1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/sockios.h>
104 #include <net/busy_poll.h>
105 #include <linux/errqueue.h>
106
107 #ifdef CONFIG_NET_RX_BUSY_POLL
108 unsigned int sysctl_net_busy_read __read_mostly;
109 unsigned int sysctl_net_busy_poll __read_mostly;
110 #endif
111
112 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
113 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
114 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115
116 static int sock_close(struct inode *inode, struct file *file);
117 static __poll_t sock_poll(struct file *file,
118 struct poll_table_struct *wait);
119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
120 #ifdef CONFIG_COMPAT
121 static long compat_sock_ioctl(struct file *file,
122 unsigned int cmd, unsigned long arg);
123 #endif
124 static int sock_fasync(int fd, struct file *filp, int on);
125 static ssize_t sock_sendpage(struct file *file, struct page *page,
126 int offset, size_t size, loff_t *ppos, int more);
127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
128 struct pipe_inode_info *pipe, size_t len,
129 unsigned int flags);
130
131 /*
132 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
133 * in the operation structures but are done directly via the socketcall() multiplexor.
134 */
135
136 static const struct file_operations socket_file_ops = {
137 .owner = THIS_MODULE,
138 .llseek = no_llseek,
139 .read_iter = sock_read_iter,
140 .write_iter = sock_write_iter,
141 .poll = sock_poll,
142 .unlocked_ioctl = sock_ioctl,
143 #ifdef CONFIG_COMPAT
144 .compat_ioctl = compat_sock_ioctl,
145 #endif
146 .mmap = sock_mmap,
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
152 };
153
154 /*
155 * The protocol list. Each protocol is registered in here.
156 */
157
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160
161 /*
162 * Support routines.
163 * Move socket addresses back and forth across the kernel/user
164 * divide and look after the messy bits.
165 */
166
167 /**
168 * move_addr_to_kernel - copy a socket address into kernel space
169 * @uaddr: Address in user space
170 * @kaddr: Address in kernel space
171 * @ulen: Length in user space
172 *
173 * The address is copied into kernel space. If the provided address is
174 * too long an error code of -EINVAL is returned. If the copy gives
175 * invalid addresses -EFAULT is returned. On a success 0 is returned.
176 */
177
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)178 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
179 {
180 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
181 return -EINVAL;
182 if (ulen == 0)
183 return 0;
184 if (copy_from_user(kaddr, uaddr, ulen))
185 return -EFAULT;
186 return audit_sockaddr(ulen, kaddr);
187 }
188
189 /**
190 * move_addr_to_user - copy an address to user space
191 * @kaddr: kernel space address
192 * @klen: length of address in kernel
193 * @uaddr: user space address
194 * @ulen: pointer to user length field
195 *
196 * The value pointed to by ulen on entry is the buffer length available.
197 * This is overwritten with the buffer space used. -EINVAL is returned
198 * if an overlong buffer is specified or a negative buffer size. -EFAULT
199 * is returned if either the buffer or the length field are not
200 * accessible.
201 * After copying the data up to the limit the user specifies, the true
202 * length of the data is written over the length limit the user
203 * specified. Zero is returned for a success.
204 */
205
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)206 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
207 void __user *uaddr, int __user *ulen)
208 {
209 int err;
210 int len;
211
212 BUG_ON(klen > sizeof(struct sockaddr_storage));
213 err = get_user(len, ulen);
214 if (err)
215 return err;
216 if (len > klen)
217 len = klen;
218 if (len < 0)
219 return -EINVAL;
220 if (len) {
221 if (audit_sockaddr(klen, kaddr))
222 return -ENOMEM;
223 if (copy_to_user(uaddr, kaddr, len))
224 return -EFAULT;
225 }
226 /*
227 * "fromlen shall refer to the value before truncation.."
228 * 1003.1g
229 */
230 return __put_user(klen, ulen);
231 }
232
233 static struct kmem_cache *sock_inode_cachep __ro_after_init;
234
sock_alloc_inode(struct super_block * sb)235 static struct inode *sock_alloc_inode(struct super_block *sb)
236 {
237 struct socket_alloc *ei;
238
239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
240 if (!ei)
241 return NULL;
242 init_waitqueue_head(&ei->socket.wq.wait);
243 ei->socket.wq.fasync_list = NULL;
244 ei->socket.wq.flags = 0;
245
246 ei->socket.state = SS_UNCONNECTED;
247 ei->socket.flags = 0;
248 ei->socket.ops = NULL;
249 ei->socket.sk = NULL;
250 ei->socket.file = NULL;
251
252 return &ei->vfs_inode;
253 }
254
sock_free_inode(struct inode * inode)255 static void sock_free_inode(struct inode *inode)
256 {
257 struct socket_alloc *ei;
258
259 ei = container_of(inode, struct socket_alloc, vfs_inode);
260 kmem_cache_free(sock_inode_cachep, ei);
261 }
262
init_once(void * foo)263 static void init_once(void *foo)
264 {
265 struct socket_alloc *ei = (struct socket_alloc *)foo;
266
267 inode_init_once(&ei->vfs_inode);
268 }
269
init_inodecache(void)270 static void init_inodecache(void)
271 {
272 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
273 sizeof(struct socket_alloc),
274 0,
275 (SLAB_HWCACHE_ALIGN |
276 SLAB_RECLAIM_ACCOUNT |
277 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
278 init_once);
279 BUG_ON(sock_inode_cachep == NULL);
280 }
281
282 static const struct super_operations sockfs_ops = {
283 .alloc_inode = sock_alloc_inode,
284 .free_inode = sock_free_inode,
285 .statfs = simple_statfs,
286 };
287
288 /*
289 * sockfs_dname() is called from d_path().
290 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)291 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
292 {
293 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
294 d_inode(dentry)->i_ino);
295 }
296
297 static const struct dentry_operations sockfs_dentry_operations = {
298 .d_dname = sockfs_dname,
299 };
300
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size,int flags)301 static int sockfs_xattr_get(const struct xattr_handler *handler,
302 struct dentry *dentry, struct inode *inode,
303 const char *suffix, void *value, size_t size,
304 int flags)
305 {
306 if (value) {
307 if (dentry->d_name.len + 1 > size)
308 return -ERANGE;
309 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
310 }
311 return dentry->d_name.len + 1;
312 }
313
314 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
315 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
316 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
317
318 static const struct xattr_handler sockfs_xattr_handler = {
319 .name = XATTR_NAME_SOCKPROTONAME,
320 .get = sockfs_xattr_get,
321 };
322
sockfs_security_xattr_set(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)323 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
324 struct dentry *dentry, struct inode *inode,
325 const char *suffix, const void *value,
326 size_t size, int flags)
327 {
328 /* Handled by LSM. */
329 return -EAGAIN;
330 }
331
332 static const struct xattr_handler sockfs_security_xattr_handler = {
333 .prefix = XATTR_SECURITY_PREFIX,
334 .set = sockfs_security_xattr_set,
335 };
336
337 static const struct xattr_handler *sockfs_xattr_handlers[] = {
338 &sockfs_xattr_handler,
339 &sockfs_security_xattr_handler,
340 NULL
341 };
342
sockfs_init_fs_context(struct fs_context * fc)343 static int sockfs_init_fs_context(struct fs_context *fc)
344 {
345 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
346 if (!ctx)
347 return -ENOMEM;
348 ctx->ops = &sockfs_ops;
349 ctx->dops = &sockfs_dentry_operations;
350 ctx->xattr = sockfs_xattr_handlers;
351 return 0;
352 }
353
354 static struct vfsmount *sock_mnt __read_mostly;
355
356 static struct file_system_type sock_fs_type = {
357 .name = "sockfs",
358 .init_fs_context = sockfs_init_fs_context,
359 .kill_sb = kill_anon_super,
360 };
361
362 /*
363 * Obtains the first available file descriptor and sets it up for use.
364 *
365 * These functions create file structures and maps them to fd space
366 * of the current process. On success it returns file descriptor
367 * and file struct implicitly stored in sock->file.
368 * Note that another thread may close file descriptor before we return
369 * from this function. We use the fact that now we do not refer
370 * to socket after mapping. If one day we will need it, this
371 * function will increment ref. count on file by 1.
372 *
373 * In any case returned fd MAY BE not valid!
374 * This race condition is unavoidable
375 * with shared fd spaces, we cannot solve it inside kernel,
376 * but we take care of internal coherence yet.
377 */
378
379 /**
380 * sock_alloc_file - Bind a &socket to a &file
381 * @sock: socket
382 * @flags: file status flags
383 * @dname: protocol name
384 *
385 * Returns the &file bound with @sock, implicitly storing it
386 * in sock->file. If dname is %NULL, sets to "".
387 * On failure the return is a ERR pointer (see linux/err.h).
388 * This function uses GFP_KERNEL internally.
389 */
390
sock_alloc_file(struct socket * sock,int flags,const char * dname)391 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
392 {
393 struct file *file;
394
395 if (!dname)
396 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
397
398 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
399 O_RDWR | (flags & O_NONBLOCK),
400 &socket_file_ops);
401 if (IS_ERR(file)) {
402 sock_release(sock);
403 return file;
404 }
405
406 sock->file = file;
407 file->private_data = sock;
408 return file;
409 }
410 EXPORT_SYMBOL(sock_alloc_file);
411
sock_map_fd(struct socket * sock,int flags)412 static int sock_map_fd(struct socket *sock, int flags)
413 {
414 struct file *newfile;
415 int fd = get_unused_fd_flags(flags);
416 if (unlikely(fd < 0)) {
417 sock_release(sock);
418 return fd;
419 }
420
421 newfile = sock_alloc_file(sock, flags, NULL);
422 if (!IS_ERR(newfile)) {
423 fd_install(fd, newfile);
424 return fd;
425 }
426
427 put_unused_fd(fd);
428 return PTR_ERR(newfile);
429 }
430
431 /**
432 * sock_from_file - Return the &socket bounded to @file.
433 * @file: file
434 * @err: pointer to an error code return
435 *
436 * On failure returns %NULL and assigns -ENOTSOCK to @err.
437 */
438
sock_from_file(struct file * file,int * err)439 struct socket *sock_from_file(struct file *file, int *err)
440 {
441 if (file->f_op == &socket_file_ops)
442 return file->private_data; /* set in sock_map_fd */
443
444 *err = -ENOTSOCK;
445 return NULL;
446 }
447 EXPORT_SYMBOL(sock_from_file);
448
449 /**
450 * sockfd_lookup - Go from a file number to its socket slot
451 * @fd: file handle
452 * @err: pointer to an error code return
453 *
454 * The file handle passed in is locked and the socket it is bound
455 * to is returned. If an error occurs the err pointer is overwritten
456 * with a negative errno code and NULL is returned. The function checks
457 * for both invalid handles and passing a handle which is not a socket.
458 *
459 * On a success the socket object pointer is returned.
460 */
461
sockfd_lookup(int fd,int * err)462 struct socket *sockfd_lookup(int fd, int *err)
463 {
464 struct file *file;
465 struct socket *sock;
466
467 file = fget(fd);
468 if (!file) {
469 *err = -EBADF;
470 return NULL;
471 }
472
473 sock = sock_from_file(file, err);
474 if (!sock)
475 fput(file);
476 return sock;
477 }
478 EXPORT_SYMBOL(sockfd_lookup);
479
sockfd_lookup_light(int fd,int * err,int * fput_needed)480 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
481 {
482 struct fd f = fdget(fd);
483 struct socket *sock;
484
485 *err = -EBADF;
486 if (f.file) {
487 sock = sock_from_file(f.file, err);
488 if (likely(sock)) {
489 *fput_needed = f.flags;
490 return sock;
491 }
492 fdput(f);
493 }
494 return NULL;
495 }
496
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)497 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
498 size_t size)
499 {
500 ssize_t len;
501 ssize_t used = 0;
502
503 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
504 if (len < 0)
505 return len;
506 used += len;
507 if (buffer) {
508 if (size < used)
509 return -ERANGE;
510 buffer += len;
511 }
512
513 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
514 used += len;
515 if (buffer) {
516 if (size < used)
517 return -ERANGE;
518 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
519 buffer += len;
520 }
521
522 return used;
523 }
524
sockfs_setattr(struct dentry * dentry,struct iattr * iattr)525 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
526 {
527 int err = simple_setattr(dentry, iattr);
528
529 if (!err && (iattr->ia_valid & ATTR_UID)) {
530 struct socket *sock = SOCKET_I(d_inode(dentry));
531
532 if (sock->sk)
533 sock->sk->sk_uid = iattr->ia_uid;
534 else
535 err = -ENOENT;
536 }
537
538 return err;
539 }
540
541 static const struct inode_operations sockfs_inode_ops = {
542 .listxattr = sockfs_listxattr,
543 .setattr = sockfs_setattr,
544 };
545
546 /**
547 * sock_alloc - allocate a socket
548 *
549 * Allocate a new inode and socket object. The two are bound together
550 * and initialised. The socket is then returned. If we are out of inodes
551 * NULL is returned. This functions uses GFP_KERNEL internally.
