1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #include "internal.h"
57
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags) (0)
60 #endif
61
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72
73 static bool ignore_rlimit_data;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75
76 static void unmap_region(struct mm_struct *mm,
77 struct vm_area_struct *vma, struct vm_area_struct *prev,
78 unsigned long start, unsigned long end);
79
80 /* description of effects of mapping type and prot in current implementation.
81 * this is due to the limited x86 page protection hardware. The expected
82 * behavior is in parens:
83 *
84 * map_type prot
85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
87 * w: (no) no w: (no) no w: (yes) yes w: (no) no
88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
89 *
90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
91 * w: (no) no w: (no) no w: (copy) copy w: (no) no
92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
93 */
94 pgprot_t protection_map[16] __ro_after_init = {
95 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
96 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
97 };
98
99 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
arch_filter_pgprot(pgprot_t prot)100 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
101 {
102 return prot;
103 }
104 #endif
105
vm_get_page_prot(unsigned long vm_flags)106 pgprot_t vm_get_page_prot(unsigned long vm_flags)
107 {
108 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
109 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
110 pgprot_val(arch_vm_get_page_prot(vm_flags)));
111
112 return arch_filter_pgprot(ret);
113 }
114 EXPORT_SYMBOL(vm_get_page_prot);
115
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)116 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
117 {
118 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
119 }
120
121 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)122 void vma_set_page_prot(struct vm_area_struct *vma)
123 {
124 unsigned long vm_flags = vma->vm_flags;
125 pgprot_t vm_page_prot;
126
127 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
128 if (vma_wants_writenotify(vma, vm_page_prot)) {
129 vm_flags &= ~VM_SHARED;
130 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
131 }
132 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
133 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
134 }
135
136 /*
137 * Requires inode->i_mapping->i_mmap_rwsem
138 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)139 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
140 struct file *file, struct address_space *mapping)
141 {
142 if (vma->vm_flags & VM_DENYWRITE)
143 atomic_inc(&file_inode(file)->i_writecount);
144 if (vma->vm_flags & VM_SHARED)
145 mapping_unmap_writable(mapping);
146
147 flush_dcache_mmap_lock(mapping);
148 vma_interval_tree_remove(vma, &mapping->i_mmap);
149 flush_dcache_mmap_unlock(mapping);
150 }
151
152 /*
153 * Unlink a file-based vm structure from its interval tree, to hide
154 * vma from rmap and vmtruncate before freeing its page tables.
155 */
unlink_file_vma(struct vm_area_struct * vma)156 void unlink_file_vma(struct vm_area_struct *vma)
157 {
158 struct file *file = vma->vm_file;
159
160 if (file) {
161 struct address_space *mapping = file->f_mapping;
162 i_mmap_lock_write(mapping);
163 __remove_shared_vm_struct(vma, file, mapping);
164 i_mmap_unlock_write(mapping);
165 }
166 }
167
168 /*
169 * Close a vm structure and free it, returning the next.
170 */
remove_vma(struct vm_area_struct * vma)171 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
172 {
173 struct vm_area_struct *next = vma->vm_next;
174
175 might_sleep();
176 if (vma->vm_ops && vma->vm_ops->close)
177 vma->vm_ops->close(vma);
178 if (vma->vm_file)
179 fput(vma->vm_file);
180 mpol_put(vma_policy(vma));
181 vm_area_free(vma);
182 return next;
183 }
184
185 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
186 struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)187 SYSCALL_DEFINE1(brk, unsigned long, brk)
188 {
189 unsigned long retval;
190 unsigned long newbrk, oldbrk, origbrk;
191 struct mm_struct *mm = current->mm;
192 struct vm_area_struct *next;
193 unsigned long min_brk;
194 bool populate;
195 bool downgraded = false;
196 LIST_HEAD(uf);
197
198 brk = untagged_addr(brk);
199
200 if (down_write_killable(&mm->mmap_sem))
201 return -EINTR;
202
203 origbrk = mm->brk;
204
205 #ifdef CONFIG_COMPAT_BRK
206 /*
207 * CONFIG_COMPAT_BRK can still be overridden by setting
208 * randomize_va_space to 2, which will still cause mm->start_brk
209 * to be arbitrarily shifted
210 */
211 if (current->brk_randomized)
212 min_brk = mm->start_brk;
213 else
214 min_brk = mm->end_data;
215 #else
216 min_brk = mm->start_brk;
217 #endif
218 if (brk < min_brk)
219 goto out;
220
221 /*
222 * Check against rlimit here. If this check is done later after the test
223 * of oldbrk with newbrk then it can escape the test and let the data
224 * segment grow beyond its set limit the in case where the limit is
225 * not page aligned -Ram Gupta
226 */
227 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228 mm->end_data, mm->start_data))
229 goto out;
230
231 newbrk = PAGE_ALIGN(brk);
232 oldbrk = PAGE_ALIGN(mm->brk);
233 if (oldbrk == newbrk) {
234 mm->brk = brk;
235 goto success;
236 }
237
238 /*
239 * Always allow shrinking brk.
240 * __do_munmap() may downgrade mmap_sem to read.
241 */
242 if (brk <= mm->brk) {
243 int ret;
244
245 /*
246 * mm->brk must to be protected by write mmap_sem so update it
247 * before downgrading mmap_sem. When __do_munmap() fails,
248 * mm->brk will be restored from origbrk.
249 */
250 mm->brk = brk;
251 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
252 if (ret < 0) {
253 mm->brk = origbrk;
254 goto out;
255 } else if (ret == 1) {
256 downgraded = true;
257 }
258 goto success;
259 }
260
261 /* Check against existing mmap mappings. */
262 next = find_vma(mm, oldbrk);
263 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
264 goto out;
265
266 /* Ok, looks good - let it rip. */
267 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
268 goto out;
269 mm->brk = brk;
270
271 success:
272 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
273 if (downgraded)
274 up_read(&mm->mmap_sem);
275 else
276 up_write(&mm->mmap_sem);
277 userfaultfd_unmap_complete(mm, &uf);
278 if (populate)
279 mm_populate(oldbrk, newbrk - oldbrk);
280 return brk;
281
282 out:
283 retval = origbrk;
284 up_write(&mm->mmap_sem);
285 return retval;
286 }
287
vma_compute_gap(struct vm_area_struct * vma)288 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
289 {
290 unsigned long gap, prev_end;
291
292 /*
293 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
294 * allow two stack_guard_gaps between them here, and when choosing
295 * an unmapped area; whereas when expanding we only require one.
296 * That's a little inconsistent, but keeps the code here simpler.
297 */
298 gap = vm_start_gap(vma);
299 if (vma->vm_prev) {
300 prev_end = vm_end_gap(vma->vm_prev);
301 if (gap > prev_end)
302 gap -= prev_end;
303 else
304 gap = 0;
305 }
306 return gap;
307 }
308
309 #ifdef CONFIG_DEBUG_VM_RB
vma_compute_subtree_gap(struct vm_area_struct * vma)310 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
311 {
312 unsigned long max = vma_compute_gap(vma), subtree_gap;
313 if (vma->vm_rb.rb_left) {
314 subtree_gap = rb_entry(vma->vm_rb.rb_left,
315 struct vm_area_struct, vm_rb)->rb_subtree_gap;
316 if (subtree_gap > max)
317 max = subtree_gap;
318 }
319 if (vma->vm_rb.rb_right) {
320 subtree_gap = rb_entry(vma->vm_rb.rb_right,
321 struct vm_area_struct, vm_rb)->rb_subtree_gap;
322 if (subtree_gap > max)
323 max = subtree_gap;
324 }
325 return max;
326 }
327
browse_rb(struct mm_struct * mm)328 static int browse_rb(struct mm_struct *mm)
329 {
330 struct rb_root *root = &mm->mm_rb;
331 int i = 0, j, bug = 0;
332 struct rb_node *nd, *pn = NULL;
333 unsigned long prev = 0, pend = 0;
334
335 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
336 struct vm_area_struct *vma;
337 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
338 if (vma->vm_start < prev) {
339 pr_emerg("vm_start %lx < prev %lx\n",
340 vma->vm_start, prev);
341 bug = 1;
342 }
343 if (vma->vm_start < pend) {
344 pr_emerg("vm_start %lx < pend %lx\n",
345 vma->vm_start, pend);
346 bug = 1;
347 }
348 if (vma->vm_start > vma->vm_end) {
349 pr_emerg("vm_start %lx > vm_end %lx\n",
350 vma->vm_start, vma->vm_end);
351 bug = 1;
352 }
353 spin_lock(&mm->page_table_lock);
354 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
355 pr_emerg("free gap %lx, correct %lx\n",
356 vma->rb_subtree_gap,
357 vma_compute_subtree_gap(vma));
358 bug = 1;
359 }
360 spin_unlock(&mm->page_table_lock);
361 i++;
362 pn = nd;
363 prev = vma->vm_start;
364 pend = vma->vm_end;
365 }
366 j = 0;
367 for (nd = pn; nd; nd = rb_prev(nd))
368 j++;
369 if (i != j) {
370 pr_emerg("backwards %d, forwards %d\n", j, i);
371 bug = 1;
372 }
373 return bug ? -1 : i;
374 }
375
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)376 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
377 {
378 struct rb_node *nd;
379
380 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
381 struct vm_area_struct *vma;
382 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
383 VM_BUG_ON_VMA(vma != ignore &&
384 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
385 vma);
386 }
387 }
388
validate_mm(struct mm_struct * mm)389 static void validate_mm(struct mm_struct *mm)
390 {
391 int bug = 0;
392 int i = 0;
393 unsigned long highest_address = 0;
394 struct vm_area_struct *vma = mm->mmap;
395
396 while (vma) {
397 struct anon_vma *anon_vma = vma->anon_vma;
398 struct anon_vma_chain *avc;
399
400 if (anon_vma) {
401 anon_vma_lock_read(anon_vma);
402 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
403 anon_vma_interval_tree_verify(avc);
404 anon_vma_unlock_read(anon_vma);
405 }
406
407 highest_address = vm_end_gap(vma);
408 vma = vma->vm_next;
409 i++;
410 }
411 if (i != mm->map_count) {
412 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
413 bug = 1;
414 }
415 if (highest_address != mm->highest_vm_end) {
416 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
417 mm->highest_vm_end, highest_address);
418 bug = 1;
419 }
420 i = browse_rb(mm);
421 if (i != mm->map_count) {
422 if (i != -1)
423 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
424 bug = 1;
425 }
426 VM_BUG_ON_MM(bug, mm);
427 }
428 #else
429 #define validate_mm_rb(root, ignore) do { } while (0)
430 #define validate_mm(mm) do { } while (0)
431 #endif
432
RB_DECLARE_CALLBACKS_MAX(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_gap)433 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
434 struct vm_area_struct, vm_rb,
435 unsigned long, rb_subtree_gap, vma_compute_gap)
436
437 /*
438 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
439 * vma->vm_prev->vm_end values changed, without modifying the vma's position
440 * in the rbtree.
441 */
442 static void vma_gap_update(struct vm_area_struct *vma)
443 {
444 /*
445 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
446 * a callback function that does exactly what we want.
447 */
448 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
449 }
450
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)451 static inline void vma_rb_insert(struct vm_area_struct *vma,
452 struct rb_root *root)
453 {
454 /* All rb_subtree_gap values must be consistent prior to insertion */
455 validate_mm_rb(root, NULL);
456
457 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
458 }
459
__vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)460 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
461 {
462 /*
463 * Note rb_erase_augmented is a fairly large inline function,
464 * so make sure we instantiate it only once with our desired
465 * augmented rbtree callbacks.
466 */
467 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
468 }
469
vma_rb_erase_ignore(struct vm_area_struct * vma,struct rb_root * root,struct vm_area_struct * ignore)470 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
471 struct rb_root *root,
472 struct vm_area_struct *ignore)
473 {
474 /*
475 * All rb_subtree_gap values must be consistent prior to erase,
476 * with the possible exception of the "next" vma being erased if
477 * next->vm_start was reduced.
478 */
479 validate_mm_rb(root, ignore);
480
481 __vma_rb_erase(vma, root);
482 }
483
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)484 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
485 struct rb_root *root)
486 {
487 /*
488 * All rb_subtree_gap values must be consistent prior to erase,
489 * with the possible exception of the vma being erased.
490 */
491 validate_mm_rb(root, vma);
492
493 __vma_rb_erase(vma, root);
494 }
495
496 /*
497 * vma has some anon_vma assigned, and is already inserted on that
498 * anon_vma's interval trees.
499 *
500 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
501 * vma must be removed from the anon_vma's interval trees using
502 * anon_vma_interval_tree_pre_update_vma().
503 *
504 * After the update, the vma will be reinserted using
505 * anon_vma_interval_tree_post_update_vma().
506 *
507 * The entire update must be protected by exclusive mmap_sem and by
508 * the root anon_vma's mutex.
509 */
510 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)511 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
512 {
513 struct anon_vma_chain *avc;
514
515 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
516 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
517 }
518
519 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)520 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
521 {
522 struct anon_vma_chain *avc;
523
524 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
525 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
526 }
527
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)528 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
529 unsigned long end, struct vm_area_struct **pprev,
530 struct rb_node ***rb_link, struct rb_node **rb_parent)
531 {
532 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
533
534 __rb_link = &mm->mm_rb.rb_node;
535 rb_prev = __rb_parent = NULL;
536
537 while (*__rb_link) {
538 struct vm_area_struct *vma_tmp;
539
540 __rb_parent = *__rb_link;
541 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
542
543 if (vma_tmp->vm_end > addr) {
544 /* Fail if an existing vma overlaps the area */
545 if (vma_tmp->vm_start < end)
546 return -ENOMEM;
547 __rb_link = &__rb_parent->rb_left;
548 } else {
549 rb_prev = __rb_parent;
550 __rb_link = &__rb_parent->rb_right;
551 }
552 }
553
554 *pprev = NULL;
555 if (rb_prev)
556 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
557 *rb_link = __rb_link;
558 *rb_parent = __rb_parent;
559 return 0;
560 }
561
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)562 static unsigned long count_vma_pages_range(struct mm_struct *mm,
563 unsigned long addr, unsigned long end)
564 {
565 unsigned long nr_pages = 0;
566 struct vm_area_struct *vma;
567
568 /* Find first overlaping mapping */
569 vma = find_vma_intersection(mm, addr, end);
570 if (!vma)
571 return 0;
572
573 nr_pages = (min(end, vma->vm_end) -
574 max(addr, vma->vm_start)) >> PAGE_SHIFT;
575
576 /* Iterate over the rest of the overlaps */
577 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
578 unsigned long overlap_len;
579
580 if (vma->vm_start > end)
581 break;
582
583 overlap_len = min(end, vma->vm_end) - vma->vm_start;
584 nr_pages += overlap_len >> PAGE_SHIFT;
585 }
586
587 return nr_pages;
588 }
589
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)590 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
591 struct rb_node **rb_link, struct rb_node *rb_parent)
592 {
593 /* Update tracking information for the gap following the new vma. */
594 if (vma->vm_next)
595 vma_gap_update(vma->vm_next);
596 else
597 mm->highest_vm_end = vm_end_gap(vma);
598
599 /*
600 * vma->vm_prev wasn't known when we followed the rbtree to find the
601 * correct insertion point for that vma. As a result, we could not
602 * update the vma vm_rb parents rb_subtree_gap values on the way down.
