1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14 #ifndef _TCP_H
15 #define _TCP_H
16
17 #define FASTRETRANS_DEBUG 1
18
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/cryptohash.h>
27 #include <linux/kref.h>
28 #include <linux/ktime.h>
29
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42
43 #include <linux/seq_file.h>
44 #include <linux/memcontrol.h>
45 #include <linux/bpf-cgroup.h>
46 #include <linux/siphash.h>
47
48 extern struct inet_hashinfo tcp_hashinfo;
49
50 extern struct percpu_counter tcp_orphan_count;
51 void tcp_time_wait(struct sock *sk, int state, int timeo);
52
53 #define MAX_TCP_HEADER (128 + MAX_HEADER)
54 #define MAX_TCP_OPTION_SPACE 40
55 #define TCP_MIN_SND_MSS 48
56 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
57
58 /*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62 #define MAX_TCP_WINDOW 32767U
63
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS 88U
66
67 /* The initial MTU to use for probing */
68 #define TCP_BASE_MSS 1024
69
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL 600
72
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD 8
75
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS 16U
81
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE 14U
84
85 /* urg_data states */
86 #define TCP_URG_VALID 0x0100
87 #define TCP_URG_NOTYET 0x0200
88 #define TCP_URG_READ 0x0400
89
90 #define TCP_RETR1 3 /*
91 * This is how many retries it does before it
92 * tries to figure out if the gateway is
93 * down. Minimal RFC value is 3; it corresponds
94 * to ~3sec-8min depending on RTO.
95 */
96
97 #define TCP_RETR2 15 /*
98 * This should take at least
99 * 90 minutes to time out.
100 * RFC1122 says that the limit is 100 sec.
101 * 15 is ~13-30min depending on RTO.
102 */
103
104 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
105 * when active opening a connection.
106 * RFC1122 says the minimum retry MUST
107 * be at least 180secs. Nevertheless
108 * this value is corresponding to
109 * 63secs of retransmission with the
110 * current initial RTO.
111 */
112
113 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
114 * when passive opening a connection.
115 * This is corresponding to 31secs of
116 * retransmission with the current
117 * initial RTO.
118 */
119
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 * state, about 60 seconds */
122 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
123 /* BSD style FIN_WAIT2 deadlock breaker.
124 * It used to be 3min, new value is 60sec,
125 * to combine FIN-WAIT-2 timeout with
126 * TIME-WAIT timer.
127 */
128
129 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN ((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN 4U
135 #define TCP_ATO_MIN 4U
136 #endif
137 #define TCP_RTO_MAX ((unsigned)(120*HZ))
138 #define TCP_RTO_MIN ((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
142 * used as a fallback RTO for the
143 * initial data transmission if no
144 * valid RTT sample has been acquired,
145 * most likely due to retrans in 3WHS.
146 */
147
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 * for local resources.
150 */
151 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
152 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
153 #define TCP_KEEPALIVE_INTVL (75*HZ)
154
155 #define MAX_TCP_KEEPIDLE 32767
156 #define MAX_TCP_KEEPINTVL 32767
157 #define MAX_TCP_KEEPCNT 127
158 #define MAX_TCP_SYNCNT 127
159
160 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
161
162 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
164 * after this time. It should be equal
165 * (or greater than) TCP_TIMEWAIT_LEN
166 * to provide reliability equal to one
167 * provided by timewait state.
168 */
169 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
170 * timestamps. It must be less than
171 * minimal timewait lifetime.
172 */
173 /*
174 * TCP option
175 */
176
177 #define TCPOPT_NOP 1 /* Padding */
178 #define TCPOPT_EOL 0 /* End of options */
179 #define TCPOPT_MSS 2 /* Segment size negotiating */
180 #define TCPOPT_WINDOW 3 /* Window scaling */
181 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
182 #define TCPOPT_SACK 5 /* SACK Block */
183 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
186 #define TCPOPT_EXP 254 /* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189 */
190 #define TCPOPT_FASTOPEN_MAGIC 0xF989
191 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9
192
193 /*
194 * TCP option lengths
195 */
196
197 #define TCPOLEN_MSS 4
198 #define TCPOLEN_WINDOW 3
199 #define TCPOLEN_SACK_PERM 2
200 #define TCPOLEN_TIMESTAMP 10
201 #define TCPOLEN_MD5SIG 18
202 #define TCPOLEN_FASTOPEN_BASE 2
203 #define TCPOLEN_EXP_FASTOPEN_BASE 4
204 #define TCPOLEN_EXP_SMC_BASE 6
205
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED 12
208 #define TCPOLEN_WSCALE_ALIGNED 4
209 #define TCPOLEN_SACKPERM_ALIGNED 4
210 #define TCPOLEN_SACK_BASE 2
211 #define TCPOLEN_SACK_BASE_ALIGNED 4
212 #define TCPOLEN_SACK_PERBLOCK 8
213 #define TCPOLEN_MD5SIG_ALIGNED 20
214 #define TCPOLEN_MSS_ALIGNED 4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
216
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK 2 /* Socket is corked */
220 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
221
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
224
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND 10
227
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define TFO_CLIENT_ENABLE 1
230 #define TFO_SERVER_ENABLE 2
231 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
232
233 /* Accept SYN data w/o any cookie option */
234 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
235
236 /* Force enable TFO on all listeners, i.e., not requiring the
237 * TCP_FASTOPEN socket option.
238 */
239 #define TFO_SERVER_WO_SOCKOPT1 0x400
240
241
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245
246 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
247 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
248 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
249
250 extern atomic_long_t tcp_memory_allocated;
251 extern struct percpu_counter tcp_sockets_allocated;
252 extern unsigned long tcp_memory_pressure;
253
254 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)255 static inline bool tcp_under_memory_pressure(const struct sock *sk)
256 {
257 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
258 mem_cgroup_under_socket_pressure(sk->sk_memcg))
259 return true;
260
261 return READ_ONCE(tcp_memory_pressure);
262 }
263 /*
264 * The next routines deal with comparing 32 bit unsigned ints
265 * and worry about wraparound (automatic with unsigned arithmetic).
