• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/filter.h>
11 #include <linux/uaccess.h>
12 #include <linux/ctype.h>
13 #include <linux/kprobes.h>
14 #include <linux/syscalls.h>
15 #include <linux/error-injection.h>
16 
17 #include <asm/tlb.h>
18 
19 #include "trace_probe.h"
20 #include "trace.h"
21 
22 #define bpf_event_rcu_dereference(p)					\
23 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
24 
25 #ifdef CONFIG_MODULES
26 struct bpf_trace_module {
27 	struct module *module;
28 	struct list_head list;
29 };
30 
31 static LIST_HEAD(bpf_trace_modules);
32 static DEFINE_MUTEX(bpf_module_mutex);
33 
bpf_get_raw_tracepoint_module(const char * name)34 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
35 {
36 	struct bpf_raw_event_map *btp, *ret = NULL;
37 	struct bpf_trace_module *btm;
38 	unsigned int i;
39 
40 	mutex_lock(&bpf_module_mutex);
41 	list_for_each_entry(btm, &bpf_trace_modules, list) {
42 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
43 			btp = &btm->module->bpf_raw_events[i];
44 			if (!strcmp(btp->tp->name, name)) {
45 				if (try_module_get(btm->module))
46 					ret = btp;
47 				goto out;
48 			}
49 		}
50 	}
51 out:
52 	mutex_unlock(&bpf_module_mutex);
53 	return ret;
54 }
55 #else
bpf_get_raw_tracepoint_module(const char * name)56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58 	return NULL;
59 }
60 #endif /* CONFIG_MODULES */
61 
62 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
63 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
64 
65 /**
66  * trace_call_bpf - invoke BPF program
67  * @call: tracepoint event
68  * @ctx: opaque context pointer
69  *
70  * kprobe handlers execute BPF programs via this helper.
71  * Can be used from static tracepoints in the future.
72  *
73  * Return: BPF programs always return an integer which is interpreted by
74  * kprobe handler as:
75  * 0 - return from kprobe (event is filtered out)
76  * 1 - store kprobe event into ring buffer
77  * Other values are reserved and currently alias to 1
78  */
trace_call_bpf(struct trace_event_call * call,void * ctx)79 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
80 {
81 	unsigned int ret;
82 
83 	if (in_nmi()) /* not supported yet */
84 		return 1;
85 
86 	preempt_disable();
87 
88 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
89 		/*
90 		 * since some bpf program is already running on this cpu,
91 		 * don't call into another bpf program (same or different)
92 		 * and don't send kprobe event into ring-buffer,
93 		 * so return zero here
94 		 */
95 		ret = 0;
96 		goto out;
97 	}
98 
99 	/*
100 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
101 	 * to all call sites, we did a bpf_prog_array_valid() there to check
102 	 * whether call->prog_array is empty or not, which is
103 	 * a heurisitc to speed up execution.
104 	 *
105 	 * If bpf_prog_array_valid() fetched prog_array was
106 	 * non-NULL, we go into trace_call_bpf() and do the actual
107 	 * proper rcu_dereference() under RCU lock.
108 	 * If it turns out that prog_array is NULL then, we bail out.
109 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
110 	 * was NULL, you'll skip the prog_array with the risk of missing
111 	 * out of events when it was updated in between this and the
112 	 * rcu_dereference() which is accepted risk.
113 	 */
114 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
115 
116  out:
117 	__this_cpu_dec(bpf_prog_active);
118 	preempt_enable();
119 
120 	return ret;
121 }
122 EXPORT_SYMBOL_GPL(trace_call_bpf);
123 
124 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
BPF_CALL_2(bpf_override_return,struct pt_regs *,regs,unsigned long,rc)125 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
126 {
127 	regs_set_return_value(regs, rc);
128 	override_function_with_return(regs);
129 	return 0;
130 }
131 
132 static const struct bpf_func_proto bpf_override_return_proto = {
133 	.func		= bpf_override_return,
134 	.gpl_only	= true,
135 	.ret_type	= RET_INTEGER,
136 	.arg1_type	= ARG_PTR_TO_CTX,
137 	.arg2_type	= ARG_ANYTHING,
138 };
139 #endif
140 
BPF_CALL_3(bpf_probe_read,void *,dst,u32,size,const void *,unsafe_ptr)141 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
142 {
143 	int ret;
144 
145 	ret = security_locked_down(LOCKDOWN_BPF_READ);
146 	if (ret < 0)
147 		goto out;
148 
149 	ret = probe_kernel_read(dst, unsafe_ptr, size);
150 	if (unlikely(ret < 0))
151 out:
152 		memset(dst, 0, size);
153 
154 	return ret;
155 }
156 
157 static const struct bpf_func_proto bpf_probe_read_proto = {
158 	.func		= bpf_probe_read,
159 	.gpl_only	= true,
160 	.ret_type	= RET_INTEGER,
161 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
162 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
163 	.arg3_type	= ARG_ANYTHING,
164 };
165 
BPF_CALL_3(bpf_probe_write_user,void __user *,unsafe_ptr,const void *,src,u32,size)166 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
167 	   u32, size)
168 {
169 	/*
170 	 * Ensure we're in user context which is safe for the helper to
171 	 * run. This helper has no business in a kthread.
172 	 *
173 	 * access_ok() should prevent writing to non-user memory, but in
174 	 * some situations (nommu, temporary switch, etc) access_ok() does
175 	 * not provide enough validation, hence the check on KERNEL_DS.
176 	 *
177 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
178 	 * state, when the task or mm are switched. This is specifically
179 	 * required to prevent the use of temporary mm.