552 */
553
sock_alloc(void)554 struct socket *sock_alloc(void)
555 {
556 struct inode *inode;
557 struct socket *sock;
558
559 inode = new_inode_pseudo(sock_mnt->mnt_sb);
560 if (!inode)
561 return NULL;
562
563 sock = SOCKET_I(inode);
564
565 inode->i_ino = get_next_ino();
566 inode->i_mode = S_IFSOCK | S_IRWXUGO;
567 inode->i_uid = current_fsuid();
568 inode->i_gid = current_fsgid();
569 inode->i_op = &sockfs_inode_ops;
570
571 return sock;
572 }
573 EXPORT_SYMBOL(sock_alloc);
574
575 /**
576 * sock_release - close a socket
577 * @sock: socket to close
578 *
579 * The socket is released from the protocol stack if it has a release
580 * callback, and the inode is then released if the socket is bound to
581 * an inode not a file.
582 */
583
__sock_release(struct socket * sock,struct inode * inode)584 static void __sock_release(struct socket *sock, struct inode *inode)
585 {
586 if (sock->ops) {
587 struct module *owner = sock->ops->owner;
588
589 if (inode)
590 inode_lock(inode);
591 sock->ops->release(sock);
592 sock->sk = NULL;
593 if (inode)
594 inode_unlock(inode);
595 sock->ops = NULL;
596 module_put(owner);
597 }
598
599 if (sock->wq.fasync_list)
600 pr_err("%s: fasync list not empty!\n", __func__);
601
602 if (!sock->file) {
603 iput(SOCK_INODE(sock));
604 return;
605 }
606 sock->file = NULL;
607 }
608
sock_release(struct socket * sock)609 void sock_release(struct socket *sock)
610 {
611 __sock_release(sock, NULL);
612 }
613 EXPORT_SYMBOL(sock_release);
614
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)615 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
616 {
617 u8 flags = *tx_flags;
618
619 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
620 flags |= SKBTX_HW_TSTAMP;
621
622 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
623 flags |= SKBTX_SW_TSTAMP;
624
625 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
626 flags |= SKBTX_SCHED_TSTAMP;
627
628 *tx_flags = flags;
629 }
630 EXPORT_SYMBOL(__sock_tx_timestamp);
631
632 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
633 size_t));
634 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
635 size_t));
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)636 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
637 {
638 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
639 inet_sendmsg, sock, msg,
640 msg_data_left(msg));
641 BUG_ON(ret == -EIOCBQUEUED);
642 return ret;
643 }
644
645 /**
646 * sock_sendmsg - send a message through @sock
647 * @sock: socket
648 * @msg: message to send
649 *
650 * Sends @msg through @sock, passing through LSM.
651 * Returns the number of bytes sent, or an error code.
652 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)653 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
654 {
655 int err = security_socket_sendmsg(sock, msg,
656 msg_data_left(msg));
657
658 return err ?: sock_sendmsg_nosec(sock, msg);
659 }
660 EXPORT_SYMBOL(sock_sendmsg);
661
662 /**
663 * kernel_sendmsg - send a message through @sock (kernel-space)
664 * @sock: socket
665 * @msg: message header
666 * @vec: kernel vec
667 * @num: vec array length
668 * @size: total message data size
669 *
670 * Builds the message data with @vec and sends it through @sock.
671 * Returns the number of bytes sent, or an error code.
672 */
673
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)674 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
675 struct kvec *vec, size_t num, size_t size)
676 {
677 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
678 return sock_sendmsg(sock, msg);
679 }
680 EXPORT_SYMBOL(kernel_sendmsg);
681
682 /**
683 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
684 * @sk: sock
685 * @msg: message header
686 * @vec: output s/g array
687 * @num: output s/g array length
688 * @size: total message data size
689 *
690 * Builds the message data with @vec and sends it through @sock.
691 * Returns the number of bytes sent, or an error code.
692 * Caller must hold @sk.
693 */
694
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)695 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
696 struct kvec *vec, size_t num, size_t size)
697 {
698 struct socket *sock = sk->sk_socket;
699
700 if (!sock->ops->sendmsg_locked)
701 return sock_no_sendmsg_locked(sk, msg, size);
702
703 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
704
705 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
706 }
707 EXPORT_SYMBOL(kernel_sendmsg_locked);
708
skb_is_err_queue(const struct sk_buff * skb)709 static bool skb_is_err_queue(const struct sk_buff *skb)
710 {
711 /* pkt_type of skbs enqueued on the error queue are set to
712 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
713 * in recvmsg, since skbs received on a local socket will never
714 * have a pkt_type of PACKET_OUTGOING.
715 */
716 return skb->pkt_type == PACKET_OUTGOING;
717 }
718
719 /* On transmit, software and hardware timestamps are returned independently.
720 * As the two skb clones share the hardware timestamp, which may be updated
721 * before the software timestamp is received, a hardware TX timestamp may be
722 * returned only if there is no software TX timestamp. Ignore false software
723 * timestamps, which may be made in the __sock_recv_timestamp() call when the
724 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
725 * hardware timestamp.
726 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)727 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
728 {
729 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
730 }
731
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb)732 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
733 {
734 struct scm_ts_pktinfo ts_pktinfo;
735 struct net_device *orig_dev;
736
737 if (!skb_mac_header_was_set(skb))
738 return;
739
740 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
741
742 rcu_read_lock();
743 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
744 if (orig_dev)
745 ts_pktinfo.if_index = orig_dev->ifindex;
746 rcu_read_unlock();
747
748 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
749 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
750 sizeof(ts_pktinfo), &ts_pktinfo);
751 }
752
753 /*
754 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
755 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)756 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
757 struct sk_buff *skb)
758 {
759 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
760 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
761 struct scm_timestamping_internal tss;
762
763 int empty = 1, false_tstamp = 0;
764 struct skb_shared_hwtstamps *shhwtstamps =
765 skb_hwtstamps(skb);
766
767 /* Race occurred between timestamp enabling and packet
768 receiving. Fill in the current time for now. */
769 if (need_software_tstamp && skb->tstamp == 0) {
770 __net_timestamp(skb);
771 false_tstamp = 1;
772 }
773
774 if (need_software_tstamp) {
775 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
776 if (new_tstamp) {
777 struct __kernel_sock_timeval tv;
778
779 skb_get_new_timestamp(skb, &tv);
780 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
781 sizeof(tv), &tv);
782 } else {
783 struct __kernel_old_timeval tv;
784
785 skb_get_timestamp(skb, &tv);
786 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
787 sizeof(tv), &tv);
788 }
789 } else {
790 if (new_tstamp) {
791 struct __kernel_timespec ts;
792
793 skb_get_new_timestampns(skb, &ts);
794 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
795 sizeof(ts), &ts);
796 } else {
797 struct timespec ts;
798
799 skb_get_timestampns(skb, &ts);
800 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
801 sizeof(ts), &ts);
802 }
803 }
804 }
805
806 memset(&tss, 0, sizeof(tss));
807 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
808 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
809 empty = 0;
810 if (shhwtstamps &&
811 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
812 !skb_is_swtx_tstamp(skb, false_tstamp) &&
813 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
814 empty = 0;
815 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
816 !skb_is_err_queue(skb))
817 put_ts_pktinfo(msg, skb);
818 }
819 if (!empty) {
820 if (sock_flag(sk, SOCK_TSTAMP_NEW))
821 put_cmsg_scm_timestamping64(msg, &tss);
822 else
823 put_cmsg_scm_timestamping(msg, &tss);
824
825 if (skb_is_err_queue(skb) && skb->len &&
826 SKB_EXT_ERR(skb)->opt_stats)
827 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
828 skb->len, skb->data);
829 }
830 }
831 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
832
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)833 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
834 struct sk_buff *skb)
835 {
836 int ack;
837
838 if (!sock_flag(sk, SOCK_WIFI_STATUS))
839 return;
840 if (!skb->wifi_acked_valid)
841 return;
842
843 ack = skb->wifi_acked;
844
845 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
846 }
847 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
848
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)849 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
850 struct sk_buff *skb)
851 {
852 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
853 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
854 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
855 }
856
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)857 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
858 struct sk_buff *skb)
859 {
860 sock_recv_timestamp(msg, sk, skb);
861 sock_recv_drops(msg, sk, skb);
862 }
863 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
864
865 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
866 size_t, int));
867 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
868 size_t, int));
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)869 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
870 int flags)
871 {
872 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
873 inet_recvmsg, sock, msg, msg_data_left(msg),
874 flags);
875 }
876
877 /**
878 * sock_recvmsg - receive a message from @sock
879 * @sock: socket
880 * @msg: message to receive
881 * @flags: message flags
882 *
883 * Receives @msg from @sock, passing through LSM. Returns the total number
884 * of bytes received, or an error.
885 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)886 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
887 {
888 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
889
890 return err ?: sock_recvmsg_nosec(sock, msg, flags);
891 }
892 EXPORT_SYMBOL(sock_recvmsg);
893
894 /**
895 * kernel_recvmsg - Receive a message from a socket (kernel space)
896 * @sock: The socket to receive the message from
897 * @msg: Received message
898 * @vec: Input s/g array for message data
899 * @num: Size of input s/g array
900 * @size: Number of bytes to read
901 * @flags: Message flags (MSG_DONTWAIT, etc...)
902 *
903 * On return the msg structure contains the scatter/gather array passed in the
904 * vec argument. The array is modified so that it consists of the unfilled
905 * portion of the original array.
906 *
907 * The returned value is the total number of bytes received, or an error.
908 */
909
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)910 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
911 struct kvec *vec, size_t num, size_t size, int flags)
912 {
913 mm_segment_t oldfs = get_fs();
914 int result;
915
916 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
917 set_fs(KERNEL_DS);
918 result = sock_recvmsg(sock, msg, flags);
919 set_fs(oldfs);
920 return result;
921 }
922 EXPORT_SYMBOL(kernel_recvmsg);
923
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)924 static ssize_t sock_sendpage(struct file *file, struct page *page,
925 int offset, size_t size, loff_t *ppos, int more)
926 {
927 struct socket *sock;
928 int flags;
929
930 sock = file->private_data;
931
932 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
933 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
934 flags |= more;
935
936 return kernel_sendpage(sock, page, offset, size, flags);
937 }
938
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)939 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
940 struct pipe_inode_info *pipe, size_t len,
941 unsigned int flags)
942 {
943 struct socket *sock = file->private_data;
944
945 if (unlikely(!sock->ops->splice_read))
946 return generic_file_splice_read(file, ppos, pipe, len, flags);
947
948 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
949 }
950
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)951 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
952 {
953 struct file *file = iocb->ki_filp;
954 struct socket *sock = file->private_data;
955 struct msghdr msg = {.msg_iter = *to,
956 .msg_iocb = iocb};
957 ssize_t res;
958
959 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
960 msg.msg_flags = MSG_DONTWAIT;
961
962 if (iocb->ki_pos != 0)
963 return -ESPIPE;
964
965 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
966 return 0;
967
968 res = sock_recvmsg(sock, &msg, msg.msg_flags);
969 *to = msg.msg_iter;
970 return res;
971 }
972
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)973 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
974 {
975 struct file *file = iocb->ki_filp;
976 struct socket *sock = file->private_data;
977 struct msghdr msg = {.msg_iter = *from,
978 .msg_iocb = iocb};
979 ssize_t res;
980
981 if (iocb->ki_pos != 0)
982 return -ESPIPE;
983
984 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
985 msg.msg_flags = MSG_DONTWAIT;
986
987 if (sock->type == SOCK_SEQPACKET)
988 msg.msg_flags |= MSG_EOR;
989
990 res = sock_sendmsg(sock, &msg);
991 *from = msg.msg_iter;
992 return res;
993 }
994
995 /*
996 * Atomic setting of ioctl hooks to avoid race
997 * with module unload.
