• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/sockios.h>
104 #include <net/busy_poll.h>
105 #include <linux/errqueue.h>
106 
107 #ifdef CONFIG_NET_RX_BUSY_POLL
108 unsigned int sysctl_net_busy_read __read_mostly;
109 unsigned int sysctl_net_busy_poll __read_mostly;
110 #endif
111 
112 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
113 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
114 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 
116 static int sock_close(struct inode *inode, struct file *file);
117 static __poll_t sock_poll(struct file *file,
118 			      struct poll_table_struct *wait);
119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
120 #ifdef CONFIG_COMPAT
121 static long compat_sock_ioctl(struct file *file,
122 			      unsigned int cmd, unsigned long arg);
123 #endif
124 static int sock_fasync(int fd, struct file *filp, int on);
125 static ssize_t sock_sendpage(struct file *file, struct page *page,
126 			     int offset, size_t size, loff_t *ppos, int more);
127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
128 				struct pipe_inode_info *pipe, size_t len,
129 				unsigned int flags);
130 
131 /*
132  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
133  *	in the operation structures but are done directly via the socketcall() multiplexor.
134  */
135 
136 static const struct file_operations socket_file_ops = {
137 	.owner =	THIS_MODULE,
138 	.llseek =	no_llseek,
139 	.read_iter =	sock_read_iter,
140 	.write_iter =	sock_write_iter,
141 	.poll =		sock_poll,
142 	.unlocked_ioctl = sock_ioctl,
143 #ifdef CONFIG_COMPAT
144 	.compat_ioctl = compat_sock_ioctl,
145 #endif
146 	.mmap =		sock_mmap,
147 	.release =	sock_close,
148 	.fasync =	sock_fasync,
149 	.sendpage =	sock_sendpage,
150 	.splice_write = generic_splice_sendpage,
151 	.splice_read =	sock_splice_read,
152 };
153 
154 /*
155  *	The protocol list. Each protocol is registered in here.
156  */
157 
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160 
161 /*
162  * Support routines.
163  * Move socket addresses back and forth across the kernel/user
164  * divide and look after the messy bits.
165  */
166 
167 /**
168  *	move_addr_to_kernel	-	copy a socket address into kernel space
169  *	@uaddr: Address in user space
170  *	@kaddr: Address in kernel space
171  *	@ulen: Length in user space
172  *
173  *	The address is copied into kernel space. If the provided address is
174  *	too long an error code of -EINVAL is returned. If the copy gives
175  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
176  */
177 
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)178 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
179 {
180 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
181 		return -EINVAL;
182 	if (ulen == 0)
183 		return 0;
184 	if (copy_from_user(kaddr, uaddr, ulen))
185 		return -EFAULT;
186 	return audit_sockaddr(ulen, kaddr);
187 }
188 
189 /**
190  *	move_addr_to_user	-	copy an address to user space
191  *	@kaddr: kernel space address
192  *	@klen: length of address in kernel
193  *	@uaddr: user space address
194  *	@ulen: pointer to user length field
195  *
196  *	The value pointed to by ulen on entry is the buffer length available.
197  *	This is overwritten with the buffer space used. -EINVAL is returned
198  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
199  *	is returned if either the buffer or the length field are not
200  *	accessible.
201  *	After copying the data up to the limit the user specifies, the true
202  *	length of the data is written over the length limit the user
203  *	specified. Zero is returned for a success.
204  */
205 
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)206 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
207 			     void __user *uaddr, int __user *ulen)
208 {
209 	int err;
210 	int len;
211 
212 	BUG_ON(klen > sizeof(struct sockaddr_storage));
213 	err = get_user(len, ulen);
214 	if (err)
215 		return err;
216 	if (len > klen)
217 		len = klen;
218 	if (len < 0)
219 		return -EINVAL;
220 	if (len) {
221 		if (audit_sockaddr(klen, kaddr))
222 			return -ENOMEM;
223 		if (copy_to_user(uaddr, kaddr, len))
224 			return -EFAULT;
225 	}
226 	/*
227 	 *      "fromlen shall refer to the value before truncation.."
228 	 *                      1003.1g
229 	 */
230 	return __put_user(klen, ulen);
231 }
232 
233 static struct kmem_cache *sock_inode_cachep __ro_after_init;
234 
sock_alloc_inode(struct super_block * sb)235 static struct inode *sock_alloc_inode(struct super_block *sb)
236 {
237 	struct socket_alloc *ei;
238 
239 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
240 	if (!ei)
241 		return NULL;
242 	init_waitqueue_head(&ei->socket.wq.wait);
243 	ei->socket.wq.fasync_list = NULL;
244 	ei->socket.wq.flags = 0;
245 
246 	ei->socket.state = SS_UNCONNECTED;
247 	ei->socket.flags = 0;
248 	ei->socket.ops = NULL;
249 	ei->socket.sk = NULL;
250 	ei->socket.file = NULL;
251 
252 	return &ei->vfs_inode;
253 }
254 
sock_free_inode(struct inode * inode)255 static void sock_free_inode(struct inode *inode)
256 {
257 	struct socket_alloc *ei;
258 
259 	ei = container_of(inode, struct socket_alloc, vfs_inode);
260 	kmem_cache_free(sock_inode_cachep, ei);
261 }
262 
init_once(void * foo)263 static void init_once(void *foo)
264 {
265 	struct socket_alloc *ei = (struct socket_alloc *)foo;
266 
267 	inode_init_once(&ei->vfs_inode);
268 }
269 
init_inodecache(void)270 static void init_inodecache(void)
271 {
272 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
273 					      sizeof(struct socket_alloc),
274 					      0,
275 					      (SLAB_HWCACHE_ALIGN |
276 					       SLAB_RECLAIM_ACCOUNT |
277 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
278 					      init_once);
279 	BUG_ON(sock_inode_cachep == NULL);
280 }
281 
282 static const struct super_operations sockfs_ops = {
283 	.alloc_inode	= sock_alloc_inode,
284 	.free_inode	= sock_free_inode,
285 	.statfs		= simple_statfs,
286 };
287 
288 /*
289  * sockfs_dname() is called from d_path().
290  */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)291 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
292 {
293 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
294 				d_inode(dentry)->i_ino);
295 }
296 
297 static const struct dentry_operations sockfs_dentry_operations = {
298 	.d_dname  = sockfs_dname,
299 };
300 
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size,int flags)301 static int sockfs_xattr_get(const struct xattr_handler *handler,
302 			    struct dentry *dentry, struct inode *inode,
303 			    const char *suffix, void *value, size_t size,
304 			    int flags)
305 {
306 	if (value) {
307 		if (dentry->d_name.len + 1 > size)
308 			return -ERANGE;
309 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
310 	}
311 	return dentry->d_name.len + 1;
312 }
313 
314 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
315 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
316 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
317 
318 static const struct xattr_handler sockfs_xattr_handler = {
319 	.name = XATTR_NAME_SOCKPROTONAME,
320 	.get = sockfs_xattr_get,
321 };
322 
sockfs_security_xattr_set(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)323 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
324 				     struct dentry *dentry, struct inode *inode,
325 				     const char *suffix, const void *value,
326 				     size_t size, int flags)
327 {
328 	/* Handled by LSM. */
329 	return -EAGAIN;
330 }
331 
332 static const struct xattr_handler sockfs_security_xattr_handler = {
333 	.prefix = XATTR_SECURITY_PREFIX,
334 	.set = sockfs_security_xattr_set,
335 };
336 
337 static const struct xattr_handler *sockfs_xattr_handlers[] = {
338 	&sockfs_xattr_handler,
339 	&sockfs_security_xattr_handler,
340 	NULL
341 };
342 
sockfs_init_fs_context(struct fs_context * fc)343 static int sockfs_init_fs_context(struct fs_context *fc)
344 {
345 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
346 	if (!ctx)
347 		return -ENOMEM;
348 	ctx->ops = &sockfs_ops;
349 	ctx->dops = &sockfs_dentry_operations;
350 	ctx->xattr = sockfs_xattr_handlers;
351 	return 0;
352 }
353 
354 static struct vfsmount *sock_mnt __read_mostly;
355 
356 static struct file_system_type sock_fs_type = {
357 	.name =		"sockfs",
358 	.init_fs_context = sockfs_init_fs_context,
359 	.kill_sb =	kill_anon_super,
360 };
361 
362 /*
363  *	Obtains the first available file descriptor and sets it up for use.
364  *
365  *	These functions create file structures and maps them to fd space
366  *	of the current process. On success it returns file descriptor
367  *	and file struct implicitly stored in sock->file.
368  *	Note that another thread may close file descriptor before we return
369  *	from this function. We use the fact that now we do not refer
370  *	to socket after mapping. If one day we will need it, this
371  *	function will increment ref. count on file by 1.
372  *
373  *	In any case returned fd MAY BE not valid!
374  *	This race condition is unavoidable
375  *	with shared fd spaces, we cannot solve it inside kernel,
376  *	but we take care of internal coherence yet.
377  */
378 
379 /**
380  *	sock_alloc_file - Bind a &socket to a &file
381  *	@sock: socket
382  *	@flags: file status flags
383  *	@dname: protocol name
384  *
385  *	Returns the &file bound with @sock, implicitly storing it
386  *	in sock->file. If dname is %NULL, sets to "".
387  *	On failure the return is a ERR pointer (see linux/err.h).
388  *	This function uses GFP_KERNEL internally.
389  */
390 
sock_alloc_file(struct socket * sock,int flags,const char * dname)391 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
392 {
393 	struct file *file;
394 
395 	if (!dname)
396 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
397 
398 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
399 				O_RDWR | (flags & O_NONBLOCK),
400 				&socket_file_ops);
401 	if (IS_ERR(file)) {
402 		sock_release(sock);
403 		return file;
404 	}
405 
406 	sock->file = file;
407 	file->private_data = sock;
408 	return file;
409 }
410 EXPORT_SYMBOL(sock_alloc_file);
411 
sock_map_fd(struct socket * sock,int flags)412 static int sock_map_fd(struct socket *sock, int flags)
413 {
414 	struct file *newfile;
415 	int fd = get_unused_fd_flags(flags);
416 	if (unlikely(fd < 0)) {
417 		sock_release(sock);
418 		return fd;
419 	}
420 
421 	newfile = sock_alloc_file(sock, flags, NULL);
422 	if (!IS_ERR(newfile)) {
423 		fd_install(fd, newfile);
424 		return fd;
425 	}
426 
427 	put_unused_fd(fd);
428 	return PTR_ERR(newfile);
429 }
430 
431 /**
432  *	sock_from_file - Return the &socket bounded to @file.
433  *	@file: file
434  *	@err: pointer to an error code return
435  *
436  *	On failure returns %NULL and assigns -ENOTSOCK to @err.
437  */
438 
sock_from_file(struct file * file,int * err)439 struct socket *sock_from_file(struct file *file, int *err)
440 {
441 	if (file->f_op == &socket_file_ops)
442 		return file->private_data;	/* set in sock_map_fd */
443 
444 	*err = -ENOTSOCK;
445 	return NULL;
446 }
447 EXPORT_SYMBOL(sock_from_file);
448 
449 /**
450  *	sockfd_lookup - Go from a file number to its socket slot
451  *	@fd: file handle
452  *	@err: pointer to an error code return
453  *
454  *	The file handle passed in is locked and the socket it is bound
455  *	to is returned. If an error occurs the err pointer is overwritten
456  *	with a negative errno code and NULL is returned. The function checks
457  *	for both invalid handles and passing a handle which is not a socket.
458  *
459  *	On a success the socket object pointer is returned.
460  */
461 
sockfd_lookup(int fd,int * err)462 struct socket *sockfd_lookup(int fd, int *err)
463 {
464 	struct file *file;
465 	struct socket *sock;
466 
467 	file = fget(fd);
468 	if (!file) {
469 		*err = -EBADF;
470 		return NULL;
471 	}
472 
473 	sock = sock_from_file(file, err);
474 	if (!sock)
475 		fput(file);
476 	return sock;
477 }
478 EXPORT_SYMBOL(sockfd_lookup);
479 
sockfd_lookup_light(int fd,int * err,int * fput_needed)480 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
481 {
482 	struct fd f = fdget(fd);
483 	struct socket *sock;
484 
485 	*err = -EBADF;
486 	if (f.file) {
487 		sock = sock_from_file(f.file, err);
488 		if (likely(sock)) {
489 			*fput_needed = f.flags;
490 			return sock;
491 		}
492 		fdput(f);
493 	}
494 	return NULL;
495 }
496 
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)497 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
498 				size_t size)
499 {
500 	ssize_t len;
501 	ssize_t used = 0;
502 
503 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
504 	if (len < 0)
505 		return len;
506 	used += len;
507 	if (buffer) {
508 		if (size < used)
509 			return -ERANGE;
510 		buffer += len;
511 	}
512 
513 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
514 	used += len;
515 	if (buffer) {
516 		if (size < used)
517 			return -ERANGE;
518 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
519 		buffer += len;
520 	}
521 
522 	return used;
523 }
524 
sockfs_setattr(struct dentry * dentry,struct iattr * iattr)525 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
526 {
527 	int err = simple_setattr(dentry, iattr);
528 
529 	if (!err && (iattr->ia_valid & ATTR_UID)) {
530 		struct socket *sock = SOCKET_I(d_inode(dentry));
531 
532 		if (sock->sk)
533 			sock->sk->sk_uid = iattr->ia_uid;
534 		else
535 			err = -ENOENT;
536 	}
537 
538 	return err;
539 }
540 
541 static const struct inode_operations sockfs_inode_ops = {
542 	.listxattr = sockfs_listxattr,
543 	.setattr = sockfs_setattr,
544 };
545 
546 /**
547  *	sock_alloc - allocate a socket
548  *
549  *	Allocate a new inode and socket object. The two are bound together
550  *	and initialised. The socket is then returned. If we are out of inodes
551  *	NULL is returned. This functions uses GFP_KERNEL internally.