603 * So, we first insert the vma with a zero rb_subtree_gap value
604 * (to be consistent with what we did on the way down), and then
605 * immediately update the gap to the correct value. Finally we
606 * rebalance the rbtree after all augmented values have been set.
607 */
608 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
609 vma->rb_subtree_gap = 0;
610 vma_gap_update(vma);
611 vma_rb_insert(vma, &mm->mm_rb);
612 }
613
__vma_link_file(struct vm_area_struct * vma)614 static void __vma_link_file(struct vm_area_struct *vma)
615 {
616 struct file *file;
617
618 file = vma->vm_file;
619 if (file) {
620 struct address_space *mapping = file->f_mapping;
621
622 if (vma->vm_flags & VM_DENYWRITE)
623 atomic_dec(&file_inode(file)->i_writecount);
624 if (vma->vm_flags & VM_SHARED)
625 atomic_inc(&mapping->i_mmap_writable);
626
627 flush_dcache_mmap_lock(mapping);
628 vma_interval_tree_insert(vma, &mapping->i_mmap);
629 flush_dcache_mmap_unlock(mapping);
630 }
631 }
632
633 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)634 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
635 struct vm_area_struct *prev, struct rb_node **rb_link,
636 struct rb_node *rb_parent)
637 {
638 __vma_link_list(mm, vma, prev, rb_parent);
639 __vma_link_rb(mm, vma, rb_link, rb_parent);
640 }
641
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)642 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
643 struct vm_area_struct *prev, struct rb_node **rb_link,
644 struct rb_node *rb_parent)
645 {
646 struct address_space *mapping = NULL;
647
648 if (vma->vm_file) {
649 mapping = vma->vm_file->f_mapping;
650 i_mmap_lock_write(mapping);
651 }
652
653 __vma_link(mm, vma, prev, rb_link, rb_parent);
654 __vma_link_file(vma);
655
656 if (mapping)
657 i_mmap_unlock_write(mapping);
658
659 mm->map_count++;
660 validate_mm(mm);
661 }
662
663 /*
664 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
665 * mm's list and rbtree. It has already been inserted into the interval tree.
666 */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)667 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
668 {
669 struct vm_area_struct *prev;
670 struct rb_node **rb_link, *rb_parent;
671
672 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
673 &prev, &rb_link, &rb_parent))
674 BUG();
675 __vma_link(mm, vma, prev, rb_link, rb_parent);
676 mm->map_count++;
677 }
678
__vma_unlink_common(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,bool has_prev,struct vm_area_struct * ignore)679 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
680 struct vm_area_struct *vma,
681 struct vm_area_struct *prev,
682 bool has_prev,
683 struct vm_area_struct *ignore)
684 {
685 struct vm_area_struct *next;
686
687 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
688 next = vma->vm_next;
689 if (has_prev)
690 prev->vm_next = next;
691 else {
692 prev = vma->vm_prev;
693 if (prev)
694 prev->vm_next = next;
695 else
696 mm->mmap = next;
697 }
698 if (next)
699 next->vm_prev = prev;
700
701 /* Kill the cache */
702 vmacache_invalidate(mm);
703 }
704
__vma_unlink_prev(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)705 static inline void __vma_unlink_prev(struct mm_struct *mm,
706 struct vm_area_struct *vma,
707 struct vm_area_struct *prev)
708 {
709 __vma_unlink_common(mm, vma, prev, true, vma);
710 }
711
712 /*
713 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
714 * is already present in an i_mmap tree without adjusting the tree.
715 * The following helper function should be used when such adjustments
716 * are necessary. The "insert" vma (if any) is to be inserted
717 * before we drop the necessary locks.
718 */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand)719 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
720 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
721 struct vm_area_struct *expand)
722 {
723 struct mm_struct *mm = vma->vm_mm;
724 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
725 struct address_space *mapping = NULL;
726 struct rb_root_cached *root = NULL;
727 struct anon_vma *anon_vma = NULL;
728 struct file *file = vma->vm_file;
729 bool start_changed = false, end_changed = false;
730 long adjust_next = 0;
731 int remove_next = 0;
732
733 if (next && !insert) {
734 struct vm_area_struct *exporter = NULL, *importer = NULL;
735
736 if (end >= next->vm_end) {
737 /*
738 * vma expands, overlapping all the next, and
739 * perhaps the one after too (mprotect case 6).
740 * The only other cases that gets here are
741 * case 1, case 7 and case 8.
742 */
743 if (next == expand) {
744 /*
745 * The only case where we don't expand "vma"
746 * and we expand "next" instead is case 8.
747 */
748 VM_WARN_ON(end != next->vm_end);
749 /*
750 * remove_next == 3 means we're
751 * removing "vma" and that to do so we
752 * swapped "vma" and "next".
753 */
754 remove_next = 3;
755 VM_WARN_ON(file != next->vm_file);
756 swap(vma, next);
757 } else {
758 VM_WARN_ON(expand != vma);
759 /*
760 * case 1, 6, 7, remove_next == 2 is case 6,
761 * remove_next == 1 is case 1 or 7.
762 */
763 remove_next = 1 + (end > next->vm_end);
764 VM_WARN_ON(remove_next == 2 &&
765 end != next->vm_next->vm_end);
766 VM_WARN_ON(remove_next == 1 &&
767 end != next->vm_end);
768 /* trim end to next, for case 6 first pass */
769 end = next->vm_end;
770 }
771
772 exporter = next;
773 importer = vma;
774
775 /*
776 * If next doesn't have anon_vma, import from vma after
777 * next, if the vma overlaps with it.
778 */
779 if (remove_next == 2 && !next->anon_vma)
780 exporter = next->vm_next;
781
782 } else if (end > next->vm_start) {
783 /*
784 * vma expands, overlapping part of the next:
785 * mprotect case 5 shifting the boundary up.
786 */
787 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
788 exporter = next;
789 importer = vma;
790 VM_WARN_ON(expand != importer);
791 } else if (end < vma->vm_end) {
792 /*
793 * vma shrinks, and !insert tells it's not
794 * split_vma inserting another: so it must be
795 * mprotect case 4 shifting the boundary down.
796 */
797 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
798 exporter = vma;
799 importer = next;
800 VM_WARN_ON(expand != importer);
801 }
802
803 /*
804 * Easily overlooked: when mprotect shifts the boundary,
805 * make sure the expanding vma has anon_vma set if the
806 * shrinking vma had, to cover any anon pages imported.
807 */
808 if (exporter && exporter->anon_vma && !importer->anon_vma) {
809 int error;
810
811 importer->anon_vma = exporter->anon_vma;
812 error = anon_vma_clone(importer, exporter);
813 if (error)
814 return error;
815 }
816 }
817 again:
818 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
819
820 if (file) {
821 mapping = file->f_mapping;
822 root = &mapping->i_mmap;
823 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
824
825 if (adjust_next)
826 uprobe_munmap(next, next->vm_start, next->vm_end);
827
828 i_mmap_lock_write(mapping);
829 if (insert) {
830 /*
831 * Put into interval tree now, so instantiated pages
832 * are visible to arm/parisc __flush_dcache_page
833 * throughout; but we cannot insert into address
834 * space until vma start or end is updated.
835 */
836 __vma_link_file(insert);
837 }
838 }
839
840 anon_vma = vma->anon_vma;
841 if (!anon_vma && adjust_next)
842 anon_vma = next->anon_vma;
843 if (anon_vma) {
844 VM_WARN_ON(adjust_next && next->anon_vma &&
845 anon_vma != next->anon_vma);
846 anon_vma_lock_write(anon_vma);
847 anon_vma_interval_tree_pre_update_vma(vma);
848 if (adjust_next)
849 anon_vma_interval_tree_pre_update_vma(next);
850 }
851
852 if (root) {
853 flush_dcache_mmap_lock(mapping);
854 vma_interval_tree_remove(vma, root);
855 if (adjust_next)
856 vma_interval_tree_remove(next, root);
857 }
858
859 if (start != vma->vm_start) {
860 vma->vm_start = start;
861 start_changed = true;
862 }
863 if (end != vma->vm_end) {
864 vma->vm_end = end;
865 end_changed = true;
866 }
867 vma->vm_pgoff = pgoff;
868 if (adjust_next) {
869 next->vm_start += adjust_next << PAGE_SHIFT;
870 next->vm_pgoff += adjust_next;
871 }
872
873 if (root) {
874 if (adjust_next)
875 vma_interval_tree_insert(next, root);
876 vma_interval_tree_insert(vma, root);
877 flush_dcache_mmap_unlock(mapping);
878 }
879
880 if (remove_next) {
881 /*
882 * vma_merge has merged next into vma, and needs
883 * us to remove next before dropping the locks.
884 */
885 if (remove_next != 3)
886 __vma_unlink_prev(mm, next, vma);
887 else
888 /*
889 * vma is not before next if they've been
890 * swapped.
891 *
892 * pre-swap() next->vm_start was reduced so
893 * tell validate_mm_rb to ignore pre-swap()
894 * "next" (which is stored in post-swap()
895 * "vma").
896 */
897 __vma_unlink_common(mm, next, NULL, false, vma);
898 if (file)
899 __remove_shared_vm_struct(next, file, mapping);
900 } else if (insert) {
901 /*
902 * split_vma has split insert from vma, and needs
903 * us to insert it before dropping the locks
904 * (it may either follow vma or precede it).
905 */
906 __insert_vm_struct(mm, insert);
907 } else {
908 if (start_changed)
909 vma_gap_update(vma);
910 if (end_changed) {
911 if (!next)
912 mm->highest_vm_end = vm_end_gap(vma);
913 else if (!adjust_next)
914 vma_gap_update(next);
915 }
916 }
917
918 if (anon_vma) {
919 anon_vma_interval_tree_post_update_vma(vma);
920 if (adjust_next)
921 anon_vma_interval_tree_post_update_vma(next);
922 anon_vma_unlock_write(anon_vma);
923 }
924 if (mapping)
925 i_mmap_unlock_write(mapping);
926
927 if (root) {
928 uprobe_mmap(vma);
929
930 if (adjust_next)
931 uprobe_mmap(next);
932 }
933
934 if (remove_next) {
935 if (file) {
936 uprobe_munmap(next, next->vm_start, next->vm_end);
937 fput(file);
938 }
939 if (next->anon_vma)
940 anon_vma_merge(vma, next);
941 mm->map_count--;
942 mpol_put(vma_policy(next));
943 vm_area_free(next);
944 /*
945 * In mprotect's case 6 (see comments on vma_merge),
946 * we must remove another next too. It would clutter
947 * up the code too much to do both in one go.
948 */
949 if (remove_next != 3) {
950 /*
951 * If "next" was removed and vma->vm_end was
952 * expanded (up) over it, in turn
953 * "next->vm_prev->vm_end" changed and the
954 * "vma->vm_next" gap must be updated.
955 */
956 next = vma->vm_next;
957 } else {
958 /*
959 * For the scope of the comment "next" and
960 * "vma" considered pre-swap(): if "vma" was
961 * removed, next->vm_start was expanded (down)
962 * over it and the "next" gap must be updated.
963 * Because of the swap() the post-swap() "vma"
964 * actually points to pre-swap() "next"
965 * (post-swap() "next" as opposed is now a
966 * dangling pointer).
967 */
968 next = vma;
969 }
970 if (remove_next == 2) {
971 remove_next = 1;
972 end = next->vm_end;
973 goto again;
974 }
975 else if (next)
976 vma_gap_update(next);
977 else {
978 /*
979 * If remove_next == 2 we obviously can't
980 * reach this path.
981 *
982 * If remove_next == 3 we can't reach this
983 * path because pre-swap() next is always not
984 * NULL. pre-swap() "next" is not being
985 * removed and its next->vm_end is not altered
986 * (and furthermore "end" already matches
987 * next->vm_end in remove_next == 3).
988 *
989 * We reach this only in the remove_next == 1
990 * case if the "next" vma that was removed was
991 * the highest vma of the mm. However in such
992 * case next->vm_end == "end" and the extended
993 * "vma" has vma->vm_end == next->vm_end so
994 * mm->highest_vm_end doesn't need any update
995 * in remove_next == 1 case.
996 */
997 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
998 }
999 }
1000 if (insert && file)
1001 uprobe_mmap(insert);
1002
1003 validate_mm(mm);
1004
1005 return 0;
1006 }
1007
1008 /*
1009 * If the vma has a ->close operation then the driver probably needs to release
1010 * per-vma resources, so we don't attempt to merge those.
1011 */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)1012 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1013 struct file *file, unsigned long vm_flags,
1014 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1015 const char __user *anon_name)
1016 {
1017 /*
1018 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1019 * match the flags but dirty bit -- the caller should mark
1020 * merged VMA as dirty. If dirty bit won't be excluded from
1021 * comparison, we increase pressure on the memory system forcing
1022 * the kernel to generate new VMAs when old one could be
1023 * extended instead.
1024 */
1025 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1026 return 0;
1027 if (vma->vm_file != file)
1028 return 0;
1029 if (vma->vm_ops && vma->vm_ops->close)
1030 return 0;
1031 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1032 return 0;
1033 if (vma_get_anon_name(vma) != anon_name)
1034 return 0;
1035 return 1;
1036 }
1037
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)1038 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1039 struct anon_vma *anon_vma2,
1040 struct vm_area_struct *vma)
1041 {
1042 /*
1043 * The list_is_singular() test is to avoid merging VMA cloned from
1044 * parents. This can improve scalability caused by anon_vma lock.