180 	 */
181 
182 	if (unlikely(in_interrupt() ||
183 		     current->flags & (PF_KTHREAD | PF_EXITING)))
184 		return -EPERM;
185 	if (unlikely(uaccess_kernel()))
186 		return -EPERM;
187 	if (unlikely(!nmi_uaccess_okay()))
188 		return -EPERM;
189 
190 	return probe_user_write(unsafe_ptr, src, size);
191 }
192 
193 static const struct bpf_func_proto bpf_probe_write_user_proto = {
194 	.func		= bpf_probe_write_user,
195 	.gpl_only	= true,
196 	.ret_type	= RET_INTEGER,
197 	.arg1_type	= ARG_ANYTHING,
198 	.arg2_type	= ARG_PTR_TO_MEM,
199 	.arg3_type	= ARG_CONST_SIZE,
200 };
201 
bpf_get_probe_write_proto(void)202 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
203 {
204 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
205 			    current->comm, task_pid_nr(current));
206 
207 	return &bpf_probe_write_user_proto;
208 }
209 
210 /*
211  * Only limited trace_printk() conversion specifiers allowed:
212  * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
213  */
BPF_CALL_5(bpf_trace_printk,char *,fmt,u32,fmt_size,u64,arg1,u64,arg2,u64,arg3)214 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
215 	   u64, arg2, u64, arg3)
216 {
217 	bool str_seen = false;
218 	int mod[3] = {};
219 	int fmt_cnt = 0;
220 	u64 unsafe_addr;
221 	char buf[64];
222 	int i;
223 
224 	/*
225 	 * bpf_check()->check_func_arg()->check_stack_boundary()
226 	 * guarantees that fmt points to bpf program stack,
227 	 * fmt_size bytes of it were initialized and fmt_size > 0
228 	 */
229 	if (fmt[--fmt_size] != 0)
230 		return -EINVAL;
231 
232 	/* check format string for allowed specifiers */
233 	for (i = 0; i < fmt_size; i++) {
234 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
235 			return -EINVAL;
236 
237 		if (fmt[i] != '%')
238 			continue;
239 
240 		if (fmt_cnt >= 3)
241 			return -EINVAL;
242 
243 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
244 		i++;
245 		if (fmt[i] == 'l') {
246 			mod[fmt_cnt]++;
247 			i++;
248 		} else if (fmt[i] == 'p' || fmt[i] == 's') {
249 			mod[fmt_cnt]++;
250 			/* disallow any further format extensions */
251 			if (fmt[i + 1] != 0 &&
252 			    !isspace(fmt[i + 1]) &&
253 			    !ispunct(fmt[i + 1]))
254 				return -EINVAL;
255 			fmt_cnt++;
256 			if (fmt[i] == 's') {
257 				if (str_seen)
258 					/* allow only one '%s' per fmt string */
259 					return -EINVAL;
260 				str_seen = true;
261 
262 				switch (fmt_cnt) {
263 				case 1:
264 					unsafe_addr = arg1;
265 					arg1 = (long) buf;
266 					break;
267 				case 2:
268 					unsafe_addr = arg2;
269 					arg2 = (long) buf;
270 					break;
271 				case 3:
272 					unsafe_addr = arg3;
273 					arg3 = (long) buf;
274 					break;
275 				}
276 				buf[0] = 0;
277 				strncpy_from_unsafe(buf,
278 						    (void *) (long) unsafe_addr,
279 						    sizeof(buf));
280 			}
281 			continue;
282 		}
283 
284 		if (fmt[i] == 'l') {
285 			mod[fmt_cnt]++;
286 			i++;
287 		}
288 
289 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
290 		    fmt[i] != 'u' && fmt[i] != 'x')
291 			return -EINVAL;
292 		fmt_cnt++;
293 	}
294 
295 /* Horrid workaround for getting va_list handling working with different
296  * argument type combinations generically for 32 and 64 bit archs.
297  */
298 #define __BPF_TP_EMIT()	__BPF_ARG3_TP()
299 #define __BPF_TP(...)							\
300 	__trace_printk(0 /* Fake ip */,					\
301 		       fmt, ##__VA_ARGS__)
302 
303 #define __BPF_ARG1_TP(...)						\
304 	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
305 	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
306 	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
307 	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
308 	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
309 
310 #define __BPF_ARG2_TP(...)						\
311 	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
312 	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
313 	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
314 	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
315 	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
316 
317 #define __BPF_ARG3_TP(...)						\
318 	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
319 	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
320 	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
321 	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
322 	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
323 
324 	return __BPF_TP_EMIT();
325 }
326 
327 static const struct bpf_func_proto bpf_trace_printk_proto = {
328 	.func		= bpf_trace_printk,
329 	.gpl_only	= true,
330 	.ret_type	= RET_INTEGER,
331 	.arg1_type	= ARG_PTR_TO_MEM,
332 	.arg2_type	= ARG_CONST_SIZE,
333 };
334 
bpf_get_trace_printk_proto(void)335 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
336 {
337 	/*
338 	 * this program might be calling bpf_trace_printk,
339 	 * so allocate per-cpu printk buffers
340 	 */
341 	trace_printk_init_buffers();
342 
343 	return &bpf_trace_printk_proto;
344 }
345 
346 static __always_inline int
get_map_perf_counter(struct bpf_map * map,u64 flags,u64 * value,u64 * enabled,u64 * running)347 get_map_perf_counter(struct bpf_map *map, u64 flags,
348 		     u64 *value, u64 *enabled, u64 *running)
349 {
350 	struct bpf_array *array = container_of(map, struct bpf_array, map);
351 	unsigned int cpu = smp_processor_id();
352 	u64 index = flags & BPF_F_INDEX_MASK;
353 	struct bpf_event_entry *ee;
354 
355 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
356 		return -EINVAL;
357 	if (index == BPF_F_CURRENT_CPU)
358 		index = cpu;
359 	if (unlikely(index >= array->map.max_entries))
360 		return -E2BIG;
361 
362 	ee = READ_ONCE(array->ptrs[index]);
363 	if (!ee)
364 		return -ENOENT;
365 
366 	return perf_event_read_local(ee->event, value, enabled, running);
367 }
368 
BPF_CALL_2(bpf_perf_event_read,struct bpf_map *,map,u64,flags)369 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
370 {
371 	u64 value = 0;
372 	int err;
373 
374 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
375 	/*
376 	 * this api is ugly since we miss [-22..-2] range of valid
377 	 * counter values, but that's uapi
378 	 */
379 	if (err)
380 		return err;
381 	return value;
382 }
383 
384 static const struct bpf_func_proto bpf_perf_event_read_proto = {
385 	.func		= bpf_perf_event_read,
386 	.gpl_only	= true,
387 	.ret_type	= RET_INTEGER,
388 	.arg1_type	= ARG_CONST_MAP_PTR,
389 	.arg2_type	= ARG_ANYTHING,
390 };
391 
BPF_CALL_4(bpf_perf_event_read_value,struct bpf_map *,map,u64,flags,struct bpf_perf_event_value *,buf,u32,size)392 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
