_SM_ORDER	BIT(2)
126 
127 /*
128  * Option constants for bizarre disfunctionality and real
129  * features.
130  */
131 /* Buswidth is 16 bit */
132 #define NAND_BUSWIDTH_16	0x00000002
133 /* Chip has cache program function */
134 #define NAND_CACHEPRG		0x00000008
135 /*
136  * Chip requires ready check on read (for auto-incremented sequential read).
137  * True only for small page devices; large page devices do not support
138  * autoincrement.
139  */
140 #define NAND_NEED_READRDY	0x00000100
141 
142 /* Chip does not allow subpage writes */
143 #define NAND_NO_SUBPAGE_WRITE	0x00000200
144 
145 /* Device is one of 'new' xD cards that expose fake nand command set */
146 #define NAND_BROKEN_XD		0x00000400
147 
148 /* Device behaves just like nand, but is readonly */
149 #define NAND_ROM		0x00000800
150 
151 /* Device supports subpage reads */
152 #define NAND_SUBPAGE_READ	0x00001000
153 
154 /*
155  * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
156  * patterns.
157  */
158 #define NAND_NEED_SCRAMBLING	0x00002000
159 
160 /* Device needs 3rd row address cycle */
161 #define NAND_ROW_ADDR_3		0x00004000
162 
163 /* Options valid for Samsung large page devices */
164 #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
165 
166 /* Macros to identify the above */
167 #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
168 
169 /*
170  * There are different places where the manufacturer stores the factory bad
171  * block markers.
172  *
173  * Position within the block: Each of these pages needs to be checked for a
174  * bad block marking pattern.
175  */
176 #define NAND_BBM_FIRSTPAGE		0x01000000
177 #define NAND_BBM_SECONDPAGE		0x02000000
178 #define NAND_BBM_LASTPAGE		0x04000000
179 
180 /* Position within the OOB data of the page */
181 #define NAND_BBM_POS_SMALL		5
182 #define NAND_BBM_POS_LARGE		0
183 
184 /* Non chip related options */
185 /* This option skips the bbt scan during initialization. */
186 #define NAND_SKIP_BBTSCAN	0x00010000
187 /* Chip may not exist, so silence any errors in scan */
188 #define NAND_SCAN_SILENT_NODEV	0x00040000
189 /*
190  * Autodetect nand buswidth with readid/onfi.
191  * This suppose the driver will configure the hardware in 8 bits mode
192  * when calling nand_scan_ident, and update its configuration
193  * before calling nand_scan_tail.
194  */
195 #define NAND_BUSWIDTH_AUTO      0x00080000
196 /*
197  * This option could be defined by controller drivers to protect against
198  * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
199  */
200 #define NAND_USE_BOUNCE_BUFFER	0x00100000
201 
202 /*
203  * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
204  * on the default ->cmdfunc() implementation, you may want to let the core
205  * handle the tCCS delay which is required when a column change (RNDIN or
206  * RNDOUT) is requested.
207  * If your controller already takes care of this delay, you don't need to set
208  * this flag.
209  */
210 #define NAND_WAIT_TCCS		0x00200000
211 
212 /*
213  * Whether the NAND chip is a boot medium. Drivers might use this information
214  * to select ECC algorithms supported by the boot ROM or similar restrictions.
215  */
216 #define NAND_IS_BOOT_MEDIUM	0x00400000
217 
218 /*
219  * Do not try to tweak the timings at runtime. This is needed when the
220  * controller initializes the timings on itself or when it relies on
221  * configuration done by the bootloader.
222  */
223 #define NAND_KEEP_TIMINGS	0x00800000
224 
225 /* Cell info constants */
226 #define NAND_CI_CHIPNR_MSK	0x03
227 #define NAND_CI_CELLTYPE_MSK	0x0C
228 #define NAND_CI_CELLTYPE_SHIFT	2
229 
230 /**
231  * struct nand_parameters - NAND generic parameters from the parameter page
232  * @model: Model name
233  * @supports_set_get_features: The NAND chip supports setting/getting features
234  * @set_feature_list: Bitmap of features that can be set
235  * @get_feature_list: Bitmap of features that can be get
236  * @onfi: ONFI specific parameters
237  */
238 struct nand_parameters {
239 	/* Generic parameters */
240 	const char *model;
241 	bool supports_set_get_features;
242 	DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
243 	DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
244 
245 	/* ONFI parameters */
246 	struct onfi_params *onfi;
247 };
248 
249 /* The maximum expected count of bytes in the NAND ID sequence */
250 #define NAND_MAX_ID_LEN 8
251 
252 /**
253  * struct nand_id - NAND id structure
254  * @data: buffer containing the id bytes.
255  * @len: ID length.
256  */
257 struct nand_id {
258 	u8 data[NAND_MAX_ID_LEN];
259 	int len;
260 };
261 
262 /**
263  * struct nand_ecc_step_info - ECC step information of ECC engine
264  * @stepsize: data bytes per ECC step
265  * @strengths: array of supported strengths
266  * @nstrengths: number of supported strengths
267  */
268 struct nand_ecc_step_info {
269 	int stepsize;
270 	const int *strengths;
271 	int nstrengths;
272 };
273 
274 /**
275  * struct nand_ecc_caps - capability of ECC engine
276  * @stepinfos: array of ECC step information
277  * @nstepinfos: number of ECC step information
278  * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
279  */
280 struct nand_ecc_caps {
281 	const struct nand_ecc_step_info *stepinfos;
282 	int nstepinfos;
283 	int (*calc_ecc_bytes)(int step_size, int strength);
284 };
285 
286 /* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
287 #define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)	\
288 static const int __name##_strengths[] = { __VA_ARGS__ };	\
289 static const struct nand_ecc_step_info __name##_stepinfo = {	\
290 	.stepsize = __step,					\
291 	.strengths = __name##_strengths,			\
292 	.nstrengths = ARRAY_SIZE(__name##_strengths),		\
293 };								\
294 static const struct nand_ecc_caps __name = {			\
295 	.stepinfos = &__name##_stepinfo,			\
296 	.nstepinfos = 1,					\
297 	.calc_ecc_bytes = __calc,				\
298 }
299 
300 /**
301  * struct nand_ecc_ctrl - Control structure for ECC
302  * @mode:	ECC mode
303  * @algo:	ECC algorithm
304  * @steps:	number of ECC steps per page
305  * @size:	data bytes per ECC step
306  * @bytes:	ECC bytes per step
307  * @strength:	max number of correctible bits per ECC step
308  * @total:	total number of ECC bytes per page
309  * @prepad:	padding information for syndrome based ECC generators
310  * @postpad:	padding information for syndrome based ECC generators
311  * @options:	ECC specific options (see NAND_ECC_XXX flags defined above)
312  * @priv:	pointer to private ECC control data
313  * @calc_buf:	buffer for calculated ECC, size is oobsize.
