1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/isolation.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/smt.h>
15 #include <linux/unistd.h>
16 #include <linux/cpu.h>
17 #include <linux/oom.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bug.h>
21 #include <linux/kthread.h>
22 #include <linux/stop_machine.h>
23 #include <linux/mutex.h>
24 #include <linux/gfp.h>
25 #include <linux/suspend.h>
26 #include <linux/lockdep.h>
27 #include <linux/tick.h>
28 #include <linux/irq.h>
29 #include <linux/nmi.h>
30 #include <linux/smpboot.h>
31 #include <linux/relay.h>
32 #include <linux/slab.h>
33 #include <linux/percpu-rwsem.h>
34
35 #include <trace/events/power.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/cpuhp.h>
38
39 #include "smpboot.h"
40
41 /**
42 * cpuhp_cpu_state - Per cpu hotplug state storage
43 * @state: The current cpu state
44 * @target: The target state
45 * @thread: Pointer to the hotplug thread
46 * @should_run: Thread should execute
47 * @rollback: Perform a rollback
48 * @single: Single callback invocation
49 * @bringup: Single callback bringup or teardown selector
50 * @cb_state: The state for a single callback (install/uninstall)
51 * @result: Result of the operation
52 * @done_up: Signal completion to the issuer of the task for cpu-up
53 * @done_down: Signal completion to the issuer of the task for cpu-down
54 */
55 struct cpuhp_cpu_state {
56 enum cpuhp_state state;
57 enum cpuhp_state target;
58 enum cpuhp_state fail;
59 #ifdef CONFIG_SMP
60 struct task_struct *thread;
61 bool should_run;
62 bool rollback;
63 bool single;
64 bool bringup;
65 struct hlist_node *node;
66 struct hlist_node *last;
67 enum cpuhp_state cb_state;
68 int result;
69 struct completion done_up;
70 struct completion done_down;
71 #endif
72 };
73
74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
75 .fail = CPUHP_INVALID,
76 };
77
78 #ifdef CONFIG_SMP
79 cpumask_t cpus_booted_once_mask;
80 #endif
81
82 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
83 static struct lockdep_map cpuhp_state_up_map =
84 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
85 static struct lockdep_map cpuhp_state_down_map =
86 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
87
88
cpuhp_lock_acquire(bool bringup)89 static inline void cpuhp_lock_acquire(bool bringup)
90 {
91 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
92 }
93
cpuhp_lock_release(bool bringup)94 static inline void cpuhp_lock_release(bool bringup)
95 {
96 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
97 }
98 #else
99
cpuhp_lock_acquire(bool bringup)100 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)101 static inline void cpuhp_lock_release(bool bringup) { }
102
103 #endif
104
105 /**
106 * cpuhp_step - Hotplug state machine step
107 * @name: Name of the step
108 * @startup: Startup function of the step
109 * @teardown: Teardown function of the step
110 * @cant_stop: Bringup/teardown can't be stopped at this step
111 */
112 struct cpuhp_step {
113 const char *name;
114 union {
115 int (*single)(unsigned int cpu);
116 int (*multi)(unsigned int cpu,
117 struct hlist_node *node);
118 } startup;
119 union {
120 int (*single)(unsigned int cpu);
121 int (*multi)(unsigned int cpu,
122 struct hlist_node *node);
123 } teardown;
124 struct hlist_head list;
125 bool cant_stop;
126 bool multi_instance;
127 };
128
129 static DEFINE_MUTEX(cpuhp_state_mutex);
130 static struct cpuhp_step cpuhp_hp_states[];
131
cpuhp_get_step(enum cpuhp_state state)132 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
133 {
134 return cpuhp_hp_states + state;
135 }
136
137 /**
138 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
139 * @cpu: The cpu for which the callback should be invoked
140 * @state: The state to do callbacks for
141 * @bringup: True if the bringup callback should be invoked
142 * @node: For multi-instance, do a single entry callback for install/remove
143 * @lastp: For multi-instance rollback, remember how far we got
144 *
145 * Called from cpu hotplug and from the state register machinery.
146 */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)147 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
148 bool bringup, struct hlist_node *node,
149 struct hlist_node **lastp)
150 {
151 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
152 struct cpuhp_step *step = cpuhp_get_step(state);
153 int (*cbm)(unsigned int cpu, struct hlist_node *node);
154 int (*cb)(unsigned int cpu);
155 int ret, cnt;
156
157 if (st->fail == state) {
158 st->fail = CPUHP_INVALID;
159
160 if (!(bringup ? step->startup.single : step->teardown.single))
161 return 0;
162
163 return -EAGAIN;
164 }
165
166 if (!step->multi_instance) {
167 WARN_ON_ONCE(lastp && *lastp);
168 cb = bringup ? step->startup.single : step->teardown.single;
169 if (!cb)
170 return 0;
171 trace_cpuhp_enter(cpu, st->target, state, cb);
172 ret = cb(cpu);
173 trace_cpuhp_exit(cpu, st->state, state, ret);
174 return ret;
175 }
176 cbm = bringup ? step->startup.multi : step->teardown.multi;
177 if (!cbm)
178 return 0;
179
180 /* Single invocation for instance add/remove */
181 if (node) {
182 WARN_ON_ONCE(lastp && *lastp);
183 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
184 ret = cbm(cpu, node);
185 trace_cpuhp_exit(cpu, st->state, state, ret);
186 return ret;
187 }
188
189 /* State transition. Invoke on all instances */
190 cnt = 0;
191 hlist_for_each(node, &step->list) {
192 if (lastp && node == *lastp)
193 break;
194
195 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
196 ret = cbm(cpu, node);
197 trace_cpuhp_exit(cpu, st->state, state, ret);
198 if (ret) {
199 if (!lastp)
200 goto err;
201
202 *lastp = node;
203 return ret;
204 }
205 cnt++;
206 }
207 if (lastp)
208 *lastp = NULL;
209 return 0;
210 err:
211 /* Rollback the instances if one failed */
212 cbm = !bringup ? step->startup.multi : step->teardown.multi;
213 if (!cbm)
214 return ret;
215
216 hlist_for_each(node, &step->list) {
217 if (!cnt--)
218 break;
219
220 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
221 ret = cbm(cpu, node);
222 trace_cpuhp_exit(cpu, st->state, state, ret);
223 /*
224 * Rollback must not fail,
225 */
226 WARN_ON_ONCE(ret);
227 }
228 return ret;
229 }
230
231 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)232 static bool cpuhp_is_ap_state(enum cpuhp_state state)
233 {
234 /*
235 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
236 * purposes as that state is handled explicitly in cpu_down.
237 */
238 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
239 }
240
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)241 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
242 {
243 struct completion *done = bringup ? &st->done_up : &st->done_down;
244 wait_for_completion(done);
245 }
246
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)247 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
248 {
249 struct completion *done = bringup ? &st->done_up : &st->done_down;
250 complete(done);
251 }
252
253 /*
254 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
255 */
cpuhp_is_atomic_state(enum cpuhp_state state)256 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
257 {
258 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
259 }
260
261 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
262 static DEFINE_MUTEX(cpu_add_remove_lock);
263 bool cpuhp_tasks_frozen;
264 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
265
266 /*
267 * The following two APIs (cpu_maps_update_begin/done) must be used when
268 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
269 */
cpu_maps_update_begin(void)270 void cpu_maps_update_begin(void)
271 {
272 mutex_lock(&cpu_add_remove_lock);
273 }
274
cpu_maps_update_done(void)275 void cpu_maps_update_done(void)
276 {
277 mutex_unlock(&cpu_add_remove_lock);
278 }
279
280 /*
281 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
282 * Should always be manipulated under cpu_add_remove_lock
283 */
284 static int cpu_hotplug_disabled;
285
286 #ifdef CONFIG_HOTPLUG_CPU
287
288 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
289
cpus_read_lock(void)290 void cpus_read_lock(void)
291 {
292 percpu_down_read(&cpu_hotplug_lock);
293 }
294 EXPORT_SYMBOL_GPL(cpus_read_lock);
295
cpus_read_trylock(void)296 int cpus_read_trylock(void)
297 {
298 return percpu_down_read_trylock(&cpu_hotplug_lock);
299 }
300 EXPORT_SYMBOL_GPL(cpus_read_trylock);
301
cpus_read_unlock(void)302 void cpus_read_unlock(void)
303 {
304 percpu_up_read(&cpu_hotplug_lock);
305 }
306 EXPORT_SYMBOL_GPL(cpus_read_unlock);
307
cpus_write_lock(void)308 void cpus_write_lock(void)
309 {
310 percpu_down_write(&cpu_hotplug_lock);
311 }
312
cpus_write_unlock(void)313 void cpus_write_unlock(void)
314 {
315 percpu_up_write(&cpu_hotplug_lock);
316 }
317
lockdep_assert_cpus_held(void)318 void lockdep_assert_cpus_held(void)
319 {
320 /*
321 * We can't have hotplug operations before userspace starts running,
322 * and some init codepaths will knowingly not take the hotplug lock.