393 	   struct bpf_perf_event_value *, buf, u32, size)
394 {
395 	int err = -EINVAL;
396 
397 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
398 		goto clear;
399 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
400 				   &buf->running);
401 	if (unlikely(err))
402 		goto clear;
403 	return 0;
404 clear:
405 	memset(buf, 0, size);
406 	return err;
407 }
408 
409 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
410 	.func		= bpf_perf_event_read_value,
411 	.gpl_only	= true,
412 	.ret_type	= RET_INTEGER,
413 	.arg1_type	= ARG_CONST_MAP_PTR,
414 	.arg2_type	= ARG_ANYTHING,
415 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
416 	.arg4_type	= ARG_CONST_SIZE,
417 };
418 
419 static __always_inline u64
__bpf_perf_event_output(struct pt_regs * regs,struct bpf_map * map,u64 flags,struct perf_sample_data * sd)420 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
421 			u64 flags, struct perf_sample_data *sd)
422 {
423 	struct bpf_array *array = container_of(map, struct bpf_array, map);
424 	unsigned int cpu = smp_processor_id();
425 	u64 index = flags & BPF_F_INDEX_MASK;
426 	struct bpf_event_entry *ee;
427 	struct perf_event *event;
428 
429 	if (index == BPF_F_CURRENT_CPU)
430 		index = cpu;
431 	if (unlikely(index >= array->map.max_entries))
432 		return -E2BIG;
433 
434 	ee = READ_ONCE(array->ptrs[index]);
435 	if (!ee)
436 		return -ENOENT;
437 
438 	event = ee->event;
439 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
440 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
441 		return -EINVAL;
442 
443 	if (unlikely(event->oncpu != cpu))
444 		return -EOPNOTSUPP;
445 
446 	return perf_event_output(event, sd, regs);
447 }
448 
449 /*
450  * Support executing tracepoints in normal, irq, and nmi context that each call
451  * bpf_perf_event_output
452  */
453 struct bpf_trace_sample_data {
454 	struct perf_sample_data sds[3];
455 };
456 
457 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
458 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
BPF_CALL_5(bpf_perf_event_output,struct pt_regs *,regs,struct bpf_map *,map,u64,flags,void *,data,u64,size)459 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
460 	   u64, flags, void *, data, u64, size)
461 {
462 	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
463 	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
464 	struct perf_raw_record raw = {
465 		.frag = {
466 			.size = size,
467 			.data = data,
468 		},
469 	};
470 	struct perf_sample_data *sd;
471 	int err;
472 
473 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
474 		err = -EBUSY;
475 		goto out;
476 	}
477 
478 	sd = &sds->sds[nest_level - 1];
479 
480 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
481 		err = -EINVAL;
482 		goto out;
483 	}
484 
485 	perf_sample_data_init(sd, 0, 0);
486 	sd->raw = &raw;
487 
488 	err = __bpf_perf_event_output(regs, map, flags, sd);
489 
490 out:
491 	this_cpu_dec(bpf_trace_nest_level);
492 	return err;
493 }
494 
495 static const struct bpf_func_proto bpf_perf_event_output_proto = {
496 	.func		= bpf_perf_event_output,
497 	.gpl_only	= true,
498 	.ret_type	= RET_INTEGER,
499 	.arg1_type	= ARG_PTR_TO_CTX,
500 	.arg2_type	= ARG_CONST_MAP_PTR,
501 	.arg3_type	= ARG_ANYTHING,
502 	.arg4_type	= ARG_PTR_TO_MEM,
503 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
504 };
505 
506 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
507 struct bpf_nested_pt_regs {
508 	struct pt_regs regs[3];
509 };
510 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
511 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
512 
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)513 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
514 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
515 {
516 	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
517 	struct perf_raw_frag frag = {
518 		.copy		= ctx_copy,
519 		.size		= ctx_size,
520 		.data		= ctx,
521 	};
522 	struct perf_raw_record raw = {
523 		.frag = {
524 			{
525 				.next	= ctx_size ? &frag : NULL,
526 			},
527 			.size	= meta_size,
528 			.data	= meta,
529 		},
530 	};
531 	struct perf_sample_data *sd;
532 	struct pt_regs *regs;
533 	u64 ret;
534 
535 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
536 		ret = -EBUSY;
537 		goto out;
538 	}
539 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
540 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
541 
542 	perf_fetch_caller_regs(regs);
543 	perf_sample_data_init(sd, 0, 0);
544 	sd->raw = &raw;
545 
546 	ret = __bpf_perf_event_output(regs, map, flags, sd);
547 out:
548 	this_cpu_dec(bpf_event_output_nest_level);
549 	return ret;
550 }
551 
BPF_CALL_0(bpf_get_current_task)552 BPF_CALL_0(bpf_get_current_task)
553 {
554 	return (long) current;
555 }
556 
557 static const struct bpf_func_proto bpf_get_current_task_proto = {
558 	.func		= bpf_get_current_task,
559 	.gpl_only	= true,
560 	.ret_type	= RET_INTEGER,
561 };
562 
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)563 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
564 {
565 	struct bpf_array *array = container_of(map, struct bpf_array, map);
566 	struct cgroup *cgrp;
567 
568 	if (unlikely(idx >= array->map.max_entries))
569 		return -E2BIG;
570 
571 	cgrp = READ_ONCE(array->ptrs[idx]);
572 	if (unlikely(!cgrp))
573 		return -EAGAIN;
574 
575 	return task_under_cgroup_hierarchy(current, cgrp);
576 }
577 
578 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
579 	.func           = bpf_current_task_under_cgroup,
580 	.gpl_only       = false,
581 	.ret_type       = RET_INTEGER,
582 	.arg1_type      = ARG_CONST_MAP_PTR,
583 	.arg2_type      = ARG_ANYTHING,
584 };
585 
BPF_CALL_3(bpf_probe_read_str,void *,dst,u32,size,const void *,unsafe_ptr)586 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
587 	   const void *, unsafe_ptr)
588 {
589 	int ret;
590 
591 	ret = security_locked_down(LOCKDOWN_BPF_READ);
592 	if (ret < 0)
593 		goto out;
594 
595 	/*
596 	 * The strncpy_from_unsafe() call will likely not fill the entire
597 	 * buffer, but that's okay in this circumstance as we're probing
598 	 * arbitrary memory anyway similar to bpf_probe_read() and might
599 	 * as well probe the stack. Thus, memory is explicitly cleared
600 	 * only in error case, so that improper users ignoring return
601 	 * code altogether don't copy garbage; otherwise length of string
602 	 * is returned that can be used for bpf_perf_event_output() et al.
