1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <trace/events/kmem.h>
76
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
90
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
95
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
99
100 /*
101 * A number of key systems in x86 including ioremap() rely on the assumption
102 * that high_memory defines the upper bound on direct map memory, then end
103 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
104 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105 * and ZONE_HIGHMEM.
106 */
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
109
110 /*
111 * Randomize the address space (stacks, mmaps, brk, etc.).
112 *
113 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114 * as ancient (libc5 based) binaries can segfault. )
115 */
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
118 1;
119 #else
120 2;
121 #endif
122
disable_randmaps(char * s)123 static int __init disable_randmaps(char *s)
124 {
125 randomize_va_space = 0;
126 return 1;
127 }
128 __setup("norandmaps", disable_randmaps);
129
130 unsigned long zero_pfn __read_mostly;
131 EXPORT_SYMBOL(zero_pfn);
132
133 unsigned long highest_memmap_pfn __read_mostly;
134
135 /*
136 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
137 */
init_zero_pfn(void)138 static int __init init_zero_pfn(void)
139 {
140 zero_pfn = page_to_pfn(ZERO_PAGE(0));
141 return 0;
142 }
143 core_initcall(init_zero_pfn);
144
145 /*
146 * Only trace rss_stat when there is a 512kb cross over.
147 * Smaller changes may be lost unless every small change is
148 * crossing into or returning to a 512kb boundary.
149 */
150 #define TRACE_MM_COUNTER_THRESHOLD 128
151
mm_trace_rss_stat(struct mm_struct * mm,int member,long count,long value)152 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count,
153 long value)
154 {
155 long thresh_mask = ~(TRACE_MM_COUNTER_THRESHOLD - 1);
156
157 /* Threshold roll-over, trace it */
158 if ((count & thresh_mask) != ((count - value) & thresh_mask))
159 trace_rss_stat(mm, member, count);
160 }
161 EXPORT_SYMBOL(mm_trace_rss_stat);
162
163 #if defined(SPLIT_RSS_COUNTING)
164
sync_mm_rss(struct mm_struct * mm)165 void sync_mm_rss(struct mm_struct *mm)
166 {
167 int i;
168
169 for (i = 0; i < NR_MM_COUNTERS; i++) {
170 if (current->rss_stat.count[i]) {
171 add_mm_counter(mm, i, current->rss_stat.count[i]);
172 current->rss_stat.count[i] = 0;
173 }
174 }
175 current->rss_stat.events = 0;
176 }
177
add_mm_counter_fast(struct mm_struct * mm,int member,int val)178 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
179 {
180 struct task_struct *task = current;
181
182 if (likely(task->mm == mm))
183 task->rss_stat.count[member] += val;
184 else
185 add_mm_counter(mm, member, val);
186 }
187 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
188 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
189
190 /* sync counter once per 64 page faults */
191 #define TASK_RSS_EVENTS_THRESH (64)
check_sync_rss_stat(struct task_struct * task)192 static void check_sync_rss_stat(struct task_struct *task)
193 {
194 if (unlikely(task != current))
195 return;
196 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
197 sync_mm_rss(task->mm);
198 }
199 #else /* SPLIT_RSS_COUNTING */
200
201 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
202 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
203
check_sync_rss_stat(struct task_struct * task)204 static void check_sync_rss_stat(struct task_struct *task)
205 {
206 }
207
208 #endif /* SPLIT_RSS_COUNTING */
209
210 /*
211 * Note: this doesn't free the actual pages themselves. That
212 * has been handled earlier when unmapping all the memory regions.
213 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)214 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
215 unsigned long addr)
216 {
217 pgtable_t token = pmd_pgtable(*pmd);
218 pmd_clear(pmd);
219 pte_free_tlb(tlb, token, addr);
220 mm_dec_nr_ptes(tlb->mm);
221 }
222
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)223 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
224 unsigned long addr, unsigned long end,
225 unsigned long floor, unsigned long ceiling)
226 {
227 pmd_t *pmd;
228 unsigned long next;
229 unsigned long start;
230
231 start = addr;
232 pmd = pmd_offset(pud, addr);
233 do {
234 next = pmd_addr_end(addr, end);
235 if (pmd_none_or_clear_bad(pmd))
236 continue;
237 free_pte_range(tlb, pmd, addr);
238 } while (pmd++, addr = next, addr != end);
239
240 start &= PUD_MASK;
241 if (start < floor)
242 return;
243 if (ceiling) {
244 ceiling &= PUD_MASK;
245 if (!ceiling)
246 return;
247 }
248 if (end - 1 > ceiling - 1)
249 return;
250
251 pmd = pmd_offset(pud, start);
252 pud_clear(pud);
253 pmd_free_tlb(tlb, pmd, start);
254 mm_dec_nr_pmds(tlb->mm);
255 }
256
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)257 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
258 unsigned long addr, unsigned long end,
259 unsigned long floor, unsigned long ceiling)
260 {
261 pud_t *pud;
262 unsigned long next;
263 unsigned long start;
264
265 start = addr;
266 pud = pud_offset(p4d, addr);
267 do {
268 next = pud_addr_end(addr, end);
269 if (pud_none_or_clear_bad(pud))
270 continue;
271 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
272 } while (pud++, addr = next, addr != end);
273
274 start &= P4D_MASK;
275 if (start < floor)
276 return;
277 if (ceiling) {
278 ceiling &= P4D_MASK;
279 if (!ceiling)
280 return;
281 }
282 if (end - 1 > ceiling - 1)
283 return;
284
285 pud = pud_offset(p4d, start);
286 p4d_clear(p4d);
287 pud_free_tlb(tlb, pud, start);
288 mm_dec_nr_puds(tlb->mm);
289 }
290
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)291 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
292 unsigned long addr, unsigned long end,
293 unsigned long floor, unsigned long ceiling)
294 {
295 p4d_t *p4d;
296 unsigned long next;
297 unsigned long start;
298
299 start = addr;
300 p4d = p4d_offset(pgd, addr);
301 do {
302 next = p4d_addr_end(addr, end);
303 if (p4d_none_or_clear_bad(p4d))
304 continue;
305 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
306 } while (p4d++, addr = next, addr != end);
307
308 start &= PGDIR_MASK;
309 if (start < floor)
310 return;
311 if (ceiling) {
312 ceiling &= PGDIR_MASK;
313 if (!ceiling)
314 return;
315 }
316 if (end - 1 > ceiling - 1)
317 return;
318
319 p4d = p4d_offset(pgd, start);
320 pgd_clear(pgd);
321 p4d_free_tlb(tlb, p4d, start);
322 }
323
324 /*
325 * This function frees user-level page tables of a process.
326 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)327 void free_pgd_range(struct mmu_gather *tlb,
328 unsigned long addr, unsigned long end,
329 unsigned long floor, unsigned long ceiling)
330 {
331 pgd_t *pgd;
332 unsigned long next;
333
334 /*
335 * The next few lines have given us lots of grief...
336 *
337 * Why are we testing PMD* at this top level? Because often
338 * there will be no work to do at all, and we'd prefer not to
339 * go all the way down to the bottom just to discover that.
340 *
341 * Why all these "- 1"s? Because 0 represents both the bottom
342 * of the address space and the top of it (using -1 for the
343 * top wouldn't help much: the masks would do the wrong thing).
344 * The rule is that addr 0 and floor 0 refer to the bottom of
345 * the address space, but end 0 and ceiling 0 refer to the top
346 * Comparisons need to use "end - 1" and "ceiling - 1" (though
347 * that end 0 case should be mythical).
348 *
349 * Wherever addr is brought up or ceiling brought down, we must
350 * be careful to reject "the opposite 0" before it confuses the
351 * subsequent tests. But what about where end is brought down
352 * by PMD_SIZE below? no, end can't go down to 0 there.
353 *
354 * Whereas we round start (addr) and ceiling down, by different
355 * masks at different levels, in order to test whether a table
356 * now has no other vmas using it, so can be freed, we don't
357 * bother to round floor or end up - the tests don't need that.
358 */
359
360 addr &= PMD_MASK;
361 if (addr < floor) {
362 addr += PMD_SIZE;
363 if (!addr)
364 return;
365 }
366 if (ceiling) {
367 ceiling &= PMD_MASK;
368 if (!ceiling)
369 return;
370 }
371 if (end - 1 > ceiling - 1)
372 end -= PMD_SIZE;
373 if (addr > end - 1)
374 return;
375 /*
376 * We add page table cache pages with PAGE_SIZE,
377 * (see pte_free_tlb()), flush the tlb if we need
378 */
379 tlb_change_page_size(tlb, PAGE_SIZE);
380 pgd = pgd_offset(tlb->mm, addr);
381 do {
382 next = pgd_addr_end(addr, end);
383 if (pgd_none_or_clear_bad(pgd))
384 continue;
385 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
386 } while (pgd++, addr = next, addr != end);
387 }
388
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)389 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
390 unsigned long floor, unsigned long ceiling)
391 {
392 while (vma) {
393 struct vm_area_struct *next = vma->vm_next;
394 unsigned long addr = vma->vm_start;
395
396 /*
397 * Hide vma from rmap and truncate_pagecache before freeing
398 * pgtables
399 */
400 unlink_anon_vmas(vma);
401 unlink_file_vma(vma);
402
403 if (is_vm_hugetlb_page(vma)) {
404 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
405 floor, next ? next->vm_start : ceiling);
406 } else {
407 /*
408 * Optimization: gather nearby vmas into one call down
409 */
410 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
411 && !is_vm_hugetlb_page(next)) {
412 vma = next;
413 next = vma->vm_next;
414 unlink_anon_vmas(vma);
415 unlink_file_vma(vma);
416 }
417 free_pgd_range(tlb, addr, vma->vm_end,
418 floor, next ? next->vm_start : ceiling);
419 }
420 vma = next;
421 }
422 }
423
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)424 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
425 {
426 spinlock_t *ptl;
427 pgtable_t new = pte_alloc_one(mm);
428 if (!new)
429 return -ENOMEM;
430
431 /*
432 * Ensure all pte setup (eg. pte page lock and page clearing) are
433 * visible before the pte is made visible to other CPUs by being
434 * put into page tables.
435 *
436 * The other side of the story is the pointer chasing in the page
437 * table walking code (when walking the page table without locking;
438 * ie. most of the time). Fortunately, these data accesses consist
439 * of a chain of data-dependent loads, meaning most CPUs (alpha
440 * being the notable exception) will already guarantee loads are
441 * seen in-order. See the alpha page table accessors for the
442 * smp_read_barrier_depends() barriers in page table walking code.
443 */
444 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
445
446 ptl = pmd_lock(mm, pmd);
447 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
448 mm_inc_nr_ptes(mm);
449 pmd_populate(mm, pmd, new);
450 new = NULL;
451 }
452 spin_unlock(ptl);
453 if (new)
454 pte_free(mm, new);
455 return 0;
456 }
457
__pte_alloc_kernel(pmd_t * pmd)458 int __pte_alloc_kernel(pmd_t *pmd)
459 {
460 pte_t *new = pte_alloc_one_kernel(&init_mm);
461 if (!new)
462 return -ENOMEM;
463
464 smp_wmb(); /* See comment in __pte_alloc */
465
466 spin_lock(&init_mm.page_table_lock);
467 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
468 pmd_populate_kernel(&init_mm, pmd, new);
469 new = NULL;
470 }
471 spin_unlock(&init_mm.page_table_lock);
472 if (new)
473 pte_free_kernel(&init_mm, new);
474 return 0;
475 }
476
init_rss_vec(int * rss)477 static inline void init_rss_vec(int *rss)
478 {
479 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
480 }
481
add_mm_rss_vec(struct mm_struct * mm,int * rss)482 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
483 {
484 int i;
485
486 if (current->mm == mm)
487 sync_mm_rss(mm);
488 for (i = 0; i < NR_MM_COUNTERS; i++)
489 if (rss[i])
490 add_mm_counter(mm, i, rss[i]);
491 }
492
493 /*
494 * This function is called to print an error when a bad pte
495 * is found. For example, we might have a PFN-mapped pte in
496 * a region that doesn't allow it.
497 *
498 * The calling function must still handle the error.
499 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)500 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
501 pte_t pte, struct page *page)
502 {
503 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
504 p4d_t *p4d = p4d_offset(pgd, addr);
505 pud_t *pud = pud_offset(p4d, addr);
506 pmd_t *pmd = pmd_offset(pud, addr);
507 struct address_space *mapping;
508 pgoff_t index;
509 static unsigned long resume;
510 static unsigned long nr_shown;
511 static unsigned long nr_unshown;
512
513 /*
514 * Allow a burst of 60 reports, then keep quiet for that minute;
515 * or allow a steady drip of one report per second.
516 */
517 if (nr_shown == 60) {
518 if (time_before(jiffies, resume)) {
519 nr_unshown++;
520 return;
521 }
522 if (nr_unshown) {
523 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
524 nr_unshown);
525 nr_unshown = 0;
526 }
527 nr_shown = 0;
528 }
529 if (nr_shown++ == 0)
530 resume = jiffies + 60 * HZ;
531
532 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
533 index = linear_page_index(vma, addr);
534
535 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
536 current->comm,
537 (long long)pte_val(pte), (long long)pmd_val(*pmd));
538 if (page)
539 dump_page(page, "bad pte");
540 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
541 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
542 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
543 vma->vm_file,
544 vma->vm_ops ? vma->vm_ops->fault : NULL,
545 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
546 mapping ? mapping->a_ops->readpage : NULL);
547 dump_stack();
548 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
549 }
550
551 /*
552 * vm_normal_page -- This function gets the "struct page" associated with a pte.
553 *
554 * "Special" mappings do not wish to be associated with a "struct page" (either
555 * it doesn't exist, or it exists but they don't want to touch it). In this
556 * case, NULL is returned here. "Normal" mappings do have a struct page.
557 *
558 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
559 * pte bit, in which case this function is trivial. Secondly, an architecture
560 * may not have a spare pte bit, which requires a more complicated scheme,
561 * described below.
562 *
563 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
564 * special mapping (even if there are underlying and valid "struct pages").
565 * COWed pages of a VM_PFNMAP are always normal.
566 *
567 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
568 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
569 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
570 * mapping will always honor the rule
571 *
572 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573 *
574 * And for normal mappings this is false.
575 *
576 * This restricts such mappings to be a linear translation from virtual address
577 * to pfn. To get around this restriction, we allow arbitrary mappings so long
578 * as the vma is not a COW mapping; in that case, we know that all ptes are
579 * special (because none can have been COWed).
580 *
581 *
582 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
583 *
584 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
585 * page" backing, however the difference is that _all_ pages with a struct
586 * page (that is, those where pfn_valid is true) are refcounted and considered
587 * normal pages by the VM. The disadvantage is that pages are refcounted
588 * (which can be slower and simply not an option for some PFNMAP users). The
589 * advantage is that we don't have to follow the strict linearity rule of
590 * PFNMAP mappings in order to support COWable mappings.
591 *
592 */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)593 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
594 pte_t pte)
595 {
596 unsigned long pfn = pte_pfn(pte);
597
598 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
599 if (likely(!pte_special(pte)))
600 goto check_pfn;
601 if (vma->vm_ops && vma->vm_ops->find_special_page)
602 return vma->vm_ops->find_special_page(vma, addr);
603 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
604 return NULL;
605 if (is_zero_pfn(pfn))
606 return NULL;
607 if (pte_devmap(pte))
608 return NULL;
609
610 print_bad_pte(vma, addr, pte, NULL);
611 return NULL;
612 }
613
614 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
615
616 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
617 if (vma->vm_flags & VM_MIXEDMAP) {
618 if (!pfn_valid(pfn))
619 return NULL;
620 goto out;
621 } else {
622 unsigned long off;
623 off = (addr - vma->vm_start) >> PAGE_SHIFT;
624 if (pfn == vma->vm_pgoff + off)
625 return NULL;
626 if (!is_cow_mapping(vma->vm_flags))
627 return NULL;
628 }
629 }
630
631 if (is_zero_pfn(pfn))
632 return NULL;
633
634 check_pfn:
635 if (unlikely(pfn > highest_memmap_pfn)) {
636 print_bad_pte(vma, addr, pte, NULL);
637 return NULL;
638 }
639
640 /*
641 * NOTE! We still have PageReserved() pages in the page tables.
642 * eg. VDSO mappings can cause them to exist.
643 */
644 out:
645 return pfn_to_page(pfn);
646 }
647
648 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)649 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
650 pmd_t pmd)
651 {
652 unsigned long pfn = pmd_pfn(pmd);
653
654 /*
655 * There is no pmd_special() but there may be special pmds, e.g.
656 * in a direct-access (dax) mapping, so let's just replicate the
657 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
658 */
659 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
660 if (vma->vm_flags & VM_MIXEDMAP) {
661 if (!pfn_valid(pfn))
662 return NULL;
663 goto out;
664 } else {
665 unsigned long off;
666 off = (addr - vma->vm_start) >> PAGE_SHIFT;
667 if (pfn == vma->vm_pgoff + off)
668 return NULL;
669 if (!is_cow_mapping(vma->vm_flags))
670 return NULL;
671 }
672 }
673
674 if (pmd_devmap(pmd))
675 return NULL;
676 if (is_zero_pfn(pfn))
677 return NULL;
678 if (unlikely(pfn > highest_memmap_pfn))
679 return NULL;
680
681 /*
682 * NOTE! We still have PageReserved() pages in the page tables.
683 * eg. VDSO mappings can cause them to exist.
684 */
685 out:
686 return pfn_to_page(pfn);
687 }
688 #endif
689
690 /*
691 * copy one vm_area from one task to the other. Assumes the page tables
692 * already present in the new task to be cleared in the whole range
693 * covered by this vma.
