• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file contains the functions which manage clocksource drivers.
4  *
5  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17 
18 #include "tick-internal.h"
19 #include "timekeeping_internal.h"
20 
21 /**
22  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
23  * @mult:	pointer to mult variable
24  * @shift:	pointer to shift variable
25  * @from:	frequency to convert from
26  * @to:		frequency to convert to
27  * @maxsec:	guaranteed runtime conversion range in seconds
28  *
29  * The function evaluates the shift/mult pair for the scaled math
30  * operations of clocksources and clockevents.
31  *
32  * @to and @from are frequency values in HZ. For clock sources @to is
33  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
34  * event @to is the counter frequency and @from is NSEC_PER_SEC.
35  *
36  * The @maxsec conversion range argument controls the time frame in
37  * seconds which must be covered by the runtime conversion with the
38  * calculated mult and shift factors. This guarantees that no 64bit
39  * overflow happens when the input value of the conversion is
40  * multiplied with the calculated mult factor. Larger ranges may
41  * reduce the conversion accuracy by chosing smaller mult and shift
42  * factors.
43  */
44 void
clocks_calc_mult_shift(u32 * mult,u32 * shift,u32 from,u32 to,u32 maxsec)45 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
46 {
47 	u64 tmp;
48 	u32 sft, sftacc= 32;
49 
50 	/*
51 	 * Calculate the shift factor which is limiting the conversion
52 	 * range:
53 	 */
54 	tmp = ((u64)maxsec * from) >> 32;
55 	while (tmp) {
56 		tmp >>=1;
57 		sftacc--;
58 	}
59 
60 	/*
61 	 * Find the conversion shift/mult pair which has the best
62 	 * accuracy and fits the maxsec conversion range:
63 	 */
64 	for (sft = 32; sft > 0; sft--) {
65 		tmp = (u64) to << sft;
66 		tmp += from / 2;
67 		do_div(tmp, from);
68 		if ((tmp >> sftacc) == 0)
69 			break;
70 	}
71 	*mult = tmp;
72 	*shift = sft;
73 }
74 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
75 
76 /*[Clocksource internal variables]---------
77  * curr_clocksource:
78  *	currently selected clocksource.
79  * suspend_clocksource:
80  *	used to calculate the suspend time.
81  * clocksource_list:
82  *	linked list with the registered clocksources
83  * clocksource_mutex:
84  *	protects manipulations to curr_clocksource and the clocksource_list
85  * override_name:
86  *	Name of the user-specified clocksource.
87  */
88 static struct clocksource *curr_clocksource;
89 static struct clocksource *suspend_clocksource;
90 static LIST_HEAD(clocksource_list);
91 static DEFINE_MUTEX(clocksource_mutex);
92 static char override_name[CS_NAME_LEN];
93 static int finished_booting;
94 static u64 suspend_start;
95 
96 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
97 static void clocksource_watchdog_work(struct work_struct *work);
98 static void clocksource_select(void);
99 
100 static LIST_HEAD(watchdog_list);
101 static struct clocksource *watchdog;
102 static struct timer_list watchdog_timer;
103 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
104 static DEFINE_SPINLOCK(watchdog_lock);
105 static int watchdog_running;
106 static atomic_t watchdog_reset_pending;
107 
clocksource_watchdog_lock(unsigned long * flags)108 static inline void clocksource_watchdog_lock(unsigned long *flags)
109 {
110 	spin_lock_irqsave(&watchdog_lock, *flags);
111 }
112 
clocksource_watchdog_unlock(unsigned long * flags)113 static inline void clocksource_watchdog_unlock(unsigned long *flags)
114 {
115 	spin_unlock_irqrestore(&watchdog_lock, *flags);
116 }
117 
118 static int clocksource_watchdog_kthread(void *data);
119 static void __clocksource_change_rating(struct clocksource *cs, int rating);
120 
121 /*
122  * Interval: 0.5sec Threshold: 0.0625s
123  */
124 #define WATCHDOG_INTERVAL (HZ >> 1)
125 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
126 
clocksource_watchdog_work(struct work_struct * work)127 static void clocksource_watchdog_work(struct work_struct *work)
128 {
129 	/*
130 	 * We cannot directly run clocksource_watchdog_kthread() here, because
131 	 * clocksource_select() calls timekeeping_notify() which uses
132 	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
133 	 * lock inversions wrt CPU hotplug.
134 	 *
135 	 * Also, we only ever run this work once or twice during the lifetime
136 	 * of the kernel, so there is no point in creating a more permanent
137 	 * kthread for this.
138 	 *
139 	 * If kthread_run fails the next watchdog scan over the
140 	 * watchdog_list will find the unstable clock again.
141 	 */
142 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
143 }
144 
__clocksource_unstable(struct clocksource * cs)145 static void __clocksource_unstable(struct clocksource *cs)
146 {
147 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
148 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
149 
150 	/*
151 	 * If the clocksource is registered clocksource_watchdog_kthread() will
152 	 * re-rate and re-select.