998 */
999
1000 static DEFINE_MUTEX(br_ioctl_mutex);
1001 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1002
brioctl_set(int (* hook)(struct net *,unsigned int,void __user *))1003 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1004 {
1005 mutex_lock(&br_ioctl_mutex);
1006 br_ioctl_hook = hook;
1007 mutex_unlock(&br_ioctl_mutex);
1008 }
1009 EXPORT_SYMBOL(brioctl_set);
1010
1011 static DEFINE_MUTEX(vlan_ioctl_mutex);
1012 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1013
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1014 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1015 {
1016 mutex_lock(&vlan_ioctl_mutex);
1017 vlan_ioctl_hook = hook;
1018 mutex_unlock(&vlan_ioctl_mutex);
1019 }
1020 EXPORT_SYMBOL(vlan_ioctl_set);
1021
1022 static DEFINE_MUTEX(dlci_ioctl_mutex);
1023 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1024
dlci_ioctl_set(int (* hook)(unsigned int,void __user *))1025 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1026 {
1027 mutex_lock(&dlci_ioctl_mutex);
1028 dlci_ioctl_hook = hook;
1029 mutex_unlock(&dlci_ioctl_mutex);
1030 }
1031 EXPORT_SYMBOL(dlci_ioctl_set);
1032
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1033 static long sock_do_ioctl(struct net *net, struct socket *sock,
1034 unsigned int cmd, unsigned long arg)
1035 {
1036 int err;
1037 void __user *argp = (void __user *)arg;
1038
1039 err = sock->ops->ioctl(sock, cmd, arg);
1040
1041 /*
1042 * If this ioctl is unknown try to hand it down
1043 * to the NIC driver.
1044 */
1045 if (err != -ENOIOCTLCMD)
1046 return err;
1047
1048 if (cmd == SIOCGIFCONF) {
1049 struct ifconf ifc;
1050 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1051 return -EFAULT;
1052 rtnl_lock();
1053 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1054 rtnl_unlock();
1055 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1056 err = -EFAULT;
1057 } else {
1058 struct ifreq ifr;
1059 bool need_copyout;
1060 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1061 return -EFAULT;
1062 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1063 if (!err && need_copyout)
1064 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1065 return -EFAULT;
1066 }
1067 return err;
1068 }
1069
1070 /*
1071 * With an ioctl, arg may well be a user mode pointer, but we don't know
1072 * what to do with it - that's up to the protocol still.
1073 */
1074
1075 /**
1076 * get_net_ns - increment the refcount of the network namespace
1077 * @ns: common namespace (net)
1078 *
1079 * Returns the net's common namespace.
1080 */
1081
get_net_ns(struct ns_common * ns)1082 struct ns_common *get_net_ns(struct ns_common *ns)
1083 {
1084 return &get_net(container_of(ns, struct net, ns))->ns;
1085 }
1086 EXPORT_SYMBOL_GPL(get_net_ns);
1087
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1088 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1089 {
1090 struct socket *sock;
1091 struct sock *sk;
1092 void __user *argp = (void __user *)arg;
1093 int pid, err;
1094 struct net *net;
1095
1096 sock = file->private_data;
1097 sk = sock->sk;
1098 net = sock_net(sk);
1099 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1100 struct ifreq ifr;
1101 bool need_copyout;
1102 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1103 return -EFAULT;
1104 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1105 if (!err && need_copyout)
1106 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1107 return -EFAULT;
1108 } else
1109 #ifdef CONFIG_WEXT_CORE
1110 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1111 err = wext_handle_ioctl(net, cmd, argp);
1112 } else
1113 #endif
1114 switch (cmd) {
1115 case FIOSETOWN:
1116 case SIOCSPGRP:
1117 err = -EFAULT;
1118 if (get_user(pid, (int __user *)argp))
1119 break;
1120 err = f_setown(sock->file, pid, 1);
1121 break;
1122 case FIOGETOWN:
1123 case SIOCGPGRP:
1124 err = put_user(f_getown(sock->file),
1125 (int __user *)argp);
1126 break;
1127 case SIOCGIFBR:
1128 case SIOCSIFBR:
1129 case SIOCBRADDBR:
1130 case SIOCBRDELBR:
1131 err = -ENOPKG;
1132 if (!br_ioctl_hook)
1133 request_module("bridge");
1134
1135 mutex_lock(&br_ioctl_mutex);
1136 if (br_ioctl_hook)
1137 err = br_ioctl_hook(net, cmd, argp);
1138 mutex_unlock(&br_ioctl_mutex);
1139 break;
1140 case SIOCGIFVLAN:
1141 case SIOCSIFVLAN:
1142 err = -ENOPKG;
1143 if (!vlan_ioctl_hook)
1144 request_module("8021q");
1145
1146 mutex_lock(&vlan_ioctl_mutex);
1147 if (vlan_ioctl_hook)
1148 err = vlan_ioctl_hook(net, argp);
1149 mutex_unlock(&vlan_ioctl_mutex);
1150 break;
1151 case SIOCADDDLCI:
1152 case SIOCDELDLCI:
1153 err = -ENOPKG;
1154 if (!dlci_ioctl_hook)
1155 request_module("dlci");
1156
1157 mutex_lock(&dlci_ioctl_mutex);
1158 if (dlci_ioctl_hook)
1159 err = dlci_ioctl_hook(cmd, argp);
1160 mutex_unlock(&dlci_ioctl_mutex);
1161 break;
1162 case SIOCGSKNS:
1163 err = -EPERM;
1164 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1165 break;
1166
1167 err = open_related_ns(&net->ns, get_net_ns);
1168 break;
1169 case SIOCGSTAMP_OLD:
1170 case SIOCGSTAMPNS_OLD:
1171 if (!sock->ops->gettstamp) {
1172 err = -ENOIOCTLCMD;
1173 break;
1174 }
1175 err = sock->ops->gettstamp(sock, argp,
1176 cmd == SIOCGSTAMP_OLD,
1177 !IS_ENABLED(CONFIG_64BIT));
1178 break;
1179 case SIOCGSTAMP_NEW:
1180 case SIOCGSTAMPNS_NEW:
1181 if (!sock->ops->gettstamp) {
1182 err = -ENOIOCTLCMD;
1183 break;
1184 }
1185 err = sock->ops->gettstamp(sock, argp,
1186 cmd == SIOCGSTAMP_NEW,
1187 false);
1188 break;
1189 default:
1190 err = sock_do_ioctl(net, sock, cmd, arg);
1191 break;
1192 }
1193 return err;
1194 }
1195
1196 /**
1197 * sock_create_lite - creates a socket
1198 * @family: protocol family (AF_INET, ...)
1199 * @type: communication type (SOCK_STREAM, ...)
1200 * @protocol: protocol (0, ...)
1201 * @res: new socket
1202 *
1203 * Creates a new socket and assigns it to @res, passing through LSM.
1204 * The new socket initialization is not complete, see kernel_accept().
1205 * Returns 0 or an error. On failure @res is set to %NULL.
1206 * This function internally uses GFP_KERNEL.
1207 */
1208
sock_create_lite(int family,int type,int protocol,struct socket ** res)1209 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1210 {
1211 int err;
1212 struct socket *sock = NULL;
1213
1214 err = security_socket_create(family, type, protocol, 1);
1215 if (err)
1216 goto out;
1217
1218 sock = sock_alloc();
1219 if (!sock) {
1220 err = -ENOMEM;
1221 goto out;
1222 }
1223
1224 sock->type = type;
1225 err = security_socket_post_create(sock, family, type, protocol, 1);
1226 if (err)
1227 goto out_release;
1228
1229 out:
1230 *res = sock;
1231 return err;
1232 out_release:
1233 sock_release(sock);
1234 sock = NULL;
1235 goto out;
1236 }
1237 EXPORT_SYMBOL(sock_create_lite);
1238
1239 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1240 static __poll_t sock_poll(struct file *file, poll_table *wait)
1241 {
1242 struct socket *sock = file->private_data;
1243 __poll_t events = poll_requested_events(wait), flag = 0;
1244
1245 if (!sock->ops->poll)
1246 return 0;
1247
1248 if (sk_can_busy_loop(sock->sk)) {
1249 /* poll once if requested by the syscall */
1250 if (events & POLL_BUSY_LOOP)
1251 sk_busy_loop(sock->sk, 1);
1252
1253 /* if this socket can poll_ll, tell the system call */
1254 flag = POLL_BUSY_LOOP;
1255 }
1256
1257 return sock->ops->poll(file, sock, wait) | flag;
1258 }
1259
sock_mmap(struct file * file,struct vm_area_struct * vma)1260 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1261 {
1262 struct socket *sock = file->private_data;
1263
1264 return sock->ops->mmap(file, sock, vma);
1265 }
1266
sock_close(struct inode * inode,struct file * filp)1267 static int sock_close(struct inode *inode, struct file *filp)
1268 {
1269 __sock_release(SOCKET_I(inode), inode);
1270 return 0;
1271 }
1272
1273 /*
1274 * Update the socket async list
1275 *
1276 * Fasync_list locking strategy.
1277 *
1278 * 1. fasync_list is modified only under process context socket lock
1279 * i.e. under semaphore.
1280 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1281 * or under socket lock
1282 */
1283
sock_fasync(int fd,struct file * filp,int on)1284 static int sock_fasync(int fd, struct file *filp, int on)
1285 {
1286 struct socket *sock = filp->private_data;
1287 struct sock *sk = sock->sk;
1288 struct socket_wq *wq = &sock->wq;
1289
1290 if (sk == NULL)
1291 return -EINVAL;
1292
1293 lock_sock(sk);
1294 fasync_helper(fd, filp, on, &wq->fasync_list);
1295
1296 if (!wq->fasync_list)
1297 sock_reset_flag(sk, SOCK_FASYNC);
1298 else
1299 sock_set_flag(sk, SOCK_FASYNC);
1300
1301 release_sock(sk);
1302 return 0;
1303 }
1304
1305 /* This function may be called only under rcu_lock */
1306
sock_wake_async(struct socket_wq * wq,int how,int band)1307 int sock_wake_async(struct socket_wq *wq, int how, int band)
1308 {
1309 if (!wq || !wq->fasync_list)
1310 return -1;
1311
1312 switch (how) {
1313 case SOCK_WAKE_WAITD:
1314 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1315 break;
1316 goto call_kill;
1317 case SOCK_WAKE_SPACE:
1318 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1319 break;
1320 /* fall through */
1321 case SOCK_WAKE_IO:
1322 call_kill:
1323 kill_fasync(&wq->fasync_list, SIGIO, band);
1324 break;
1325 case SOCK_WAKE_URG:
1326 kill_fasync(&wq->fasync_list, SIGURG, band);
1327 }
1328
1329 return 0;
1330 }
1331 EXPORT_SYMBOL(sock_wake_async);
1332
1333 /**
1334 * __sock_create - creates a socket
1335 * @net: net namespace
1336 * @family: protocol family (AF_INET, ...)
1337 * @type: communication type (SOCK_STREAM, ...)
1338 * @protocol: protocol (0, ...)
1339 * @res: new socket
1340 * @kern: boolean for kernel space sockets
1341 *
1342 * Creates a new socket and assigns it to @res, passing through LSM.
1343 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1344 * be set to true if the socket resides in kernel space.
1345 * This function internally uses GFP_KERNEL.
1346 */
1347
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1348 int __sock_create(struct net *net, int family, int type, int protocol,
1349 struct socket **res, int kern)
1350 {
1351 int err;
1352 struct socket *sock;
1353 const struct net_proto_family *pf;
1354
1355 /*
1356 * Check protocol is in range
1357 */
1358 if (family < 0 || family >= NPROTO)
1359 return -EAFNOSUPPORT;
1360 if (type < 0 || type >= SOCK_MAX)
1361 return -EINVAL;
1362
1363 /* Compatibility.
1364
1365 This uglymoron is moved from INET layer to here to avoid
1366 deadlock in module load.
1367 */
1368 if (family == PF_INET && type == SOCK_PACKET) {
1369 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1370 current->comm);
1371 family = PF_PACKET;
1372 }
1373
1374 err = security_socket_create(family, type, protocol, kern);
1375 if (err)
1376 return err;
1377
1378 /*
1379 * Allocate the socket and allow the family to set things up. if
1380 * the protocol is 0, the family is instructed to select an appropriate
1381 * default.
1382 */
1383 sock = sock_alloc();
1384 if (!sock) {
1385 net_warn_ratelimited("socket: no more sockets\n");
1386 return -ENFILE; /* Not exactly a match, but its the
1387 closest posix thing */
1388 }
1389
1390 sock->type = type;
1391
1392 #ifdef CONFIG_MODULES
1393 /* Attempt to load a protocol module if the find failed.
1394 *
1395 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1396 * requested real, full-featured networking support upon configuration.
1397 * Otherwise module support will break!
1398 */
1399 if (rcu_access_pointer(net_families[family]) == NULL)
1400 request_module("net-pf-%d", family);
1401 #endif
1402
1403 rcu_read_lock();
1404 pf = rcu_dereference(net_families[family]);
1405 err = -EAFNOSUPPORT;
1406 if (!pf)
1407 goto out_release;
1408
1409 /*
1410 * We will call the ->create function, that possibly is in a loadable
1411 * module, so we have to bump that loadable module refcnt first.