314  * @code_buf:	buffer for ECC read from flash, size is oobsize.
315  * @hwctl:	function to control hardware ECC generator. Must only
316  *		be provided if an hardware ECC is available
317  * @calculate:	function for ECC calculation or readback from ECC hardware
318  * @correct:	function for ECC correction, matching to ECC generator (sw/hw).
319  *		Should return a positive number representing the number of
320  *		corrected bitflips, -EBADMSG if the number of bitflips exceed
321  *		ECC strength, or any other error code if the error is not
322  *		directly related to correction.
323  *		If -EBADMSG is returned the input buffers should be left
324  *		untouched.
325  * @read_page_raw:	function to read a raw page without ECC. This function
326  *			should hide the specific layout used by the ECC
327  *			controller and always return contiguous in-band and
328  *			out-of-band data even if they're not stored
329  *			contiguously on the NAND chip (e.g.
330  *			NAND_ECC_HW_SYNDROME interleaves in-band and
331  *			out-of-band data).
332  * @write_page_raw:	function to write a raw page without ECC. This function
333  *			should hide the specific layout used by the ECC
334  *			controller and consider the passed data as contiguous
335  *			in-band and out-of-band data. ECC controller is
336  *			responsible for doing the appropriate transformations
337  *			to adapt to its specific layout (e.g.
338  *			NAND_ECC_HW_SYNDROME interleaves in-band and
339  *			out-of-band data).
340  * @read_page:	function to read a page according to the ECC generator
341  *		requirements; returns maximum number of bitflips corrected in
342  *		any single ECC step, -EIO hw error
343  * @read_subpage:	function to read parts of the page covered by ECC;
344  *			returns same as read_page()
345  * @write_subpage:	function to write parts of the page covered by ECC.
346  * @write_page:	function to write a page according to the ECC generator
347  *		requirements.
348  * @write_oob_raw:	function to write chip OOB data without ECC
349  * @read_oob_raw:	function to read chip OOB data without ECC
350  * @read_oob:	function to read chip OOB data
351  * @write_oob:	function to write chip OOB data
352  */
353 struct nand_ecc_ctrl {
354 	nand_ecc_modes_t mode;
355 	enum nand_ecc_algo algo;
356 	int steps;
357 	int size;
358 	int bytes;
359 	int total;
360 	int strength;
361 	int prepad;
362 	int postpad;
363 	unsigned int options;
364 	void *priv;
365 	u8 *calc_buf;
366 	u8 *code_buf;
367 	void (*hwctl)(struct nand_chip *chip, int mode);
368 	int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
369 			 uint8_t *ecc_code);
370 	int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
371 		       uint8_t *calc_ecc);
372 	int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
373 			     int oob_required, int page);
374 	int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
375 			      int oob_required, int page);
376 	int (*read_page)(struct nand_chip *chip, uint8_t *buf,
377 			 int oob_required, int page);
378 	int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
379 			    uint32_t len, uint8_t *buf, int page);
380 	int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
381 			     uint32_t data_len, const uint8_t *data_buf,
382 			     int oob_required, int page);
383 	int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
384 			  int oob_required, int page);
385 	int (*write_oob_raw)(struct nand_chip *chip, int page);
386 	int (*read_oob_raw)(struct nand_chip *chip, int page);
387 	int (*read_oob)(struct nand_chip *chip, int page);
388 	int (*write_oob)(struct nand_chip *chip, int page);
389 };
390 
391 /**
392  * struct nand_sdr_timings - SDR NAND chip timings
393  *
394  * This struct defines the timing requirements of a SDR NAND chip.
395  * These information can be found in every NAND datasheets and the timings
396  * meaning are described in the ONFI specifications:
397  * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
398  * Parameters)
399  *
400  * All these timings are expressed in picoseconds.
401  *
402  * @tBERS_max: Block erase time
403  * @tCCS_min: Change column setup time
404  * @tPROG_max: Page program time
405  * @tR_max: Page read time
406  * @tALH_min: ALE hold time
407  * @tADL_min: ALE to data loading time
408  * @tALS_min: ALE setup time
409  * @tAR_min: ALE to RE# delay
410  * @tCEA_max: CE# access time
411  * @tCEH_min: CE# high hold time
412  * @tCH_min:  CE# hold time
413  * @tCHZ_max: CE# high to output hi-Z
414  * @tCLH_min: CLE hold time
415  * @tCLR_min: CLE to RE# delay
416  * @tCLS_min: CLE setup time
417  * @tCOH_min: CE# high to output hold
418  * @tCS_min: CE# setup time
419  * @tDH_min: Data hold time
420  * @tDS_min: Data setup time
421  * @tFEAT_max: Busy time for Set Features and Get Features
422  * @tIR_min: Output hi-Z to RE# low
423  * @tITC_max: Interface and Timing Mode Change time
424  * @tRC_min: RE# cycle time
425  * @tREA_max: RE# access time
426  * @tREH_min: RE# high hold time
427  * @tRHOH_min: RE# high to output hold
428  * @tRHW_min: RE# high to WE# low
429  * @tRHZ_max: RE# high to output hi-Z
430  * @tRLOH_min: RE# low to output hold
431  * @tRP_min: RE# pulse width
432  * @tRR_min: Ready to RE# low (data only)
433  * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
434  *	      rising edge of R/B#.