266 */
267
before(__u32 seq1,__u32 seq2)268 static inline bool before(__u32 seq1, __u32 seq2)
269 {
270 return (__s32)(seq1-seq2) < 0;
271 }
272 #define after(seq2, seq1) before(seq1, seq2)
273
274 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)275 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
276 {
277 return seq3 - seq2 >= seq1 - seq2;
278 }
279
tcp_out_of_memory(struct sock * sk)280 static inline bool tcp_out_of_memory(struct sock *sk)
281 {
282 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
283 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
284 return true;
285 return false;
286 }
287
288 void sk_forced_mem_schedule(struct sock *sk, int size);
289
tcp_too_many_orphans(struct sock * sk,int shift)290 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
291 {
292 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
293 int orphans = percpu_counter_read_positive(ocp);
294
295 if (orphans << shift > sysctl_tcp_max_orphans) {
296 orphans = percpu_counter_sum_positive(ocp);
297 if (orphans << shift > sysctl_tcp_max_orphans)
298 return true;
299 }
300 return false;
301 }
302
303 bool tcp_check_oom(struct sock *sk, int shift);
304
305
306 extern struct proto tcp_prot;
307
308 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
312
313 void tcp_tasklet_init(void);
314
315 int tcp_v4_err(struct sk_buff *skb, u32);
316
317 void tcp_shutdown(struct sock *sk, int how);
318
319 int tcp_v4_early_demux(struct sk_buff *skb);
320 int tcp_v4_rcv(struct sk_buff *skb);
321
322 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
323 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
326 int flags);
327 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
328 size_t size, int flags);
329 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
330 size_t size, int flags);
331 void tcp_release_cb(struct sock *sk);
332 void tcp_wfree(struct sk_buff *skb);
333 void tcp_write_timer_handler(struct sock *sk);
334 void tcp_delack_timer_handler(struct sock *sk);
335 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
336 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
337 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
338 void tcp_rcv_space_adjust(struct sock *sk);
339 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340 void tcp_twsk_destructor(struct sock *sk);
341 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342 struct pipe_inode_info *pipe, size_t len,
343 unsigned int flags);
344
345 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
tcp_dec_quickack_mode(struct sock * sk,const unsigned int pkts)346 static inline void tcp_dec_quickack_mode(struct sock *sk,
347 const unsigned int pkts)
348 {
349 struct inet_connection_sock *icsk = inet_csk(sk);
350
351 if (icsk->icsk_ack.quick) {
352 if (pkts >= icsk->icsk_ack.quick) {
353 icsk->icsk_ack.quick = 0;
354 /* Leaving quickack mode we deflate ATO. */
355 icsk->icsk_ack.ato = TCP_ATO_MIN;
356 } else
357 icsk->icsk_ack.quick -= pkts;
358 }
359 }
360
361 #define TCP_ECN_OK 1
362 #define TCP_ECN_QUEUE_CWR 2
363 #define TCP_ECN_DEMAND_CWR 4
364 #define TCP_ECN_SEEN 8
365
366 enum tcp_tw_status {
367 TCP_TW_SUCCESS = 0,
368 TCP_TW_RST = 1,
369 TCP_TW_ACK = 2,
370 TCP_TW_SYN = 3
371 };
372
373
374 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
375 struct sk_buff *skb,
376 const struct tcphdr *th);
377 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
378 struct request_sock *req, bool fastopen,
379 bool *lost_race);
380 int tcp_child_process(struct sock *parent, struct sock *child,
381 struct sk_buff *skb);
382 void tcp_enter_loss(struct sock *sk);
383 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
384 void tcp_clear_retrans(struct tcp_sock *tp);
385 void tcp_update_metrics(struct sock *sk);
386 void tcp_init_metrics(struct sock *sk);
387 void tcp_metrics_init(void);
388 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
389 void tcp_close(struct sock *sk, long timeout);
390 void tcp_init_sock(struct sock *sk);
391 void tcp_init_transfer(struct sock *sk, int bpf_op);
392 __poll_t tcp_poll(struct file *file, struct socket *sock,
393 struct poll_table_struct *wait);
394 int tcp_getsockopt(struct sock *sk, int level, int optname,
395 char __user *optval, int __user *optlen);
396 int tcp_setsockopt(struct sock *sk, int level, int optname,
397 char __user *optval, unsigned int optlen);
398 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
399 char __user *optval, int __user *optlen);
400 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
401 char __user *optval, unsigned int optlen);
402 void tcp_set_keepalive(struct sock *sk, int val);
403 void tcp_syn_ack_timeout(const struct request_sock *req);
404 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
405 int flags, int *addr_len);
406 int tcp_set_rcvlowat(struct sock *sk, int val);
407 void tcp_data_ready(struct sock *sk);
408 #ifdef CONFIG_MMU
409 int tcp_mmap(struct file *file, struct socket *sock,
410 struct vm_area_struct *vma);
411 #endif
412 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
413 struct tcp_options_received *opt_rx,
414 int estab, struct tcp_fastopen_cookie *foc);
415 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
416
417 /*
418 * BPF SKB-less helpers
419 */
420 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
421 struct tcphdr *th, u32 *cookie);
422 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
423 struct tcphdr *th, u32 *cookie);
424 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
425 const struct tcp_request_sock_ops *af_ops,
426 struct sock *sk, struct tcphdr *th);
427 /*
428 * TCP v4 functions exported for the inet6 API
429 */
430
431 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
432 void tcp_v4_mtu_reduced(struct sock *sk);
433 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
434 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
435 struct sock *tcp_create_openreq_child(const struct sock *sk,
436 struct request_sock *req,
437 struct sk_buff *skb);
438 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
439 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
440 struct request_sock *req,
441 struct dst_entry *dst,
442 struct request_sock *req_unhash,
443 bool *own_req);
444 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
445 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
446 int tcp_connect(struct sock *sk);
447 enum tcp_synack_type {
448 TCP_SYNACK_NORMAL,
449 TCP_SYNACK_FASTOPEN,
450 TCP_SYNACK_COOKIE,
451 };
452 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
453 struct request_sock *req,
454 struct tcp_fastopen_cookie *foc,
455 enum tcp_synack_type synack_type);
456 int tcp_disconnect(struct sock *sk, int flags);
457
458 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
459 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
460 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
461
462 /* From syncookies.c */
463 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
464 struct request_sock *req,
465 struct dst_entry *dst, u32 tsoff);
466 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
467 u32 cookie);
468 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
469 #ifdef CONFIG_SYN_COOKIES
470
471 /* Syncookies use a monotonic timer which increments every 60 seconds.
472 * This counter is used both as a hash input and partially encoded into
473 * the cookie value. A cookie is only validated further if the delta
474 * between the current counter value and the encoded one is less than this,
475 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
476 * the counter advances immediately after a cookie is generated).
477 */
478 #define MAX_SYNCOOKIE_AGE 2
479 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
480 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
481
482 /* syncookies: remember time of last synqueue overflow
483 * But do not dirty this field too often (once per second is enough)
484 * It is racy as we do not hold a lock, but race is very minor.
485 */
tcp_synq_overflow(const struct sock * sk)486 static inline void tcp_synq_overflow(const struct sock *sk)
487 {
488 unsigned int last_overflow;
489 unsigned int now = jiffies;
490
491 if (sk->sk_reuseport) {
492 struct sock_reuseport *reuse;
493
494 reuse = rcu_dereference(sk->sk_reuseport_cb);
495 if (likely(reuse)) {
496 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
497 if (!time_between32(now, last_overflow,
498 last_overflow + HZ))
499 WRITE_ONCE(reuse->synq_overflow_ts, now);
500 return;
501 }
502 }
503
504 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
505 if (!time_between32(now, last_overflow, last_overflow + HZ))
506 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
507 }
508
509 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)510 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
511 {
512 unsigned int last_overflow;
513 unsigned int now = jiffies;
514
515 if (sk->sk_reuseport) {
516 struct sock_reuseport *reuse;
517
518 reuse = rcu_dereference(sk->sk_reuseport_cb);
519 if (likely(reuse)) {
520 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
521 return !time_between32(now, last_overflow - HZ,
522 last_overflow +
523 TCP_SYNCOOKIE_VALID);
524 }
525 }
526
527 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
528
529 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
530 * then we're under synflood. However, we have to use
531 * 'last_overflow - HZ' as lower bound. That's because a concurrent
532 * tcp_synq_overflow() could update .ts_recent_stamp after we read
533 * jiffies but before we store .ts_recent_stamp into last_overflow,
534 * which could lead to rejecting a valid syncookie.
535 */
536 return !time_between32(now, last_overflow - HZ,
537 last_overflow + TCP_SYNCOOKIE_VALID);
538 }
539
tcp_cookie_time(void)540 static inline u32 tcp_cookie_time(void)
541 {
542 u64 val = get_jiffies_64();
543
544 do_div(val, TCP_SYNCOOKIE_PERIOD);
545 return val;
546 }
547
548 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
549 u16 *mssp);
550 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
551 u64 cookie_init_timestamp(struct request_sock *req);
552 bool cookie_timestamp_decode(const struct net *net,
553 struct tcp_options_received *opt);
554 bool cookie_ecn_ok(const struct tcp_options_received *opt,
555 const struct net *net, const struct dst_entry *dst);
556
557 /* From net/ipv6/syncookies.c */
558 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
559 u32 cookie);
560 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
561
562 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
563 const struct tcphdr *th, u16 *mssp);
564 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
565 #endif
566 /* tcp_output.c */
567
568 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
569 int nonagle);
570 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
571 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
572 void tcp_retransmit_timer(struct sock *sk);
573 void tcp_xmit_retransmit_queue(struct sock *);
574 void tcp_simple_retransmit(struct sock *);
575 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
576 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
577 enum tcp_queue {
578 TCP_FRAG_IN_WRITE_QUEUE,
579 TCP_FRAG_IN_RTX_QUEUE,
580 };
581 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
582 struct sk_buff *skb, u32 len,
583 unsigned int mss_now, gfp_t gfp);
584
585 void tcp_send_probe0(struct sock *);
586 void tcp_send_partial(struct sock *);
587 int tcp_write_wakeup(struct sock *, int mib);
588 void tcp_send_fin(struct sock *sk);
589 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
590 int tcp_send_synack(struct sock *);
591 void tcp_push_one(struct sock *, unsigned int mss_now);
592 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
593 void tcp_send_ack(struct sock *sk);
594 void tcp_send_delayed_ack(struct sock *sk);
595 void tcp_send_loss_probe(struct sock *sk);
596 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
597 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
598 const struct sk_buff *next_skb);
599
600 /* tcp_input.c */
601 void tcp_rearm_rto(struct sock *sk);
602 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
603 void tcp_reset(struct sock *sk);
604 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
605 void tcp_fin(struct sock *sk);
606
607 /* tcp_timer.c */
608 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)609 static inline void tcp_clear_xmit_timers(struct sock *sk)
610 {
611 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
612 __sock_put(sk);
613
614 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
615 __sock_put(sk);
616
617 inet_csk_clear_xmit_timers(sk);
618 }
619
620 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
621 unsigned int tcp_current_mss(struct sock *sk);
622
623 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)624 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
625 {
626 int cutoff;
627
628 /* When peer uses tiny windows, there is no use in packetizing
629 * to sub-MSS pieces for the sake of SWS or making sure there
630 * are enough packets in the pipe for fast recovery.