694 */
695
696 static inline unsigned long
copy_one_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr,int * rss)697 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
698 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
699 unsigned long addr, int *rss)
700 {
701 unsigned long vm_flags = vma->vm_flags;
702 pte_t pte = *src_pte;
703 struct page *page;
704
705 /* pte contains position in swap or file, so copy. */
706 if (unlikely(!pte_present(pte))) {
707 swp_entry_t entry = pte_to_swp_entry(pte);
708
709 if (likely(!non_swap_entry(entry))) {
710 if (swap_duplicate(entry) < 0)
711 return entry.val;
712
713 /* make sure dst_mm is on swapoff's mmlist. */
714 if (unlikely(list_empty(&dst_mm->mmlist))) {
715 spin_lock(&mmlist_lock);
716 if (list_empty(&dst_mm->mmlist))
717 list_add(&dst_mm->mmlist,
718 &src_mm->mmlist);
719 spin_unlock(&mmlist_lock);
720 }
721 rss[MM_SWAPENTS]++;
722 } else if (is_migration_entry(entry)) {
723 page = migration_entry_to_page(entry);
724
725 rss[mm_counter(page)]++;
726
727 if (is_write_migration_entry(entry) &&
728 is_cow_mapping(vm_flags)) {
729 /*
730 * COW mappings require pages in both
731 * parent and child to be set to read.
732 */
733 make_migration_entry_read(&entry);
734 pte = swp_entry_to_pte(entry);
735 if (pte_swp_soft_dirty(*src_pte))
736 pte = pte_swp_mksoft_dirty(pte);
737 set_pte_at(src_mm, addr, src_pte, pte);
738 }
739 } else if (is_device_private_entry(entry)) {
740 page = device_private_entry_to_page(entry);
741
742 /*
743 * Update rss count even for unaddressable pages, as
744 * they should treated just like normal pages in this
745 * respect.
746 *
747 * We will likely want to have some new rss counters
748 * for unaddressable pages, at some point. But for now
749 * keep things as they are.
750 */
751 get_page(page);
752 rss[mm_counter(page)]++;
753 page_dup_rmap(page, false);
754
755 /*
756 * We do not preserve soft-dirty information, because so
757 * far, checkpoint/restore is the only feature that
758 * requires that. And checkpoint/restore does not work
759 * when a device driver is involved (you cannot easily
760 * save and restore device driver state).
761 */
762 if (is_write_device_private_entry(entry) &&
763 is_cow_mapping(vm_flags)) {
764 make_device_private_entry_read(&entry);
765 pte = swp_entry_to_pte(entry);
766 set_pte_at(src_mm, addr, src_pte, pte);
767 }
768 }
769 goto out_set_pte;
770 }
771
772 /*
773 * If it's a COW mapping, write protect it both
774 * in the parent and the child
775 */
776 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
777 ptep_set_wrprotect(src_mm, addr, src_pte);
778 pte = pte_wrprotect(pte);
779 }
780
781 /*
782 * If it's a shared mapping, mark it clean in
783 * the child
784 */
785 if (vm_flags & VM_SHARED)
786 pte = pte_mkclean(pte);
787 pte = pte_mkold(pte);
788
789 page = vm_normal_page(vma, addr, pte);
790 if (page) {
791 get_page(page);
792 page_dup_rmap(page, false);
793 rss[mm_counter(page)]++;
794 } else if (pte_devmap(pte)) {
795 page = pte_page(pte);
796 }
797
798 out_set_pte:
799 set_pte_at(dst_mm, addr, dst_pte, pte);
800 return 0;
801 }
802
copy_pte_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)803 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
804 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
805 unsigned long addr, unsigned long end)
806 {
807 pte_t *orig_src_pte, *orig_dst_pte;
808 pte_t *src_pte, *dst_pte;
809 spinlock_t *src_ptl, *dst_ptl;
810 int progress = 0;
811 int rss[NR_MM_COUNTERS];
812 swp_entry_t entry = (swp_entry_t){0};
813
814 again:
815 init_rss_vec(rss);
816
817 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
818 if (!dst_pte)
819 return -ENOMEM;
820 src_pte = pte_offset_map(src_pmd, addr);
821 src_ptl = pte_lockptr(src_mm, src_pmd);
822 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
823 orig_src_pte = src_pte;
824 orig_dst_pte = dst_pte;
825 arch_enter_lazy_mmu_mode();
826
827 do {
828 /*
829 * We are holding two locks at this point - either of them
830 * could generate latencies in another task on another CPU.
831 */
832 if (progress >= 32) {
833 progress = 0;
834 if (need_resched() ||
835 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
836 break;
837 }
838 if (pte_none(*src_pte)) {
839 progress++;
840 continue;
841 }
842 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
843 vma, addr, rss);
844 if (entry.val)
845 break;
846 progress += 8;
847 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
848
849 arch_leave_lazy_mmu_mode();
850 spin_unlock(src_ptl);
851 pte_unmap(orig_src_pte);
852 add_mm_rss_vec(dst_mm, rss);
853 pte_unmap_unlock(orig_dst_pte, dst_ptl);
854 cond_resched();
855
856 if (entry.val) {
857 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
858 return -ENOMEM;
859 progress = 0;
860 }
861 if (addr != end)
862 goto again;
863 return 0;
864 }
865
copy_pmd_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,struct vm_area_struct * vma,unsigned long addr,unsigned long end)866 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
867 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
868 unsigned long addr, unsigned long end)
869 {
870 pmd_t *src_pmd, *dst_pmd;
871 unsigned long next;
872
873 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
874 if (!dst_pmd)
875 return -ENOMEM;
876 src_pmd = pmd_offset(src_pud, addr);
877 do {
878 next = pmd_addr_end(addr, end);
879 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
880 || pmd_devmap(*src_pmd)) {
881 int err;
882 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
883 err = copy_huge_pmd(dst_mm, src_mm,
884 dst_pmd, src_pmd, addr, vma);
885 if (err == -ENOMEM)
886 return -ENOMEM;
887 if (!err)
888 continue;
889 /* fall through */
890 }
891 if (pmd_none_or_clear_bad(src_pmd))
892 continue;
893 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
894 vma, addr, next))
895 return -ENOMEM;
896 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
897 return 0;
898 }
899
copy_pud_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,p4d_t * dst_p4d,p4d_t * src_p4d,struct vm_area_struct * vma,unsigned long addr,unsigned long end)900 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
901 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
902 unsigned long addr, unsigned long end)
903 {
904 pud_t *src_pud, *dst_pud;
905 unsigned long next;
906
907 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
908 if (!dst_pud)
909 return -ENOMEM;
910 src_pud = pud_offset(src_p4d, addr);
911 do {
912 next = pud_addr_end(addr, end);
913 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
914 int err;
915
916 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
917 err = copy_huge_pud(dst_mm, src_mm,
918 dst_pud, src_pud, addr, vma);
919 if (err == -ENOMEM)
920 return -ENOMEM;
921 if (!err)
922 continue;
923 /* fall through */
924 }
925 if (pud_none_or_clear_bad(src_pud))
926 continue;
927 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
928 vma, addr, next))
929 return -ENOMEM;
930 } while (dst_pud++, src_pud++, addr = next, addr != end);
931 return 0;
932 }
933
copy_p4d_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pgd_t * dst_pgd,pgd_t * src_pgd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)934 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
935 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
936 unsigned long addr, unsigned long end)
937 {
938 p4d_t *src_p4d, *dst_p4d;
939 unsigned long next;
940
941 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
942 if (!dst_p4d)
943 return -ENOMEM;
944 src_p4d = p4d_offset(src_pgd, addr);
945 do {
946 next = p4d_addr_end(addr, end);
947 if (p4d_none_or_clear_bad(src_p4d))
948 continue;
949 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
950 vma, addr, next))
951 return -ENOMEM;
952 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
953 return 0;
954 }
955
copy_page_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,struct vm_area_struct * vma)956 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
957 struct vm_area_struct *vma)
958 {
959 pgd_t *src_pgd, *dst_pgd;
960 unsigned long next;
961 unsigned long addr = vma->vm_start;
962 unsigned long end = vma->vm_end;
963 struct mmu_notifier_range range;
964 bool is_cow;
965 int ret;
966
967 /*
968 * Don't copy ptes where a page fault will fill them correctly.
969 * Fork becomes much lighter when there are big shared or private
970 * readonly mappings. The tradeoff is that copy_page_range is more
971 * efficient than faulting.
972 */
973 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
974 !vma->anon_vma)
975 return 0;
976
977 if (is_vm_hugetlb_page(vma))
978 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
979
980 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
981 /*
982 * We do not free on error cases below as remove_vma
983 * gets called on error from higher level routine
984 */
985 ret = track_pfn_copy(vma);
986 if (ret)
987 return ret;
988 }
989
990 /*
991 * We need to invalidate the secondary MMU mappings only when
992 * there could be a permission downgrade on the ptes of the
993 * parent mm. And a permission downgrade will only happen if
994 * is_cow_mapping() returns true.
995 */
996 is_cow = is_cow_mapping(vma->vm_flags);
997
998 if (is_cow) {
999 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1000 0, vma, src_mm, addr, end);
1001 mmu_notifier_invalidate_range_start(&range);
1002 }
1003
1004 ret = 0;
1005 dst_pgd = pgd_offset(dst_mm, addr);
1006 src_pgd = pgd_offset(src_mm, addr);
1007 do {
1008 next = pgd_addr_end(addr, end);
1009 if (pgd_none_or_clear_bad(src_pgd))
1010 continue;
1011 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1012 vma, addr, next))) {
1013 ret = -ENOMEM;
1014 break;
1015 }
1016 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1017
1018 if (is_cow)
1019 mmu_notifier_invalidate_range_end(&range);
1020 return ret;
1021 }
1022
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1023 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1024 struct vm_area_struct *vma, pmd_t *pmd,
1025 unsigned long addr, unsigned long end,
1026 struct zap_details *details)
1027 {
1028 struct mm_struct *mm = tlb->mm;
1029 int force_flush = 0;
1030 int rss[NR_MM_COUNTERS];
1031 spinlock_t *ptl;
1032 pte_t *start_pte;
1033 pte_t *pte;
1034 swp_entry_t entry;
1035
1036 tlb_change_page_size(tlb, PAGE_SIZE);
1037 again:
1038 init_rss_vec(rss);
1039 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1040 pte = start_pte;
1041 flush_tlb_batched_pending(mm);
1042 arch_enter_lazy_mmu_mode();
1043 do {
1044 pte_t ptent = *pte;
1045 if (pte_none(ptent))
1046 continue;
1047
1048 if (need_resched())
1049 break;
1050
1051 if (pte_present(ptent)) {
1052 struct page *page;
1053
1054 page = vm_normal_page(vma, addr, ptent);
1055 if (unlikely(details) && page) {
1056 /*
1057 * unmap_shared_mapping_pages() wants to
1058 * invalidate cache without truncating:
1059 * unmap shared but keep private pages.
1060 */
1061 if (details->check_mapping &&
1062 details->check_mapping != page_rmapping(page))
1063 continue;
1064 }
1065 ptent = ptep_get_and_clear_full(mm, addr, pte,
1066 tlb->fullmm);
1067 tlb_remove_tlb_entry(tlb, pte, addr);
1068 if (unlikely(!page))
1069 continue;
1070
1071 if (!PageAnon(page)) {
1072 if (pte_dirty(ptent)) {
1073 force_flush = 1;
1074 set_page_dirty(page);
1075 }
1076 if (pte_young(ptent) &&
1077 likely(!(vma->vm_flags & VM_SEQ_READ)))
1078 mark_page_accessed(page);
1079 }
1080 rss[mm_counter(page)]--;
1081 page_remove_rmap(page, false);
1082 if (unlikely(page_mapcount(page) < 0))
1083 print_bad_pte(vma, addr, ptent, page);
1084 if (unlikely(__tlb_remove_page(tlb, page))) {
1085 force_flush = 1;
1086 addr += PAGE_SIZE;
1087 break;
1088 }
1089 continue;
1090 }
1091
1092 entry = pte_to_swp_entry(ptent);
1093 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1094 struct page *page = device_private_entry_to_page(entry);
1095
1096 if (unlikely(details && details->check_mapping)) {
1097 /*
1098 * unmap_shared_mapping_pages() wants to
1099 * invalidate cache without truncating:
1100 * unmap shared but keep private pages.
1101 */
1102 if (details->check_mapping !=
1103 page_rmapping(page))
1104 continue;
1105 }
1106
1107 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1108 rss[mm_counter(page)]--;
1109 page_remove_rmap(page, false);
1110 put_page(page);
1111 continue;
1112 }
1113
1114 /* If details->check_mapping, we leave swap entries. */
1115 if (unlikely(details))
1116 continue;
1117
1118 if (!non_swap_entry(entry))
1119 rss[MM_SWAPENTS]--;
1120 else if (is_migration_entry(entry)) {
1121 struct page *page;
1122
1123 page = migration_entry_to_page(entry);
1124 rss[mm_counter(page)]--;
1125 }
1126 if (unlikely(!free_swap_and_cache(entry)))
1127 print_bad_pte(vma, addr, ptent, NULL);
1128 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1129 } while (pte++, addr += PAGE_SIZE, addr != end);
1130
1131 add_mm_rss_vec(mm, rss);
1132 arch_leave_lazy_mmu_mode();
1133
1134 /* Do the actual TLB flush before dropping ptl */
1135 if (force_flush)
1136 tlb_flush_mmu_tlbonly(tlb);
1137 pte_unmap_unlock(start_pte, ptl);
1138
1139 /*
1140 * If we forced a TLB flush (either due to running out of
1141 * batch buffers or because we needed to flush dirty TLB
1142 * entries before releasing the ptl), free the batched
1143 * memory too. Restart if we didn't do everything.
1144 */
1145 if (force_flush) {
1146 force_flush = 0;
1147 tlb_flush_mmu(tlb);
1148 }
1149
1150 if (addr != end) {
1151 cond_resched();
1152 goto again;
1153 }
1154
1155 return addr;
1156 }
1157
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1158 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1159 struct vm_area_struct *vma, pud_t *pud,
1160 unsigned long addr, unsigned long end,
1161 struct zap_details *details)
1162 {
1163 pmd_t *pmd;
1164 unsigned long next;
1165
1166 pmd = pmd_offset(pud, addr);
1167 do {
1168 next = pmd_addr_end(addr, end);
1169 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1170 if (next - addr != HPAGE_PMD_SIZE)
1171 __split_huge_pmd(vma, pmd, addr, false, NULL);
1172 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1173 goto next;
1174 /* fall through */
1175 }
1176 /*
1177 * Here there can be other concurrent MADV_DONTNEED or
1178 * trans huge page faults running, and if the pmd is
1179 * none or trans huge it can change under us. This is
1180 * because MADV_DONTNEED holds the mmap_sem in read
1181 * mode.
1182 */
1183 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1184 goto next;
1185 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1186 next:
1187 cond_resched();
1188 } while (pmd++, addr = next, addr != end);
1189
1190 return addr;
1191 }
1192
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1193 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1194 struct vm_area_struct *vma, p4d_t *p4d,
1195 unsigned long addr, unsigned long end,
1196 struct zap_details *details)
1197 {
1198 pud_t *pud;
1199 unsigned long next;
1200
1201 pud = pud_offset(p4d, addr);
1202 do {
1203 next = pud_addr_end(addr, end);
1204 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1205 if (next - addr != HPAGE_PUD_SIZE) {
1206 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1207 split_huge_pud(vma, pud, addr);
1208 } else if (zap_huge_pud(tlb, vma, pud, addr))
1209 goto next;
1210 /* fall through */
1211 }
1212 if (pud_none_or_clear_bad(pud))
1213 continue;
1214 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1215 next:
1216 cond_resched();
1217 } while (pud++, addr = next, addr != end);
1218
1219 return addr;
1220 }
1221
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1222 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1223 struct vm_area_struct *vma, pgd_t *pgd,
1224 unsigned long addr, unsigned long end,
1225 struct zap_details *details)
1226 {
1227 p4d_t *p4d;
1228 unsigned long next;
1229
1230 p4d = p4d_offset(pgd, addr);
1231 do {
1232 next = p4d_addr_end(addr, end);
1233 if (p4d_none_or_clear_bad(p4d))
1234 continue;
1235 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1236 } while (p4d++, addr = next, addr != end);
1237
1238 return addr;
1239 }
1240
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1241 void unmap_page_range(struct mmu_gather *tlb,
1242 struct vm_area_struct *vma,
1243 unsigned long addr, unsigned long end,
1244 struct zap_details *details)
1245 {
1246 pgd_t *pgd;
1247 unsigned long next;
1248
1249 BUG_ON(addr >= end);
1250 tlb_start_vma(tlb, vma);
1251 pgd = pgd_offset(vma->vm_mm, addr);
1252 do {
1253 next = pgd_addr_end(addr, end);
1254 if (pgd_none_or_clear_bad(pgd))
1255 continue;
1256 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1257 } while (pgd++, addr = next, addr != end);
1258 tlb_end_vma(tlb, vma);
1259 }
1260
1261
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)1262 static void unmap_single_vma(struct mmu_gather *tlb,
1263 struct vm_area_struct *vma, unsigned long start_addr,
1264 unsigned long end_addr,
1265 struct zap_details *details)
1266 {
1267 unsigned long start = max(vma->vm_start, start_addr);
1268 unsigned long end;
1269
1270 if (start >= vma->vm_end)
1271 return;
1272 end = min(vma->vm_end, end_addr);
1273 if (end <= vma->vm_start)
1274 return;
1275
1276 if (vma->vm_file)
1277 uprobe_munmap(vma, start, end);
1278
1279 if (unlikely(vma->vm_flags & VM_PFNMAP))
1280 untrack_pfn(vma, 0, 0);
1281
1282 if (start != end) {
1283 if (unlikely(is_vm_hugetlb_page(vma))) {
1284 /*
1285 * It is undesirable to test vma->vm_file as it
1286 * should be non-null for valid hugetlb area.