552  */
553 
sock_alloc(void)554 struct socket *sock_alloc(void)
555 {
556 	struct inode *inode;
557 	struct socket *sock;
558 
559 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
560 	if (!inode)
561 		return NULL;
562 
563 	sock = SOCKET_I(inode);
564 
565 	inode->i_ino = get_next_ino();
566 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
567 	inode->i_uid = current_fsuid();
568 	inode->i_gid = current_fsgid();
569 	inode->i_op = &sockfs_inode_ops;
570 
571 	return sock;
572 }
573 EXPORT_SYMBOL(sock_alloc);
574 
575 /**
576  *	sock_release - close a socket
577  *	@sock: socket to close
578  *
579  *	The socket is released from the protocol stack if it has a release
580  *	callback, and the inode is then released if the socket is bound to
581  *	an inode not a file.
582  */
583 
__sock_release(struct socket * sock,struct inode * inode)584 static void __sock_release(struct socket *sock, struct inode *inode)
585 {
586 	if (sock->ops) {
587 		struct module *owner = sock->ops->owner;
588 
589 		if (inode)
590 			inode_lock(inode);
591 		sock->ops->release(sock);
592 		sock->sk = NULL;
593 		if (inode)
594 			inode_unlock(inode);
595 		sock->ops = NULL;
596 		module_put(owner);
597 	}
598 
599 	if (sock->wq.fasync_list)
600 		pr_err("%s: fasync list not empty!\n", __func__);
601 
602 	if (!sock->file) {
603 		iput(SOCK_INODE(sock));
604 		return;
605 	}
606 	sock->file = NULL;
607 }
608 
sock_release(struct socket * sock)609 void sock_release(struct socket *sock)
610 {
611 	__sock_release(sock, NULL);
612 }
613 EXPORT_SYMBOL(sock_release);
614 
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)615 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
616 {
617 	u8 flags = *tx_flags;
618 
619 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
620 		flags |= SKBTX_HW_TSTAMP;
621 
622 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
623 		flags |= SKBTX_SW_TSTAMP;
624 
625 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
626 		flags |= SKBTX_SCHED_TSTAMP;
627 
628 	*tx_flags = flags;
629 }
630 EXPORT_SYMBOL(__sock_tx_timestamp);
631 
632 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
633 					   size_t));
634 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
635 					    size_t));
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)636 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
637 {
638 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
639 				     inet_sendmsg, sock, msg,
640 				     msg_data_left(msg));
641 	BUG_ON(ret == -EIOCBQUEUED);
642 	return ret;
643 }
644 
645 /**
646  *	sock_sendmsg - send a message through @sock
647  *	@sock: socket
648  *	@msg: message to send
649  *
650  *	Sends @msg through @sock, passing through LSM.
651  *	Returns the number of bytes sent, or an error code.
652  */
sock_sendmsg(struct socket * sock,struct msghdr * msg)653 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
654 {
655 	int err = security_socket_sendmsg(sock, msg,
656 					  msg_data_left(msg));
657 
658 	return err ?: sock_sendmsg_nosec(sock, msg);
659 }
660 EXPORT_SYMBOL(sock_sendmsg);
661 
662 /**
663  *	kernel_sendmsg - send a message through @sock (kernel-space)
664  *	@sock: socket
665  *	@msg: message header
666  *	@vec: kernel vec
667  *	@num: vec array length
668  *	@size: total message data size
669  *
670  *	Builds the message data with @vec and sends it through @sock.
671  *	Returns the number of bytes sent, or an error code.
672  */
673 
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)674 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
675 		   struct kvec *vec, size_t num, size_t size)
676 {
677 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
678 	return sock_sendmsg(sock, msg);
679 }
680 EXPORT_SYMBOL(kernel_sendmsg);
681 
682 /**
683  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
684  *	@sk: sock
685  *	@msg: message header
686  *	@vec: output s/g array
687  *	@num: output s/g array length
688  *	@size: total message data size
689  *
690  *	Builds the message data with @vec and sends it through @sock.
691  *	Returns the number of bytes sent, or an error code.
692  *	Caller must hold @sk.
693  */
694 
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)695 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
696 			  struct kvec *vec, size_t num, size_t size)
697 {
698 	struct socket *sock = sk->sk_socket;
699 
700 	if (!sock->ops->sendmsg_locked)
701 		return sock_no_sendmsg_locked(sk, msg, size);
702 
703 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
704 
705 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
706 }
707 EXPORT_SYMBOL(kernel_sendmsg_locked);
708 
skb_is_err_queue(const struct sk_buff * skb)709 static bool skb_is_err_queue(const struct sk_buff *skb)
710 {
711 	/* pkt_type of skbs enqueued on the error queue are set to
712 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
713 	 * in recvmsg, since skbs received on a local socket will never
714 	 * have a pkt_type of PACKET_OUTGOING.
715 	 */
716 	return skb->pkt_type == PACKET_OUTGOING;
717 }
718 
719 /* On transmit, software and hardware timestamps are returned independently.
720  * As the two skb clones share the hardware timestamp, which may be updated
721  * before the software timestamp is received, a hardware TX timestamp may be
722  * returned only if there is no software TX timestamp. Ignore false software
723  * timestamps, which may be made in the __sock_recv_timestamp() call when the
724  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
725  * hardware timestamp.
726  */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)727 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
728 {
729 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
730 }
731 
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb)732 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
733 {
734 	struct scm_ts_pktinfo ts_pktinfo;
735 	struct net_device *orig_dev;
736 
737 	if (!skb_mac_header_was_set(skb))
738 		return;
739 
740 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
741 
742 	rcu_read_lock();
743 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
744 	if (orig_dev)
745 		ts_pktinfo.if_index = orig_dev->ifindex;
746 	rcu_read_unlock();
747 
748 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
749 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
750 		 sizeof(ts_pktinfo), &ts_pktinfo);
751 }
752 
753 /*
754  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
755  */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)756 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
757 	struct sk_buff *skb)
758 {
759 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
760 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
761 	struct scm_timestamping_internal tss;
762 
763 	int empty = 1, false_tstamp = 0;
764 	struct skb_shared_hwtstamps *shhwtstamps =
765 		skb_hwtstamps(skb);
766 
767 	/* Race occurred between timestamp enabling and packet
768 	   receiving.  Fill in the current time for now. */
769 	if (need_software_tstamp && skb->tstamp == 0) {
770 		__net_timestamp(skb);
771 		false_tstamp = 1;
772 	}
773 
774 	if (need_software_tstamp) {
775 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
776 			if (new_tstamp) {
777 				struct __kernel_sock_timeval tv;
778 
779 				skb_get_new_timestamp(skb, &tv);
780 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
781 					 sizeof(tv), &tv);
782 			} else {
783 				struct __kernel_old_timeval tv;
784 
785 				skb_get_timestamp(skb, &tv);
786 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
787 					 sizeof(tv), &tv);
788 			}
789 		} else {
790 			if (new_tstamp) {
791 				struct __kernel_timespec ts;
792 
793 				skb_get_new_timestampns(skb, &ts);
794 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
795 					 sizeof(ts), &ts);
796 			} else {
797 				struct timespec ts;
798 
799 				skb_get_timestampns(skb, &ts);
800 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
801 					 sizeof(ts), &ts);
802 			}
803 		}
804 	}
805 
806 	memset(&tss, 0, sizeof(tss));
807 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
808 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
809 		empty = 0;
810 	if (shhwtstamps &&
811 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
812 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
813 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
814 		empty = 0;
815 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
816 		    !skb_is_err_queue(skb))
817 			put_ts_pktinfo(msg, skb);
818 	}
819 	if (!empty) {
820 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
821 			put_cmsg_scm_timestamping64(msg, &tss);
822 		else
823 			put_cmsg_scm_timestamping(msg, &tss);
824 
825 		if (skb_is_err_queue(skb) && skb->len &&
826 		    SKB_EXT_ERR(skb)->opt_stats)
827 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
828 				 skb->len, skb->data);
829 	}
830 }
831 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
832 
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)833 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
834 	struct sk_buff *skb)
835 {
836 	int ack;
837 
838 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
839 		return;
840 	if (!skb->wifi_acked_valid)
841 		return;
842 
843 	ack = skb->wifi_acked;
844 
845 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
846 }
847 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
848 
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)849 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
850 				   struct sk_buff *skb)
851 {
852 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
853 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
854 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
855 }
856 
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)857 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
858 	struct sk_buff *skb)
859 {
860 	sock_recv_timestamp(msg, sk, skb);
861 	sock_recv_drops(msg, sk, skb);
862 }
863 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
864 
865 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
866 					   size_t, int));
867 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
868 					    size_t, int));
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)869 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
870 				     int flags)
871 {
872 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
873 				  inet_recvmsg, sock, msg, msg_data_left(msg),
874 				  flags);
875 }
876 
877 /**
878  *	sock_recvmsg - receive a message from @sock
879  *	@sock: socket
880  *	@msg: message to receive
881  *	@flags: message flags
882  *
883  *	Receives @msg from @sock, passing through LSM. Returns the total number
884  *	of bytes received, or an error.
885  */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)886 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
887 {
888 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
889 
890 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
891 }
892 EXPORT_SYMBOL(sock_recvmsg);
893 
894 /**
895  *	kernel_recvmsg - Receive a message from a socket (kernel space)
896  *	@sock: The socket to receive the message from
897  *	@msg: Received message
898  *	@vec: Input s/g array for message data
899  *	@num: Size of input s/g array
900  *	@size: Number of bytes to read
901  *	@flags: Message flags (MSG_DONTWAIT, etc...)
902  *
903  *	On return the msg structure contains the scatter/gather array passed in the
904  *	vec argument. The array is modified so that it consists of the unfilled
905  *	portion of the original array.
906  *
907  *	The returned value is the total number of bytes received, or an error.
908  */
909 
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)910 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
911 		   struct kvec *vec, size_t num, size_t size, int flags)
912 {
913 	mm_segment_t oldfs = get_fs();
914 	int result;
915 
916 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
917 	set_fs(KERNEL_DS);
918 	result = sock_recvmsg(sock, msg, flags);
919 	set_fs(oldfs);
920 	return result;
921 }
922 EXPORT_SYMBOL(kernel_recvmsg);
923 
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)924 static ssize_t sock_sendpage(struct file *file, struct page *page,
925 			     int offset, size_t size, loff_t *ppos, int more)
926 {
927 	struct socket *sock;
928 	int flags;
929 
930 	sock = file->private_data;
931 
932 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
933 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
934 	flags |= more;
935 
936 	return kernel_sendpage(sock, page, offset, size, flags);
937 }
938 
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)939 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
940 				struct pipe_inode_info *pipe, size_t len,
941 				unsigned int flags)
942 {
943 	struct socket *sock = file->private_data;
944 
945 	if (unlikely(!sock->ops->splice_read))
946 		return generic_file_splice_read(file, ppos, pipe, len, flags);
947 
948 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
949 }
950 
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)951 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
952 {
953 	struct file *file = iocb->ki_filp;
954 	struct socket *sock = file->private_data;
955 	struct msghdr msg = {.msg_iter = *to,
956 			     .msg_iocb = iocb};
957 	ssize_t res;
958 
959 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
960 		msg.msg_flags = MSG_DONTWAIT;
961 
962 	if (iocb->ki_pos != 0)
963 		return -ESPIPE;
964 
965 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
966 		return 0;
967 
968 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
969 	*to = msg.msg_iter;
970 	return res;
971 }
972 
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)973 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
974 {
975 	struct file *file = iocb->ki_filp;
976 	struct socket *sock = file->private_data;
977 	struct msghdr msg = {.msg_iter = *from,
978 			     .msg_iocb = iocb};
979 	ssize_t res;
980 
981 	if (iocb->ki_pos != 0)
982 		return -ESPIPE;
983 
984 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
985 		msg.msg_flags = MSG_DONTWAIT;
986 
987 	if (sock->type == SOCK_SEQPACKET)
988 		msg.msg_flags |= MSG_EOR;
989 
990 	res = sock_sendmsg(sock, &msg);
991 	*from = msg.msg_iter;
992 	return res;
993 }
994 
995 /*
996  * Atomic setting of ioctl hooks to avoid race
997  * with module unload.
998  */
999 
1000 static DEFINE_MUTEX(br_ioctl_mutex);
1001 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1002 
brioctl_set(int (* hook)(struct net *,unsigned int,void __user *))1003 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1004 {
1005 	mutex_lock(&br_ioctl_mutex);
1006 	br_ioctl_hook = hook;
1007 	mutex_unlock(&br_ioctl_mutex);
1008 }
1009 EXPORT_SYMBOL(brioctl_set);
1010 
1011 static DEFINE_MUTEX(vlan_ioctl_mutex);
1012 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1013 
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1014 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1015 {
1016 	mutex_lock(&vlan_ioctl_mutex);
1017 	vlan_ioctl_hook = hook;
1018 	mutex_unlock(&vlan_ioctl_mutex);
1019 }
1020 EXPORT_SYMBOL(vlan_ioctl_set);
1021 
1022 static DEFINE_MUTEX(dlci_ioctl_mutex);
1023 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1024 
dlci_ioctl_set(int (* hook)(unsigned int,void __user *))1025 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1026 {
1027 	mutex_lock(&dlci_ioctl_mutex);
1028 	dlci_ioctl_hook = hook;
1029 	mutex_unlock(&dlci_ioctl_mutex);
1030 }
1031 EXPORT_SYMBOL(dlci_ioctl_set);
1032 
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1033 static long sock_do_ioctl(struct net *net, struct socket *sock,
1034 			  unsigned int cmd, unsigned long arg)
1035 {
1036 	int err;
1037 	void __user *argp = (void __user *)arg;
1038 
1039 	err = sock->ops->ioctl(sock, cmd, arg);
1040 
1041 	/*
1042 	 * If this ioctl is unknown try to hand it down
1043 	 * to the NIC driver.
1044 	 */
1045 	if (err != -ENOIOCTLCMD)
1046 		return err;
1047 
1048 	if (cmd == SIOCGIFCONF) {
1049 		struct ifconf ifc;
1050 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1051 			return -EFAULT;
1052 		rtnl_lock();
1053 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1054 		rtnl_unlock();
1055 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1056 			err = -EFAULT;
1057 	} else {
1058 		struct ifreq ifr;
1059 		bool need_copyout;
1060 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1061 			return -EFAULT;
1062 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1063 		if (!err && need_copyout)
1064 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1065 				return -EFAULT;
1066 	}
1067 	return err;
1068 }
1069 
1070 /*
1071  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1072  *	what to do with it - that's up to the protocol still.