1412 */
1413 if (!try_module_get(pf->owner))
1414 goto out_release;
1415
1416 /* Now protected by module ref count */
1417 rcu_read_unlock();
1418
1419 err = pf->create(net, sock, protocol, kern);
1420 if (err < 0)
1421 goto out_module_put;
1422
1423 /*
1424 * Now to bump the refcnt of the [loadable] module that owns this
1425 * socket at sock_release time we decrement its refcnt.
1426 */
1427 if (!try_module_get(sock->ops->owner))
1428 goto out_module_busy;
1429
1430 /*
1431 * Now that we're done with the ->create function, the [loadable]
1432 * module can have its refcnt decremented
1433 */
1434 module_put(pf->owner);
1435 err = security_socket_post_create(sock, family, type, protocol, kern);
1436 if (err)
1437 goto out_sock_release;
1438 *res = sock;
1439
1440 return 0;
1441
1442 out_module_busy:
1443 err = -EAFNOSUPPORT;
1444 out_module_put:
1445 sock->ops = NULL;
1446 module_put(pf->owner);
1447 out_sock_release:
1448 sock_release(sock);
1449 return err;
1450
1451 out_release:
1452 rcu_read_unlock();
1453 goto out_sock_release;
1454 }
1455 EXPORT_SYMBOL(__sock_create);
1456
1457 /**
1458 * sock_create - creates a socket
1459 * @family: protocol family (AF_INET, ...)
1460 * @type: communication type (SOCK_STREAM, ...)
1461 * @protocol: protocol (0, ...)
1462 * @res: new socket
1463 *
1464 * A wrapper around __sock_create().
1465 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1466 */
1467
sock_create(int family,int type,int protocol,struct socket ** res)1468 int sock_create(int family, int type, int protocol, struct socket **res)
1469 {
1470 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1471 }
1472 EXPORT_SYMBOL(sock_create);
1473
1474 /**
1475 * sock_create_kern - creates a socket (kernel space)
1476 * @net: net namespace
1477 * @family: protocol family (AF_INET, ...)
1478 * @type: communication type (SOCK_STREAM, ...)
1479 * @protocol: protocol (0, ...)
1480 * @res: new socket
1481 *
1482 * A wrapper around __sock_create().
1483 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1484 */
1485
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1486 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1487 {
1488 return __sock_create(net, family, type, protocol, res, 1);
1489 }
1490 EXPORT_SYMBOL(sock_create_kern);
1491
__sys_socket(int family,int type,int protocol)1492 int __sys_socket(int family, int type, int protocol)
1493 {
1494 int retval;
1495 struct socket *sock;
1496 int flags;
1497
1498 /* Check the SOCK_* constants for consistency. */
1499 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1500 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1501 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1502 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1503
1504 flags = type & ~SOCK_TYPE_MASK;
1505 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1506 return -EINVAL;
1507 type &= SOCK_TYPE_MASK;
1508
1509 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1510 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1511
1512 retval = sock_create(family, type, protocol, &sock);
1513 if (retval < 0)
1514 return retval;
1515
1516 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1517 }
1518
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1519 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1520 {
1521 return __sys_socket(family, type, protocol);
1522 }
1523
1524 /*
1525 * Create a pair of connected sockets.
1526 */
1527
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1528 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1529 {
1530 struct socket *sock1, *sock2;
1531 int fd1, fd2, err;
1532 struct file *newfile1, *newfile2;
1533 int flags;
1534
1535 flags = type & ~SOCK_TYPE_MASK;
1536 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1537 return -EINVAL;
1538 type &= SOCK_TYPE_MASK;
1539
1540 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1541 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1542
1543 /*
1544 * reserve descriptors and make sure we won't fail
1545 * to return them to userland.
1546 */
1547 fd1 = get_unused_fd_flags(flags);
1548 if (unlikely(fd1 < 0))
1549 return fd1;
1550
1551 fd2 = get_unused_fd_flags(flags);
1552 if (unlikely(fd2 < 0)) {
1553 put_unused_fd(fd1);
1554 return fd2;
1555 }
1556
1557 err = put_user(fd1, &usockvec[0]);
1558 if (err)
1559 goto out;
1560
1561 err = put_user(fd2, &usockvec[1]);
1562 if (err)
1563 goto out;
1564
1565 /*
1566 * Obtain the first socket and check if the underlying protocol
1567 * supports the socketpair call.
1568 */
1569
1570 err = sock_create(family, type, protocol, &sock1);
1571 if (unlikely(err < 0))
1572 goto out;
1573
1574 err = sock_create(family, type, protocol, &sock2);
1575 if (unlikely(err < 0)) {
1576 sock_release(sock1);
1577 goto out;
1578 }
1579
1580 err = security_socket_socketpair(sock1, sock2);
1581 if (unlikely(err)) {
1582 sock_release(sock2);
1583 sock_release(sock1);
1584 goto out;
1585 }
1586
1587 err = sock1->ops->socketpair(sock1, sock2);
1588 if (unlikely(err < 0)) {
1589 sock_release(sock2);
1590 sock_release(sock1);
1591 goto out;
1592 }
1593
1594 newfile1 = sock_alloc_file(sock1, flags, NULL);
1595 if (IS_ERR(newfile1)) {
1596 err = PTR_ERR(newfile1);
1597 sock_release(sock2);
1598 goto out;
1599 }
1600
1601 newfile2 = sock_alloc_file(sock2, flags, NULL);
1602 if (IS_ERR(newfile2)) {
1603 err = PTR_ERR(newfile2);
1604 fput(newfile1);
1605 goto out;
1606 }
1607
1608 audit_fd_pair(fd1, fd2);
1609
1610 fd_install(fd1, newfile1);
1611 fd_install(fd2, newfile2);
1612 return 0;
1613
1614 out:
1615 put_unused_fd(fd2);
1616 put_unused_fd(fd1);
1617 return err;
1618 }
1619
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1620 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1621 int __user *, usockvec)
1622 {
1623 return __sys_socketpair(family, type, protocol, usockvec);
1624 }
1625
1626 /*
1627 * Bind a name to a socket. Nothing much to do here since it's
1628 * the protocol's responsibility to handle the local address.
1629 *
1630 * We move the socket address to kernel space before we call
1631 * the protocol layer (having also checked the address is ok).
1632 */
1633
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1634 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1635 {
1636 struct socket *sock;
1637 struct sockaddr_storage address;
1638 int err, fput_needed;
1639
1640 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1641 if (sock) {
1642 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1643 if (!err) {
1644 err = security_socket_bind(sock,
1645 (struct sockaddr *)&address,
1646 addrlen);
1647 if (!err)
1648 err = sock->ops->bind(sock,
1649 (struct sockaddr *)
1650 &address, addrlen);
1651 }
1652 fput_light(sock->file, fput_needed);
1653 }
1654 return err;
1655 }
1656
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1657 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1658 {
1659 return __sys_bind(fd, umyaddr, addrlen);
1660 }
1661
1662 /*
1663 * Perform a listen. Basically, we allow the protocol to do anything
1664 * necessary for a listen, and if that works, we mark the socket as
1665 * ready for listening.
1666 */
1667
__sys_listen(int fd,int backlog)1668 int __sys_listen(int fd, int backlog)
1669 {
1670 struct socket *sock;
1671 int err, fput_needed;
1672 int somaxconn;
1673
1674 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1675 if (sock) {
1676 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1677 if ((unsigned int)backlog > somaxconn)
1678 backlog = somaxconn;
1679
1680 err = security_socket_listen(sock, backlog);
1681 if (!err)
1682 err = sock->ops->listen(sock, backlog);
1683
1684 fput_light(sock->file, fput_needed);
1685 }
1686 return err;
1687 }
1688
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1689 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1690 {
1691 return __sys_listen(fd, backlog);
1692 }
1693
1694 /*
1695 * For accept, we attempt to create a new socket, set up the link
1696 * with the client, wake up the client, then return the new
1697 * connected fd. We collect the address of the connector in kernel
1698 * space and move it to user at the very end. This is unclean because
1699 * we open the socket then return an error.
1700 *
1701 * 1003.1g adds the ability to recvmsg() to query connection pending
1702 * status to recvmsg. We need to add that support in a way thats
1703 * clean when we restructure accept also.
1704 */
1705
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1706 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1707 int __user *upeer_addrlen, int flags)
1708 {
1709 struct socket *sock, *newsock;
1710 struct file *newfile;
1711 int err, len, newfd, fput_needed;
1712 struct sockaddr_storage address;
1713
1714 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1715 return -EINVAL;
1716
1717 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1718 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1719
1720 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1721 if (!sock)
1722 goto out;
1723
1724 err = -ENFILE;
1725 newsock = sock_alloc();
1726 if (!newsock)
1727 goto out_put;
1728
1729 newsock->type = sock->type;
1730 newsock->ops = sock->ops;
1731
1732 /*
1733 * We don't need try_module_get here, as the listening socket (sock)
1734 * has the protocol module (sock->ops->owner) held.
1735 */
1736 __module_get(newsock->ops->owner);
1737
1738 newfd = get_unused_fd_flags(flags);
1739 if (unlikely(newfd < 0)) {
1740 err = newfd;
1741 sock_release(newsock);
1742 goto out_put;
1743 }
1744 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1745 if (IS_ERR(newfile)) {
1746 err = PTR_ERR(newfile);
1747 put_unused_fd(newfd);
1748 goto out_put;
1749 }
1750
1751 err = security_socket_accept(sock, newsock);
1752 if (err)
1753 goto out_fd;
1754
1755 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1756 if (err < 0)
1757 goto out_fd;
1758
1759 if (upeer_sockaddr) {
1760 len = newsock->ops->getname(newsock,
1761 (struct sockaddr *)&address, 2);
1762 if (len < 0) {
1763 err = -ECONNABORTED;
1764 goto out_fd;
1765 }
1766 err = move_addr_to_user(&address,
1767 len, upeer_sockaddr, upeer_addrlen);
1768 if (err < 0)
1769 goto out_fd;
1770 }
1771
1772 /* File flags are not inherited via accept() unlike another OSes. */
1773
1774 fd_install(newfd, newfile);
1775 err = newfd;
1776
1777 out_put:
1778 fput_light(sock->file, fput_needed);
1779 out:
1780 return err;
1781 out_fd:
1782 fput(newfile);
1783 put_unused_fd(newfd);
1784 goto out_put;
1785 }
1786
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1787 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1788 int __user *, upeer_addrlen, int, flags)
1789 {
1790 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1791 }
1792
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1793 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1794 int __user *, upeer_addrlen)
1795 {
1796 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1797 }
1798
1799 /*
1800 * Attempt to connect to a socket with the server address. The address
1801 * is in user space so we verify it is OK and move it to kernel space.
1802 *
1803 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1804 * break bindings
1805 *
1806 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1807 * other SEQPACKET protocols that take time to connect() as it doesn't
1808 * include the -EINPROGRESS status for such sockets.
1809 */
1810
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)1811 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1812 {
1813 struct socket *sock;
1814 struct sockaddr_storage address;
1815 int err, fput_needed;
1816
1817 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1818 if (!sock)
1819 goto out;
1820 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1821 if (err < 0)
1822 goto out_put;
1823
1824 err =
1825 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1826 if (err)
1827 goto out_put;
1828
1829 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1830 sock->file->f_flags);
1831 out_put:
1832 fput_light(sock->file, fput_needed);
1833 out:
1834 return err;
1835 }
1836
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1837 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1838 int, addrlen)
1839 {
1840 return __sys_connect(fd, uservaddr, addrlen);
1841 }
1842
1843 /*
1844 * Get the local address ('name') of a socket object. Move the obtained
1845 * name to user space.
1846 */
1847
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1848 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1849 int __user *usockaddr_len)
1850 {
1851 struct socket *sock;
1852 struct sockaddr_storage address;
1853 int err, fput_needed;
1854
1855 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1856 if (!sock)
1857 goto out;
1858
1859 err = security_socket_getsockname(sock);
1860 if (err)
1861 goto out_put;
1862
1863 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1864 if (err < 0)
1865 goto out_put;
1866 /* "err" is actually length in this case */
1867 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1868
1869 out_put:
1870 fput_light(sock->file, fput_needed);
1871 out:
1872 return err;
1873 }
1874
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1875 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1876 int __user *, usockaddr_len)
1877 {
1878 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1879 }
1880
1881 /*
1882 * Get the remote address ('name') of a socket object. Move the obtained
1883 * name to user space.