323 * This is all valid, so mute lockdep until it makes sense to report
324 * unheld locks.
325 */
326 if (system_state < SYSTEM_RUNNING)
327 return;
328
329 percpu_rwsem_assert_held(&cpu_hotplug_lock);
330 }
331
lockdep_acquire_cpus_lock(void)332 static void lockdep_acquire_cpus_lock(void)
333 {
334 rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
335 }
336
lockdep_release_cpus_lock(void)337 static void lockdep_release_cpus_lock(void)
338 {
339 rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
340 }
341
342 /*
343 * Wait for currently running CPU hotplug operations to complete (if any) and
344 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
345 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
346 * hotplug path before performing hotplug operations. So acquiring that lock
347 * guarantees mutual exclusion from any currently running hotplug operations.
348 */
cpu_hotplug_disable(void)349 void cpu_hotplug_disable(void)
350 {
351 cpu_maps_update_begin();
352 cpu_hotplug_disabled++;
353 cpu_maps_update_done();
354 }
355 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
356
__cpu_hotplug_enable(void)357 static void __cpu_hotplug_enable(void)
358 {
359 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
360 return;
361 cpu_hotplug_disabled--;
362 }
363
cpu_hotplug_enable(void)364 void cpu_hotplug_enable(void)
365 {
366 cpu_maps_update_begin();
367 __cpu_hotplug_enable();
368 cpu_maps_update_done();
369 }
370 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
371
372 #else
373
lockdep_acquire_cpus_lock(void)374 static void lockdep_acquire_cpus_lock(void)
375 {
376 }
377
lockdep_release_cpus_lock(void)378 static void lockdep_release_cpus_lock(void)
379 {
380 }
381
382 #endif /* CONFIG_HOTPLUG_CPU */
383
384 /*
385 * Architectures that need SMT-specific errata handling during SMT hotplug
386 * should override this.
387 */
arch_smt_update(void)388 void __weak arch_smt_update(void) { }
389
390 #ifdef CONFIG_HOTPLUG_SMT
391 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
392
cpu_smt_disable(bool force)393 void __init cpu_smt_disable(bool force)
394 {
395 if (!cpu_smt_possible())
396 return;
397
398 if (force) {
399 pr_info("SMT: Force disabled\n");
400 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
401 } else {
402 pr_info("SMT: disabled\n");
403 cpu_smt_control = CPU_SMT_DISABLED;
404 }
405 }
406
407 /*
408 * The decision whether SMT is supported can only be done after the full
409 * CPU identification. Called from architecture code.
410 */
cpu_smt_check_topology(void)411 void __init cpu_smt_check_topology(void)
412 {
413 if (!topology_smt_supported())
414 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
415 }
416
smt_cmdline_disable(char * str)417 static int __init smt_cmdline_disable(char *str)
418 {
419 cpu_smt_disable(str && !strcmp(str, "force"));
420 return 0;
421 }
422 early_param("nosmt", smt_cmdline_disable);
423
cpu_smt_allowed(unsigned int cpu)424 static inline bool cpu_smt_allowed(unsigned int cpu)
425 {
426 if (cpu_smt_control == CPU_SMT_ENABLED)
427 return true;
428
429 if (topology_is_primary_thread(cpu))
430 return true;
431
432 /*
433 * On x86 it's required to boot all logical CPUs at least once so
434 * that the init code can get a chance to set CR4.MCE on each
435 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
436 * core will shutdown the machine.
437 */
438 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
439 }
440
441 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
cpu_smt_possible(void)442 bool cpu_smt_possible(void)
443 {
444 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
445 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
446 }
447 EXPORT_SYMBOL_GPL(cpu_smt_possible);
448 #else
cpu_smt_allowed(unsigned int cpu)449 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
450 #endif
451
452 static inline enum cpuhp_state
cpuhp_set_state(struct cpuhp_cpu_state * st,enum cpuhp_state target)453 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
454 {
455 enum cpuhp_state prev_state = st->state;
456
457 st->rollback = false;
458 st->last = NULL;
459
460 st->target = target;
461 st->single = false;
462 st->bringup = st->state < target;
463
464 return prev_state;
465 }
466
467 static inline void
cpuhp_reset_state(struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)468 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
469 {
470 st->rollback = true;
471
472 /*
473 * If we have st->last we need to undo partial multi_instance of this
474 * state first. Otherwise start undo at the previous state.
475 */
476 if (!st->last) {
477 if (st->bringup)
478 st->state--;
479 else
480 st->state++;
481 }
482
483 st->target = prev_state;
484 st->bringup = !st->bringup;
485 }
486
487 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)488 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
489 {
490 if (!st->single && st->state == st->target)
491 return;
492
493 st->result = 0;
494 /*
495 * Make sure the above stores are visible before should_run becomes
496 * true. Paired with the mb() above in cpuhp_thread_fun()
497 */
498 smp_mb();
499 st->should_run = true;
500 wake_up_process(st->thread);
501 wait_for_ap_thread(st, st->bringup);
502 }
503
cpuhp_kick_ap(struct cpuhp_cpu_state * st,enum cpuhp_state target)504 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
505 {
506 enum cpuhp_state prev_state;
507 int ret;
508
509 prev_state = cpuhp_set_state(st, target);
510 __cpuhp_kick_ap(st);
511 if ((ret = st->result)) {
512 cpuhp_reset_state(st, prev_state);
513 __cpuhp_kick_ap(st);
514 }
515
516 return ret;
517 }
518
bringup_wait_for_ap(unsigned int cpu)519 static int bringup_wait_for_ap(unsigned int cpu)
520 {
521 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
522
523 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
524 wait_for_ap_thread(st, true);
525 if (WARN_ON_ONCE((!cpu_online(cpu))))
526 return -ECANCELED;
527
528 /* Unpark the stopper thread and the hotplug thread of the target cpu */
529 stop_machine_unpark(cpu);
530 kthread_unpark(st->thread);
531
532 /*
533 * SMT soft disabling on X86 requires to bring the CPU out of the
534 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
535 * CPU marked itself as booted_once in notify_cpu_starting() so the
536 * cpu_smt_allowed() check will now return false if this is not the
537 * primary sibling.
538 */
539 if (!cpu_smt_allowed(cpu))
540 return -ECANCELED;
541
542 if (st->target <= CPUHP_AP_ONLINE_IDLE)
543 return 0;
544
545 return cpuhp_kick_ap(st, st->target);
546 }
547
bringup_cpu(unsigned int cpu)548 static int bringup_cpu(unsigned int cpu)
549 {
550 struct task_struct *idle = idle_thread_get(cpu);
551 int ret;
552
553 /*
554 * Some architectures have to walk the irq descriptors to
555 * setup the vector space for the cpu which comes online.
556 * Prevent irq alloc/free across the bringup.
557 */
558 irq_lock_sparse();
559
560 /* Arch-specific enabling code. */
561 ret = __cpu_up(cpu, idle);
562 irq_unlock_sparse();
563 if (ret)
564 return ret;
565 return bringup_wait_for_ap(cpu);
566 }
567
568 /*
569 * Hotplug state machine related functions
570 */
571
undo_cpu_up(unsigned int cpu,struct cpuhp_cpu_state * st)572 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
573 {
574 for (st->state--; st->state > st->target; st->state--)
575 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
576 }
577
can_rollback_cpu(struct cpuhp_cpu_state * st)578 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
579 {
580 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
581 return true;
582 /*
583 * When CPU hotplug is disabled, then taking the CPU down is not
584 * possible because takedown_cpu() and the architecture and
585 * subsystem specific mechanisms are not available. So the CPU
586 * which would be completely unplugged again needs to stay around
587 * in the current state.
588 */
589 return st->state <= CPUHP_BRINGUP_CPU;
590 }
591
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)592 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
593 enum cpuhp_state target)
594 {
595 enum cpuhp_state prev_state = st->state;
596 int ret = 0;
597
598 while (st->state < target) {
599 st->state++;
600 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
601 if (ret) {
602 if (can_rollback_cpu(st)) {
603 st->target = prev_state;
604 undo_cpu_up(cpu, st);
605 }
606 break;
607 }
608 }
609 return ret;
610 }
611
612 /*
613 * The cpu hotplug threads manage the bringup and teardown of the cpus
614 */
cpuhp_create(unsigned int cpu)615 static void cpuhp_create(unsigned int cpu)
616 {
617 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
618
619 init_completion(&st->done_up);
620 init_completion(&st->done_down);
621 }
622
cpuhp_should_run(unsigned int cpu)623 static int cpuhp_should_run(unsigned int cpu)
624 {
625 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
626
627 return st->should_run;
628 }
629
630 /*
631 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
632 * callbacks when a state gets [un]installed at runtime.
633 *
634 * Each invocation of this function by the smpboot thread does a single AP
635 * state callback.