1045 */
1046 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1047 list_is_singular(&vma->anon_vma_chain)))
1048 return 1;
1049 return anon_vma1 == anon_vma2;
1050 }
1051
1052 /*
1053 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1054 * in front of (at a lower virtual address and file offset than) the vma.
1055 *
1056 * We cannot merge two vmas if they have differently assigned (non-NULL)
1057 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1058 *
1059 * We don't check here for the merged mmap wrapping around the end of pagecache
1060 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1061 * wrap, nor mmaps which cover the final page at index -1UL.
1062 */
1063 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)1064 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1065 struct anon_vma *anon_vma, struct file *file,
1066 pgoff_t vm_pgoff,
1067 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1068 const char __user *anon_name)
1069 {
1070 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1071 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1072 if (vma->vm_pgoff == vm_pgoff)
1073 return 1;
1074 }
1075 return 0;
1076 }
1077
1078 /*
1079 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1080 * beyond (at a higher virtual address and file offset than) the vma.
1081 *
1082 * We cannot merge two vmas if they have differently assigned (non-NULL)
1083 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1084 */
1085 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)1086 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1087 struct anon_vma *anon_vma, struct file *file,
1088 pgoff_t vm_pgoff,
1089 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1090 const char __user *anon_name)
1091 {
1092 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1093 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1094 pgoff_t vm_pglen;
1095 vm_pglen = vma_pages(vma);
1096 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1097 return 1;
1098 }
1099 return 0;
1100 }
1101
1102 /*
1103 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1104 * figure out whether that can be merged with its predecessor or its
1105 * successor. Or both (it neatly fills a hole).
1106 *
1107 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1108 * certain not to be mapped by the time vma_merge is called; but when
1109 * called for mprotect, it is certain to be already mapped (either at
1110 * an offset within prev, or at the start of next), and the flags of
1111 * this area are about to be changed to vm_flags - and the no-change
1112 * case has already been eliminated.
1113 *
1114 * The following mprotect cases have to be considered, where AAAA is
1115 * the area passed down from mprotect_fixup, never extending beyond one
1116 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1117 *
1118 * AAAA AAAA AAAA AAAA
1119 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1120 * cannot merge might become might become might become
1121 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1122 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1123 * mremap move: PPPPXXXXXXXX 8
1124 * AAAA
1125 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1126 * might become case 1 below case 2 below case 3 below
1127 *
1128 * It is important for case 8 that the vma NNNN overlapping the
1129 * region AAAA is never going to extended over XXXX. Instead XXXX must
1130 * be extended in region AAAA and NNNN must be removed. This way in
1131 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1132 * rmap_locks, the properties of the merged vma will be already
1133 * correct for the whole merged range. Some of those properties like
1134 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1135 * be correct for the whole merged range immediately after the
1136 * rmap_locks are released. Otherwise if XXXX would be removed and
1137 * NNNN would be extended over the XXXX range, remove_migration_ptes
1138 * or other rmap walkers (if working on addresses beyond the "end"
1139 * parameter) may establish ptes with the wrong permissions of NNNN
1140 * instead of the right permissions of XXXX.
1141 */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)1142 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1143 struct vm_area_struct *prev, unsigned long addr,
1144 unsigned long end, unsigned long vm_flags,
1145 struct anon_vma *anon_vma, struct file *file,
1146 pgoff_t pgoff, struct mempolicy *policy,
1147 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1148 const char __user *anon_name)
1149 {
1150 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1151 struct vm_area_struct *area, *next;
1152 int err;
1153
1154 /*
1155 * We later require that vma->vm_flags == vm_flags,
1156 * so this tests vma->vm_flags & VM_SPECIAL, too.
1157 */
1158 if (vm_flags & VM_SPECIAL)
1159 return NULL;
1160
1161 if (prev)
1162 next = prev->vm_next;
1163 else
1164 next = mm->mmap;
1165 area = next;
1166 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1167 next = next->vm_next;
1168
1169 /* verify some invariant that must be enforced by the caller */
1170 VM_WARN_ON(prev && addr <= prev->vm_start);
1171 VM_WARN_ON(area && end > area->vm_end);
1172 VM_WARN_ON(addr >= end);
1173
1174 /*
1175 * Can it merge with the predecessor?
1176 */
1177 if (prev && prev->vm_end == addr &&
1178 mpol_equal(vma_policy(prev), policy) &&
1179 can_vma_merge_after(prev, vm_flags,
1180 anon_vma, file, pgoff,
1181 vm_userfaultfd_ctx,
1182 anon_name)) {
1183 /*
1184 * OK, it can. Can we now merge in the successor as well?
1185 */
1186 if (next && end == next->vm_start &&
1187 mpol_equal(policy, vma_policy(next)) &&
1188 can_vma_merge_before(next, vm_flags,
1189 anon_vma, file,
1190 pgoff+pglen,
1191 vm_userfaultfd_ctx,
1192 anon_name) &&
1193 is_mergeable_anon_vma(prev->anon_vma,
1194 next->anon_vma, NULL)) {
1195 /* cases 1, 6 */
1196 err = __vma_adjust(prev, prev->vm_start,
1197 next->vm_end, prev->vm_pgoff, NULL,
1198 prev);
1199 } else /* cases 2, 5, 7 */
1200 err = __vma_adjust(prev, prev->vm_start,
1201 end, prev->vm_pgoff, NULL, prev);
1202 if (err)
1203 return NULL;
1204 khugepaged_enter_vma_merge(prev, vm_flags);
1205 return prev;
1206 }
1207
1208 /*
1209 * Can this new request be merged in front of next?
1210 */
1211 if (next && end == next->vm_start &&
1212 mpol_equal(policy, vma_policy(next)) &&
1213 can_vma_merge_before(next, vm_flags,
1214 anon_vma, file, pgoff+pglen,
1215 vm_userfaultfd_ctx,
1216 anon_name)) {
1217 if (prev && addr < prev->vm_end) /* case 4 */
1218 err = __vma_adjust(prev, prev->vm_start,
1219 addr, prev->vm_pgoff, NULL, next);
1220 else { /* cases 3, 8 */
1221 err = __vma_adjust(area, addr, next->vm_end,
1222 next->vm_pgoff - pglen, NULL, next);
1223 /*
1224 * In case 3 area is already equal to next and
1225 * this is a noop, but in case 8 "area" has
1226 * been removed and next was expanded over it.
1227 */
1228 area = next;
1229 }
1230 if (err)
1231 return NULL;
1232 khugepaged_enter_vma_merge(area, vm_flags);
1233 return area;
1234 }
1235
1236 return NULL;
1237 }
1238
1239 /*
1240 * Rough compatbility check to quickly see if it's even worth looking
1241 * at sharing an anon_vma.
1242 *
1243 * They need to have the same vm_file, and the flags can only differ
1244 * in things that mprotect may change.
1245 *
1246 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1247 * we can merge the two vma's. For example, we refuse to merge a vma if
1248 * there is a vm_ops->close() function, because that indicates that the
1249 * driver is doing some kind of reference counting. But that doesn't
1250 * really matter for the anon_vma sharing case.
1251 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1252 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1253 {
1254 return a->vm_end == b->vm_start &&
1255 mpol_equal(vma_policy(a), vma_policy(b)) &&
1256 a->vm_file == b->vm_file &&
1257 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1258 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1259 }
1260
1261 /*
1262 * Do some basic sanity checking to see if we can re-use the anon_vma
1263 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1264 * the same as 'old', the other will be the new one that is trying
1265 * to share the anon_vma.
1266 *
1267 * NOTE! This runs with mm_sem held for reading, so it is possible that
1268 * the anon_vma of 'old' is concurrently in the process of being set up
1269 * by another page fault trying to merge _that_. But that's ok: if it
1270 * is being set up, that automatically means that it will be a singleton
1271 * acceptable for merging, so we can do all of this optimistically. But
1272 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1273 *
1274 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1275 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1276 * is to return an anon_vma that is "complex" due to having gone through
1277 * a fork).
1278 *
1279 * We also make sure that the two vma's are compatible (adjacent,
1280 * and with the same memory policies). That's all stable, even with just
1281 * a read lock on the mm_sem.
1282 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1283 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1284 {
1285 if (anon_vma_compatible(a, b)) {
1286 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1287
1288 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1289 return anon_vma;
1290 }
1291 return NULL;
1292 }
1293
1294 /*
1295 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1296 * neighbouring vmas for a suitable anon_vma, before it goes off
1297 * to allocate a new anon_vma. It checks because a repetitive
1298 * sequence of mprotects and faults may otherwise lead to distinct
1299 * anon_vmas being allocated, preventing vma merge in subsequent
1300 * mprotect.
1301 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1302 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1303 {
1304 struct anon_vma *anon_vma;
1305 struct vm_area_struct *near;
1306
1307 near = vma->vm_next;
1308 if (!near)
1309 goto try_prev;
1310
1311 anon_vma = reusable_anon_vma(near, vma, near);
1312 if (anon_vma)
1313 return anon_vma;
1314 try_prev:
1315 near = vma->vm_prev;
1316 if (!near)
1317 goto none;
1318
1319 anon_vma = reusable_anon_vma(near, near, vma);
1320 if (anon_vma)
1321 return anon_vma;
1322 none:
1323 /*
1324 * There's no absolute need to look only at touching neighbours:
1325 * we could search further afield for "compatible" anon_vmas.
1326 * But it would probably just be a waste of time searching,
1327 * or lead to too many vmas hanging off the same anon_vma.
1328 * We're trying to allow mprotect remerging later on,
1329 * not trying to minimize memory used for anon_vmas.
1330 */
1331 return NULL;
1332 }
1333
1334 /*
1335 * If a hint addr is less than mmap_min_addr change hint to be as
1336 * low as possible but still greater than mmap_min_addr
1337 */
round_hint_to_min(unsigned long hint)1338 static inline unsigned long round_hint_to_min(unsigned long hint)
1339 {
1340 hint &= PAGE_MASK;
1341 if (((void *)hint != NULL) &&
1342 (hint < mmap_min_addr))
1343 return PAGE_ALIGN(mmap_min_addr);
1344 return hint;
1345 }
1346
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1347 static inline int mlock_future_check(struct mm_struct *mm,
1348 unsigned long flags,
1349 unsigned long len)
1350 {
1351 unsigned long locked, lock_limit;
1352
1353 /* mlock MCL_FUTURE? */
1354 if (flags & VM_LOCKED) {
1355 locked = len >> PAGE_SHIFT;
1356 locked += mm->locked_vm;
1357 lock_limit = rlimit(RLIMIT_MEMLOCK);
1358 lock_limit >>= PAGE_SHIFT;
1359 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1360 return -EAGAIN;
1361 }
1362 return 0;
1363 }
1364
file_mmap_size_max(struct file * file,struct inode * inode)1365 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1366 {
1367 if (S_ISREG(inode->i_mode))
1368 return MAX_LFS_FILESIZE;
1369
1370 if (S_ISBLK(inode->i_mode))
1371 return MAX_LFS_FILESIZE;
1372
1373 if (S_ISSOCK(inode->i_mode))
1374 return MAX_LFS_FILESIZE;
1375
1376 /* Special "we do even unsigned file positions" case */
1377 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1378 return 0;
1379
1380 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1381 return ULONG_MAX;
1382 }
1383
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1384 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1385 unsigned long pgoff, unsigned long len)
1386 {
1387 u64 maxsize = file_mmap_size_max(file, inode);
1388
1389 if (maxsize && len > maxsize)
1390 return false;
1391 maxsize -= len;
1392 if (pgoff > maxsize >> PAGE_SHIFT)
1393 return false;
1394 return true;
1395 }
1396
1397 /*
1398 * The caller must hold down_write(¤t->mm->mmap_sem).
1399 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1400 unsigned long do_mmap(struct file *file, unsigned long addr,
1401 unsigned long len, unsigned long prot,
1402 unsigned long flags, vm_flags_t vm_flags,
1403 unsigned long pgoff, unsigned long *populate,
1404 struct list_head *uf)
1405 {
1406 struct mm_struct *mm = current->mm;
1407 int pkey = 0;
1408
1409 *populate = 0;
1410
1411 if (!len)
1412 return -EINVAL;
1413
1414 /*
1415 * Does the application expect PROT_READ to imply PROT_EXEC?
1416 *
1417 * (the exception is when the underlying filesystem is noexec
1418 * mounted, in which case we dont add PROT_EXEC.)
1419 */
1420 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1421 if (!(file && path_noexec(&file->f_path)))
1422 prot |= PROT_EXEC;
1423
1424 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1425 if (flags & MAP_FIXED_NOREPLACE)
1426 flags |= MAP_FIXED;
1427
1428 if (!(flags & MAP_FIXED))
1429 addr = round_hint_to_min(addr);
1430
1431 /* Careful about overflows.. */
1432 len = PAGE_ALIGN(len);
1433 if (!len)
1434 return -ENOMEM;
1435
1436 /* offset overflow? */
1437 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1438 return -EOVERFLOW;
1439
1440 /* Too many mappings? */
1441 if (mm->map_count > sysctl_max_map_count)
1442 return -ENOMEM;
1443
1444 /* Obtain the address to map to. we verify (or select) it and ensure
1445 * that it represents a valid section of the address space.
1446 */
1447 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1448 if (offset_in_page(addr))
1449 return addr;
1450
1451 if (flags & MAP_FIXED_NOREPLACE) {
1452 struct vm_area_struct *vma = find_vma(mm, addr);
1453
1454 if (vma && vma->vm_start < addr + len)
1455 return -EEXIST;
1456 }
1457
1458 if (prot == PROT_EXEC) {
1459 pkey = execute_only_pkey(mm);
1460 if (pkey < 0)
1461 pkey = 0;
1462 }
1463
1464 /* Do simple checking here so the lower-level routines won't have
1465 * to. we assume access permissions have been handled by the open
1466 * of the memory object, so we don't do any here.