435  * @tWB_max: WE# high to SR[6] low
436  * @tWC_min: WE# cycle time
437  * @tWH_min: WE# high hold time
438  * @tWHR_min: WE# high to RE# low
439  * @tWP_min: WE# pulse width
440  * @tWW_min: WP# transition to WE# low
441  */
442 struct nand_sdr_timings {
443 	u64 tBERS_max;
444 	u32 tCCS_min;
445 	u64 tPROG_max;
446 	u64 tR_max;
447 	u32 tALH_min;
448 	u32 tADL_min;
449 	u32 tALS_min;
450 	u32 tAR_min;
451 	u32 tCEA_max;
452 	u32 tCEH_min;
453 	u32 tCH_min;
454 	u32 tCHZ_max;
455 	u32 tCLH_min;
456 	u32 tCLR_min;
457 	u32 tCLS_min;
458 	u32 tCOH_min;
459 	u32 tCS_min;
460 	u32 tDH_min;
461 	u32 tDS_min;
462 	u32 tFEAT_max;
463 	u32 tIR_min;
464 	u32 tITC_max;
465 	u32 tRC_min;
466 	u32 tREA_max;
467 	u32 tREH_min;
468 	u32 tRHOH_min;
469 	u32 tRHW_min;
470 	u32 tRHZ_max;
471 	u32 tRLOH_min;
472 	u32 tRP_min;
473 	u32 tRR_min;
474 	u64 tRST_max;
475 	u32 tWB_max;
476 	u32 tWC_min;
477 	u32 tWH_min;
478 	u32 tWHR_min;
479 	u32 tWP_min;
480 	u32 tWW_min;
481 };
482 
483 /**
484  * enum nand_data_interface_type - NAND interface timing type
485  * @NAND_SDR_IFACE:	Single Data Rate interface
486  */
487 enum nand_data_interface_type {
488 	NAND_SDR_IFACE,
489 };
490 
491 /**
492  * struct nand_data_interface - NAND interface timing
493  * @type:	 type of the timing
494  * @timings:	 The timing, type according to @type
495  * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
496  */
497 struct nand_data_interface {
498 	enum nand_data_interface_type type;
499 	union {
500 		struct nand_sdr_timings sdr;
501 	} timings;
502 };
503 
504 /**
505  * nand_get_sdr_timings - get SDR timing from data interface
506  * @conf:	The data interface
507  */
508 static inline const struct nand_sdr_timings *
nand_get_sdr_timings(const struct nand_data_interface * conf)509 nand_get_sdr_timings(const struct nand_data_interface *conf)
510 {
511 	if (conf->type != NAND_SDR_IFACE)
512 		return ERR_PTR(-EINVAL);
513 
514 	return &conf->timings.sdr;
515 }
516 
517 /**
518  * struct nand_op_cmd_instr - Definition of a command instruction
519  * @opcode: the command to issue in one cycle
520  */
521 struct nand_op_cmd_instr {
522 	u8 opcode;
523 };
524 
525 /**
526  * struct nand_op_addr_instr - Definition of an address instruction
527  * @naddrs: length of the @addrs array
528  * @addrs: array containing the address cycles to issue
529  */
530 struct nand_op_addr_instr {
531 	unsigned int naddrs;
532 	const u8 *addrs;
533 };
534 
535 /**
536  * struct nand_op_data_instr - Definition of a data instruction
537  * @len: number of data bytes to move
538  * @buf: buffer to fill
539  * @buf.in: buffer to fill when reading from the NAND chip
540  * @buf.out: buffer to read from when writing to the NAND chip
541  * @force_8bit: force 8-bit access
542  *
543  * Please note that "in" and "out" are inverted from the ONFI specification
544  * and are from the controller perspective, so a "in" is a read from the NAND
545  * chip while a "out" is a write to the NAND chip.
546  */
547 struct nand_op_data_instr {
548 	unsigned int len;
549 	union {
550 		void *in;
551 		const void *out;
552 	} buf;
553 	bool force_8bit;
554 };
555 
556 /**
557  * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
558  * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
559  */
560 struct nand_op_waitrdy_instr {
561 	unsigned int timeout_ms;
562 };
563 
564 /**
565  * enum nand_op_instr_type - Definition of all instruction types
566  * @NAND_OP_CMD_INSTR: command instruction
567  * @NAND_OP_ADDR_INSTR: address instruction
568  * @NAND_OP_DATA_IN_INSTR: data in instruction
569  * @NAND_OP_DATA_OUT_INSTR: data out instruction
570  * @NAND_OP_WAITRDY_INSTR: wait ready instruction
571  */
572 enum nand_op_instr_type {
573 	NAND_OP_CMD_INSTR,
574 	NAND_OP_ADDR_INSTR,
575 	NAND_OP_DATA_IN_INSTR,
576 	NAND_OP_DATA_OUT_INSTR,
577 	NAND_OP_WAITRDY_INSTR,
578 };
579 
580 /**
581  * struct nand_op_instr - Instruction object
582  * @type: the instruction type
583  * @ctx:  extra data associated to the instruction. You'll have to use the
584  *        appropriate element depending on @type
585  * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
586  * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
587  * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
588  *	      or %NAND_OP_DATA_OUT_INSTR
589  * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
590  * @delay_ns: delay the controller should apply after the instruction has been
591  *	      issued on the bus. Most modern controllers have internal timings
592  *	      control logic, and in this case, the controller driver can ignore
593  *	      this field.
594  */
595 struct nand_op_instr {
596 	enum nand_op_instr_type type;
597 	union {
598 		struct nand_op_cmd_instr cmd;
599 		struct nand_op_addr_instr addr;
600 		struct nand_op_data_instr data;
601 		struct nand_op_waitrdy_instr waitrdy;
602 	} ctx;
603 	unsigned int delay_ns;
604 };
605 
606 /*
607  * Special handling must be done for the WAITRDY timeout parameter as it usually
608  * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
609  * tBERS (during an erase) which all of them are u64 values that cannot be
610  * divided by usual kernel macros and must be handled with the special
611  * DIV_ROUND_UP_ULL() macro.
612  *
613  * Cast to type of dividend is needed here to guarantee that the result won't
614  * be an unsigned long long when the dividend is an unsigned long (or smaller),
615  * which is what the compiler does when it sees ternary operator with 2
616  * different return types (picks the largest type to make sure there's no
617  * loss).