636 *
637 * It has 3 modes of operation:
638 * - single: runs st->cb_state
639 * - up: runs ++st->state, while st->state < st->target
640 * - down: runs st->state--, while st->state > st->target
641 *
642 * When complete or on error, should_run is cleared and the completion is fired.
643 */
cpuhp_thread_fun(unsigned int cpu)644 static void cpuhp_thread_fun(unsigned int cpu)
645 {
646 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
647 bool bringup = st->bringup;
648 enum cpuhp_state state;
649
650 if (WARN_ON_ONCE(!st->should_run))
651 return;
652
653 /*
654 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
655 * that if we see ->should_run we also see the rest of the state.
656 */
657 smp_mb();
658
659 /*
660 * The BP holds the hotplug lock, but we're now running on the AP,
661 * ensure that anybody asserting the lock is held, will actually find
662 * it so.
663 */
664 lockdep_acquire_cpus_lock();
665 cpuhp_lock_acquire(bringup);
666
667 if (st->single) {
668 state = st->cb_state;
669 st->should_run = false;
670 } else {
671 if (bringup) {
672 st->state++;
673 state = st->state;
674 st->should_run = (st->state < st->target);
675 WARN_ON_ONCE(st->state > st->target);
676 } else {
677 state = st->state;
678 st->state--;
679 st->should_run = (st->state > st->target);
680 WARN_ON_ONCE(st->state < st->target);
681 }
682 }
683
684 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
685
686 if (cpuhp_is_atomic_state(state)) {
687 local_irq_disable();
688 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
689 local_irq_enable();
690
691 /*
692 * STARTING/DYING must not fail!
693 */
694 WARN_ON_ONCE(st->result);
695 } else {
696 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
697 }
698
699 if (st->result) {
700 /*
701 * If we fail on a rollback, we're up a creek without no
702 * paddle, no way forward, no way back. We loose, thanks for
703 * playing.
704 */
705 WARN_ON_ONCE(st->rollback);
706 st->should_run = false;
707 }
708
709 cpuhp_lock_release(bringup);
710 lockdep_release_cpus_lock();
711
712 if (!st->should_run)
713 complete_ap_thread(st, bringup);
714 }
715
716 /* Invoke a single callback on a remote cpu */
717 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)718 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
719 struct hlist_node *node)
720 {
721 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
722 int ret;
723
724 if (!cpu_online(cpu))
725 return 0;
726
727 cpuhp_lock_acquire(false);
728 cpuhp_lock_release(false);
729
730 cpuhp_lock_acquire(true);
731 cpuhp_lock_release(true);
732
733 /*
734 * If we are up and running, use the hotplug thread. For early calls
735 * we invoke the thread function directly.
736 */
737 if (!st->thread)
738 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
739
740 st->rollback = false;
741 st->last = NULL;
742
743 st->node = node;
744 st->bringup = bringup;
745 st->cb_state = state;
746 st->single = true;
747
748 __cpuhp_kick_ap(st);
749
750 /*
751 * If we failed and did a partial, do a rollback.
752 */
753 if ((ret = st->result) && st->last) {
754 st->rollback = true;
755 st->bringup = !bringup;
756
757 __cpuhp_kick_ap(st);
758 }
759
760 /*
761 * Clean up the leftovers so the next hotplug operation wont use stale
762 * data.
763 */
764 st->node = st->last = NULL;
765 return ret;
766 }
767
cpuhp_kick_ap_work(unsigned int cpu)768 static int cpuhp_kick_ap_work(unsigned int cpu)
769 {
770 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
771 enum cpuhp_state prev_state = st->state;
772 int ret;
773
774 cpuhp_lock_acquire(false);
775 cpuhp_lock_release(false);
776
777 cpuhp_lock_acquire(true);
778 cpuhp_lock_release(true);
779
780 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
781 ret = cpuhp_kick_ap(st, st->target);
782 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
783
784 return ret;
785 }
786
787 static struct smp_hotplug_thread cpuhp_threads = {
788 .store = &cpuhp_state.thread,
789 .create = &cpuhp_create,
790 .thread_should_run = cpuhp_should_run,
791 .thread_fn = cpuhp_thread_fun,
792 .thread_comm = "cpuhp/%u",
793 .selfparking = true,
794 };
795
cpuhp_threads_init(void)796 void __init cpuhp_threads_init(void)
797 {
798 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
799 kthread_unpark(this_cpu_read(cpuhp_state.thread));
800 }
801
802 #ifdef CONFIG_HOTPLUG_CPU
803 /**
804 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
805 * @cpu: a CPU id
806 *
807 * This function walks all processes, finds a valid mm struct for each one and
808 * then clears a corresponding bit in mm's cpumask. While this all sounds
809 * trivial, there are various non-obvious corner cases, which this function
810 * tries to solve in a safe manner.
811 *
812 * Also note that the function uses a somewhat relaxed locking scheme, so it may
813 * be called only for an already offlined CPU.
814 */
clear_tasks_mm_cpumask(int cpu)815 void clear_tasks_mm_cpumask(int cpu)
816 {
817 struct task_struct *p;
818
819 /*
820 * This function is called after the cpu is taken down and marked
821 * offline, so its not like new tasks will ever get this cpu set in
822 * their mm mask. -- Peter Zijlstra
823 * Thus, we may use rcu_read_lock() here, instead of grabbing
824 * full-fledged tasklist_lock.
825 */
826 WARN_ON(cpu_online(cpu));
827 rcu_read_lock();
828 for_each_process(p) {
829 struct task_struct *t;
830
831 /*
832 * Main thread might exit, but other threads may still have
833 * a valid mm. Find one.
834 */
835 t = find_lock_task_mm(p);
836 if (!t)
837 continue;
838 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
839 task_unlock(t);
840 }
841 rcu_read_unlock();
842 }
843
844 /* Take this CPU down. */
take_cpu_down(void * _param)845 static int take_cpu_down(void *_param)
846 {
847 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
848 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
849 int err, cpu = smp_processor_id();
850 int ret;
851
852 /* Ensure this CPU doesn't handle any more interrupts. */
853 err = __cpu_disable();
854 if (err < 0)
855 return err;
856
857 /*
858 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
859 * do this step again.
860 */
861 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
862 st->state--;
863 /* Invoke the former CPU_DYING callbacks */
864 for (; st->state > target; st->state--) {
865 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
866 /*
867 * DYING must not fail!
868 */
869 WARN_ON_ONCE(ret);
870 }
871
872 /* Give up timekeeping duties */
873 tick_handover_do_timer();
874 /* Remove CPU from timer broadcasting */
875 tick_offline_cpu(cpu);
876 /* Park the stopper thread */
877 stop_machine_park(cpu);
878 return 0;
879 }
880
takedown_cpu(unsigned int cpu)881 static int takedown_cpu(unsigned int cpu)
882 {
883 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
884 int err;
885
886 /* Park the smpboot threads */
887 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
888
889 /*
890 * Prevent irq alloc/free while the dying cpu reorganizes the
891 * interrupt affinities.
892 */
893 irq_lock_sparse();
894
895 /*
896 * So now all preempt/rcu users must observe !cpu_active().
897 */
898 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
899 if (err) {
900 /* CPU refused to die */
901 irq_unlock_sparse();
902 /* Unpark the hotplug thread so we can rollback there */
903 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
904 return err;
905 }
906 BUG_ON(cpu_online(cpu));
907
908 /*
909 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
910 * all runnable tasks from the CPU, there's only the idle task left now
911 * that the migration thread is done doing the stop_machine thing.
912 *
913 * Wait for the stop thread to go away.
914 */
915 wait_for_ap_thread(st, false);
916 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
917
918 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
919 irq_unlock_sparse();
920
921 hotplug_cpu__broadcast_tick_pull(cpu);
922 /* This actually kills the CPU. */
923 __cpu_die(cpu);
924
925 tick_cleanup_dead_cpu(cpu);
926 rcutree_migrate_callbacks(cpu);
927 return 0;
928 }
929
cpuhp_complete_idle_dead(void * arg)930 static void cpuhp_complete_idle_dead(void *arg)
931 {
932 struct cpuhp_cpu_state *st = arg;
933
934 complete_ap_thread(st, false);
935 }
936
cpuhp_report_idle_dead(void)937 void cpuhp_report_idle_dead(void)
938 {
939 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
940
941 BUG_ON(st->state != CPUHP_AP_OFFLINE);
942 rcu_report_dead(smp_processor_id());
943 st->state = CPUHP_AP_IDLE_DEAD;
944 /*
945 * We cannot call complete after rcu_report_dead() so we delegate it
946 * to an online cpu.