603 	 */
604 	ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
605 	if (unlikely(ret < 0))
606 out:
607 		memset(dst, 0, size);
608 
609 	return ret;
610 }
611 
612 static const struct bpf_func_proto bpf_probe_read_str_proto = {
613 	.func		= bpf_probe_read_str,
614 	.gpl_only	= true,
615 	.ret_type	= RET_INTEGER,
616 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
617 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
618 	.arg3_type	= ARG_ANYTHING,
619 };
620 
621 struct send_signal_irq_work {
622 	struct irq_work irq_work;
623 	struct task_struct *task;
624 	u32 sig;
625 };
626 
627 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
628 
do_bpf_send_signal(struct irq_work * entry)629 static void do_bpf_send_signal(struct irq_work *entry)
630 {
631 	struct send_signal_irq_work *work;
632 
633 	work = container_of(entry, struct send_signal_irq_work, irq_work);
634 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, PIDTYPE_TGID);
635 }
636 
BPF_CALL_1(bpf_send_signal,u32,sig)637 BPF_CALL_1(bpf_send_signal, u32, sig)
638 {
639 	struct send_signal_irq_work *work = NULL;
640 
641 	/* Similar to bpf_probe_write_user, task needs to be
642 	 * in a sound condition and kernel memory access be
643 	 * permitted in order to send signal to the current
644 	 * task.
645 	 */
646 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
647 		return -EPERM;
648 	if (unlikely(uaccess_kernel()))
649 		return -EPERM;
650 	if (unlikely(!nmi_uaccess_okay()))
651 		return -EPERM;
652 
653 	if (in_nmi()) {
654 		/* Do an early check on signal validity. Otherwise,
655 		 * the error is lost in deferred irq_work.
656 		 */
657 		if (unlikely(!valid_signal(sig)))
658 			return -EINVAL;
659 
660 		work = this_cpu_ptr(&send_signal_work);
661 		if (work->irq_work.flags & IRQ_WORK_BUSY)
662 			return -EBUSY;
663 
664 		/* Add the current task, which is the target of sending signal,
665 		 * to the irq_work. The current task may change when queued
666 		 * irq works get executed.
667 		 */
668 		work->task = current;
669 		work->sig = sig;
670 		irq_work_queue(&work->irq_work);
671 		return 0;
672 	}
673 
674 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, PIDTYPE_TGID);
675 }
676 
677 static const struct bpf_func_proto bpf_send_signal_proto = {
678 	.func		= bpf_send_signal,
679 	.gpl_only	= false,
680 	.ret_type	= RET_INTEGER,
681 	.arg1_type	= ARG_ANYTHING,
682 };
683 
684 static const struct bpf_func_proto *
tracing_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)685 tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
686 {
687 	switch (func_id) {
688 	case BPF_FUNC_map_lookup_elem:
689 		return &bpf_map_lookup_elem_proto;
690 	case BPF_FUNC_map_update_elem:
691 		return &bpf_map_update_elem_proto;
692 	case BPF_FUNC_map_delete_elem:
693 		return &bpf_map_delete_elem_proto;
694 	case BPF_FUNC_map_push_elem:
695 		return &bpf_map_push_elem_proto;
696 	case BPF_FUNC_map_pop_elem:
697 		return &bpf_map_pop_elem_proto;
698 	case BPF_FUNC_map_peek_elem:
699 		return &bpf_map_peek_elem_proto;
700 	case BPF_FUNC_probe_read:
701 		return &bpf_probe_read_proto;
702 	case BPF_FUNC_ktime_get_ns:
703 		return &bpf_ktime_get_ns_proto;
704 	case BPF_FUNC_tail_call:
705 		return &bpf_tail_call_proto;
706 	case BPF_FUNC_get_current_pid_tgid:
707 		return &bpf_get_current_pid_tgid_proto;
708 	case BPF_FUNC_get_current_task:
709 		return &bpf_get_current_task_proto;
710 	case BPF_FUNC_get_current_uid_gid:
711 		return &bpf_get_current_uid_gid_proto;
712 	case BPF_FUNC_get_current_comm:
713 		return &bpf_get_current_comm_proto;
714 	case BPF_FUNC_trace_printk:
715 		return bpf_get_trace_printk_proto();
716 	case BPF_FUNC_get_smp_processor_id:
717 		return &bpf_get_smp_processor_id_proto;
718 	case BPF_FUNC_get_numa_node_id:
719 		return &bpf_get_numa_node_id_proto;
720 	case BPF_FUNC_perf_event_read:
721 		return &bpf_perf_event_read_proto;
722 	case BPF_FUNC_probe_write_user:
723 		return bpf_get_probe_write_proto();
724 	case BPF_FUNC_current_task_under_cgroup:
725 		return &bpf_current_task_under_cgroup_proto;
726 	case BPF_FUNC_get_prandom_u32:
727 		return &bpf_get_prandom_u32_proto;
728 	case BPF_FUNC_probe_read_str:
729 		return &bpf_probe_read_str_proto;
730 #ifdef CONFIG_CGROUPS
731 	case BPF_FUNC_get_current_cgroup_id:
732 		return &bpf_get_current_cgroup_id_proto;
733 #endif
734 	case BPF_FUNC_send_signal:
735 		return &bpf_send_signal_proto;
736 	default:
737 		return NULL;
738 	}
739 }
740 
741 static const struct bpf_func_proto *
kprobe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)742 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
743 {
744 	switch (func_id) {
745 	case BPF_FUNC_perf_event_output:
746 		return &bpf_perf_event_output_proto;
747 	case BPF_FUNC_get_stackid:
748 		return &bpf_get_stackid_proto;
749 	case BPF_FUNC_get_stack:
750 		return &bpf_get_stack_proto;
751 	case BPF_FUNC_perf_event_read_value:
752 		return &bpf_perf_event_read_value_proto;
753 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
754 	case BPF_FUNC_override_return:
755 		return &bpf_override_return_proto;
756 #endif
757 	default:
758 		return tracing_func_proto(func_id, prog);
759 	}
760 }
761 
762 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
kprobe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)763 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
764 					const struct bpf_prog *prog,
765 					struct bpf_insn_access_aux *info)
766 {
767 	if (off < 0 || off >= sizeof(struct pt_regs))
768 		return false;
769 	if (type != BPF_READ)
770 		return false;
771 	if (off % size != 0)
772 		return false;
773 	/*
774 	 * Assertion for 32 bit to make sure last 8 byte access
775 	 * (BPF_DW) to the last 4 byte member is disallowed.