153 	 */
154 	if (list_empty(&cs->list)) {
155 		cs->rating = 0;
156 		return;
157 	}
158 
159 	if (cs->mark_unstable)
160 		cs->mark_unstable(cs);
161 
162 	/* kick clocksource_watchdog_kthread() */
163 	if (finished_booting)
164 		schedule_work(&watchdog_work);
165 }
166 
167 /**
168  * clocksource_mark_unstable - mark clocksource unstable via watchdog
169  * @cs:		clocksource to be marked unstable
170  *
171  * This function is called by the x86 TSC code to mark clocksources as unstable;
172  * it defers demotion and re-selection to a kthread.
173  */
clocksource_mark_unstable(struct clocksource * cs)174 void clocksource_mark_unstable(struct clocksource *cs)
175 {
176 	unsigned long flags;
177 
178 	spin_lock_irqsave(&watchdog_lock, flags);
179 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
180 		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
181 			list_add(&cs->wd_list, &watchdog_list);
182 		__clocksource_unstable(cs);
183 	}
184 	spin_unlock_irqrestore(&watchdog_lock, flags);
185 }
186 
clocksource_watchdog(struct timer_list * unused)187 static void clocksource_watchdog(struct timer_list *unused)
188 {
189 	struct clocksource *cs;
190 	u64 csnow, wdnow, cslast, wdlast, delta;
191 	int64_t wd_nsec, cs_nsec;
192 	int next_cpu, reset_pending;
193 
194 	spin_lock(&watchdog_lock);
195 	if (!watchdog_running)
196 		goto out;
197 
198 	reset_pending = atomic_read(&watchdog_reset_pending);
199 
200 	list_for_each_entry(cs, &watchdog_list, wd_list) {
201 
202 		/* Clocksource already marked unstable? */
203 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
204 			if (finished_booting)
205 				schedule_work(&watchdog_work);
206 			continue;
207 		}
208 
209 		local_irq_disable();
210 		csnow = cs->read(cs);
211 		wdnow = watchdog->read(watchdog);
212 		local_irq_enable();
213 
214 		/* Clocksource initialized ? */
215 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
216 		    atomic_read(&watchdog_reset_pending)) {
217 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
218 			cs->wd_last = wdnow;
219 			cs->cs_last = csnow;
220 			continue;
221 		}
222 
223 		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
224 		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
225 					     watchdog->shift);
226 
227 		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
228 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
229 		wdlast = cs->wd_last; /* save these in case we print them */
230 		cslast = cs->cs_last;
231 		cs->cs_last = csnow;
232 		cs->wd_last = wdnow;
233 
234 		if (atomic_read(&watchdog_reset_pending))
235 			continue;
236 
237 		/* Check the deviation from the watchdog clocksource. */
238 		if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
239 			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
240 				smp_processor_id(), cs->name);
241 			pr_warn("                      '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
242 				watchdog->name, wdnow, wdlast, watchdog->mask);
243 			pr_warn("                      '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
244 				cs->name, csnow, cslast, cs->mask);
245 			__clocksource_unstable(cs);
246 			continue;
247 		}
248 
249 		if (cs == curr_clocksource && cs->tick_stable)
250 			cs->tick_stable(cs);
251 
252 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
253 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
254 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
255 			/* Mark it valid for high-res. */
256 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
257 
258 			/*
259 			 * clocksource_done_booting() will sort it if
260 			 * finished_booting is not set yet.
261 			 */
262 			if (!finished_booting)
263 				continue;
264 
265 			/*
266 			 * If this is not the current clocksource let
267 			 * the watchdog thread reselect it. Due to the
268 			 * change to high res this clocksource might
269 			 * be preferred now. If it is the current
270 			 * clocksource let the tick code know about
271 			 * that change.
272 			 */
273 			if (cs != curr_clocksource) {
274 				cs->flags |= CLOCK_SOURCE_RESELECT;
275 				schedule_work(&watchdog_work);
276 			} else {
277 				tick_clock_notify();
278 			}
279 		}
280 	}
281 
282 	/*
283 	 * We only clear the watchdog_reset_pending, when we did a
284 	 * full cycle through all clocksources.
285 	 */
286 	if (reset_pending)
287 		atomic_dec(&watchdog_reset_pending);
288 
289 	/*
290 	 * Cycle through CPUs to check if the CPUs stay synchronized
291 	 * to each other.