947 */
948 smp_call_function_single(cpumask_first(cpu_online_mask),
949 cpuhp_complete_idle_dead, st, 0);
950 }
951
undo_cpu_down(unsigned int cpu,struct cpuhp_cpu_state * st)952 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
953 {
954 for (st->state++; st->state < st->target; st->state++)
955 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
956 }
957
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)958 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
959 enum cpuhp_state target)
960 {
961 enum cpuhp_state prev_state = st->state;
962 int ret = 0;
963
964 for (; st->state > target; st->state--) {
965 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
966 if (ret) {
967 st->target = prev_state;
968 if (st->state < prev_state)
969 undo_cpu_down(cpu, st);
970 break;
971 }
972 }
973 return ret;
974 }
975
976 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)977 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
978 enum cpuhp_state target)
979 {
980 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
981 int prev_state, ret = 0;
982
983 if (num_online_cpus() == 1)
984 return -EBUSY;
985
986 if (!cpu_present(cpu))
987 return -EINVAL;
988
989 cpus_write_lock();
990
991 cpuhp_tasks_frozen = tasks_frozen;
992
993 prev_state = cpuhp_set_state(st, target);
994 /*
995 * If the current CPU state is in the range of the AP hotplug thread,
996 * then we need to kick the thread.
997 */
998 if (st->state > CPUHP_TEARDOWN_CPU) {
999 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1000 ret = cpuhp_kick_ap_work(cpu);
1001 /*
1002 * The AP side has done the error rollback already. Just
1003 * return the error code..
1004 */
1005 if (ret)
1006 goto out;
1007
1008 /*
1009 * We might have stopped still in the range of the AP hotplug
1010 * thread. Nothing to do anymore.
1011 */
1012 if (st->state > CPUHP_TEARDOWN_CPU)
1013 goto out;
1014
1015 st->target = target;
1016 }
1017 /*
1018 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1019 * to do the further cleanups.
1020 */
1021 ret = cpuhp_down_callbacks(cpu, st, target);
1022 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1023 cpuhp_reset_state(st, prev_state);
1024 __cpuhp_kick_ap(st);
1025 }
1026
1027 out:
1028 cpus_write_unlock();
1029 /*
1030 * Do post unplug cleanup. This is still protected against
1031 * concurrent CPU hotplug via cpu_add_remove_lock.
1032 */
1033 lockup_detector_cleanup();
1034 arch_smt_update();
1035 return ret;
1036 }
1037
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1038 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1039 {
1040 if (cpu_hotplug_disabled)
1041 return -EBUSY;
1042 return _cpu_down(cpu, 0, target);
1043 }
1044
do_cpu_down(unsigned int cpu,enum cpuhp_state target)1045 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1046 {
1047 int err;
1048
1049 cpu_maps_update_begin();
1050 err = cpu_down_maps_locked(cpu, target);
1051 cpu_maps_update_done();
1052 return err;
1053 }
1054
cpu_down(unsigned int cpu)1055 int cpu_down(unsigned int cpu)
1056 {
1057 return do_cpu_down(cpu, CPUHP_OFFLINE);
1058 }
1059 EXPORT_SYMBOL(cpu_down);
1060
1061 #else
1062 #define takedown_cpu NULL
1063 #endif /*CONFIG_HOTPLUG_CPU*/
1064
1065 /**
1066 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1067 * @cpu: cpu that just started
1068 *
1069 * It must be called by the arch code on the new cpu, before the new cpu
1070 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1071 */
notify_cpu_starting(unsigned int cpu)1072 void notify_cpu_starting(unsigned int cpu)
1073 {
1074 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1075 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1076 int ret;
1077
1078 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1079 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1080 while (st->state < target) {
1081 st->state++;
1082 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1083 /*
1084 * STARTING must not fail!
1085 */
1086 WARN_ON_ONCE(ret);
1087 }
1088 }
1089
1090 /*
1091 * Called from the idle task. Wake up the controlling task which brings the
1092 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1093 * the rest of the online bringup to the hotplug thread.
1094 */
cpuhp_online_idle(enum cpuhp_state state)1095 void cpuhp_online_idle(enum cpuhp_state state)
1096 {
1097 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1098
1099 /* Happens for the boot cpu */
1100 if (state != CPUHP_AP_ONLINE_IDLE)
1101 return;
1102
1103 st->state = CPUHP_AP_ONLINE_IDLE;
1104 complete_ap_thread(st, true);
1105 }
1106
1107 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1108 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1109 {
1110 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1111 struct task_struct *idle;
1112 int ret = 0;
1113
1114 cpus_write_lock();
1115
1116 if (!cpu_present(cpu)) {
1117 ret = -EINVAL;
1118 goto out;
1119 }
1120
1121 /*
1122 * The caller of do_cpu_up might have raced with another
1123 * caller. Ignore it for now.
1124 */
1125 if (st->state >= target)
1126 goto out;
1127
1128 if (st->state == CPUHP_OFFLINE) {
1129 /* Let it fail before we try to bring the cpu up */
1130 idle = idle_thread_get(cpu);
1131 if (IS_ERR(idle)) {
1132 ret = PTR_ERR(idle);
1133 goto out;
1134 }
1135 }
1136
1137 cpuhp_tasks_frozen = tasks_frozen;
1138
1139 cpuhp_set_state(st, target);
1140 /*
1141 * If the current CPU state is in the range of the AP hotplug thread,
1142 * then we need to kick the thread once more.
1143 */
1144 if (st->state > CPUHP_BRINGUP_CPU) {
1145 ret = cpuhp_kick_ap_work(cpu);
1146 /*
1147 * The AP side has done the error rollback already. Just
1148 * return the error code..
1149 */
1150 if (ret)
1151 goto out;
1152 }
1153
1154 /*
1155 * Try to reach the target state. We max out on the BP at
1156 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1157 * responsible for bringing it up to the target state.
1158 */
1159 target = min((int)target, CPUHP_BRINGUP_CPU);
1160 ret = cpuhp_up_callbacks(cpu, st, target);
1161 out:
1162 cpus_write_unlock();
1163 arch_smt_update();
1164 return ret;
1165 }
1166
do_cpu_up(unsigned int cpu,enum cpuhp_state target)1167 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1168 {
1169 int err = 0;
1170
1171 if (!cpu_possible(cpu)) {
1172 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1173 cpu);
1174 #if defined(CONFIG_IA64)
1175 pr_err("please check additional_cpus= boot parameter\n");
1176 #endif
1177 return -EINVAL;
1178 }
1179
1180 err = try_online_node(cpu_to_node(cpu));
1181 if (err)
1182 return err;
1183
1184 cpu_maps_update_begin();
1185
1186 if (cpu_hotplug_disabled) {
1187 err = -EBUSY;
1188 goto out;
1189 }
1190 if (!cpu_smt_allowed(cpu)) {
1191 err = -EPERM;
1192 goto out;
1193 }
1194
1195 err = _cpu_up(cpu, 0, target);
1196 out:
1197 cpu_maps_update_done();
1198 return err;
1199 }
1200
cpu_up(unsigned int cpu)1201 int cpu_up(unsigned int cpu)
1202 {
1203 return do_cpu_up(cpu, CPUHP_ONLINE);
1204 }
1205 EXPORT_SYMBOL_GPL(cpu_up);
1206
1207 #ifdef CONFIG_PM_SLEEP_SMP
1208 static cpumask_var_t frozen_cpus;
1209
freeze_secondary_cpus(int primary)1210 int freeze_secondary_cpus(int primary)
1211 {
1212 int cpu, error = 0;
1213
1214 cpu_maps_update_begin();
1215 if (primary == -1) {
1216 primary = cpumask_first(cpu_online_mask);
1217 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1218 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1219 } else {
1220 if (!cpu_online(primary))
1221 primary = cpumask_first(cpu_online_mask);
1222 }
1223
1224 /*
1225 * We take down all of the non-boot CPUs in one shot to avoid races
1226 * with the userspace trying to use the CPU hotplug at the same time
1227 */
1228 cpumask_clear(frozen_cpus);
1229
1230 pr_info("Disabling non-boot CPUs ...\n");
1231 for_each_online_cpu(cpu) {
1232 if (cpu == primary)
1233 continue;
1234
1235 if (pm_wakeup_pending()) {
1236 pr_info("Wakeup pending. Abort CPU freeze\n");
1237 error = -EBUSY;
1238 break;
1239 }
1240
1241 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1242 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1243 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1244 if (!error)
1245 cpumask_set_cpu(cpu, frozen_cpus);
1246 else {
1247 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1248 break;
1249 }
1250 }
1251
1252 if (!error)
1253 BUG_ON(num_online_cpus() > 1);
1254 else
1255 pr_err("Non-boot CPUs are not disabled\n");
1256
1257 /*
1258 * Make sure the CPUs won't be enabled by someone else. We need to do
1259 * this even in case of failure as all disable_nonboot_cpus() users are
1260 * supposed to do enable_nonboot_cpus() on the failure path.