776 	 */
777 	if (off + size > sizeof(struct pt_regs))
778 		return false;
779 
780 	return true;
781 }
782 
783 const struct bpf_verifier_ops kprobe_verifier_ops = {
784 	.get_func_proto  = kprobe_prog_func_proto,
785 	.is_valid_access = kprobe_prog_is_valid_access,
786 };
787 
788 const struct bpf_prog_ops kprobe_prog_ops = {
789 };
790 
BPF_CALL_5(bpf_perf_event_output_tp,void *,tp_buff,struct bpf_map *,map,u64,flags,void *,data,u64,size)791 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
792 	   u64, flags, void *, data, u64, size)
793 {
794 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
795 
796 	/*
797 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
798 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
799 	 * from there and call the same bpf_perf_event_output() helper inline.
800 	 */
801 	return ____bpf_perf_event_output(regs, map, flags, data, size);
802 }
803 
804 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
805 	.func		= bpf_perf_event_output_tp,
806 	.gpl_only	= true,
807 	.ret_type	= RET_INTEGER,
808 	.arg1_type	= ARG_PTR_TO_CTX,
809 	.arg2_type	= ARG_CONST_MAP_PTR,
810 	.arg3_type	= ARG_ANYTHING,
811 	.arg4_type	= ARG_PTR_TO_MEM,
812 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
813 };
814 
BPF_CALL_3(bpf_get_stackid_tp,void *,tp_buff,struct bpf_map *,map,u64,flags)815 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
816 	   u64, flags)
817 {
818 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
819 
820 	/*
821 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
822 	 * the other helper's function body cannot be inlined due to being
823 	 * external, thus we need to call raw helper function.
824 	 */
825 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
826 			       flags, 0, 0);
827 }
828 
829 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
830 	.func		= bpf_get_stackid_tp,
831 	.gpl_only	= true,
832 	.ret_type	= RET_INTEGER,
833 	.arg1_type	= ARG_PTR_TO_CTX,
834 	.arg2_type	= ARG_CONST_MAP_PTR,
835 	.arg3_type	= ARG_ANYTHING,
836 };
837 
BPF_CALL_4(bpf_get_stack_tp,void *,tp_buff,void *,buf,u32,size,u64,flags)838 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
839 	   u64, flags)
840 {
841 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
842 
843 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
844 			     (unsigned long) size, flags, 0);
845 }
846 
847 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
848 	.func		= bpf_get_stack_tp,
849 	.gpl_only	= true,
850 	.ret_type	= RET_INTEGER,
851 	.arg1_type	= ARG_PTR_TO_CTX,
852 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
853 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
854 	.arg4_type	= ARG_ANYTHING,
855 };
856 
857 static const struct bpf_func_proto *
tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)858 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
859 {
860 	switch (func_id) {
861 	case BPF_FUNC_perf_event_output:
862 		return &bpf_perf_event_output_proto_tp;
863 	case BPF_FUNC_get_stackid:
864 		return &bpf_get_stackid_proto_tp;
865 	case BPF_FUNC_get_stack:
866 		return &bpf_get_stack_proto_tp;
867 	default:
868 		return tracing_func_proto(func_id, prog);
869 	}
870 }
871 
tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)872 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
873 				    const struct bpf_prog *prog,
874 				    struct bpf_insn_access_aux *info)
875 {
876 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
877 		return false;
878 	if (type != BPF_READ)
879 		return false;
880 	if (off % size != 0)
881 		return false;
882 
883 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
884 	return true;
885 }
886 
887 const struct bpf_verifier_ops tracepoint_verifier_ops = {
888 	.get_func_proto  = tp_prog_func_proto,
889 	.is_valid_access = tp_prog_is_valid_access,
890 };
891 
892 const struct bpf_prog_ops tracepoint_prog_ops = {
893 };
894 
BPF_CALL_3(bpf_perf_prog_read_value,struct bpf_perf_event_data_kern *,ctx,struct bpf_perf_event_value *,buf,u32,size)895 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
896 	   struct bpf_perf_event_value *, buf, u32, size)
897 {
898 	int err = -EINVAL;
899 
900 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
901 		goto clear;
902 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
903 				    &buf->running);
904 	if (unlikely(err))
905 		goto clear;
906 	return 0;
907 clear:
908 	memset(buf, 0, size);
909 	return err;
910 }
911 
912 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
913          .func           = bpf_perf_prog_read_value,
914          .gpl_only       = true,
915          .ret_type       = RET_INTEGER,
916          .arg1_type      = ARG_PTR_TO_CTX,
917          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
918          .arg3_type      = ARG_CONST_SIZE,
919 };
920 
921 static const struct bpf_func_proto *
pe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)922 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
923 {
924 	switch (func_id) {
925 	case BPF_FUNC_perf_event_output:
926 		return &bpf_perf_event_output_proto_tp;
927 	case BPF_FUNC_get_stackid:
928 		return &bpf_get_stackid_proto_tp;
929 	case BPF_FUNC_get_stack:
930 		return &bpf_get_stack_proto_tp;
931 	case BPF_FUNC_perf_prog_read_value:
932 		return &bpf_perf_prog_read_value_proto;
933 	default:
934 		return tracing_func_proto(func_id, prog);
935 	}
936 }
937 
938 /*
939  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
940  * to avoid potential recursive reuse issue when/if tracepoints are added
941  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
942  *
943  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
944  * in normal, irq, and nmi context.