1073  */
1074 
1075 /**
1076  *	get_net_ns - increment the refcount of the network namespace
1077  *	@ns: common namespace (net)
1078  *
1079  *	Returns the net's common namespace.
1080  */
1081 
get_net_ns(struct ns_common * ns)1082 struct ns_common *get_net_ns(struct ns_common *ns)
1083 {
1084 	return &get_net(container_of(ns, struct net, ns))->ns;
1085 }
1086 EXPORT_SYMBOL_GPL(get_net_ns);
1087 
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1088 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1089 {
1090 	struct socket *sock;
1091 	struct sock *sk;
1092 	void __user *argp = (void __user *)arg;
1093 	int pid, err;
1094 	struct net *net;
1095 
1096 	sock = file->private_data;
1097 	sk = sock->sk;
1098 	net = sock_net(sk);
1099 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1100 		struct ifreq ifr;
1101 		bool need_copyout;
1102 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1103 			return -EFAULT;
1104 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1105 		if (!err && need_copyout)
1106 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1107 				return -EFAULT;
1108 	} else
1109 #ifdef CONFIG_WEXT_CORE
1110 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1111 		err = wext_handle_ioctl(net, cmd, argp);
1112 	} else
1113 #endif
1114 		switch (cmd) {
1115 		case FIOSETOWN:
1116 		case SIOCSPGRP:
1117 			err = -EFAULT;
1118 			if (get_user(pid, (int __user *)argp))
1119 				break;
1120 			err = f_setown(sock->file, pid, 1);
1121 			break;
1122 		case FIOGETOWN:
1123 		case SIOCGPGRP:
1124 			err = put_user(f_getown(sock->file),
1125 				       (int __user *)argp);
1126 			break;
1127 		case SIOCGIFBR:
1128 		case SIOCSIFBR:
1129 		case SIOCBRADDBR:
1130 		case SIOCBRDELBR:
1131 			err = -ENOPKG;
1132 			if (!br_ioctl_hook)
1133 				request_module("bridge");
1134 
1135 			mutex_lock(&br_ioctl_mutex);
1136 			if (br_ioctl_hook)
1137 				err = br_ioctl_hook(net, cmd, argp);
1138 			mutex_unlock(&br_ioctl_mutex);
1139 			break;
1140 		case SIOCGIFVLAN:
1141 		case SIOCSIFVLAN:
1142 			err = -ENOPKG;
1143 			if (!vlan_ioctl_hook)
1144 				request_module("8021q");
1145 
1146 			mutex_lock(&vlan_ioctl_mutex);
1147 			if (vlan_ioctl_hook)
1148 				err = vlan_ioctl_hook(net, argp);
1149 			mutex_unlock(&vlan_ioctl_mutex);
1150 			break;
1151 		case SIOCADDDLCI:
1152 		case SIOCDELDLCI:
1153 			err = -ENOPKG;
1154 			if (!dlci_ioctl_hook)
1155 				request_module("dlci");
1156 
1157 			mutex_lock(&dlci_ioctl_mutex);
1158 			if (dlci_ioctl_hook)
1159 				err = dlci_ioctl_hook(cmd, argp);
1160 			mutex_unlock(&dlci_ioctl_mutex);
1161 			break;
1162 		case SIOCGSKNS:
1163 			err = -EPERM;
1164 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1165 				break;
1166 
1167 			err = open_related_ns(&net->ns, get_net_ns);
1168 			break;
1169 		case SIOCGSTAMP_OLD:
1170 		case SIOCGSTAMPNS_OLD:
1171 			if (!sock->ops->gettstamp) {
1172 				err = -ENOIOCTLCMD;
1173 				break;
1174 			}
1175 			err = sock->ops->gettstamp(sock, argp,
1176 						   cmd == SIOCGSTAMP_OLD,
1177 						   !IS_ENABLED(CONFIG_64BIT));
1178 			break;
1179 		case SIOCGSTAMP_NEW:
1180 		case SIOCGSTAMPNS_NEW:
1181 			if (!sock->ops->gettstamp) {
1182 				err = -ENOIOCTLCMD;
1183 				break;
1184 			}
1185 			err = sock->ops->gettstamp(sock, argp,
1186 						   cmd == SIOCGSTAMP_NEW,
1187 						   false);
1188 			break;
1189 		default:
1190 			err = sock_do_ioctl(net, sock, cmd, arg);
1191 			break;
1192 		}
1193 	return err;
1194 }
1195 
1196 /**
1197  *	sock_create_lite - creates a socket
1198  *	@family: protocol family (AF_INET, ...)
1199  *	@type: communication type (SOCK_STREAM, ...)
1200  *	@protocol: protocol (0, ...)
1201  *	@res: new socket
1202  *
1203  *	Creates a new socket and assigns it to @res, passing through LSM.
1204  *	The new socket initialization is not complete, see kernel_accept().
1205  *	Returns 0 or an error. On failure @res is set to %NULL.
1206  *	This function internally uses GFP_KERNEL.
1207  */
1208 
sock_create_lite(int family,int type,int protocol,struct socket ** res)1209 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1210 {
1211 	int err;
1212 	struct socket *sock = NULL;
1213 
1214 	err = security_socket_create(family, type, protocol, 1);
1215 	if (err)
1216 		goto out;
1217 
1218 	sock = sock_alloc();
1219 	if (!sock) {
1220 		err = -ENOMEM;
1221 		goto out;
1222 	}
1223 
1224 	sock->type = type;
1225 	err = security_socket_post_create(sock, family, type, protocol, 1);
1226 	if (err)
1227 		goto out_release;
1228 
1229 out:
1230 	*res = sock;
1231 	return err;
1232 out_release:
1233 	sock_release(sock);
1234 	sock = NULL;
1235 	goto out;
1236 }
1237 EXPORT_SYMBOL(sock_create_lite);
1238 
1239 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1240 static __poll_t sock_poll(struct file *file, poll_table *wait)
1241 {
1242 	struct socket *sock = file->private_data;
1243 	__poll_t events = poll_requested_events(wait), flag = 0;
1244 
1245 	if (!sock->ops->poll)
1246 		return 0;
1247 
1248 	if (sk_can_busy_loop(sock->sk)) {
1249 		/* poll once if requested by the syscall */
1250 		if (events & POLL_BUSY_LOOP)
1251 			sk_busy_loop(sock->sk, 1);
1252 
1253 		/* if this socket can poll_ll, tell the system call */
1254 		flag = POLL_BUSY_LOOP;
1255 	}
1256 
1257 	return sock->ops->poll(file, sock, wait) | flag;
1258 }
1259 
sock_mmap(struct file * file,struct vm_area_struct * vma)1260 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1261 {
1262 	struct socket *sock = file->private_data;
1263 
1264 	return sock->ops->mmap(file, sock, vma);
1265 }
1266 
sock_close(struct inode * inode,struct file * filp)1267 static int sock_close(struct inode *inode, struct file *filp)
1268 {
1269 	__sock_release(SOCKET_I(inode), inode);
1270 	return 0;
1271 }
1272 
1273 /*
1274  *	Update the socket async list
1275  *
1276  *	Fasync_list locking strategy.
1277  *
1278  *	1. fasync_list is modified only under process context socket lock
1279  *	   i.e. under semaphore.
1280  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1281  *	   or under socket lock
1282  */
1283 
sock_fasync(int fd,struct file * filp,int on)1284 static int sock_fasync(int fd, struct file *filp, int on)
1285 {
1286 	struct socket *sock = filp->private_data;
1287 	struct sock *sk = sock->sk;
1288 	struct socket_wq *wq = &sock->wq;
1289 
1290 	if (sk == NULL)
1291 		return -EINVAL;
1292 
1293 	lock_sock(sk);
1294 	fasync_helper(fd, filp, on, &wq->fasync_list);
1295 
1296 	if (!wq->fasync_list)
1297 		sock_reset_flag(sk, SOCK_FASYNC);
1298 	else
1299 		sock_set_flag(sk, SOCK_FASYNC);
1300 
1301 	release_sock(sk);
1302 	return 0;
1303 }
1304 
1305 /* This function may be called only under rcu_lock */
1306 
sock_wake_async(struct socket_wq * wq,int how,int band)1307 int sock_wake_async(struct socket_wq *wq, int how, int band)
1308 {
1309 	if (!wq || !wq->fasync_list)
1310 		return -1;
1311 
1312 	switch (how) {
1313 	case SOCK_WAKE_WAITD:
1314 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1315 			break;
1316 		goto call_kill;
1317 	case SOCK_WAKE_SPACE:
1318 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1319 			break;
1320 		/* fall through */
1321 	case SOCK_WAKE_IO:
1322 call_kill:
1323 		kill_fasync(&wq->fasync_list, SIGIO, band);
1324 		break;
1325 	case SOCK_WAKE_URG:
1326 		kill_fasync(&wq->fasync_list, SIGURG, band);
1327 	}
1328 
1329 	return 0;
1330 }
1331 EXPORT_SYMBOL(sock_wake_async);
1332 
1333 /**
1334  *	__sock_create - creates a socket
1335  *	@net: net namespace
1336  *	@family: protocol family (AF_INET, ...)
1337  *	@type: communication type (SOCK_STREAM, ...)
1338  *	@protocol: protocol (0, ...)
1339  *	@res: new socket
1340  *	@kern: boolean for kernel space sockets
1341  *
1342  *	Creates a new socket and assigns it to @res, passing through LSM.
1343  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1344  *	be set to true if the socket resides in kernel space.
1345  *	This function internally uses GFP_KERNEL.
1346  */
1347 
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1348 int __sock_create(struct net *net, int family, int type, int protocol,
1349 			 struct socket **res, int kern)
1350 {
1351 	int err;
1352 	struct socket *sock;
1353 	const struct net_proto_family *pf;
1354 
1355 	/*
1356 	 *      Check protocol is in range
1357 	 */
1358 	if (family < 0 || family >= NPROTO)
1359 		return -EAFNOSUPPORT;
1360 	if (type < 0 || type >= SOCK_MAX)
1361 		return -EINVAL;
1362 
1363 	/* Compatibility.
1364 
1365 	   This uglymoron is moved from INET layer to here to avoid
1366 	   deadlock in module load.
1367 	 */
1368 	if (family == PF_INET && type == SOCK_PACKET) {
1369 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1370 			     current->comm);
1371 		family = PF_PACKET;
1372 	}
1373 
1374 	err = security_socket_create(family, type, protocol, kern);
1375 	if (err)
1376 		return err;
1377 
1378 	/*
1379 	 *	Allocate the socket and allow the family to set things up. if
1380 	 *	the protocol is 0, the family is instructed to select an appropriate
1381 	 *	default.
1382 	 */
1383 	sock = sock_alloc();
1384 	if (!sock) {
1385 		net_warn_ratelimited("socket: no more sockets\n");
1386 		return -ENFILE;	/* Not exactly a match, but its the
1387 				   closest posix thing */
1388 	}
1389 
1390 	sock->type = type;
1391 
1392 #ifdef CONFIG_MODULES
1393 	/* Attempt to load a protocol module if the find failed.
1394 	 *
1395 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1396 	 * requested real, full-featured networking support upon configuration.
1397 	 * Otherwise module support will break!
1398 	 */
1399 	if (rcu_access_pointer(net_families[family]) == NULL)
1400 		request_module("net-pf-%d", family);
1401 #endif
1402 
1403 	rcu_read_lock();
1404 	pf = rcu_dereference(net_families[family]);
1405 	err = -EAFNOSUPPORT;
1406 	if (!pf)
1407 		goto out_release;
1408 
1409 	/*
1410 	 * We will call the ->create function, that possibly is in a loadable
1411 	 * module, so we have to bump that loadable module refcnt first.
1412 	 */
1413 	if (!try_module_get(pf->owner))
1414 		goto out_release;
1415 
1416 	/* Now protected by module ref count */
1417 	rcu_read_unlock();
1418 
1419 	err = pf->create(net, sock, protocol, kern);
1420 	if (err < 0)
1421 		goto out_module_put;
1422 
1423 	/*
1424 	 * Now to bump the refcnt of the [loadable] module that owns this
1425 	 * socket at sock_release time we decrement its refcnt.
1426 	 */
1427 	if (!try_module_get(sock->ops->owner))
1428 		goto out_module_busy;
1429 
1430 	/*
1431 	 * Now that we're done with the ->create function, the [loadable]
1432 	 * module can have its refcnt decremented
1433 	 */
1434 	module_put(pf->owner);
1435 	err = security_socket_post_create(sock, family, type, protocol, kern);
1436 	if (err)
1437 		goto out_sock_release;
1438 	*res = sock;
1439 
1440 	return 0;
1441 
1442 out_module_busy:
1443 	err = -EAFNOSUPPORT;
1444 out_module_put:
1445 	sock->ops = NULL;
1446 	module_put(pf->owner);
1447 out_sock_release:
1448 	sock_release(sock);
1449 	return err;
1450 
1451 out_release:
1452 	rcu_read_unlock();
1453 	goto out_sock_release;
1454 }
1455 EXPORT_SYMBOL(__sock_create);
1456 
1457 /**
1458  *	sock_create - creates a socket
1459  *	@family: protocol family (AF_INET, ...)
1460  *	@type: communication type (SOCK_STREAM, ...)
1461  *	@protocol: protocol (0, ...)
1462  *	@res: new socket
1463  *
1464  *	A wrapper around __sock_create().
1465  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1466  */
1467 
sock_create(int family,int type,int protocol,struct socket ** res)1468 int sock_create(int family, int type, int protocol, struct socket **res)
1469 {
1470 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1471 }
1472 EXPORT_SYMBOL(sock_create);
1473 
1474 /**
1475  *	sock_create_kern - creates a socket (kernel space)
1476  *	@net: net namespace
1477  *	@family: protocol family (AF_INET, ...)
1478  *	@type: communication type (SOCK_STREAM, ...)
1479  *	@protocol: protocol (0, ...)
1480  *	@res: new socket
1481  *
1482  *	A wrapper around __sock_create().