631 *
632 * On the other hand, for extremely large MSS devices, handling
633 * smaller than MSS windows in this way does make sense.
634 */
635 if (tp->max_window > TCP_MSS_DEFAULT)
636 cutoff = (tp->max_window >> 1);
637 else
638 cutoff = tp->max_window;
639
640 if (cutoff && pktsize > cutoff)
641 return max_t(int, cutoff, 68U - tp->tcp_header_len);
642 else
643 return pktsize;
644 }
645
646 /* tcp.c */
647 void tcp_get_info(struct sock *, struct tcp_info *);
648
649 /* Read 'sendfile()'-style from a TCP socket */
650 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
651 sk_read_actor_t recv_actor);
652
653 void tcp_initialize_rcv_mss(struct sock *sk);
654
655 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
656 int tcp_mss_to_mtu(struct sock *sk, int mss);
657 void tcp_mtup_init(struct sock *sk);
658 void tcp_init_buffer_space(struct sock *sk);
659
tcp_bound_rto(const struct sock * sk)660 static inline void tcp_bound_rto(const struct sock *sk)
661 {
662 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
663 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
664 }
665
__tcp_set_rto(const struct tcp_sock * tp)666 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
667 {
668 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
669 }
670
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)671 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
672 {
673 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
674 ntohl(TCP_FLAG_ACK) |
675 snd_wnd);
676 }
677
tcp_fast_path_on(struct tcp_sock * tp)678 static inline void tcp_fast_path_on(struct tcp_sock *tp)
679 {
680 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
681 }
682
tcp_fast_path_check(struct sock * sk)683 static inline void tcp_fast_path_check(struct sock *sk)
684 {
685 struct tcp_sock *tp = tcp_sk(sk);
686
687 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
688 tp->rcv_wnd &&
689 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
690 !tp->urg_data)
691 tcp_fast_path_on(tp);
692 }
693
694 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)695 static inline u32 tcp_rto_min(struct sock *sk)
696 {
697 const struct dst_entry *dst = __sk_dst_get(sk);
698 u32 rto_min = TCP_RTO_MIN;
699
700 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
701 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
702 return rto_min;
703 }
704
tcp_rto_min_us(struct sock * sk)705 static inline u32 tcp_rto_min_us(struct sock *sk)
706 {
707 return jiffies_to_usecs(tcp_rto_min(sk));
708 }
709
tcp_ca_dst_locked(const struct dst_entry * dst)710 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
711 {
712 return dst_metric_locked(dst, RTAX_CC_ALGO);
713 }
714
715 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)716 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
717 {
718 return minmax_get(&tp->rtt_min);
719 }
720
721 /* Compute the actual receive window we are currently advertising.
722 * Rcv_nxt can be after the window if our peer push more data
723 * than the offered window.
724 */
tcp_receive_window(const struct tcp_sock * tp)725 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
726 {
727 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
728
729 if (win < 0)
730 win = 0;
731 return (u32) win;
732 }
733
734 /* Choose a new window, without checks for shrinking, and without
735 * scaling applied to the result. The caller does these things
736 * if necessary. This is a "raw" window selection.
737 */
738 u32 __tcp_select_window(struct sock *sk);
739
740 void tcp_send_window_probe(struct sock *sk);
741
742 /* TCP uses 32bit jiffies to save some space.
743 * Note that this is different from tcp_time_stamp, which
744 * historically has been the same until linux-4.13.
745 */
746 #define tcp_jiffies32 ((u32)jiffies)
747
748 /*
749 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
750 * It is no longer tied to jiffies, but to 1 ms clock.
751 * Note: double check if you want to use tcp_jiffies32 instead of this.
752 */
753 #define TCP_TS_HZ 1000
754
tcp_clock_ns(void)755 static inline u64 tcp_clock_ns(void)
756 {
757 return ktime_get_ns();
758 }
759
tcp_clock_us(void)760 static inline u64 tcp_clock_us(void)
761 {
762 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
763 }
764
765 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
tcp_time_stamp(const struct tcp_sock * tp)766 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
767 {
768 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
769 }
770
771 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
tcp_time_stamp_raw(void)772 static inline u32 tcp_time_stamp_raw(void)
773 {
774 return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
775 }
776
777 void tcp_mstamp_refresh(struct tcp_sock *tp);
778
tcp_stamp_us_delta(u64 t1,u64 t0)779 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
780 {
781 return max_t(s64, t1 - t0, 0);
782 }
783
tcp_skb_timestamp(const struct sk_buff * skb)784 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
785 {
786 return div_u64(skb->skb_mstamp_ns, NSEC_PER_SEC / TCP_TS_HZ);
787 }
788
789 /* provide the departure time in us unit */
tcp_skb_timestamp_us(const struct sk_buff * skb)790 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
791 {
792 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
793 }
794
795
796 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
797
798 #define TCPHDR_FIN 0x01
799 #define TCPHDR_SYN 0x02
800 #define TCPHDR_RST 0x04
801 #define TCPHDR_PSH 0x08
802 #define TCPHDR_ACK 0x10
803 #define TCPHDR_URG 0x20
804 #define TCPHDR_ECE 0x40
805 #define TCPHDR_CWR 0x80
806
807 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
808
809 /* This is what the send packet queuing engine uses to pass
810 * TCP per-packet control information to the transmission code.
811 * We also store the host-order sequence numbers in here too.
812 * This is 44 bytes if IPV6 is enabled.
813 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
814 */
815 struct tcp_skb_cb {
816 __u32 seq; /* Starting sequence number */
817 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
818 union {
819 /* Note : tcp_tw_isn is used in input path only
820 * (isn chosen by tcp_timewait_state_process())
821 *
822 * tcp_gso_segs/size are used in write queue only,
823 * cf tcp_skb_pcount()/tcp_skb_mss()
824 */
825 __u32 tcp_tw_isn;
826 struct {
827 u16 tcp_gso_segs;
828 u16 tcp_gso_size;
829 };
830 };
831 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
832
833 __u8 sacked; /* State flags for SACK. */
834 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
835 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
836 #define TCPCB_LOST 0x04 /* SKB is lost */
837 #define TCPCB_TAGBITS 0x07 /* All tag bits */
838 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
839 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
840 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
841 TCPCB_REPAIRED)
842
843 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
844 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
845 eor:1, /* Is skb MSG_EOR marked? */
846 has_rxtstamp:1, /* SKB has a RX timestamp */
847 unused:5;
848 __u32 ack_seq; /* Sequence number ACK'd */
849 union {
850 struct {
851 /* There is space for up to 24 bytes */
852 __u32 in_flight:30,/* Bytes in flight at transmit */
853 is_app_limited:1, /* cwnd not fully used? */
854 unused:1;
855 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
856 __u32 delivered;
857 /* start of send pipeline phase */
858 u64 first_tx_mstamp;
859 /* when we reached the "delivered" count */
860 u64 delivered_mstamp;
861 } tx; /* only used for outgoing skbs */
862 union {
863 struct inet_skb_parm h4;
864 #if IS_ENABLED(CONFIG_IPV6)
865 struct inet6_skb_parm h6;
866 #endif
867 } header; /* For incoming skbs */
868 struct {
869 __u32 flags;
870 struct sock *sk_redir;
871 void *data_end;
872 } bpf;
873 };
874 };
875
876 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
877
bpf_compute_data_end_sk_skb(struct sk_buff * skb)878 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
879 {
880 TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
881 }
882
tcp_skb_bpf_ingress(const struct sk_buff * skb)883 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
884 {
885 return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
886 }
887
tcp_skb_bpf_redirect_fetch(struct sk_buff * skb)888 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
889 {
890 return TCP_SKB_CB(skb)->bpf.sk_redir;
891 }
892
tcp_skb_bpf_redirect_clear(struct sk_buff * skb)893 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
894 {
895 TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
896 }
897
898 #if IS_ENABLED(CONFIG_IPV6)
899 /* This is the variant of inet6_iif() that must be used by TCP,
900 * as TCP moves IP6CB into a different location in skb->cb[]
901 */
tcp_v6_iif(const struct sk_buff * skb)902 static inline int tcp_v6_iif(const struct sk_buff *skb)
903 {
904 return TCP_SKB_CB(skb)->header.h6.iif;
905 }
906
tcp_v6_iif_l3_slave(const struct sk_buff * skb)907 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
908 {
909 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
910
911 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
912 }
913
914 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)915 static inline int tcp_v6_sdif(const struct sk_buff *skb)
916 {
917 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
918 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
919 return TCP_SKB_CB(skb)->header.h6.iif;
920 #endif
921 return 0;
922 }
923 #endif
924
inet_exact_dif_match(struct net * net,struct sk_buff * skb)925 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
926 {
927 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
928 if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
929 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
930 return true;
931 #endif
932 return false;
933 }
934
935 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)936 static inline int tcp_v4_sdif(struct sk_buff *skb)
937 {
938 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
939 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
940 return TCP_SKB_CB(skb)->header.h4.iif;
941 #endif
942 return 0;
943 }
944
945 /* Due to TSO, an SKB can be composed of multiple actual
946 * packets. To keep these tracked properly, we use this.