618  */
619 #define __DIVIDE(dividend, divisor) ({						\
620 	(__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ?	\
621 			       DIV_ROUND_UP(dividend, divisor) :		\
622 			       DIV_ROUND_UP_ULL(dividend, divisor)); 		\
623 	})
624 #define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
625 #define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
626 
627 #define NAND_OP_CMD(id, ns)						\
628 	{								\
629 		.type = NAND_OP_CMD_INSTR,				\
630 		.ctx.cmd.opcode = id,					\
631 		.delay_ns = ns,						\
632 	}
633 
634 #define NAND_OP_ADDR(ncycles, cycles, ns)				\
635 	{								\
636 		.type = NAND_OP_ADDR_INSTR,				\
637 		.ctx.addr = {						\
638 			.naddrs = ncycles,				\
639 			.addrs = cycles,				\
640 		},							\
641 		.delay_ns = ns,						\
642 	}
643 
644 #define NAND_OP_DATA_IN(l, b, ns)					\
645 	{								\
646 		.type = NAND_OP_DATA_IN_INSTR,				\
647 		.ctx.data = {						\
648 			.len = l,					\
649 			.buf.in = b,					\
650 			.force_8bit = false,				\
651 		},							\
652 		.delay_ns = ns,						\
653 	}
654 
655 #define NAND_OP_DATA_OUT(l, b, ns)					\
656 	{								\
657 		.type = NAND_OP_DATA_OUT_INSTR,				\
658 		.ctx.data = {						\
659 			.len = l,					\
660 			.buf.out = b,					\
661 			.force_8bit = false,				\
662 		},							\
663 		.delay_ns = ns,						\
664 	}
665 
666 #define NAND_OP_8BIT_DATA_IN(l, b, ns)					\
667 	{								\
668 		.type = NAND_OP_DATA_IN_INSTR,				\
669 		.ctx.data = {						\
670 			.len = l,					\
671 			.buf.in = b,					\
672 			.force_8bit = true,				\
673 		},							\
674 		.delay_ns = ns,						\
675 	}
676 
677 #define NAND_OP_8BIT_DATA_OUT(l, b, ns)					\
678 	{								\
679 		.type = NAND_OP_DATA_OUT_INSTR,				\
680 		.ctx.data = {						\
681 			.len = l,					\
682 			.buf.out = b,					\
683 			.force_8bit = true,				\
684 		},							\
685 		.delay_ns = ns,						\
686 	}
687 
688 #define NAND_OP_WAIT_RDY(tout_ms, ns)					\
689 	{								\
690 		.type = NAND_OP_WAITRDY_INSTR,				\
691 		.ctx.waitrdy.timeout_ms = tout_ms,			\
692 		.delay_ns = ns,						\
693 	}
694 
695 /**
696  * struct nand_subop - a sub operation
697  * @instrs: array of instructions
698  * @ninstrs: length of the @instrs array
699  * @first_instr_start_off: offset to start from for the first instruction
700  *			   of the sub-operation
701  * @last_instr_end_off: offset to end at (excluded) for the last instruction
702  *			of the sub-operation
703  *
704  * Both @first_instr_start_off and @last_instr_end_off only apply to data or
705  * address instructions.
706  *
707  * When an operation cannot be handled as is by the NAND controller, it will
708  * be split by the parser into sub-operations which will be passed to the
709  * controller driver.
710  */
711 struct nand_subop {
712 	const struct nand_op_instr *instrs;
713 	unsigned int ninstrs;
714 	unsigned int first_instr_start_off;
715 	unsigned int last_instr_end_off;
716 };
717 
718 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
719 					   unsigned int op_id);
720 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
721 					 unsigned int op_id);
722 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
723 					   unsigned int op_id);
724 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
725 				     unsigned int op_id);
726 
727 /**
728  * struct nand_op_parser_addr_constraints - Constraints for address instructions
729  * @maxcycles: maximum number of address cycles the controller can issue in a
730  *	       single step
731  */
732 struct nand_op_parser_addr_constraints {
733 	unsigned int maxcycles;
734 };
735 
736 /**
737  * struct nand_op_parser_data_constraints - Constraints for data instructions
738  * @maxlen: maximum data length that the controller can handle in a single step
739  */
740 struct nand_op_parser_data_constraints {
741 	unsigned int maxlen;
742 };
743 
744 /**
745  * struct nand_op_parser_pattern_elem - One element of a pattern
746  * @type: the instructuction type
747  * @optional: whether this element of the pattern is optional or mandatory
748  * @ctx: address or data constraint
749  * @ctx.addr: address constraint (number of cycles)
750  * @ctx.data: data constraint (data length)
751  */
752 struct nand_op_parser_pattern_elem {
753 	enum nand_op_instr_type type;
754 	bool optional;
755 	union {
756 		struct nand_op_parser_addr_constraints addr;
757 		struct nand_op_parser_data_constraints data;
758 	} ctx;
759 };
760 
761 #define NAND_OP_PARSER_PAT_CMD_ELEM(_opt)			\
762 	{							\
763 		.type = NAND_OP_CMD_INSTR,			\
764 		.optional = _opt,				\
765 	}
766 
767 #define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles)		\
768 	{							\
769 		.type = NAND_OP_ADDR_INSTR,			\
770 		.optional = _opt,				\
771 		.ctx.addr.maxcycles = _maxcycles,		\
772 	}
773 
774 #define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen)		\
775 	{							\
776 		.type = NAND_OP_DATA_IN_INSTR,			\
777 		.optional = _opt,				\
778 		.ctx.data.maxlen = _maxlen,			\
779 	}
780 
781 #define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen)		\
782 	{							\
783 		.type = NAND_OP_DATA_OUT_INSTR,			\
784 		.optional = _opt,				\
785 		.ctx.data.maxlen = _maxlen,			\
786 	}
787 
788 #define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt)			\
789 	{							\
790 		.type = NAND_OP_WAITRDY_INSTR,			\
791 		.optional = _opt,				\
792 	}
793 
794 /**
795  * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
796  * @elems: array of pattern elements
797  * @nelems: number of pattern elements in @elems array
798  * @exec: the function that will issue a sub-operation
799  *
800  * A pattern is a list of elements, each element reprensenting one instruction
801  * with its constraints. The pattern itself is used by the core to match NAND
802  * chip operation with NAND controller operations.