1483  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1484  */
1485 
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1486 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1487 {
1488 	return __sock_create(net, family, type, protocol, res, 1);
1489 }
1490 EXPORT_SYMBOL(sock_create_kern);
1491 
__sys_socket(int family,int type,int protocol)1492 int __sys_socket(int family, int type, int protocol)
1493 {
1494 	int retval;
1495 	struct socket *sock;
1496 	int flags;
1497 
1498 	/* Check the SOCK_* constants for consistency.  */
1499 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1500 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1501 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1502 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1503 
1504 	flags = type & ~SOCK_TYPE_MASK;
1505 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1506 		return -EINVAL;
1507 	type &= SOCK_TYPE_MASK;
1508 
1509 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1510 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1511 
1512 	retval = sock_create(family, type, protocol, &sock);
1513 	if (retval < 0)
1514 		return retval;
1515 
1516 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1517 }
1518 
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1519 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1520 {
1521 	return __sys_socket(family, type, protocol);
1522 }
1523 
1524 /*
1525  *	Create a pair of connected sockets.
1526  */
1527 
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1528 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1529 {
1530 	struct socket *sock1, *sock2;
1531 	int fd1, fd2, err;
1532 	struct file *newfile1, *newfile2;
1533 	int flags;
1534 
1535 	flags = type & ~SOCK_TYPE_MASK;
1536 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1537 		return -EINVAL;
1538 	type &= SOCK_TYPE_MASK;
1539 
1540 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1541 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1542 
1543 	/*
1544 	 * reserve descriptors and make sure we won't fail
1545 	 * to return them to userland.
1546 	 */
1547 	fd1 = get_unused_fd_flags(flags);
1548 	if (unlikely(fd1 < 0))
1549 		return fd1;
1550 
1551 	fd2 = get_unused_fd_flags(flags);
1552 	if (unlikely(fd2 < 0)) {
1553 		put_unused_fd(fd1);
1554 		return fd2;
1555 	}
1556 
1557 	err = put_user(fd1, &usockvec[0]);
1558 	if (err)
1559 		goto out;
1560 
1561 	err = put_user(fd2, &usockvec[1]);
1562 	if (err)
1563 		goto out;
1564 
1565 	/*
1566 	 * Obtain the first socket and check if the underlying protocol
1567 	 * supports the socketpair call.
1568 	 */
1569 
1570 	err = sock_create(family, type, protocol, &sock1);
1571 	if (unlikely(err < 0))
1572 		goto out;
1573 
1574 	err = sock_create(family, type, protocol, &sock2);
1575 	if (unlikely(err < 0)) {
1576 		sock_release(sock1);
1577 		goto out;
1578 	}
1579 
1580 	err = security_socket_socketpair(sock1, sock2);
1581 	if (unlikely(err)) {
1582 		sock_release(sock2);
1583 		sock_release(sock1);
1584 		goto out;
1585 	}
1586 
1587 	err = sock1->ops->socketpair(sock1, sock2);
1588 	if (unlikely(err < 0)) {
1589 		sock_release(sock2);
1590 		sock_release(sock1);
1591 		goto out;
1592 	}
1593 
1594 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1595 	if (IS_ERR(newfile1)) {
1596 		err = PTR_ERR(newfile1);
1597 		sock_release(sock2);
1598 		goto out;
1599 	}
1600 
1601 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1602 	if (IS_ERR(newfile2)) {
1603 		err = PTR_ERR(newfile2);
1604 		fput(newfile1);
1605 		goto out;
1606 	}
1607 
1608 	audit_fd_pair(fd1, fd2);
1609 
1610 	fd_install(fd1, newfile1);
1611 	fd_install(fd2, newfile2);
1612 	return 0;
1613 
1614 out:
1615 	put_unused_fd(fd2);
1616 	put_unused_fd(fd1);
1617 	return err;
1618 }
1619 
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1620 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1621 		int __user *, usockvec)
1622 {
1623 	return __sys_socketpair(family, type, protocol, usockvec);
1624 }
1625 
1626 /*
1627  *	Bind a name to a socket. Nothing much to do here since it's
1628  *	the protocol's responsibility to handle the local address.
1629  *
1630  *	We move the socket address to kernel space before we call
1631  *	the protocol layer (having also checked the address is ok).
1632  */
1633 
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1634 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1635 {
1636 	struct socket *sock;
1637 	struct sockaddr_storage address;
1638 	int err, fput_needed;
1639 
1640 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1641 	if (sock) {
1642 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1643 		if (!err) {
1644 			err = security_socket_bind(sock,
1645 						   (struct sockaddr *)&address,
1646 						   addrlen);
1647 			if (!err)
1648 				err = sock->ops->bind(sock,
1649 						      (struct sockaddr *)
1650 						      &address, addrlen);
1651 		}
1652 		fput_light(sock->file, fput_needed);
1653 	}
1654 	return err;
1655 }
1656 
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1657 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1658 {
1659 	return __sys_bind(fd, umyaddr, addrlen);
1660 }
1661 
1662 /*
1663  *	Perform a listen. Basically, we allow the protocol to do anything
1664  *	necessary for a listen, and if that works, we mark the socket as
1665  *	ready for listening.
1666  */
1667 
__sys_listen(int fd,int backlog)1668 int __sys_listen(int fd, int backlog)
1669 {
1670 	struct socket *sock;
1671 	int err, fput_needed;
1672 	int somaxconn;
1673 
1674 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1675 	if (sock) {
1676 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1677 		if ((unsigned int)backlog > somaxconn)
1678 			backlog = somaxconn;
1679 
1680 		err = security_socket_listen(sock, backlog);
1681 		if (!err)
1682 			err = sock->ops->listen(sock, backlog);
1683 
1684 		fput_light(sock->file, fput_needed);
1685 	}
1686 	return err;
1687 }
1688 
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1689 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1690 {
1691 	return __sys_listen(fd, backlog);
1692 }
1693 
1694 /*
1695  *	For accept, we attempt to create a new socket, set up the link
1696  *	with the client, wake up the client, then return the new
1697  *	connected fd. We collect the address of the connector in kernel
1698  *	space and move it to user at the very end. This is unclean because
1699  *	we open the socket then return an error.
1700  *
1701  *	1003.1g adds the ability to recvmsg() to query connection pending
1702  *	status to recvmsg. We need to add that support in a way thats
1703  *	clean when we restructure accept also.
1704  */
1705 
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1706 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1707 		  int __user *upeer_addrlen, int flags)
1708 {
1709 	struct socket *sock, *newsock;
1710 	struct file *newfile;
1711 	int err, len, newfd, fput_needed;
1712 	struct sockaddr_storage address;
1713 
1714 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1715 		return -EINVAL;
1716 
1717 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1718 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1719 
1720 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1721 	if (!sock)
1722 		goto out;
1723 
1724 	err = -ENFILE;
1725 	newsock = sock_alloc();
1726 	if (!newsock)
1727 		goto out_put;
1728 
1729 	newsock->type = sock->type;
1730 	newsock->ops = sock->ops;
1731 
1732 	/*
1733 	 * We don't need try_module_get here, as the listening socket (sock)
1734 	 * has the protocol module (sock->ops->owner) held.
1735 	 */
1736 	__module_get(newsock->ops->owner);
1737 
1738 	newfd = get_unused_fd_flags(flags);
1739 	if (unlikely(newfd < 0)) {
1740 		err = newfd;
1741 		sock_release(newsock);
1742 		goto out_put;
1743 	}
1744 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1745 	if (IS_ERR(newfile)) {
1746 		err = PTR_ERR(newfile);
1747 		put_unused_fd(newfd);
1748 		goto out_put;
1749 	}
1750 
1751 	err = security_socket_accept(sock, newsock);
1752 	if (err)
1753 		goto out_fd;
1754 
1755 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1756 	if (err < 0)
1757 		goto out_fd;
1758 
1759 	if (upeer_sockaddr) {
1760 		len = newsock->ops->getname(newsock,
1761 					(struct sockaddr *)&address, 2);
1762 		if (len < 0) {
1763 			err = -ECONNABORTED;
1764 			goto out_fd;
1765 		}
1766 		err = move_addr_to_user(&address,
1767 					len, upeer_sockaddr, upeer_addrlen);
1768 		if (err < 0)
1769 			goto out_fd;
1770 	}
1771 
1772 	/* File flags are not inherited via accept() unlike another OSes. */
1773 
1774 	fd_install(newfd, newfile);
1775 	err = newfd;
1776 
1777 out_put:
1778 	fput_light(sock->file, fput_needed);
1779 out:
1780 	return err;
1781 out_fd:
1782 	fput(newfile);
1783 	put_unused_fd(newfd);
1784 	goto out_put;
1785 }
1786 
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1787 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1788 		int __user *, upeer_addrlen, int, flags)
1789 {
1790 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1791 }
1792 
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1793 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1794 		int __user *, upeer_addrlen)
1795 {
1796 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1797 }
1798 
1799 /*
1800  *	Attempt to connect to a socket with the server address.  The address
1801  *	is in user space so we verify it is OK and move it to kernel space.
1802  *
1803  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1804  *	break bindings
1805  *
1806  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1807  *	other SEQPACKET protocols that take time to connect() as it doesn't
1808  *	include the -EINPROGRESS status for such sockets.
1809  */
1810 
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)1811 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1812 {
1813 	struct socket *sock;
1814 	struct sockaddr_storage address;
1815 	int err, fput_needed;
1816 
1817 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1818 	if (!sock)
1819 		goto out;
1820 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1821 	if (err < 0)
1822 		goto out_put;
1823 
1824 	err =
1825 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1826 	if (err)
1827 		goto out_put;
1828 
1829 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1830 				 sock->file->f_flags);
1831 out_put:
1832 	fput_light(sock->file, fput_needed);
1833 out:
1834 	return err;
1835 }
1836 
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1837 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1838 		int, addrlen)
1839 {
1840 	return __sys_connect(fd, uservaddr, addrlen);
1841 }
1842 
1843 /*
1844  *	Get the local address ('name') of a socket object. Move the obtained
1845  *	name to user space.
1846  */
1847 
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1848 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1849 		      int __user *usockaddr_len)
1850 {
1851 	struct socket *sock;
1852 	struct sockaddr_storage address;
1853 	int err, fput_needed;
1854 
1855 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1856 	if (!sock)
1857 		goto out;
1858 
1859 	err = security_socket_getsockname(sock);
1860 	if (err)
1861 		goto out_put;
1862 
1863 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1864 	if (err < 0)
1865 		goto out_put;
1866         /* "err" is actually length in this case */
1867 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1868 
1869 out_put:
1870 	fput_light(sock->file, fput_needed);
1871 out:
1872 	return err;
1873 }
1874 
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1875 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1876 		int __user *, usockaddr_len)
1877 {
1878 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1879 }
1880 
1881 /*
1882  *	Get the remote address ('name') of a socket object. Move the obtained
1883  *	name to user space.
1884  */
1885 
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1886 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1887 		      int __user *usockaddr_len)
1888 {
1889 	struct socket *sock;
1890 	struct sockaddr_storage address;
1891 	int err, fput_needed;
1892 
1893 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1894 	if (sock != NULL) {
1895 		err = security_socket_getpeername(sock);
1896 		if (err) {
1897 			fput_light(sock->file, fput_needed);
1898 			return err;
1899 		}
1900 
1901 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1902 		if (err >= 0)
1903 			/* "err" is actually length in this case */
1904 			err = move_addr_to_user(&address, err, usockaddr,
1905 						usockaddr_len);
1906 		fput_light(sock->file, fput_needed);
1907 	}
1908 	return err;
1909 }
1910 
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1911 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1912 		int __user *, usockaddr_len)
1913 {
1914 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1915 }
1916 
1917 /*
1918  *	Send a datagram to a given address. We move the address into kernel
1919  *	space and check the user space data area is readable before invoking
1920  *	the protocol.
1921  */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)1922 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1923 		 struct sockaddr __user *addr,  int addr_len)
1924 {
1925 	struct socket *sock;
1926 	struct sockaddr_storage address;
1927 	int err;
1928 	struct msghdr msg;
1929 	struct iovec iov;
1930 	int fput_needed;
1931 
1932 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1933 	if (unlikely(err))
1934 		return err;
1935 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1936 	if (!sock)
1937 		goto out;
1938 
1939 	msg.msg_name = NULL;
1940 	msg.msg_control = NULL;
1941 	msg.msg_controllen = 0;
1942 	msg.msg_namelen = 0;
1943 	if (addr) {
1944 		err = move_addr_to_kernel(addr, addr_len, &address);
1945 		if (err < 0)
1946 			goto out_put;
1947 		msg.msg_name = (struct sockaddr *)&address;
1948 		msg.msg_namelen = addr_len;
1949 	}
1950 	if (sock->file->f_flags & O_NONBLOCK)
1951 		flags |= MSG_DONTWAIT;
1952 	msg.msg_flags = flags;
1953 	err = sock_sendmsg(sock, &msg);
1954 
1955 out_put:
1956 	fput_light(sock->file, fput_needed);
1957 out:
1958 	return err;
1959 }
1960 
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)1961 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1962 		unsigned int, flags, struct sockaddr __user *, addr,
1963 		int, addr_len)
1964 {
1965 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1966 }
1967 
1968 /*
1969  *	Send a datagram down a socket.
1970  */
1971 
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)1972 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1973 		unsigned int, flags)
1974 {
1975 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1976 }
1977 
1978 /*
1979  *	Receive a frame from the socket and optionally record the address of the
1980  *	sender. We verify the buffers are writable and if needed move the
1981  *	sender address from kernel to user space.
1982  */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)1983 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1984 		   struct sockaddr __user *addr, int __user *addr_len)
1985 {
1986 	struct socket *sock;
1987 	struct iovec iov;
1988 	struct msghdr msg;
1989 	struct sockaddr_storage address;
1990 	int err, err2;
1991 	int fput_needed;
1992 
1993 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1994 	if (unlikely(err))
1995 		return err;
1996 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1997 	if (!sock)
1998 		goto out;
1999 
2000 	msg.msg_control = NULL;
2001 	msg.msg_controllen = 0;
2002 	/* Save some cycles and don't copy the address if not needed */
2003 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2004 	/* We assume all kernel code knows the size of sockaddr_storage */
2005 	msg.msg_namelen = 0;
2006 	msg.msg_iocb = NULL;
2007 	msg.msg_flags = 0;
2008 	if (sock->file->f_flags & O_NONBLOCK)
2009 		flags |= MSG_DONTWAIT;
2010 	err = sock_recvmsg(sock, &msg, flags);
2011 
2012 	if (err >= 0 && addr != NULL) {
2013 		err2 = move_addr_to_user(&address,
2014 					 msg.msg_namelen, addr, addr_len);
2015 		if (err2 < 0)
2016 			err = err2;
2017 	}
2018 
2019 	fput_light(sock->file, fput_needed);
2020 out:
2021 	return err;
2022 }
2023 
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2024 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2025 		unsigned int, flags, struct sockaddr __user *, addr,
2026 		int __user *, addr_len)
2027 {
2028 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2029 }
2030 
2031 /*
2032  *	Receive a datagram from a socket.