1287 * However, vm_file will be NULL in the error
1288 * cleanup path of mmap_region. When
1289 * hugetlbfs ->mmap method fails,
1290 * mmap_region() nullifies vma->vm_file
1291 * before calling this function to clean up.
1292 * Since no pte has actually been setup, it is
1293 * safe to do nothing in this case.
1294 */
1295 if (vma->vm_file) {
1296 i_mmap_lock_write(vma->vm_file->f_mapping);
1297 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1298 i_mmap_unlock_write(vma->vm_file->f_mapping);
1299 }
1300 } else
1301 unmap_page_range(tlb, vma, start, end, details);
1302 }
1303 }
1304
1305 /**
1306 * unmap_vmas - unmap a range of memory covered by a list of vma's
1307 * @tlb: address of the caller's struct mmu_gather
1308 * @vma: the starting vma
1309 * @start_addr: virtual address at which to start unmapping
1310 * @end_addr: virtual address at which to end unmapping
1311 *
1312 * Unmap all pages in the vma list.
1313 *
1314 * Only addresses between `start' and `end' will be unmapped.
1315 *
1316 * The VMA list must be sorted in ascending virtual address order.
1317 *
1318 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1319 * range after unmap_vmas() returns. So the only responsibility here is to
1320 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1321 * drops the lock and schedules.
1322 */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)1323 void unmap_vmas(struct mmu_gather *tlb,
1324 struct vm_area_struct *vma, unsigned long start_addr,
1325 unsigned long end_addr)
1326 {
1327 struct mmu_notifier_range range;
1328
1329 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1330 start_addr, end_addr);
1331 mmu_notifier_invalidate_range_start(&range);
1332 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1333 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1334 mmu_notifier_invalidate_range_end(&range);
1335 }
1336
1337 /**
1338 * zap_page_range - remove user pages in a given range
1339 * @vma: vm_area_struct holding the applicable pages
1340 * @start: starting address of pages to zap
1341 * @size: number of bytes to zap
1342 *
1343 * Caller must protect the VMA list
1344 */
zap_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long size)1345 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1346 unsigned long size)
1347 {
1348 struct mmu_notifier_range range;
1349 struct mmu_gather tlb;
1350
1351 lru_add_drain();
1352 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1353 start, start + size);
1354 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1355 update_hiwater_rss(vma->vm_mm);
1356 mmu_notifier_invalidate_range_start(&range);
1357 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1358 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1359 mmu_notifier_invalidate_range_end(&range);
1360 tlb_finish_mmu(&tlb, start, range.end);
1361 }
1362
1363 /**
1364 * zap_page_range_single - remove user pages in a given range
1365 * @vma: vm_area_struct holding the applicable pages
1366 * @address: starting address of pages to zap
1367 * @size: number of bytes to zap
1368 * @details: details of shared cache invalidation
1369 *
1370 * The range must fit into one VMA.
1371 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1372 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1373 unsigned long size, struct zap_details *details)
1374 {
1375 struct mmu_notifier_range range;
1376 struct mmu_gather tlb;
1377
1378 lru_add_drain();
1379 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1380 address, address + size);
1381 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1382 update_hiwater_rss(vma->vm_mm);
1383 mmu_notifier_invalidate_range_start(&range);
1384 unmap_single_vma(&tlb, vma, address, range.end, details);
1385 mmu_notifier_invalidate_range_end(&range);
1386 tlb_finish_mmu(&tlb, address, range.end);
1387 }
1388
1389 /**
1390 * zap_vma_ptes - remove ptes mapping the vma
1391 * @vma: vm_area_struct holding ptes to be zapped
1392 * @address: starting address of pages to zap
1393 * @size: number of bytes to zap
1394 *
1395 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1396 *
1397 * The entire address range must be fully contained within the vma.
1398 *
1399 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1400 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1401 unsigned long size)
1402 {
1403 if (address < vma->vm_start || address + size > vma->vm_end ||
1404 !(vma->vm_flags & VM_PFNMAP))
1405 return;
1406
1407 zap_page_range_single(vma, address, size, NULL);
1408 }
1409 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1410
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1411 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1412 spinlock_t **ptl)
1413 {
1414 pgd_t *pgd;
1415 p4d_t *p4d;
1416 pud_t *pud;
1417 pmd_t *pmd;
1418
1419 pgd = pgd_offset(mm, addr);
1420 p4d = p4d_alloc(mm, pgd, addr);
1421 if (!p4d)
1422 return NULL;
1423 pud = pud_alloc(mm, p4d, addr);
1424 if (!pud)
1425 return NULL;
1426 pmd = pmd_alloc(mm, pud, addr);
1427 if (!pmd)
1428 return NULL;
1429
1430 VM_BUG_ON(pmd_trans_huge(*pmd));
1431 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1432 }
1433
1434 /*
1435 * This is the old fallback for page remapping.
1436 *
1437 * For historical reasons, it only allows reserved pages. Only
1438 * old drivers should use this, and they needed to mark their
1439 * pages reserved for the old functions anyway.
1440 */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1441 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1442 struct page *page, pgprot_t prot)
1443 {
1444 struct mm_struct *mm = vma->vm_mm;
1445 int retval;
1446 pte_t *pte;
1447 spinlock_t *ptl;
1448
1449 retval = -EINVAL;
1450 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1451 goto out;
1452 retval = -ENOMEM;
1453 flush_dcache_page(page);
1454 pte = get_locked_pte(mm, addr, &ptl);
1455 if (!pte)
1456 goto out;
1457 retval = -EBUSY;
1458 if (!pte_none(*pte))
1459 goto out_unlock;
1460
1461 /* Ok, finally just insert the thing.. */
1462 get_page(page);
1463 inc_mm_counter_fast(mm, mm_counter_file(page));
1464 page_add_file_rmap(page, false);
1465 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1466
1467 retval = 0;
1468 out_unlock:
1469 pte_unmap_unlock(pte, ptl);
1470 out:
1471 return retval;
1472 }
1473
1474 /**
1475 * vm_insert_page - insert single page into user vma
1476 * @vma: user vma to map to
1477 * @addr: target user address of this page
1478 * @page: source kernel page
1479 *
1480 * This allows drivers to insert individual pages they've allocated
1481 * into a user vma.
1482 *
1483 * The page has to be a nice clean _individual_ kernel allocation.
1484 * If you allocate a compound page, you need to have marked it as
1485 * such (__GFP_COMP), or manually just split the page up yourself
1486 * (see split_page()).
1487 *
1488 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1489 * took an arbitrary page protection parameter. This doesn't allow
1490 * that. Your vma protection will have to be set up correctly, which
1491 * means that if you want a shared writable mapping, you'd better
1492 * ask for a shared writable mapping!
1493 *
1494 * The page does not need to be reserved.
1495 *
1496 * Usually this function is called from f_op->mmap() handler
1497 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1498 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1499 * function from other places, for example from page-fault handler.
1500 *
1501 * Return: %0 on success, negative error code otherwise.
1502 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)1503 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1504 struct page *page)
1505 {
1506 if (addr < vma->vm_start || addr >= vma->vm_end)
1507 return -EFAULT;
1508 if (!page_count(page))
1509 return -EINVAL;
1510 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1511 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1512 BUG_ON(vma->vm_flags & VM_PFNMAP);
1513 vma->vm_flags |= VM_MIXEDMAP;
1514 }
1515 return insert_page(vma, addr, page, vma->vm_page_prot);
1516 }
1517 EXPORT_SYMBOL(vm_insert_page);
1518
1519 /*
1520 * __vm_map_pages - maps range of kernel pages into user vma
1521 * @vma: user vma to map to
1522 * @pages: pointer to array of source kernel pages
1523 * @num: number of pages in page array
1524 * @offset: user's requested vm_pgoff
1525 *
1526 * This allows drivers to map range of kernel pages into a user vma.
1527 *
1528 * Return: 0 on success and error code otherwise.
1529 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)1530 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1531 unsigned long num, unsigned long offset)
1532 {
1533 unsigned long count = vma_pages(vma);
1534 unsigned long uaddr = vma->vm_start;
1535 int ret, i;
1536
1537 /* Fail if the user requested offset is beyond the end of the object */
1538 if (offset >= num)
1539 return -ENXIO;
1540
1541 /* Fail if the user requested size exceeds available object size */
1542 if (count > num - offset)
1543 return -ENXIO;
1544
1545 for (i = 0; i < count; i++) {
1546 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1547 if (ret < 0)
1548 return ret;
1549 uaddr += PAGE_SIZE;
1550 }
1551
1552 return 0;
1553 }
1554
1555 /**
1556 * vm_map_pages - maps range of kernel pages starts with non zero offset
1557 * @vma: user vma to map to
1558 * @pages: pointer to array of source kernel pages
1559 * @num: number of pages in page array
1560 *
1561 * Maps an object consisting of @num pages, catering for the user's
1562 * requested vm_pgoff
1563 *
1564 * If we fail to insert any page into the vma, the function will return
1565 * immediately leaving any previously inserted pages present. Callers
1566 * from the mmap handler may immediately return the error as their caller
1567 * will destroy the vma, removing any successfully inserted pages. Other
1568 * callers should make their own arrangements for calling unmap_region().
1569 *
1570 * Context: Process context. Called by mmap handlers.
1571 * Return: 0 on success and error code otherwise.
1572 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)1573 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1574 unsigned long num)
1575 {
1576 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1577 }
1578 EXPORT_SYMBOL(vm_map_pages);
1579
1580 /**
1581 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1582 * @vma: user vma to map to
1583 * @pages: pointer to array of source kernel pages
1584 * @num: number of pages in page array
1585 *
1586 * Similar to vm_map_pages(), except that it explicitly sets the offset
1587 * to 0. This function is intended for the drivers that did not consider
1588 * vm_pgoff.
1589 *
1590 * Context: Process context. Called by mmap handlers.
1591 * Return: 0 on success and error code otherwise.
1592 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)1593 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1594 unsigned long num)
1595 {
1596 return __vm_map_pages(vma, pages, num, 0);
1597 }
1598 EXPORT_SYMBOL(vm_map_pages_zero);
1599
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)1600 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1601 pfn_t pfn, pgprot_t prot, bool mkwrite)
1602 {
1603 struct mm_struct *mm = vma->vm_mm;
1604 pte_t *pte, entry;
1605 spinlock_t *ptl;
1606
1607 pte = get_locked_pte(mm, addr, &ptl);
1608 if (!pte)
1609 return VM_FAULT_OOM;
1610 if (!pte_none(*pte)) {
1611 if (mkwrite) {
1612 /*
1613 * For read faults on private mappings the PFN passed
1614 * in may not match the PFN we have mapped if the
1615 * mapped PFN is a writeable COW page. In the mkwrite
1616 * case we are creating a writable PTE for a shared
1617 * mapping and we expect the PFNs to match. If they
1618 * don't match, we are likely racing with block
1619 * allocation and mapping invalidation so just skip the
1620 * update.
1621 */
1622 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1623 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1624 goto out_unlock;
1625 }
1626 entry = pte_mkyoung(*pte);
1627 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1628 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1629 update_mmu_cache(vma, addr, pte);
1630 }
1631 goto out_unlock;
1632 }
1633
1634 /* Ok, finally just insert the thing.. */
1635 if (pfn_t_devmap(pfn))
1636 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1637 else
1638 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1639
1640 if (mkwrite) {
1641 entry = pte_mkyoung(entry);
1642 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1643 }
1644
1645 set_pte_at(mm, addr, pte, entry);
1646 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1647
1648 out_unlock:
1649 pte_unmap_unlock(pte, ptl);
1650 return VM_FAULT_NOPAGE;
1651 }
1652
1653 /**
1654 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1655 * @vma: user vma to map to
1656 * @addr: target user address of this page
1657 * @pfn: source kernel pfn
1658 * @pgprot: pgprot flags for the inserted page
1659 *
1660 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1661 * to override pgprot on a per-page basis.
1662 *
1663 * This only makes sense for IO mappings, and it makes no sense for
1664 * COW mappings. In general, using multiple vmas is preferable;
1665 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1666 * impractical.
1667 *
1668 * Context: Process context. May allocate using %GFP_KERNEL.
1669 * Return: vm_fault_t value.
1670 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)1671 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1672 unsigned long pfn, pgprot_t pgprot)
1673 {
1674 /*
1675 * Technically, architectures with pte_special can avoid all these
1676 * restrictions (same for remap_pfn_range). However we would like
1677 * consistency in testing and feature parity among all, so we should
1678 * try to keep these invariants in place for everybody.
1679 */
1680 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1681 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1682 (VM_PFNMAP|VM_MIXEDMAP));
1683 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1684 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1685
1686 if (addr < vma->vm_start || addr >= vma->vm_end)
1687 return VM_FAULT_SIGBUS;
1688
1689 if (!pfn_modify_allowed(pfn, pgprot))
1690 return VM_FAULT_SIGBUS;
1691
1692 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1693
1694 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1695 false);
1696 }
1697 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1698
1699 /**
1700 * vmf_insert_pfn - insert single pfn into user vma
1701 * @vma: user vma to map to
1702 * @addr: target user address of this page
1703 * @pfn: source kernel pfn
1704 *
1705 * Similar to vm_insert_page, this allows drivers to insert individual pages
1706 * they've allocated into a user vma. Same comments apply.
1707 *
1708 * This function should only be called from a vm_ops->fault handler, and
1709 * in that case the handler should return the result of this function.
1710 *
1711 * vma cannot be a COW mapping.
1712 *
1713 * As this is called only for pages that do not currently exist, we
1714 * do not need to flush old virtual caches or the TLB.
1715 *
1716 * Context: Process context. May allocate using %GFP_KERNEL.
1717 * Return: vm_fault_t value.
1718 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)1719 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1720 unsigned long pfn)
1721 {
1722 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1723 }
1724 EXPORT_SYMBOL(vmf_insert_pfn);
1725
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)1726 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1727 {
1728 /* these checks mirror the abort conditions in vm_normal_page */
1729 if (vma->vm_flags & VM_MIXEDMAP)
1730 return true;
1731 if (pfn_t_devmap(pfn))
1732 return true;
1733 if (pfn_t_special(pfn))
1734 return true;
1735 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1736 return true;
1737 return false;
1738 }
1739
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,bool mkwrite)1740 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1741 unsigned long addr, pfn_t pfn, bool mkwrite)
1742 {
1743 pgprot_t pgprot = vma->vm_page_prot;
1744 int err;
1745
1746 BUG_ON(!vm_mixed_ok(vma, pfn));
1747
1748 if (addr < vma->vm_start || addr >= vma->vm_end)
1749 return VM_FAULT_SIGBUS;
1750
1751 track_pfn_insert(vma, &pgprot, pfn);
1752
1753 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1754 return VM_FAULT_SIGBUS;
1755
1756 /*
1757 * If we don't have pte special, then we have to use the pfn_valid()
1758 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1759 * refcount the page if pfn_valid is true (hence insert_page rather
1760 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1761 * without pte special, it would there be refcounted as a normal page.
1762 */
1763 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1764 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1765 struct page *page;
1766
1767 /*
1768 * At this point we are committed to insert_page()
1769 * regardless of whether the caller specified flags that
1770 * result in pfn_t_has_page() == false.
1771 */
1772 page = pfn_to_page(pfn_t_to_pfn(pfn));
1773 err = insert_page(vma, addr, page, pgprot);
1774 } else {
1775 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1776 }
1777
1778 if (err == -ENOMEM)
1779 return VM_FAULT_OOM;
1780 if (err < 0 && err != -EBUSY)
1781 return VM_FAULT_SIGBUS;
1782
1783 return VM_FAULT_NOPAGE;
1784 }
1785
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)1786 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1787 pfn_t pfn)
1788 {
1789 return __vm_insert_mixed(vma, addr, pfn, false);
1790 }
1791 EXPORT_SYMBOL(vmf_insert_mixed);
1792
1793 /*
1794 * If the insertion of PTE failed because someone else already added a
1795 * different entry in the mean time, we treat that as success as we assume
1796 * the same entry was actually inserted.
1797 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)1798 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1799 unsigned long addr, pfn_t pfn)
1800 {
1801 return __vm_insert_mixed(vma, addr, pfn, true);
1802 }
1803 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1804
1805 /*
1806 * maps a range of physical memory into the requested pages. the old
1807 * mappings are removed. any references to nonexistent pages results
1808 * in null mappings (currently treated as "copy-on-access")
1809 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1810 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1811 unsigned long addr, unsigned long end,
1812 unsigned long pfn, pgprot_t prot)
1813 {
1814 pte_t *pte;
1815 spinlock_t *ptl;
1816 int err = 0;
1817
1818 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1819 if (!pte)
1820 return -ENOMEM;
1821 arch_enter_lazy_mmu_mode();
1822 do {
1823 BUG_ON(!pte_none(*pte));
1824 if (!pfn_modify_allowed(pfn, prot)) {
1825 err = -EACCES;
1826 break;
1827 }
1828 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1829 pfn++;
1830 } while (pte++, addr += PAGE_SIZE, addr != end);
1831 arch_leave_lazy_mmu_mode();
1832 pte_unmap_unlock(pte - 1, ptl);
1833 return err;
1834 }
1835
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1836 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1837 unsigned long addr, unsigned long end,
1838 unsigned long pfn, pgprot_t prot)
1839 {
1840 pmd_t *pmd;
1841 unsigned long next;
1842 int err;
1843
1844 pfn -= addr >> PAGE_SHIFT;
1845 pmd = pmd_alloc(mm, pud, addr);
1846 if (!pmd)
1847 return -ENOMEM;
1848 VM_BUG_ON(pmd_trans_huge(*pmd));
1849 do {
1850 next = pmd_addr_end(addr, end);
1851 err = remap_pte_range(mm, pmd, addr, next,
1852 pfn + (addr >> PAGE_SHIFT), prot);
1853 if (err)
1854 return err;
1855 } while (pmd++, addr = next, addr != end);
1856 return 0;
1857 }
1858
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1859 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1860 unsigned long addr, unsigned long end,
1861 unsigned long pfn, pgprot_t prot)
1862 {
1863 pud_t *pud;
1864 unsigned long next;
1865 int err;
1866
1867 pfn -= addr >> PAGE_SHIFT;
1868 pud = pud_alloc(mm, p4d, addr);
1869 if (!pud)
1870 return -ENOMEM;
1871 do {
1872 next = pud_addr_end(addr, end);
1873 err = remap_pmd_range(mm, pud, addr, next,
1874 pfn + (addr >> PAGE_SHIFT), prot);
1875 if (err)
1876 return err;
1877 } while (pud++, addr = next, addr != end);
1878 return 0;
1879 }
1880
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1881 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1882 unsigned long addr, unsigned long end,
1883 unsigned long pfn, pgprot_t prot)
1884 {
1885 p4d_t *p4d;
1886 unsigned long next;
1887 int err;
1888
1889 pfn -= addr >> PAGE_SHIFT;
1890 p4d = p4d_alloc(mm, pgd, addr);
1891 if (!p4d)
1892 return -ENOMEM;
1893 do {
1894 next = p4d_addr_end(addr, end);
1895 err = remap_pud_range(mm, p4d, addr, next,
1896 pfn + (addr >> PAGE_SHIFT), prot);
1897 if (err)
1898 return err;
1899 } while (p4d++, addr = next, addr != end);
1900 return 0;
1901 }
1902
1903 /**
1904 * remap_pfn_range - remap kernel memory to userspace
1905 * @vma: user vma to map to
1906 * @addr: target user address to start at
1907 * @pfn: physical address of kernel memory
1908 * @size: size of map area
1909 * @prot: page protection flags for this mapping
1910 *
1911 * Note: this is only safe if the mm semaphore is held when called.