292 	 */
293 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
294 	if (next_cpu >= nr_cpu_ids)
295 		next_cpu = cpumask_first(cpu_online_mask);
296 	watchdog_timer.expires += WATCHDOG_INTERVAL;
297 	add_timer_on(&watchdog_timer, next_cpu);
298 out:
299 	spin_unlock(&watchdog_lock);
300 }
301 
clocksource_start_watchdog(void)302 static inline void clocksource_start_watchdog(void)
303 {
304 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
305 		return;
306 	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
307 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
308 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
309 	watchdog_running = 1;
310 }
311 
clocksource_stop_watchdog(void)312 static inline void clocksource_stop_watchdog(void)
313 {
314 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
315 		return;
316 	del_timer(&watchdog_timer);
317 	watchdog_running = 0;
318 }
319 
clocksource_reset_watchdog(void)320 static inline void clocksource_reset_watchdog(void)
321 {
322 	struct clocksource *cs;
323 
324 	list_for_each_entry(cs, &watchdog_list, wd_list)
325 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
326 }
327 
clocksource_resume_watchdog(void)328 static void clocksource_resume_watchdog(void)
329 {
330 	atomic_inc(&watchdog_reset_pending);
331 }
332 
clocksource_enqueue_watchdog(struct clocksource * cs)333 static void clocksource_enqueue_watchdog(struct clocksource *cs)
334 {
335 	INIT_LIST_HEAD(&cs->wd_list);
336 
337 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
338 		/* cs is a clocksource to be watched. */
339 		list_add(&cs->wd_list, &watchdog_list);
340 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
341 	} else {
342 		/* cs is a watchdog. */
343 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
344 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
345 	}
346 }
347 
clocksource_select_watchdog(bool fallback)348 static void clocksource_select_watchdog(bool fallback)
349 {
350 	struct clocksource *cs, *old_wd;
351 	unsigned long flags;
352 
353 	spin_lock_irqsave(&watchdog_lock, flags);
354 	/* save current watchdog */
355 	old_wd = watchdog;
356 	if (fallback)
357 		watchdog = NULL;
358 
359 	list_for_each_entry(cs, &clocksource_list, list) {
360 		/* cs is a clocksource to be watched. */
361 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
362 			continue;
363 
364 		/* Skip current if we were requested for a fallback. */
365 		if (fallback && cs == old_wd)
366 			continue;
367 
368 		/* Pick the best watchdog. */
369 		if (!watchdog || cs->rating > watchdog->rating)
370 			watchdog = cs;
371 	}
372 	/* If we failed to find a fallback restore the old one. */
373 	if (!watchdog)
374 		watchdog = old_wd;
375 
376 	/* If we changed the watchdog we need to reset cycles. */
377 	if (watchdog != old_wd)
378 		clocksource_reset_watchdog();
379 
380 	/* Check if the watchdog timer needs to be started. */
381 	clocksource_start_watchdog();
382 	spin_unlock_irqrestore(&watchdog_lock, flags);
383 }
384 
clocksource_dequeue_watchdog(struct clocksource * cs)385 static void clocksource_dequeue_watchdog(struct clocksource *cs)
386 {
387 	if (cs != watchdog) {
388 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
389 			/* cs is a watched clocksource. */
390 			list_del_init(&cs->wd_list);
391 			/* Check if the watchdog timer needs to be stopped. */
392 			clocksource_stop_watchdog();
393 		}
394 	}
395 }
396 
__clocksource_watchdog_kthread(void)397 static int __clocksource_watchdog_kthread(void)
398 {
399 	struct clocksource *cs, *tmp;
400 	unsigned long flags;
401 	int select = 0;
402 
403 	spin_lock_irqsave(&watchdog_lock, flags);
404 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
405 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
406 			list_del_init(&cs->wd_list);
407 			__clocksource_change_rating(cs, 0);
408 			select = 1;
409 		}
410 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
411 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
412 			select = 1;
413 		}
414 	}
415 	/* Check if the watchdog timer needs to be stopped. */
416 	clocksource_stop_watchdog();
417 	spin_unlock_irqrestore(&watchdog_lock, flags);
418 
419 	return select;
420 }
421 
clocksource_watchdog_kthread(void * data)422 static int clocksource_watchdog_kthread(void *data)
423 {
424 	mutex_lock(&clocksource_mutex);
425 	if (__clocksource_watchdog_kthread())
426 		clocksource_select();
427 	mutex_unlock(&clocksource_mutex);
428 	return 0;
429 }
430 
clocksource_is_watchdog(struct clocksource * cs)431 static bool clocksource_is_watchdog(struct clocksource *cs)
432 {
433 	return cs == watchdog;
434 }
435 
436 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
437 
clocksource_enqueue_watchdog(struct clocksource * cs)438 static void clocksource_enqueue_watchdog(struct clocksource *cs)
439 {
440 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
441 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
442 }
443 
clocksource_select_watchdog(bool fallback)444 static void clocksource_select_watchdog(bool fallback) { }
clocksource_dequeue_watchdog(struct clocksource * cs)445 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
clocksource_resume_watchdog(void)446 static inline void clocksource_resume_watchdog(void) { }
__clocksource_watchdog_kthread(void)447 static inline int __clocksource_watchdog_kthread(void) { return 0; }
clocksource_is_watchdog(struct clocksource * cs)448 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
clocksource_mark_unstable(struct clocksource * cs)449 void clocksource_mark_unstable(struct clocksource *cs) { }
450 
clocksource_watchdog_lock(unsigned long * flags)451 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
clocksource_watchdog_unlock(unsigned long * flags)452 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
453 
454 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
455 
clocksource_is_suspend(struct clocksource * cs)456 static bool clocksource_is_suspend(struct clocksource *cs)
457 {
458 	return cs == suspend_clocksource;
459 }
460 
__clocksource_suspend_select(struct clocksource * cs)461 static void __clocksource_suspend_select(struct clocksource *cs)
462 {
463 	/*
464 	 * Skip the clocksource which will be stopped in suspend state.