1884 */
1885
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1886 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1887 int __user *usockaddr_len)
1888 {
1889 struct socket *sock;
1890 struct sockaddr_storage address;
1891 int err, fput_needed;
1892
1893 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1894 if (sock != NULL) {
1895 err = security_socket_getpeername(sock);
1896 if (err) {
1897 fput_light(sock->file, fput_needed);
1898 return err;
1899 }
1900
1901 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1902 if (err >= 0)
1903 /* "err" is actually length in this case */
1904 err = move_addr_to_user(&address, err, usockaddr,
1905 usockaddr_len);
1906 fput_light(sock->file, fput_needed);
1907 }
1908 return err;
1909 }
1910
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1911 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1912 int __user *, usockaddr_len)
1913 {
1914 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1915 }
1916
1917 /*
1918 * Send a datagram to a given address. We move the address into kernel
1919 * space and check the user space data area is readable before invoking
1920 * the protocol.
1921 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)1922 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1923 struct sockaddr __user *addr, int addr_len)
1924 {
1925 struct socket *sock;
1926 struct sockaddr_storage address;
1927 int err;
1928 struct msghdr msg;
1929 struct iovec iov;
1930 int fput_needed;
1931
1932 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1933 if (unlikely(err))
1934 return err;
1935 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1936 if (!sock)
1937 goto out;
1938
1939 msg.msg_name = NULL;
1940 msg.msg_control = NULL;
1941 msg.msg_controllen = 0;
1942 msg.msg_namelen = 0;
1943 if (addr) {
1944 err = move_addr_to_kernel(addr, addr_len, &address);
1945 if (err < 0)
1946 goto out_put;
1947 msg.msg_name = (struct sockaddr *)&address;
1948 msg.msg_namelen = addr_len;
1949 }
1950 if (sock->file->f_flags & O_NONBLOCK)
1951 flags |= MSG_DONTWAIT;
1952 msg.msg_flags = flags;
1953 err = sock_sendmsg(sock, &msg);
1954
1955 out_put:
1956 fput_light(sock->file, fput_needed);
1957 out:
1958 return err;
1959 }
1960
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)1961 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1962 unsigned int, flags, struct sockaddr __user *, addr,
1963 int, addr_len)
1964 {
1965 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1966 }
1967
1968 /*
1969 * Send a datagram down a socket.
1970 */
1971
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)1972 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1973 unsigned int, flags)
1974 {
1975 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1976 }
1977
1978 /*
1979 * Receive a frame from the socket and optionally record the address of the
1980 * sender. We verify the buffers are writable and if needed move the
1981 * sender address from kernel to user space.
1982 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)1983 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1984 struct sockaddr __user *addr, int __user *addr_len)
1985 {
1986 struct socket *sock;
1987 struct iovec iov;
1988 struct msghdr msg;
1989 struct sockaddr_storage address;
1990 int err, err2;
1991 int fput_needed;
1992
1993 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1994 if (unlikely(err))
1995 return err;
1996 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1997 if (!sock)
1998 goto out;
1999
2000 msg.msg_control = NULL;
2001 msg.msg_controllen = 0;
2002 /* Save some cycles and don't copy the address if not needed */
2003 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2004 /* We assume all kernel code knows the size of sockaddr_storage */
2005 msg.msg_namelen = 0;
2006 msg.msg_iocb = NULL;
2007 msg.msg_flags = 0;
2008 if (sock->file->f_flags & O_NONBLOCK)
2009 flags |= MSG_DONTWAIT;
2010 err = sock_recvmsg(sock, &msg, flags);
2011
2012 if (err >= 0 && addr != NULL) {
2013 err2 = move_addr_to_user(&address,
2014 msg.msg_namelen, addr, addr_len);
2015 if (err2 < 0)
2016 err = err2;
2017 }
2018
2019 fput_light(sock->file, fput_needed);
2020 out:
2021 return err;
2022 }
2023
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2024 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2025 unsigned int, flags, struct sockaddr __user *, addr,
2026 int __user *, addr_len)
2027 {
2028 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2029 }
2030
2031 /*
2032 * Receive a datagram from a socket.
2033 */
2034
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2035 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2036 unsigned int, flags)
2037 {
2038 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2039 }
2040
2041 /*
2042 * Set a socket option. Because we don't know the option lengths we have
2043 * to pass the user mode parameter for the protocols to sort out.
2044 */
2045
__sys_setsockopt(int fd,int level,int optname,char __user * optval,int optlen)2046 static int __sys_setsockopt(int fd, int level, int optname,
2047 char __user *optval, int optlen)
2048 {
2049 mm_segment_t oldfs = get_fs();
2050 char *kernel_optval = NULL;
2051 int err, fput_needed;
2052 struct socket *sock;
2053
2054 if (optlen < 0)
2055 return -EINVAL;
2056
2057 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2058 if (sock != NULL) {
2059 err = security_socket_setsockopt(sock, level, optname);
2060 if (err)
2061 goto out_put;
2062
2063 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2064 &optname, optval, &optlen,
2065 &kernel_optval);
2066
2067 if (err < 0) {
2068 goto out_put;
2069 } else if (err > 0) {
2070 err = 0;
2071 goto out_put;
2072 }
2073
2074 if (kernel_optval) {
2075 set_fs(KERNEL_DS);
2076 optval = (char __user __force *)kernel_optval;
2077 }
2078
2079 if (level == SOL_SOCKET)
2080 err =
2081 sock_setsockopt(sock, level, optname, optval,
2082 optlen);
2083 else
2084 err =
2085 sock->ops->setsockopt(sock, level, optname, optval,
2086 optlen);
2087
2088 if (kernel_optval) {
2089 set_fs(oldfs);
2090 kfree(kernel_optval);
2091 }
2092 out_put:
2093 fput_light(sock->file, fput_needed);
2094 }
2095 return err;
2096 }
2097
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2098 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2099 char __user *, optval, int, optlen)
2100 {
2101 return __sys_setsockopt(fd, level, optname, optval, optlen);
2102 }
2103
2104 /*
2105 * Get a socket option. Because we don't know the option lengths we have
2106 * to pass a user mode parameter for the protocols to sort out.
2107 */
2108
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2109 static int __sys_getsockopt(int fd, int level, int optname,
2110 char __user *optval, int __user *optlen)
2111 {
2112 int err, fput_needed;
2113 struct socket *sock;
2114 int max_optlen;
2115
2116 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2117 if (sock != NULL) {
2118 err = security_socket_getsockopt(sock, level, optname);
2119 if (err)
2120 goto out_put;
2121
2122 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2123
2124 if (level == SOL_SOCKET)
2125 err =
2126 sock_getsockopt(sock, level, optname, optval,
2127 optlen);
2128 else
2129 err =
2130 sock->ops->getsockopt(sock, level, optname, optval,
2131 optlen);
2132
2133 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2134 optval, optlen,
2135 max_optlen, err);
2136 out_put:
2137 fput_light(sock->file, fput_needed);
2138 }
2139 return err;
2140 }
2141
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2142 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2143 char __user *, optval, int __user *, optlen)
2144 {
2145 return __sys_getsockopt(fd, level, optname, optval, optlen);
2146 }
2147
2148 /*
2149 * Shutdown a socket.
2150 */
2151
__sys_shutdown(int fd,int how)2152 int __sys_shutdown(int fd, int how)
2153 {
2154 int err, fput_needed;
2155 struct socket *sock;
2156
2157 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2158 if (sock != NULL) {
2159 err = security_socket_shutdown(sock, how);
2160 if (!err)
2161 err = sock->ops->shutdown(sock, how);
2162 fput_light(sock->file, fput_needed);
2163 }
2164 return err;
2165 }
2166
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2167 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2168 {
2169 return __sys_shutdown(fd, how);
2170 }
2171
2172 /* A couple of helpful macros for getting the address of the 32/64 bit
2173 * fields which are the same type (int / unsigned) on our platforms.
2174 */
2175 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2176 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2177 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2178
2179 struct used_address {
2180 struct sockaddr_storage name;
2181 unsigned int name_len;
2182 };
2183
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2184 static int copy_msghdr_from_user(struct msghdr *kmsg,
2185 struct user_msghdr __user *umsg,
2186 struct sockaddr __user **save_addr,
2187 struct iovec **iov)
2188 {
2189 struct user_msghdr msg;
2190 ssize_t err;
2191
2192 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2193 return -EFAULT;
2194
2195 kmsg->msg_control = (void __force *)msg.msg_control;
2196 kmsg->msg_controllen = msg.msg_controllen;
2197 kmsg->msg_flags = msg.msg_flags;
2198
2199 kmsg->msg_namelen = msg.msg_namelen;
2200 if (!msg.msg_name)
2201 kmsg->msg_namelen = 0;
2202
2203 if (kmsg->msg_namelen < 0)
2204 return -EINVAL;
2205
2206 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2207 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2208
2209 if (save_addr)
2210 *save_addr = msg.msg_name;
2211
2212 if (msg.msg_name && kmsg->msg_namelen) {
2213 if (!save_addr) {
2214 err = move_addr_to_kernel(msg.msg_name,
2215 kmsg->msg_namelen,
2216 kmsg->msg_name);
2217 if (err < 0)
2218 return err;
2219 }
2220 } else {
2221 kmsg->msg_name = NULL;
2222 kmsg->msg_namelen = 0;
2223 }
2224
2225 if (msg.msg_iovlen > UIO_MAXIOV)
2226 return -EMSGSIZE;
2227
2228 kmsg->msg_iocb = NULL;
2229
2230 err = import_iovec(save_addr ? READ : WRITE,
2231 msg.msg_iov, msg.msg_iovlen,
2232 UIO_FASTIOV, iov, &kmsg->msg_iter);
2233 return err < 0 ? err : 0;
2234 }
2235
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2236 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2237 unsigned int flags, struct used_address *used_address,
2238 unsigned int allowed_msghdr_flags)
2239 {
2240 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2241 __aligned(sizeof(__kernel_size_t));
2242 /* 20 is size of ipv6_pktinfo */
2243 unsigned char *ctl_buf = ctl;
2244 int ctl_len;
2245 ssize_t err;
2246
2247 err = -ENOBUFS;
2248
2249 if (msg_sys->msg_controllen > INT_MAX)
2250 goto out;
2251 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2252 ctl_len = msg_sys->msg_controllen;
2253 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2254 err =
2255 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2256 sizeof(ctl));
2257 if (err)
2258 goto out;
2259 ctl_buf = msg_sys->msg_control;
2260 ctl_len = msg_sys->msg_controllen;
2261 } else if (ctl_len) {
2262 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2263 CMSG_ALIGN(sizeof(struct cmsghdr)));
2264 if (ctl_len > sizeof(ctl)) {
2265 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2266 if (ctl_buf == NULL)
2267 goto out;
2268 }
2269 err = -EFAULT;
2270 /*
2271 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2272 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2273 * checking falls down on this.
2274 */
2275 if (copy_from_user(ctl_buf,
2276 (void __user __force *)msg_sys->msg_control,
2277 ctl_len))
2278 goto out_freectl;
2279 msg_sys->msg_control = ctl_buf;
2280 }
2281 msg_sys->msg_flags = flags;
2282
2283 if (sock->file->f_flags & O_NONBLOCK)
2284 msg_sys->msg_flags |= MSG_DONTWAIT;
2285 /*
2286 * If this is sendmmsg() and current destination address is same as
2287 * previously succeeded address, omit asking LSM's decision.
2288 * used_address->name_len is initialized to UINT_MAX so that the first
2289 * destination address never matches.
2290 */
2291 if (used_address && msg_sys->msg_name &&
2292 used_address->name_len == msg_sys->msg_namelen &&
2293 !memcmp(&used_address->name, msg_sys->msg_name,
2294 used_address->name_len)) {
2295 err = sock_sendmsg_nosec(sock, msg_sys);
2296 goto out_freectl;
2297 }
2298 err = sock_sendmsg(sock, msg_sys);
2299 /*
2300 * If this is sendmmsg() and sending to current destination address was
2301 * successful, remember it.