947 */
tcp_skb_pcount(const struct sk_buff * skb)948 static inline int tcp_skb_pcount(const struct sk_buff *skb)
949 {
950 return TCP_SKB_CB(skb)->tcp_gso_segs;
951 }
952
tcp_skb_pcount_set(struct sk_buff * skb,int segs)953 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
954 {
955 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
956 }
957
tcp_skb_pcount_add(struct sk_buff * skb,int segs)958 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
959 {
960 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
961 }
962
963 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)964 static inline int tcp_skb_mss(const struct sk_buff *skb)
965 {
966 return TCP_SKB_CB(skb)->tcp_gso_size;
967 }
968
tcp_skb_can_collapse_to(const struct sk_buff * skb)969 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
970 {
971 return likely(!TCP_SKB_CB(skb)->eor);
972 }
973
974 /* Events passed to congestion control interface */
975 enum tcp_ca_event {
976 CA_EVENT_TX_START, /* first transmit when no packets in flight */
977 CA_EVENT_CWND_RESTART, /* congestion window restart */
978 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
979 CA_EVENT_LOSS, /* loss timeout */
980 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
981 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
982 };
983
984 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
985 enum tcp_ca_ack_event_flags {
986 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
987 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
988 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
989 };
990
991 /*
992 * Interface for adding new TCP congestion control handlers
993 */
994 #define TCP_CA_NAME_MAX 16
995 #define TCP_CA_MAX 128
996 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
997
998 #define TCP_CA_UNSPEC 0
999
1000 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1001 #define TCP_CONG_NON_RESTRICTED 0x1
1002 /* Requires ECN/ECT set on all packets */
1003 #define TCP_CONG_NEEDS_ECN 0x2
1004
1005 union tcp_cc_info;
1006
1007 struct ack_sample {
1008 u32 pkts_acked;
1009 s32 rtt_us;
1010 u32 in_flight;
1011 };
1012
1013 /* A rate sample measures the number of (original/retransmitted) data
1014 * packets delivered "delivered" over an interval of time "interval_us".
1015 * The tcp_rate.c code fills in the rate sample, and congestion
1016 * control modules that define a cong_control function to run at the end
1017 * of ACK processing can optionally chose to consult this sample when
1018 * setting cwnd and pacing rate.
1019 * A sample is invalid if "delivered" or "interval_us" is negative.
1020 */
1021 struct rate_sample {
1022 u64 prior_mstamp; /* starting timestamp for interval */
1023 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1024 s32 delivered; /* number of packets delivered over interval */
1025 long interval_us; /* time for tp->delivered to incr "delivered" */
1026 u32 snd_interval_us; /* snd interval for delivered packets */
1027 u32 rcv_interval_us; /* rcv interval for delivered packets */
1028 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1029 int losses; /* number of packets marked lost upon ACK */
1030 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1031 u32 prior_in_flight; /* in flight before this ACK */
1032 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1033 bool is_retrans; /* is sample from retransmission? */
1034 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1035 };
1036
1037 struct tcp_congestion_ops {
1038 struct list_head list;
1039 u32 key;
1040 u32 flags;
1041
1042 /* initialize private data (optional) */
1043 void (*init)(struct sock *sk);
1044 /* cleanup private data (optional) */
1045 void (*release)(struct sock *sk);
1046
1047 /* return slow start threshold (required) */
1048 u32 (*ssthresh)(struct sock *sk);
1049 /* do new cwnd calculation (required) */
1050 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1051 /* call before changing ca_state (optional) */
1052 void (*set_state)(struct sock *sk, u8 new_state);
1053 /* call when cwnd event occurs (optional) */
1054 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1055 /* call when ack arrives (optional) */
1056 void (*in_ack_event)(struct sock *sk, u32 flags);
1057 /* new value of cwnd after loss (required) */
1058 u32 (*undo_cwnd)(struct sock *sk);
1059 /* hook for packet ack accounting (optional) */
1060 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1061 /* override sysctl_tcp_min_tso_segs */
1062 u32 (*min_tso_segs)(struct sock *sk);
1063 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1064 u32 (*sndbuf_expand)(struct sock *sk);
1065 /* call when packets are delivered to update cwnd and pacing rate,
1066 * after all the ca_state processing. (optional)
1067 */
1068 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1069 /* get info for inet_diag (optional) */
1070 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1071 union tcp_cc_info *info);
1072
1073 char name[TCP_CA_NAME_MAX];
1074 struct module *owner;
1075 };
1076
1077 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1078 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1079
1080 void tcp_assign_congestion_control(struct sock *sk);
1081 void tcp_init_congestion_control(struct sock *sk);
1082 void tcp_cleanup_congestion_control(struct sock *sk);
1083 int tcp_set_default_congestion_control(struct net *net, const char *name);
1084 void tcp_get_default_congestion_control(struct net *net, char *name);
1085 void tcp_get_available_congestion_control(char *buf, size_t len);
1086 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1087 int tcp_set_allowed_congestion_control(char *allowed);
1088 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1089 bool reinit, bool cap_net_admin);
1090 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1091 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1092
1093 u32 tcp_reno_ssthresh(struct sock *sk);
1094 u32 tcp_reno_undo_cwnd(struct sock *sk);
1095 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1096 extern struct tcp_congestion_ops tcp_reno;
1097
1098 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1099 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1100 #ifdef CONFIG_INET
1101 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1102 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1103 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1104 {
1105 return NULL;
1106 }
1107 #endif
1108
tcp_ca_needs_ecn(const struct sock * sk)1109 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1110 {
1111 const struct inet_connection_sock *icsk = inet_csk(sk);
1112
1113 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1114 }
1115
tcp_set_ca_state(struct sock * sk,const u8 ca_state)1116 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1117 {
1118 struct inet_connection_sock *icsk = inet_csk(sk);
1119
1120 if (icsk->icsk_ca_ops->set_state)
1121 icsk->icsk_ca_ops->set_state(sk, ca_state);
1122 icsk->icsk_ca_state = ca_state;
1123 }
1124
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1125 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1126 {
1127 const struct inet_connection_sock *icsk = inet_csk(sk);
1128
1129 if (icsk->icsk_ca_ops->cwnd_event)
1130 icsk->icsk_ca_ops->cwnd_event(sk, event);
1131 }
1132
1133 /* From tcp_rate.c */
1134 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1135 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1136 struct rate_sample *rs);
1137 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1138 bool is_sack_reneg, struct rate_sample *rs);
1139 void tcp_rate_check_app_limited(struct sock *sk);
1140
1141 /* These functions determine how the current flow behaves in respect of SACK
1142 * handling. SACK is negotiated with the peer, and therefore it can vary
1143 * between different flows.
1144 *
1145 * tcp_is_sack - SACK enabled
1146 * tcp_is_reno - No SACK
1147 */
tcp_is_sack(const struct tcp_sock * tp)1148 static inline int tcp_is_sack(const struct tcp_sock *tp)
1149 {
1150 return likely(tp->rx_opt.sack_ok);
1151 }
1152
tcp_is_reno(const struct tcp_sock * tp)1153 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1154 {
1155 return !tcp_is_sack(tp);
1156 }
1157
tcp_left_out(const struct tcp_sock * tp)1158 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1159 {
1160 return tp->sacked_out + tp->lost_out;
1161 }
1162
1163 /* This determines how many packets are "in the network" to the best
1164 * of our knowledge. In many cases it is conservative, but where
1165 * detailed information is available from the receiver (via SACK
1166 * blocks etc.) we can make more aggressive calculations.