2033  */
2034 
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2035 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2036 		unsigned int, flags)
2037 {
2038 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2039 }
2040 
2041 /*
2042  *	Set a socket option. Because we don't know the option lengths we have
2043  *	to pass the user mode parameter for the protocols to sort out.
2044  */
2045 
__sys_setsockopt(int fd,int level,int optname,char __user * optval,int optlen)2046 static int __sys_setsockopt(int fd, int level, int optname,
2047 			    char __user *optval, int optlen)
2048 {
2049 	mm_segment_t oldfs = get_fs();
2050 	char *kernel_optval = NULL;
2051 	int err, fput_needed;
2052 	struct socket *sock;
2053 
2054 	if (optlen < 0)
2055 		return -EINVAL;
2056 
2057 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2058 	if (sock != NULL) {
2059 		err = security_socket_setsockopt(sock, level, optname);
2060 		if (err)
2061 			goto out_put;
2062 
2063 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2064 						     &optname, optval, &optlen,
2065 						     &kernel_optval);
2066 
2067 		if (err < 0) {
2068 			goto out_put;
2069 		} else if (err > 0) {
2070 			err = 0;
2071 			goto out_put;
2072 		}
2073 
2074 		if (kernel_optval) {
2075 			set_fs(KERNEL_DS);
2076 			optval = (char __user __force *)kernel_optval;
2077 		}
2078 
2079 		if (level == SOL_SOCKET)
2080 			err =
2081 			    sock_setsockopt(sock, level, optname, optval,
2082 					    optlen);
2083 		else
2084 			err =
2085 			    sock->ops->setsockopt(sock, level, optname, optval,
2086 						  optlen);
2087 
2088 		if (kernel_optval) {
2089 			set_fs(oldfs);
2090 			kfree(kernel_optval);
2091 		}
2092 out_put:
2093 		fput_light(sock->file, fput_needed);
2094 	}
2095 	return err;
2096 }
2097 
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2098 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2099 		char __user *, optval, int, optlen)
2100 {
2101 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2102 }
2103 
2104 /*
2105  *	Get a socket option. Because we don't know the option lengths we have
2106  *	to pass a user mode parameter for the protocols to sort out.
2107  */
2108 
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2109 static int __sys_getsockopt(int fd, int level, int optname,
2110 			    char __user *optval, int __user *optlen)
2111 {
2112 	int err, fput_needed;
2113 	struct socket *sock;
2114 	int max_optlen;
2115 
2116 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2117 	if (sock != NULL) {
2118 		err = security_socket_getsockopt(sock, level, optname);
2119 		if (err)
2120 			goto out_put;
2121 
2122 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2123 
2124 		if (level == SOL_SOCKET)
2125 			err =
2126 			    sock_getsockopt(sock, level, optname, optval,
2127 					    optlen);
2128 		else
2129 			err =
2130 			    sock->ops->getsockopt(sock, level, optname, optval,
2131 						  optlen);
2132 
2133 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2134 						     optval, optlen,
2135 						     max_optlen, err);
2136 out_put:
2137 		fput_light(sock->file, fput_needed);
2138 	}
2139 	return err;
2140 }
2141 
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2142 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2143 		char __user *, optval, int __user *, optlen)
2144 {
2145 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2146 }
2147 
2148 /*
2149  *	Shutdown a socket.
2150  */
2151 
__sys_shutdown(int fd,int how)2152 int __sys_shutdown(int fd, int how)
2153 {
2154 	int err, fput_needed;
2155 	struct socket *sock;
2156 
2157 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2158 	if (sock != NULL) {
2159 		err = security_socket_shutdown(sock, how);
2160 		if (!err)
2161 			err = sock->ops->shutdown(sock, how);
2162 		fput_light(sock->file, fput_needed);
2163 	}
2164 	return err;
2165 }
2166 
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2167 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2168 {
2169 	return __sys_shutdown(fd, how);
2170 }
2171 
2172 /* A couple of helpful macros for getting the address of the 32/64 bit
2173  * fields which are the same type (int / unsigned) on our platforms.
2174  */
2175 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2176 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2177 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2178 
2179 struct used_address {
2180 	struct sockaddr_storage name;
2181 	unsigned int name_len;
2182 };
2183 
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2184 static int copy_msghdr_from_user(struct msghdr *kmsg,
2185 				 struct user_msghdr __user *umsg,
2186 				 struct sockaddr __user **save_addr,
2187 				 struct iovec **iov)
2188 {
2189 	struct user_msghdr msg;
2190 	ssize_t err;
2191 
2192 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2193 		return -EFAULT;
2194 
2195 	kmsg->msg_control = (void __force *)msg.msg_control;
2196 	kmsg->msg_controllen = msg.msg_controllen;
2197 	kmsg->msg_flags = msg.msg_flags;
2198 
2199 	kmsg->msg_namelen = msg.msg_namelen;
2200 	if (!msg.msg_name)
2201 		kmsg->msg_namelen = 0;
2202 
2203 	if (kmsg->msg_namelen < 0)
2204 		return -EINVAL;
2205 
2206 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2207 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2208 
2209 	if (save_addr)
2210 		*save_addr = msg.msg_name;
2211 
2212 	if (msg.msg_name && kmsg->msg_namelen) {
2213 		if (!save_addr) {
2214 			err = move_addr_to_kernel(msg.msg_name,
2215 						  kmsg->msg_namelen,
2216 						  kmsg->msg_name);
2217 			if (err < 0)
2218 				return err;
2219 		}
2220 	} else {
2221 		kmsg->msg_name = NULL;
2222 		kmsg->msg_namelen = 0;
2223 	}
2224 
2225 	if (msg.msg_iovlen > UIO_MAXIOV)
2226 		return -EMSGSIZE;
2227 
2228 	kmsg->msg_iocb = NULL;
2229 
2230 	err = import_iovec(save_addr ? READ : WRITE,
2231 			    msg.msg_iov, msg.msg_iovlen,
2232 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2233 	return err < 0 ? err : 0;
2234 }
2235 
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2236 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2237 			   unsigned int flags, struct used_address *used_address,
2238 			   unsigned int allowed_msghdr_flags)
2239 {
2240 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2241 				__aligned(sizeof(__kernel_size_t));
2242 	/* 20 is size of ipv6_pktinfo */
2243 	unsigned char *ctl_buf = ctl;
2244 	int ctl_len;
2245 	ssize_t err;
2246 
2247 	err = -ENOBUFS;
2248 
2249 	if (msg_sys->msg_controllen > INT_MAX)
2250 		goto out;
2251 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2252 	ctl_len = msg_sys->msg_controllen;
2253 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2254 		err =
2255 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2256 						     sizeof(ctl));
2257 		if (err)
2258 			goto out;
2259 		ctl_buf = msg_sys->msg_control;
2260 		ctl_len = msg_sys->msg_controllen;
2261 	} else if (ctl_len) {
2262 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2263 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2264 		if (ctl_len > sizeof(ctl)) {
2265 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2266 			if (ctl_buf == NULL)
2267 				goto out;
2268 		}
2269 		err = -EFAULT;
2270 		/*
2271 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2272 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2273 		 * checking falls down on this.
2274 		 */
2275 		if (copy_from_user(ctl_buf,
2276 				   (void __user __force *)msg_sys->msg_control,
2277 				   ctl_len))
2278 			goto out_freectl;
2279 		msg_sys->msg_control = ctl_buf;
2280 	}
2281 	msg_sys->msg_flags = flags;
2282 
2283 	if (sock->file->f_flags & O_NONBLOCK)
2284 		msg_sys->msg_flags |= MSG_DONTWAIT;
2285 	/*
2286 	 * If this is sendmmsg() and current destination address is same as
2287 	 * previously succeeded address, omit asking LSM's decision.
2288 	 * used_address->name_len is initialized to UINT_MAX so that the first
2289 	 * destination address never matches.
2290 	 */
2291 	if (used_address && msg_sys->msg_name &&
2292 	    used_address->name_len == msg_sys->msg_namelen &&
2293 	    !memcmp(&used_address->name, msg_sys->msg_name,
2294 		    used_address->name_len)) {
2295 		err = sock_sendmsg_nosec(sock, msg_sys);
2296 		goto out_freectl;
2297 	}
2298 	err = sock_sendmsg(sock, msg_sys);
2299 	/*
2300 	 * If this is sendmmsg() and sending to current destination address was
2301 	 * successful, remember it.
2302 	 */
2303 	if (used_address && err >= 0) {
2304 		used_address->name_len = msg_sys->msg_namelen;
2305 		if (msg_sys->msg_name)
2306 			memcpy(&used_address->name, msg_sys->msg_name,
2307 			       used_address->name_len);
2308 	}
2309 
2310 out_freectl:
2311 	if (ctl_buf != ctl)
2312 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2313 out:
2314 	return err;
2315 }
2316 
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2317 static int sendmsg_copy_msghdr(struct msghdr *msg,
2318 			       struct user_msghdr __user *umsg, unsigned flags,
2319 			       struct iovec **iov)
2320 {
2321 	int err;
2322 
2323 	if (flags & MSG_CMSG_COMPAT) {
2324 		struct compat_msghdr __user *msg_compat;
2325 
2326 		msg_compat = (struct compat_msghdr __user *) umsg;
2327 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2328 	} else {
2329 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2330 	}
2331 	if (err < 0)
2332 		return err;
2333 
2334 	return 0;
2335 }
2336 
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2337 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2338 			 struct msghdr *msg_sys, unsigned int flags,
2339 			 struct used_address *used_address,
2340 			 unsigned int allowed_msghdr_flags)
2341 {
2342 	struct sockaddr_storage address;
2343 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2344 	ssize_t err;
2345 
2346 	msg_sys->msg_name = &address;
2347 
2348 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2349 	if (err < 0)
2350 		return err;
2351 
2352 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2353 				allowed_msghdr_flags);
2354 	kfree(iov);
2355 	return err;
2356 }
2357 
2358 /*
2359  *	BSD sendmsg interface
2360  */
__sys_sendmsg_sock(struct socket * sock,struct user_msghdr __user * umsg,unsigned int flags)2361 long __sys_sendmsg_sock(struct socket *sock, struct user_msghdr __user *umsg,
2362 			unsigned int flags)
2363 {
2364 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2365 	struct sockaddr_storage address;
2366 	struct msghdr msg = { .msg_name = &address };
2367 	ssize_t err;
2368 
2369 	err = sendmsg_copy_msghdr(&msg, umsg, flags, &iov);
2370 	if (err)
2371 		return err;
2372 	/* disallow ancillary data requests from this path */
2373 	if (msg.msg_control || msg.msg_controllen) {
2374 		err = -EINVAL;
2375 		goto out;
2376 	}
2377 
2378 	err = ____sys_sendmsg(sock, &msg, flags, NULL, 0);
2379 out:
2380 	kfree(iov);
2381 	return err;
2382 }
2383 
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2384 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2385 		   bool forbid_cmsg_compat)
2386 {
2387 	int fput_needed, err;
2388 	struct msghdr msg_sys;
2389 	struct socket *sock;
2390 
2391 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2392 		return -EINVAL;
2393 
2394 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2395 	if (!sock)
2396 		goto out;
2397 
2398 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2399 
2400 	fput_light(sock->file, fput_needed);
2401 out:
2402 	return err;
2403 }
2404 
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2405 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2406 {
2407 	return __sys_sendmsg(fd, msg, flags, true);
2408 }
2409 
2410 /*
2411  *	Linux sendmmsg interface
2412  */
2413 
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2414 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2415 		   unsigned int flags, bool forbid_cmsg_compat)
2416 {
2417 	int fput_needed, err, datagrams;
2418 	struct socket *sock;
2419 	struct mmsghdr __user *entry;
2420 	struct compat_mmsghdr __user *compat_entry;
2421 	struct msghdr msg_sys;
2422 	struct used_address used_address;
2423 	unsigned int oflags = flags;
2424 
2425 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2426 		return -EINVAL;
2427 
2428 	if (vlen > UIO_MAXIOV)
2429 		vlen = UIO_MAXIOV;
2430 
2431 	datagrams = 0;
2432 
2433 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2434 	if (!sock)
2435 		return err;
2436 
2437 	used_address.name_len = UINT_MAX;
2438 	entry = mmsg;
2439 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2440 	err = 0;
2441 	flags |= MSG_BATCH;
2442 
2443 	while (datagrams < vlen) {
2444 		if (datagrams == vlen - 1)
2445 			flags = oflags;
2446 
2447 		if (MSG_CMSG_COMPAT & flags) {
2448 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2449 					     &msg_sys, flags, &used_address, MSG_EOR);
2450 			if (err < 0)
2451 				break;
2452 			err = __put_user(err, &compat_entry->msg_len);
2453 			++compat_entry;
2454 		} else {
2455 			err = ___sys_sendmsg(sock,
2456 					     (struct user_msghdr __user *)entry,
2457 					     &msg_sys, flags, &used_address, MSG_EOR);
2458 			if (err < 0)
2459 				break;
2460 			err = put_user(err, &entry->msg_len);
2461 			++entry;
2462 		}
2463 
2464 		if (err)
2465 			break;
2466 		++datagrams;
2467 		if (msg_data_left(&msg_sys))
2468 			break;
2469 		cond_resched();
2470 	}
2471 
2472 	fput_light(sock->file, fput_needed);
2473 
2474 	/* We only return an error if no datagrams were able to be sent */
2475 	if (datagrams != 0)
2476 		return datagrams;
2477 
2478 	return err;
2479 }
2480 
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2481 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2482 		unsigned int, vlen, unsigned int, flags)
2483 {
2484 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2485 }
2486 
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2487 static int recvmsg_copy_msghdr(struct msghdr *msg,
2488 			       struct user_msghdr __user *umsg, unsigned flags,
2489 			       struct sockaddr __user **uaddr,
2490 			       struct iovec **iov)
2491 {
2492 	ssize_t err;
2493 
2494 	if (MSG_CMSG_COMPAT & flags) {
2495 		struct compat_msghdr __user *msg_compat;
2496 
2497 		msg_compat = (struct compat_msghdr __user *) umsg;
2498 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2499 	} else {