2302 */
2303 if (used_address && err >= 0) {
2304 used_address->name_len = msg_sys->msg_namelen;
2305 if (msg_sys->msg_name)
2306 memcpy(&used_address->name, msg_sys->msg_name,
2307 used_address->name_len);
2308 }
2309
2310 out_freectl:
2311 if (ctl_buf != ctl)
2312 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2313 out:
2314 return err;
2315 }
2316
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2317 static int sendmsg_copy_msghdr(struct msghdr *msg,
2318 struct user_msghdr __user *umsg, unsigned flags,
2319 struct iovec **iov)
2320 {
2321 int err;
2322
2323 if (flags & MSG_CMSG_COMPAT) {
2324 struct compat_msghdr __user *msg_compat;
2325
2326 msg_compat = (struct compat_msghdr __user *) umsg;
2327 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2328 } else {
2329 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2330 }
2331 if (err < 0)
2332 return err;
2333
2334 return 0;
2335 }
2336
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2337 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2338 struct msghdr *msg_sys, unsigned int flags,
2339 struct used_address *used_address,
2340 unsigned int allowed_msghdr_flags)
2341 {
2342 struct sockaddr_storage address;
2343 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2344 ssize_t err;
2345
2346 msg_sys->msg_name = &address;
2347
2348 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2349 if (err < 0)
2350 return err;
2351
2352 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2353 allowed_msghdr_flags);
2354 kfree(iov);
2355 return err;
2356 }
2357
2358 /*
2359 * BSD sendmsg interface
2360 */
__sys_sendmsg_sock(struct socket * sock,struct user_msghdr __user * umsg,unsigned int flags)2361 long __sys_sendmsg_sock(struct socket *sock, struct user_msghdr __user *umsg,
2362 unsigned int flags)
2363 {
2364 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2365 struct sockaddr_storage address;
2366 struct msghdr msg = { .msg_name = &address };
2367 ssize_t err;
2368
2369 err = sendmsg_copy_msghdr(&msg, umsg, flags, &iov);
2370 if (err)
2371 return err;
2372 /* disallow ancillary data requests from this path */
2373 if (msg.msg_control || msg.msg_controllen) {
2374 err = -EINVAL;
2375 goto out;
2376 }
2377
2378 err = ____sys_sendmsg(sock, &msg, flags, NULL, 0);
2379 out:
2380 kfree(iov);
2381 return err;
2382 }
2383
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2384 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2385 bool forbid_cmsg_compat)
2386 {
2387 int fput_needed, err;
2388 struct msghdr msg_sys;
2389 struct socket *sock;
2390
2391 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2392 return -EINVAL;
2393
2394 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2395 if (!sock)
2396 goto out;
2397
2398 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2399
2400 fput_light(sock->file, fput_needed);
2401 out:
2402 return err;
2403 }
2404
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2405 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2406 {
2407 return __sys_sendmsg(fd, msg, flags, true);
2408 }
2409
2410 /*
2411 * Linux sendmmsg interface
2412 */
2413
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2414 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2415 unsigned int flags, bool forbid_cmsg_compat)
2416 {
2417 int fput_needed, err, datagrams;
2418 struct socket *sock;
2419 struct mmsghdr __user *entry;
2420 struct compat_mmsghdr __user *compat_entry;
2421 struct msghdr msg_sys;
2422 struct used_address used_address;
2423 unsigned int oflags = flags;
2424
2425 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2426 return -EINVAL;
2427
2428 if (vlen > UIO_MAXIOV)
2429 vlen = UIO_MAXIOV;
2430
2431 datagrams = 0;
2432
2433 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2434 if (!sock)
2435 return err;
2436
2437 used_address.name_len = UINT_MAX;
2438 entry = mmsg;
2439 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2440 err = 0;
2441 flags |= MSG_BATCH;
2442
2443 while (datagrams < vlen) {
2444 if (datagrams == vlen - 1)
2445 flags = oflags;
2446
2447 if (MSG_CMSG_COMPAT & flags) {
2448 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2449 &msg_sys, flags, &used_address, MSG_EOR);
2450 if (err < 0)
2451 break;
2452 err = __put_user(err, &compat_entry->msg_len);
2453 ++compat_entry;
2454 } else {
2455 err = ___sys_sendmsg(sock,
2456 (struct user_msghdr __user *)entry,
2457 &msg_sys, flags, &used_address, MSG_EOR);
2458 if (err < 0)
2459 break;
2460 err = put_user(err, &entry->msg_len);
2461 ++entry;
2462 }
2463
2464 if (err)
2465 break;
2466 ++datagrams;
2467 if (msg_data_left(&msg_sys))
2468 break;
2469 cond_resched();
2470 }
2471
2472 fput_light(sock->file, fput_needed);
2473
2474 /* We only return an error if no datagrams were able to be sent */
2475 if (datagrams != 0)
2476 return datagrams;
2477
2478 return err;
2479 }
2480
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2481 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2482 unsigned int, vlen, unsigned int, flags)
2483 {
2484 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2485 }
2486
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2487 static int recvmsg_copy_msghdr(struct msghdr *msg,
2488 struct user_msghdr __user *umsg, unsigned flags,
2489 struct sockaddr __user **uaddr,
2490 struct iovec **iov)
2491 {
2492 ssize_t err;
2493
2494 if (MSG_CMSG_COMPAT & flags) {
2495 struct compat_msghdr __user *msg_compat;
2496
2497 msg_compat = (struct compat_msghdr __user *) umsg;
2498 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2499 } else {
2500 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2501 }
2502 if (err < 0)
2503 return err;
2504
2505 return 0;
2506 }
2507
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2508 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2509 struct user_msghdr __user *msg,
2510 struct sockaddr __user *uaddr,
2511 unsigned int flags, int nosec)
2512 {
2513 struct compat_msghdr __user *msg_compat =
2514 (struct compat_msghdr __user *) msg;
2515 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2516 struct sockaddr_storage addr;
2517 unsigned long cmsg_ptr;
2518 int len;
2519 ssize_t err;
2520
2521 msg_sys->msg_name = &addr;
2522 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2523 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2524
2525 /* We assume all kernel code knows the size of sockaddr_storage */
2526 msg_sys->msg_namelen = 0;
2527
2528 if (sock->file->f_flags & O_NONBLOCK)
2529 flags |= MSG_DONTWAIT;
2530 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2531 if (err < 0)
2532 goto out;
2533 len = err;
2534
2535 if (uaddr != NULL) {
2536 err = move_addr_to_user(&addr,
2537 msg_sys->msg_namelen, uaddr,
2538 uaddr_len);
2539 if (err < 0)
2540 goto out;
2541 }
2542 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2543 COMPAT_FLAGS(msg));
2544 if (err)
2545 goto out;
2546 if (MSG_CMSG_COMPAT & flags)
2547 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2548 &msg_compat->msg_controllen);
2549 else
2550 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2551 &msg->msg_controllen);
2552 if (err)
2553 goto out;
2554 err = len;
2555 out:
2556 return err;
2557 }
2558
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2559 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2560 struct msghdr *msg_sys, unsigned int flags, int nosec)
2561 {
2562 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2563 /* user mode address pointers */
2564 struct sockaddr __user *uaddr;
2565 ssize_t err;
2566
2567 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2568 if (err < 0)
2569 return err;
2570
2571 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2572 kfree(iov);
2573 return err;
2574 }
2575
2576 /*
2577 * BSD recvmsg interface
2578 */
2579
__sys_recvmsg_sock(struct socket * sock,struct user_msghdr __user * umsg,unsigned int flags)2580 long __sys_recvmsg_sock(struct socket *sock, struct user_msghdr __user *umsg,
2581 unsigned int flags)
2582 {
2583 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2584 struct sockaddr_storage address;
2585 struct msghdr msg = { .msg_name = &address };
2586 struct sockaddr __user *uaddr;
2587 ssize_t err;
2588
2589 err = recvmsg_copy_msghdr(&msg, umsg, flags, &uaddr, &iov);
2590 if (err)
2591 return err;
2592 /* disallow ancillary data requests from this path */
2593 if (msg.msg_control || msg.msg_controllen) {
2594 err = -EINVAL;
2595 goto out;
2596 }
2597
2598 err = ____sys_recvmsg(sock, &msg, umsg, uaddr, flags, 0);
2599 out:
2600 kfree(iov);
2601 return err;
2602 }
2603
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2604 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2605 bool forbid_cmsg_compat)
2606 {
2607 int fput_needed, err;
2608 struct msghdr msg_sys;
2609 struct socket *sock;
2610
2611 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2612 return -EINVAL;
2613
2614 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2615 if (!sock)
2616 goto out;
2617
2618 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2619
2620 fput_light(sock->file, fput_needed);
2621 out:
2622 return err;
2623 }
2624
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2625 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2626 unsigned int, flags)
2627 {
2628 return __sys_recvmsg(fd, msg, flags, true);
2629 }
2630
2631 /*
2632 * Linux recvmmsg interface
2633 */
2634
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2635 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2636 unsigned int vlen, unsigned int flags,
2637 struct timespec64 *timeout)
2638 {
2639 int fput_needed, err, datagrams;
2640 struct socket *sock;
2641 struct mmsghdr __user *entry;
2642 struct compat_mmsghdr __user *compat_entry;
2643 struct msghdr msg_sys;
2644 struct timespec64 end_time;
2645 struct timespec64 timeout64;
2646
2647 if (timeout &&
2648 poll_select_set_timeout(&end_time, timeout->tv_sec,
2649 timeout->tv_nsec))
2650 return -EINVAL;
2651
2652 datagrams = 0;
2653
2654 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2655 if (!sock)
2656 return err;
2657
2658 if (likely(!(flags & MSG_ERRQUEUE))) {
2659 err = sock_error(sock->sk);
2660 if (err) {
2661 datagrams = err;
2662 goto out_put;
2663 }
2664 }
2665
2666 entry = mmsg;
2667 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2668
2669 while (datagrams < vlen) {
2670 /*
2671 * No need to ask LSM for more than the first datagram.
2672 */
2673 if (MSG_CMSG_COMPAT & flags) {
2674 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2675 &msg_sys, flags & ~MSG_WAITFORONE,
2676 datagrams);
2677 if (err < 0)
2678 break;
2679 err = __put_user(err, &compat_entry->msg_len);
2680 ++compat_entry;
2681 } else {
2682 err = ___sys_recvmsg(sock,
2683 (struct user_msghdr __user *)entry,
2684 &msg_sys, flags & ~MSG_WAITFORONE,
2685 datagrams);
2686 if (err < 0)
2687 break;
2688 err = put_user(err, &entry->msg_len);
2689 ++entry;
2690 }
2691
2692 if (err)
2693 break;
2694 ++datagrams;
2695
2696 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2697 if (flags & MSG_WAITFORONE)
2698 flags |= MSG_DONTWAIT;
2699
2700 if (timeout) {
2701 ktime_get_ts64(&timeout64);
2702 *timeout = timespec64_sub(end_time, timeout64);
2703 if (timeout->tv_sec < 0) {
2704 timeout->tv_sec = timeout->tv_nsec = 0;
2705 break;
2706 }
2707
2708 /* Timeout, return less than vlen datagrams */
2709 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2710 break;
2711 }
2712
2713 /* Out of band data, return right away */
2714 if (msg_sys.msg_flags & MSG_OOB)
2715 break;
2716 cond_resched();
2717 }
2718
2719 if (err == 0)
2720 goto out_put;
2721
2722 if (datagrams == 0) {
2723 datagrams = err;
2724 goto out_put;
2725 }
2726
2727 /*
2728 * We may return less entries than requested (vlen) if the
2729 * sock is non block and there aren't enough datagrams...
2730 */
2731 if (err != -EAGAIN) {
2732 /*
2733 * ... or if recvmsg returns an error after we
2734 * received some datagrams, where we record the
2735 * error to return on the next call or if the
2736 * app asks about it using getsockopt(SO_ERROR).
2737 */
2738 sock->sk->sk_err = -err;
2739 }
2740 out_put:
2741 fput_light(sock->file, fput_needed);
2742
2743 return datagrams;
2744 }
2745
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2746 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2747 unsigned int vlen, unsigned int flags,
2748 struct __kernel_timespec __user *timeout,
2749 struct old_timespec32 __user *timeout32)
2750 {
2751 int datagrams;
2752 struct timespec64 timeout_sys;
2753
2754 if (timeout && get_timespec64(&timeout_sys, timeout))
2755 return -EFAULT;
2756
2757 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2758 return -EFAULT;
2759
2760 if (!timeout && !timeout32)
2761 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2762
2763 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2764
2765 if (datagrams <= 0)
2766 return datagrams;
2767
2768 if (timeout && put_timespec64(&timeout_sys, timeout))
2769 datagrams = -EFAULT;
2770
2771 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2772 datagrams = -EFAULT;
2773
2774 return datagrams;
2775 }
2776
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)2777 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2778 unsigned int, vlen, unsigned int, flags,
2779 struct __kernel_timespec __user *, timeout)
2780 {
2781 if (flags & MSG_CMSG_COMPAT)
2782 return -EINVAL;
2783
2784 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2785 }
2786
2787 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)2788 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2789 unsigned int, vlen, unsigned int, flags,
2790 struct old_timespec32 __user *, timeout)
2791 {
2792 if (flags & MSG_CMSG_COMPAT)
2793 return -EINVAL;
2794
2795 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2796 }
2797 #endif
2798
2799 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2800 /* Argument list sizes for sys_socketcall */
2801 #define AL(x) ((x) * sizeof(unsigned long))
2802 static const unsigned char nargs[21] = {
2803 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2804 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2805 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2806 AL(4), AL(5), AL(4)
2807 };
2808
2809 #undef AL
2810
2811 /*
2812 * System call vectors.