465 	 */
466 	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
467 		return;
468 
469 	/*
470 	 * The nonstop clocksource can be selected as the suspend clocksource to
471 	 * calculate the suspend time, so it should not supply suspend/resume
472 	 * interfaces to suspend the nonstop clocksource when system suspends.
473 	 */
474 	if (cs->suspend || cs->resume) {
475 		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
476 			cs->name);
477 	}
478 
479 	/* Pick the best rating. */
480 	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
481 		suspend_clocksource = cs;
482 }
483 
484 /**
485  * clocksource_suspend_select - Select the best clocksource for suspend timing
486  * @fallback:	if select a fallback clocksource
487  */
clocksource_suspend_select(bool fallback)488 static void clocksource_suspend_select(bool fallback)
489 {
490 	struct clocksource *cs, *old_suspend;
491 
492 	old_suspend = suspend_clocksource;
493 	if (fallback)
494 		suspend_clocksource = NULL;
495 
496 	list_for_each_entry(cs, &clocksource_list, list) {
497 		/* Skip current if we were requested for a fallback. */
498 		if (fallback && cs == old_suspend)
499 			continue;
500 
501 		__clocksource_suspend_select(cs);
502 	}
503 }
504 
505 /**
506  * clocksource_start_suspend_timing - Start measuring the suspend timing
507  * @cs:			current clocksource from timekeeping
508  * @start_cycles:	current cycles from timekeeping
509  *
510  * This function will save the start cycle values of suspend timer to calculate
511  * the suspend time when resuming system.
512  *
513  * This function is called late in the suspend process from timekeeping_suspend(),
514  * that means processes are freezed, non-boot cpus and interrupts are disabled
515  * now. It is therefore possible to start the suspend timer without taking the
516  * clocksource mutex.
517  */
clocksource_start_suspend_timing(struct clocksource * cs,u64 start_cycles)518 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
519 {
520 	if (!suspend_clocksource)
521 		return;
522 
523 	/*
524 	 * If current clocksource is the suspend timer, we should use the
525 	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
526 	 * from suspend timer.
527 	 */
528 	if (clocksource_is_suspend(cs)) {
529 		suspend_start = start_cycles;
530 		return;
531 	}
532 
533 	if (suspend_clocksource->enable &&
534 	    suspend_clocksource->enable(suspend_clocksource)) {
535 		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
536 		return;
537 	}
538 
539 	suspend_start = suspend_clocksource->read(suspend_clocksource);
540 }
541 
542 /**
543  * clocksource_stop_suspend_timing - Stop measuring the suspend timing
544  * @cs:		current clocksource from timekeeping
545  * @cycle_now:	current cycles from timekeeping
546  *
547  * This function will calculate the suspend time from suspend timer.
548  *
549  * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
550  *
551  * This function is called early in the resume process from timekeeping_resume(),
552  * that means there is only one cpu, no processes are running and the interrupts
553  * are disabled. It is therefore possible to stop the suspend timer without
554  * taking the clocksource mutex.
555  */
clocksource_stop_suspend_timing(struct clocksource * cs,u64 cycle_now)556 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
557 {
558 	u64 now, delta, nsec = 0;
559 
560 	if (!suspend_clocksource)
561 		return 0;
562 
563 	/*
564 	 * If current clocksource is the suspend timer, we should use the
565 	 * tkr_mono.cycle_last value from timekeeping as current cycle to
566 	 * avoid same reading from suspend timer.
567 	 */
568 	if (clocksource_is_suspend(cs))
569 		now = cycle_now;
570 	else
571 		now = suspend_clocksource->read(suspend_clocksource);
572 
573 	if (now > suspend_start) {
574 		delta = clocksource_delta(now, suspend_start,
575 					  suspend_clocksource->mask);
576 		nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
577 				       suspend_clocksource->shift);
578 	}
579 
580 	/*
581 	 * Disable the suspend timer to save power if current clocksource is
582 	 * not the suspend timer.
583 	 */
584 	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
585 		suspend_clocksource->disable(suspend_clocksource);
586 
587 	return nsec;
588 }
589 
590 /**
591  * clocksource_suspend - suspend the clocksource(s)
592  */
clocksource_suspend(void)593 void clocksource_suspend(void)
594 {
595 	struct clocksource *cs;
596 
597 	list_for_each_entry_reverse(cs, &clocksource_list, list)
598 		if (cs->suspend)
599 			cs->suspend(cs);
600 }
601 
602 /**
603  * clocksource_resume - resume the clocksource(s)
604  */
clocksource_resume(void)605 void clocksource_resume(void)
606 {
607 	struct clocksource *cs;
608 
609 	list_for_each_entry(cs, &clocksource_list, list)
610 		if (cs->resume)
611 			cs->resume(cs);
612 
613 	clocksource_resume_watchdog();
614 }
615 
616 /**
617  * clocksource_touch_watchdog - Update watchdog
618  *
619  * Update the watchdog after exception contexts such as kgdb so as not
620  * to incorrectly trip the watchdog. This might fail when the kernel
621  * was stopped in code which holds watchdog_lock.