1467 */
1468 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1469 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1470
1471 if (flags & MAP_LOCKED)
1472 if (!can_do_mlock())
1473 return -EPERM;
1474
1475 if (mlock_future_check(mm, vm_flags, len))
1476 return -EAGAIN;
1477
1478 if (file) {
1479 struct inode *inode = file_inode(file);
1480 unsigned long flags_mask;
1481
1482 if (!file_mmap_ok(file, inode, pgoff, len))
1483 return -EOVERFLOW;
1484
1485 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1486
1487 switch (flags & MAP_TYPE) {
1488 case MAP_SHARED:
1489 /*
1490 * Force use of MAP_SHARED_VALIDATE with non-legacy
1491 * flags. E.g. MAP_SYNC is dangerous to use with
1492 * MAP_SHARED as you don't know which consistency model
1493 * you will get. We silently ignore unsupported flags
1494 * with MAP_SHARED to preserve backward compatibility.
1495 */
1496 flags &= LEGACY_MAP_MASK;
1497 /* fall through */
1498 case MAP_SHARED_VALIDATE:
1499 if (flags & ~flags_mask)
1500 return -EOPNOTSUPP;
1501 if (prot & PROT_WRITE) {
1502 if (!(file->f_mode & FMODE_WRITE))
1503 return -EACCES;
1504 if (IS_SWAPFILE(file->f_mapping->host))
1505 return -ETXTBSY;
1506 }
1507
1508 /*
1509 * Make sure we don't allow writing to an append-only
1510 * file..
1511 */
1512 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1513 return -EACCES;
1514
1515 /*
1516 * Make sure there are no mandatory locks on the file.
1517 */
1518 if (locks_verify_locked(file))
1519 return -EAGAIN;
1520
1521 vm_flags |= VM_SHARED | VM_MAYSHARE;
1522 if (!(file->f_mode & FMODE_WRITE))
1523 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1524
1525 /* fall through */
1526 case MAP_PRIVATE:
1527 if (!(file->f_mode & FMODE_READ))
1528 return -EACCES;
1529 if (path_noexec(&file->f_path)) {
1530 if (vm_flags & VM_EXEC)
1531 return -EPERM;
1532 vm_flags &= ~VM_MAYEXEC;
1533 }
1534
1535 if (!file->f_op->mmap)
1536 return -ENODEV;
1537 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1538 return -EINVAL;
1539 break;
1540
1541 default:
1542 return -EINVAL;
1543 }
1544 } else {
1545 switch (flags & MAP_TYPE) {
1546 case MAP_SHARED:
1547 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1548 return -EINVAL;
1549 /*
1550 * Ignore pgoff.
1551 */
1552 pgoff = 0;
1553 vm_flags |= VM_SHARED | VM_MAYSHARE;
1554 break;
1555 case MAP_PRIVATE:
1556 /*
1557 * Set pgoff according to addr for anon_vma.
1558 */
1559 pgoff = addr >> PAGE_SHIFT;
1560 break;
1561 default:
1562 return -EINVAL;
1563 }
1564 }
1565
1566 /*
1567 * Set 'VM_NORESERVE' if we should not account for the
1568 * memory use of this mapping.
1569 */
1570 if (flags & MAP_NORESERVE) {
1571 /* We honor MAP_NORESERVE if allowed to overcommit */
1572 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1573 vm_flags |= VM_NORESERVE;
1574
1575 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1576 if (file && is_file_hugepages(file))
1577 vm_flags |= VM_NORESERVE;
1578 }
1579
1580 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1581 if (!IS_ERR_VALUE(addr) &&
1582 ((vm_flags & VM_LOCKED) ||
1583 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1584 *populate = len;
1585 return addr;
1586 }
1587
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1588 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1589 unsigned long prot, unsigned long flags,
1590 unsigned long fd, unsigned long pgoff)
1591 {
1592 struct file *file = NULL;
1593 unsigned long retval;
1594
1595 addr = untagged_addr(addr);
1596
1597 if (!(flags & MAP_ANONYMOUS)) {
1598 audit_mmap_fd(fd, flags);
1599 file = fget(fd);
1600 if (!file)
1601 return -EBADF;
1602 if (is_file_hugepages(file))
1603 len = ALIGN(len, huge_page_size(hstate_file(file)));
1604 retval = -EINVAL;
1605 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1606 goto out_fput;
1607 } else if (flags & MAP_HUGETLB) {
1608 struct user_struct *user = NULL;
1609 struct hstate *hs;
1610
1611 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1612 if (!hs)
1613 return -EINVAL;
1614
1615 len = ALIGN(len, huge_page_size(hs));
1616 /*
1617 * VM_NORESERVE is used because the reservations will be
1618 * taken when vm_ops->mmap() is called
1619 * A dummy user value is used because we are not locking
1620 * memory so no accounting is necessary
1621 */
1622 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1623 VM_NORESERVE,
1624 &user, HUGETLB_ANONHUGE_INODE,
1625 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1626 if (IS_ERR(file))
1627 return PTR_ERR(file);
1628 }
1629
1630 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1631
1632 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1633 out_fput:
1634 if (file)
1635 fput(file);
1636 return retval;
1637 }
1638
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1639 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1640 unsigned long, prot, unsigned long, flags,
1641 unsigned long, fd, unsigned long, pgoff)
1642 {
1643 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1644 }
1645
1646 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1647 struct mmap_arg_struct {
1648 unsigned long addr;
1649 unsigned long len;
1650 unsigned long prot;
1651 unsigned long flags;
1652 unsigned long fd;
1653 unsigned long offset;
1654 };
1655
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1656 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1657 {
1658 struct mmap_arg_struct a;
1659
1660 if (copy_from_user(&a, arg, sizeof(a)))
1661 return -EFAULT;
1662 if (offset_in_page(a.offset))
1663 return -EINVAL;
1664
1665 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1666 a.offset >> PAGE_SHIFT);
1667 }
1668 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1669
1670 /*
1671 * Some shared mappings will want the pages marked read-only
1672 * to track write events. If so, we'll downgrade vm_page_prot
1673 * to the private version (using protection_map[] without the
1674 * VM_SHARED bit).
1675 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1676 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1677 {
1678 vm_flags_t vm_flags = vma->vm_flags;
1679 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1680
1681 /* If it was private or non-writable, the write bit is already clear */
1682 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1683 return 0;
1684
1685 /* The backer wishes to know when pages are first written to? */
1686 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1687 return 1;
1688
1689 /* The open routine did something to the protections that pgprot_modify
1690 * won't preserve? */
1691 if (pgprot_val(vm_page_prot) !=
1692 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1693 return 0;
1694
1695 /* Do we need to track softdirty? */
1696 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1697 return 1;
1698
1699 /* Specialty mapping? */
1700 if (vm_flags & VM_PFNMAP)
1701 return 0;
1702
1703 /* Can the mapping track the dirty pages? */
1704 return vma->vm_file && vma->vm_file->f_mapping &&
1705 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1706 }
1707
1708 /*
1709 * We account for memory if it's a private writeable mapping,
1710 * not hugepages and VM_NORESERVE wasn't set.
1711 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1712 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1713 {
1714 /*
1715 * hugetlb has its own accounting separate from the core VM
1716 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1717 */
1718 if (file && is_file_hugepages(file))
1719 return 0;
1720
1721 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1722 }
1723
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1724 unsigned long mmap_region(struct file *file, unsigned long addr,
1725 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1726 struct list_head *uf)
1727 {
1728 struct mm_struct *mm = current->mm;
1729 struct vm_area_struct *vma, *prev;
1730 int error;
1731 struct rb_node **rb_link, *rb_parent;
1732 unsigned long charged = 0;
1733
1734 /* Check against address space limit. */
1735 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1736 unsigned long nr_pages;
1737
1738 /*
1739 * MAP_FIXED may remove pages of mappings that intersects with
1740 * requested mapping. Account for the pages it would unmap.
1741 */
1742 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1743
1744 if (!may_expand_vm(mm, vm_flags,
1745 (len >> PAGE_SHIFT) - nr_pages))
1746 return -ENOMEM;
1747 }
1748
1749 /* Clear old maps */
1750 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1751 &rb_parent)) {
1752 if (do_munmap(mm, addr, len, uf))
1753 return -ENOMEM;
1754 }
1755
1756 /*
1757 * Private writable mapping: check memory availability
1758 */
1759 if (accountable_mapping(file, vm_flags)) {
1760 charged = len >> PAGE_SHIFT;
1761 if (security_vm_enough_memory_mm(mm, charged))
1762 return -ENOMEM;
1763 vm_flags |= VM_ACCOUNT;
1764 }
1765
1766 /*
1767 * Can we just expand an old mapping?
1768 */
1769 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1770 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1771 if (vma)
1772 goto out;
1773
1774 /*
1775 * Determine the object being mapped and call the appropriate
1776 * specific mapper. the address has already been validated, but
1777 * not unmapped, but the maps are removed from the list.
1778 */
1779 vma = vm_area_alloc(mm);
1780 if (!vma) {
1781 error = -ENOMEM;
1782 goto unacct_error;
1783 }
1784
1785 vma->vm_start = addr;
1786 vma->vm_end = addr + len;
1787 vma->vm_flags = vm_flags;
1788 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1789 vma->vm_pgoff = pgoff;
1790
1791 if (file) {
1792 if (vm_flags & VM_DENYWRITE) {
1793 error = deny_write_access(file);
1794 if (error)
1795 goto free_vma;
1796 }
1797 if (vm_flags & VM_SHARED) {
1798 error = mapping_map_writable(file->f_mapping);
1799 if (error)
1800 goto allow_write_and_free_vma;
1801 }
1802
1803 /* ->mmap() can change vma->vm_file, but must guarantee that
1804 * vma_link() below can deny write-access if VM_DENYWRITE is set
1805 * and map writably if VM_SHARED is set. This usually means the
1806 * new file must not have been exposed to user-space, yet.
1807 */
1808 vma->vm_file = get_file(file);
1809 error = call_mmap(file, vma);
1810 if (error)
1811 goto unmap_and_free_vma;
1812
1813 /* Can addr have changed??
1814 *
1815 * Answer: Yes, several device drivers can do it in their
1816 * f_op->mmap method. -DaveM
1817 * Bug: If addr is changed, prev, rb_link, rb_parent should
1818 * be updated for vma_link()
1819 */
1820 WARN_ON_ONCE(addr != vma->vm_start);
1821
1822 addr = vma->vm_start;
1823 vm_flags = vma->vm_flags;
1824 } else if (vm_flags & VM_SHARED) {
1825 error = shmem_zero_setup(vma);
1826 if (error)
1827 goto free_vma;
1828 } else {
1829 vma_set_anonymous(vma);
1830 }
1831
1832 vma_link(mm, vma, prev, rb_link, rb_parent);
1833 /* Once vma denies write, undo our temporary denial count */
1834 if (file) {
1835 if (vm_flags & VM_SHARED)
1836 mapping_unmap_writable(file->f_mapping);
1837 if (vm_flags & VM_DENYWRITE)
1838 allow_write_access(file);
1839 }
1840 file = vma->vm_file;
1841 out:
1842 perf_event_mmap(vma);
1843
1844 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1845 if (vm_flags & VM_LOCKED) {
1846 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1847 is_vm_hugetlb_page(vma) ||
1848 vma == get_gate_vma(current->mm))
1849 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1850 else
1851 mm->locked_vm += (len >> PAGE_SHIFT);
1852 }
1853
1854 if (file)
1855 uprobe_mmap(vma);
1856
1857 /*
1858 * New (or expanded) vma always get soft dirty status.
1859 * Otherwise user-space soft-dirty page tracker won't
1860 * be able to distinguish situation when vma area unmapped,
1861 * then new mapped in-place (which must be aimed as
1862 * a completely new data area).
1863 */
1864 vma->vm_flags |= VM_SOFTDIRTY;
1865
1866 vma_set_page_prot(vma);
1867
1868 return addr;
1869
1870 unmap_and_free_vma:
1871 vma->vm_file = NULL;
1872 fput(file);
1873
1874 /* Undo any partial mapping done by a device driver. */
1875 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1876 charged = 0;
1877 if (vm_flags & VM_SHARED)
1878 mapping_unmap_writable(file->f_mapping);
1879 allow_write_and_free_vma:
1880 if (vm_flags & VM_DENYWRITE)
1881 allow_write_access(file);
1882 free_vma:
1883 vm_area_free(vma);
1884 unacct_error:
1885 if (charged)
1886 vm_unacct_memory(charged);
1887 return error;
1888 }
1889
unmapped_area(struct vm_unmapped_area_info * info)1890 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1891 {
1892 /*
1893 * We implement the search by looking for an rbtree node that
1894 * immediately follows a suitable gap. That is,
1895 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1896 * - gap_end = vma->vm_start >= info->low_limit + length;
1897 * - gap_end - gap_start >= length
1898 */
1899
1900 struct mm_struct *mm = current->mm;
1901 struct vm_area_struct *vma;
1902 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1903
1904 /* Adjust search length to account for worst case alignment overhead */
1905 length = info->length + info->align_mask;
1906 if (length < info->length)
1907 return -ENOMEM;
1908
1909 /* Adjust search limits by the desired length */
1910 if (info->high_limit < length)
1911 return -ENOMEM;
1912 high_limit = info->high_limit - length;
1913
1914 if (info->low_limit > high_limit)
1915 return -ENOMEM;
1916 low_limit = info->low_limit + length;
1917
1918 /* Check if rbtree root looks promising */
1919 if (RB_EMPTY_ROOT(&mm->mm_rb))
1920 goto check_highest;
1921 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1922 if (vma->rb_subtree_gap < length)
1923 goto check_highest;
1924
1925 while (true) {
1926 /* Visit left subtree if it looks promising */
1927 gap_end = vm_start_gap(vma);
1928 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1929 struct vm_area_struct *left =
1930 rb_entry(vma->vm_rb.rb_left,
1931 struct vm_area_struct, vm_rb);
1932 if (left->rb_subtree_gap >= length) {
1933 vma = left;
1934 continue;
1935 }
1936 }
1937
1938 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1939 check_current:
1940 /* Check if current node has a suitable gap */
1941 if (gap_start > high_limit)
1942 return -ENOMEM;
1943 if (gap_end >= low_limit &&
1944 gap_end > gap_start && gap_end - gap_start >= length)
1945 goto found;
1946
1947 /* Visit right subtree if it looks promising */
1948 if (vma->vm_rb.rb_right) {
1949 struct vm_area_struct *right =
1950 rb_entry(vma->vm_rb.rb_right,
1951 struct vm_area_struct, vm_rb);
1952 if (right->rb_subtree_gap >= length) {
1953 vma = right;
1954 continue;
1955 }
1956 }
1957
1958 /* Go back up the rbtree to find next candidate node */
1959 while (true) {
1960 struct rb_node *prev = &vma->vm_rb;
1961 if (!rb_parent(prev))
1962 goto check_highest;
1963 vma = rb_entry(rb_parent(prev),
1964 struct vm_area_struct, vm_rb);
1965 if (prev == vma->vm_rb.rb_left) {
1966 gap_start = vm_end_gap(vma->vm_prev);
1967 gap_end = vm_start_gap(vma);
1968 goto check_current;
1969 }
1970 }
1971 }
1972
1973 check_highest:
1974 /* Check highest gap, which does not precede any rbtree node */
1975 gap_start = mm->highest_vm_end;
1976 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1977 if (gap_start > high_limit)
1978 return -ENOMEM;
1979
1980 found:
1981 /* We found a suitable gap. Clip it with the original low_limit. */
1982 if (gap_start < info->low_limit)
1983 gap_start = info->low_limit;
1984
1985 /* Adjust gap address to the desired alignment */
1986 gap_start += (info->align_offset - gap_start) & info->align_mask;
1987
1988 VM_BUG_ON(gap_start + info->length > info->high_limit);
1989 VM_BUG_ON(gap_start + info->length > gap_end);
1990 return gap_start;
1991 }
1992
unmapped_area_topdown(struct vm_unmapped_area_info * info)1993 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1994 {
1995 struct mm_struct *mm = current->mm;
1996 struct vm_area_struct *vma;
1997 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1998
1999 /* Adjust search length to account for worst case alignment overhead */
2000 length = info->length + info->align_mask;
2001 if (length < info->length)
2002 return -ENOMEM;
2003
2004 /*
2005 * Adjust search limits by the desired length.