1167 *
1168 * Use this for decisions involving congestion control, use just
1169 * tp->packets_out to determine if the send queue is empty or not.
1170 *
1171 * Read this equation as:
1172 *
1173 * "Packets sent once on transmission queue" MINUS
1174 * "Packets left network, but not honestly ACKed yet" PLUS
1175 * "Packets fast retransmitted"
1176 */
tcp_packets_in_flight(const struct tcp_sock * tp)1177 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1178 {
1179 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1180 }
1181
1182 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1183
tcp_in_slow_start(const struct tcp_sock * tp)1184 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1185 {
1186 return tp->snd_cwnd < tp->snd_ssthresh;
1187 }
1188
tcp_in_initial_slowstart(const struct tcp_sock * tp)1189 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1190 {
1191 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1192 }
1193
tcp_in_cwnd_reduction(const struct sock * sk)1194 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1195 {
1196 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1197 (1 << inet_csk(sk)->icsk_ca_state);
1198 }
1199
1200 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1201 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1202 * ssthresh.
1203 */
tcp_current_ssthresh(const struct sock * sk)1204 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1205 {
1206 const struct tcp_sock *tp = tcp_sk(sk);
1207
1208 if (tcp_in_cwnd_reduction(sk))
1209 return tp->snd_ssthresh;
1210 else
1211 return max(tp->snd_ssthresh,
1212 ((tp->snd_cwnd >> 1) +
1213 (tp->snd_cwnd >> 2)));
1214 }
1215
1216 /* Use define here intentionally to get WARN_ON location shown at the caller */
1217 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1218
1219 void tcp_enter_cwr(struct sock *sk);
1220 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1221
1222 /* The maximum number of MSS of available cwnd for which TSO defers
1223 * sending if not using sysctl_tcp_tso_win_divisor.
1224 */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1225 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1226 {
1227 return 3;
1228 }
1229
1230 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1231 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1232 {
1233 return tp->snd_una + tp->snd_wnd;
1234 }
1235
1236 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1237 * flexible approach. The RFC suggests cwnd should not be raised unless
1238 * it was fully used previously. And that's exactly what we do in
1239 * congestion avoidance mode. But in slow start we allow cwnd to grow
1240 * as long as the application has used half the cwnd.
1241 * Example :
1242 * cwnd is 10 (IW10), but application sends 9 frames.
1243 * We allow cwnd to reach 18 when all frames are ACKed.
1244 * This check is safe because it's as aggressive as slow start which already
1245 * risks 100% overshoot. The advantage is that we discourage application to
1246 * either send more filler packets or data to artificially blow up the cwnd
1247 * usage, and allow application-limited process to probe bw more aggressively.
1248 */
tcp_is_cwnd_limited(const struct sock * sk)1249 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1250 {
1251 const struct tcp_sock *tp = tcp_sk(sk);
1252
1253 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1254 if (tcp_in_slow_start(tp))
1255 return tp->snd_cwnd < 2 * tp->max_packets_out;
1256
1257 return tp->is_cwnd_limited;
1258 }
1259
1260 /* BBR congestion control needs pacing.
1261 * Same remark for SO_MAX_PACING_RATE.
1262 * sch_fq packet scheduler is efficiently handling pacing,
1263 * but is not always installed/used.
1264 * Return true if TCP stack should pace packets itself.
1265 */
tcp_needs_internal_pacing(const struct sock * sk)1266 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1267 {
1268 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1269 }
1270
1271 /* Return in jiffies the delay before one skb is sent.
1272 * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1273 */
tcp_pacing_delay(const struct sock * sk,const struct sk_buff * skb)1274 static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1275 const struct sk_buff *skb)
1276 {
1277 s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1278
1279 pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1280
1281 return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1282 }
1283
tcp_reset_xmit_timer(struct sock * sk,const int what,unsigned long when,const unsigned long max_when,const struct sk_buff * skb)1284 static inline void tcp_reset_xmit_timer(struct sock *sk,
1285 const int what,
1286 unsigned long when,
1287 const unsigned long max_when,
1288 const struct sk_buff *skb)
1289 {
1290 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1291 max_when);
1292 }
1293
1294 /* Something is really bad, we could not queue an additional packet,
1295 * because qdisc is full or receiver sent a 0 window, or we are paced.
1296 * We do not want to add fuel to the fire, or abort too early,
1297 * so make sure the timer we arm now is at least 200ms in the future,
1298 * regardless of current icsk_rto value (as it could be ~2ms)
1299 */
tcp_probe0_base(const struct sock * sk)1300 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1301 {
1302 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1303 }
1304
1305 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1306 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1307 unsigned long max_when)
1308 {
1309 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1310
1311 return (unsigned long)min_t(u64, when, max_when);
1312 }
1313
tcp_check_probe_timer(struct sock * sk)1314 static inline void tcp_check_probe_timer(struct sock *sk)
1315 {
1316 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1317 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1318 tcp_probe0_base(sk), TCP_RTO_MAX,
1319 NULL);
1320 }
1321
tcp_init_wl(struct tcp_sock * tp,u32 seq)1322 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1323 {
1324 tp->snd_wl1 = seq;
1325 }
1326
tcp_update_wl(struct tcp_sock * tp,u32 seq)1327 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1328 {
1329 tp->snd_wl1 = seq;
1330 }
1331
1332 /*
1333 * Calculate(/check) TCP checksum
1334 */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1335 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1336 __be32 daddr, __wsum base)
1337 {
1338 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1339 }
1340
tcp_checksum_complete(struct sk_buff * skb)1341 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1342 {
1343 return !skb_csum_unnecessary(skb) &&
1344 __skb_checksum_complete(skb);
1345 }
1346
1347 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1348 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1349 void tcp_set_state(struct sock *sk, int state);
1350 void tcp_done(struct sock *sk);
1351 int tcp_abort(struct sock *sk, int err);
1352
tcp_sack_reset(struct tcp_options_received * rx_opt)1353 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1354 {
1355 rx_opt->dsack = 0;
1356 rx_opt->num_sacks = 0;
1357 }
1358
1359 u32 tcp_default_init_rwnd(u32 mss);
1360 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1361
tcp_slow_start_after_idle_check(struct sock * sk)1362 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1363 {
1364 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1365 struct tcp_sock *tp = tcp_sk(sk);
1366 s32 delta;
1367
1368 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1369 ca_ops->cong_control)
1370 return;
1371 delta = tcp_jiffies32 - tp->lsndtime;
1372 if (delta > inet_csk(sk)->icsk_rto)
1373 tcp_cwnd_restart(sk, delta);
1374 }
1375
1376 /* Determine a window scaling and initial window to offer. */
1377 void tcp_select_initial_window(const struct sock *sk, int __space,
1378 __u32 mss, __u32 *rcv_wnd,
1379 __u32 *window_clamp, int wscale_ok,
1380 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1381
tcp_win_from_space(const struct sock * sk,int space)1382 static inline int tcp_win_from_space(const struct sock *sk, int space)
1383 {
1384 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1385
1386 return tcp_adv_win_scale <= 0 ?
1387 (space>>(-tcp_adv_win_scale)) :
1388 space - (space>>tcp_adv_win_scale);
1389 }
1390
1391 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1392 static inline int tcp_space(const struct sock *sk)
1393 {
1394 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1395 READ_ONCE(sk->sk_backlog.len) -
1396 atomic_read(&sk->sk_rmem_alloc));
1397 }
1398
tcp_full_space(const struct sock * sk)1399 static inline int tcp_full_space(const struct sock *sk)
1400 {
1401 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1402 }
1403
1404 extern void tcp_openreq_init_rwin(struct request_sock *req,
1405 const struct sock *sk_listener,
1406 const struct dst_entry *dst);
1407
1408 void tcp_enter_memory_pressure(struct sock *sk);
1409 void tcp_leave_memory_pressure(struct sock *sk);
1410
keepalive_intvl_when(const struct tcp_sock * tp)1411 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1412 {
1413 struct net *net = sock_net((struct sock *)tp);
1414
1415 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1416 }
1417
keepalive_time_when(const struct tcp_sock * tp)1418 static inline int keepalive_time_when(const struct tcp_sock *tp)
1419 {
1420 struct net *net = sock_net((struct sock *)tp);
1421
1422 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1423 }
1424
keepalive_probes(const struct tcp_sock * tp)1425 static inline int keepalive_probes(const struct tcp_sock *tp)
1426 {
1427 struct net *net = sock_net((struct sock *)tp);
1428
1429 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1430 }
1431
keepalive_time_elapsed(const struct tcp_sock * tp)1432 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1433 {
1434 const struct inet_connection_sock *icsk = &tp->inet_conn;
1435
1436 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1437 tcp_jiffies32 - tp->rcv_tstamp);
1438 }
1439
tcp_fin_time(const struct sock * sk)1440 static inline int tcp_fin_time(const struct sock *sk)
1441 {
1442 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1443 const int rto = inet_csk(sk)->icsk_rto;
1444
1445 if (fin_timeout < (rto << 2) - (rto >> 1))
1446 fin_timeout = (rto << 2) - (rto >> 1);
1447
1448 return fin_timeout;
1449 }
1450
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1451 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1452 int paws_win)
1453 {
1454 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1455 return true;
1456 if (unlikely(!time_before32(ktime_get_seconds(),
1457 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1458 return true;
1459 /*
1460 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1461 * then following tcp messages have valid values. Ignore 0 value,
1462 * or else 'negative' tsval might forbid us to accept their packets.