1261 */
1262 cpu_hotplug_disabled++;
1263
1264 cpu_maps_update_done();
1265 return error;
1266 }
1267
arch_enable_nonboot_cpus_begin(void)1268 void __weak arch_enable_nonboot_cpus_begin(void)
1269 {
1270 }
1271
arch_enable_nonboot_cpus_end(void)1272 void __weak arch_enable_nonboot_cpus_end(void)
1273 {
1274 }
1275
enable_nonboot_cpus(void)1276 void enable_nonboot_cpus(void)
1277 {
1278 int cpu, error;
1279 struct device *cpu_device;
1280
1281 /* Allow everyone to use the CPU hotplug again */
1282 cpu_maps_update_begin();
1283 __cpu_hotplug_enable();
1284 if (cpumask_empty(frozen_cpus))
1285 goto out;
1286
1287 pr_info("Enabling non-boot CPUs ...\n");
1288
1289 arch_enable_nonboot_cpus_begin();
1290
1291 for_each_cpu(cpu, frozen_cpus) {
1292 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1293 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1294 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1295 if (!error) {
1296 pr_info("CPU%d is up\n", cpu);
1297 cpu_device = get_cpu_device(cpu);
1298 if (!cpu_device)
1299 pr_err("%s: failed to get cpu%d device\n",
1300 __func__, cpu);
1301 else
1302 kobject_uevent(&cpu_device->kobj, KOBJ_ONLINE);
1303 continue;
1304 }
1305 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1306 }
1307
1308 arch_enable_nonboot_cpus_end();
1309
1310 cpumask_clear(frozen_cpus);
1311 out:
1312 cpu_maps_update_done();
1313 }
1314
alloc_frozen_cpus(void)1315 static int __init alloc_frozen_cpus(void)
1316 {
1317 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1318 return -ENOMEM;
1319 return 0;
1320 }
1321 core_initcall(alloc_frozen_cpus);
1322
1323 /*
1324 * When callbacks for CPU hotplug notifications are being executed, we must
1325 * ensure that the state of the system with respect to the tasks being frozen
1326 * or not, as reported by the notification, remains unchanged *throughout the
1327 * duration* of the execution of the callbacks.
1328 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1329 *
1330 * This synchronization is implemented by mutually excluding regular CPU
1331 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1332 * Hibernate notifications.
1333 */
1334 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1335 cpu_hotplug_pm_callback(struct notifier_block *nb,
1336 unsigned long action, void *ptr)
1337 {
1338 switch (action) {
1339
1340 case PM_SUSPEND_PREPARE:
1341 case PM_HIBERNATION_PREPARE:
1342 cpu_hotplug_disable();
1343 break;
1344
1345 case PM_POST_SUSPEND:
1346 case PM_POST_HIBERNATION:
1347 cpu_hotplug_enable();
1348 break;
1349
1350 default:
1351 return NOTIFY_DONE;
1352 }
1353
1354 return NOTIFY_OK;
1355 }
1356
1357
cpu_hotplug_pm_sync_init(void)1358 static int __init cpu_hotplug_pm_sync_init(void)
1359 {
1360 /*
1361 * cpu_hotplug_pm_callback has higher priority than x86
1362 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1363 * to disable cpu hotplug to avoid cpu hotplug race.
1364 */
1365 pm_notifier(cpu_hotplug_pm_callback, 0);
1366 return 0;
1367 }
1368 core_initcall(cpu_hotplug_pm_sync_init);
1369
1370 #endif /* CONFIG_PM_SLEEP_SMP */
1371
1372 int __boot_cpu_id;
1373
1374 #endif /* CONFIG_SMP */
1375
1376 /* Boot processor state steps */
1377 static struct cpuhp_step cpuhp_hp_states[] = {
1378 [CPUHP_OFFLINE] = {
1379 .name = "offline",
1380 .startup.single = NULL,
1381 .teardown.single = NULL,
1382 },
1383 #ifdef CONFIG_SMP
1384 [CPUHP_CREATE_THREADS]= {
1385 .name = "threads:prepare",
1386 .startup.single = smpboot_create_threads,
1387 .teardown.single = NULL,
1388 .cant_stop = true,
1389 },
1390 [CPUHP_PERF_PREPARE] = {
1391 .name = "perf:prepare",
1392 .startup.single = perf_event_init_cpu,
1393 .teardown.single = perf_event_exit_cpu,
1394 },
1395 [CPUHP_WORKQUEUE_PREP] = {
1396 .name = "workqueue:prepare",
1397 .startup.single = workqueue_prepare_cpu,
1398 .teardown.single = NULL,
1399 },
1400 [CPUHP_HRTIMERS_PREPARE] = {
1401 .name = "hrtimers:prepare",
1402 .startup.single = hrtimers_prepare_cpu,
1403 .teardown.single = hrtimers_dead_cpu,
1404 },
1405 [CPUHP_SMPCFD_PREPARE] = {
1406 .name = "smpcfd:prepare",
1407 .startup.single = smpcfd_prepare_cpu,
1408 .teardown.single = smpcfd_dead_cpu,
1409 },
1410 [CPUHP_RELAY_PREPARE] = {
1411 .name = "relay:prepare",
1412 .startup.single = relay_prepare_cpu,
1413 .teardown.single = NULL,
1414 },
1415 [CPUHP_SLAB_PREPARE] = {
1416 .name = "slab:prepare",
1417 .startup.single = slab_prepare_cpu,
1418 .teardown.single = slab_dead_cpu,
1419 },
1420 [CPUHP_RCUTREE_PREP] = {
1421 .name = "RCU/tree:prepare",
1422 .startup.single = rcutree_prepare_cpu,
1423 .teardown.single = rcutree_dead_cpu,
1424 },
1425 /*
1426 * On the tear-down path, timers_dead_cpu() must be invoked
1427 * before blk_mq_queue_reinit_notify() from notify_dead(),
1428 * otherwise a RCU stall occurs.
1429 */
1430 [CPUHP_TIMERS_PREPARE] = {
1431 .name = "timers:prepare",
1432 .startup.single = timers_prepare_cpu,
1433 .teardown.single = timers_dead_cpu,
1434 },
1435 /* Kicks the plugged cpu into life */
1436 [CPUHP_BRINGUP_CPU] = {
1437 .name = "cpu:bringup",
1438 .startup.single = bringup_cpu,
1439 .teardown.single = NULL,
1440 .cant_stop = true,
1441 },
1442 /* Final state before CPU kills itself */
1443 [CPUHP_AP_IDLE_DEAD] = {
1444 .name = "idle:dead",
1445 },
1446 /*
1447 * Last state before CPU enters the idle loop to die. Transient state
1448 * for synchronization.
1449 */
1450 [CPUHP_AP_OFFLINE] = {
1451 .name = "ap:offline",
1452 .cant_stop = true,
1453 },
1454 /* First state is scheduler control. Interrupts are disabled */
1455 [CPUHP_AP_SCHED_STARTING] = {
1456 .name = "sched:starting",
1457 .startup.single = sched_cpu_starting,
1458 .teardown.single = sched_cpu_dying,
1459 },
1460 [CPUHP_AP_RCUTREE_DYING] = {
1461 .name = "RCU/tree:dying",
1462 .startup.single = NULL,
1463 .teardown.single = rcutree_dying_cpu,
1464 },
1465 [CPUHP_AP_SMPCFD_DYING] = {
1466 .name = "smpcfd:dying",
1467 .startup.single = NULL,
1468 .teardown.single = smpcfd_dying_cpu,
1469 },
1470 /* Entry state on starting. Interrupts enabled from here on. Transient
1471 * state for synchronsization */
1472 [CPUHP_AP_ONLINE] = {
1473 .name = "ap:online",
1474 },
1475 /*
1476 * Handled on controll processor until the plugged processor manages
1477 * this itself.
1478 */
1479 [CPUHP_TEARDOWN_CPU] = {
1480 .name = "cpu:teardown",
1481 .startup.single = NULL,
1482 .teardown.single = takedown_cpu,
1483 .cant_stop = true,
1484 },
1485 /* Handle smpboot threads park/unpark */
1486 [CPUHP_AP_SMPBOOT_THREADS] = {
1487 .name = "smpboot/threads:online",
1488 .startup.single = smpboot_unpark_threads,
1489 .teardown.single = smpboot_park_threads,
1490 },
1491 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1492 .name = "irq/affinity:online",
1493 .startup.single = irq_affinity_online_cpu,
1494 .teardown.single = NULL,
1495 },
1496 [CPUHP_AP_PERF_ONLINE] = {
1497 .name = "perf:online",
1498 .startup.single = perf_event_init_cpu,
1499 .teardown.single = perf_event_exit_cpu,
1500 },
1501 [CPUHP_AP_WATCHDOG_ONLINE] = {
1502 .name = "lockup_detector:online",
1503 .startup.single = lockup_detector_online_cpu,
1504 .teardown.single = lockup_detector_offline_cpu,
1505 },
1506 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1507 .name = "workqueue:online",
1508 .startup.single = workqueue_online_cpu,
1509 .teardown.single = workqueue_offline_cpu,
1510 },
1511 [CPUHP_AP_RCUTREE_ONLINE] = {
1512 .name = "RCU/tree:online",
1513 .startup.single = rcutree_online_cpu,
1514 .teardown.single = rcutree_offline_cpu,
1515 },
1516 #endif
1517 /*
1518 * The dynamically registered state space is here
1519 */
1520
1521 #ifdef CONFIG_SMP
1522 /* Last state is scheduler control setting the cpu active */
1523 [CPUHP_AP_ACTIVE] = {
1524 .name = "sched:active",
1525 .startup.single = sched_cpu_activate,
1526 .teardown.single = sched_cpu_deactivate,
1527 },
1528 #endif
1529
1530 /* CPU is fully up and running. */
1531 [CPUHP_ONLINE] = {
1532 .name = "online",
1533 .startup.single = NULL,
1534 .teardown.single = NULL,
1535 },
1536 };
1537
1538 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)1539 static int cpuhp_cb_check(enum cpuhp_state state)
1540 {
1541 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1542 return -EINVAL;
1543 return 0;
1544 }
1545
1546 /*
1547 * Returns a free for dynamic slot assignment of the Online state. The states
1548 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1549 * by having no name assigned.