2006 * See implementation comment at top of unmapped_area().
2007 */
2008 gap_end = info->high_limit;
2009 if (gap_end < length)
2010 return -ENOMEM;
2011 high_limit = gap_end - length;
2012
2013 if (info->low_limit > high_limit)
2014 return -ENOMEM;
2015 low_limit = info->low_limit + length;
2016
2017 /* Check highest gap, which does not precede any rbtree node */
2018 gap_start = mm->highest_vm_end;
2019 if (gap_start <= high_limit)
2020 goto found_highest;
2021
2022 /* Check if rbtree root looks promising */
2023 if (RB_EMPTY_ROOT(&mm->mm_rb))
2024 return -ENOMEM;
2025 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2026 if (vma->rb_subtree_gap < length)
2027 return -ENOMEM;
2028
2029 while (true) {
2030 /* Visit right subtree if it looks promising */
2031 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2032 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2033 struct vm_area_struct *right =
2034 rb_entry(vma->vm_rb.rb_right,
2035 struct vm_area_struct, vm_rb);
2036 if (right->rb_subtree_gap >= length) {
2037 vma = right;
2038 continue;
2039 }
2040 }
2041
2042 check_current:
2043 /* Check if current node has a suitable gap */
2044 gap_end = vm_start_gap(vma);
2045 if (gap_end < low_limit)
2046 return -ENOMEM;
2047 if (gap_start <= high_limit &&
2048 gap_end > gap_start && gap_end - gap_start >= length)
2049 goto found;
2050
2051 /* Visit left subtree if it looks promising */
2052 if (vma->vm_rb.rb_left) {
2053 struct vm_area_struct *left =
2054 rb_entry(vma->vm_rb.rb_left,
2055 struct vm_area_struct, vm_rb);
2056 if (left->rb_subtree_gap >= length) {
2057 vma = left;
2058 continue;
2059 }
2060 }
2061
2062 /* Go back up the rbtree to find next candidate node */
2063 while (true) {
2064 struct rb_node *prev = &vma->vm_rb;
2065 if (!rb_parent(prev))
2066 return -ENOMEM;
2067 vma = rb_entry(rb_parent(prev),
2068 struct vm_area_struct, vm_rb);
2069 if (prev == vma->vm_rb.rb_right) {
2070 gap_start = vma->vm_prev ?
2071 vm_end_gap(vma->vm_prev) : 0;
2072 goto check_current;
2073 }
2074 }
2075 }
2076
2077 found:
2078 /* We found a suitable gap. Clip it with the original high_limit. */
2079 if (gap_end > info->high_limit)
2080 gap_end = info->high_limit;
2081
2082 found_highest:
2083 /* Compute highest gap address at the desired alignment */
2084 gap_end -= info->length;
2085 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2086
2087 VM_BUG_ON(gap_end < info->low_limit);
2088 VM_BUG_ON(gap_end < gap_start);
2089 return gap_end;
2090 }
2091
2092
2093 #ifndef arch_get_mmap_end
2094 #define arch_get_mmap_end(addr) (TASK_SIZE)
2095 #endif
2096
2097 #ifndef arch_get_mmap_base
2098 #define arch_get_mmap_base(addr, base) (base)
2099 #endif
2100
2101 /* Get an address range which is currently unmapped.
2102 * For shmat() with addr=0.
2103 *
2104 * Ugly calling convention alert:
2105 * Return value with the low bits set means error value,
2106 * ie
2107 * if (ret & ~PAGE_MASK)
2108 * error = ret;
2109 *
2110 * This function "knows" that -ENOMEM has the bits set.
2111 */
2112 #ifndef HAVE_ARCH_UNMAPPED_AREA
2113 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2114 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2115 unsigned long len, unsigned long pgoff, unsigned long flags)
2116 {
2117 struct mm_struct *mm = current->mm;
2118 struct vm_area_struct *vma, *prev;
2119 struct vm_unmapped_area_info info;
2120 const unsigned long mmap_end = arch_get_mmap_end(addr);
2121
2122 if (len > mmap_end - mmap_min_addr)
2123 return -ENOMEM;
2124
2125 if (flags & MAP_FIXED)
2126 return addr;
2127
2128 if (addr) {
2129 addr = PAGE_ALIGN(addr);
2130 vma = find_vma_prev(mm, addr, &prev);
2131 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2132 (!vma || addr + len <= vm_start_gap(vma)) &&
2133 (!prev || addr >= vm_end_gap(prev)))
2134 return addr;
2135 }
2136
2137 info.flags = 0;
2138 info.length = len;
2139 info.low_limit = mm->mmap_base;
2140 info.high_limit = mmap_end;
2141 info.align_mask = 0;
2142 return vm_unmapped_area(&info);
2143 }
2144 #endif
2145
2146 /*
2147 * This mmap-allocator allocates new areas top-down from below the
2148 * stack's low limit (the base):
2149 */
2150 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2151 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2152 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2153 unsigned long len, unsigned long pgoff,
2154 unsigned long flags)
2155 {
2156 struct vm_area_struct *vma, *prev;
2157 struct mm_struct *mm = current->mm;
2158 struct vm_unmapped_area_info info;
2159 const unsigned long mmap_end = arch_get_mmap_end(addr);
2160
2161 /* requested length too big for entire address space */
2162 if (len > mmap_end - mmap_min_addr)
2163 return -ENOMEM;
2164
2165 if (flags & MAP_FIXED)
2166 return addr;
2167
2168 /* requesting a specific address */
2169 if (addr) {
2170 addr = PAGE_ALIGN(addr);
2171 vma = find_vma_prev(mm, addr, &prev);
2172 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2173 (!vma || addr + len <= vm_start_gap(vma)) &&
2174 (!prev || addr >= vm_end_gap(prev)))
2175 return addr;
2176 }
2177
2178 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2179 info.length = len;
2180 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2181 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2182 info.align_mask = 0;
2183 addr = vm_unmapped_area(&info);
2184
2185 /*
2186 * A failed mmap() very likely causes application failure,
2187 * so fall back to the bottom-up function here. This scenario
2188 * can happen with large stack limits and large mmap()
2189 * allocations.
2190 */
2191 if (offset_in_page(addr)) {
2192 VM_BUG_ON(addr != -ENOMEM);
2193 info.flags = 0;
2194 info.low_limit = TASK_UNMAPPED_BASE;
2195 info.high_limit = mmap_end;
2196 addr = vm_unmapped_area(&info);
2197 }
2198
2199 return addr;
2200 }
2201 #endif
2202
2203 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2204 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2205 unsigned long pgoff, unsigned long flags)
2206 {
2207 unsigned long (*get_area)(struct file *, unsigned long,
2208 unsigned long, unsigned long, unsigned long);
2209
2210 unsigned long error = arch_mmap_check(addr, len, flags);
2211 if (error)
2212 return error;
2213
2214 /* Careful about overflows.. */
2215 if (len > TASK_SIZE)
2216 return -ENOMEM;
2217
2218 get_area = current->mm->get_unmapped_area;
2219 if (file) {
2220 if (file->f_op->get_unmapped_area)
2221 get_area = file->f_op->get_unmapped_area;
2222 } else if (flags & MAP_SHARED) {
2223 /*
2224 * mmap_region() will call shmem_zero_setup() to create a file,
2225 * so use shmem's get_unmapped_area in case it can be huge.
2226 * do_mmap_pgoff() will clear pgoff, so match alignment.
2227 */
2228 pgoff = 0;
2229 get_area = shmem_get_unmapped_area;
2230 }
2231
2232 addr = get_area(file, addr, len, pgoff, flags);
2233 if (IS_ERR_VALUE(addr))
2234 return addr;
2235
2236 if (addr > TASK_SIZE - len)
2237 return -ENOMEM;
2238 if (offset_in_page(addr))
2239 return -EINVAL;
2240
2241 error = security_mmap_addr(addr);
2242 return error ? error : addr;
2243 }
2244
2245 EXPORT_SYMBOL(get_unmapped_area);
2246
2247 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)2248 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2249 {
2250 struct rb_node *rb_node;
2251 struct vm_area_struct *vma;
2252
2253 /* Check the cache first. */
2254 vma = vmacache_find(mm, addr);
2255 if (likely(vma))
2256 return vma;
2257
2258 rb_node = mm->mm_rb.rb_node;
2259
2260 while (rb_node) {
2261 struct vm_area_struct *tmp;
2262
2263 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2264
2265 if (tmp->vm_end > addr) {
2266 vma = tmp;
2267 if (tmp->vm_start <= addr)
2268 break;
2269 rb_node = rb_node->rb_left;
2270 } else
2271 rb_node = rb_node->rb_right;
2272 }
2273
2274 if (vma)
2275 vmacache_update(addr, vma);
2276 return vma;
2277 }
2278
2279 EXPORT_SYMBOL(find_vma);
2280
2281 /*
2282 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2283 */
2284 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2285 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2286 struct vm_area_struct **pprev)
2287 {
2288 struct vm_area_struct *vma;
2289
2290 vma = find_vma(mm, addr);
2291 if (vma) {
2292 *pprev = vma->vm_prev;
2293 } else {
2294 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2295
2296 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2297 }
2298 return vma;
2299 }
2300
2301 /*
2302 * Verify that the stack growth is acceptable and
2303 * update accounting. This is shared with both the
2304 * grow-up and grow-down cases.
2305 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2306 static int acct_stack_growth(struct vm_area_struct *vma,
2307 unsigned long size, unsigned long grow)
2308 {
2309 struct mm_struct *mm = vma->vm_mm;
2310 unsigned long new_start;
2311
2312 /* address space limit tests */
2313 if (!may_expand_vm(mm, vma->vm_flags, grow))
2314 return -ENOMEM;
2315
2316 /* Stack limit test */
2317 if (size > rlimit(RLIMIT_STACK))
2318 return -ENOMEM;
2319
2320 /* mlock limit tests */
2321 if (vma->vm_flags & VM_LOCKED) {
2322 unsigned long locked;
2323 unsigned long limit;
2324 locked = mm->locked_vm + grow;
2325 limit = rlimit(RLIMIT_MEMLOCK);
2326 limit >>= PAGE_SHIFT;
2327 if (locked > limit && !capable(CAP_IPC_LOCK))
2328 return -ENOMEM;
2329 }
2330
2331 /* Check to ensure the stack will not grow into a hugetlb-only region */
2332 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2333 vma->vm_end - size;
2334 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2335 return -EFAULT;
2336
2337 /*
2338 * Overcommit.. This must be the final test, as it will
2339 * update security statistics.
2340 */
2341 if (security_vm_enough_memory_mm(mm, grow))
2342 return -ENOMEM;
2343
2344 return 0;
2345 }
2346
2347 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2348 /*
2349 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2350 * vma is the last one with address > vma->vm_end. Have to extend vma.
2351 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2352 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2353 {
2354 struct mm_struct *mm = vma->vm_mm;
2355 struct vm_area_struct *next;
2356 unsigned long gap_addr;
2357 int error = 0;
2358
2359 if (!(vma->vm_flags & VM_GROWSUP))
2360 return -EFAULT;
2361
2362 /* Guard against exceeding limits of the address space. */
2363 address &= PAGE_MASK;
2364 if (address >= (TASK_SIZE & PAGE_MASK))
2365 return -ENOMEM;
2366 address += PAGE_SIZE;
2367
2368 /* Enforce stack_guard_gap */
2369 gap_addr = address + stack_guard_gap;
2370
2371 /* Guard against overflow */
2372 if (gap_addr < address || gap_addr > TASK_SIZE)
2373 gap_addr = TASK_SIZE;
2374
2375 next = vma->vm_next;
2376 if (next && next->vm_start < gap_addr &&
2377 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2378 if (!(next->vm_flags & VM_GROWSUP))
2379 return -ENOMEM;
2380 /* Check that both stack segments have the same anon_vma? */
2381 }
2382
2383 /* We must make sure the anon_vma is allocated. */
2384 if (unlikely(anon_vma_prepare(vma)))
2385 return -ENOMEM;
2386
2387 /*
2388 * vma->vm_start/vm_end cannot change under us because the caller
2389 * is required to hold the mmap_sem in read mode. We need the
2390 * anon_vma lock to serialize against concurrent expand_stacks.
2391 */
2392 anon_vma_lock_write(vma->anon_vma);
2393
2394 /* Somebody else might have raced and expanded it already */
2395 if (address > vma->vm_end) {
2396 unsigned long size, grow;
2397
2398 size = address - vma->vm_start;
2399 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2400
2401 error = -ENOMEM;
2402 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2403 error = acct_stack_growth(vma, size, grow);
2404 if (!error) {
2405 /*
2406 * vma_gap_update() doesn't support concurrent
2407 * updates, but we only hold a shared mmap_sem
2408 * lock here, so we need to protect against
2409 * concurrent vma expansions.