2500 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2501 	}
2502 	if (err < 0)
2503 		return err;
2504 
2505 	return 0;
2506 }
2507 
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2508 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2509 			   struct user_msghdr __user *msg,
2510 			   struct sockaddr __user *uaddr,
2511 			   unsigned int flags, int nosec)
2512 {
2513 	struct compat_msghdr __user *msg_compat =
2514 					(struct compat_msghdr __user *) msg;
2515 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2516 	struct sockaddr_storage addr;
2517 	unsigned long cmsg_ptr;
2518 	int len;
2519 	ssize_t err;
2520 
2521 	msg_sys->msg_name = &addr;
2522 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2523 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2524 
2525 	/* We assume all kernel code knows the size of sockaddr_storage */
2526 	msg_sys->msg_namelen = 0;
2527 
2528 	if (sock->file->f_flags & O_NONBLOCK)
2529 		flags |= MSG_DONTWAIT;
2530 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2531 	if (err < 0)
2532 		goto out;
2533 	len = err;
2534 
2535 	if (uaddr != NULL) {
2536 		err = move_addr_to_user(&addr,
2537 					msg_sys->msg_namelen, uaddr,
2538 					uaddr_len);
2539 		if (err < 0)
2540 			goto out;
2541 	}
2542 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2543 			 COMPAT_FLAGS(msg));
2544 	if (err)
2545 		goto out;
2546 	if (MSG_CMSG_COMPAT & flags)
2547 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2548 				 &msg_compat->msg_controllen);
2549 	else
2550 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2551 				 &msg->msg_controllen);
2552 	if (err)
2553 		goto out;
2554 	err = len;
2555 out:
2556 	return err;
2557 }
2558 
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2559 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2560 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2561 {
2562 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2563 	/* user mode address pointers */
2564 	struct sockaddr __user *uaddr;
2565 	ssize_t err;
2566 
2567 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2568 	if (err < 0)
2569 		return err;
2570 
2571 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2572 	kfree(iov);
2573 	return err;
2574 }
2575 
2576 /*
2577  *	BSD recvmsg interface
2578  */
2579 
__sys_recvmsg_sock(struct socket * sock,struct user_msghdr __user * umsg,unsigned int flags)2580 long __sys_recvmsg_sock(struct socket *sock, struct user_msghdr __user *umsg,
2581 			unsigned int flags)
2582 {
2583 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2584 	struct sockaddr_storage address;
2585 	struct msghdr msg = { .msg_name = &address };
2586 	struct sockaddr __user *uaddr;
2587 	ssize_t err;
2588 
2589 	err = recvmsg_copy_msghdr(&msg, umsg, flags, &uaddr, &iov);
2590 	if (err)
2591 		return err;
2592 	/* disallow ancillary data requests from this path */
2593 	if (msg.msg_control || msg.msg_controllen) {
2594 		err = -EINVAL;
2595 		goto out;
2596 	}
2597 
2598 	err = ____sys_recvmsg(sock, &msg, umsg, uaddr, flags, 0);
2599 out:
2600 	kfree(iov);
2601 	return err;
2602 }
2603 
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2604 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2605 		   bool forbid_cmsg_compat)
2606 {
2607 	int fput_needed, err;
2608 	struct msghdr msg_sys;
2609 	struct socket *sock;
2610 
2611 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2612 		return -EINVAL;
2613 
2614 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2615 	if (!sock)
2616 		goto out;
2617 
2618 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2619 
2620 	fput_light(sock->file, fput_needed);
2621 out:
2622 	return err;
2623 }
2624 
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2625 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2626 		unsigned int, flags)
2627 {
2628 	return __sys_recvmsg(fd, msg, flags, true);
2629 }
2630 
2631 /*
2632  *     Linux recvmmsg interface
2633  */
2634 
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2635 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2636 			  unsigned int vlen, unsigned int flags,
2637 			  struct timespec64 *timeout)
2638 {
2639 	int fput_needed, err, datagrams;
2640 	struct socket *sock;
2641 	struct mmsghdr __user *entry;
2642 	struct compat_mmsghdr __user *compat_entry;
2643 	struct msghdr msg_sys;
2644 	struct timespec64 end_time;
2645 	struct timespec64 timeout64;
2646 
2647 	if (timeout &&
2648 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2649 				    timeout->tv_nsec))
2650 		return -EINVAL;
2651 
2652 	datagrams = 0;
2653 
2654 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2655 	if (!sock)
2656 		return err;
2657 
2658 	if (likely(!(flags & MSG_ERRQUEUE))) {
2659 		err = sock_error(sock->sk);
2660 		if (err) {
2661 			datagrams = err;
2662 			goto out_put;
2663 		}
2664 	}
2665 
2666 	entry = mmsg;
2667 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2668 
2669 	while (datagrams < vlen) {
2670 		/*
2671 		 * No need to ask LSM for more than the first datagram.
2672 		 */
2673 		if (MSG_CMSG_COMPAT & flags) {
2674 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2675 					     &msg_sys, flags & ~MSG_WAITFORONE,
2676 					     datagrams);
2677 			if (err < 0)
2678 				break;
2679 			err = __put_user(err, &compat_entry->msg_len);
2680 			++compat_entry;
2681 		} else {
2682 			err = ___sys_recvmsg(sock,
2683 					     (struct user_msghdr __user *)entry,
2684 					     &msg_sys, flags & ~MSG_WAITFORONE,
2685 					     datagrams);
2686 			if (err < 0)
2687 				break;
2688 			err = put_user(err, &entry->msg_len);
2689 			++entry;
2690 		}
2691 
2692 		if (err)
2693 			break;
2694 		++datagrams;
2695 
2696 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2697 		if (flags & MSG_WAITFORONE)
2698 			flags |= MSG_DONTWAIT;
2699 
2700 		if (timeout) {
2701 			ktime_get_ts64(&timeout64);
2702 			*timeout = timespec64_sub(end_time, timeout64);
2703 			if (timeout->tv_sec < 0) {
2704 				timeout->tv_sec = timeout->tv_nsec = 0;
2705 				break;
2706 			}
2707 
2708 			/* Timeout, return less than vlen datagrams */
2709 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2710 				break;
2711 		}
2712 
2713 		/* Out of band data, return right away */
2714 		if (msg_sys.msg_flags & MSG_OOB)
2715 			break;
2716 		cond_resched();
2717 	}
2718 
2719 	if (err == 0)
2720 		goto out_put;
2721 
2722 	if (datagrams == 0) {
2723 		datagrams = err;
2724 		goto out_put;
2725 	}
2726 
2727 	/*
2728 	 * We may return less entries than requested (vlen) if the
2729 	 * sock is non block and there aren't enough datagrams...
2730 	 */
2731 	if (err != -EAGAIN) {
2732 		/*
2733 		 * ... or  if recvmsg returns an error after we
2734 		 * received some datagrams, where we record the
2735 		 * error to return on the next call or if the
2736 		 * app asks about it using getsockopt(SO_ERROR).
2737 		 */
2738 		sock->sk->sk_err = -err;
2739 	}
2740 out_put:
2741 	fput_light(sock->file, fput_needed);
2742 
2743 	return datagrams;
2744 }
2745 
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2746 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2747 		   unsigned int vlen, unsigned int flags,
2748 		   struct __kernel_timespec __user *timeout,
2749 		   struct old_timespec32 __user *timeout32)
2750 {
2751 	int datagrams;
2752 	struct timespec64 timeout_sys;
2753 
2754 	if (timeout && get_timespec64(&timeout_sys, timeout))
2755 		return -EFAULT;
2756 
2757 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2758 		return -EFAULT;
2759 
2760 	if (!timeout && !timeout32)
2761 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2762 
2763 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2764 
2765 	if (datagrams <= 0)
2766 		return datagrams;
2767 
2768 	if (timeout && put_timespec64(&timeout_sys, timeout))
2769 		datagrams = -EFAULT;
2770 
2771 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2772 		datagrams = -EFAULT;
2773 
2774 	return datagrams;
2775 }
2776 
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)2777 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2778 		unsigned int, vlen, unsigned int, flags,
2779 		struct __kernel_timespec __user *, timeout)
2780 {
2781 	if (flags & MSG_CMSG_COMPAT)
2782 		return -EINVAL;
2783 
2784 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2785 }
2786 
2787 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)2788 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2789 		unsigned int, vlen, unsigned int, flags,
2790 		struct old_timespec32 __user *, timeout)
2791 {
2792 	if (flags & MSG_CMSG_COMPAT)
2793 		return -EINVAL;
2794 
2795 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2796 }
2797 #endif
2798 
2799 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2800 /* Argument list sizes for sys_socketcall */
2801 #define AL(x) ((x) * sizeof(unsigned long))
2802 static const unsigned char nargs[21] = {
2803 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2804 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2805 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2806 	AL(4), AL(5), AL(4)
2807 };
2808 
2809 #undef AL
2810 
2811 /*
2812  *	System call vectors.
2813  *
2814  *	Argument checking cleaned up. Saved 20% in size.
2815  *  This function doesn't need to set the kernel lock because
2816  *  it is set by the callees.
2817  */
2818 
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2819 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2820 {
2821 	unsigned long a[AUDITSC_ARGS];
2822 	unsigned long a0, a1;
2823 	int err;
2824 	unsigned int len;
2825 
2826 	if (call < 1 || call > SYS_SENDMMSG)
2827 		return -EINVAL;
2828 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2829 
2830 	len = nargs[call];
2831 	if (len > sizeof(a))
2832 		return -EINVAL;
2833 
2834 	/* copy_from_user should be SMP safe. */
2835 	if (copy_from_user(a, args, len))
2836 		return -EFAULT;
2837 
2838 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2839 	if (err)
2840 		return err;
2841 
2842 	a0 = a[0];
2843 	a1 = a[1];
2844 
2845 	switch (call) {
2846 	case SYS_SOCKET:
2847 		err = __sys_socket(a0, a1, a[2]);
2848 		break;
2849 	case SYS_BIND:
2850 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2851 		break;
2852 	case SYS_CONNECT:
2853 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2854 		break;
2855 	case SYS_LISTEN:
2856 		err = __sys_listen(a0, a1);
2857 		break;
2858 	case SYS_ACCEPT:
2859 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2860 				    (int __user *)a[2], 0);
2861 		break;
2862 	case SYS_GETSOCKNAME:
2863 		err =
2864 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2865 				      (int __user *)a[2]);
2866 		break;
2867 	case SYS_GETPEERNAME:
2868 		err =
2869 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2870 				      (int __user *)a[2]);
2871 		break;
2872 	case SYS_SOCKETPAIR:
2873 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2874 		break;
2875 	case SYS_SEND:
2876 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2877 				   NULL, 0);
2878 		break;
2879 	case SYS_SENDTO:
2880 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2881 				   (struct sockaddr __user *)a[4], a[5]);
2882 		break;
2883 	case SYS_RECV:
2884 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2885 				     NULL, NULL);
2886 		break;
2887 	case SYS_RECVFROM:
2888 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2889 				     (struct sockaddr __user *)a[4],
2890 				     (int __user *)a[5]);
2891 		break;
2892 	case SYS_SHUTDOWN:
2893 		err = __sys_shutdown(a0, a1);
2894 		break;
2895 	case SYS_SETSOCKOPT:
2896 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2897 				       a[4]);
2898 		break;
2899 	case SYS_GETSOCKOPT:
2900 		err =
2901 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2902 				     (int __user *)a[4]);
2903 		break;
2904 	case SYS_SENDMSG:
2905 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2906 				    a[2], true);
2907 		break;
2908 	case SYS_SENDMMSG:
2909 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2910 				     a[3], true);
2911 		break;
2912 	case SYS_RECVMSG:
2913 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2914 				    a[2], true);
2915 		break;
2916 	case SYS_RECVMMSG:
2917 		if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2918 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2919 					     a[2], a[3],
2920 					     (struct __kernel_timespec __user *)a[4],
2921 					     NULL);
2922 		else
2923 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2924 					     a[2], a[3], NULL,
2925 					     (struct old_timespec32 __user *)a[4]);
2926 		break;
2927 	case SYS_ACCEPT4:
2928 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2929 				    (int __user *)a[2], a[3]);
2930 		break;
2931 	default:
2932 		err = -EINVAL;
2933 		break;
2934 	}
2935 	return err;
2936 }
2937 
2938 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2939 
2940 /**
2941  *	sock_register - add a socket protocol handler
2942  *	@ops: description of protocol
2943  *
2944  *	This function is called by a protocol handler that wants to
2945  *	advertise its address family, and have it linked into the
2946  *	socket interface. The value ops->family corresponds to the
2947  *	socket system call protocol family.
2948  */
sock_register(const struct net_proto_family * ops)2949 int sock_register(const struct net_proto_family *ops)
2950 {
2951 	int err;
2952 
2953 	if (ops->family >= NPROTO) {
2954 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2955 		return -ENOBUFS;
2956 	}
2957 
2958 	spin_lock(&net_family_lock);
2959 	if (rcu_dereference_protected(net_families[ops->family],
2960 				      lockdep_is_held(&net_family_lock)))
2961 		err = -EEXIST;
2962 	else {
2963 		rcu_assign_pointer(net_families[ops->family], ops);
2964 		err = 0;
2965 	}
2966 	spin_unlock(&net_family_lock);
2967 
2968 	pr_info("NET: Registered protocol family %d\n", ops->family);
2969 	return err;
2970 }
2971 EXPORT_SYMBOL(sock_register);
2972 
2973 /**
2974  *	sock_unregister - remove a protocol handler
2975  *	@family: protocol family to remove
2976  *
2977  *	This function is called by a protocol handler that wants to
2978  *	remove its address family, and have it unlinked from the
2979  *	new socket creation.