945  */
946 struct bpf_raw_tp_regs {
947 	struct pt_regs regs[3];
948 };
949 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
950 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
get_bpf_raw_tp_regs(void)951 static struct pt_regs *get_bpf_raw_tp_regs(void)
952 {
953 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
954 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
955 
956 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
957 		this_cpu_dec(bpf_raw_tp_nest_level);
958 		return ERR_PTR(-EBUSY);
959 	}
960 
961 	return &tp_regs->regs[nest_level - 1];
962 }
963 
put_bpf_raw_tp_regs(void)964 static void put_bpf_raw_tp_regs(void)
965 {
966 	this_cpu_dec(bpf_raw_tp_nest_level);
967 }
968 
BPF_CALL_5(bpf_perf_event_output_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags,void *,data,u64,size)969 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
970 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
971 {
972 	struct pt_regs *regs = get_bpf_raw_tp_regs();
973 	int ret;
974 
975 	if (IS_ERR(regs))
976 		return PTR_ERR(regs);
977 
978 	perf_fetch_caller_regs(regs);
979 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
980 
981 	put_bpf_raw_tp_regs();
982 	return ret;
983 }
984 
985 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
986 	.func		= bpf_perf_event_output_raw_tp,
987 	.gpl_only	= true,
988 	.ret_type	= RET_INTEGER,
989 	.arg1_type	= ARG_PTR_TO_CTX,
990 	.arg2_type	= ARG_CONST_MAP_PTR,
991 	.arg3_type	= ARG_ANYTHING,
992 	.arg4_type	= ARG_PTR_TO_MEM,
993 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
994 };
995 
BPF_CALL_3(bpf_get_stackid_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags)996 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
997 	   struct bpf_map *, map, u64, flags)
998 {
999 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1000 	int ret;
1001 
1002 	if (IS_ERR(regs))
1003 		return PTR_ERR(regs);
1004 
1005 	perf_fetch_caller_regs(regs);
1006 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1007 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1008 			      flags, 0, 0);
1009 	put_bpf_raw_tp_regs();
1010 	return ret;
1011 }
1012 
1013 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1014 	.func		= bpf_get_stackid_raw_tp,
1015 	.gpl_only	= true,
1016 	.ret_type	= RET_INTEGER,
1017 	.arg1_type	= ARG_PTR_TO_CTX,
1018 	.arg2_type	= ARG_CONST_MAP_PTR,
1019 	.arg3_type	= ARG_ANYTHING,
1020 };
1021 
BPF_CALL_4(bpf_get_stack_raw_tp,struct bpf_raw_tracepoint_args *,args,void *,buf,u32,size,u64,flags)1022 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1023 	   void *, buf, u32, size, u64, flags)
1024 {
1025 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1026 	int ret;
1027 
1028 	if (IS_ERR(regs))
1029 		return PTR_ERR(regs);
1030 
1031 	perf_fetch_caller_regs(regs);
1032 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1033 			    (unsigned long) size, flags, 0);
1034 	put_bpf_raw_tp_regs();
1035 	return ret;
1036 }
1037 
1038 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1039 	.func		= bpf_get_stack_raw_tp,
1040 	.gpl_only	= true,
1041 	.ret_type	= RET_INTEGER,
1042 	.arg1_type	= ARG_PTR_TO_CTX,
1043 	.arg2_type	= ARG_PTR_TO_MEM,
1044 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1045 	.arg4_type	= ARG_ANYTHING,
1046 };
1047 
1048 static const struct bpf_func_proto *
raw_tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1049 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1050 {
1051 	switch (func_id) {
1052 	case BPF_FUNC_perf_event_output:
1053 		return &bpf_perf_event_output_proto_raw_tp;
1054 	case BPF_FUNC_get_stackid:
1055 		return &bpf_get_stackid_proto_raw_tp;
1056 	case BPF_FUNC_get_stack:
1057 		return &bpf_get_stack_proto_raw_tp;
1058 	default:
1059 		return tracing_func_proto(func_id, prog);
1060 	}
1061 }
1062 
raw_tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1063 static bool raw_tp_prog_is_valid_access(int off, int size,
1064 					enum bpf_access_type type,
1065 					const struct bpf_prog *prog,
1066 					struct bpf_insn_access_aux *info)
1067 {
1068 	/* largest tracepoint in the kernel has 12 args */
1069 	if (off < 0 || off >= sizeof(__u64) * 12)
1070 		return false;
1071 	if (type != BPF_READ)
1072 		return false;
1073 	if (off % size != 0)
1074 		return false;
1075 	return true;
1076 }
1077 
1078 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1079 	.get_func_proto  = raw_tp_prog_func_proto,
1080 	.is_valid_access = raw_tp_prog_is_valid_access,
1081 };
1082 
1083 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1084 };
1085 
raw_tp_writable_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1086 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1087 						 enum bpf_access_type type,
1088 						 const struct bpf_prog *prog,
1089 						 struct bpf_insn_access_aux *info)
1090 {
1091 	if (off == 0) {
1092 		if (size != sizeof(u64) || type != BPF_READ)
1093 			return false;
1094 		info->reg_type = PTR_TO_TP_BUFFER;
1095 	}
1096 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1097 }
1098 
1099 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1100 	.get_func_proto  = raw_tp_prog_func_proto,
1101 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1102 };
1103 
1104 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1105 };
1106 
pe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1107 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1108 				    const struct bpf_prog *prog,
1109 				    struct bpf_insn_access_aux *info)
1110 {
1111 	const int size_u64 = sizeof(u64);
1112 
1113 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1114 		return false;
1115 	if (type != BPF_READ)
1116 		return false;
1117 	if (off % size != 0) {