1550 */
cpuhp_reserve_state(enum cpuhp_state state)1551 static int cpuhp_reserve_state(enum cpuhp_state state)
1552 {
1553 enum cpuhp_state i, end;
1554 struct cpuhp_step *step;
1555
1556 switch (state) {
1557 case CPUHP_AP_ONLINE_DYN:
1558 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1559 end = CPUHP_AP_ONLINE_DYN_END;
1560 break;
1561 case CPUHP_BP_PREPARE_DYN:
1562 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1563 end = CPUHP_BP_PREPARE_DYN_END;
1564 break;
1565 default:
1566 return -EINVAL;
1567 }
1568
1569 for (i = state; i <= end; i++, step++) {
1570 if (!step->name)
1571 return i;
1572 }
1573 WARN(1, "No more dynamic states available for CPU hotplug\n");
1574 return -ENOSPC;
1575 }
1576
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1577 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1578 int (*startup)(unsigned int cpu),
1579 int (*teardown)(unsigned int cpu),
1580 bool multi_instance)
1581 {
1582 /* (Un)Install the callbacks for further cpu hotplug operations */
1583 struct cpuhp_step *sp;
1584 int ret = 0;
1585
1586 /*
1587 * If name is NULL, then the state gets removed.
1588 *
1589 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1590 * the first allocation from these dynamic ranges, so the removal
1591 * would trigger a new allocation and clear the wrong (already
1592 * empty) state, leaving the callbacks of the to be cleared state
1593 * dangling, which causes wreckage on the next hotplug operation.
1594 */
1595 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1596 state == CPUHP_BP_PREPARE_DYN)) {
1597 ret = cpuhp_reserve_state(state);
1598 if (ret < 0)
1599 return ret;
1600 state = ret;
1601 }
1602 sp = cpuhp_get_step(state);
1603 if (name && sp->name)
1604 return -EBUSY;
1605
1606 sp->startup.single = startup;
1607 sp->teardown.single = teardown;
1608 sp->name = name;
1609 sp->multi_instance = multi_instance;
1610 INIT_HLIST_HEAD(&sp->list);
1611 return ret;
1612 }
1613
cpuhp_get_teardown_cb(enum cpuhp_state state)1614 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1615 {
1616 return cpuhp_get_step(state)->teardown.single;
1617 }
1618
1619 /*
1620 * Call the startup/teardown function for a step either on the AP or
1621 * on the current CPU.
1622 */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1623 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1624 struct hlist_node *node)
1625 {
1626 struct cpuhp_step *sp = cpuhp_get_step(state);
1627 int ret;
1628
1629 /*
1630 * If there's nothing to do, we done.
1631 * Relies on the union for multi_instance.
1632 */
1633 if ((bringup && !sp->startup.single) ||
1634 (!bringup && !sp->teardown.single))
1635 return 0;
1636 /*
1637 * The non AP bound callbacks can fail on bringup. On teardown
1638 * e.g. module removal we crash for now.
1639 */
1640 #ifdef CONFIG_SMP
1641 if (cpuhp_is_ap_state(state))
1642 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1643 else
1644 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1645 #else
1646 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1647 #endif
1648 BUG_ON(ret && !bringup);
1649 return ret;
1650 }
1651
1652 /*
1653 * Called from __cpuhp_setup_state on a recoverable failure.
1654 *
1655 * Note: The teardown callbacks for rollback are not allowed to fail!
1656 */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)1657 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1658 struct hlist_node *node)
1659 {
1660 int cpu;
1661
1662 /* Roll back the already executed steps on the other cpus */
1663 for_each_present_cpu(cpu) {
1664 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1665 int cpustate = st->state;
1666
1667 if (cpu >= failedcpu)
1668 break;
1669
1670 /* Did we invoke the startup call on that cpu ? */
1671 if (cpustate >= state)
1672 cpuhp_issue_call(cpu, state, false, node);
1673 }
1674 }
1675
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)1676 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1677 struct hlist_node *node,
1678 bool invoke)
1679 {
1680 struct cpuhp_step *sp;
1681 int cpu;
1682 int ret;
1683
1684 lockdep_assert_cpus_held();
1685
1686 sp = cpuhp_get_step(state);
1687 if (sp->multi_instance == false)
1688 return -EINVAL;
1689
1690 mutex_lock(&cpuhp_state_mutex);
1691
1692 if (!invoke || !sp->startup.multi)
1693 goto add_node;
1694
1695 /*
1696 * Try to call the startup callback for each present cpu
1697 * depending on the hotplug state of the cpu.
1698 */
1699 for_each_present_cpu(cpu) {
1700 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1701 int cpustate = st->state;
1702
1703 if (cpustate < state)
1704 continue;
1705
1706 ret = cpuhp_issue_call(cpu, state, true, node);
1707 if (ret) {
1708 if (sp->teardown.multi)
1709 cpuhp_rollback_install(cpu, state, node);
1710 goto unlock;
1711 }
1712 }
1713 add_node:
1714 ret = 0;
1715 hlist_add_head(node, &sp->list);
1716 unlock:
1717 mutex_unlock(&cpuhp_state_mutex);
1718 return ret;
1719 }
1720
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1721 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1722 bool invoke)
1723 {
1724 int ret;
1725
1726 cpus_read_lock();
1727 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1728 cpus_read_unlock();
1729 return ret;
1730 }
1731 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1732
1733 /**
1734 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1735 * @state: The state to setup
1736 * @invoke: If true, the startup function is invoked for cpus where
1737 * cpu state >= @state
1738 * @startup: startup callback function
1739 * @teardown: teardown callback function
1740 * @multi_instance: State is set up for multiple instances which get
1741 * added afterwards.
1742 *
1743 * The caller needs to hold cpus read locked while calling this function.
1744 * Returns:
1745 * On success:
1746 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1747 * 0 for all other states
1748 * On failure: proper (negative) error code
1749 */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1750 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1751 const char *name, bool invoke,
1752 int (*startup)(unsigned int cpu),
1753 int (*teardown)(unsigned int cpu),
1754 bool multi_instance)
1755 {
1756 int cpu, ret = 0;
1757 bool dynstate;
1758
1759 lockdep_assert_cpus_held();
1760
1761 if (cpuhp_cb_check(state) || !name)
1762 return -EINVAL;
1763
1764 mutex_lock(&cpuhp_state_mutex);
1765
1766 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1767 multi_instance);
1768
1769 dynstate = state == CPUHP_AP_ONLINE_DYN;
1770 if (ret > 0 && dynstate) {
1771 state = ret;
1772 ret = 0;
1773 }
1774
1775 if (ret || !invoke || !startup)
1776 goto out;
1777
1778 /*
1779 * Try to call the startup callback for each present cpu
1780 * depending on the hotplug state of the cpu.
1781 */
1782 for_each_present_cpu(cpu) {
1783 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1784 int cpustate = st->state;
1785
1786 if (cpustate < state)
1787 continue;
1788
1789 ret = cpuhp_issue_call(cpu, state, true, NULL);
1790 if (ret) {
1791 if (teardown)
1792 cpuhp_rollback_install(cpu, state, NULL);
1793 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1794 goto out;
1795 }
1796 }
1797 out:
1798 mutex_unlock(&cpuhp_state_mutex);
1799 /*
1800 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1801 * dynamically allocated state in case of success.
1802 */
1803 if (!ret && dynstate)
1804 return state;
1805 return ret;
1806 }
1807 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1808
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1809 int __cpuhp_setup_state(enum cpuhp_state state,
1810 const char *name, bool invoke,
1811 int (*startup)(unsigned int cpu),
1812 int (*teardown)(unsigned int cpu),
1813 bool multi_instance)
1814 {
1815 int ret;
1816
1817 cpus_read_lock();
1818 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1819 teardown, multi_instance);
1820 cpus_read_unlock();
1821 return ret;
1822 }
1823 EXPORT_SYMBOL(__cpuhp_setup_state);
1824
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1825 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1826 struct hlist_node *node, bool invoke)
1827 {
1828 struct cpuhp_step *sp = cpuhp_get_step(state);
1829 int cpu;
1830
1831 BUG_ON(cpuhp_cb_check(state));
1832
1833 if (!sp->multi_instance)
1834 return -EINVAL;
1835
1836 cpus_read_lock();
1837 mutex_lock(&cpuhp_state_mutex);
1838
1839 if (!invoke || !cpuhp_get_teardown_cb(state))
1840 goto remove;
1841 /*
1842 * Call the teardown callback for each present cpu depending
1843 * on the hotplug state of the cpu. This function is not
1844 * allowed to fail currently!