2980  *
2981  *	If protocol handler is a module, then it can use module reference
2982  *	counts to protect against new references. If protocol handler is not
2983  *	a module then it needs to provide its own protection in
2984  *	the ops->create routine.
2985  */
sock_unregister(int family)2986 void sock_unregister(int family)
2987 {
2988 	BUG_ON(family < 0 || family >= NPROTO);
2989 
2990 	spin_lock(&net_family_lock);
2991 	RCU_INIT_POINTER(net_families[family], NULL);
2992 	spin_unlock(&net_family_lock);
2993 
2994 	synchronize_rcu();
2995 
2996 	pr_info("NET: Unregistered protocol family %d\n", family);
2997 }
2998 EXPORT_SYMBOL(sock_unregister);
2999 
sock_is_registered(int family)3000 bool sock_is_registered(int family)
3001 {
3002 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3003 }
3004 
sock_init(void)3005 static int __init sock_init(void)
3006 {
3007 	int err;
3008 	/*
3009 	 *      Initialize the network sysctl infrastructure.
3010 	 */
3011 	err = net_sysctl_init();
3012 	if (err)
3013 		goto out;
3014 
3015 	/*
3016 	 *      Initialize skbuff SLAB cache
3017 	 */
3018 	skb_init();
3019 
3020 	/*
3021 	 *      Initialize the protocols module.
3022 	 */
3023 
3024 	init_inodecache();
3025 
3026 	err = register_filesystem(&sock_fs_type);
3027 	if (err)
3028 		goto out_fs;
3029 	sock_mnt = kern_mount(&sock_fs_type);
3030 	if (IS_ERR(sock_mnt)) {
3031 		err = PTR_ERR(sock_mnt);
3032 		goto out_mount;
3033 	}
3034 
3035 	/* The real protocol initialization is performed in later initcalls.
3036 	 */
3037 
3038 #ifdef CONFIG_NETFILTER
3039 	err = netfilter_init();
3040 	if (err)
3041 		goto out;
3042 #endif
3043 
3044 	ptp_classifier_init();
3045 
3046 out:
3047 	return err;
3048 
3049 out_mount:
3050 	unregister_filesystem(&sock_fs_type);
3051 out_fs:
3052 	goto out;
3053 }
3054 
3055 core_initcall(sock_init);	/* early initcall */
3056 
3057 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3058 void socket_seq_show(struct seq_file *seq)
3059 {
3060 	seq_printf(seq, "sockets: used %d\n",
3061 		   sock_inuse_get(seq->private));
3062 }
3063 #endif				/* CONFIG_PROC_FS */
3064 
3065 #ifdef CONFIG_COMPAT
compat_dev_ifconf(struct net * net,struct compat_ifconf __user * uifc32)3066 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3067 {
3068 	struct compat_ifconf ifc32;
3069 	struct ifconf ifc;
3070 	int err;
3071 
3072 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3073 		return -EFAULT;
3074 
3075 	ifc.ifc_len = ifc32.ifc_len;
3076 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3077 
3078 	rtnl_lock();
3079 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3080 	rtnl_unlock();
3081 	if (err)
3082 		return err;
3083 
3084 	ifc32.ifc_len = ifc.ifc_len;
3085 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3086 		return -EFAULT;
3087 
3088 	return 0;
3089 }
3090 
ethtool_ioctl(struct net * net,struct compat_ifreq __user * ifr32)3091 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3092 {
3093 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
3094 	bool convert_in = false, convert_out = false;
3095 	size_t buf_size = 0;
3096 	struct ethtool_rxnfc __user *rxnfc = NULL;
3097 	struct ifreq ifr;
3098 	u32 rule_cnt = 0, actual_rule_cnt;
3099 	u32 ethcmd;
3100 	u32 data;
3101 	int ret;
3102 
3103 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3104 		return -EFAULT;
3105 
3106 	compat_rxnfc = compat_ptr(data);
3107 
3108 	if (get_user(ethcmd, &compat_rxnfc->cmd))
3109 		return -EFAULT;
3110 
3111 	/* Most ethtool structures are defined without padding.
3112 	 * Unfortunately struct ethtool_rxnfc is an exception.
3113 	 */
3114 	switch (ethcmd) {
3115 	default:
3116 		break;
3117 	case ETHTOOL_GRXCLSRLALL:
3118 		/* Buffer size is variable */
3119 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3120 			return -EFAULT;
3121 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3122 			return -ENOMEM;
3123 		buf_size += rule_cnt * sizeof(u32);
3124 		/* fall through */
3125 	case ETHTOOL_GRXRINGS:
3126 	case ETHTOOL_GRXCLSRLCNT:
3127 	case ETHTOOL_GRXCLSRULE:
3128 	case ETHTOOL_SRXCLSRLINS:
3129 		convert_out = true;
3130 		/* fall through */
3131 	case ETHTOOL_SRXCLSRLDEL:
3132 		buf_size += sizeof(struct ethtool_rxnfc);
3133 		convert_in = true;
3134 		rxnfc = compat_alloc_user_space(buf_size);
3135 		break;
3136 	}
3137 
3138 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3139 		return -EFAULT;
3140 
3141 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3142 
3143 	if (convert_in) {
3144 		/* We expect there to be holes between fs.m_ext and
3145 		 * fs.ring_cookie and at the end of fs, but nowhere else.
3146 		 */
3147 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3148 			     sizeof(compat_rxnfc->fs.m_ext) !=
3149 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3150 			     sizeof(rxnfc->fs.m_ext));
3151 		BUILD_BUG_ON(
3152 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3153 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3154 			offsetof(struct ethtool_rxnfc, fs.location) -
3155 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3156 
3157 		if (copy_in_user(rxnfc, compat_rxnfc,
3158 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3159 				 (void __user *)rxnfc) ||
3160 		    copy_in_user(&rxnfc->fs.ring_cookie,
3161 				 &compat_rxnfc->fs.ring_cookie,
3162 				 (void __user *)(&rxnfc->fs.location + 1) -
3163 				 (void __user *)&rxnfc->fs.ring_cookie))
3164 			return -EFAULT;
3165 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3166 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3167 				return -EFAULT;
3168 		} else if (copy_in_user(&rxnfc->rule_cnt,
3169 					&compat_rxnfc->rule_cnt,
3170 					sizeof(rxnfc->rule_cnt)))
3171 			return -EFAULT;
3172 	}
3173 
3174 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3175 	if (ret)
3176 		return ret;
3177 
3178 	if (convert_out) {
3179 		if (copy_in_user(compat_rxnfc, rxnfc,
3180 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3181 				 (const void __user *)rxnfc) ||
3182 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3183 				 &rxnfc->fs.ring_cookie,
3184 				 (const void __user *)(&rxnfc->fs.location + 1) -
3185 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3186 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3187 				 sizeof(rxnfc->rule_cnt)))
3188 			return -EFAULT;
3189 
3190 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3191 			/* As an optimisation, we only copy the actual
3192 			 * number of rules that the underlying
3193 			 * function returned.  Since Mallory might
3194 			 * change the rule count in user memory, we
3195 			 * check that it is less than the rule count
3196 			 * originally given (as the user buffer size),
3197 			 * which has been range-checked.
3198 			 */
3199 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3200 				return -EFAULT;
3201 			if (actual_rule_cnt < rule_cnt)
3202 				rule_cnt = actual_rule_cnt;
3203 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3204 					 &rxnfc->rule_locs[0],
3205 					 rule_cnt * sizeof(u32)))
3206 				return -EFAULT;
3207 		}
3208 	}
3209 
3210 	return 0;
3211 }
3212 
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3213 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3214 {
3215 	compat_uptr_t uptr32;
3216 	struct ifreq ifr;
3217 	void __user *saved;
3218 	int err;
3219 
3220 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3221 		return -EFAULT;
3222 
3223 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3224 		return -EFAULT;
3225 
3226 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3227 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3228 
3229 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3230 	if (!err) {
3231 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3232 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3233 			err = -EFAULT;
3234 	}
3235 	return err;
3236 }
3237 
3238 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3239 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3240 				 struct compat_ifreq __user *u_ifreq32)
3241 {
3242 	struct ifreq ifreq;
3243 	u32 data32;
3244 
3245 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3246 		return -EFAULT;
3247 	if (get_user(data32, &u_ifreq32->ifr_data))
3248 		return -EFAULT;
3249 	ifreq.ifr_data = compat_ptr(data32);
3250 
3251 	return dev_ioctl(net, cmd, &ifreq, NULL);
3252 }
3253 
compat_ifreq_ioctl(struct net * net,struct socket * sock,unsigned int cmd,struct compat_ifreq __user * uifr32)3254 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3255 			      unsigned int cmd,
3256 			      struct compat_ifreq __user *uifr32)
3257 {
3258 	struct ifreq __user *uifr;
3259 	int err;
3260 
3261 	/* Handle the fact that while struct ifreq has the same *layout* on
3262 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3263 	 * which are handled elsewhere, it still has different *size* due to
3264 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3265 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3266 	 * As a result, if the struct happens to be at the end of a page and
3267 	 * the next page isn't readable/writable, we get a fault. To prevent
3268 	 * that, copy back and forth to the full size.
3269 	 */
3270 
3271 	uifr = compat_alloc_user_space(sizeof(*uifr));
3272 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3273 		return -EFAULT;
3274 
3275 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3276 
3277 	if (!err) {
3278 		switch (cmd) {
3279 		case SIOCGIFFLAGS:
3280 		case SIOCGIFMETRIC:
3281 		case SIOCGIFMTU:
3282 		case SIOCGIFMEM:
3283 		case SIOCGIFHWADDR:
3284 		case SIOCGIFINDEX:
3285 		case SIOCGIFADDR:
3286 		case SIOCGIFBRDADDR:
3287 		case SIOCGIFDSTADDR:
3288 		case SIOCGIFNETMASK:
3289 		case SIOCGIFPFLAGS:
3290 		case SIOCGIFTXQLEN:
3291 		case SIOCGMIIPHY:
3292 		case SIOCGMIIREG:
3293 		case SIOCGIFNAME:
3294 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3295 				err = -EFAULT;
3296 			break;
3297 		}
3298 	}
3299 	return err;
3300 }
3301 
compat_sioc_ifmap(struct net * net,unsigned int cmd,struct compat_ifreq __user * uifr32)3302 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3303 			struct compat_ifreq __user *uifr32)
3304 {
3305 	struct ifreq ifr;
3306 	struct compat_ifmap __user *uifmap32;
3307 	int err;
3308 
3309 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3310 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3311 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3312 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3313 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3314 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3315 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3316 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3317 	if (err)
3318 		return -EFAULT;
3319 
3320 	err = dev_ioctl(net, cmd, &ifr, NULL);
3321 
3322 	if (cmd == SIOCGIFMAP && !err) {
3323 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3324 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3325 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3326 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3327 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3328 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3329 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3330 		if (err)
3331 			err = -EFAULT;
3332 	}
3333 	return err;
3334 }
3335 
3336 struct rtentry32 {
3337 	u32		rt_pad1;
3338 	struct sockaddr rt_dst;         /* target address               */
3339 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3340 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3341 	unsigned short	rt_flags;
3342 	short		rt_pad2;
3343 	u32		rt_pad3;
3344 	unsigned char	rt_tos;
3345 	unsigned char	rt_class;
3346 	short		rt_pad4;
3347 	short		rt_metric;      /* +1 for binary compatibility! */
3348 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3349 	u32		rt_mtu;         /* per route MTU/Window         */
3350 	u32		rt_window;      /* Window clamping              */
3351 	unsigned short  rt_irtt;        /* Initial RTT                  */
3352 };
3353 
3354 struct in6_rtmsg32 {
3355 	struct in6_addr		rtmsg_dst;
3356 	struct in6_addr		rtmsg_src;
3357 	struct in6_addr		rtmsg_gateway;
3358 	u32			rtmsg_type;
3359 	u16			rtmsg_dst_len;
3360 	u16			rtmsg_src_len;
3361 	u32			rtmsg_metric;
3362 	u32			rtmsg_info;
3363 	u32			rtmsg_flags;
3364 	s32			rtmsg_ifindex;
3365 };
3366 
routing_ioctl(struct net * net,struct socket * sock,unsigned int cmd,void __user * argp)3367 static int routing_ioctl(struct net *net, struct socket *sock,
3368 			 unsigned int cmd, void __user *argp)
3369 {
3370 	int ret;
3371 	void *r = NULL;
3372 	struct in6_rtmsg r6;
3373 	struct rtentry r4;
3374 	char devname[16];
3375 	u32 rtdev;
3376 	mm_segment_t old_fs = get_fs();
3377 
3378 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3379 		struct in6_rtmsg32 __user *ur6 = argp;
3380 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3381 			3 * sizeof(struct in6_addr));
3382 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3383 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3384 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3385 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3386 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3387 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3388 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3389 
3390 		r = (void *) &r6;
3391 	} else { /* ipv4 */
3392 		struct rtentry32 __user *ur4 = argp;
3393 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3394 					3 * sizeof(struct sockaddr));