803  * Once a match between a NAND controller operation pattern and a NAND chip
804  * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
805  * hook is called so that the controller driver can issue the operation on the
806  * bus.
807  *
808  * Controller drivers should declare as many patterns as they support and pass
809  * this list of patterns (created with the help of the following macro) to
810  * the nand_op_parser_exec_op() helper.
811  */
812 struct nand_op_parser_pattern {
813 	const struct nand_op_parser_pattern_elem *elems;
814 	unsigned int nelems;
815 	int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
816 };
817 
818 #define NAND_OP_PARSER_PATTERN(_exec, ...)							\
819 	{											\
820 		.exec = _exec,									\
821 		.elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ },		\
822 		.nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) /	\
823 			  sizeof(struct nand_op_parser_pattern_elem),				\
824 	}
825 
826 /**
827  * struct nand_op_parser - NAND controller operation parser descriptor
828  * @patterns: array of supported patterns
829  * @npatterns: length of the @patterns array
830  *
831  * The parser descriptor is just an array of supported patterns which will be
832  * iterated by nand_op_parser_exec_op() everytime it tries to execute an
833  * NAND operation (or tries to determine if a specific operation is supported).
834  *
835  * It is worth mentioning that patterns will be tested in their declaration
836  * order, and the first match will be taken, so it's important to order patterns
837  * appropriately so that simple/inefficient patterns are placed at the end of
838  * the list. Usually, this is where you put single instruction patterns.
839  */
840 struct nand_op_parser {
841 	const struct nand_op_parser_pattern *patterns;
842 	unsigned int npatterns;
843 };
844 
845 #define NAND_OP_PARSER(...)									\
846 	{											\
847 		.patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ },		\
848 		.npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) /	\
849 			     sizeof(struct nand_op_parser_pattern),				\
850 	}
851 
852 /**
853  * struct nand_operation - NAND operation descriptor
854  * @cs: the CS line to select for this NAND operation
855  * @instrs: array of instructions to execute
856  * @ninstrs: length of the @instrs array
857  *
858  * The actual operation structure that will be passed to chip->exec_op().
859  */
860 struct nand_operation {
861 	unsigned int cs;
862 	const struct nand_op_instr *instrs;
863 	unsigned int ninstrs;
864 };
865 
866 #define NAND_OPERATION(_cs, _instrs)				\
867 	{							\
868 		.cs = _cs,					\
869 		.instrs = _instrs,				\
870 		.ninstrs = ARRAY_SIZE(_instrs),			\
871 	}
872 
873 int nand_op_parser_exec_op(struct nand_chip *chip,
874 			   const struct nand_op_parser *parser,
875 			   const struct nand_operation *op, bool check_only);
876 
nand_op_trace(const char * prefix,const struct nand_op_instr * instr)877 static inline void nand_op_trace(const char *prefix,
878 				 const struct nand_op_instr *instr)
879 {
880 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
881 	switch (instr->type) {
882 	case NAND_OP_CMD_INSTR:
883 		pr_debug("%sCMD      [0x%02x]\n", prefix,
884 			 instr->ctx.cmd.opcode);
885 		break;
886 	case NAND_OP_ADDR_INSTR:
887 		pr_debug("%sADDR     [%d cyc: %*ph]\n", prefix,
888 			 instr->ctx.addr.naddrs,
889 			 instr->ctx.addr.naddrs < 64 ?
890 			 instr->ctx.addr.naddrs : 64,
891 			 instr->ctx.addr.addrs);
892 		break;
893 	case NAND_OP_DATA_IN_INSTR:
894 		pr_debug("%sDATA_IN  [%d B%s]\n", prefix,
895 			 instr->ctx.data.len,
896 			 instr->ctx.data.force_8bit ?
897 			 ", force 8-bit" : "");
898 		break;
899 	case NAND_OP_DATA_OUT_INSTR:
900 		pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
901 			 instr->ctx.data.len,
902 			 instr->ctx.data.force_8bit ?
903 			 ", force 8-bit" : "");
904 		break;
905 	case NAND_OP_WAITRDY_INSTR:
906 		pr_debug("%sWAITRDY  [max %d ms]\n", prefix,
907 			 instr->ctx.waitrdy.timeout_ms);
908 		break;
909 	}
910 #endif
911 }
912 
913 /**
914  * struct nand_controller_ops - Controller operations
915  *
916  * @attach_chip: this method is called after the NAND detection phase after
917  *		 flash ID and MTD fields such as erase size, page size and OOB
918  *		 size have been set up. ECC requirements are available if
919  *		 provided by the NAND chip or device tree. Typically used to
920  *		 choose the appropriate ECC configuration and allocate
921  *		 associated resources.
922  *		 This hook is optional.
923  * @detach_chip: free all resources allocated/claimed in
924  *		 nand_controller_ops->attach_chip().
925  *		 This hook is optional.
926  * @exec_op:	 controller specific method to execute NAND operations.
927  *		 This method replaces chip->legacy.cmdfunc(),
928  *		 chip->legacy.{read,write}_{buf,byte,word}(),
929  *		 chip->legacy.dev_ready() and chip->legacy.waifunc().
930  * @setup_data_interface: setup the data interface and timing. If
931  *			  chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this
932  *			  means the configuration should not be applied but
933  *			  only checked.
934  *			  This hook is optional.
935  */
936 struct nand_controller_ops {
937 	int (*attach_chip)(struct nand_chip *chip);
938 	void (*detach_chip)(struct nand_chip *chip);
939 	int (*exec_op)(struct nand_chip *chip,
940 		       const struct nand_operation *op,
941 		       bool check_only);
942 	int (*setup_data_interface)(struct nand_chip *chip, int chipnr,
943 				    const struct nand_data_interface *conf);
944 };
945 
946 /**
947  * struct nand_controller - Structure used to describe a NAND controller
948  *
949  * @lock:		lock used to serialize accesses to the NAND controller
950  * @ops:		NAND controller operations.