622  */
clocksource_touch_watchdog(void)623 void clocksource_touch_watchdog(void)
624 {
625 	clocksource_resume_watchdog();
626 }
627 
628 /**
629  * clocksource_max_adjustment- Returns max adjustment amount
630  * @cs:         Pointer to clocksource
631  *
632  */
clocksource_max_adjustment(struct clocksource * cs)633 static u32 clocksource_max_adjustment(struct clocksource *cs)
634 {
635 	u64 ret;
636 	/*
637 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
638 	 */
639 	ret = (u64)cs->mult * 11;
640 	do_div(ret,100);
641 	return (u32)ret;
642 }
643 
644 /**
645  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
646  * @mult:	cycle to nanosecond multiplier
647  * @shift:	cycle to nanosecond divisor (power of two)
648  * @maxadj:	maximum adjustment value to mult (~11%)
649  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
650  * @max_cyc:	maximum cycle value before potential overflow (does not include
651  *		any safety margin)
652  *
653  * NOTE: This function includes a safety margin of 50%, in other words, we
654  * return half the number of nanoseconds the hardware counter can technically
655  * cover. This is done so that we can potentially detect problems caused by
656  * delayed timers or bad hardware, which might result in time intervals that
657  * are larger than what the math used can handle without overflows.
658  */
clocks_calc_max_nsecs(u32 mult,u32 shift,u32 maxadj,u64 mask,u64 * max_cyc)659 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
660 {
661 	u64 max_nsecs, max_cycles;
662 
663 	/*
664 	 * Calculate the maximum number of cycles that we can pass to the
665 	 * cyc2ns() function without overflowing a 64-bit result.
666 	 */
667 	max_cycles = ULLONG_MAX;
668 	do_div(max_cycles, mult+maxadj);
669 
670 	/*
671 	 * The actual maximum number of cycles we can defer the clocksource is
672 	 * determined by the minimum of max_cycles and mask.
673 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
674 	 * too long if there's a large negative adjustment.
675 	 */
676 	max_cycles = min(max_cycles, mask);
677 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
678 
679 	/* return the max_cycles value as well if requested */
680 	if (max_cyc)
681 		*max_cyc = max_cycles;
682 
683 	/* Return 50% of the actual maximum, so we can detect bad values */
684 	max_nsecs >>= 1;
685 
686 	return max_nsecs;
687 }
688 
689 /**
690  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
691  * @cs:         Pointer to clocksource to be updated
692  *
693  */
clocksource_update_max_deferment(struct clocksource * cs)694 static inline void clocksource_update_max_deferment(struct clocksource *cs)
695 {
696 	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
697 						cs->maxadj, cs->mask,
698 						&cs->max_cycles);
699 }
700 
701 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
702 
clocksource_find_best(bool oneshot,bool skipcur)703 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
704 {
705 	struct clocksource *cs;
706 
707 	if (!finished_booting || list_empty(&clocksource_list))
708 		return NULL;
709 
710 	/*
711 	 * We pick the clocksource with the highest rating. If oneshot
712 	 * mode is active, we pick the highres valid clocksource with
713 	 * the best rating.
714 	 */
715 	list_for_each_entry(cs, &clocksource_list, list) {
716 		if (skipcur && cs == curr_clocksource)
717 			continue;
718 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
719 			continue;
720 		return cs;
721 	}
722 	return NULL;
723 }
724 
__clocksource_select(bool skipcur)725 static void __clocksource_select(bool skipcur)
726 {
727 	bool oneshot = tick_oneshot_mode_active();
728 	struct clocksource *best, *cs;
729 
730 	/* Find the best suitable clocksource */
731 	best = clocksource_find_best(oneshot, skipcur);
732 	if (!best)
733 		return;
734 
735 	if (!strlen(override_name))
736 		goto found;
737 
738 	/* Check for the override clocksource. */
739 	list_for_each_entry(cs, &clocksource_list, list) {
740 		if (skipcur && cs == curr_clocksource)
741 			continue;
742 		if (strcmp(cs->name, override_name) != 0)
743 			continue;
744 		/*
745 		 * Check to make sure we don't switch to a non-highres
746 		 * capable clocksource if the tick code is in oneshot
747 		 * mode (highres or nohz)
748 		 */
749 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
750 			/* Override clocksource cannot be used. */
751 			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
752 				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
753 					cs->name);
754 				override_name[0] = 0;
755 			} else {
756 				/*
757 				 * The override cannot be currently verified.
758 				 * Deferring to let the watchdog check.
759 				 */
760 				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
761 					cs->name);
762 			}
763 		} else
764 			/* Override clocksource can be used. */
765 			best = cs;
766 		break;
767 	}
768 
769 found:
770 	if (curr_clocksource != best && !timekeeping_notify(best)) {
771 		pr_info("Switched to clocksource %s\n", best->name);
772 		curr_clocksource = best;
773 	}
774 }
775 
776 /**
777  * clocksource_select - Select the best clocksource available
778  *
779  * Private function. Must hold clocksource_mutex when called.
780  *
781  * Select the clocksource with the best rating, or the clocksource,
782  * which is selected by userspace override.