1912 *
1913 * Return: %0 on success, negative error code otherwise.
1914 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1915 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1916 unsigned long pfn, unsigned long size, pgprot_t prot)
1917 {
1918 pgd_t *pgd;
1919 unsigned long next;
1920 unsigned long end = addr + PAGE_ALIGN(size);
1921 struct mm_struct *mm = vma->vm_mm;
1922 unsigned long remap_pfn = pfn;
1923 int err;
1924
1925 /*
1926 * Physically remapped pages are special. Tell the
1927 * rest of the world about it:
1928 * VM_IO tells people not to look at these pages
1929 * (accesses can have side effects).
1930 * VM_PFNMAP tells the core MM that the base pages are just
1931 * raw PFN mappings, and do not have a "struct page" associated
1932 * with them.
1933 * VM_DONTEXPAND
1934 * Disable vma merging and expanding with mremap().
1935 * VM_DONTDUMP
1936 * Omit vma from core dump, even when VM_IO turned off.
1937 *
1938 * There's a horrible special case to handle copy-on-write
1939 * behaviour that some programs depend on. We mark the "original"
1940 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1941 * See vm_normal_page() for details.
1942 */
1943 if (is_cow_mapping(vma->vm_flags)) {
1944 if (addr != vma->vm_start || end != vma->vm_end)
1945 return -EINVAL;
1946 vma->vm_pgoff = pfn;
1947 }
1948
1949 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1950 if (err)
1951 return -EINVAL;
1952
1953 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1954
1955 BUG_ON(addr >= end);
1956 pfn -= addr >> PAGE_SHIFT;
1957 pgd = pgd_offset(mm, addr);
1958 flush_cache_range(vma, addr, end);
1959 do {
1960 next = pgd_addr_end(addr, end);
1961 err = remap_p4d_range(mm, pgd, addr, next,
1962 pfn + (addr >> PAGE_SHIFT), prot);
1963 if (err)
1964 break;
1965 } while (pgd++, addr = next, addr != end);
1966
1967 if (err)
1968 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1969
1970 return err;
1971 }
1972 EXPORT_SYMBOL(remap_pfn_range);
1973
1974 /**
1975 * vm_iomap_memory - remap memory to userspace
1976 * @vma: user vma to map to
1977 * @start: start of area
1978 * @len: size of area
1979 *
1980 * This is a simplified io_remap_pfn_range() for common driver use. The
1981 * driver just needs to give us the physical memory range to be mapped,
1982 * we'll figure out the rest from the vma information.
1983 *
1984 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1985 * whatever write-combining details or similar.
1986 *
1987 * Return: %0 on success, negative error code otherwise.
1988 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1989 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1990 {
1991 unsigned long vm_len, pfn, pages;
1992
1993 /* Check that the physical memory area passed in looks valid */
1994 if (start + len < start)
1995 return -EINVAL;
1996 /*
1997 * You *really* shouldn't map things that aren't page-aligned,
1998 * but we've historically allowed it because IO memory might
1999 * just have smaller alignment.
2000 */
2001 len += start & ~PAGE_MASK;
2002 pfn = start >> PAGE_SHIFT;
2003 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2004 if (pfn + pages < pfn)
2005 return -EINVAL;
2006
2007 /* We start the mapping 'vm_pgoff' pages into the area */
2008 if (vma->vm_pgoff > pages)
2009 return -EINVAL;
2010 pfn += vma->vm_pgoff;
2011 pages -= vma->vm_pgoff;
2012
2013 /* Can we fit all of the mapping? */
2014 vm_len = vma->vm_end - vma->vm_start;
2015 if (vm_len >> PAGE_SHIFT > pages)
2016 return -EINVAL;
2017
2018 /* Ok, let it rip */
2019 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2020 }
2021 EXPORT_SYMBOL(vm_iomap_memory);
2022
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2023 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2024 unsigned long addr, unsigned long end,
2025 pte_fn_t fn, void *data)
2026 {
2027 pte_t *pte;
2028 int err;
2029 spinlock_t *uninitialized_var(ptl);
2030
2031 pte = (mm == &init_mm) ?
2032 pte_alloc_kernel(pmd, addr) :
2033 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2034 if (!pte)
2035 return -ENOMEM;
2036
2037 BUG_ON(pmd_huge(*pmd));
2038
2039 arch_enter_lazy_mmu_mode();
2040
2041 do {
2042 err = fn(pte++, addr, data);
2043 if (err)
2044 break;
2045 } while (addr += PAGE_SIZE, addr != end);
2046
2047 arch_leave_lazy_mmu_mode();
2048
2049 if (mm != &init_mm)
2050 pte_unmap_unlock(pte-1, ptl);
2051 return err;
2052 }
2053
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2054 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2055 unsigned long addr, unsigned long end,
2056 pte_fn_t fn, void *data)
2057 {
2058 pmd_t *pmd;
2059 unsigned long next;
2060 int err;
2061
2062 BUG_ON(pud_huge(*pud));
2063
2064 pmd = pmd_alloc(mm, pud, addr);
2065 if (!pmd)
2066 return -ENOMEM;
2067 do {
2068 next = pmd_addr_end(addr, end);
2069 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2070 if (err)
2071 break;
2072 } while (pmd++, addr = next, addr != end);
2073 return err;
2074 }
2075
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2076 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2077 unsigned long addr, unsigned long end,
2078 pte_fn_t fn, void *data)
2079 {
2080 pud_t *pud;
2081 unsigned long next;
2082 int err;
2083
2084 pud = pud_alloc(mm, p4d, addr);
2085 if (!pud)
2086 return -ENOMEM;
2087 do {
2088 next = pud_addr_end(addr, end);
2089 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2090 if (err)
2091 break;
2092 } while (pud++, addr = next, addr != end);
2093 return err;
2094 }
2095
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2096 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2097 unsigned long addr, unsigned long end,
2098 pte_fn_t fn, void *data)
2099 {
2100 p4d_t *p4d;
2101 unsigned long next;
2102 int err;
2103
2104 p4d = p4d_alloc(mm, pgd, addr);
2105 if (!p4d)
2106 return -ENOMEM;
2107 do {
2108 next = p4d_addr_end(addr, end);
2109 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2110 if (err)
2111 break;
2112 } while (p4d++, addr = next, addr != end);
2113 return err;
2114 }
2115
2116 /*
2117 * Scan a region of virtual memory, filling in page tables as necessary
2118 * and calling a provided function on each leaf page table.
2119 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2120 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2121 unsigned long size, pte_fn_t fn, void *data)
2122 {
2123 pgd_t *pgd;
2124 unsigned long next;
2125 unsigned long end = addr + size;
2126 int err;
2127
2128 if (WARN_ON(addr >= end))
2129 return -EINVAL;
2130
2131 pgd = pgd_offset(mm, addr);
2132 do {
2133 next = pgd_addr_end(addr, end);
2134 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2135 if (err)
2136 break;
2137 } while (pgd++, addr = next, addr != end);
2138
2139 return err;
2140 }
2141 EXPORT_SYMBOL_GPL(apply_to_page_range);
2142
2143 /*
2144 * handle_pte_fault chooses page fault handler according to an entry which was
2145 * read non-atomically. Before making any commitment, on those architectures
2146 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2147 * parts, do_swap_page must check under lock before unmapping the pte and
2148 * proceeding (but do_wp_page is only called after already making such a check;
2149 * and do_anonymous_page can safely check later on).
2150 */
pte_unmap_same(struct mm_struct * mm,pmd_t * pmd,pte_t * page_table,pte_t orig_pte)2151 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2152 pte_t *page_table, pte_t orig_pte)
2153 {
2154 int same = 1;
2155 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2156 if (sizeof(pte_t) > sizeof(unsigned long)) {
2157 spinlock_t *ptl = pte_lockptr(mm, pmd);
2158 spin_lock(ptl);
2159 same = pte_same(*page_table, orig_pte);
2160 spin_unlock(ptl);
2161 }
2162 #endif
2163 pte_unmap(page_table);
2164 return same;
2165 }
2166
cow_user_page(struct page * dst,struct page * src,unsigned long va,struct vm_area_struct * vma)2167 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2168 {
2169 debug_dma_assert_idle(src);
2170
2171 /*
2172 * If the source page was a PFN mapping, we don't have
2173 * a "struct page" for it. We do a best-effort copy by
2174 * just copying from the original user address. If that
2175 * fails, we just zero-fill it. Live with it.
2176 */
2177 if (unlikely(!src)) {
2178 void *kaddr = kmap_atomic(dst);
2179 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2180
2181 /*
2182 * This really shouldn't fail, because the page is there
2183 * in the page tables. But it might just be unreadable,
2184 * in which case we just give up and fill the result with
2185 * zeroes.
2186 */
2187 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2188 clear_page(kaddr);
2189 kunmap_atomic(kaddr);
2190 flush_dcache_page(dst);
2191 } else
2192 copy_user_highpage(dst, src, va, vma);
2193 }
2194
__get_fault_gfp_mask(struct vm_area_struct * vma)2195 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2196 {
2197 struct file *vm_file = vma->vm_file;
2198
2199 if (vm_file)
2200 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2201
2202 /*
2203 * Special mappings (e.g. VDSO) do not have any file so fake
2204 * a default GFP_KERNEL for them.
2205 */
2206 return GFP_KERNEL;
2207 }
2208
2209 /*
2210 * Notify the address space that the page is about to become writable so that
2211 * it can prohibit this or wait for the page to get into an appropriate state.
2212 *
2213 * We do this without the lock held, so that it can sleep if it needs to.
2214 */
do_page_mkwrite(struct vm_fault * vmf)2215 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2216 {
2217 vm_fault_t ret;
2218 struct page *page = vmf->page;
2219 unsigned int old_flags = vmf->flags;
2220
2221 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2222
2223 if (vmf->vma->vm_file &&
2224 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2225 return VM_FAULT_SIGBUS;
2226
2227 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2228 /* Restore original flags so that caller is not surprised */
2229 vmf->flags = old_flags;
2230 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2231 return ret;
2232 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2233 lock_page(page);
2234 if (!page->mapping) {
2235 unlock_page(page);
2236 return 0; /* retry */
2237 }
2238 ret |= VM_FAULT_LOCKED;
2239 } else
2240 VM_BUG_ON_PAGE(!PageLocked(page), page);
2241 return ret;
2242 }
2243
2244 /*
2245 * Handle dirtying of a page in shared file mapping on a write fault.
2246 *
2247 * The function expects the page to be locked and unlocks it.
2248 */
fault_dirty_shared_page(struct vm_fault * vmf)2249 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2250 {
2251 struct vm_area_struct *vma = vmf->vma;
2252 struct address_space *mapping;
2253 struct page *page = vmf->page;
2254 bool dirtied;
2255 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2256
2257 dirtied = set_page_dirty(page);
2258 VM_BUG_ON_PAGE(PageAnon(page), page);
2259 /*
2260 * Take a local copy of the address_space - page.mapping may be zeroed
2261 * by truncate after unlock_page(). The address_space itself remains
2262 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2263 * release semantics to prevent the compiler from undoing this copying.
2264 */
2265 mapping = page_rmapping(page);
2266 unlock_page(page);
2267
2268 if (!page_mkwrite)
2269 file_update_time(vma->vm_file);
2270
2271 /*
2272 * Throttle page dirtying rate down to writeback speed.
2273 *
2274 * mapping may be NULL here because some device drivers do not
2275 * set page.mapping but still dirty their pages
2276 *
2277 * Drop the mmap_sem before waiting on IO, if we can. The file
2278 * is pinning the mapping, as per above.
2279 */
2280 if ((dirtied || page_mkwrite) && mapping) {
2281 struct file *fpin;
2282
2283 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2284 balance_dirty_pages_ratelimited(mapping);
2285 if (fpin) {
2286 fput(fpin);
2287 return VM_FAULT_RETRY;
2288 }
2289 }
2290
2291 return 0;
2292 }
2293
2294 /*
2295 * Handle write page faults for pages that can be reused in the current vma
2296 *
2297 * This can happen either due to the mapping being with the VM_SHARED flag,
2298 * or due to us being the last reference standing to the page. In either
2299 * case, all we need to do here is to mark the page as writable and update
2300 * any related book-keeping.
2301 */
wp_page_reuse(struct vm_fault * vmf)2302 static inline void wp_page_reuse(struct vm_fault *vmf)
2303 __releases(vmf->ptl)
2304 {
2305 struct vm_area_struct *vma = vmf->vma;
2306 struct page *page = vmf->page;
2307 pte_t entry;
2308 /*
2309 * Clear the pages cpupid information as the existing
2310 * information potentially belongs to a now completely
2311 * unrelated process.
2312 */
2313 if (page)
2314 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2315
2316 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2317 entry = pte_mkyoung(vmf->orig_pte);
2318 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2319 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2320 update_mmu_cache(vma, vmf->address, vmf->pte);
2321 pte_unmap_unlock(vmf->pte, vmf->ptl);
2322 }
2323
2324 /*
2325 * Handle the case of a page which we actually need to copy to a new page.
2326 *
2327 * Called with mmap_sem locked and the old page referenced, but
2328 * without the ptl held.
2329 *
2330 * High level logic flow:
2331 *
2332 * - Allocate a page, copy the content of the old page to the new one.
2333 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2334 * - Take the PTL. If the pte changed, bail out and release the allocated page
2335 * - If the pte is still the way we remember it, update the page table and all
2336 * relevant references. This includes dropping the reference the page-table
2337 * held to the old page, as well as updating the rmap.
2338 * - In any case, unlock the PTL and drop the reference we took to the old page.
2339 */
wp_page_copy(struct vm_fault * vmf)2340 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2341 {
2342 struct vm_area_struct *vma = vmf->vma;
2343 struct mm_struct *mm = vma->vm_mm;
2344 struct page *old_page = vmf->page;
2345 struct page *new_page = NULL;
2346 pte_t entry;
2347 int page_copied = 0;
2348 struct mem_cgroup *memcg;
2349 struct mmu_notifier_range range;
2350
2351 if (unlikely(anon_vma_prepare(vma)))
2352 goto oom;
2353
2354 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2355 new_page = alloc_zeroed_user_highpage_movable(vma,
2356 vmf->address);
2357 if (!new_page)
2358 goto oom;
2359 } else {
2360 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2361 vmf->address);
2362 if (!new_page)
2363 goto oom;
2364 cow_user_page(new_page, old_page, vmf->address, vma);
2365 }
2366
2367 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2368 goto oom_free_new;
2369
2370 __SetPageUptodate(new_page);
2371
2372 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2373 vmf->address & PAGE_MASK,
2374 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2375 mmu_notifier_invalidate_range_start(&range);
2376
2377 /*
2378 * Re-check the pte - we dropped the lock
2379 */
2380 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2381 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2382 if (old_page) {
2383 if (!PageAnon(old_page)) {
2384 dec_mm_counter_fast(mm,
2385 mm_counter_file(old_page));
2386 inc_mm_counter_fast(mm, MM_ANONPAGES);
2387 }
2388 } else {
2389 inc_mm_counter_fast(mm, MM_ANONPAGES);
2390 }
2391 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2392 entry = mk_pte(new_page, vma->vm_page_prot);
2393 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2394 /*
2395 * Clear the pte entry and flush it first, before updating the
2396 * pte with the new entry. This will avoid a race condition
2397 * seen in the presence of one thread doing SMC and another
2398 * thread doing COW.
2399 */
2400 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2401 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2402 mem_cgroup_commit_charge(new_page, memcg, false, false);
2403 lru_cache_add_active_or_unevictable(new_page, vma);
2404 /*
2405 * We call the notify macro here because, when using secondary
2406 * mmu page tables (such as kvm shadow page tables), we want the
2407 * new page to be mapped directly into the secondary page table.
2408 */
2409 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2410 update_mmu_cache(vma, vmf->address, vmf->pte);
2411 if (old_page) {
2412 /*
2413 * Only after switching the pte to the new page may
2414 * we remove the mapcount here. Otherwise another
2415 * process may come and find the rmap count decremented
2416 * before the pte is switched to the new page, and
2417 * "reuse" the old page writing into it while our pte
2418 * here still points into it and can be read by other
2419 * threads.