2813 *
2814 * Argument checking cleaned up. Saved 20% in size.
2815 * This function doesn't need to set the kernel lock because
2816 * it is set by the callees.
2817 */
2818
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2819 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2820 {
2821 unsigned long a[AUDITSC_ARGS];
2822 unsigned long a0, a1;
2823 int err;
2824 unsigned int len;
2825
2826 if (call < 1 || call > SYS_SENDMMSG)
2827 return -EINVAL;
2828 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2829
2830 len = nargs[call];
2831 if (len > sizeof(a))
2832 return -EINVAL;
2833
2834 /* copy_from_user should be SMP safe. */
2835 if (copy_from_user(a, args, len))
2836 return -EFAULT;
2837
2838 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2839 if (err)
2840 return err;
2841
2842 a0 = a[0];
2843 a1 = a[1];
2844
2845 switch (call) {
2846 case SYS_SOCKET:
2847 err = __sys_socket(a0, a1, a[2]);
2848 break;
2849 case SYS_BIND:
2850 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2851 break;
2852 case SYS_CONNECT:
2853 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2854 break;
2855 case SYS_LISTEN:
2856 err = __sys_listen(a0, a1);
2857 break;
2858 case SYS_ACCEPT:
2859 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2860 (int __user *)a[2], 0);
2861 break;
2862 case SYS_GETSOCKNAME:
2863 err =
2864 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2865 (int __user *)a[2]);
2866 break;
2867 case SYS_GETPEERNAME:
2868 err =
2869 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2870 (int __user *)a[2]);
2871 break;
2872 case SYS_SOCKETPAIR:
2873 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2874 break;
2875 case SYS_SEND:
2876 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2877 NULL, 0);
2878 break;
2879 case SYS_SENDTO:
2880 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2881 (struct sockaddr __user *)a[4], a[5]);
2882 break;
2883 case SYS_RECV:
2884 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2885 NULL, NULL);
2886 break;
2887 case SYS_RECVFROM:
2888 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2889 (struct sockaddr __user *)a[4],
2890 (int __user *)a[5]);
2891 break;
2892 case SYS_SHUTDOWN:
2893 err = __sys_shutdown(a0, a1);
2894 break;
2895 case SYS_SETSOCKOPT:
2896 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2897 a[4]);
2898 break;
2899 case SYS_GETSOCKOPT:
2900 err =
2901 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2902 (int __user *)a[4]);
2903 break;
2904 case SYS_SENDMSG:
2905 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2906 a[2], true);
2907 break;
2908 case SYS_SENDMMSG:
2909 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2910 a[3], true);
2911 break;
2912 case SYS_RECVMSG:
2913 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2914 a[2], true);
2915 break;
2916 case SYS_RECVMMSG:
2917 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2918 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2919 a[2], a[3],
2920 (struct __kernel_timespec __user *)a[4],
2921 NULL);
2922 else
2923 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2924 a[2], a[3], NULL,
2925 (struct old_timespec32 __user *)a[4]);
2926 break;
2927 case SYS_ACCEPT4:
2928 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2929 (int __user *)a[2], a[3]);
2930 break;
2931 default:
2932 err = -EINVAL;
2933 break;
2934 }
2935 return err;
2936 }
2937
2938 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2939
2940 /**
2941 * sock_register - add a socket protocol handler
2942 * @ops: description of protocol
2943 *
2944 * This function is called by a protocol handler that wants to
2945 * advertise its address family, and have it linked into the
2946 * socket interface. The value ops->family corresponds to the
2947 * socket system call protocol family.
2948 */
sock_register(const struct net_proto_family * ops)2949 int sock_register(const struct net_proto_family *ops)
2950 {
2951 int err;
2952
2953 if (ops->family >= NPROTO) {
2954 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2955 return -ENOBUFS;
2956 }
2957
2958 spin_lock(&net_family_lock);
2959 if (rcu_dereference_protected(net_families[ops->family],
2960 lockdep_is_held(&net_family_lock)))
2961 err = -EEXIST;
2962 else {
2963 rcu_assign_pointer(net_families[ops->family], ops);
2964 err = 0;
2965 }
2966 spin_unlock(&net_family_lock);
2967
2968 pr_info("NET: Registered protocol family %d\n", ops->family);
2969 return err;
2970 }
2971 EXPORT_SYMBOL(sock_register);
2972
2973 /**
2974 * sock_unregister - remove a protocol handler
2975 * @family: protocol family to remove
2976 *
2977 * This function is called by a protocol handler that wants to
2978 * remove its address family, and have it unlinked from the
2979 * new socket creation.
2980 *
2981 * If protocol handler is a module, then it can use module reference
2982 * counts to protect against new references. If protocol handler is not
2983 * a module then it needs to provide its own protection in
2984 * the ops->create routine.
2985 */
sock_unregister(int family)2986 void sock_unregister(int family)
2987 {
2988 BUG_ON(family < 0 || family >= NPROTO);
2989
2990 spin_lock(&net_family_lock);
2991 RCU_INIT_POINTER(net_families[family], NULL);
2992 spin_unlock(&net_family_lock);
2993
2994 synchronize_rcu();
2995
2996 pr_info("NET: Unregistered protocol family %d\n", family);
2997 }
2998 EXPORT_SYMBOL(sock_unregister);
2999
sock_is_registered(int family)3000 bool sock_is_registered(int family)
3001 {
3002 return family < NPROTO && rcu_access_pointer(net_families[family]);
3003 }
3004
sock_init(void)3005 static int __init sock_init(void)
3006 {
3007 int err;
3008 /*
3009 * Initialize the network sysctl infrastructure.
3010 */
3011 err = net_sysctl_init();
3012 if (err)
3013 goto out;
3014
3015 /*
3016 * Initialize skbuff SLAB cache
3017 */
3018 skb_init();
3019
3020 /*
3021 * Initialize the protocols module.
3022 */
3023
3024 init_inodecache();
3025
3026 err = register_filesystem(&sock_fs_type);
3027 if (err)
3028 goto out_fs;
3029 sock_mnt = kern_mount(&sock_fs_type);
3030 if (IS_ERR(sock_mnt)) {
3031 err = PTR_ERR(sock_mnt);
3032 goto out_mount;
3033 }
3034
3035 /* The real protocol initialization is performed in later initcalls.
3036 */
3037
3038 #ifdef CONFIG_NETFILTER
3039 err = netfilter_init();
3040 if (err)
3041 goto out;
3042 #endif
3043
3044 ptp_classifier_init();
3045
3046 out:
3047 return err;
3048
3049 out_mount:
3050 unregister_filesystem(&sock_fs_type);
3051 out_fs:
3052 goto out;
3053 }
3054
3055 core_initcall(sock_init); /* early initcall */
3056
3057 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3058 void socket_seq_show(struct seq_file *seq)
3059 {
3060 seq_printf(seq, "sockets: used %d\n",
3061 sock_inuse_get(seq->private));
3062 }
3063 #endif /* CONFIG_PROC_FS */
3064
3065 #ifdef CONFIG_COMPAT
compat_dev_ifconf(struct net * net,struct compat_ifconf __user * uifc32)3066 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3067 {
3068 struct compat_ifconf ifc32;
3069 struct ifconf ifc;
3070 int err;
3071
3072 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3073 return -EFAULT;
3074
3075 ifc.ifc_len = ifc32.ifc_len;
3076 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3077
3078 rtnl_lock();
3079 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3080 rtnl_unlock();
3081 if (err)
3082 return err;
3083
3084 ifc32.ifc_len = ifc.ifc_len;
3085 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3086 return -EFAULT;
3087
3088 return 0;
3089 }
3090
ethtool_ioctl(struct net * net,struct compat_ifreq __user * ifr32)3091 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3092 {
3093 struct compat_ethtool_rxnfc __user *compat_rxnfc;
3094 bool convert_in = false, convert_out = false;
3095 size_t buf_size = 0;
3096 struct ethtool_rxnfc __user *rxnfc = NULL;
3097 struct ifreq ifr;
3098 u32 rule_cnt = 0, actual_rule_cnt;
3099 u32 ethcmd;
3100 u32 data;
3101 int ret;
3102
3103 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3104 return -EFAULT;
3105
3106 compat_rxnfc = compat_ptr(data);
3107
3108 if (get_user(ethcmd, &compat_rxnfc->cmd))
3109 return -EFAULT;
3110
3111 /* Most ethtool structures are defined without padding.
3112 * Unfortunately struct ethtool_rxnfc is an exception.
3113 */
3114 switch (ethcmd) {
3115 default:
3116 break;
3117 case ETHTOOL_GRXCLSRLALL:
3118 /* Buffer size is variable */
3119 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3120 return -EFAULT;
3121 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3122 return -ENOMEM;
3123 buf_size += rule_cnt * sizeof(u32);
3124 /* fall through */
3125 case ETHTOOL_GRXRINGS:
3126 case ETHTOOL_GRXCLSRLCNT:
3127 case ETHTOOL_GRXCLSRULE:
3128 case ETHTOOL_SRXCLSRLINS:
3129 convert_out = true;
3130 /* fall through */
3131 case ETHTOOL_SRXCLSRLDEL:
3132 buf_size += sizeof(struct ethtool_rxnfc);
3133 convert_in = true;
3134 rxnfc = compat_alloc_user_space(buf_size);
3135 break;
3136 }
3137
3138 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3139 return -EFAULT;
3140
3141 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3142
3143 if (convert_in) {
3144 /* We expect there to be holes between fs.m_ext and
3145 * fs.ring_cookie and at the end of fs, but nowhere else.
3146 */
3147 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3148 sizeof(compat_rxnfc->fs.m_ext) !=
3149 offsetof(struct ethtool_rxnfc, fs.m_ext) +
3150 sizeof(rxnfc->fs.m_ext));
3151 BUILD_BUG_ON(
3152 offsetof(struct compat_ethtool_rxnfc, fs.location) -
3153 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3154 offsetof(struct ethtool_rxnfc, fs.location) -
3155 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3156
3157 if (copy_in_user(rxnfc, compat_rxnfc,
3158 (void __user *)(&rxnfc->fs.m_ext + 1) -
3159 (void __user *)rxnfc) ||
3160 copy_in_user(&rxnfc->fs.ring_cookie,
3161 &compat_rxnfc->fs.ring_cookie,
3162 (void __user *)(&rxnfc->fs.location + 1) -
3163 (void __user *)&rxnfc->fs.ring_cookie))
3164 return -EFAULT;
3165 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3166 if (put_user(rule_cnt, &rxnfc->rule_cnt))
3167 return -EFAULT;
3168 } else if (copy_in_user(&rxnfc->rule_cnt,
3169 &compat_rxnfc->rule_cnt,
3170 sizeof(rxnfc->rule_cnt)))
3171 return -EFAULT;
3172 }
3173
3174 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3175 if (ret)
3176 return ret;
3177
3178 if (convert_out) {
3179 if (copy_in_user(compat_rxnfc, rxnfc,
3180 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3181 (const void __user *)rxnfc) ||
3182 copy_in_user(&compat_rxnfc->fs.ring_cookie,
3183 &rxnfc->fs.ring_cookie,
3184 (const void __user *)(&rxnfc->fs.location + 1) -
3185 (const void __user *)&rxnfc->fs.ring_cookie) ||
3186 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3187 sizeof(rxnfc->rule_cnt)))
3188 return -EFAULT;
3189
3190 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3191 /* As an optimisation, we only copy the actual
3192 * number of rules that the underlying
3193 * function returned. Since Mallory might
3194 * change the rule count in user memory, we
3195 * check that it is less than the rule count
3196 * originally given (as the user buffer size),
3197 * which has been range-checked.
3198 */
3199 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3200 return -EFAULT;
3201 if (actual_rule_cnt < rule_cnt)
3202 rule_cnt = actual_rule_cnt;
3203 if (copy_in_user(&compat_rxnfc->rule_locs[0],
3204 &rxnfc->rule_locs[0],
3205 rule_cnt * sizeof(u32)))
3206 return -EFAULT;
3207 }
3208 }
3209
3210 return 0;
3211 }
3212
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3213 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3214 {
3215 compat_uptr_t uptr32;
3216 struct ifreq ifr;
3217 void __user *saved;
3218 int err;
3219
3220 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3221 return -EFAULT;
3222
3223 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3224 return -EFAULT;
3225
3226 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3227 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3228
3229 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3230 if (!err) {
3231 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3232 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3233 err = -EFAULT;
3234 }
3235 return err;
3236 }
3237
3238 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3239 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3240 struct compat_ifreq __user *u_ifreq32)
3241 {
3242 struct ifreq ifreq;
3243 u32 data32;
3244
3245 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3246 return -EFAULT;
3247 if (get_user(data32, &u_ifreq32->ifr_data))
3248 return -EFAULT;
3249 ifreq.ifr_data = compat_ptr(data32);
3250
3251 return dev_ioctl(net, cmd, &ifreq, NULL);
3252 }
3253
compat_ifreq_ioctl(struct net * net,struct socket * sock,unsigned int cmd,struct compat_ifreq __user * uifr32)3254 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3255 unsigned int cmd,
3256 struct compat_ifreq __user *uifr32)
3257 {
3258 struct ifreq __user *uifr;
3259 int err;
3260
3261 /* Handle the fact that while struct ifreq has the same *layout* on
3262 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3263 * which are handled elsewhere, it still has different *size* due to
3264 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3265 * resulting in struct ifreq being 32 and 40 bytes respectively).