951  */
952 struct nand_controller {
953 	struct mutex lock;
954 	const struct nand_controller_ops *ops;
955 };
956 
nand_controller_init(struct nand_controller * nfc)957 static inline void nand_controller_init(struct nand_controller *nfc)
958 {
959 	mutex_init(&nfc->lock);
960 }
961 
962 /**
963  * struct nand_legacy - NAND chip legacy fields/hooks
964  * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
965  * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
966  * @select_chip: select/deselect a specific target/die
967  * @read_byte: read one byte from the chip
968  * @write_byte: write a single byte to the chip on the low 8 I/O lines
969  * @write_buf: write data from the buffer to the chip
970  * @read_buf: read data from the chip into the buffer
971  * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
972  *	      to write command and address
973  * @cmdfunc: hardware specific function for writing commands to the chip.
974  * @dev_ready: hardware specific function for accessing device ready/busy line.
975  *	       If set to NULL no access to ready/busy is available and the
976  *	       ready/busy information is read from the chip status register.
977  * @waitfunc: hardware specific function for wait on ready.
978  * @block_bad: check if a block is bad, using OOB markers
979  * @block_markbad: mark a block bad
980  * @set_features: set the NAND chip features
981  * @get_features: get the NAND chip features
982  * @chip_delay: chip dependent delay for transferring data from array to read
983  *		regs (tR).
984  * @dummy_controller: dummy controller implementation for drivers that can
985  *		      only control a single chip
986  *
987  * If you look at this structure you're already wrong. These fields/hooks are
988  * all deprecated.
989  */
990 struct nand_legacy {
991 	void __iomem *IO_ADDR_R;
992 	void __iomem *IO_ADDR_W;
993 	void (*select_chip)(struct nand_chip *chip, int cs);
994 	u8 (*read_byte)(struct nand_chip *chip);
995 	void (*write_byte)(struct nand_chip *chip, u8 byte);
996 	void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
997 	void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
998 	void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
999 	void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,
1000 			int page_addr);
1001 	int (*dev_ready)(struct nand_chip *chip);
1002 	int (*waitfunc)(struct nand_chip *chip);
1003 	int (*block_bad)(struct nand_chip *chip, loff_t ofs);
1004 	int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
1005 	int (*set_features)(struct nand_chip *chip, int feature_addr,
1006 			    u8 *subfeature_para);
1007 	int (*get_features)(struct nand_chip *chip, int feature_addr,
1008 			    u8 *subfeature_para);
1009 	int chip_delay;
1010 	struct nand_controller dummy_controller;
1011 };
1012 
1013 /**
1014  * struct nand_chip - NAND Private Flash Chip Data
1015  * @base:		Inherit from the generic NAND device
1016  * @legacy:		All legacy fields/hooks. If you develop a new driver,
1017  *			don't even try to use any of these fields/hooks, and if
1018  *			you're modifying an existing driver that is using those
1019  *			fields/hooks, you should consider reworking the driver
1020  *			avoid using them.
1021  * @setup_read_retry:	[FLASHSPECIFIC] flash (vendor) specific function for
1022  *			setting the read-retry mode. Mostly needed for MLC NAND.
1023  * @ecc:		[BOARDSPECIFIC] ECC control structure
1024  * @buf_align:		minimum buffer alignment required by a platform
1025  * @oob_poi:		"poison value buffer," used for laying out OOB data
1026  *			before writing
1027  * @page_shift:		[INTERN] number of address bits in a page (column
1028  *			address bits).
1029  * @phys_erase_shift:	[INTERN] number of address bits in a physical eraseblock
1030  * @bbt_erase_shift:	[INTERN] number of address bits in a bbt entry
1031  * @chip_shift:		[INTERN] number of address bits in one chip
1032  * @options:		[BOARDSPECIFIC] various chip options. They can partly
1033  *			be set to inform nand_scan about special functionality.
1034  *			See the defines for further explanation.
1035  * @bbt_options:	[INTERN] bad block specific options. All options used
1036  *			here must come from bbm.h. By default, these options
1037  *			will be copied to the appropriate nand_bbt_descr's.
1038  * @badblockpos:	[INTERN] position of the bad block marker in the oob
1039  *			area.
1040  * @badblockbits:	[INTERN] minimum number of set bits in a good block's
1041  *			bad block marker position; i.e., BBM == 11110111b is
1042  *			not bad when badblockbits == 7
1043  * @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is
1044  *			      set to the actually used ONFI mode if the chip is
1045  *			      ONFI compliant or deduced from the datasheet if
1046  *			      the NAND chip is not ONFI compliant.
1047  * @pagemask:		[INTERN] page number mask = number of (pages / chip) - 1
1048  * @data_buf:		[INTERN] buffer for data, size is (page size + oobsize).
1049  * @pagecache:		Structure containing page cache related fields
1050  * @pagecache.bitflips:	Number of bitflips of the cached page
1051  * @pagecache.page:	Page number currently in the cache. -1 means no page is
1052  *			currently cached
1053  * @subpagesize:	[INTERN] holds the subpagesize
1054  * @id:			[INTERN] holds NAND ID
1055  * @parameters:		[INTERN] holds generic parameters under an easily
1056  *			readable form.
1057  * @data_interface:	[INTERN] NAND interface timing information
1058  * @cur_cs:		currently selected target. -1 means no target selected,
1059  *			otherwise we should always have cur_cs >= 0 &&
1060  *			cur_cs < nanddev_ntargets(). NAND Controller drivers
1061  *			should not modify this value, but they're allowed to
1062  *			read it.
1063  * @read_retries:	[INTERN] the number of read retry modes supported
1064  * @lock:		lock protecting the suspended field. Also used to
1065  *			serialize accesses to the NAND device.
1066  * @suspended:		set to 1 when the device is suspended, 0 when it's not.
1067  * @bbt:		[INTERN] bad block table pointer
1068  * @bbt_td:		[REPLACEABLE] bad block table descriptor for flash
1069  *			lookup.
1070  * @bbt_md:		[REPLACEABLE] bad block table mirror descriptor
1071  * @badblock_pattern:	[REPLACEABLE] bad block scan pattern used for initial
1072  *			bad block scan.