1463 */
1464 if (!rx_opt->ts_recent)
1465 return true;
1466 return false;
1467 }
1468
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1469 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1470 int rst)
1471 {
1472 if (tcp_paws_check(rx_opt, 0))
1473 return false;
1474
1475 /* RST segments are not recommended to carry timestamp,
1476 and, if they do, it is recommended to ignore PAWS because
1477 "their cleanup function should take precedence over timestamps."
1478 Certainly, it is mistake. It is necessary to understand the reasons
1479 of this constraint to relax it: if peer reboots, clock may go
1480 out-of-sync and half-open connections will not be reset.
1481 Actually, the problem would be not existing if all
1482 the implementations followed draft about maintaining clock
1483 via reboots. Linux-2.2 DOES NOT!
1484
1485 However, we can relax time bounds for RST segments to MSL.
1486 */
1487 if (rst && !time_before32(ktime_get_seconds(),
1488 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1489 return false;
1490 return true;
1491 }
1492
1493 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1494 int mib_idx, u32 *last_oow_ack_time);
1495
tcp_mib_init(struct net * net)1496 static inline void tcp_mib_init(struct net *net)
1497 {
1498 /* See RFC 2012 */
1499 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1500 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1501 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1502 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1503 }
1504
1505 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1506 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1507 {
1508 tp->lost_skb_hint = NULL;
1509 }
1510
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1511 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1512 {
1513 tcp_clear_retrans_hints_partial(tp);
1514 tp->retransmit_skb_hint = NULL;
1515 }
1516
1517 union tcp_md5_addr {
1518 struct in_addr a4;
1519 #if IS_ENABLED(CONFIG_IPV6)
1520 struct in6_addr a6;
1521 #endif
1522 };
1523
1524 /* - key database */
1525 struct tcp_md5sig_key {
1526 struct hlist_node node;
1527 u8 keylen;
1528 u8 family; /* AF_INET or AF_INET6 */
1529 union tcp_md5_addr addr;
1530 u8 prefixlen;
1531 u8 key[TCP_MD5SIG_MAXKEYLEN];
1532 struct rcu_head rcu;
1533 };
1534
1535 /* - sock block */
1536 struct tcp_md5sig_info {
1537 struct hlist_head head;
1538 struct rcu_head rcu;
1539 };
1540
1541 /* - pseudo header */
1542 struct tcp4_pseudohdr {
1543 __be32 saddr;
1544 __be32 daddr;
1545 __u8 pad;
1546 __u8 protocol;
1547 __be16 len;
1548 };
1549
1550 struct tcp6_pseudohdr {
1551 struct in6_addr saddr;
1552 struct in6_addr daddr;
1553 __be32 len;
1554 __be32 protocol; /* including padding */
1555 };
1556
1557 union tcp_md5sum_block {
1558 struct tcp4_pseudohdr ip4;
1559 #if IS_ENABLED(CONFIG_IPV6)
1560 struct tcp6_pseudohdr ip6;
1561 #endif
1562 };
1563
1564 /* - pool: digest algorithm, hash description and scratch buffer */
1565 struct tcp_md5sig_pool {
1566 struct ahash_request *md5_req;
1567 void *scratch;
1568 };
1569
1570 /* - functions */
1571 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1572 const struct sock *sk, const struct sk_buff *skb);
1573 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1574 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1575 gfp_t gfp);
1576 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1577 int family, u8 prefixlen);
1578 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1579 const struct sock *addr_sk);
1580
1581 #ifdef CONFIG_TCP_MD5SIG
1582 #include <linux/jump_label.h>
1583 extern struct static_key_false tcp_md5_needed;
1584 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk,
1585 const union tcp_md5_addr *addr,
1586 int family);
1587 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,const union tcp_md5_addr * addr,int family)1588 tcp_md5_do_lookup(const struct sock *sk,
1589 const union tcp_md5_addr *addr,
1590 int family)
1591 {
1592 if (!static_branch_unlikely(&tcp_md5_needed))
1593 return NULL;
1594 return __tcp_md5_do_lookup(sk, addr, family);
1595 }
1596
1597 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1598 #else
tcp_md5_do_lookup(const struct sock * sk,const union tcp_md5_addr * addr,int family)1599 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1600 const union tcp_md5_addr *addr,
1601 int family)
1602 {
1603 return NULL;
1604 }
1605 #define tcp_twsk_md5_key(twsk) NULL
1606 #endif
1607
1608 bool tcp_alloc_md5sig_pool(void);
1609
1610 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
tcp_put_md5sig_pool(void)1611 static inline void tcp_put_md5sig_pool(void)
1612 {
1613 local_bh_enable();
1614 }
1615
1616 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1617 unsigned int header_len);
1618 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1619 const struct tcp_md5sig_key *key);
1620
1621 /* From tcp_fastopen.c */
1622 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1623 struct tcp_fastopen_cookie *cookie);
1624 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1625 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1626 u16 try_exp);
1627 struct tcp_fastopen_request {
1628 /* Fast Open cookie. Size 0 means a cookie request */
1629 struct tcp_fastopen_cookie cookie;
1630 struct msghdr *data; /* data in MSG_FASTOPEN */
1631 size_t size;
1632 int copied; /* queued in tcp_connect() */
1633 struct ubuf_info *uarg;
1634 };
1635 void tcp_free_fastopen_req(struct tcp_sock *tp);
1636 void tcp_fastopen_destroy_cipher(struct sock *sk);
1637 void tcp_fastopen_ctx_destroy(struct net *net);
1638 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1639 void *primary_key, void *backup_key);
1640 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1641 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1642 struct request_sock *req,
1643 struct tcp_fastopen_cookie *foc,
1644 const struct dst_entry *dst);
1645 void tcp_fastopen_init_key_once(struct net *net);
1646 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1647 struct tcp_fastopen_cookie *cookie);
1648 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1649 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1650 #define TCP_FASTOPEN_KEY_MAX 2
1651 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1652 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1653
1654 /* Fastopen key context */
1655 struct tcp_fastopen_context {
1656 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1657 int num;
1658 struct rcu_head rcu;
1659 };
1660
1661 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1662 void tcp_fastopen_active_disable(struct sock *sk);
1663 bool tcp_fastopen_active_should_disable(struct sock *sk);
1664 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1665 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1666
1667 /* Caller needs to wrap with rcu_read_(un)lock() */
1668 static inline
tcp_fastopen_get_ctx(const struct sock * sk)1669 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1670 {
1671 struct tcp_fastopen_context *ctx;
1672
1673 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1674 if (!ctx)
1675 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1676 return ctx;
1677 }
1678
1679 static inline
tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie * foc,const struct tcp_fastopen_cookie * orig)1680 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1681 const struct tcp_fastopen_cookie *orig)
1682 {
1683 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1684 orig->len == foc->len &&
1685 !memcmp(orig->val, foc->val, foc->len))
1686 return true;
1687 return false;
1688 }
1689
1690 static inline
tcp_fastopen_context_len(const struct tcp_fastopen_context * ctx)1691 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1692 {
1693 return ctx->num;
1694 }
1695
1696 /* Latencies incurred by various limits for a sender. They are
1697 * chronograph-like stats that are mutually exclusive.