3395 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3396 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3397 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3398 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3399 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3400 		ret |= get_user(rtdev, &(ur4->rt_dev));
3401 		if (rtdev) {
3402 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3403 			r4.rt_dev = (char __user __force *)devname;
3404 			devname[15] = 0;
3405 		} else
3406 			r4.rt_dev = NULL;
3407 
3408 		r = (void *) &r4;
3409 	}
3410 
3411 	if (ret) {
3412 		ret = -EFAULT;
3413 		goto out;
3414 	}
3415 
3416 	set_fs(KERNEL_DS);
3417 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3418 	set_fs(old_fs);
3419 
3420 out:
3421 	return ret;
3422 }
3423 
3424 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3425  * for some operations; this forces use of the newer bridge-utils that
3426  * use compatible ioctls
3427  */
old_bridge_ioctl(compat_ulong_t __user * argp)3428 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3429 {
3430 	compat_ulong_t tmp;
3431 
3432 	if (get_user(tmp, argp))
3433 		return -EFAULT;
3434 	if (tmp == BRCTL_GET_VERSION)
3435 		return BRCTL_VERSION + 1;
3436 	return -EINVAL;
3437 }
3438 
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3439 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3440 			 unsigned int cmd, unsigned long arg)
3441 {
3442 	void __user *argp = compat_ptr(arg);
3443 	struct sock *sk = sock->sk;
3444 	struct net *net = sock_net(sk);
3445 
3446 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3447 		return compat_ifr_data_ioctl(net, cmd, argp);
3448 
3449 	switch (cmd) {
3450 	case SIOCSIFBR:
3451 	case SIOCGIFBR:
3452 		return old_bridge_ioctl(argp);
3453 	case SIOCGIFCONF:
3454 		return compat_dev_ifconf(net, argp);
3455 	case SIOCETHTOOL:
3456 		return ethtool_ioctl(net, argp);
3457 	case SIOCWANDEV:
3458 		return compat_siocwandev(net, argp);
3459 	case SIOCGIFMAP:
3460 	case SIOCSIFMAP:
3461 		return compat_sioc_ifmap(net, cmd, argp);
3462 	case SIOCADDRT:
3463 	case SIOCDELRT:
3464 		return routing_ioctl(net, sock, cmd, argp);
3465 	case SIOCGSTAMP_OLD:
3466 	case SIOCGSTAMPNS_OLD:
3467 		if (!sock->ops->gettstamp)
3468 			return -ENOIOCTLCMD;
3469 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3470 					    !COMPAT_USE_64BIT_TIME);
3471 
3472 	case SIOCBONDSLAVEINFOQUERY:
3473 	case SIOCBONDINFOQUERY:
3474 	case SIOCSHWTSTAMP:
3475 	case SIOCGHWTSTAMP:
3476 		return compat_ifr_data_ioctl(net, cmd, argp);
3477 
3478 	case FIOSETOWN:
3479 	case SIOCSPGRP:
3480 	case FIOGETOWN:
3481 	case SIOCGPGRP:
3482 	case SIOCBRADDBR:
3483 	case SIOCBRDELBR:
3484 	case SIOCGIFVLAN:
3485 	case SIOCSIFVLAN:
3486 	case SIOCADDDLCI:
3487 	case SIOCDELDLCI:
3488 	case SIOCGSKNS:
3489 	case SIOCGSTAMP_NEW:
3490 	case SIOCGSTAMPNS_NEW:
3491 		return sock_ioctl(file, cmd, arg);
3492 
3493 	case SIOCGIFFLAGS:
3494 	case SIOCSIFFLAGS:
3495 	case SIOCGIFMETRIC:
3496 	case SIOCSIFMETRIC:
3497 	case SIOCGIFMTU:
3498 	case SIOCSIFMTU:
3499 	case SIOCGIFMEM:
3500 	case SIOCSIFMEM:
3501 	case SIOCGIFHWADDR:
3502 	case SIOCSIFHWADDR:
3503 	case SIOCADDMULTI:
3504 	case SIOCDELMULTI:
3505 	case SIOCGIFINDEX:
3506 	case SIOCGIFADDR:
3507 	case SIOCSIFADDR:
3508 	case SIOCSIFHWBROADCAST:
3509 	case SIOCDIFADDR:
3510 	case SIOCGIFBRDADDR:
3511 	case SIOCSIFBRDADDR:
3512 	case SIOCGIFDSTADDR:
3513 	case SIOCSIFDSTADDR:
3514 	case SIOCGIFNETMASK:
3515 	case SIOCSIFNETMASK:
3516 	case SIOCSIFPFLAGS:
3517 	case SIOCGIFPFLAGS:
3518 	case SIOCGIFTXQLEN:
3519 	case SIOCSIFTXQLEN:
3520 	case SIOCBRADDIF:
3521 	case SIOCBRDELIF:
3522 	case SIOCGIFNAME:
3523 	case SIOCSIFNAME:
3524 	case SIOCGMIIPHY:
3525 	case SIOCGMIIREG:
3526 	case SIOCSMIIREG:
3527 	case SIOCBONDENSLAVE:
3528 	case SIOCBONDRELEASE:
3529 	case SIOCBONDSETHWADDR:
3530 	case SIOCBONDCHANGEACTIVE:
3531 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3532 
3533 	case SIOCSARP:
3534 	case SIOCGARP:
3535 	case SIOCDARP:
3536 	case SIOCOUTQNSD:
3537 	case SIOCATMARK:
3538 		return sock_do_ioctl(net, sock, cmd, arg);
3539 	}
3540 
3541 	return -ENOIOCTLCMD;
3542 }
3543 
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3544 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3545 			      unsigned long arg)
3546 {
3547 	struct socket *sock = file->private_data;
3548 	int ret = -ENOIOCTLCMD;
3549 	struct sock *sk;
3550 	struct net *net;
3551 
3552 	sk = sock->sk;
3553 	net = sock_net(sk);
3554 
3555 	if (sock->ops->compat_ioctl)
3556 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3557 
3558 	if (ret == -ENOIOCTLCMD &&
3559 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3560 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3561 
3562 	if (ret == -ENOIOCTLCMD)
3563 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3564 
3565 	return ret;
3566 }
3567 #endif
3568 
3569 /**
3570  *	kernel_bind - bind an address to a socket (kernel space)
3571  *	@sock: socket
3572  *	@addr: address
3573  *	@addrlen: length of address
3574  *
3575  *	Returns 0 or an error.
3576  */
3577 
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3578 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3579 {
3580 	return sock->ops->bind(sock, addr, addrlen);
3581 }
3582 EXPORT_SYMBOL(kernel_bind);
3583 
3584 /**
3585  *	kernel_listen - move socket to listening state (kernel space)
3586  *	@sock: socket
3587  *	@backlog: pending connections queue size
3588  *
3589  *	Returns 0 or an error.
3590  */
3591 
kernel_listen(struct socket * sock,int backlog)3592 int kernel_listen(struct socket *sock, int backlog)
3593 {
3594 	return sock->ops->listen(sock, backlog);
3595 }
3596 EXPORT_SYMBOL(kernel_listen);
3597 
3598 /**
3599  *	kernel_accept - accept a connection (kernel space)
3600  *	@sock: listening socket
3601  *	@newsock: new connected socket
3602  *	@flags: flags
3603  *
3604  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3605  *	If it fails, @newsock is guaranteed to be %NULL.
3606  *	Returns 0 or an error.
3607  */
3608 
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3609 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3610 {
3611 	struct sock *sk = sock->sk;
3612 	int err;
3613 
3614 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3615 			       newsock);
3616 	if (err < 0)
3617 		goto done;
3618 
3619 	err = sock->ops->accept(sock, *newsock, flags, true);
3620 	if (err < 0) {
3621 		sock_release(*newsock);
3622 		*newsock = NULL;
3623 		goto done;
3624 	}
3625 
3626 	(*newsock)->ops = sock->ops;
3627 	__module_get((*newsock)->ops->owner);
3628 
3629 done:
3630 	return err;
3631 }
3632 EXPORT_SYMBOL(kernel_accept);
3633 
3634 /**
3635  *	kernel_connect - connect a socket (kernel space)
3636  *	@sock: socket
3637  *	@addr: address
3638  *	@addrlen: address length
3639  *	@flags: flags (O_NONBLOCK, ...)
3640  *
3641  *	For datagram sockets, @addr is the addres to which datagrams are sent
3642  *	by default, and the only address from which datagrams are received.
3643  *	For stream sockets, attempts to connect to @addr.
3644  *	Returns 0 or an error code.
3645  */
3646 
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3647 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3648 		   int flags)
3649 {
3650 	return sock->ops->connect(sock, addr, addrlen, flags);
3651 }
3652 EXPORT_SYMBOL(kernel_connect);
3653 
3654 /**
3655  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3656  *	@sock: socket
3657  *	@addr: address holder
3658  *
3659  * 	Fills the @addr pointer with the address which the socket is bound.
3660  *	Returns 0 or an error code.
3661  */
3662 
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3663 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3664 {
3665 	return sock->ops->getname(sock, addr, 0);
3666 }
3667 EXPORT_SYMBOL(kernel_getsockname);
3668 
3669 /**
3670  *	kernel_peername - get the address which the socket is connected (kernel space)
3671  *	@sock: socket
3672  *	@addr: address holder
3673  *
3674  * 	Fills the @addr pointer with the address which the socket is connected.
3675  *	Returns 0 or an error code.
3676  */
3677 
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3678 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3679 {
3680 	return sock->ops->getname(sock, addr, 1);
3681 }
3682 EXPORT_SYMBOL(kernel_getpeername);
3683 
3684 /**
3685  *	kernel_getsockopt - get a socket option (kernel space)
3686  *	@sock: socket
3687  *	@level: API level (SOL_SOCKET, ...)
3688  *	@optname: option tag
3689  *	@optval: option value
3690  *	@optlen: option length
3691  *
3692  *	Assigns the option length to @optlen.
3693  *	Returns 0 or an error.
3694  */
3695 
kernel_getsockopt(struct socket * sock,int level,int optname,char * optval,int * optlen)3696 int kernel_getsockopt(struct socket *sock, int level, int optname,
3697 			char *optval, int *optlen)
3698 {
3699 	mm_segment_t oldfs = get_fs();
3700 	char __user *uoptval;
3701 	int __user *uoptlen;
3702 	int err;
3703 
3704 	uoptval = (char __user __force *) optval;
3705 	uoptlen = (int __user __force *) optlen;
3706 
3707 	set_fs(KERNEL_DS);
3708 	if (level == SOL_SOCKET)
3709 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3710 	else
3711 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3712 					    uoptlen);
3713 	set_fs(oldfs);
3714 	return err;
3715 }
3716 EXPORT_SYMBOL(kernel_getsockopt);
3717 
3718 /**
3719  *	kernel_setsockopt - set a socket option (kernel space)
3720  *	@sock: socket
3721  *	@level: API level (SOL_SOCKET, ...)
3722  *	@optname: option tag
3723  *	@optval: option value
3724  *	@optlen: option length
3725  *
3726  *	Returns 0 or an error.
3727  */
3728 
kernel_setsockopt(struct socket * sock,int level,int optname,char * optval,unsigned int optlen)3729 int kernel_setsockopt(struct socket *sock, int level, int optname,
3730 			char *optval, unsigned int optlen)
3731 {
3732 	mm_segment_t oldfs = get_fs();
3733 	char __user *uoptval;
3734 	int err;
3735 
3736 	uoptval = (char __user __force *) optval;
3737 
3738 	set_fs(KERNEL_DS);
3739 	if (level == SOL_SOCKET)
3740 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3741 	else
3742 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3743 					    optlen);
3744 	set_fs(oldfs);
3745 	return err;
3746 }
3747 EXPORT_SYMBOL(kernel_setsockopt);
3748 
3749 /**
3750  *	kernel_sendpage - send a &page through a socket (kernel space)
3751  *	@sock: socket
3752  *	@page: page
3753  *	@offset: page offset
3754  *	@size: total size in bytes
3755  *	@flags: flags (MSG_DONTWAIT, ...)
3756  *
3757  *	Returns the total amount sent in bytes or an error.
3758  */
3759 
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3760 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3761 		    size_t size, int flags)
3762 {
3763 	if (sock->ops->sendpage)
3764 		return sock->ops->sendpage(sock, page, offset, size, flags);
3765 
3766 	return sock_no_sendpage(sock, page, offset, size, flags);
3767 }
3768 EXPORT_SYMBOL(kernel_sendpage);
3769 
3770 /**
3771  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3772  *	@sk: sock
3773  *	@page: page
3774  *	@offset: page offset
3775  *	@size: total size in bytes
3776  *	@flags: flags (MSG_DONTWAIT, ...)
3777  *
3778  *	Returns the total amount sent in bytes or an error.
3779  *	Caller must hold @sk.
3780  */
3781 
kernel_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)3782 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3783 			   size_t size, int flags)
3784 {
3785 	struct socket *sock = sk->sk_socket;
3786 
3787 	if (sock->ops->sendpage_locked)
3788 		return sock->ops->sendpage_locked(sk, page, offset, size,
3789 						  flags);
3790 
3791 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3792 }
3793 EXPORT_SYMBOL(kernel_sendpage_locked);
3794 
3795 /**
3796  *	kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3797  *	@sock: socket
3798  *	@how: connection part
3799  *
3800  *	Returns 0 or an error.
3801  */
3802 
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3803 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3804 {
3805 	return sock->ops->shutdown(sock, how);
3806 }
3807 EXPORT_SYMBOL(kernel_sock_shutdown);
3808 
3809 /**
3810  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3811  *	@sk: socket
3812  *
3813  *	This routine returns the IP overhead imposed by a socket i.e.
3814  *	the length of the underlying IP header, depending on whether
3815  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3816  *	on at the socket. Assumes that the caller has a lock on the socket.
3817  */
3818 
kernel_sock_ip_overhead(struct sock * sk)3819 u32 kernel_sock_ip_overhead(struct sock *sk)
3820 {
3821 	struct inet_sock *inet;
3822 	struct ip_options_rcu *opt;
3823 	u32 overhead = 0;
3824 #if IS_ENABLED(CONFIG_IPV6)
3825 	struct ipv6_pinfo *np;
3826 	struct ipv6_txoptions *optv6 = NULL;
3827 #endif /* IS_ENABLED(CONFIG_IPV6) */
3828 
3829 	if (!sk)
3830 		return overhead;
3831 
3832 	switch (sk->sk_family) {
3833 	case AF_INET:
3834 		inet = inet_sk(sk);
3835 		overhead += sizeof(struct iphdr);
3836 		opt = rcu_dereference_protected(inet->inet_opt,
3837 						sock_owned_by_user(sk));
3838 		if (opt)
3839 			overhead += opt->opt.optlen;
3840 		return overhead;
3841 #if IS_ENABLED(CONFIG_IPV6)
3842 	case AF_INET6:
3843 		np = inet6_sk(sk);
3844 		overhead += sizeof(struct ipv6hdr);
3845 		if (np)
3846 			optv6 = rcu_dereference_protected(np->opt,
3847 							  sock_owned_by_user(sk));
3848 		if (optv6)
3849 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3850 		return overhead;
3851 #endif /* IS_ENABLED(CONFIG_IPV6) */
3852 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3853 		return overhead;
3854 	}
3855 }
3856 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3857