2420 *
2421 * The critical issue is to order this
2422 * page_remove_rmap with the ptp_clear_flush above.
2423 * Those stores are ordered by (if nothing else,)
2424 * the barrier present in the atomic_add_negative
2425 * in page_remove_rmap.
2426 *
2427 * Then the TLB flush in ptep_clear_flush ensures that
2428 * no process can access the old page before the
2429 * decremented mapcount is visible. And the old page
2430 * cannot be reused until after the decremented
2431 * mapcount is visible. So transitively, TLBs to
2432 * old page will be flushed before it can be reused.
2433 */
2434 page_remove_rmap(old_page, false);
2435 }
2436
2437 /* Free the old page.. */
2438 new_page = old_page;
2439 page_copied = 1;
2440 } else {
2441 mem_cgroup_cancel_charge(new_page, memcg, false);
2442 }
2443
2444 if (new_page)
2445 put_page(new_page);
2446
2447 pte_unmap_unlock(vmf->pte, vmf->ptl);
2448 /*
2449 * No need to double call mmu_notifier->invalidate_range() callback as
2450 * the above ptep_clear_flush_notify() did already call it.
2451 */
2452 mmu_notifier_invalidate_range_only_end(&range);
2453 if (old_page) {
2454 /*
2455 * Don't let another task, with possibly unlocked vma,
2456 * keep the mlocked page.
2457 */
2458 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2459 lock_page(old_page); /* LRU manipulation */
2460 if (PageMlocked(old_page))
2461 munlock_vma_page(old_page);
2462 unlock_page(old_page);
2463 }
2464 put_page(old_page);
2465 }
2466 return page_copied ? VM_FAULT_WRITE : 0;
2467 oom_free_new:
2468 put_page(new_page);
2469 oom:
2470 if (old_page)
2471 put_page(old_page);
2472 return VM_FAULT_OOM;
2473 }
2474
2475 /**
2476 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2477 * writeable once the page is prepared
2478 *
2479 * @vmf: structure describing the fault
2480 *
2481 * This function handles all that is needed to finish a write page fault in a
2482 * shared mapping due to PTE being read-only once the mapped page is prepared.
2483 * It handles locking of PTE and modifying it.
2484 *
2485 * The function expects the page to be locked or other protection against
2486 * concurrent faults / writeback (such as DAX radix tree locks).
2487 *
2488 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2489 * we acquired PTE lock.
2490 */
finish_mkwrite_fault(struct vm_fault * vmf)2491 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2492 {
2493 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2494 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2495 &vmf->ptl);
2496 /*
2497 * We might have raced with another page fault while we released the
2498 * pte_offset_map_lock.
2499 */
2500 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2501 pte_unmap_unlock(vmf->pte, vmf->ptl);
2502 return VM_FAULT_NOPAGE;
2503 }
2504 wp_page_reuse(vmf);
2505 return 0;
2506 }
2507
2508 /*
2509 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2510 * mapping
2511 */
wp_pfn_shared(struct vm_fault * vmf)2512 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2513 {
2514 struct vm_area_struct *vma = vmf->vma;
2515
2516 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2517 vm_fault_t ret;
2518
2519 pte_unmap_unlock(vmf->pte, vmf->ptl);
2520 vmf->flags |= FAULT_FLAG_MKWRITE;
2521 ret = vma->vm_ops->pfn_mkwrite(vmf);
2522 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2523 return ret;
2524 return finish_mkwrite_fault(vmf);
2525 }
2526 wp_page_reuse(vmf);
2527 return VM_FAULT_WRITE;
2528 }
2529
wp_page_shared(struct vm_fault * vmf)2530 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2531 __releases(vmf->ptl)
2532 {
2533 struct vm_area_struct *vma = vmf->vma;
2534 vm_fault_t ret = VM_FAULT_WRITE;
2535
2536 get_page(vmf->page);
2537
2538 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2539 vm_fault_t tmp;
2540
2541 pte_unmap_unlock(vmf->pte, vmf->ptl);
2542 tmp = do_page_mkwrite(vmf);
2543 if (unlikely(!tmp || (tmp &
2544 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2545 put_page(vmf->page);
2546 return tmp;
2547 }
2548 tmp = finish_mkwrite_fault(vmf);
2549 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2550 unlock_page(vmf->page);
2551 put_page(vmf->page);
2552 return tmp;
2553 }
2554 } else {
2555 wp_page_reuse(vmf);
2556 lock_page(vmf->page);
2557 }
2558 ret |= fault_dirty_shared_page(vmf);
2559 put_page(vmf->page);
2560
2561 return ret;
2562 }
2563
2564 /*
2565 * This routine handles present pages, when users try to write
2566 * to a shared page. It is done by copying the page to a new address
2567 * and decrementing the shared-page counter for the old page.
2568 *
2569 * Note that this routine assumes that the protection checks have been
2570 * done by the caller (the low-level page fault routine in most cases).
2571 * Thus we can safely just mark it writable once we've done any necessary
2572 * COW.
2573 *
2574 * We also mark the page dirty at this point even though the page will
2575 * change only once the write actually happens. This avoids a few races,
2576 * and potentially makes it more efficient.
2577 *
2578 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2579 * but allow concurrent faults), with pte both mapped and locked.
2580 * We return with mmap_sem still held, but pte unmapped and unlocked.
2581 */
do_wp_page(struct vm_fault * vmf)2582 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2583 __releases(vmf->ptl)
2584 {
2585 struct vm_area_struct *vma = vmf->vma;
2586
2587 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2588 if (!vmf->page) {
2589 /*
2590 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2591 * VM_PFNMAP VMA.
2592 *
2593 * We should not cow pages in a shared writeable mapping.
2594 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2595 */
2596 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2597 (VM_WRITE|VM_SHARED))
2598 return wp_pfn_shared(vmf);
2599
2600 pte_unmap_unlock(vmf->pte, vmf->ptl);
2601 return wp_page_copy(vmf);
2602 }
2603
2604 /*
2605 * Take out anonymous pages first, anonymous shared vmas are
2606 * not dirty accountable.
2607 */
2608 if (PageAnon(vmf->page)) {
2609 int total_map_swapcount;
2610 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2611 page_count(vmf->page) != 1))
2612 goto copy;
2613 if (!trylock_page(vmf->page)) {
2614 get_page(vmf->page);
2615 pte_unmap_unlock(vmf->pte, vmf->ptl);
2616 lock_page(vmf->page);
2617 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2618 vmf->address, &vmf->ptl);
2619 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2620 unlock_page(vmf->page);
2621 pte_unmap_unlock(vmf->pte, vmf->ptl);
2622 put_page(vmf->page);
2623 return 0;
2624 }
2625 put_page(vmf->page);
2626 }
2627 if (PageKsm(vmf->page)) {
2628 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2629 vmf->address);
2630 unlock_page(vmf->page);
2631 if (!reused)
2632 goto copy;
2633 wp_page_reuse(vmf);
2634 return VM_FAULT_WRITE;
2635 }
2636 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2637 if (total_map_swapcount == 1) {
2638 /*
2639 * The page is all ours. Move it to
2640 * our anon_vma so the rmap code will
2641 * not search our parent or siblings.
2642 * Protected against the rmap code by
2643 * the page lock.
2644 */
2645 page_move_anon_rmap(vmf->page, vma);
2646 }
2647 unlock_page(vmf->page);
2648 wp_page_reuse(vmf);
2649 return VM_FAULT_WRITE;
2650 }
2651 unlock_page(vmf->page);
2652 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2653 (VM_WRITE|VM_SHARED))) {
2654 return wp_page_shared(vmf);
2655 }
2656 copy:
2657 /*
2658 * Ok, we need to copy. Oh, well..
2659 */
2660 get_page(vmf->page);
2661
2662 pte_unmap_unlock(vmf->pte, vmf->ptl);
2663 return wp_page_copy(vmf);
2664 }
2665
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)2666 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2667 unsigned long start_addr, unsigned long end_addr,
2668 struct zap_details *details)
2669 {
2670 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2671 }
2672
unmap_mapping_range_tree(struct rb_root_cached * root,struct zap_details * details)2673 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2674 struct zap_details *details)
2675 {
2676 struct vm_area_struct *vma;
2677 pgoff_t vba, vea, zba, zea;
2678
2679 vma_interval_tree_foreach(vma, root,
2680 details->first_index, details->last_index) {
2681
2682 vba = vma->vm_pgoff;
2683 vea = vba + vma_pages(vma) - 1;
2684 zba = details->first_index;
2685 if (zba < vba)
2686 zba = vba;
2687 zea = details->last_index;
2688 if (zea > vea)
2689 zea = vea;
2690
2691 unmap_mapping_range_vma(vma,
2692 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2693 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2694 details);
2695 }
2696 }
2697
2698 /**
2699 * unmap_mapping_pages() - Unmap pages from processes.
2700 * @mapping: The address space containing pages to be unmapped.
2701 * @start: Index of first page to be unmapped.
2702 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2703 * @even_cows: Whether to unmap even private COWed pages.
2704 *
2705 * Unmap the pages in this address space from any userspace process which
2706 * has them mmaped. Generally, you want to remove COWed pages as well when
2707 * a file is being truncated, but not when invalidating pages from the page
2708 * cache.
2709 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2710 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2711 pgoff_t nr, bool even_cows)
2712 {
2713 struct zap_details details = { };
2714
2715 details.check_mapping = even_cows ? NULL : mapping;
2716 details.first_index = start;
2717 details.last_index = start + nr - 1;
2718 if (details.last_index < details.first_index)
2719 details.last_index = ULONG_MAX;
2720
2721 i_mmap_lock_write(mapping);
2722 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2723 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2724 i_mmap_unlock_write(mapping);
2725 }
2726
2727 /**
2728 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2729 * address_space corresponding to the specified byte range in the underlying
2730 * file.
2731 *
2732 * @mapping: the address space containing mmaps to be unmapped.
2733 * @holebegin: byte in first page to unmap, relative to the start of
2734 * the underlying file. This will be rounded down to a PAGE_SIZE
2735 * boundary. Note that this is different from truncate_pagecache(), which
2736 * must keep the partial page. In contrast, we must get rid of
2737 * partial pages.
2738 * @holelen: size of prospective hole in bytes. This will be rounded
2739 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2740 * end of the file.
2741 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2742 * but 0 when invalidating pagecache, don't throw away private data.
2743 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2744 void unmap_mapping_range(struct address_space *mapping,
2745 loff_t const holebegin, loff_t const holelen, int even_cows)
2746 {
2747 pgoff_t hba = holebegin >> PAGE_SHIFT;
2748 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2749
2750 /* Check for overflow. */
2751 if (sizeof(holelen) > sizeof(hlen)) {
2752 long long holeend =
2753 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2754 if (holeend & ~(long long)ULONG_MAX)
2755 hlen = ULONG_MAX - hba + 1;
2756 }
2757
2758 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2759 }
2760 EXPORT_SYMBOL(unmap_mapping_range);
2761
2762 /*
2763 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2764 * but allow concurrent faults), and pte mapped but not yet locked.
2765 * We return with pte unmapped and unlocked.
2766 *
2767 * We return with the mmap_sem locked or unlocked in the same cases
2768 * as does filemap_fault().
2769 */
do_swap_page(struct vm_fault * vmf)2770 vm_fault_t do_swap_page(struct vm_fault *vmf)
2771 {
2772 struct vm_area_struct *vma = vmf->vma;
2773 struct page *page = NULL, *swapcache;
2774 struct mem_cgroup *memcg;
2775 swp_entry_t entry;
2776 pte_t pte;
2777 int locked;
2778 int exclusive = 0;
2779 vm_fault_t ret = 0;
2780
2781 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2782 goto out;
2783
2784 entry = pte_to_swp_entry(vmf->orig_pte);
2785 if (unlikely(non_swap_entry(entry))) {
2786 if (is_migration_entry(entry)) {
2787 migration_entry_wait(vma->vm_mm, vmf->pmd,
2788 vmf->address);
2789 } else if (is_device_private_entry(entry)) {
2790 vmf->page = device_private_entry_to_page(entry);
2791 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2792 } else if (is_hwpoison_entry(entry)) {
2793 ret = VM_FAULT_HWPOISON;
2794 } else {
2795 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2796 ret = VM_FAULT_SIGBUS;
2797 }
2798 goto out;
2799 }
2800
2801
2802 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2803 page = lookup_swap_cache(entry, vma, vmf->address);
2804 swapcache = page;
2805
2806 if (!page) {
2807 struct swap_info_struct *si = swp_swap_info(entry);
2808
2809 if (si->flags & SWP_SYNCHRONOUS_IO &&
2810 __swap_count(entry) == 1) {
2811 /* skip swapcache */
2812 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2813 vmf->address);
2814 if (page) {
2815 __SetPageLocked(page);
2816 __SetPageSwapBacked(page);
2817 set_page_private(page, entry.val);
2818 lru_cache_add_anon(page);
2819 swap_readpage(page, true);
2820 }
2821 } else {
2822 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2823 vmf);
2824 swapcache = page;
2825 }
2826
2827 if (!page) {
2828 /*
2829 * Back out if somebody else faulted in this pte
2830 * while we released the pte lock.
2831 */
2832 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2833 vmf->address, &vmf->ptl);
2834 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2835 ret = VM_FAULT_OOM;
2836 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2837 goto unlock;
2838 }
2839
2840 /* Had to read the page from swap area: Major fault */
2841 ret = VM_FAULT_MAJOR;
2842 count_vm_event(PGMAJFAULT);
2843 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2844 } else if (PageHWPoison(page)) {
2845 /*
2846 * hwpoisoned dirty swapcache pages are kept for killing
2847 * owner processes (which may be unknown at hwpoison time)
2848 */
2849 ret = VM_FAULT_HWPOISON;
2850 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2851 goto out_release;
2852 }
2853
2854 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2855
2856 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2857 if (!locked) {
2858 ret |= VM_FAULT_RETRY;
2859 goto out_release;
2860 }
2861
2862 /*
2863 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2864 * release the swapcache from under us. The page pin, and pte_same
2865 * test below, are not enough to exclude that. Even if it is still
2866 * swapcache, we need to check that the page's swap has not changed.
2867 */
2868 if (unlikely((!PageSwapCache(page) ||
2869 page_private(page) != entry.val)) && swapcache)
2870 goto out_page;
2871
2872 page = ksm_might_need_to_copy(page, vma, vmf->address);
2873 if (unlikely(!page)) {
2874 ret = VM_FAULT_OOM;
2875 page = swapcache;
2876 goto out_page;
2877 }
2878
2879 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2880 &memcg, false)) {
2881 ret = VM_FAULT_OOM;
2882 goto out_page;
2883 }
2884
2885 /*
2886 * Back out if somebody else already faulted in this pte.
2887 */
2888 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2889 &vmf->ptl);
2890 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2891 goto out_nomap;
2892
2893 if (unlikely(!PageUptodate(page))) {
2894 ret = VM_FAULT_SIGBUS;
2895 goto out_nomap;
2896 }
2897
2898 /*
2899 * The page isn't present yet, go ahead with the fault.
2900 *
2901 * Be careful about the sequence of operations here.
2902 * To get its accounting right, reuse_swap_page() must be called
2903 * while the page is counted on swap but not yet in mapcount i.e.
2904 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2905 * must be called after the swap_free(), or it will never succeed.
2906 */
2907
2908 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2909 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2910 pte = mk_pte(page, vma->vm_page_prot);
2911 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2912 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2913 vmf->flags &= ~FAULT_FLAG_WRITE;
2914 ret |= VM_FAULT_WRITE;
2915 exclusive = RMAP_EXCLUSIVE;
2916 }
2917 flush_icache_page(vma, page);
2918 if (pte_swp_soft_dirty(vmf->orig_pte))
2919 pte = pte_mksoft_dirty(pte);
2920 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2921 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2922 vmf->orig_pte = pte;
2923
2924 /* ksm created a completely new copy */
2925 if (unlikely(page != swapcache && swapcache)) {
2926 page_add_new_anon_rmap(page, vma, vmf->address, false);
2927 mem_cgroup_commit_charge(page, memcg, false, false);
2928 lru_cache_add_active_or_unevictable(page, vma);
2929 } else {
2930 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2931 mem_cgroup_commit_charge(page, memcg, true, false);
2932 activate_page(page);
2933 }
2934
2935 swap_free(entry);
2936 if (mem_cgroup_swap_full(page) ||
2937 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2938 try_to_free_swap(page);
2939 unlock_page(page);
2940 if (page != swapcache && swapcache) {
2941 /*
2942 * Hold the lock to avoid the swap entry to be reused
2943 * until we take the PT lock for the pte_same() check
2944 * (to avoid false positives from pte_same). For
2945 * further safety release the lock after the swap_free
2946 * so that the swap count won't change under a
2947 * parallel locked swapcache.
2948 */
2949 unlock_page(swapcache);
2950 put_page(swapcache);
2951 }
2952
2953 if (vmf->flags & FAULT_FLAG_WRITE) {
2954 ret |= do_wp_page(vmf);
2955 if (ret & VM_FAULT_ERROR)
2956 ret &= VM_FAULT_ERROR;
2957 goto out;
2958 }
2959
2960 /* No need to invalidate - it was non-present before */
2961 update_mmu_cache(vma, vmf->address, vmf->pte);
2962 unlock:
2963 pte_unmap_unlock(vmf->pte, vmf->ptl);
2964 out:
2965 return ret;
2966 out_nomap:
2967 mem_cgroup_cancel_charge(page, memcg, false);
2968 pte_unmap_unlock(vmf->pte, vmf->ptl);
2969 out_page:
2970 unlock_page(page);
2971 out_release:
2972 put_page(page);
2973 if (page != swapcache && swapcache) {
2974 unlock_page(swapcache);
2975 put_page(swapcache);
2976 }
2977 return ret;
2978 }
2979
2980 /*
2981 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2982 * but allow concurrent faults), and pte mapped but not yet locked.