1073  * @controller:		[REPLACEABLE] a pointer to a hardware controller
1074  *			structure which is shared among multiple independent
1075  *			devices.
1076  * @priv:		[OPTIONAL] pointer to private chip data
1077  * @manufacturer:	[INTERN] Contains manufacturer information
1078  * @manufacturer.desc:	[INTERN] Contains manufacturer's description
1079  * @manufacturer.priv:	[INTERN] Contains manufacturer private information
1080  */
1081 
1082 struct nand_chip {
1083 	struct nand_device base;
1084 
1085 	struct nand_legacy legacy;
1086 
1087 	int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
1088 
1089 	unsigned int options;
1090 	unsigned int bbt_options;
1091 
1092 	int page_shift;
1093 	int phys_erase_shift;
1094 	int bbt_erase_shift;
1095 	int chip_shift;
1096 	int pagemask;
1097 	u8 *data_buf;
1098 
1099 	struct {
1100 		unsigned int bitflips;
1101 		int page;
1102 	} pagecache;
1103 
1104 	int subpagesize;
1105 	int onfi_timing_mode_default;
1106 	unsigned int badblockpos;
1107 	int badblockbits;
1108 
1109 	struct nand_id id;
1110 	struct nand_parameters parameters;
1111 
1112 	struct nand_data_interface data_interface;
1113 
1114 	int cur_cs;
1115 
1116 	int read_retries;
1117 
1118 	struct mutex lock;
1119 	unsigned int suspended : 1;
1120 
1121 	uint8_t *oob_poi;
1122 	struct nand_controller *controller;
1123 
1124 	struct nand_ecc_ctrl ecc;
1125 	unsigned long buf_align;
1126 
1127 	uint8_t *bbt;
1128 	struct nand_bbt_descr *bbt_td;
1129 	struct nand_bbt_descr *bbt_md;
1130 
1131 	struct nand_bbt_descr *badblock_pattern;
1132 
1133 	void *priv;
1134 
1135 	struct {
1136 		const struct nand_manufacturer *desc;
1137 		void *priv;
1138 	} manufacturer;
1139 };
1140 
1141 extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops;
1142 extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops;
1143 
mtd_to_nand(struct mtd_info * mtd)1144 static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
1145 {
1146 	return container_of(mtd, struct nand_chip, base.mtd);
1147 }
1148 
nand_to_mtd(struct nand_chip * chip)1149 static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
1150 {
1151 	return &chip->base.mtd;
1152 }
1153 
nand_get_controller_data(struct nand_chip * chip)1154 static inline void *nand_get_controller_data(struct nand_chip *chip)
1155 {
1156 	return chip->priv;
1157 }
1158 
nand_set_controller_data(struct nand_chip * chip,void * priv)1159 static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
1160 {
1161 	chip->priv = priv;
1162 }
1163 
nand_set_manufacturer_data(struct nand_chip * chip,void * priv)1164 static inline void nand_set_manufacturer_data(struct nand_chip *chip,
1165 					      void *priv)
1166 {
1167 	chip->manufacturer.priv = priv;
1168 }
1169 
nand_get_manufacturer_data(struct nand_chip * chip)1170 static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
1171 {
1172 	return chip->manufacturer.priv;
1173 }
1174 
nand_set_flash_node(struct nand_chip * chip,struct device_node * np)1175 static inline void nand_set_flash_node(struct nand_chip *chip,
1176 				       struct device_node *np)
1177 {
1178 	mtd_set_of_node(nand_to_mtd(chip), np);
1179 }
1180 
nand_get_flash_node(struct nand_chip * chip)1181 static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
1182 {
1183 	return mtd_get_of_node(nand_to_mtd(chip));
1184 }
1185 
1186 /*
1187  * A helper for defining older NAND chips where the second ID byte fully
1188  * defined the chip, including the geometry (chip size, eraseblock size, page
1189  * size). All these chips have 512 bytes NAND page size.
1190  */
1191 #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts)          \
1192 	{ .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
1193 	  .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1194 
1195 /*
1196  * A helper for defining newer chips which report their page size and
1197  * eraseblock size via the extended ID bytes.
1198  *
1199  * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
1200  * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
1201  * device ID now only represented a particular total chip size (and voltage,
1202  * buswidth), and the page size, eraseblock size, and OOB size could vary while
1203  * using the same device ID.
1204  */
1205 #define EXTENDED_ID_NAND(nm, devid, chipsz, opts)                      \
1206 	{ .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1207 	  .options = (opts) }
1208 
1209 #define NAND_ECC_INFO(_strength, _step)	\
1210 			{ .strength_ds = (_strength), .step_ds = (_step) }
1211 #define NAND_ECC_STRENGTH(type)		((type)->ecc.strength_ds)
1212 #define NAND_ECC_STEP(type)		((type)->ecc.step_ds)
1213 
1214 /**
1215  * struct nand_flash_dev - NAND Flash Device ID Structure
1216  * @name: a human-readable name of the NAND chip
1217  * @dev_id: the device ID (the second byte of the full chip ID array)
1218  * @mfr_id: manufecturer ID part of the full chip ID array (refers the same
1219  *          memory address as ``id[0]``)
1220  * @dev_id: device ID part of the full chip ID array (refers the same memory
1221  *          address as ``id[1]``)
1222  * @id: full device ID array
1223  * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
1224  *            well as the eraseblock size) is determined from the extended NAND
1225  *            chip ID array)
1226  * @chipsize: total chip size in MiB
1227  * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1228  * @options: stores various chip bit options
1229  * @id_len: The valid length of the @id.
1230  * @oobsize: OOB size
1231  * @ecc: ECC correctability and step information from the datasheet.
1232  * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
1233  *                   @ecc_strength_ds in nand_chip{}.
1234  * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
1235  *               @ecc_step_ds in nand_chip{}, also from the datasheet.
1236  *               For example, the "4bit ECC for each 512Byte" can be set with
1237  *               NAND_ECC_INFO(4, 512).
1238  * @onfi_timing_mode_default: the default ONFI timing mode entered after a NAND
1239  *			      reset. Should be deduced from timings described
1240  *			      in the datasheet.