1118 		if (sizeof(unsigned long) != 4)
1119 			return false;
1120 		if (size != 8)
1121 			return false;
1122 		if (off % size != 4)
1123 			return false;
1124 	}
1125 
1126 	switch (off) {
1127 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1128 		bpf_ctx_record_field_size(info, size_u64);
1129 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1130 			return false;
1131 		break;
1132 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1133 		bpf_ctx_record_field_size(info, size_u64);
1134 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1135 			return false;
1136 		break;
1137 	default:
1138 		if (size != sizeof(long))
1139 			return false;
1140 	}
1141 
1142 	return true;
1143 }
1144 
pe_prog_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)1145 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1146 				      const struct bpf_insn *si,
1147 				      struct bpf_insn *insn_buf,
1148 				      struct bpf_prog *prog, u32 *target_size)
1149 {
1150 	struct bpf_insn *insn = insn_buf;
1151 
1152 	switch (si->off) {
1153 	case offsetof(struct bpf_perf_event_data, sample_period):
1154 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1155 						       data), si->dst_reg, si->src_reg,
1156 				      offsetof(struct bpf_perf_event_data_kern, data));
1157 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1158 				      bpf_target_off(struct perf_sample_data, period, 8,
1159 						     target_size));
1160 		break;
1161 	case offsetof(struct bpf_perf_event_data, addr):
1162 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1163 						       data), si->dst_reg, si->src_reg,
1164 				      offsetof(struct bpf_perf_event_data_kern, data));
1165 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1166 				      bpf_target_off(struct perf_sample_data, addr, 8,
1167 						     target_size));
1168 		break;
1169 	default:
1170 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1171 						       regs), si->dst_reg, si->src_reg,
1172 				      offsetof(struct bpf_perf_event_data_kern, regs));
1173 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1174 				      si->off);
1175 		break;
1176 	}
1177 
1178 	return insn - insn_buf;
1179 }
1180 
1181 const struct bpf_verifier_ops perf_event_verifier_ops = {
1182 	.get_func_proto		= pe_prog_func_proto,
1183 	.is_valid_access	= pe_prog_is_valid_access,
1184 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1185 };
1186 
1187 const struct bpf_prog_ops perf_event_prog_ops = {
1188 };
1189 
1190 static DEFINE_MUTEX(bpf_event_mutex);
1191 
1192 #define BPF_TRACE_MAX_PROGS 64
1193 
perf_event_attach_bpf_prog(struct perf_event * event,struct bpf_prog * prog)1194 int perf_event_attach_bpf_prog(struct perf_event *event,
1195 			       struct bpf_prog *prog)
1196 {
1197 	struct bpf_prog_array *old_array;
1198 	struct bpf_prog_array *new_array;
1199 	int ret = -EEXIST;
1200 
1201 	/*
1202 	 * Kprobe override only works if they are on the function entry,
1203 	 * and only if they are on the opt-in list.
1204 	 */
1205 	if (prog->kprobe_override &&
1206 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1207 	     !trace_kprobe_error_injectable(event->tp_event)))
1208 		return -EINVAL;
1209 
1210 	mutex_lock(&bpf_event_mutex);
1211 
1212 	if (event->prog)
1213 		goto unlock;
1214 
1215 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1216 	if (old_array &&
1217 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1218 		ret = -E2BIG;
1219 		goto unlock;
1220 	}
1221 
1222 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1223 	if (ret < 0)
1224 		goto unlock;
1225 
1226 	/* set the new array to event->tp_event and set event->prog */
1227 	event->prog = prog;
1228 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1229 	bpf_prog_array_free(old_array);
1230 
1231 unlock:
1232 	mutex_unlock(&bpf_event_mutex);
1233 	return ret;
1234 }
1235 
perf_event_detach_bpf_prog(struct perf_event * event)1236 void perf_event_detach_bpf_prog(struct perf_event *event)
1237 {
1238 	struct bpf_prog_array *old_array;
1239 	struct bpf_prog_array *new_array;
1240 	int ret;
1241 
1242 	mutex_lock(&bpf_event_mutex);
1243 
1244 	if (!event->prog)
1245 		goto unlock;
1246 
1247 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1248 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1249 	if (ret == -ENOENT)
1250 		goto unlock;
1251 	if (ret < 0) {
1252 		bpf_prog_array_delete_safe(old_array, event->prog);
1253 	} else {
1254 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1255 		bpf_prog_array_free(old_array);
1256 	}
1257 
1258 	bpf_prog_put(event->prog);
1259 	event->prog = NULL;
1260 
1261 unlock:
1262 	mutex_unlock(&bpf_event_mutex);
1263 }
1264 
perf_event_query_prog_array(struct perf_event * event,void __user * info)1265 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1266 {
1267 	struct perf_event_query_bpf __user *uquery = info;
1268 	struct perf_event_query_bpf query = {};
1269 	struct bpf_prog_array *progs;
1270 	u32 *ids, prog_cnt, ids_len;
1271 	int ret;
1272 
1273 	if (!capable(CAP_SYS_ADMIN))
1274 		return -EPERM;
1275 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1276 		return -EINVAL;
1277 	if (copy_from_user(&query, uquery, sizeof(query)))
1278 		return -EFAULT;
1279 
1280 	ids_len = query.ids_len;
1281 	if (ids_len > BPF_TRACE_MAX_PROGS)
1282 		return -E2BIG;
1283 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1284 	if (!ids)
1285 		return -ENOMEM;
1286 	/*
1287 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1288 	 * is required when user only wants to check for uquery->prog_cnt.
1289 	 * There is no need to check for it since the case is handled
1290 	 * gracefully in bpf_prog_array_copy_info.