2983 * We return with mmap_sem still held, but pte unmapped and unlocked.
2984 */
do_anonymous_page(struct vm_fault * vmf)2985 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2986 {
2987 struct vm_area_struct *vma = vmf->vma;
2988 struct mem_cgroup *memcg;
2989 struct page *page;
2990 vm_fault_t ret = 0;
2991 pte_t entry;
2992
2993 /* File mapping without ->vm_ops ? */
2994 if (vma->vm_flags & VM_SHARED)
2995 return VM_FAULT_SIGBUS;
2996
2997 /*
2998 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2999 * pte_offset_map() on pmds where a huge pmd might be created
3000 * from a different thread.
3001 *
3002 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3003 * parallel threads are excluded by other means.
3004 *
3005 * Here we only have down_read(mmap_sem).
3006 */
3007 if (pte_alloc(vma->vm_mm, vmf->pmd))
3008 return VM_FAULT_OOM;
3009
3010 /* See the comment in pte_alloc_one_map() */
3011 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3012 return 0;
3013
3014 /* Use the zero-page for reads */
3015 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3016 !mm_forbids_zeropage(vma->vm_mm)) {
3017 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3018 vma->vm_page_prot));
3019 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3020 vmf->address, &vmf->ptl);
3021 if (!pte_none(*vmf->pte))
3022 goto unlock;
3023 ret = check_stable_address_space(vma->vm_mm);
3024 if (ret)
3025 goto unlock;
3026 /* Deliver the page fault to userland, check inside PT lock */
3027 if (userfaultfd_missing(vma)) {
3028 pte_unmap_unlock(vmf->pte, vmf->ptl);
3029 return handle_userfault(vmf, VM_UFFD_MISSING);
3030 }
3031 goto setpte;
3032 }
3033
3034 /* Allocate our own private page. */
3035 if (unlikely(anon_vma_prepare(vma)))
3036 goto oom;
3037 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3038 if (!page)
3039 goto oom;
3040
3041 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3042 false))
3043 goto oom_free_page;
3044
3045 /*
3046 * The memory barrier inside __SetPageUptodate makes sure that
3047 * preceeding stores to the page contents become visible before
3048 * the set_pte_at() write.
3049 */
3050 __SetPageUptodate(page);
3051
3052 entry = mk_pte(page, vma->vm_page_prot);
3053 if (vma->vm_flags & VM_WRITE)
3054 entry = pte_mkwrite(pte_mkdirty(entry));
3055
3056 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3057 &vmf->ptl);
3058 if (!pte_none(*vmf->pte))
3059 goto release;
3060
3061 ret = check_stable_address_space(vma->vm_mm);
3062 if (ret)
3063 goto release;
3064
3065 /* Deliver the page fault to userland, check inside PT lock */
3066 if (userfaultfd_missing(vma)) {
3067 pte_unmap_unlock(vmf->pte, vmf->ptl);
3068 mem_cgroup_cancel_charge(page, memcg, false);
3069 put_page(page);
3070 return handle_userfault(vmf, VM_UFFD_MISSING);
3071 }
3072
3073 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3074 page_add_new_anon_rmap(page, vma, vmf->address, false);
3075 mem_cgroup_commit_charge(page, memcg, false, false);
3076 lru_cache_add_active_or_unevictable(page, vma);
3077 setpte:
3078 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3079
3080 /* No need to invalidate - it was non-present before */
3081 update_mmu_cache(vma, vmf->address, vmf->pte);
3082 unlock:
3083 pte_unmap_unlock(vmf->pte, vmf->ptl);
3084 return ret;
3085 release:
3086 mem_cgroup_cancel_charge(page, memcg, false);
3087 put_page(page);
3088 goto unlock;
3089 oom_free_page:
3090 put_page(page);
3091 oom:
3092 return VM_FAULT_OOM;
3093 }
3094
3095 /*
3096 * The mmap_sem must have been held on entry, and may have been
3097 * released depending on flags and vma->vm_ops->fault() return value.
3098 * See filemap_fault() and __lock_page_retry().
3099 */
__do_fault(struct vm_fault * vmf)3100 static vm_fault_t __do_fault(struct vm_fault *vmf)
3101 {
3102 struct vm_area_struct *vma = vmf->vma;
3103 vm_fault_t ret;
3104
3105 /*
3106 * Preallocate pte before we take page_lock because this might lead to
3107 * deadlocks for memcg reclaim which waits for pages under writeback:
3108 * lock_page(A)
3109 * SetPageWriteback(A)
3110 * unlock_page(A)
3111 * lock_page(B)
3112 * lock_page(B)
3113 * pte_alloc_pne
3114 * shrink_page_list
3115 * wait_on_page_writeback(A)
3116 * SetPageWriteback(B)
3117 * unlock_page(B)
3118 * # flush A, B to clear the writeback
3119 */
3120 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3121 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3122 if (!vmf->prealloc_pte)
3123 return VM_FAULT_OOM;
3124 smp_wmb(); /* See comment in __pte_alloc() */
3125 }
3126
3127 ret = vma->vm_ops->fault(vmf);
3128 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3129 VM_FAULT_DONE_COW)))
3130 return ret;
3131
3132 if (unlikely(PageHWPoison(vmf->page))) {
3133 if (ret & VM_FAULT_LOCKED)
3134 unlock_page(vmf->page);
3135 put_page(vmf->page);
3136 vmf->page = NULL;
3137 return VM_FAULT_HWPOISON;
3138 }
3139
3140 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3141 lock_page(vmf->page);
3142 else
3143 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3144
3145 return ret;
3146 }
3147
3148 /*
3149 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3150 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3151 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3152 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3153 */
pmd_devmap_trans_unstable(pmd_t * pmd)3154 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3155 {
3156 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3157 }
3158
pte_alloc_one_map(struct vm_fault * vmf)3159 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3160 {
3161 struct vm_area_struct *vma = vmf->vma;
3162
3163 if (!pmd_none(*vmf->pmd))
3164 goto map_pte;
3165 if (vmf->prealloc_pte) {
3166 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3167 if (unlikely(!pmd_none(*vmf->pmd))) {
3168 spin_unlock(vmf->ptl);
3169 goto map_pte;
3170 }
3171
3172 mm_inc_nr_ptes(vma->vm_mm);
3173 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3174 spin_unlock(vmf->ptl);
3175 vmf->prealloc_pte = NULL;
3176 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3177 return VM_FAULT_OOM;
3178 }
3179 map_pte:
3180 /*
3181 * If a huge pmd materialized under us just retry later. Use
3182 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3183 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3184 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3185 * running immediately after a huge pmd fault in a different thread of
3186 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3187 * All we have to ensure is that it is a regular pmd that we can walk
3188 * with pte_offset_map() and we can do that through an atomic read in
3189 * C, which is what pmd_trans_unstable() provides.
3190 */
3191 if (pmd_devmap_trans_unstable(vmf->pmd))
3192 return VM_FAULT_NOPAGE;
3193
3194 /*
3195 * At this point we know that our vmf->pmd points to a page of ptes
3196 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3197 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3198 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3199 * be valid and we will re-check to make sure the vmf->pte isn't
3200 * pte_none() under vmf->ptl protection when we return to
3201 * alloc_set_pte().
3202 */
3203 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3204 &vmf->ptl);
3205 return 0;
3206 }
3207
3208 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
deposit_prealloc_pte(struct vm_fault * vmf)3209 static void deposit_prealloc_pte(struct vm_fault *vmf)
3210 {
3211 struct vm_area_struct *vma = vmf->vma;
3212
3213 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3214 /*
3215 * We are going to consume the prealloc table,
3216 * count that as nr_ptes.
3217 */
3218 mm_inc_nr_ptes(vma->vm_mm);
3219 vmf->prealloc_pte = NULL;
3220 }
3221
do_set_pmd(struct vm_fault * vmf,struct page * page)3222 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3223 {
3224 struct vm_area_struct *vma = vmf->vma;
3225 bool write = vmf->flags & FAULT_FLAG_WRITE;
3226 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3227 pmd_t entry;
3228 int i;
3229 vm_fault_t ret;
3230
3231 if (!transhuge_vma_suitable(vma, haddr))
3232 return VM_FAULT_FALLBACK;
3233
3234 ret = VM_FAULT_FALLBACK;
3235 page = compound_head(page);
3236
3237 /*
3238 * Archs like ppc64 need additonal space to store information
3239 * related to pte entry. Use the preallocated table for that.
3240 */
3241 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3242 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3243 if (!vmf->prealloc_pte)
3244 return VM_FAULT_OOM;
3245 smp_wmb(); /* See comment in __pte_alloc() */
3246 }
3247
3248 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3249 if (unlikely(!pmd_none(*vmf->pmd)))
3250 goto out;
3251
3252 for (i = 0; i < HPAGE_PMD_NR; i++)
3253 flush_icache_page(vma, page + i);
3254
3255 entry = mk_huge_pmd(page, vma->vm_page_prot);
3256 if (write)
3257 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3258
3259 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3260 page_add_file_rmap(page, true);
3261 /*
3262 * deposit and withdraw with pmd lock held
3263 */
3264 if (arch_needs_pgtable_deposit())
3265 deposit_prealloc_pte(vmf);
3266
3267 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3268
3269 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3270
3271 /* fault is handled */
3272 ret = 0;
3273 count_vm_event(THP_FILE_MAPPED);
3274 out:
3275 spin_unlock(vmf->ptl);
3276 return ret;
3277 }
3278 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)3279 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3280 {
3281 BUILD_BUG();
3282 return 0;
3283 }
3284 #endif
3285
3286 /**
3287 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3288 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3289 *
3290 * @vmf: fault environment
3291 * @memcg: memcg to charge page (only for private mappings)
3292 * @page: page to map
3293 *
3294 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3295 * return.
3296 *
3297 * Target users are page handler itself and implementations of
3298 * vm_ops->map_pages.
3299 *
3300 * Return: %0 on success, %VM_FAULT_ code in case of error.
3301 */
alloc_set_pte(struct vm_fault * vmf,struct mem_cgroup * memcg,struct page * page)3302 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3303 struct page *page)
3304 {
3305 struct vm_area_struct *vma = vmf->vma;
3306 bool write = vmf->flags & FAULT_FLAG_WRITE;
3307 pte_t entry;
3308 vm_fault_t ret;
3309
3310 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3311 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3312 /* THP on COW? */
3313 VM_BUG_ON_PAGE(memcg, page);
3314
3315 ret = do_set_pmd(vmf, page);
3316 if (ret != VM_FAULT_FALLBACK)
3317 return ret;
3318 }
3319
3320 if (!vmf->pte) {
3321 ret = pte_alloc_one_map(vmf);
3322 if (ret)
3323 return ret;
3324 }
3325
3326 /* Re-check under ptl */
3327 if (unlikely(!pte_none(*vmf->pte)))
3328 return VM_FAULT_NOPAGE;
3329
3330 flush_icache_page(vma, page);
3331 entry = mk_pte(page, vma->vm_page_prot);
3332 if (write)
3333 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3334 /* copy-on-write page */
3335 if (write && !(vma->vm_flags & VM_SHARED)) {
3336 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3337 page_add_new_anon_rmap(page, vma, vmf->address, false);
3338 mem_cgroup_commit_charge(page, memcg, false, false);
3339 lru_cache_add_active_or_unevictable(page, vma);
3340 } else {
3341 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3342 page_add_file_rmap(page, false);
3343 }
3344 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3345
3346 /* no need to invalidate: a not-present page won't be cached */
3347 update_mmu_cache(vma, vmf->address, vmf->pte);
3348
3349 return 0;
3350 }
3351
3352
3353 /**
3354 * finish_fault - finish page fault once we have prepared the page to fault
3355 *
3356 * @vmf: structure describing the fault
3357 *
3358 * This function handles all that is needed to finish a page fault once the
3359 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3360 * given page, adds reverse page mapping, handles memcg charges and LRU
3361 * addition.
3362 *
3363 * The function expects the page to be locked and on success it consumes a
3364 * reference of a page being mapped (for the PTE which maps it).
3365 *
3366 * Return: %0 on success, %VM_FAULT_ code in case of error.
3367 */
finish_fault(struct vm_fault * vmf)3368 vm_fault_t finish_fault(struct vm_fault *vmf)
3369 {
3370 struct page *page;
3371 vm_fault_t ret = 0;
3372
3373 /* Did we COW the page? */
3374 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3375 !(vmf->vma->vm_flags & VM_SHARED))
3376 page = vmf->cow_page;
3377 else
3378 page = vmf->page;
3379
3380 /*
3381 * check even for read faults because we might have lost our CoWed
3382 * page
3383 */
3384 if (!(vmf->vma->vm_flags & VM_SHARED))
3385 ret = check_stable_address_space(vmf->vma->vm_mm);
3386 if (!ret)
3387 ret = alloc_set_pte(vmf, vmf->memcg, page);
3388 if (vmf->pte)
3389 pte_unmap_unlock(vmf->pte, vmf->ptl);
3390 return ret;
3391 }
3392
3393 static unsigned long fault_around_bytes __read_mostly =
3394 rounddown_pow_of_two(65536);
3395
3396 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)3397 static int fault_around_bytes_get(void *data, u64 *val)
3398 {
3399 *val = fault_around_bytes;
3400 return 0;
3401 }
3402
3403 /*
3404 * fault_around_bytes must be rounded down to the nearest page order as it's
3405 * what do_fault_around() expects to see.
3406 */
fault_around_bytes_set(void * data,u64 val)3407 static int fault_around_bytes_set(void *data, u64 val)
3408 {
3409 if (val / PAGE_SIZE > PTRS_PER_PTE)
3410 return -EINVAL;
3411 if (val > PAGE_SIZE)
3412 fault_around_bytes = rounddown_pow_of_two(val);
3413 else
3414 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3415 return 0;
3416 }
3417 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3418 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3419
fault_around_debugfs(void)3420 static int __init fault_around_debugfs(void)
3421 {
3422 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3423 &fault_around_bytes_fops);
3424 return 0;
3425 }
3426 late_initcall(fault_around_debugfs);
3427 #endif
3428
3429 /*
3430 * do_fault_around() tries to map few pages around the fault address. The hope
3431 * is that the pages will be needed soon and this will lower the number of
3432 * faults to handle.
3433 *
3434 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3435 * not ready to be mapped: not up-to-date, locked, etc.
3436 *
3437 * This function is called with the page table lock taken. In the split ptlock
3438 * case the page table lock only protects only those entries which belong to
3439 * the page table corresponding to the fault address.
3440 *
3441 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3442 * only once.
3443 *
3444 * fault_around_bytes defines how many bytes we'll try to map.
3445 * do_fault_around() expects it to be set to a power of two less than or equal
3446 * to PTRS_PER_PTE.
3447 *
3448 * The virtual address of the area that we map is naturally aligned to
3449 * fault_around_bytes rounded down to the machine page size
3450 * (and therefore to page order). This way it's easier to guarantee
3451 * that we don't cross page table boundaries.
3452 */
do_fault_around(struct vm_fault * vmf)3453 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3454 {
3455 unsigned long address = vmf->address, nr_pages, mask;
3456 pgoff_t start_pgoff = vmf->pgoff;
3457 pgoff_t end_pgoff;
3458 int off;
3459 vm_fault_t ret = 0;
3460
3461 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3462 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3463
3464 vmf->address = max(address & mask, vmf->vma->vm_start);
3465 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3466 start_pgoff -= off;
3467
3468 /*
3469 * end_pgoff is either the end of the page table, the end of
3470 * the vma or nr_pages from start_pgoff, depending what is nearest.
3471 */
3472 end_pgoff = start_pgoff -
3473 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3474 PTRS_PER_PTE - 1;
3475 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3476 start_pgoff + nr_pages - 1);
3477
3478 if (pmd_none(*vmf->pmd)) {
3479 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3480 if (!vmf->prealloc_pte)
3481 goto out;
3482 smp_wmb(); /* See comment in __pte_alloc() */
3483 }
3484
3485 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3486
3487 /* Huge page is mapped? Page fault is solved */
3488 if (pmd_trans_huge(*vmf->pmd)) {
3489 ret = VM_FAULT_NOPAGE;
3490 goto out;
3491 }
3492
3493 /* ->map_pages() haven't done anything useful. Cold page cache? */
3494 if (!vmf->pte)
3495 goto out;
3496
3497 /* check if the page fault is solved */
3498 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3499 if (!pte_none(*vmf->pte))
3500 ret = VM_FAULT_NOPAGE;
3501 pte_unmap_unlock(vmf->pte, vmf->ptl);
3502 out:
3503 vmf->address = address;
3504 vmf->pte = NULL;
3505 return ret;
3506 }
3507
do_read_fault(struct vm_fault * vmf)3508 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3509 {
3510 struct vm_area_struct *vma = vmf->vma;
3511 vm_fault_t ret = 0;
3512
3513 /*
3514 * Let's call ->map_pages() first and use ->fault() as fallback
3515 * if page by the offset is not ready to be mapped (cold cache or
3516 * something).