2410 * anon_vma_lock_write() doesn't help here, as
2411 * we don't guarantee that all growable vmas
2412 * in a mm share the same root anon vma.
2413 * So, we reuse mm->page_table_lock to guard
2414 * against concurrent vma expansions.
2415 */
2416 spin_lock(&mm->page_table_lock);
2417 if (vma->vm_flags & VM_LOCKED)
2418 mm->locked_vm += grow;
2419 vm_stat_account(mm, vma->vm_flags, grow);
2420 anon_vma_interval_tree_pre_update_vma(vma);
2421 vma->vm_end = address;
2422 anon_vma_interval_tree_post_update_vma(vma);
2423 if (vma->vm_next)
2424 vma_gap_update(vma->vm_next);
2425 else
2426 mm->highest_vm_end = vm_end_gap(vma);
2427 spin_unlock(&mm->page_table_lock);
2428
2429 perf_event_mmap(vma);
2430 }
2431 }
2432 }
2433 anon_vma_unlock_write(vma->anon_vma);
2434 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2435 validate_mm(mm);
2436 return error;
2437 }
2438 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2439
2440 /*
2441 * vma is the first one with address < vma->vm_start. Have to extend vma.
2442 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2443 int expand_downwards(struct vm_area_struct *vma,
2444 unsigned long address)
2445 {
2446 struct mm_struct *mm = vma->vm_mm;
2447 struct vm_area_struct *prev;
2448 int error = 0;
2449
2450 address &= PAGE_MASK;
2451 if (address < mmap_min_addr)
2452 return -EPERM;
2453
2454 /* Enforce stack_guard_gap */
2455 prev = vma->vm_prev;
2456 /* Check that both stack segments have the same anon_vma? */
2457 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2458 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2459 if (address - prev->vm_end < stack_guard_gap)
2460 return -ENOMEM;
2461 }
2462
2463 /* We must make sure the anon_vma is allocated. */
2464 if (unlikely(anon_vma_prepare(vma)))
2465 return -ENOMEM;
2466
2467 /*
2468 * vma->vm_start/vm_end cannot change under us because the caller
2469 * is required to hold the mmap_sem in read mode. We need the
2470 * anon_vma lock to serialize against concurrent expand_stacks.
2471 */
2472 anon_vma_lock_write(vma->anon_vma);
2473
2474 /* Somebody else might have raced and expanded it already */
2475 if (address < vma->vm_start) {
2476 unsigned long size, grow;
2477
2478 size = vma->vm_end - address;
2479 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2480
2481 error = -ENOMEM;
2482 if (grow <= vma->vm_pgoff) {
2483 error = acct_stack_growth(vma, size, grow);
2484 if (!error) {
2485 /*
2486 * vma_gap_update() doesn't support concurrent
2487 * updates, but we only hold a shared mmap_sem
2488 * lock here, so we need to protect against
2489 * concurrent vma expansions.
2490 * anon_vma_lock_write() doesn't help here, as
2491 * we don't guarantee that all growable vmas
2492 * in a mm share the same root anon vma.
2493 * So, we reuse mm->page_table_lock to guard
2494 * against concurrent vma expansions.
2495 */
2496 spin_lock(&mm->page_table_lock);
2497 if (vma->vm_flags & VM_LOCKED)
2498 mm->locked_vm += grow;
2499 vm_stat_account(mm, vma->vm_flags, grow);
2500 anon_vma_interval_tree_pre_update_vma(vma);
2501 vma->vm_start = address;
2502 vma->vm_pgoff -= grow;
2503 anon_vma_interval_tree_post_update_vma(vma);
2504 vma_gap_update(vma);
2505 spin_unlock(&mm->page_table_lock);
2506
2507 perf_event_mmap(vma);
2508 }
2509 }
2510 }
2511 anon_vma_unlock_write(vma->anon_vma);
2512 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2513 validate_mm(mm);
2514 return error;
2515 }
2516
2517 /* enforced gap between the expanding stack and other mappings. */
2518 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2519
cmdline_parse_stack_guard_gap(char * p)2520 static int __init cmdline_parse_stack_guard_gap(char *p)
2521 {
2522 unsigned long val;
2523 char *endptr;
2524
2525 val = simple_strtoul(p, &endptr, 10);
2526 if (!*endptr)
2527 stack_guard_gap = val << PAGE_SHIFT;
2528
2529 return 0;
2530 }
2531 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2532
2533 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2534 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2535 {
2536 return expand_upwards(vma, address);
2537 }
2538
2539 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2540 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2541 {
2542 struct vm_area_struct *vma, *prev;
2543
2544 addr &= PAGE_MASK;
2545 vma = find_vma_prev(mm, addr, &prev);
2546 if (vma && (vma->vm_start <= addr))
2547 return vma;
2548 /* don't alter vm_end if the coredump is running */
2549 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2550 return NULL;
2551 if (prev->vm_flags & VM_LOCKED)
2552 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2553 return prev;
2554 }
2555 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2556 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2557 {
2558 return expand_downwards(vma, address);
2559 }
2560
2561 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2562 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2563 {
2564 struct vm_area_struct *vma;
2565 unsigned long start;
2566
2567 addr &= PAGE_MASK;
2568 vma = find_vma(mm, addr);
2569 if (!vma)
2570 return NULL;
2571 if (vma->vm_start <= addr)
2572 return vma;
2573 if (!(vma->vm_flags & VM_GROWSDOWN))
2574 return NULL;
2575 /* don't alter vm_start if the coredump is running */
2576 if (!mmget_still_valid(mm))
2577 return NULL;
2578 start = vma->vm_start;
2579 if (expand_stack(vma, addr))
2580 return NULL;
2581 if (vma->vm_flags & VM_LOCKED)
2582 populate_vma_page_range(vma, addr, start, NULL);
2583 return vma;
2584 }
2585 #endif
2586
2587 EXPORT_SYMBOL_GPL(find_extend_vma);
2588
2589 /*
2590 * Ok - we have the memory areas we should free on the vma list,
2591 * so release them, and do the vma updates.
2592 *
2593 * Called with the mm semaphore held.
2594 */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2595 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2596 {
2597 unsigned long nr_accounted = 0;
2598
2599 /* Update high watermark before we lower total_vm */
2600 update_hiwater_vm(mm);
2601 do {
2602 long nrpages = vma_pages(vma);
2603
2604 if (vma->vm_flags & VM_ACCOUNT)
2605 nr_accounted += nrpages;
2606 vm_stat_account(mm, vma->vm_flags, -nrpages);
2607 vma = remove_vma(vma);
2608 } while (vma);
2609 vm_unacct_memory(nr_accounted);
2610 validate_mm(mm);
2611 }
2612
2613 /*
2614 * Get rid of page table information in the indicated region.
2615 *
2616 * Called with the mm semaphore held.
2617 */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2618 static void unmap_region(struct mm_struct *mm,
2619 struct vm_area_struct *vma, struct vm_area_struct *prev,
2620 unsigned long start, unsigned long end)
2621 {
2622 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2623 struct mmu_gather tlb;
2624
2625 lru_add_drain();
2626 tlb_gather_mmu(&tlb, mm, start, end);
2627 update_hiwater_rss(mm);
2628 unmap_vmas(&tlb, vma, start, end);
2629 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2630 next ? next->vm_start : USER_PGTABLES_CEILING);
2631 tlb_finish_mmu(&tlb, start, end);
2632 }
2633
2634 /*
2635 * Create a list of vma's touched by the unmap, removing them from the mm's
2636 * vma list as we go..
2637 */
2638 static void
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2639 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2640 struct vm_area_struct *prev, unsigned long end)
2641 {
2642 struct vm_area_struct **insertion_point;
2643 struct vm_area_struct *tail_vma = NULL;
2644
2645 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2646 vma->vm_prev = NULL;
2647 do {
2648 vma_rb_erase(vma, &mm->mm_rb);
2649 mm->map_count--;
2650 tail_vma = vma;
2651 vma = vma->vm_next;
2652 } while (vma && vma->vm_start < end);
2653 *insertion_point = vma;
2654 if (vma) {
2655 vma->vm_prev = prev;
2656 vma_gap_update(vma);
2657 } else
2658 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2659 tail_vma->vm_next = NULL;
2660
2661 /* Kill the cache */
2662 vmacache_invalidate(mm);
2663 }
2664
2665 /*
2666 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2667 * has already been checked or doesn't make sense to fail.
2668 */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2669 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2670 unsigned long addr, int new_below)
2671 {
2672 struct vm_area_struct *new;
2673 int err;
2674
2675 if (vma->vm_ops && vma->vm_ops->split) {
2676 err = vma->vm_ops->split(vma, addr);
2677 if (err)
2678 return err;
2679 }
2680
2681 new = vm_area_dup(vma);
2682 if (!new)
2683 return -ENOMEM;
2684
2685 if (new_below)
2686 new->vm_end = addr;
2687 else {
2688 new->vm_start = addr;
2689 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2690 }
2691
2692 err = vma_dup_policy(vma, new);
2693 if (err)
2694 goto out_free_vma;
2695
2696 err = anon_vma_clone(new, vma);
2697 if (err)
2698 goto out_free_mpol;
2699
2700 if (new->vm_file)
2701 get_file(new->vm_file);
2702
2703 if (new->vm_ops && new->vm_ops->open)
2704 new->vm_ops->open(new);
2705
2706 if (new_below)
2707 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2708 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2709 else
2710 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2711
2712 /* Success. */
2713 if (!err)
2714 return 0;
2715
2716 /* Clean everything up if vma_adjust failed. */
2717 if (new->vm_ops && new->vm_ops->close)
2718 new->vm_ops->close(new);
2719 if (new->vm_file)
2720 fput(new->vm_file);
2721 unlink_anon_vmas(new);
2722 out_free_mpol:
2723 mpol_put(vma_policy(new));
2724 out_free_vma:
2725 vm_area_free(new);
2726 return err;
2727 }
2728
2729 /*
2730 * Split a vma into two pieces at address 'addr', a new vma is allocated
2731 * either for the first part or the tail.
2732 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2733 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2734 unsigned long addr, int new_below)
2735 {
2736 if (mm->map_count >= sysctl_max_map_count)
2737 return -ENOMEM;
2738
2739 return __split_vma(mm, vma, addr, new_below);
2740 }
2741
2742 /* Munmap is split into 2 main parts -- this part which finds
2743 * what needs doing, and the areas themselves, which do the
2744 * work. This now handles partial unmappings.
2745 * Jeremy Fitzhardinge <jeremy@goop.org>
2746 */
__do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool downgrade)2747 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2748 struct list_head *uf, bool downgrade)
2749 {
2750 unsigned long end;
2751 struct vm_area_struct *vma, *prev, *last;
2752
2753 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2754 return -EINVAL;
2755
2756 len = PAGE_ALIGN(len);
2757 end = start + len;
2758 if (len == 0)
2759 return -EINVAL;
2760
2761 /*
2762 * arch_unmap() might do unmaps itself. It must be called
2763 * and finish any rbtree manipulation before this code
2764 * runs and also starts to manipulate the rbtree.
2765 */
2766 arch_unmap(mm, start, end);
2767
2768 /* Find the first overlapping VMA */
2769 vma = find_vma(mm, start);
2770 if (!vma)
2771 return 0;
2772 prev = vma->vm_prev;
2773 /* we have start < vma->vm_end */
2774
2775 /* if it doesn't overlap, we have nothing.. */
2776 if (vma->vm_start >= end)
2777 return 0;
2778
2779 /*
2780 * If we need to split any vma, do it now to save pain later.
2781 *
2782 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2783 * unmapped vm_area_struct will remain in use: so lower split_vma
2784 * places tmp vma above, and higher split_vma places tmp vma below.
2785 */
2786 if (start > vma->vm_start) {
2787 int error;
2788
2789 /*
2790 * Make sure that map_count on return from munmap() will
2791 * not exceed its limit; but let map_count go just above
2792 * its limit temporarily, to help free resources as expected.
2793 */
2794 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2795 return -ENOMEM;
2796
2797 error = __split_vma(mm, vma, start, 0);
2798 if (error)
2799 return error;
2800 prev = vma;
2801 }
2802
2803 /* Does it split the last one? */
2804 last = find_vma(mm, end);
2805 if (last && end > last->vm_start) {
2806 int error = __split_vma(mm, last, end, 1);
2807 if (error)
2808 return error;
2809 }
2810 vma = prev ? prev->vm_next : mm->mmap;
2811
2812 if (unlikely(uf)) {
2813 /*
2814 * If userfaultfd_unmap_prep returns an error the vmas
2815 * will remain splitted, but userland will get a
2816 * highly unexpected error anyway. This is no
2817 * different than the case where the first of the two
2818 * __split_vma fails, but we don't undo the first
2819 * split, despite we could. This is unlikely enough
2820 * failure that it's not worth optimizing it for.
2821 */
2822 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2823 if (error)
2824 return error;
2825 }
2826
2827 /*
2828 * unlock any mlock()ed ranges before detaching vmas
2829 */
2830 if (mm->locked_vm) {
2831 struct vm_area_struct *tmp = vma;
2832 while (tmp && tmp->vm_start < end) {
2833 if (tmp->vm_flags & VM_LOCKED) {
2834 mm->locked_vm -= vma_pages(tmp);
2835 munlock_vma_pages_all(tmp);
2836 }
2837
2838 tmp = tmp->vm_next;
2839 }
2840 }
2841
2842 /* Detach vmas from rbtree */
2843 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2844
2845 if (downgrade)
2846 downgrade_write(&mm->mmap_sem);
2847
2848 unmap_region(mm, vma, prev, start, end);
2849
2850 /* Fix up all other VM information */
2851 remove_vma_list(mm, vma);
2852
2853 return downgrade ? 1 : 0;
2854 }
2855
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2856 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2857 struct list_head *uf)
2858 {
2859 return __do_munmap(mm, start, len, uf, false);
2860 }
2861
__vm_munmap(unsigned long start,size_t len,bool downgrade)2862 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2863 {
2864 int ret;
2865 struct mm_struct *mm = current->mm;
2866 LIST_HEAD(uf);
2867
2868 if (down_write_killable(&mm->mmap_sem))
2869 return -EINTR;
2870
2871 ret = __do_munmap(mm, start, len, &uf, downgrade);
2872 /*
2873 * Returning 1 indicates mmap_sem is downgraded.