1845 */
1846 for_each_present_cpu(cpu) {
1847 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1848 int cpustate = st->state;
1849
1850 if (cpustate >= state)
1851 cpuhp_issue_call(cpu, state, false, node);
1852 }
1853
1854 remove:
1855 hlist_del(node);
1856 mutex_unlock(&cpuhp_state_mutex);
1857 cpus_read_unlock();
1858
1859 return 0;
1860 }
1861 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1862
1863 /**
1864 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1865 * @state: The state to remove
1866 * @invoke: If true, the teardown function is invoked for cpus where
1867 * cpu state >= @state
1868 *
1869 * The caller needs to hold cpus read locked while calling this function.
1870 * The teardown callback is currently not allowed to fail. Think
1871 * about module removal!
1872 */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)1873 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1874 {
1875 struct cpuhp_step *sp = cpuhp_get_step(state);
1876 int cpu;
1877
1878 BUG_ON(cpuhp_cb_check(state));
1879
1880 lockdep_assert_cpus_held();
1881
1882 mutex_lock(&cpuhp_state_mutex);
1883 if (sp->multi_instance) {
1884 WARN(!hlist_empty(&sp->list),
1885 "Error: Removing state %d which has instances left.\n",
1886 state);
1887 goto remove;
1888 }
1889
1890 if (!invoke || !cpuhp_get_teardown_cb(state))
1891 goto remove;
1892
1893 /*
1894 * Call the teardown callback for each present cpu depending
1895 * on the hotplug state of the cpu. This function is not
1896 * allowed to fail currently!
1897 */
1898 for_each_present_cpu(cpu) {
1899 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1900 int cpustate = st->state;
1901
1902 if (cpustate >= state)
1903 cpuhp_issue_call(cpu, state, false, NULL);
1904 }
1905 remove:
1906 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1907 mutex_unlock(&cpuhp_state_mutex);
1908 }
1909 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1910
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)1911 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1912 {
1913 cpus_read_lock();
1914 __cpuhp_remove_state_cpuslocked(state, invoke);
1915 cpus_read_unlock();
1916 }
1917 EXPORT_SYMBOL(__cpuhp_remove_state);
1918
1919 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)1920 static void cpuhp_offline_cpu_device(unsigned int cpu)
1921 {
1922 struct device *dev = get_cpu_device(cpu);
1923
1924 dev->offline = true;
1925 /* Tell user space about the state change */
1926 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
1927 }
1928
cpuhp_online_cpu_device(unsigned int cpu)1929 static void cpuhp_online_cpu_device(unsigned int cpu)
1930 {
1931 struct device *dev = get_cpu_device(cpu);
1932
1933 dev->offline = false;
1934 /* Tell user space about the state change */
1935 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
1936 }
1937
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)1938 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
1939 {
1940 int cpu, ret = 0;
1941
1942 cpu_maps_update_begin();
1943 for_each_online_cpu(cpu) {
1944 if (topology_is_primary_thread(cpu))
1945 continue;
1946 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1947 if (ret)
1948 break;
1949 /*
1950 * As this needs to hold the cpu maps lock it's impossible
1951 * to call device_offline() because that ends up calling
1952 * cpu_down() which takes cpu maps lock. cpu maps lock
1953 * needs to be held as this might race against in kernel
1954 * abusers of the hotplug machinery (thermal management).
1955 *
1956 * So nothing would update device:offline state. That would
1957 * leave the sysfs entry stale and prevent onlining after
1958 * smt control has been changed to 'off' again. This is
1959 * called under the sysfs hotplug lock, so it is properly
1960 * serialized against the regular offline usage.
1961 */
1962 cpuhp_offline_cpu_device(cpu);
1963 }
1964 if (!ret)
1965 cpu_smt_control = ctrlval;
1966 cpu_maps_update_done();
1967 return ret;
1968 }
1969
cpuhp_smt_enable(void)1970 int cpuhp_smt_enable(void)
1971 {
1972 int cpu, ret = 0;
1973
1974 cpu_maps_update_begin();
1975 cpu_smt_control = CPU_SMT_ENABLED;
1976 for_each_present_cpu(cpu) {
1977 /* Skip online CPUs and CPUs on offline nodes */
1978 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
1979 continue;
1980 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
1981 if (ret)
1982 break;
1983 /* See comment in cpuhp_smt_disable() */
1984 cpuhp_online_cpu_device(cpu);
1985 }
1986 cpu_maps_update_done();
1987 return ret;
1988 }
1989 #endif
1990
1991 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
show_cpuhp_state(struct device * dev,struct device_attribute * attr,char * buf)1992 static ssize_t show_cpuhp_state(struct device *dev,
1993 struct device_attribute *attr, char *buf)
1994 {
1995 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1996
1997 return sprintf(buf, "%d\n", st->state);
1998 }
1999 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2000
write_cpuhp_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2001 static ssize_t write_cpuhp_target(struct device *dev,
2002 struct device_attribute *attr,
2003 const char *buf, size_t count)
2004 {
2005 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2006 struct cpuhp_step *sp;
2007 int target, ret;
2008
2009 ret = kstrtoint(buf, 10, &target);
2010 if (ret)
2011 return ret;
2012
2013 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2014 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2015 return -EINVAL;
2016 #else
2017 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2018 return -EINVAL;
2019 #endif
2020
2021 ret = lock_device_hotplug_sysfs();
2022 if (ret)
2023 return ret;
2024
2025 mutex_lock(&cpuhp_state_mutex);
2026 sp = cpuhp_get_step(target);
2027 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2028 mutex_unlock(&cpuhp_state_mutex);
2029 if (ret)
2030 goto out;
2031
2032 if (st->state < target)
2033 ret = do_cpu_up(dev->id, target);
2034 else
2035 ret = do_cpu_down(dev->id, target);
2036 out:
2037 unlock_device_hotplug();
2038 return ret ? ret : count;
2039 }
2040
show_cpuhp_target(struct device * dev,struct device_attribute * attr,char * buf)2041 static ssize_t show_cpuhp_target(struct device *dev,
2042 struct device_attribute *attr, char *buf)
2043 {
2044 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2045
2046 return sprintf(buf, "%d\n", st->target);
2047 }
2048 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2049
2050
write_cpuhp_fail(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2051 static ssize_t write_cpuhp_fail(struct device *dev,
2052 struct device_attribute *attr,
2053 const char *buf, size_t count)
2054 {
2055 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2056 struct cpuhp_step *sp;
2057 int fail, ret;
2058
2059 ret = kstrtoint(buf, 10, &fail);
2060 if (ret)
2061 return ret;
2062
2063 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2064 return -EINVAL;
2065
2066 /*
2067 * Cannot fail STARTING/DYING callbacks.
2068 */
2069 if (cpuhp_is_atomic_state(fail))
2070 return -EINVAL;
2071
2072 /*
2073 * Cannot fail anything that doesn't have callbacks.