783  */
clocksource_select(void)784 static void clocksource_select(void)
785 {
786 	__clocksource_select(false);
787 }
788 
clocksource_select_fallback(void)789 static void clocksource_select_fallback(void)
790 {
791 	__clocksource_select(true);
792 }
793 
794 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
clocksource_select(void)795 static inline void clocksource_select(void) { }
clocksource_select_fallback(void)796 static inline void clocksource_select_fallback(void) { }
797 
798 #endif
799 
800 /*
801  * clocksource_done_booting - Called near the end of core bootup
802  *
803  * Hack to avoid lots of clocksource churn at boot time.
804  * We use fs_initcall because we want this to start before
805  * device_initcall but after subsys_initcall.
806  */
clocksource_done_booting(void)807 static int __init clocksource_done_booting(void)
808 {
809 	mutex_lock(&clocksource_mutex);
810 	curr_clocksource = clocksource_default_clock();
811 	finished_booting = 1;
812 	/*
813 	 * Run the watchdog first to eliminate unstable clock sources
814 	 */
815 	__clocksource_watchdog_kthread();
816 	clocksource_select();
817 	mutex_unlock(&clocksource_mutex);
818 	return 0;
819 }
820 fs_initcall(clocksource_done_booting);
821 
822 /*
823  * Enqueue the clocksource sorted by rating
824  */
clocksource_enqueue(struct clocksource * cs)825 static void clocksource_enqueue(struct clocksource *cs)
826 {
827 	struct list_head *entry = &clocksource_list;
828 	struct clocksource *tmp;
829 
830 	list_for_each_entry(tmp, &clocksource_list, list) {
831 		/* Keep track of the place, where to insert */
832 		if (tmp->rating < cs->rating)
833 			break;
834 		entry = &tmp->list;
835 	}
836 	list_add(&cs->list, entry);
837 }
838 
839 /**
840  * __clocksource_update_freq_scale - Used update clocksource with new freq
841  * @cs:		clocksource to be registered
842  * @scale:	Scale factor multiplied against freq to get clocksource hz
843  * @freq:	clocksource frequency (cycles per second) divided by scale
844  *
845  * This should only be called from the clocksource->enable() method.
846  *
847  * This *SHOULD NOT* be called directly! Please use the
848  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
849  * functions.
850  */
__clocksource_update_freq_scale(struct clocksource * cs,u32 scale,u32 freq)851 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
852 {
853 	u64 sec;
854 
855 	/*
856 	 * Default clocksources are *special* and self-define their mult/shift.
857 	 * But, you're not special, so you should specify a freq value.
858 	 */
859 	if (freq) {
860 		/*
861 		 * Calc the maximum number of seconds which we can run before
862 		 * wrapping around. For clocksources which have a mask > 32-bit
863 		 * we need to limit the max sleep time to have a good
864 		 * conversion precision. 10 minutes is still a reasonable
865 		 * amount. That results in a shift value of 24 for a
866 		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
867 		 * ~ 0.06ppm granularity for NTP.
868 		 */
869 		sec = cs->mask;
870 		do_div(sec, freq);
871 		do_div(sec, scale);
872 		if (!sec)
873 			sec = 1;
874 		else if (sec > 600 && cs->mask > UINT_MAX)
875 			sec = 600;
876 
877 		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
878 				       NSEC_PER_SEC / scale, sec * scale);
879 	}
880 	/*
881 	 * Ensure clocksources that have large 'mult' values don't overflow
882 	 * when adjusted.
883 	 */
884 	cs->maxadj = clocksource_max_adjustment(cs);
885 	while (freq && ((cs->mult + cs->maxadj < cs->mult)
886 		|| (cs->mult - cs->maxadj > cs->mult))) {
887 		cs->mult >>= 1;
888 		cs->shift--;
889 		cs->maxadj = clocksource_max_adjustment(cs);
890 	}
891 
892 	/*
893 	 * Only warn for *special* clocksources that self-define
894 	 * their mult/shift values and don't specify a freq.
895 	 */
896 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
897 		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
898 		cs->name);
899 
900 	clocksource_update_max_deferment(cs);
901 
902 	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
903 		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
904 }
905 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
906 
907 /**
908  * __clocksource_register_scale - Used to install new clocksources
909  * @cs:		clocksource to be registered
910  * @scale:	Scale factor multiplied against freq to get clocksource hz
911  * @freq:	clocksource frequency (cycles per second) divided by scale
912  *
913  * Returns -EBUSY if registration fails, zero otherwise.
914  *
915  * This *SHOULD NOT* be called directly! Please use the
916  * clocksource_register_hz() or clocksource_register_khz helper functions.