1698 */
1699 enum tcp_chrono {
1700 TCP_CHRONO_UNSPEC,
1701 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1702 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1703 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1704 __TCP_CHRONO_MAX,
1705 };
1706
1707 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1708 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1709
1710 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1711 * the same memory storage than skb->destructor/_skb_refdst
1712 */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)1713 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1714 {
1715 skb->destructor = NULL;
1716 skb->_skb_refdst = 0UL;
1717 }
1718
1719 #define tcp_skb_tsorted_save(skb) { \
1720 unsigned long _save = skb->_skb_refdst; \
1721 skb->_skb_refdst = 0UL;
1722
1723 #define tcp_skb_tsorted_restore(skb) \
1724 skb->_skb_refdst = _save; \
1725 }
1726
1727 void tcp_write_queue_purge(struct sock *sk);
1728
tcp_rtx_queue_head(const struct sock * sk)1729 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1730 {
1731 return skb_rb_first(&sk->tcp_rtx_queue);
1732 }
1733
tcp_rtx_queue_tail(const struct sock * sk)1734 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1735 {
1736 return skb_rb_last(&sk->tcp_rtx_queue);
1737 }
1738
tcp_write_queue_head(const struct sock * sk)1739 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1740 {
1741 return skb_peek(&sk->sk_write_queue);
1742 }
1743
tcp_write_queue_tail(const struct sock * sk)1744 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1745 {
1746 return skb_peek_tail(&sk->sk_write_queue);
1747 }
1748
1749 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1750 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1751
tcp_send_head(const struct sock * sk)1752 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1753 {
1754 return skb_peek(&sk->sk_write_queue);
1755 }
1756
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1757 static inline bool tcp_skb_is_last(const struct sock *sk,
1758 const struct sk_buff *skb)
1759 {
1760 return skb_queue_is_last(&sk->sk_write_queue, skb);
1761 }
1762
tcp_write_queue_empty(const struct sock * sk)1763 static inline bool tcp_write_queue_empty(const struct sock *sk)
1764 {
1765 return skb_queue_empty(&sk->sk_write_queue);
1766 }
1767
tcp_rtx_queue_empty(const struct sock * sk)1768 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1769 {
1770 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1771 }
1772
tcp_rtx_and_write_queues_empty(const struct sock * sk)1773 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1774 {
1775 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1776 }
1777
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1778 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1779 {
1780 __skb_queue_tail(&sk->sk_write_queue, skb);
1781
1782 /* Queue it, remembering where we must start sending. */
1783 if (sk->sk_write_queue.next == skb)
1784 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1785 }
1786
1787 /* Insert new before skb on the write queue of sk. */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1788 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1789 struct sk_buff *skb,
1790 struct sock *sk)
1791 {
1792 __skb_queue_before(&sk->sk_write_queue, skb, new);
1793 }
1794
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1795 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1796 {
1797 tcp_skb_tsorted_anchor_cleanup(skb);
1798 __skb_unlink(skb, &sk->sk_write_queue);
1799 }
1800
1801 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1802
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)1803 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1804 {
1805 tcp_skb_tsorted_anchor_cleanup(skb);
1806 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1807 }
1808
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)1809 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1810 {
1811 list_del(&skb->tcp_tsorted_anchor);
1812 tcp_rtx_queue_unlink(skb, sk);
1813 sk_wmem_free_skb(sk, skb);
1814 }
1815
tcp_push_pending_frames(struct sock * sk)1816 static inline void tcp_push_pending_frames(struct sock *sk)
1817 {
1818 if (tcp_send_head(sk)) {
1819 struct tcp_sock *tp = tcp_sk(sk);
1820
1821 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1822 }
1823 }
1824
1825 /* Start sequence of the skb just after the highest skb with SACKed
1826 * bit, valid only if sacked_out > 0 or when the caller has ensured
1827 * validity by itself.
1828 */
tcp_highest_sack_seq(struct tcp_sock * tp)1829 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1830 {
1831 if (!tp->sacked_out)
1832 return tp->snd_una;
1833
1834 if (tp->highest_sack == NULL)
1835 return tp->snd_nxt;
1836
1837 return TCP_SKB_CB(tp->highest_sack)->seq;
1838 }
1839
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)1840 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1841 {
1842 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1843 }
1844
tcp_highest_sack(struct sock * sk)1845 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1846 {
1847 return tcp_sk(sk)->highest_sack;
1848 }
1849
tcp_highest_sack_reset(struct sock * sk)1850 static inline void tcp_highest_sack_reset(struct sock *sk)
1851 {
1852 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1853 }
1854
1855 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)1856 static inline void tcp_highest_sack_replace(struct sock *sk,
1857 struct sk_buff *old,
1858 struct sk_buff *new)
1859 {
1860 if (old == tcp_highest_sack(sk))
1861 tcp_sk(sk)->highest_sack = new;
1862 }
1863
1864 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)1865 static inline bool inet_sk_transparent(const struct sock *sk)
1866 {
1867 switch (sk->sk_state) {
1868 case TCP_TIME_WAIT:
1869 return inet_twsk(sk)->tw_transparent;
1870 case TCP_NEW_SYN_RECV:
1871 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1872 }
1873 return inet_sk(sk)->transparent;
1874 }
1875
1876 /* Determines whether this is a thin stream (which may suffer from
1877 * increased latency). Used to trigger latency-reducing mechanisms.
1878 */
tcp_stream_is_thin(struct tcp_sock * tp)1879 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1880 {
1881 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1882 }
1883
1884 /* /proc */
1885 enum tcp_seq_states {
1886 TCP_SEQ_STATE_LISTENING,
1887 TCP_SEQ_STATE_ESTABLISHED,
1888 };
1889
1890 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1891 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1892 void tcp_seq_stop(struct seq_file *seq, void *v);
1893
1894 struct tcp_seq_afinfo {
1895 sa_family_t family;
1896 };
1897
1898 struct tcp_iter_state {
1899 struct seq_net_private p;
1900 enum tcp_seq_states state;
1901 struct sock *syn_wait_sk;
1902 int bucket, offset, sbucket, num;
1903 loff_t last_pos;
1904 };
1905
1906 extern struct request_sock_ops tcp_request_sock_ops;
1907 extern struct request_sock_ops tcp6_request_sock_ops;
1908
1909 void tcp_v4_destroy_sock(struct sock *sk);
1910
1911 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1912 netdev_features_t features);
1913 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1914 int tcp_gro_complete(struct sk_buff *skb);
1915
1916 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1917
tcp_notsent_lowat(const struct tcp_sock * tp)1918 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1919 {
1920 struct net *net = sock_net((struct sock *)tp);
1921 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1922 }
1923
1924 /* @wake is one when sk_stream_write_space() calls us.
1925 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1926 * This mimics the strategy used in sock_def_write_space().
1927 */
tcp_stream_memory_free(const struct sock * sk,int wake)1928 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1929 {
1930 const struct tcp_sock *tp = tcp_sk(sk);
1931 u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1932 READ_ONCE(tp->snd_nxt);
1933
1934 return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1935 }
1936
1937 #ifdef CONFIG_PROC_FS
1938 int tcp4_proc_init(void);
1939 void tcp4_proc_exit(void);
1940 #endif
1941
1942 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1943 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1944 const struct tcp_request_sock_ops *af_ops,
1945 struct sock *sk, struct sk_buff *skb);
1946
1947 /* TCP af-specific functions */
1948 struct tcp_sock_af_ops {
1949 #ifdef CONFIG_TCP_MD5SIG
1950 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
1951 const struct sock *addr_sk);
1952 int (*calc_md5_hash)(char *location,
1953 const struct tcp_md5sig_key *md5,
1954 const struct sock *sk,
1955 const struct sk_buff *skb);
1956 int (*md5_parse)(struct sock *sk,
1957 int optname,
1958 char __user *optval,
1959 int optlen);
1960 #endif
1961 };
1962
1963 struct tcp_request_sock_ops {
1964 u16 mss_clamp;
1965 #ifdef CONFIG_TCP_MD5SIG
1966 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1967 const struct sock *addr_sk);
1968 int (*calc_md5_hash) (char *location,
1969 const struct tcp_md5sig_key *md5,
1970 const struct sock *sk,
1971 const struct sk_buff *skb);
1972 #endif
1973 void (*init_req)(struct request_sock *req,
1974 const struct sock *sk_listener,
1975 struct sk_buff *skb);
1976 #ifdef CONFIG_SYN_COOKIES
1977 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
1978 __u16 *mss);
1979 #endif
1980 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1981 const struct request_sock *req);
1982 u32 (*init_seq)(const struct sk_buff *skb);
1983 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1984 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1985 struct flowi *fl, struct request_sock *req,
1986 struct tcp_fastopen_cookie *foc,
1987 enum tcp_synack_type synack_type);
1988 };
1989
1990 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)1991 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1992 const struct sock *sk, struct sk_buff *skb,
1993 __u16 *mss)
1994 {
1995 tcp_synq_overflow(sk);
1996 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1997 return ops->cookie_init_seq(skb, mss);
1998 }
1999 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2000 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2001 const struct sock *sk, struct sk_buff *skb,
2002 __u16 *mss)
2003 {
2004 return 0;
2005 }
2006 #endif
2007
2008 int tcpv4_offload_init(void);
2009
2010 void tcp_v4_init(void);
2011 void tcp_init(void);
2012
2013 /* tcp_recovery.c */
2014 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2015 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2016 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2017 u32 reo_wnd);
2018 extern void tcp_rack_mark_lost(struct sock *sk);
2019 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2020 u64 xmit_time);
2021 extern void tcp_rack_reo_timeout(struct sock *sk);
2022 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2023
2024 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)2025 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2026 {
2027 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2028 u32 rto = inet_csk(sk)->icsk_rto;
2029 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2030
2031 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2032 }
2033
2034 /*
2035 * Save and compile IPv4 options, return a pointer to it
2036 */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)2037 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2038 struct sk_buff *skb)
2039 {
2040 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2041 struct ip_options_rcu *dopt = NULL;
2042
2043 if (opt->optlen) {
2044 int opt_size = sizeof(*dopt) + opt->optlen;
2045
2046 dopt = kmalloc(opt_size, GFP_ATOMIC);
2047 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2048 kfree(dopt);
2049 dopt = NULL;
2050 }
2051 }
2052 return dopt;
2053 }
2054
2055 /* locally generated TCP pure ACKs have skb->truesize == 2
2056 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2057 * This is much faster than dissecting the packet to find out.