1241  *
1242  */
1243 struct nand_flash_dev {
1244 	char *name;
1245 	union {
1246 		struct {
1247 			uint8_t mfr_id;
1248 			uint8_t dev_id;
1249 		};
1250 		uint8_t id[NAND_MAX_ID_LEN];
1251 	};
1252 	unsigned int pagesize;
1253 	unsigned int chipsize;
1254 	unsigned int erasesize;
1255 	unsigned int options;
1256 	uint16_t id_len;
1257 	uint16_t oobsize;
1258 	struct {
1259 		uint16_t strength_ds;
1260 		uint16_t step_ds;
1261 	} ecc;
1262 	int onfi_timing_mode_default;
1263 };
1264 
1265 int nand_create_bbt(struct nand_chip *chip);
1266 
1267 /*
1268  * Check if it is a SLC nand.
1269  * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
1270  * We do not distinguish the MLC and TLC now.
1271  */
nand_is_slc(struct nand_chip * chip)1272 static inline bool nand_is_slc(struct nand_chip *chip)
1273 {
1274 	WARN(nanddev_bits_per_cell(&chip->base) == 0,
1275 	     "chip->bits_per_cell is used uninitialized\n");
1276 	return nanddev_bits_per_cell(&chip->base) == 1;
1277 }
1278 
1279 /**
1280  * Check if the opcode's address should be sent only on the lower 8 bits
1281  * @command: opcode to check
1282  */
nand_opcode_8bits(unsigned int command)1283 static inline int nand_opcode_8bits(unsigned int command)
1284 {
1285 	switch (command) {
1286 	case NAND_CMD_READID:
1287 	case NAND_CMD_PARAM:
1288 	case NAND_CMD_GET_FEATURES:
1289 	case NAND_CMD_SET_FEATURES:
1290 		return 1;
1291 	default:
1292 		break;
1293 	}
1294 	return 0;
1295 }
1296 
1297 int nand_check_erased_ecc_chunk(void *data, int datalen,
1298 				void *ecc, int ecclen,
1299 				void *extraoob, int extraooblen,
1300 				int threshold);
1301 
1302 int nand_ecc_choose_conf(struct nand_chip *chip,
1303 			 const struct nand_ecc_caps *caps, int oobavail);
1304 
1305 /* Default write_oob implementation */
1306 int nand_write_oob_std(struct nand_chip *chip, int page);
1307 
1308 /* Default read_oob implementation */
1309 int nand_read_oob_std(struct nand_chip *chip, int page);
1310 
1311 /* Stub used by drivers that do not support GET/SET FEATURES operations */
1312 int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
1313 				  u8 *subfeature_param);
1314 
1315 /* Default read_page_raw implementation */
1316 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
1317 		       int page);
1318 
1319 /* Default write_page_raw implementation */
1320 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1321 			int oob_required, int page);
1322 
1323 /* Reset and initialize a NAND device */
1324 int nand_reset(struct nand_chip *chip, int chipnr);
1325 
1326 /* NAND operation helpers */
1327 int nand_reset_op(struct nand_chip *chip);
1328 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1329 		   unsigned int len);
1330 int nand_status_op(struct nand_chip *chip, u8 *status);
1331 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
1332 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1333 		      unsigned int offset_in_page, void *buf, unsigned int len);
1334 int nand_change_read_column_op(struct nand_chip *chip,
1335 			       unsigned int offset_in_page, void *buf,
1336 			       unsigned int len, bool force_8bit);
1337 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1338 		     unsigned int offset_in_page, void *buf, unsigned int len);
1339 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1340 			    unsigned int offset_in_page, const void *buf,
1341 			    unsigned int len);
1342 int nand_prog_page_end_op(struct nand_chip *chip);
1343 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1344 		      unsigned int offset_in_page, const void *buf,
1345 		      unsigned int len);
1346 int nand_change_write_column_op(struct nand_chip *chip,
1347 				unsigned int offset_in_page, const void *buf,
1348 				unsigned int len, bool force_8bit);
1349 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1350 		      bool force_8bit);
1351 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1352 		       unsigned int len, bool force_8bit);
1353 
1354 /* Scan and identify a NAND device */
1355 int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
1356 		       struct nand_flash_dev *ids);
1357 
nand_scan(struct nand_chip * chip,unsigned int max_chips)1358 static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
1359 {
1360 	return nand_scan_with_ids(chip, max_chips, NULL);
1361 }
1362 
1363 /* Internal helper for board drivers which need to override command function */
1364 void nand_wait_ready(struct nand_chip *chip);
1365 
1366 /*
1367  * Free resources held by the NAND device, must be called on error after a
1368  * sucessful nand_scan().
1369  */
1370 void nand_cleanup(struct nand_chip *chip);
1371 /* Unregister the MTD device and calls nand_cleanup() */
1372 void nand_release(struct nand_chip *chip);
1373 
1374 /*
1375  * External helper for controller drivers that have to implement the WAITRDY
1376  * instruction and have no physical pin to check it.
1377  */
1378 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1379 struct gpio_desc;
1380 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
1381 		      unsigned long timeout_ms);
1382 
1383 /* Select/deselect a NAND target. */
1384 void nand_select_target(struct nand_chip *chip, unsigned int cs);
1385 void nand_deselect_target(struct nand_chip *chip);
1386 
1387 /**
1388  * nand_get_data_buf() - Get the internal page buffer
1389  * @chip: NAND chip object
1390  *
1391  * Returns the pre-allocated page buffer after invalidating the cache. This
1392  * function should be used by drivers that do not want to allocate their own
1393  * bounce buffer and still need such a buffer for specific operations (most
1394  * commonly when reading OOB data only).
1395  *
1396  * Be careful to never call this function in the write/write_oob path, because
1397  * the core may have placed the data to be written out in this buffer.
1398  *
1399  * Return: pointer to the page cache buffer
1400  */
nand_get_data_buf(struct nand_chip * chip)1401 static inline void *nand_get_data_buf(struct nand_chip *chip)
1402 {
1403 	chip->pagecache.page = -1;
1404 
1405 	return chip->data_buf;
1406 }
1407 
1408 #endif /* __LINUX_MTD_RAWNAND_H */
1409