917  */
__clocksource_register_scale(struct clocksource * cs,u32 scale,u32 freq)918 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
919 {
920 	unsigned long flags;
921 
922 	clocksource_arch_init(cs);
923 
924 	/* Initialize mult/shift and max_idle_ns */
925 	__clocksource_update_freq_scale(cs, scale, freq);
926 
927 	/* Add clocksource to the clocksource list */
928 	mutex_lock(&clocksource_mutex);
929 
930 	clocksource_watchdog_lock(&flags);
931 	clocksource_enqueue(cs);
932 	clocksource_enqueue_watchdog(cs);
933 	clocksource_watchdog_unlock(&flags);
934 
935 	clocksource_select();
936 	clocksource_select_watchdog(false);
937 	__clocksource_suspend_select(cs);
938 	mutex_unlock(&clocksource_mutex);
939 	return 0;
940 }
941 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
942 
__clocksource_change_rating(struct clocksource * cs,int rating)943 static void __clocksource_change_rating(struct clocksource *cs, int rating)
944 {
945 	list_del(&cs->list);
946 	cs->rating = rating;
947 	clocksource_enqueue(cs);
948 }
949 
950 /**
951  * clocksource_change_rating - Change the rating of a registered clocksource
952  * @cs:		clocksource to be changed
953  * @rating:	new rating
954  */
clocksource_change_rating(struct clocksource * cs,int rating)955 void clocksource_change_rating(struct clocksource *cs, int rating)
956 {
957 	unsigned long flags;
958 
959 	mutex_lock(&clocksource_mutex);
960 	clocksource_watchdog_lock(&flags);
961 	__clocksource_change_rating(cs, rating);
962 	clocksource_watchdog_unlock(&flags);
963 
964 	clocksource_select();
965 	clocksource_select_watchdog(false);
966 	clocksource_suspend_select(false);
967 	mutex_unlock(&clocksource_mutex);
968 }
969 EXPORT_SYMBOL(clocksource_change_rating);
970 
971 /*
972  * Unbind clocksource @cs. Called with clocksource_mutex held
973  */
clocksource_unbind(struct clocksource * cs)974 static int clocksource_unbind(struct clocksource *cs)
975 {
976 	unsigned long flags;
977 
978 	if (clocksource_is_watchdog(cs)) {
979 		/* Select and try to install a replacement watchdog. */
980 		clocksource_select_watchdog(true);
981 		if (clocksource_is_watchdog(cs))
982 			return -EBUSY;
983 	}
984 
985 	if (cs == curr_clocksource) {
986 		/* Select and try to install a replacement clock source */
987 		clocksource_select_fallback();
988 		if (curr_clocksource == cs)
989 			return -EBUSY;
990 	}
991 
992 	if (clocksource_is_suspend(cs)) {
993 		/*
994 		 * Select and try to install a replacement suspend clocksource.
995 		 * If no replacement suspend clocksource, we will just let the
996 		 * clocksource go and have no suspend clocksource.
997 		 */
998 		clocksource_suspend_select(true);
999 	}
1000 
1001 	clocksource_watchdog_lock(&flags);
1002 	clocksource_dequeue_watchdog(cs);
1003 	list_del_init(&cs->list);
1004 	clocksource_watchdog_unlock(&flags);
1005 
1006 	return 0;
1007 }
1008 
1009 /**
1010  * clocksource_unregister - remove a registered clocksource
1011  * @cs:	clocksource to be unregistered
1012  */
clocksource_unregister(struct clocksource * cs)1013 int clocksource_unregister(struct clocksource *cs)
1014 {
1015 	int ret = 0;
1016 
1017 	mutex_lock(&clocksource_mutex);
1018 	if (!list_empty(&cs->list))
1019 		ret = clocksource_unbind(cs);
1020 	mutex_unlock(&clocksource_mutex);
1021 	return ret;
1022 }
1023 EXPORT_SYMBOL(clocksource_unregister);
1024 
1025 #ifdef CONFIG_SYSFS
1026 /**
1027  * current_clocksource_show - sysfs interface for current clocksource
1028  * @dev:	unused
1029  * @attr:	unused
1030  * @buf:	char buffer to be filled with clocksource list
1031  *
1032  * Provides sysfs interface for listing current clocksource.
1033  */
current_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1034 static ssize_t current_clocksource_show(struct device *dev,
1035 					struct device_attribute *attr,
1036 					char *buf)
1037 {
1038 	ssize_t count = 0;
1039 
1040 	mutex_lock(&clocksource_mutex);
1041 	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1042 	mutex_unlock(&clocksource_mutex);
1043 
1044 	return count;
1045 }
1046 
sysfs_get_uname(const char * buf,char * dst,size_t cnt)1047 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1048 {
1049 	size_t ret = cnt;
1050 
1051 	/* strings from sysfs write are not 0 terminated! */
1052 	if (!cnt || cnt >= CS_NAME_LEN)
1053 		return -EINVAL;
1054 
1055 	/* strip of \n: */
1056 	if (buf[cnt-1] == '\n')
1057 		cnt--;
1058 	if (cnt > 0)
1059 		memcpy(dst, buf, cnt);
1060 	dst[cnt] = 0;
1061 	return ret;
1062 }
1063 
1064 /**
1065  * current_clocksource_store - interface for manually overriding clocksource
1066  * @dev:	unused
1067  * @attr:	unused
1068  * @buf:	name of override clocksource
1069  * @count:	length of buffer
1070  *
1071  * Takes input from sysfs interface for manually overriding the default
1072  * clocksource selection.