1291 	 */
1292 
1293 	mutex_lock(&bpf_event_mutex);
1294 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1295 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1296 	mutex_unlock(&bpf_event_mutex);
1297 
1298 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1299 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1300 		ret = -EFAULT;
1301 
1302 	kfree(ids);
1303 	return ret;
1304 }
1305 
1306 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1307 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1308 
bpf_get_raw_tracepoint(const char * name)1309 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1310 {
1311 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1312 
1313 	for (; btp < __stop__bpf_raw_tp; btp++) {
1314 		if (!strcmp(btp->tp->name, name))
1315 			return btp;
1316 	}
1317 
1318 	return bpf_get_raw_tracepoint_module(name);
1319 }
1320 
bpf_put_raw_tracepoint(struct bpf_raw_event_map * btp)1321 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1322 {
1323 	struct module *mod = __module_address((unsigned long)btp);
1324 
1325 	if (mod)
1326 		module_put(mod);
1327 }
1328 
1329 static __always_inline
__bpf_trace_run(struct bpf_prog * prog,u64 * args)1330 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1331 {
1332 	rcu_read_lock();
1333 	preempt_disable();
1334 	(void) BPF_PROG_RUN(prog, args);
1335 	preempt_enable();
1336 	rcu_read_unlock();
1337 }
1338 
1339 #define UNPACK(...)			__VA_ARGS__
1340 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1341 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1342 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1343 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1344 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1345 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1346 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1347 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1348 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1349 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1350 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1351 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1352 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1353 
1354 #define SARG(X)		u64 arg##X
1355 #define COPY(X)		args[X] = arg##X
1356 
1357 #define __DL_COM	(,)
1358 #define __DL_SEM	(;)
1359 
1360 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1361 
1362 #define BPF_TRACE_DEFN_x(x)						\
1363 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1364 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1365 	{								\
1366 		u64 args[x];						\
1367 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1368 		__bpf_trace_run(prog, args);				\
1369 	}								\
1370 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1371 BPF_TRACE_DEFN_x(1);
1372 BPF_TRACE_DEFN_x(2);
1373 BPF_TRACE_DEFN_x(3);
1374 BPF_TRACE_DEFN_x(4);
1375 BPF_TRACE_DEFN_x(5);
1376 BPF_TRACE_DEFN_x(6);
1377 BPF_TRACE_DEFN_x(7);
1378 BPF_TRACE_DEFN_x(8);
1379 BPF_TRACE_DEFN_x(9);
1380 BPF_TRACE_DEFN_x(10);
1381 BPF_TRACE_DEFN_x(11);
1382 BPF_TRACE_DEFN_x(12);
1383 
__bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)1384 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1385 {
1386 	struct tracepoint *tp = btp->tp;
1387 
1388 	/*
1389 	 * check that program doesn't access arguments beyond what's
1390 	 * available in this tracepoint
1391 	 */
1392 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1393 		return -EINVAL;
1394 
1395 	if (prog->aux->max_tp_access > btp->writable_size)
1396 		return -EINVAL;
1397 
1398 	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1399 }
1400 
bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)1401 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1402 {
1403 	return __bpf_probe_register(btp, prog);
1404 }
1405 
bpf_probe_unregister(struct bpf_raw_event_map * btp,struct bpf_prog * prog)1406 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1407 {
1408 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1409 }
1410 
bpf_get_perf_event_info(const struct perf_event * event,u32 * prog_id,u32 * fd_type,const char ** buf,u64 * probe_offset,u64 * probe_addr)1411 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1412 			    u32 *fd_type, const char **buf,
1413 			    u64 *probe_offset, u64 *probe_addr)
1414 {
1415 	bool is_tracepoint, is_syscall_tp;
1416 	struct bpf_prog *prog;
1417 	int flags, err = 0;
1418 
1419 	prog = event->prog;
1420 	if (!prog)
1421 		return -ENOENT;
1422 
1423 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1424 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1425 		return -EOPNOTSUPP;
1426 
1427 	*prog_id = prog->aux->id;
1428 	flags = event->tp_event->flags;
1429 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1430 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1431 
1432 	if (is_tracepoint || is_syscall_tp) {
1433 		*buf = is_tracepoint ? event->tp_event->tp->name
1434 				     : event->tp_event->name;
1435 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1436 		*probe_offset = 0x0;
1437 		*probe_addr = 0x0;
1438 	} else {
1439 		/* kprobe/uprobe */
1440 		err = -EOPNOTSUPP;
1441 #ifdef CONFIG_KPROBE_EVENTS
1442 		if (flags & TRACE_EVENT_FL_KPROBE)
1443 			err = bpf_get_kprobe_info(event, fd_type, buf,
1444 						  probe_offset, probe_addr,
1445 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1446 #endif
1447 #ifdef CONFIG_UPROBE_EVENTS
1448 		if (flags & TRACE_EVENT_FL_UPROBE)
1449 			err = bpf_get_uprobe_info(event, fd_type, buf,
1450 						  probe_offset,
1451 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1452 #endif
1453 	}
1454 
1455 	return err;
1456 }
1457 
send_signal_irq_work_init(void)1458 static int __init send_signal_irq_work_init(void)
1459 {
1460 	int cpu;
1461 	struct send_signal_irq_work *work;
1462 
1463 	for_each_possible_cpu(cpu) {
1464 		work = per_cpu_ptr(&send_signal_work, cpu);
1465 		init_irq_work(&work->irq_work, do_bpf_send_signal);
1466 	}
1467 	return 0;
1468 }
1469 
1470 subsys_initcall(send_signal_irq_work_init);
1471 
1472 #ifdef CONFIG_MODULES
bpf_event_notify(struct notifier_block * nb,unsigned long op,void * module)1473 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1474 			    void *module)
1475 {
1476 	struct bpf_trace_module *btm, *tmp;
1477 	struct module *mod = module;
1478 
1479 	if (mod->num_bpf_raw_events == 0 ||
1480 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1481 		return 0;
1482 
1483 	mutex_lock(&bpf_module_mutex);
1484 
1485 	switch (op) {
1486 	case MODULE_STATE_COMING:
1487 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1488 		if (btm) {
1489 			btm->module = module;
1490 			list_add(&btm->list, &bpf_trace_modules);
1491 		}
1492 		break;
1493 	case MODULE_STATE_GOING:
1494 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1495 			if (btm->module == module) {
1496 				list_del(&btm->list);
1497 				kfree(btm);
1498 				break;
1499 			}
1500 		}
1501 		break;
1502 	}
1503 
1504 	mutex_unlock(&bpf_module_mutex);
1505 
1506 	return 0;
1507 }
1508 
1509 static struct notifier_block bpf_module_nb = {
1510 	.notifier_call = bpf_event_notify,
1511 };
1512 
bpf_event_init(void)1513 static int __init bpf_event_init(void)
1514 {
1515 	register_module_notifier(&bpf_module_nb);
1516 	return 0;
1517 }
1518 
1519 fs_initcall(bpf_event_init);
1520 #endif /* CONFIG_MODULES */
1521