2058 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2059 */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2060 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2061 {
2062 return skb->truesize == 2;
2063 }
2064
skb_set_tcp_pure_ack(struct sk_buff * skb)2065 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2066 {
2067 skb->truesize = 2;
2068 }
2069
tcp_inq(struct sock * sk)2070 static inline int tcp_inq(struct sock *sk)
2071 {
2072 struct tcp_sock *tp = tcp_sk(sk);
2073 int answ;
2074
2075 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2076 answ = 0;
2077 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2078 !tp->urg_data ||
2079 before(tp->urg_seq, tp->copied_seq) ||
2080 !before(tp->urg_seq, tp->rcv_nxt)) {
2081
2082 answ = tp->rcv_nxt - tp->copied_seq;
2083
2084 /* Subtract 1, if FIN was received */
2085 if (answ && sock_flag(sk, SOCK_DONE))
2086 answ--;
2087 } else {
2088 answ = tp->urg_seq - tp->copied_seq;
2089 }
2090
2091 return answ;
2092 }
2093
2094 int tcp_peek_len(struct socket *sock);
2095
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2096 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2097 {
2098 u16 segs_in;
2099
2100 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2101 tp->segs_in += segs_in;
2102 if (skb->len > tcp_hdrlen(skb))
2103 tp->data_segs_in += segs_in;
2104 }
2105
2106 /*
2107 * TCP listen path runs lockless.
2108 * We forced "struct sock" to be const qualified to make sure
2109 * we don't modify one of its field by mistake.
2110 * Here, we increment sk_drops which is an atomic_t, so we can safely
2111 * make sock writable again.
2112 */
tcp_listendrop(const struct sock * sk)2113 static inline void tcp_listendrop(const struct sock *sk)
2114 {
2115 atomic_inc(&((struct sock *)sk)->sk_drops);
2116 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2117 }
2118
2119 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2120
2121 /*
2122 * Interface for adding Upper Level Protocols over TCP
2123 */
2124
2125 #define TCP_ULP_NAME_MAX 16
2126 #define TCP_ULP_MAX 128
2127 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2128
2129 struct tcp_ulp_ops {
2130 struct list_head list;
2131
2132 /* initialize ulp */
2133 int (*init)(struct sock *sk);
2134 /* update ulp */
2135 void (*update)(struct sock *sk, struct proto *p,
2136 void (*write_space)(struct sock *sk));
2137 /* cleanup ulp */
2138 void (*release)(struct sock *sk);
2139 /* diagnostic */
2140 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2141 size_t (*get_info_size)(const struct sock *sk);
2142
2143 char name[TCP_ULP_NAME_MAX];
2144 struct module *owner;
2145 };
2146 int tcp_register_ulp(struct tcp_ulp_ops *type);
2147 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2148 int tcp_set_ulp(struct sock *sk, const char *name);
2149 void tcp_get_available_ulp(char *buf, size_t len);
2150 void tcp_cleanup_ulp(struct sock *sk);
2151 void tcp_update_ulp(struct sock *sk, struct proto *p,
2152 void (*write_space)(struct sock *sk));
2153
2154 #define MODULE_ALIAS_TCP_ULP(name) \
2155 __MODULE_INFO(alias, alias_userspace, name); \
2156 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2157
2158 struct sk_msg;
2159 struct sk_psock;
2160
2161 int tcp_bpf_init(struct sock *sk);
2162 void tcp_bpf_reinit(struct sock *sk);
2163 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2164 int flags);
2165 int tcp_bpf_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2166 int nonblock, int flags, int *addr_len);
2167 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2168 struct msghdr *msg, int len, int flags);
2169
2170 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2171 * is < 0, then the BPF op failed (for example if the loaded BPF
2172 * program does not support the chosen operation or there is no BPF
2173 * program loaded).
2174 */
2175 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2176 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2177 {
2178 struct bpf_sock_ops_kern sock_ops;
2179 int ret;
2180
2181 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2182 if (sk_fullsock(sk)) {
2183 sock_ops.is_fullsock = 1;
2184 sock_owned_by_me(sk);
2185 }
2186
2187 sock_ops.sk = sk;
2188 sock_ops.op = op;
2189 if (nargs > 0)
2190 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2191
2192 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2193 if (ret == 0)
2194 ret = sock_ops.reply;
2195 else
2196 ret = -1;
2197 return ret;
2198 }
2199
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2200 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2201 {
2202 u32 args[2] = {arg1, arg2};
2203
2204 return tcp_call_bpf(sk, op, 2, args);
2205 }
2206
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2207 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2208 u32 arg3)
2209 {
2210 u32 args[3] = {arg1, arg2, arg3};
2211
2212 return tcp_call_bpf(sk, op, 3, args);
2213 }
2214
2215 #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2216 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2217 {
2218 return -EPERM;
2219 }
2220
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2221 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2222 {
2223 return -EPERM;
2224 }
2225
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2226 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2227 u32 arg3)
2228 {
2229 return -EPERM;
2230 }
2231
2232 #endif
2233
tcp_timeout_init(struct sock * sk)2234 static inline u32 tcp_timeout_init(struct sock *sk)
2235 {
2236 int timeout;
2237
2238 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2239
2240 if (timeout <= 0)
2241 timeout = TCP_TIMEOUT_INIT;
2242 return timeout;
2243 }
2244
tcp_rwnd_init_bpf(struct sock * sk)2245 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2246 {
2247 int rwnd;
2248
2249 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2250
2251 if (rwnd < 0)
2252 rwnd = 0;
2253 return rwnd;
2254 }
2255
tcp_bpf_ca_needs_ecn(struct sock * sk)2256 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2257 {
2258 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2259 }
2260
tcp_bpf_rtt(struct sock * sk)2261 static inline void tcp_bpf_rtt(struct sock *sk)
2262 {
2263 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2264 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2265 }
2266
2267 #if IS_ENABLED(CONFIG_SMC)
2268 extern struct static_key_false tcp_have_smc;
2269 #endif
2270
2271 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2272 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2273 void (*cad)(struct sock *sk, u32 ack_seq));
2274 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2275 void clean_acked_data_flush(void);
2276 #endif
2277
2278 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
tcp_add_tx_delay(struct sk_buff * skb,const struct tcp_sock * tp)2279 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2280 const struct tcp_sock *tp)
2281 {
2282 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2283 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2284 }
2285
2286 /* Compute Earliest Departure Time for some control packets
2287 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2288 */
tcp_transmit_time(const struct sock * sk)2289 static inline u64 tcp_transmit_time(const struct sock *sk)
2290 {
2291 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2292 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2293 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2294
2295 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2296 }
2297 return 0;
2298 }
2299
2300 #endif /* _TCP_H */
2301