1073  */
current_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1074 static ssize_t current_clocksource_store(struct device *dev,
1075 					 struct device_attribute *attr,
1076 					 const char *buf, size_t count)
1077 {
1078 	ssize_t ret;
1079 
1080 	mutex_lock(&clocksource_mutex);
1081 
1082 	ret = sysfs_get_uname(buf, override_name, count);
1083 	if (ret >= 0)
1084 		clocksource_select();
1085 
1086 	mutex_unlock(&clocksource_mutex);
1087 
1088 	return ret;
1089 }
1090 static DEVICE_ATTR_RW(current_clocksource);
1091 
1092 /**
1093  * unbind_clocksource_store - interface for manually unbinding clocksource
1094  * @dev:	unused
1095  * @attr:	unused
1096  * @buf:	unused
1097  * @count:	length of buffer
1098  *
1099  * Takes input from sysfs interface for manually unbinding a clocksource.
1100  */
unbind_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1101 static ssize_t unbind_clocksource_store(struct device *dev,
1102 					struct device_attribute *attr,
1103 					const char *buf, size_t count)
1104 {
1105 	struct clocksource *cs;
1106 	char name[CS_NAME_LEN];
1107 	ssize_t ret;
1108 
1109 	ret = sysfs_get_uname(buf, name, count);
1110 	if (ret < 0)
1111 		return ret;
1112 
1113 	ret = -ENODEV;
1114 	mutex_lock(&clocksource_mutex);
1115 	list_for_each_entry(cs, &clocksource_list, list) {
1116 		if (strcmp(cs->name, name))
1117 			continue;
1118 		ret = clocksource_unbind(cs);
1119 		break;
1120 	}
1121 	mutex_unlock(&clocksource_mutex);
1122 
1123 	return ret ? ret : count;
1124 }
1125 static DEVICE_ATTR_WO(unbind_clocksource);
1126 
1127 /**
1128  * available_clocksource_show - sysfs interface for listing clocksource
1129  * @dev:	unused
1130  * @attr:	unused
1131  * @buf:	char buffer to be filled with clocksource list
1132  *
1133  * Provides sysfs interface for listing registered clocksources
1134  */
available_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1135 static ssize_t available_clocksource_show(struct device *dev,
1136 					  struct device_attribute *attr,
1137 					  char *buf)
1138 {
1139 	struct clocksource *src;
1140 	ssize_t count = 0;
1141 
1142 	mutex_lock(&clocksource_mutex);
1143 	list_for_each_entry(src, &clocksource_list, list) {
1144 		/*
1145 		 * Don't show non-HRES clocksource if the tick code is
1146 		 * in one shot mode (highres=on or nohz=on)
1147 		 */
1148 		if (!tick_oneshot_mode_active() ||
1149 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1150 			count += snprintf(buf + count,
1151 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1152 				  "%s ", src->name);
1153 	}
1154 	mutex_unlock(&clocksource_mutex);
1155 
1156 	count += snprintf(buf + count,
1157 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1158 
1159 	return count;
1160 }
1161 static DEVICE_ATTR_RO(available_clocksource);
1162 
1163 static struct attribute *clocksource_attrs[] = {
1164 	&dev_attr_current_clocksource.attr,
1165 	&dev_attr_unbind_clocksource.attr,
1166 	&dev_attr_available_clocksource.attr,
1167 	NULL
1168 };
1169 ATTRIBUTE_GROUPS(clocksource);
1170 
1171 static struct bus_type clocksource_subsys = {
1172 	.name = "clocksource",
1173 	.dev_name = "clocksource",
1174 };
1175 
1176 static struct device device_clocksource = {
1177 	.id	= 0,
1178 	.bus	= &clocksource_subsys,
1179 	.groups	= clocksource_groups,
1180 };
1181 
init_clocksource_sysfs(void)1182 static int __init init_clocksource_sysfs(void)
1183 {
1184 	int error = subsys_system_register(&clocksource_subsys, NULL);
1185 
1186 	if (!error)
1187 		error = device_register(&device_clocksource);
1188 
1189 	return error;
1190 }
1191 
1192 device_initcall(init_clocksource_sysfs);
1193 #endif /* CONFIG_SYSFS */
1194 
1195 /**
1196  * boot_override_clocksource - boot clock override
1197  * @str:	override name
1198  *
1199  * Takes a clocksource= boot argument and uses it
1200  * as the clocksource override name.
1201  */
boot_override_clocksource(char * str)1202 static int __init boot_override_clocksource(char* str)
1203 {
1204 	mutex_lock(&clocksource_mutex);
1205 	if (str)
1206 		strlcpy(override_name, str, sizeof(override_name));
1207 	mutex_unlock(&clocksource_mutex);
1208 	return 1;
1209 }
1210 
1211 __setup("clocksource=", boot_override_clocksource);
1212 
1213 /**
1214  * boot_override_clock - Compatibility layer for deprecated boot option
1215  * @str:	override name
1216  *
1217  * DEPRECATED! Takes a clock= boot argument and uses it
1218  * as the clocksource override name
1219  */
boot_override_clock(char * str)1220 static int __init boot_override_clock(char* str)
1221 {
1222 	if (!strcmp(str, "pmtmr")) {
1223 		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1224 		return boot_override_clocksource("acpi_pm");
1225 	}
1226 	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1227 	return boot_override_clocksource(str);
1228 }
1229 
1230 __setup("clock=", boot_override_clock);
1231