2074 */
2075 mutex_lock(&cpuhp_state_mutex);
2076 sp = cpuhp_get_step(fail);
2077 if (!sp->startup.single && !sp->teardown.single)
2078 ret = -EINVAL;
2079 mutex_unlock(&cpuhp_state_mutex);
2080 if (ret)
2081 return ret;
2082
2083 st->fail = fail;
2084
2085 return count;
2086 }
2087
show_cpuhp_fail(struct device * dev,struct device_attribute * attr,char * buf)2088 static ssize_t show_cpuhp_fail(struct device *dev,
2089 struct device_attribute *attr, char *buf)
2090 {
2091 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2092
2093 return sprintf(buf, "%d\n", st->fail);
2094 }
2095
2096 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2097
2098 static struct attribute *cpuhp_cpu_attrs[] = {
2099 &dev_attr_state.attr,
2100 &dev_attr_target.attr,
2101 &dev_attr_fail.attr,
2102 NULL
2103 };
2104
2105 static const struct attribute_group cpuhp_cpu_attr_group = {
2106 .attrs = cpuhp_cpu_attrs,
2107 .name = "hotplug",
2108 NULL
2109 };
2110
show_cpuhp_states(struct device * dev,struct device_attribute * attr,char * buf)2111 static ssize_t show_cpuhp_states(struct device *dev,
2112 struct device_attribute *attr, char *buf)
2113 {
2114 ssize_t cur, res = 0;
2115 int i;
2116
2117 mutex_lock(&cpuhp_state_mutex);
2118 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2119 struct cpuhp_step *sp = cpuhp_get_step(i);
2120
2121 if (sp->name) {
2122 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2123 buf += cur;
2124 res += cur;
2125 }
2126 }
2127 mutex_unlock(&cpuhp_state_mutex);
2128 return res;
2129 }
2130 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2131
2132 static struct attribute *cpuhp_cpu_root_attrs[] = {
2133 &dev_attr_states.attr,
2134 NULL
2135 };
2136
2137 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2138 .attrs = cpuhp_cpu_root_attrs,
2139 .name = "hotplug",
2140 NULL
2141 };
2142
2143 #ifdef CONFIG_HOTPLUG_SMT
2144
2145 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2146 __store_smt_control(struct device *dev, struct device_attribute *attr,
2147 const char *buf, size_t count)
2148 {
2149 int ctrlval, ret;
2150
2151 if (sysfs_streq(buf, "on"))
2152 ctrlval = CPU_SMT_ENABLED;
2153 else if (sysfs_streq(buf, "off"))
2154 ctrlval = CPU_SMT_DISABLED;
2155 else if (sysfs_streq(buf, "forceoff"))
2156 ctrlval = CPU_SMT_FORCE_DISABLED;
2157 else
2158 return -EINVAL;
2159
2160 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2161 return -EPERM;
2162
2163 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2164 return -ENODEV;
2165
2166 ret = lock_device_hotplug_sysfs();
2167 if (ret)
2168 return ret;
2169
2170 if (ctrlval != cpu_smt_control) {
2171 switch (ctrlval) {
2172 case CPU_SMT_ENABLED:
2173 ret = cpuhp_smt_enable();
2174 break;
2175 case CPU_SMT_DISABLED:
2176 case CPU_SMT_FORCE_DISABLED:
2177 ret = cpuhp_smt_disable(ctrlval);
2178 break;
2179 }
2180 }
2181
2182 unlock_device_hotplug();
2183 return ret ? ret : count;
2184 }
2185
2186 #else /* !CONFIG_HOTPLUG_SMT */
2187 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2188 __store_smt_control(struct device *dev, struct device_attribute *attr,
2189 const char *buf, size_t count)
2190 {
2191 return -ENODEV;
2192 }
2193 #endif /* CONFIG_HOTPLUG_SMT */
2194
2195 static const char *smt_states[] = {
2196 [CPU_SMT_ENABLED] = "on",
2197 [CPU_SMT_DISABLED] = "off",
2198 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2199 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2200 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2201 };
2202
2203 static ssize_t
show_smt_control(struct device * dev,struct device_attribute * attr,char * buf)2204 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2205 {
2206 const char *state = smt_states[cpu_smt_control];
2207
2208 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2209 }
2210
2211 static ssize_t
store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2212 store_smt_control(struct device *dev, struct device_attribute *attr,
2213 const char *buf, size_t count)
2214 {
2215 return __store_smt_control(dev, attr, buf, count);
2216 }
2217 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2218
2219 static ssize_t
show_smt_active(struct device * dev,struct device_attribute * attr,char * buf)2220 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2221 {
2222 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2223 }
2224 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2225
2226 static struct attribute *cpuhp_smt_attrs[] = {
2227 &dev_attr_control.attr,
2228 &dev_attr_active.attr,
2229 NULL
2230 };
2231
2232 static const struct attribute_group cpuhp_smt_attr_group = {
2233 .attrs = cpuhp_smt_attrs,
2234 .name = "smt",
2235 NULL
2236 };
2237
cpu_smt_sysfs_init(void)2238 static int __init cpu_smt_sysfs_init(void)
2239 {
2240 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2241 &cpuhp_smt_attr_group);
2242 }
2243
cpuhp_sysfs_init(void)2244 static int __init cpuhp_sysfs_init(void)
2245 {
2246 int cpu, ret;
2247
2248 ret = cpu_smt_sysfs_init();
2249 if (ret)
2250 return ret;
2251
2252 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2253 &cpuhp_cpu_root_attr_group);
2254 if (ret)
2255 return ret;
2256
2257 for_each_possible_cpu(cpu) {
2258 struct device *dev = get_cpu_device(cpu);
2259
2260 if (!dev)
2261 continue;
2262 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2263 if (ret)
2264 return ret;
2265 }
2266 return 0;
2267 }
2268 device_initcall(cpuhp_sysfs_init);
2269 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2270
2271 /*
2272 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2273 * represents all NR_CPUS bits binary values of 1<<nr.
2274 *
2275 * It is used by cpumask_of() to get a constant address to a CPU
2276 * mask value that has a single bit set only.
2277 */
2278
2279 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2280 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2281 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2282 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2283 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2284
2285 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2286
2287 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2288 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2289 #if BITS_PER_LONG > 32
2290 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2291 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2292 #endif
2293 };
2294 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2295
2296 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2297 EXPORT_SYMBOL(cpu_all_bits);
2298
2299 #ifdef CONFIG_INIT_ALL_POSSIBLE
2300 struct cpumask __cpu_possible_mask __read_mostly
2301 = {CPU_BITS_ALL};
2302 #else
2303 struct cpumask __cpu_possible_mask __read_mostly;
2304 #endif
2305 EXPORT_SYMBOL(__cpu_possible_mask);
2306
2307 struct cpumask __cpu_online_mask __read_mostly;
2308 EXPORT_SYMBOL(__cpu_online_mask);
2309
2310 struct cpumask __cpu_present_mask __read_mostly;
2311 EXPORT_SYMBOL(__cpu_present_mask);
2312
2313 struct cpumask __cpu_active_mask __read_mostly;
2314 EXPORT_SYMBOL(__cpu_active_mask);
2315
2316 atomic_t __num_online_cpus __read_mostly;
2317 EXPORT_SYMBOL(__num_online_cpus);
2318
init_cpu_present(const struct cpumask * src)2319 void init_cpu_present(const struct cpumask *src)
2320 {
2321 cpumask_copy(&__cpu_present_mask, src);
2322 }
2323
init_cpu_possible(const struct cpumask * src)2324 void init_cpu_possible(const struct cpumask *src)
2325 {
2326 cpumask_copy(&__cpu_possible_mask, src);
2327 }
2328
init_cpu_online(const struct cpumask * src)2329 void init_cpu_online(const struct cpumask *src)
2330 {
2331 cpumask_copy(&__cpu_online_mask, src);
2332 }
2333
set_cpu_online(unsigned int cpu,bool online)2334 void set_cpu_online(unsigned int cpu, bool online)
2335 {
2336 /*
2337 * atomic_inc/dec() is required to handle the horrid abuse of this
2338 * function by the reboot and kexec code which invoke it from
2339 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2340 * regular CPU hotplug is properly serialized.
2341 *
2342 * Note, that the fact that __num_online_cpus is of type atomic_t
2343 * does not protect readers which are not serialized against
2344 * concurrent hotplug operations.
2345 */
2346 if (online) {
2347 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2348 atomic_inc(&__num_online_cpus);
2349 } else {
2350 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2351 atomic_dec(&__num_online_cpus);
2352 }
2353 }
2354
2355 /*
2356 * Activate the first processor.
2357 */
boot_cpu_init(void)2358 void __init boot_cpu_init(void)
2359 {
2360 int cpu = smp_processor_id();
2361
2362 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2363 set_cpu_online(cpu, true);
2364 set_cpu_active(cpu, true);
2365 set_cpu_present(cpu, true);
2366 set_cpu_possible(cpu, true);
2367
2368 #ifdef CONFIG_SMP
2369 __boot_cpu_id = cpu;
2370 #endif
2371 }
2372
2373 /*
2374 * Must be called _AFTER_ setting up the per_cpu areas
2375 */
boot_cpu_hotplug_init(void)2376 void __init boot_cpu_hotplug_init(void)
2377 {
2378 #ifdef CONFIG_SMP
2379 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2380 #endif
2381 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2382 }
2383
2384 /*
2385 * These are used for a global "mitigations=" cmdline option for toggling
2386 * optional CPU mitigations.
2387 */
2388 enum cpu_mitigations {
2389 CPU_MITIGATIONS_OFF,
2390 CPU_MITIGATIONS_AUTO,
2391 CPU_MITIGATIONS_AUTO_NOSMT,
2392 };
2393
2394 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2395 CPU_MITIGATIONS_AUTO;
2396
mitigations_parse_cmdline(char * arg)2397 static int __init mitigations_parse_cmdline(char *arg)
2398 {
2399 if (!strcmp(arg, "off"))
2400 cpu_mitigations = CPU_MITIGATIONS_OFF;
2401 else if (!strcmp(arg, "auto"))
2402 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2403 else if (!strcmp(arg, "auto,nosmt"))
2404 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2405 else
2406 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2407 arg);
2408
2409 return 0;
2410 }
2411 early_param("mitigations", mitigations_parse_cmdline);
2412
2413 /* mitigations=off */
cpu_mitigations_off(void)2414 bool cpu_mitigations_off(void)
2415 {
2416 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2417 }
2418 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2419
2420 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)2421 bool cpu_mitigations_auto_nosmt(void)
2422 {
2423 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2424 }
2425 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2426