3517 */
3518 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3519 ret = do_fault_around(vmf);
3520 if (ret)
3521 return ret;
3522 }
3523
3524 ret = __do_fault(vmf);
3525 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3526 return ret;
3527
3528 ret |= finish_fault(vmf);
3529 unlock_page(vmf->page);
3530 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3531 put_page(vmf->page);
3532 return ret;
3533 }
3534
do_cow_fault(struct vm_fault * vmf)3535 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3536 {
3537 struct vm_area_struct *vma = vmf->vma;
3538 vm_fault_t ret;
3539
3540 if (unlikely(anon_vma_prepare(vma)))
3541 return VM_FAULT_OOM;
3542
3543 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3544 if (!vmf->cow_page)
3545 return VM_FAULT_OOM;
3546
3547 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3548 &vmf->memcg, false)) {
3549 put_page(vmf->cow_page);
3550 return VM_FAULT_OOM;
3551 }
3552
3553 ret = __do_fault(vmf);
3554 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3555 goto uncharge_out;
3556 if (ret & VM_FAULT_DONE_COW)
3557 return ret;
3558
3559 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3560 __SetPageUptodate(vmf->cow_page);
3561
3562 ret |= finish_fault(vmf);
3563 unlock_page(vmf->page);
3564 put_page(vmf->page);
3565 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3566 goto uncharge_out;
3567 return ret;
3568 uncharge_out:
3569 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3570 put_page(vmf->cow_page);
3571 return ret;
3572 }
3573
do_shared_fault(struct vm_fault * vmf)3574 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3575 {
3576 struct vm_area_struct *vma = vmf->vma;
3577 vm_fault_t ret, tmp;
3578
3579 ret = __do_fault(vmf);
3580 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3581 return ret;
3582
3583 /*
3584 * Check if the backing address space wants to know that the page is
3585 * about to become writable
3586 */
3587 if (vma->vm_ops->page_mkwrite) {
3588 unlock_page(vmf->page);
3589 tmp = do_page_mkwrite(vmf);
3590 if (unlikely(!tmp ||
3591 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3592 put_page(vmf->page);
3593 return tmp;
3594 }
3595 }
3596
3597 ret |= finish_fault(vmf);
3598 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3599 VM_FAULT_RETRY))) {
3600 unlock_page(vmf->page);
3601 put_page(vmf->page);
3602 return ret;
3603 }
3604
3605 ret |= fault_dirty_shared_page(vmf);
3606 return ret;
3607 }
3608
3609 /*
3610 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3611 * but allow concurrent faults).
3612 * The mmap_sem may have been released depending on flags and our
3613 * return value. See filemap_fault() and __lock_page_or_retry().
3614 * If mmap_sem is released, vma may become invalid (for example
3615 * by other thread calling munmap()).
3616 */
do_fault(struct vm_fault * vmf)3617 static vm_fault_t do_fault(struct vm_fault *vmf)
3618 {
3619 struct vm_area_struct *vma = vmf->vma;
3620 struct mm_struct *vm_mm = vma->vm_mm;
3621 vm_fault_t ret;
3622
3623 /*
3624 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3625 */
3626 if (!vma->vm_ops->fault) {
3627 /*
3628 * If we find a migration pmd entry or a none pmd entry, which
3629 * should never happen, return SIGBUS
3630 */
3631 if (unlikely(!pmd_present(*vmf->pmd)))
3632 ret = VM_FAULT_SIGBUS;
3633 else {
3634 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3635 vmf->pmd,
3636 vmf->address,
3637 &vmf->ptl);
3638 /*
3639 * Make sure this is not a temporary clearing of pte
3640 * by holding ptl and checking again. A R/M/W update
3641 * of pte involves: take ptl, clearing the pte so that
3642 * we don't have concurrent modification by hardware
3643 * followed by an update.
3644 */
3645 if (unlikely(pte_none(*vmf->pte)))
3646 ret = VM_FAULT_SIGBUS;
3647 else
3648 ret = VM_FAULT_NOPAGE;
3649
3650 pte_unmap_unlock(vmf->pte, vmf->ptl);
3651 }
3652 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3653 ret = do_read_fault(vmf);
3654 else if (!(vma->vm_flags & VM_SHARED))
3655 ret = do_cow_fault(vmf);
3656 else
3657 ret = do_shared_fault(vmf);
3658
3659 /* preallocated pagetable is unused: free it */
3660 if (vmf->prealloc_pte) {
3661 pte_free(vm_mm, vmf->prealloc_pte);
3662 vmf->prealloc_pte = NULL;
3663 }
3664 return ret;
3665 }
3666
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)3667 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3668 unsigned long addr, int page_nid,
3669 int *flags)
3670 {
3671 get_page(page);
3672
3673 count_vm_numa_event(NUMA_HINT_FAULTS);
3674 if (page_nid == numa_node_id()) {
3675 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3676 *flags |= TNF_FAULT_LOCAL;
3677 }
3678
3679 return mpol_misplaced(page, vma, addr);
3680 }
3681
do_numa_page(struct vm_fault * vmf)3682 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3683 {
3684 struct vm_area_struct *vma = vmf->vma;
3685 struct page *page = NULL;
3686 int page_nid = NUMA_NO_NODE;
3687 int last_cpupid;
3688 int target_nid;
3689 bool migrated = false;
3690 pte_t pte, old_pte;
3691 bool was_writable = pte_savedwrite(vmf->orig_pte);
3692 int flags = 0;
3693
3694 /*
3695 * The "pte" at this point cannot be used safely without
3696 * validation through pte_unmap_same(). It's of NUMA type but
3697 * the pfn may be screwed if the read is non atomic.
3698 */
3699 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3700 spin_lock(vmf->ptl);
3701 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3702 pte_unmap_unlock(vmf->pte, vmf->ptl);
3703 goto out;
3704 }
3705
3706 /*
3707 * Make it present again, Depending on how arch implementes non
3708 * accessible ptes, some can allow access by kernel mode.
3709 */
3710 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3711 pte = pte_modify(old_pte, vma->vm_page_prot);
3712 pte = pte_mkyoung(pte);
3713 if (was_writable)
3714 pte = pte_mkwrite(pte);
3715 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3716 update_mmu_cache(vma, vmf->address, vmf->pte);
3717
3718 page = vm_normal_page(vma, vmf->address, pte);
3719 if (!page) {
3720 pte_unmap_unlock(vmf->pte, vmf->ptl);
3721 return 0;
3722 }
3723
3724 /* TODO: handle PTE-mapped THP */
3725 if (PageCompound(page)) {
3726 pte_unmap_unlock(vmf->pte, vmf->ptl);
3727 return 0;
3728 }
3729
3730 /*
3731 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3732 * much anyway since they can be in shared cache state. This misses
3733 * the case where a mapping is writable but the process never writes
3734 * to it but pte_write gets cleared during protection updates and
3735 * pte_dirty has unpredictable behaviour between PTE scan updates,
3736 * background writeback, dirty balancing and application behaviour.
3737 */
3738 if (!pte_write(pte))
3739 flags |= TNF_NO_GROUP;
3740
3741 /*
3742 * Flag if the page is shared between multiple address spaces. This
3743 * is later used when determining whether to group tasks together
3744 */
3745 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3746 flags |= TNF_SHARED;
3747
3748 last_cpupid = page_cpupid_last(page);
3749 page_nid = page_to_nid(page);
3750 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3751 &flags);
3752 pte_unmap_unlock(vmf->pte, vmf->ptl);
3753 if (target_nid == NUMA_NO_NODE) {
3754 put_page(page);
3755 goto out;
3756 }
3757
3758 /* Migrate to the requested node */
3759 migrated = migrate_misplaced_page(page, vma, target_nid);
3760 if (migrated) {
3761 page_nid = target_nid;
3762 flags |= TNF_MIGRATED;
3763 } else
3764 flags |= TNF_MIGRATE_FAIL;
3765
3766 out:
3767 if (page_nid != NUMA_NO_NODE)
3768 task_numa_fault(last_cpupid, page_nid, 1, flags);
3769 return 0;
3770 }
3771
create_huge_pmd(struct vm_fault * vmf)3772 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3773 {
3774 if (vma_is_anonymous(vmf->vma))
3775 return do_huge_pmd_anonymous_page(vmf);
3776 if (vmf->vma->vm_ops->huge_fault)
3777 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3778 return VM_FAULT_FALLBACK;
3779 }
3780
3781 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf,pmd_t orig_pmd)3782 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3783 {
3784 if (vma_is_anonymous(vmf->vma))
3785 return do_huge_pmd_wp_page(vmf, orig_pmd);
3786 if (vmf->vma->vm_ops->huge_fault)
3787 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3788
3789 /* COW handled on pte level: split pmd */
3790 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3791 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3792
3793 return VM_FAULT_FALLBACK;
3794 }
3795
vma_is_accessible(struct vm_area_struct * vma)3796 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3797 {
3798 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3799 }
3800
create_huge_pud(struct vm_fault * vmf)3801 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3802 {
3803 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3804 /* No support for anonymous transparent PUD pages yet */
3805 if (vma_is_anonymous(vmf->vma))
3806 return VM_FAULT_FALLBACK;
3807 if (vmf->vma->vm_ops->huge_fault)
3808 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3809 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3810 return VM_FAULT_FALLBACK;
3811 }
3812
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)3813 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3814 {
3815 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3816 /* No support for anonymous transparent PUD pages yet */
3817 if (vma_is_anonymous(vmf->vma))
3818 return VM_FAULT_FALLBACK;
3819 if (vmf->vma->vm_ops->huge_fault)
3820 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3821 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3822 return VM_FAULT_FALLBACK;
3823 }
3824
3825 /*
3826 * These routines also need to handle stuff like marking pages dirty
3827 * and/or accessed for architectures that don't do it in hardware (most
3828 * RISC architectures). The early dirtying is also good on the i386.
3829 *
3830 * There is also a hook called "update_mmu_cache()" that architectures
3831 * with external mmu caches can use to update those (ie the Sparc or
3832 * PowerPC hashed page tables that act as extended TLBs).
3833 *
3834 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3835 * concurrent faults).
3836 *
3837 * The mmap_sem may have been released depending on flags and our return value.
3838 * See filemap_fault() and __lock_page_or_retry().
3839 */
handle_pte_fault(struct vm_fault * vmf)3840 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3841 {
3842 pte_t entry;
3843
3844 if (unlikely(pmd_none(*vmf->pmd))) {
3845 /*
3846 * Leave __pte_alloc() until later: because vm_ops->fault may
3847 * want to allocate huge page, and if we expose page table
3848 * for an instant, it will be difficult to retract from
3849 * concurrent faults and from rmap lookups.
3850 */
3851 vmf->pte = NULL;
3852 } else {
3853 /* See comment in pte_alloc_one_map() */
3854 if (pmd_devmap_trans_unstable(vmf->pmd))
3855 return 0;
3856 /*
3857 * A regular pmd is established and it can't morph into a huge
3858 * pmd from under us anymore at this point because we hold the
3859 * mmap_sem read mode and khugepaged takes it in write mode.
3860 * So now it's safe to run pte_offset_map().
3861 */
3862 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3863 vmf->orig_pte = *vmf->pte;
3864
3865 /*
3866 * some architectures can have larger ptes than wordsize,
3867 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3868 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3869 * accesses. The code below just needs a consistent view
3870 * for the ifs and we later double check anyway with the
3871 * ptl lock held. So here a barrier will do.
3872 */
3873 barrier();
3874 if (pte_none(vmf->orig_pte)) {
3875 pte_unmap(vmf->pte);
3876 vmf->pte = NULL;
3877 }
3878 }
3879
3880 if (!vmf->pte) {
3881 if (vma_is_anonymous(vmf->vma))
3882 return do_anonymous_page(vmf);
3883 else
3884 return do_fault(vmf);
3885 }
3886
3887 if (!pte_present(vmf->orig_pte))
3888 return do_swap_page(vmf);
3889
3890 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3891 return do_numa_page(vmf);
3892
3893 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3894 spin_lock(vmf->ptl);
3895 entry = vmf->orig_pte;
3896 if (unlikely(!pte_same(*vmf->pte, entry)))
3897 goto unlock;
3898 if (vmf->flags & FAULT_FLAG_WRITE) {
3899 if (!pte_write(entry))
3900 return do_wp_page(vmf);
3901 entry = pte_mkdirty(entry);
3902 }
3903 entry = pte_mkyoung(entry);
3904 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3905 vmf->flags & FAULT_FLAG_WRITE)) {
3906 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3907 } else {
3908 /*
3909 * This is needed only for protection faults but the arch code
3910 * is not yet telling us if this is a protection fault or not.
3911 * This still avoids useless tlb flushes for .text page faults
3912 * with threads.
3913 */
3914 if (vmf->flags & FAULT_FLAG_WRITE)
3915 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3916 }
3917 unlock:
3918 pte_unmap_unlock(vmf->pte, vmf->ptl);
3919 return 0;
3920 }
3921
3922 /*
3923 * By the time we get here, we already hold the mm semaphore
3924 *
3925 * The mmap_sem may have been released depending on flags and our
3926 * return value. See filemap_fault() and __lock_page_or_retry().
3927 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)3928 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3929 unsigned long address, unsigned int flags)
3930 {
3931 struct vm_fault vmf = {
3932 .vma = vma,
3933 .address = address & PAGE_MASK,
3934 .flags = flags,
3935 .pgoff = linear_page_index(vma, address),
3936 .gfp_mask = __get_fault_gfp_mask(vma),
3937 };
3938 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3939 struct mm_struct *mm = vma->vm_mm;
3940 pgd_t *pgd;
3941 p4d_t *p4d;
3942 vm_fault_t ret;
3943
3944 pgd = pgd_offset(mm, address);
3945 p4d = p4d_alloc(mm, pgd, address);
3946 if (!p4d)
3947 return VM_FAULT_OOM;
3948
3949 vmf.pud = pud_alloc(mm, p4d, address);
3950 if (!vmf.pud)
3951 return VM_FAULT_OOM;
3952 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3953 ret = create_huge_pud(&vmf);
3954 if (!(ret & VM_FAULT_FALLBACK))
3955 return ret;
3956 } else {
3957 pud_t orig_pud = *vmf.pud;
3958
3959 barrier();
3960 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3961
3962 /* NUMA case for anonymous PUDs would go here */
3963
3964 if (dirty && !pud_write(orig_pud)) {
3965 ret = wp_huge_pud(&vmf, orig_pud);
3966 if (!(ret & VM_FAULT_FALLBACK))
3967 return ret;
3968 } else {
3969 huge_pud_set_accessed(&vmf, orig_pud);
3970 return 0;
3971 }
3972 }
3973 }
3974
3975 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3976 if (!vmf.pmd)
3977 return VM_FAULT_OOM;
3978 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3979 ret = create_huge_pmd(&vmf);
3980 if (!(ret & VM_FAULT_FALLBACK))
3981 return ret;
3982 } else {
3983 pmd_t orig_pmd = *vmf.pmd;
3984
3985 barrier();
3986 if (unlikely(is_swap_pmd(orig_pmd))) {
3987 VM_BUG_ON(thp_migration_supported() &&
3988 !is_pmd_migration_entry(orig_pmd));
3989 if (is_pmd_migration_entry(orig_pmd))
3990 pmd_migration_entry_wait(mm, vmf.pmd);
3991 return 0;
3992 }
3993 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3994 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3995 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3996
3997 if (dirty && !pmd_write(orig_pmd)) {
3998 ret = wp_huge_pmd(&vmf, orig_pmd);
3999 if (!(ret & VM_FAULT_FALLBACK))
4000 return ret;
4001 } else {
4002 huge_pmd_set_accessed(&vmf, orig_pmd);
4003 return 0;
4004 }
4005 }
4006 }
4007
4008 return handle_pte_fault(&vmf);
4009 }
4010
4011 /*
4012 * By the time we get here, we already hold the mm semaphore
4013 *
4014 * The mmap_sem may have been released depending on flags and our
4015 * return value. See filemap_fault() and __lock_page_or_retry().
4016 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4017 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4018 unsigned int flags)
4019 {
4020 vm_fault_t ret;
4021
4022 __set_current_state(TASK_RUNNING);
4023
4024 count_vm_event(PGFAULT);
4025 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4026
4027 /* do counter updates before entering really critical section. */
4028 check_sync_rss_stat(current);
4029
4030 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4031 flags & FAULT_FLAG_INSTRUCTION,
4032 flags & FAULT_FLAG_REMOTE))
4033 return VM_FAULT_SIGSEGV;
4034
4035 /*
4036 * Enable the memcg OOM handling for faults triggered in user
4037 * space. Kernel faults are handled more gracefully.
4038 */
4039 if (flags & FAULT_FLAG_USER)
4040 mem_cgroup_enter_user_fault();
4041
4042 if (unlikely(is_vm_hugetlb_page(vma)))
4043 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4044 else
4045 ret = __handle_mm_fault(vma, address, flags);
4046
4047 if (flags & FAULT_FLAG_USER) {
4048 mem_cgroup_exit_user_fault();
4049 /*
4050 * The task may have entered a memcg OOM situation but
4051 * if the allocation error was handled gracefully (no
4052 * VM_FAULT_OOM), there is no need to kill anything.
4053 * Just clean up the OOM state peacefully.
4054 */
4055 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4056 mem_cgroup_oom_synchronize(false);
4057 }
4058
4059 return ret;
4060 }
4061 EXPORT_SYMBOL_GPL(handle_mm_fault);
4062
4063 #ifndef __PAGETABLE_P4D_FOLDED
4064 /*
4065 * Allocate p4d page table.
4066 * We've already handled the fast-path in-line.
4067 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)4068 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4069 {
4070 p4d_t *new = p4d_alloc_one(mm, address);
4071 if (!new)
4072 return -ENOMEM;
4073
4074 smp_wmb(); /* See comment in __pte_alloc */
4075
4076 spin_lock(&mm->page_table_lock);
4077 if (pgd_present(*pgd)) /* Another has populated it */
4078 p4d_free(mm, new);
4079 else
4080 pgd_populate(mm, pgd, new);
4081 spin_unlock(&mm->page_table_lock);
4082 return 0;
4083 }
4084 #endif /* __PAGETABLE_P4D_FOLDED */
4085
4086 #ifndef __PAGETABLE_PUD_FOLDED
4087 /*
4088 * Allocate page upper directory.
4089 * We've already handled the fast-path in-line.