2874 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2875 * it to 0 before return.
2876 */
2877 if (ret == 1) {
2878 up_read(&mm->mmap_sem);
2879 ret = 0;
2880 } else
2881 up_write(&mm->mmap_sem);
2882
2883 userfaultfd_unmap_complete(mm, &uf);
2884 return ret;
2885 }
2886
vm_munmap(unsigned long start,size_t len)2887 int vm_munmap(unsigned long start, size_t len)
2888 {
2889 return __vm_munmap(start, len, false);
2890 }
2891 EXPORT_SYMBOL(vm_munmap);
2892
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2893 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2894 {
2895 addr = untagged_addr(addr);
2896 profile_munmap(addr);
2897 return __vm_munmap(addr, len, true);
2898 }
2899
2900
2901 /*
2902 * Emulation of deprecated remap_file_pages() syscall.
2903 */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2904 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2905 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2906 {
2907
2908 struct mm_struct *mm = current->mm;
2909 struct vm_area_struct *vma;
2910 unsigned long populate = 0;
2911 unsigned long ret = -EINVAL;
2912 struct file *file;
2913
2914 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2915 current->comm, current->pid);
2916
2917 if (prot)
2918 return ret;
2919 start = start & PAGE_MASK;
2920 size = size & PAGE_MASK;
2921
2922 if (start + size <= start)
2923 return ret;
2924
2925 /* Does pgoff wrap? */
2926 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2927 return ret;
2928
2929 if (down_write_killable(&mm->mmap_sem))
2930 return -EINTR;
2931
2932 vma = find_vma(mm, start);
2933
2934 if (!vma || !(vma->vm_flags & VM_SHARED))
2935 goto out;
2936
2937 if (start < vma->vm_start)
2938 goto out;
2939
2940 if (start + size > vma->vm_end) {
2941 struct vm_area_struct *next;
2942
2943 for (next = vma->vm_next; next; next = next->vm_next) {
2944 /* hole between vmas ? */
2945 if (next->vm_start != next->vm_prev->vm_end)
2946 goto out;
2947
2948 if (next->vm_file != vma->vm_file)
2949 goto out;
2950
2951 if (next->vm_flags != vma->vm_flags)
2952 goto out;
2953
2954 if (start + size <= next->vm_end)
2955 break;
2956 }
2957
2958 if (!next)
2959 goto out;
2960 }
2961
2962 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2963 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2964 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2965
2966 flags &= MAP_NONBLOCK;
2967 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2968 if (vma->vm_flags & VM_LOCKED) {
2969 struct vm_area_struct *tmp;
2970 flags |= MAP_LOCKED;
2971
2972 /* drop PG_Mlocked flag for over-mapped range */
2973 for (tmp = vma; tmp->vm_start >= start + size;
2974 tmp = tmp->vm_next) {
2975 /*
2976 * Split pmd and munlock page on the border
2977 * of the range.
2978 */
2979 vma_adjust_trans_huge(tmp, start, start + size, 0);
2980
2981 munlock_vma_pages_range(tmp,
2982 max(tmp->vm_start, start),
2983 min(tmp->vm_end, start + size));
2984 }
2985 }
2986
2987 file = get_file(vma->vm_file);
2988 ret = do_mmap_pgoff(vma->vm_file, start, size,
2989 prot, flags, pgoff, &populate, NULL);
2990 fput(file);
2991 out:
2992 up_write(&mm->mmap_sem);
2993 if (populate)
2994 mm_populate(ret, populate);
2995 if (!IS_ERR_VALUE(ret))
2996 ret = 0;
2997 return ret;
2998 }
2999
3000 /*
3001 * this is really a simplified "do_mmap". it only handles
3002 * anonymous maps. eventually we may be able to do some
3003 * brk-specific accounting here.
3004 */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)3005 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3006 {
3007 struct mm_struct *mm = current->mm;
3008 struct vm_area_struct *vma, *prev;
3009 struct rb_node **rb_link, *rb_parent;
3010 pgoff_t pgoff = addr >> PAGE_SHIFT;
3011 int error;
3012
3013 /* Until we need other flags, refuse anything except VM_EXEC. */
3014 if ((flags & (~VM_EXEC)) != 0)
3015 return -EINVAL;
3016 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3017
3018 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3019 if (offset_in_page(error))
3020 return error;
3021
3022 error = mlock_future_check(mm, mm->def_flags, len);
3023 if (error)
3024 return error;
3025
3026 /*
3027 * Clear old maps. this also does some error checking for us
3028 */
3029 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3030 &rb_parent)) {
3031 if (do_munmap(mm, addr, len, uf))
3032 return -ENOMEM;
3033 }
3034
3035 /* Check against address space limits *after* clearing old maps... */
3036 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3037 return -ENOMEM;
3038
3039 if (mm->map_count > sysctl_max_map_count)
3040 return -ENOMEM;
3041
3042 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3043 return -ENOMEM;
3044
3045 /* Can we just expand an old private anonymous mapping? */
3046 vma = vma_merge(mm, prev, addr, addr + len, flags,
3047 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3048 if (vma)
3049 goto out;
3050
3051 /*
3052 * create a vma struct for an anonymous mapping
3053 */
3054 vma = vm_area_alloc(mm);
3055 if (!vma) {
3056 vm_unacct_memory(len >> PAGE_SHIFT);
3057 return -ENOMEM;
3058 }
3059
3060 vma_set_anonymous(vma);
3061 vma->vm_start = addr;
3062 vma->vm_end = addr + len;
3063 vma->vm_pgoff = pgoff;
3064 vma->vm_flags = flags;
3065 vma->vm_page_prot = vm_get_page_prot(flags);
3066 vma_link(mm, vma, prev, rb_link, rb_parent);
3067 out:
3068 perf_event_mmap(vma);
3069 mm->total_vm += len >> PAGE_SHIFT;
3070 mm->data_vm += len >> PAGE_SHIFT;
3071 if (flags & VM_LOCKED)
3072 mm->locked_vm += (len >> PAGE_SHIFT);
3073 vma->vm_flags |= VM_SOFTDIRTY;
3074 return 0;
3075 }
3076
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3077 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3078 {
3079 struct mm_struct *mm = current->mm;
3080 unsigned long len;
3081 int ret;
3082 bool populate;
3083 LIST_HEAD(uf);
3084
3085 len = PAGE_ALIGN(request);
3086 if (len < request)
3087 return -ENOMEM;
3088 if (!len)
3089 return 0;
3090
3091 if (down_write_killable(&mm->mmap_sem))
3092 return -EINTR;
3093
3094 ret = do_brk_flags(addr, len, flags, &uf);
3095 populate = ((mm->def_flags & VM_LOCKED) != 0);
3096 up_write(&mm->mmap_sem);
3097 userfaultfd_unmap_complete(mm, &uf);
3098 if (populate && !ret)
3099 mm_populate(addr, len);
3100 return ret;
3101 }
3102 EXPORT_SYMBOL(vm_brk_flags);
3103
vm_brk(unsigned long addr,unsigned long len)3104 int vm_brk(unsigned long addr, unsigned long len)
3105 {
3106 return vm_brk_flags(addr, len, 0);
3107 }
3108 EXPORT_SYMBOL(vm_brk);
3109
3110 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3111 void exit_mmap(struct mm_struct *mm)
3112 {
3113 struct mmu_gather tlb;
3114 struct vm_area_struct *vma;
3115 unsigned long nr_accounted = 0;
3116
3117 /* mm's last user has gone, and its about to be pulled down */
3118 mmu_notifier_release(mm);
3119
3120 if (unlikely(mm_is_oom_victim(mm))) {
3121 /*
3122 * Manually reap the mm to free as much memory as possible.
3123 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3124 * this mm from further consideration. Taking mm->mmap_sem for
3125 * write after setting MMF_OOM_SKIP will guarantee that the oom
3126 * reaper will not run on this mm again after mmap_sem is
3127 * dropped.
3128 *
3129 * Nothing can be holding mm->mmap_sem here and the above call
3130 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3131 * __oom_reap_task_mm() will not block.
3132 *
3133 * This needs to be done before calling munlock_vma_pages_all(),
3134 * which clears VM_LOCKED, otherwise the oom reaper cannot
3135 * reliably test it.
3136 */
3137 (void)__oom_reap_task_mm(mm);
3138
3139 set_bit(MMF_OOM_SKIP, &mm->flags);
3140 down_write(&mm->mmap_sem);
3141 up_write(&mm->mmap_sem);
3142 }
3143
3144 if (mm->locked_vm) {
3145 vma = mm->mmap;
3146 while (vma) {
3147 if (vma->vm_flags & VM_LOCKED)
3148 munlock_vma_pages_all(vma);
3149 vma = vma->vm_next;
3150 }
3151 }
3152
3153 arch_exit_mmap(mm);
3154
3155 vma = mm->mmap;
3156 if (!vma) /* Can happen if dup_mmap() received an OOM */
3157 return;
3158
3159 lru_add_drain();
3160 flush_cache_mm(mm);
3161 tlb_gather_mmu(&tlb, mm, 0, -1);
3162 /* update_hiwater_rss(mm) here? but nobody should be looking */
3163 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3164 unmap_vmas(&tlb, vma, 0, -1);
3165 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3166 tlb_finish_mmu(&tlb, 0, -1);
3167
3168 /*
3169 * Walk the list again, actually closing and freeing it,
3170 * with preemption enabled, without holding any MM locks.
3171 */
3172 while (vma) {
3173 if (vma->vm_flags & VM_ACCOUNT)
3174 nr_accounted += vma_pages(vma);
3175 vma = remove_vma(vma);
3176 }
3177 vm_unacct_memory(nr_accounted);
3178 }
3179
3180 /* Insert vm structure into process list sorted by address
3181 * and into the inode's i_mmap tree. If vm_file is non-NULL
3182 * then i_mmap_rwsem is taken here.
3183 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3184 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3185 {
3186 struct vm_area_struct *prev;
3187 struct rb_node **rb_link, *rb_parent;
3188
3189 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3190 &prev, &rb_link, &rb_parent))
3191 return -ENOMEM;
3192 if ((vma->vm_flags & VM_ACCOUNT) &&
3193 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3194 return -ENOMEM;
3195
3196 /*
3197 * The vm_pgoff of a purely anonymous vma should be irrelevant
3198 * until its first write fault, when page's anon_vma and index
3199 * are set. But now set the vm_pgoff it will almost certainly
3200 * end up with (unless mremap moves it elsewhere before that
3201 * first wfault), so /proc/pid/maps tells a consistent story.
3202 *
3203 * By setting it to reflect the virtual start address of the
3204 * vma, merges and splits can happen in a seamless way, just
3205 * using the existing file pgoff checks and manipulations.
3206 * Similarly in do_mmap_pgoff and in do_brk.
3207 */
3208 if (vma_is_anonymous(vma)) {
3209 BUG_ON(vma->anon_vma);
3210 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3211 }
3212
3213 vma_link(mm, vma, prev, rb_link, rb_parent);
3214 return 0;
3215 }
3216
3217 /*
3218 * Copy the vma structure to a new location in the same mm,
3219 * prior to moving page table entries, to effect an mremap move.
3220 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3221 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3222 unsigned long addr, unsigned long len, pgoff_t pgoff,
3223 bool *need_rmap_locks)
3224 {
3225 struct vm_area_struct *vma = *vmap;
3226 unsigned long vma_start = vma->vm_start;
3227 struct mm_struct *mm = vma->vm_mm;
3228 struct vm_area_struct *new_vma, *prev;
3229 struct rb_node **rb_link, *rb_parent;
3230 bool faulted_in_anon_vma = true;
3231
3232 /*
3233 * If anonymous vma has not yet been faulted, update new pgoff
3234 * to match new location, to increase its chance of merging.
3235 */
3236 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3237 pgoff = addr >> PAGE_SHIFT;
3238 faulted_in_anon_vma = false;
3239 }
3240
3241 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3242 return NULL; /* should never get here */
3243 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3244 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3245 vma->vm_userfaultfd_ctx, vma_get_anon_name(vma));
3246 if (new_vma) {
3247 /*
3248 * Source vma may have been merged into new_vma
3249 */
3250 if (unlikely(vma_start >= new_vma->vm_start &&
3251 vma_start < new_vma->vm_end)) {
3252 /*
3253 * The only way we can get a vma_merge with
3254 * self during an mremap is if the vma hasn't
3255 * been faulted in yet and we were allowed to
3256 * reset the dst vma->vm_pgoff to the
3257 * destination address of the mremap to allow
3258 * the merge to happen. mremap must change the
3259 * vm_pgoff linearity between src and dst vmas
3260 * (in turn preventing a vma_merge) to be
3261 * safe. It is only safe to keep the vm_pgoff
3262 * linear if there are no pages mapped yet.
3263 */
3264 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3265 *vmap = vma = new_vma;
3266 }
3267 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3268 } else {
3269 new_vma = vm_area_dup(vma);
3270 if (!new_vma)
3271 goto out;
3272 new_vma->vm_start = addr;
3273 new_vma->vm_end = addr + len;
3274 new_vma->vm_pgoff = pgoff;
3275 if (vma_dup_policy(vma, new_vma))
3276 goto out_free_vma;
3277 if (anon_vma_clone(new_vma, vma))
3278 goto out_free_mempol;
3279 if (new_vma->vm_file)
3280 get_file(new_vma->vm_file);
3281 if (new_vma->vm_ops && new_vma->vm_ops->open)
3282 new_vma->vm_ops->open(new_vma);
3283 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3284 *need_rmap_locks = false;
3285 }
3286 return new_vma;
3287
3288 out_free_mempol:
3289 mpol_put(vma_policy(new_vma));
3290 out_free_vma:
3291 vm_area_free(new_vma);
3292 out:
3293 return NULL;
3294 }
3295
3296 /*
3297 * Return true if the calling process may expand its vm space by the passed
3298 * number of pages
3299 */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3300 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3301 {
3302 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3303 return false;
3304
3305 if (is_data_mapping(flags) &&
3306 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3307 /* Workaround for Valgrind */
3308 if (rlimit(RLIMIT_DATA) == 0 &&
3309 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3310 return true;
3311
3312 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3313 current->comm, current->pid,
3314 (mm->data_vm + npages) << PAGE_SHIFT,
3315 rlimit(RLIMIT_DATA),
3316 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3317
3318 if (!ignore_rlimit_data)
3319 return false;
3320 }
3321
3322 return true;
3323 }
3324
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3325 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3326 {
3327 mm->total_vm += npages;
3328
3329 if (is_exec_mapping(flags))
3330 mm->exec_vm += npages;
3331 else if (is_stack_mapping(flags))
3332 mm->stack_vm += npages;
3333 else if (is_data_mapping(flags))
3334 mm->data_vm += npages;
3335 }
3336
3337 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3338
3339 /*
3340 * Having a close hook prevents vma merging regardless of flags.