4090 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)4091 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4092 {
4093 pud_t *new = pud_alloc_one(mm, address);
4094 if (!new)
4095 return -ENOMEM;
4096
4097 smp_wmb(); /* See comment in __pte_alloc */
4098
4099 spin_lock(&mm->page_table_lock);
4100 #ifndef __ARCH_HAS_5LEVEL_HACK
4101 if (!p4d_present(*p4d)) {
4102 mm_inc_nr_puds(mm);
4103 p4d_populate(mm, p4d, new);
4104 } else /* Another has populated it */
4105 pud_free(mm, new);
4106 #else
4107 if (!pgd_present(*p4d)) {
4108 mm_inc_nr_puds(mm);
4109 pgd_populate(mm, p4d, new);
4110 } else /* Another has populated it */
4111 pud_free(mm, new);
4112 #endif /* __ARCH_HAS_5LEVEL_HACK */
4113 spin_unlock(&mm->page_table_lock);
4114 return 0;
4115 }
4116 #endif /* __PAGETABLE_PUD_FOLDED */
4117
4118 #ifndef __PAGETABLE_PMD_FOLDED
4119 /*
4120 * Allocate page middle directory.
4121 * We've already handled the fast-path in-line.
4122 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)4123 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4124 {
4125 spinlock_t *ptl;
4126 pmd_t *new = pmd_alloc_one(mm, address);
4127 if (!new)
4128 return -ENOMEM;
4129
4130 smp_wmb(); /* See comment in __pte_alloc */
4131
4132 ptl = pud_lock(mm, pud);
4133 #ifndef __ARCH_HAS_4LEVEL_HACK
4134 if (!pud_present(*pud)) {
4135 mm_inc_nr_pmds(mm);
4136 pud_populate(mm, pud, new);
4137 } else /* Another has populated it */
4138 pmd_free(mm, new);
4139 #else
4140 if (!pgd_present(*pud)) {
4141 mm_inc_nr_pmds(mm);
4142 pgd_populate(mm, pud, new);
4143 } else /* Another has populated it */
4144 pmd_free(mm, new);
4145 #endif /* __ARCH_HAS_4LEVEL_HACK */
4146 spin_unlock(ptl);
4147 return 0;
4148 }
4149 #endif /* __PAGETABLE_PMD_FOLDED */
4150
__follow_pte_pmd(struct mm_struct * mm,unsigned long address,struct mmu_notifier_range * range,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)4151 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4152 struct mmu_notifier_range *range,
4153 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4154 {
4155 pgd_t *pgd;
4156 p4d_t *p4d;
4157 pud_t *pud;
4158 pmd_t *pmd;
4159 pte_t *ptep;
4160
4161 pgd = pgd_offset(mm, address);
4162 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4163 goto out;
4164
4165 p4d = p4d_offset(pgd, address);
4166 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4167 goto out;
4168
4169 pud = pud_offset(p4d, address);
4170 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4171 goto out;
4172
4173 pmd = pmd_offset(pud, address);
4174 VM_BUG_ON(pmd_trans_huge(*pmd));
4175
4176 if (pmd_huge(*pmd)) {
4177 if (!pmdpp)
4178 goto out;
4179
4180 if (range) {
4181 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4182 NULL, mm, address & PMD_MASK,
4183 (address & PMD_MASK) + PMD_SIZE);
4184 mmu_notifier_invalidate_range_start(range);
4185 }
4186 *ptlp = pmd_lock(mm, pmd);
4187 if (pmd_huge(*pmd)) {
4188 *pmdpp = pmd;
4189 return 0;
4190 }
4191 spin_unlock(*ptlp);
4192 if (range)
4193 mmu_notifier_invalidate_range_end(range);
4194 }
4195
4196 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4197 goto out;
4198
4199 if (range) {
4200 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4201 address & PAGE_MASK,
4202 (address & PAGE_MASK) + PAGE_SIZE);
4203 mmu_notifier_invalidate_range_start(range);
4204 }
4205 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4206 if (!pte_present(*ptep))
4207 goto unlock;
4208 *ptepp = ptep;
4209 return 0;
4210 unlock:
4211 pte_unmap_unlock(ptep, *ptlp);
4212 if (range)
4213 mmu_notifier_invalidate_range_end(range);
4214 out:
4215 return -EINVAL;
4216 }
4217
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)4218 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4219 pte_t **ptepp, spinlock_t **ptlp)
4220 {
4221 int res;
4222
4223 /* (void) is needed to make gcc happy */
4224 (void) __cond_lock(*ptlp,
4225 !(res = __follow_pte_pmd(mm, address, NULL,
4226 ptepp, NULL, ptlp)));
4227 return res;
4228 }
4229
follow_pte_pmd(struct mm_struct * mm,unsigned long address,struct mmu_notifier_range * range,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)4230 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4231 struct mmu_notifier_range *range,
4232 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4233 {
4234 int res;
4235
4236 /* (void) is needed to make gcc happy */
4237 (void) __cond_lock(*ptlp,
4238 !(res = __follow_pte_pmd(mm, address, range,
4239 ptepp, pmdpp, ptlp)));
4240 return res;
4241 }
4242 EXPORT_SYMBOL(follow_pte_pmd);
4243
4244 /**
4245 * follow_pfn - look up PFN at a user virtual address
4246 * @vma: memory mapping
4247 * @address: user virtual address
4248 * @pfn: location to store found PFN
4249 *
4250 * Only IO mappings and raw PFN mappings are allowed.
4251 *
4252 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4253 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)4254 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4255 unsigned long *pfn)
4256 {
4257 int ret = -EINVAL;
4258 spinlock_t *ptl;
4259 pte_t *ptep;
4260
4261 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4262 return ret;
4263
4264 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4265 if (ret)
4266 return ret;
4267 *pfn = pte_pfn(*ptep);
4268 pte_unmap_unlock(ptep, ptl);
4269 return 0;
4270 }
4271 EXPORT_SYMBOL(follow_pfn);
4272
4273 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)4274 int follow_phys(struct vm_area_struct *vma,
4275 unsigned long address, unsigned int flags,
4276 unsigned long *prot, resource_size_t *phys)
4277 {
4278 int ret = -EINVAL;
4279 pte_t *ptep, pte;
4280 spinlock_t *ptl;
4281
4282 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4283 goto out;
4284
4285 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4286 goto out;
4287 pte = *ptep;
4288
4289 if ((flags & FOLL_WRITE) && !pte_write(pte))
4290 goto unlock;
4291
4292 *prot = pgprot_val(pte_pgprot(pte));
4293 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4294
4295 ret = 0;
4296 unlock:
4297 pte_unmap_unlock(ptep, ptl);
4298 out:
4299 return ret;
4300 }
4301
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)4302 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4303 void *buf, int len, int write)
4304 {
4305 resource_size_t phys_addr;
4306 unsigned long prot = 0;
4307 void __iomem *maddr;
4308 int offset = addr & (PAGE_SIZE-1);
4309
4310 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4311 return -EINVAL;
4312
4313 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4314 if (!maddr)
4315 return -ENOMEM;
4316
4317 if (write)
4318 memcpy_toio(maddr + offset, buf, len);
4319 else
4320 memcpy_fromio(buf, maddr + offset, len);
4321 iounmap(maddr);
4322
4323 return len;
4324 }
4325 EXPORT_SYMBOL_GPL(generic_access_phys);
4326 #endif
4327
4328 /*
4329 * Access another process' address space as given in mm. If non-NULL, use the
4330 * given task for page fault accounting.
4331 */
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)4332 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4333 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4334 {
4335 struct vm_area_struct *vma;
4336 void *old_buf = buf;
4337 int write = gup_flags & FOLL_WRITE;
4338
4339 if (down_read_killable(&mm->mmap_sem))
4340 return 0;
4341
4342 /* ignore errors, just check how much was successfully transferred */
4343 while (len) {
4344 int bytes, ret, offset;
4345 void *maddr;
4346 struct page *page = NULL;
4347
4348 ret = get_user_pages_remote(tsk, mm, addr, 1,
4349 gup_flags, &page, &vma, NULL);
4350 if (ret <= 0) {
4351 #ifndef CONFIG_HAVE_IOREMAP_PROT
4352 break;
4353 #else
4354 /*
4355 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4356 * we can access using slightly different code.
4357 */
4358 vma = find_vma(mm, addr);
4359 if (!vma || vma->vm_start > addr)
4360 break;
4361 if (vma->vm_ops && vma->vm_ops->access)
4362 ret = vma->vm_ops->access(vma, addr, buf,
4363 len, write);
4364 if (ret <= 0)
4365 break;
4366 bytes = ret;
4367 #endif
4368 } else {
4369 bytes = len;
4370 offset = addr & (PAGE_SIZE-1);
4371 if (bytes > PAGE_SIZE-offset)
4372 bytes = PAGE_SIZE-offset;
4373
4374 maddr = kmap(page);
4375 if (write) {
4376 copy_to_user_page(vma, page, addr,
4377 maddr + offset, buf, bytes);
4378 set_page_dirty_lock(page);
4379 } else {
4380 copy_from_user_page(vma, page, addr,
4381 buf, maddr + offset, bytes);
4382 }
4383 kunmap(page);
4384 put_page(page);
4385 }
4386 len -= bytes;
4387 buf += bytes;
4388 addr += bytes;
4389 }
4390 up_read(&mm->mmap_sem);
4391
4392 return buf - old_buf;
4393 }
4394
4395 /**
4396 * access_remote_vm - access another process' address space
4397 * @mm: the mm_struct of the target address space
4398 * @addr: start address to access
4399 * @buf: source or destination buffer
4400 * @len: number of bytes to transfer
4401 * @gup_flags: flags modifying lookup behaviour
4402 *
4403 * The caller must hold a reference on @mm.
4404 *
4405 * Return: number of bytes copied from source to destination.
4406 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)4407 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4408 void *buf, int len, unsigned int gup_flags)
4409 {
4410 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4411 }
4412
4413 /*
4414 * Access another process' address space.
4415 * Source/target buffer must be kernel space,
4416 * Do not walk the page table directly, use get_user_pages
4417 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)4418 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4419 void *buf, int len, unsigned int gup_flags)
4420 {
4421 struct mm_struct *mm;
4422 int ret;
4423
4424 mm = get_task_mm(tsk);
4425 if (!mm)
4426 return 0;
4427
4428 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4429
4430 mmput(mm);
4431
4432 return ret;
4433 }
4434 EXPORT_SYMBOL_GPL(access_process_vm);
4435
4436 /*
4437 * Print the name of a VMA.
4438 */
print_vma_addr(char * prefix,unsigned long ip)4439 void print_vma_addr(char *prefix, unsigned long ip)
4440 {
4441 struct mm_struct *mm = current->mm;
4442 struct vm_area_struct *vma;
4443
4444 /*
4445 * we might be running from an atomic context so we cannot sleep
4446 */
4447 if (!down_read_trylock(&mm->mmap_sem))
4448 return;
4449
4450 vma = find_vma(mm, ip);
4451 if (vma && vma->vm_file) {
4452 struct file *f = vma->vm_file;
4453 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4454 if (buf) {
4455 char *p;
4456
4457 p = file_path(f, buf, PAGE_SIZE);
4458 if (IS_ERR(p))
4459 p = "?";
4460 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4461 vma->vm_start,
4462 vma->vm_end - vma->vm_start);
4463 free_page((unsigned long)buf);
4464 }
4465 }
4466 up_read(&mm->mmap_sem);
4467 }
4468
4469 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)4470 void __might_fault(const char *file, int line)
4471 {
4472 /*
4473 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4474 * holding the mmap_sem, this is safe because kernel memory doesn't
4475 * get paged out, therefore we'll never actually fault, and the
4476 * below annotations will generate false positives.
4477 */
4478 if (uaccess_kernel())
4479 return;
4480 if (pagefault_disabled())
4481 return;
4482 __might_sleep(file, line, 0);
4483 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4484 if (current->mm)
4485 might_lock_read(¤t->mm->mmap_sem);
4486 #endif
4487 }
4488 EXPORT_SYMBOL(__might_fault);
4489 #endif
4490
4491 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4492 /*
4493 * Process all subpages of the specified huge page with the specified
4494 * operation. The target subpage will be processed last to keep its
4495 * cache lines hot.
4496 */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,void (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)4497 static inline void process_huge_page(
4498 unsigned long addr_hint, unsigned int pages_per_huge_page,
4499 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4500 void *arg)
4501 {
4502 int i, n, base, l;
4503 unsigned long addr = addr_hint &
4504 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4505
4506 /* Process target subpage last to keep its cache lines hot */
4507 might_sleep();
4508 n = (addr_hint - addr) / PAGE_SIZE;
4509 if (2 * n <= pages_per_huge_page) {
4510 /* If target subpage in first half of huge page */
4511 base = 0;
4512 l = n;
4513 /* Process subpages at the end of huge page */
4514 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4515 cond_resched();
4516 process_subpage(addr + i * PAGE_SIZE, i, arg);
4517 }
4518 } else {
4519 /* If target subpage in second half of huge page */
4520 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4521 l = pages_per_huge_page - n;
4522 /* Process subpages at the begin of huge page */
4523 for (i = 0; i < base; i++) {
4524 cond_resched();
4525 process_subpage(addr + i * PAGE_SIZE, i, arg);
4526 }
4527 }
4528 /*
4529 * Process remaining subpages in left-right-left-right pattern
4530 * towards the target subpage
4531 */
4532 for (i = 0; i < l; i++) {
4533 int left_idx = base + i;
4534 int right_idx = base + 2 * l - 1 - i;
4535
4536 cond_resched();
4537 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4538 cond_resched();
4539 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4540 }
4541 }
4542
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)4543 static void clear_gigantic_page(struct page *page,
4544 unsigned long addr,
4545 unsigned int pages_per_huge_page)
4546 {
4547 int i;
4548 struct page *p = page;
4549
4550 might_sleep();
4551 for (i = 0; i < pages_per_huge_page;
4552 i++, p = mem_map_next(p, page, i)) {
4553 cond_resched();
4554 clear_user_highpage(p, addr + i * PAGE_SIZE);
4555 }
4556 }
4557
clear_subpage(unsigned long addr,int idx,void * arg)4558 static void clear_subpage(unsigned long addr, int idx, void *arg)
4559 {
4560 struct page *page = arg;
4561
4562 clear_user_highpage(page + idx, addr);
4563 }
4564
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)4565 void clear_huge_page(struct page *page,
4566 unsigned long addr_hint, unsigned int pages_per_huge_page)
4567 {
4568 unsigned long addr = addr_hint &
4569 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4570
4571 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4572 clear_gigantic_page(page, addr, pages_per_huge_page);
4573 return;
4574 }
4575
4576 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4577 }
4578
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)4579 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4580 unsigned long addr,
4581 struct vm_area_struct *vma,
4582 unsigned int pages_per_huge_page)
4583 {
4584 int i;
4585 struct page *dst_base = dst;
4586 struct page *src_base = src;
4587
4588 for (i = 0; i < pages_per_huge_page; ) {
4589 cond_resched();
4590 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4591
4592 i++;
4593 dst = mem_map_next(dst, dst_base, i);
4594 src = mem_map_next(src, src_base, i);
4595 }
4596 }
4597
4598 struct copy_subpage_arg {
4599 struct page *dst;
4600 struct page *src;
4601 struct vm_area_struct *vma;
4602 };
4603
copy_subpage(unsigned long addr,int idx,void * arg)4604 static void copy_subpage(unsigned long addr, int idx, void *arg)
4605 {
4606 struct copy_subpage_arg *copy_arg = arg;
4607
4608 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4609 addr, copy_arg->vma);
4610 }
4611
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int pages_per_huge_page)4612 void copy_user_huge_page(struct page *dst, struct page *src,
4613 unsigned long addr_hint, struct vm_area_struct *vma,
4614 unsigned int pages_per_huge_page)
4615 {
4616 unsigned long addr = addr_hint &
4617 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4618 struct copy_subpage_arg arg = {
4619 .dst = dst,
4620 .src = src,
4621 .vma = vma,
4622 };
4623
4624 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4625 copy_user_gigantic_page(dst, src, addr, vma,
4626 pages_per_huge_page);
4627 return;
4628 }
4629
4630 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4631 }
4632
copy_huge_page_from_user(struct page * dst_page,const void __user * usr_src,unsigned int pages_per_huge_page,bool allow_pagefault)4633 long copy_huge_page_from_user(struct page *dst_page,
4634 const void __user *usr_src,
4635 unsigned int pages_per_huge_page,
4636 bool allow_pagefault)
4637 {
4638 void *src = (void *)usr_src;
4639 void *page_kaddr;
4640 unsigned long i, rc = 0;
4641 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4642
4643 for (i = 0; i < pages_per_huge_page; i++) {
4644 if (allow_pagefault)
4645 page_kaddr = kmap(dst_page + i);
4646 else
4647 page_kaddr = kmap_atomic(dst_page + i);
4648 rc = copy_from_user(page_kaddr,
4649 (const void __user *)(src + i * PAGE_SIZE),
4650 PAGE_SIZE);
4651 if (allow_pagefault)
4652 kunmap(dst_page + i);
4653 else
4654 kunmap_atomic(page_kaddr);
4655
4656 ret_val -= (PAGE_SIZE - rc);
4657 if (rc)
4658 break;
4659
4660 cond_resched();
4661 }
4662 return ret_val;
4663 }
4664 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4665
4666 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4667
4668 static struct kmem_cache *page_ptl_cachep;
4669
ptlock_cache_init(void)4670 void __init ptlock_cache_init(void)
4671 {
4672 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4673 SLAB_PANIC, NULL);
4674 }
4675
ptlock_alloc(struct page * page)4676 bool ptlock_alloc(struct page *page)
4677 {
4678 spinlock_t *ptl;
4679
4680 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4681 if (!ptl)
4682 return false;
4683 page->ptl = ptl;
4684 return true;
4685 }
4686
ptlock_free(struct page * page)4687 void ptlock_free(struct page *page)
4688 {
4689 kmem_cache_free(page_ptl_cachep, page->ptl);
4690 }
4691 #endif
4692