3341 */
special_mapping_close(struct vm_area_struct * vma)3342 static void special_mapping_close(struct vm_area_struct *vma)
3343 {
3344 }
3345
special_mapping_name(struct vm_area_struct * vma)3346 static const char *special_mapping_name(struct vm_area_struct *vma)
3347 {
3348 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3349 }
3350
special_mapping_mremap(struct vm_area_struct * new_vma)3351 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3352 {
3353 struct vm_special_mapping *sm = new_vma->vm_private_data;
3354
3355 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3356 return -EFAULT;
3357
3358 if (sm->mremap)
3359 return sm->mremap(sm, new_vma);
3360
3361 return 0;
3362 }
3363
3364 static const struct vm_operations_struct special_mapping_vmops = {
3365 .close = special_mapping_close,
3366 .fault = special_mapping_fault,
3367 .mremap = special_mapping_mremap,
3368 .name = special_mapping_name,
3369 };
3370
3371 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3372 .close = special_mapping_close,
3373 .fault = special_mapping_fault,
3374 };
3375
special_mapping_fault(struct vm_fault * vmf)3376 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3377 {
3378 struct vm_area_struct *vma = vmf->vma;
3379 pgoff_t pgoff;
3380 struct page **pages;
3381
3382 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3383 pages = vma->vm_private_data;
3384 } else {
3385 struct vm_special_mapping *sm = vma->vm_private_data;
3386
3387 if (sm->fault)
3388 return sm->fault(sm, vmf->vma, vmf);
3389
3390 pages = sm->pages;
3391 }
3392
3393 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3394 pgoff--;
3395
3396 if (*pages) {
3397 struct page *page = *pages;
3398 get_page(page);
3399 vmf->page = page;
3400 return 0;
3401 }
3402
3403 return VM_FAULT_SIGBUS;
3404 }
3405
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3406 static struct vm_area_struct *__install_special_mapping(
3407 struct mm_struct *mm,
3408 unsigned long addr, unsigned long len,
3409 unsigned long vm_flags, void *priv,
3410 const struct vm_operations_struct *ops)
3411 {
3412 int ret;
3413 struct vm_area_struct *vma;
3414
3415 vma = vm_area_alloc(mm);
3416 if (unlikely(vma == NULL))
3417 return ERR_PTR(-ENOMEM);
3418
3419 vma->vm_start = addr;
3420 vma->vm_end = addr + len;
3421
3422 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3423 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3424
3425 vma->vm_ops = ops;
3426 vma->vm_private_data = priv;
3427
3428 ret = insert_vm_struct(mm, vma);
3429 if (ret)
3430 goto out;
3431
3432 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3433
3434 perf_event_mmap(vma);
3435
3436 return vma;
3437
3438 out:
3439 vm_area_free(vma);
3440 return ERR_PTR(ret);
3441 }
3442
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3443 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3444 const struct vm_special_mapping *sm)
3445 {
3446 return vma->vm_private_data == sm &&
3447 (vma->vm_ops == &special_mapping_vmops ||
3448 vma->vm_ops == &legacy_special_mapping_vmops);
3449 }
3450
3451 /*
3452 * Called with mm->mmap_sem held for writing.
3453 * Insert a new vma covering the given region, with the given flags.
3454 * Its pages are supplied by the given array of struct page *.
3455 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3456 * The region past the last page supplied will always produce SIGBUS.
3457 * The array pointer and the pages it points to are assumed to stay alive
3458 * for as long as this mapping might exist.
3459 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3460 struct vm_area_struct *_install_special_mapping(
3461 struct mm_struct *mm,
3462 unsigned long addr, unsigned long len,
3463 unsigned long vm_flags, const struct vm_special_mapping *spec)
3464 {
3465 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3466 &special_mapping_vmops);
3467 }
3468
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3469 int install_special_mapping(struct mm_struct *mm,
3470 unsigned long addr, unsigned long len,
3471 unsigned long vm_flags, struct page **pages)
3472 {
3473 struct vm_area_struct *vma = __install_special_mapping(
3474 mm, addr, len, vm_flags, (void *)pages,
3475 &legacy_special_mapping_vmops);
3476
3477 return PTR_ERR_OR_ZERO(vma);
3478 }
3479
3480 static DEFINE_MUTEX(mm_all_locks_mutex);
3481
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3482 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3483 {
3484 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3485 /*
3486 * The LSB of head.next can't change from under us
3487 * because we hold the mm_all_locks_mutex.
3488 */
3489 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3490 /*
3491 * We can safely modify head.next after taking the
3492 * anon_vma->root->rwsem. If some other vma in this mm shares
3493 * the same anon_vma we won't take it again.
3494 *
3495 * No need of atomic instructions here, head.next
3496 * can't change from under us thanks to the
3497 * anon_vma->root->rwsem.
3498 */
3499 if (__test_and_set_bit(0, (unsigned long *)
3500 &anon_vma->root->rb_root.rb_root.rb_node))
3501 BUG();
3502 }
3503 }
3504
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3505 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3506 {
3507 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3508 /*
3509 * AS_MM_ALL_LOCKS can't change from under us because
3510 * we hold the mm_all_locks_mutex.
3511 *
3512 * Operations on ->flags have to be atomic because
3513 * even if AS_MM_ALL_LOCKS is stable thanks to the
3514 * mm_all_locks_mutex, there may be other cpus
3515 * changing other bitflags in parallel to us.
3516 */
3517 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3518 BUG();
3519 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3520 }
3521 }
3522
3523 /*
3524 * This operation locks against the VM for all pte/vma/mm related
3525 * operations that could ever happen on a certain mm. This includes
3526 * vmtruncate, try_to_unmap, and all page faults.
3527 *
3528 * The caller must take the mmap_sem in write mode before calling
3529 * mm_take_all_locks(). The caller isn't allowed to release the
3530 * mmap_sem until mm_drop_all_locks() returns.
3531 *
3532 * mmap_sem in write mode is required in order to block all operations
3533 * that could modify pagetables and free pages without need of
3534 * altering the vma layout. It's also needed in write mode to avoid new
3535 * anon_vmas to be associated with existing vmas.
3536 *
3537 * A single task can't take more than one mm_take_all_locks() in a row
3538 * or it would deadlock.
3539 *
3540 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3541 * mapping->flags avoid to take the same lock twice, if more than one
3542 * vma in this mm is backed by the same anon_vma or address_space.
3543 *
3544 * We take locks in following order, accordingly to comment at beginning
3545 * of mm/rmap.c:
3546 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3547 * hugetlb mapping);
3548 * - all i_mmap_rwsem locks;
3549 * - all anon_vma->rwseml
3550 *
3551 * We can take all locks within these types randomly because the VM code
3552 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3553 * mm_all_locks_mutex.
3554 *
3555 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3556 * that may have to take thousand of locks.
3557 *
3558 * mm_take_all_locks() can fail if it's interrupted by signals.
3559 */
mm_take_all_locks(struct mm_struct * mm)3560 int mm_take_all_locks(struct mm_struct *mm)
3561 {
3562 struct vm_area_struct *vma;
3563 struct anon_vma_chain *avc;
3564
3565 BUG_ON(down_read_trylock(&mm->mmap_sem));
3566
3567 mutex_lock(&mm_all_locks_mutex);
3568
3569 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3570 if (signal_pending(current))
3571 goto out_unlock;
3572 if (vma->vm_file && vma->vm_file->f_mapping &&
3573 is_vm_hugetlb_page(vma))
3574 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3575 }
3576
3577 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3578 if (signal_pending(current))
3579 goto out_unlock;
3580 if (vma->vm_file && vma->vm_file->f_mapping &&
3581 !is_vm_hugetlb_page(vma))
3582 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3583 }
3584
3585 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3586 if (signal_pending(current))
3587 goto out_unlock;
3588 if (vma->anon_vma)
3589 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3590 vm_lock_anon_vma(mm, avc->anon_vma);
3591 }
3592
3593 return 0;
3594
3595 out_unlock:
3596 mm_drop_all_locks(mm);
3597 return -EINTR;
3598 }
3599
vm_unlock_anon_vma(struct anon_vma * anon_vma)3600 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3601 {
3602 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3603 /*
3604 * The LSB of head.next can't change to 0 from under
3605 * us because we hold the mm_all_locks_mutex.
3606 *
3607 * We must however clear the bitflag before unlocking
3608 * the vma so the users using the anon_vma->rb_root will
3609 * never see our bitflag.
3610 *
3611 * No need of atomic instructions here, head.next
3612 * can't change from under us until we release the
3613 * anon_vma->root->rwsem.
3614 */
3615 if (!__test_and_clear_bit(0, (unsigned long *)
3616 &anon_vma->root->rb_root.rb_root.rb_node))
3617 BUG();
3618 anon_vma_unlock_write(anon_vma);
3619 }
3620 }
3621
vm_unlock_mapping(struct address_space * mapping)3622 static void vm_unlock_mapping(struct address_space *mapping)
3623 {
3624 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3625 /*
3626 * AS_MM_ALL_LOCKS can't change to 0 from under us
3627 * because we hold the mm_all_locks_mutex.
3628 */
3629 i_mmap_unlock_write(mapping);
3630 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3631 &mapping->flags))
3632 BUG();
3633 }
3634 }
3635
3636 /*
3637 * The mmap_sem cannot be released by the caller until
3638 * mm_drop_all_locks() returns.
3639 */
mm_drop_all_locks(struct mm_struct * mm)3640 void mm_drop_all_locks(struct mm_struct *mm)
3641 {
3642 struct vm_area_struct *vma;
3643 struct anon_vma_chain *avc;
3644
3645 BUG_ON(down_read_trylock(&mm->mmap_sem));
3646 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3647
3648 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3649 if (vma->anon_vma)
3650 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3651 vm_unlock_anon_vma(avc->anon_vma);
3652 if (vma->vm_file && vma->vm_file->f_mapping)
3653 vm_unlock_mapping(vma->vm_file->f_mapping);
3654 }
3655
3656 mutex_unlock(&mm_all_locks_mutex);
3657 }
3658
3659 /*
3660 * initialise the percpu counter for VM
3661 */
mmap_init(void)3662 void __init mmap_init(void)
3663 {
3664 int ret;
3665
3666 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3667 VM_BUG_ON(ret);
3668 }
3669
3670 /*
3671 * Initialise sysctl_user_reserve_kbytes.
3672 *
3673 * This is intended to prevent a user from starting a single memory hogging
3674 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3675 * mode.
3676 *
3677 * The default value is min(3% of free memory, 128MB)
3678 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3679 */
init_user_reserve(void)3680 static int init_user_reserve(void)
3681 {
3682 unsigned long free_kbytes;
3683
3684 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3685
3686 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3687 return 0;
3688 }
3689 subsys_initcall(init_user_reserve);
3690
3691 /*
3692 * Initialise sysctl_admin_reserve_kbytes.
3693 *
3694 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3695 * to log in and kill a memory hogging process.
3696 *
3697 * Systems with more than 256MB will reserve 8MB, enough to recover
3698 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3699 * only reserve 3% of free pages by default.
3700 */
init_admin_reserve(void)3701 static int init_admin_reserve(void)
3702 {
3703 unsigned long free_kbytes;
3704
3705 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3706
3707 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3708 return 0;
3709 }
3710 subsys_initcall(init_admin_reserve);
3711
3712 /*
3713 * Reinititalise user and admin reserves if memory is added or removed.
3714 *
3715 * The default user reserve max is 128MB, and the default max for the
3716 * admin reserve is 8MB. These are usually, but not always, enough to
3717 * enable recovery from a memory hogging process using login/sshd, a shell,
3718 * and tools like top. It may make sense to increase or even disable the
3719 * reserve depending on the existence of swap or variations in the recovery
3720 * tools. So, the admin may have changed them.
3721 *
3722 * If memory is added and the reserves have been eliminated or increased above
3723 * the default max, then we'll trust the admin.
3724 *
3725 * If memory is removed and there isn't enough free memory, then we
3726 * need to reset the reserves.
3727 *
3728 * Otherwise keep the reserve set by the admin.
3729 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3730 static int reserve_mem_notifier(struct notifier_block *nb,
3731 unsigned long action, void *data)
3732 {
3733 unsigned long tmp, free_kbytes;
3734
3735 switch (action) {
3736 case MEM_ONLINE:
3737 /* Default max is 128MB. Leave alone if modified by operator. */
3738 tmp = sysctl_user_reserve_kbytes;
3739 if (0 < tmp && tmp < (1UL << 17))
3740 init_user_reserve();
3741
3742 /* Default max is 8MB. Leave alone if modified by operator. */
3743 tmp = sysctl_admin_reserve_kbytes;
3744 if (0 < tmp && tmp < (1UL << 13))
3745 init_admin_reserve();
3746
3747 break;
3748 case MEM_OFFLINE:
3749 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3750
3751 if (sysctl_user_reserve_kbytes > free_kbytes) {
3752 init_user_reserve();
3753 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3754 sysctl_user_reserve_kbytes);
3755 }
3756
3757 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3758 init_admin_reserve();
3759 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3760 sysctl_admin_reserve_kbytes);
3761 }
3762 break;
3763 default:
3764 break;
3765 }
3766 return NOTIFY_OK;
3767 }
3768
3769 static struct notifier_block reserve_mem_nb = {
3770 .notifier_call = reserve_mem_notifier,
3771 };
3772
init_reserve_notifier(void)3773 static int __meminit init_reserve_notifier(void)
3774 {
3775 if (register_hotmemory_notifier(&reserve_mem_nb))
3776 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3777
3778 return 0;
3779 }
3780 subsys_initcall(init_reserve_notifier);
3781