3266 * As a result, if the struct happens to be at the end of a page and
3267 * the next page isn't readable/writable, we get a fault. To prevent
3268 * that, copy back and forth to the full size.
3269 */
3270
3271 uifr = compat_alloc_user_space(sizeof(*uifr));
3272 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3273 return -EFAULT;
3274
3275 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3276
3277 if (!err) {
3278 switch (cmd) {
3279 case SIOCGIFFLAGS:
3280 case SIOCGIFMETRIC:
3281 case SIOCGIFMTU:
3282 case SIOCGIFMEM:
3283 case SIOCGIFHWADDR:
3284 case SIOCGIFINDEX:
3285 case SIOCGIFADDR:
3286 case SIOCGIFBRDADDR:
3287 case SIOCGIFDSTADDR:
3288 case SIOCGIFNETMASK:
3289 case SIOCGIFPFLAGS:
3290 case SIOCGIFTXQLEN:
3291 case SIOCGMIIPHY:
3292 case SIOCGMIIREG:
3293 case SIOCGIFNAME:
3294 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3295 err = -EFAULT;
3296 break;
3297 }
3298 }
3299 return err;
3300 }
3301
compat_sioc_ifmap(struct net * net,unsigned int cmd,struct compat_ifreq __user * uifr32)3302 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3303 struct compat_ifreq __user *uifr32)
3304 {
3305 struct ifreq ifr;
3306 struct compat_ifmap __user *uifmap32;
3307 int err;
3308
3309 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3310 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3311 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3312 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3313 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3314 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3315 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3316 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3317 if (err)
3318 return -EFAULT;
3319
3320 err = dev_ioctl(net, cmd, &ifr, NULL);
3321
3322 if (cmd == SIOCGIFMAP && !err) {
3323 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3324 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3325 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3326 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3327 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3328 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3329 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3330 if (err)
3331 err = -EFAULT;
3332 }
3333 return err;
3334 }
3335
3336 struct rtentry32 {
3337 u32 rt_pad1;
3338 struct sockaddr rt_dst; /* target address */
3339 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3340 struct sockaddr rt_genmask; /* target network mask (IP) */
3341 unsigned short rt_flags;
3342 short rt_pad2;
3343 u32 rt_pad3;
3344 unsigned char rt_tos;
3345 unsigned char rt_class;
3346 short rt_pad4;
3347 short rt_metric; /* +1 for binary compatibility! */
3348 /* char * */ u32 rt_dev; /* forcing the device at add */
3349 u32 rt_mtu; /* per route MTU/Window */
3350 u32 rt_window; /* Window clamping */
3351 unsigned short rt_irtt; /* Initial RTT */
3352 };
3353
3354 struct in6_rtmsg32 {
3355 struct in6_addr rtmsg_dst;
3356 struct in6_addr rtmsg_src;
3357 struct in6_addr rtmsg_gateway;
3358 u32 rtmsg_type;
3359 u16 rtmsg_dst_len;
3360 u16 rtmsg_src_len;
3361 u32 rtmsg_metric;
3362 u32 rtmsg_info;
3363 u32 rtmsg_flags;
3364 s32 rtmsg_ifindex;
3365 };
3366
routing_ioctl(struct net * net,struct socket * sock,unsigned int cmd,void __user * argp)3367 static int routing_ioctl(struct net *net, struct socket *sock,
3368 unsigned int cmd, void __user *argp)
3369 {
3370 int ret;
3371 void *r = NULL;
3372 struct in6_rtmsg r6;
3373 struct rtentry r4;
3374 char devname[16];
3375 u32 rtdev;
3376 mm_segment_t old_fs = get_fs();
3377
3378 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3379 struct in6_rtmsg32 __user *ur6 = argp;
3380 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3381 3 * sizeof(struct in6_addr));
3382 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3383 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3384 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3385 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3386 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3387 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3388 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3389
3390 r = (void *) &r6;
3391 } else { /* ipv4 */
3392 struct rtentry32 __user *ur4 = argp;
3393 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3394 3 * sizeof(struct sockaddr));
3395 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3396 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3397 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3398 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3399 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3400 ret |= get_user(rtdev, &(ur4->rt_dev));
3401 if (rtdev) {
3402 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3403 r4.rt_dev = (char __user __force *)devname;
3404 devname[15] = 0;
3405 } else
3406 r4.rt_dev = NULL;
3407
3408 r = (void *) &r4;
3409 }
3410
3411 if (ret) {
3412 ret = -EFAULT;
3413 goto out;
3414 }
3415
3416 set_fs(KERNEL_DS);
3417 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3418 set_fs(old_fs);
3419
3420 out:
3421 return ret;
3422 }
3423
3424 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3425 * for some operations; this forces use of the newer bridge-utils that
3426 * use compatible ioctls
3427 */
old_bridge_ioctl(compat_ulong_t __user * argp)3428 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3429 {
3430 compat_ulong_t tmp;
3431
3432 if (get_user(tmp, argp))
3433 return -EFAULT;
3434 if (tmp == BRCTL_GET_VERSION)
3435 return BRCTL_VERSION + 1;
3436 return -EINVAL;
3437 }
3438
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3439 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3440 unsigned int cmd, unsigned long arg)
3441 {
3442 void __user *argp = compat_ptr(arg);
3443 struct sock *sk = sock->sk;
3444 struct net *net = sock_net(sk);
3445
3446 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3447 return compat_ifr_data_ioctl(net, cmd, argp);
3448
3449 switch (cmd) {
3450 case SIOCSIFBR:
3451 case SIOCGIFBR:
3452 return old_bridge_ioctl(argp);
3453 case SIOCGIFCONF:
3454 return compat_dev_ifconf(net, argp);
3455 case SIOCETHTOOL:
3456 return ethtool_ioctl(net, argp);
3457 case SIOCWANDEV:
3458 return compat_siocwandev(net, argp);
3459 case SIOCGIFMAP:
3460 case SIOCSIFMAP:
3461 return compat_sioc_ifmap(net, cmd, argp);
3462 case SIOCADDRT:
3463 case SIOCDELRT:
3464 return routing_ioctl(net, sock, cmd, argp);
3465 case SIOCGSTAMP_OLD:
3466 case SIOCGSTAMPNS_OLD:
3467 if (!sock->ops->gettstamp)
3468 return -ENOIOCTLCMD;
3469 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3470 !COMPAT_USE_64BIT_TIME);
3471
3472 case SIOCBONDSLAVEINFOQUERY:
3473 case SIOCBONDINFOQUERY:
3474 case SIOCSHWTSTAMP:
3475 case SIOCGHWTSTAMP:
3476 return compat_ifr_data_ioctl(net, cmd, argp);
3477
3478 case FIOSETOWN:
3479 case SIOCSPGRP:
3480 case FIOGETOWN:
3481 case SIOCGPGRP:
3482 case SIOCBRADDBR:
3483 case SIOCBRDELBR:
3484 case SIOCGIFVLAN:
3485 case SIOCSIFVLAN:
3486 case SIOCADDDLCI:
3487 case SIOCDELDLCI:
3488 case SIOCGSKNS:
3489 case SIOCGSTAMP_NEW:
3490 case SIOCGSTAMPNS_NEW:
3491 return sock_ioctl(file, cmd, arg);
3492
3493 case SIOCGIFFLAGS:
3494 case SIOCSIFFLAGS:
3495 case SIOCGIFMETRIC:
3496 case SIOCSIFMETRIC:
3497 case SIOCGIFMTU:
3498 case SIOCSIFMTU:
3499 case SIOCGIFMEM:
3500 case SIOCSIFMEM:
3501 case SIOCGIFHWADDR:
3502 case SIOCSIFHWADDR:
3503 case SIOCADDMULTI:
3504 case SIOCDELMULTI:
3505 case SIOCGIFINDEX:
3506 case SIOCGIFADDR:
3507 case SIOCSIFADDR:
3508 case SIOCSIFHWBROADCAST:
3509 case SIOCDIFADDR:
3510 case SIOCGIFBRDADDR:
3511 case SIOCSIFBRDADDR:
3512 case SIOCGIFDSTADDR:
3513 case SIOCSIFDSTADDR:
3514 case SIOCGIFNETMASK:
3515 case SIOCSIFNETMASK:
3516 case SIOCSIFPFLAGS:
3517 case SIOCGIFPFLAGS:
3518 case SIOCGIFTXQLEN:
3519 case SIOCSIFTXQLEN:
3520 case SIOCBRADDIF:
3521 case SIOCBRDELIF:
3522 case SIOCGIFNAME:
3523 case SIOCSIFNAME:
3524 case SIOCGMIIPHY:
3525 case SIOCGMIIREG:
3526 case SIOCSMIIREG:
3527 case SIOCBONDENSLAVE:
3528 case SIOCBONDRELEASE:
3529 case SIOCBONDSETHWADDR:
3530 case SIOCBONDCHANGEACTIVE:
3531 return compat_ifreq_ioctl(net, sock, cmd, argp);
3532
3533 case SIOCSARP:
3534 case SIOCGARP:
3535 case SIOCDARP:
3536 case SIOCOUTQNSD:
3537 case SIOCATMARK:
3538 return sock_do_ioctl(net, sock, cmd, arg);
3539 }
3540
3541 return -ENOIOCTLCMD;
3542 }
3543
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3544 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3545 unsigned long arg)
3546 {
3547 struct socket *sock = file->private_data;
3548 int ret = -ENOIOCTLCMD;
3549 struct sock *sk;
3550 struct net *net;
3551
3552 sk = sock->sk;
3553 net = sock_net(sk);
3554
3555 if (sock->ops->compat_ioctl)
3556 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3557
3558 if (ret == -ENOIOCTLCMD &&
3559 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3560 ret = compat_wext_handle_ioctl(net, cmd, arg);
3561
3562 if (ret == -ENOIOCTLCMD)
3563 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3564
3565 return ret;
3566 }
3567 #endif
3568
3569 /**
3570 * kernel_bind - bind an address to a socket (kernel space)
3571 * @sock: socket
3572 * @addr: address
3573 * @addrlen: length of address
3574 *
3575 * Returns 0 or an error.
3576 */
3577
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3578 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3579 {
3580 return sock->ops->bind(sock, addr, addrlen);
3581 }
3582 EXPORT_SYMBOL(kernel_bind);
3583
3584 /**
3585 * kernel_listen - move socket to listening state (kernel space)
3586 * @sock: socket
3587 * @backlog: pending connections queue size
3588 *
3589 * Returns 0 or an error.
3590 */
3591
kernel_listen(struct socket * sock,int backlog)3592 int kernel_listen(struct socket *sock, int backlog)
3593 {
3594 return sock->ops->listen(sock, backlog);
3595 }
3596 EXPORT_SYMBOL(kernel_listen);
3597
3598 /**
3599 * kernel_accept - accept a connection (kernel space)
3600 * @sock: listening socket
3601 * @newsock: new connected socket
3602 * @flags: flags
3603 *
3604 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3605 * If it fails, @newsock is guaranteed to be %NULL.
3606 * Returns 0 or an error.
3607 */
3608
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3609 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3610 {
3611 struct sock *sk = sock->sk;
3612 int err;
3613
3614 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3615 newsock);
3616 if (err < 0)
3617 goto done;
3618
3619 err = sock->ops->accept(sock, *newsock, flags, true);
3620 if (err < 0) {
3621 sock_release(*newsock);
3622 *newsock = NULL;
3623 goto done;
3624 }
3625
3626 (*newsock)->ops = sock->ops;
3627 __module_get((*newsock)->ops->owner);
3628
3629 done:
3630 return err;
3631 }
3632 EXPORT_SYMBOL(kernel_accept);
3633
3634 /**
3635 * kernel_connect - connect a socket (kernel space)
3636 * @sock: socket
3637 * @addr: address
3638 * @addrlen: address length
3639 * @flags: flags (O_NONBLOCK, ...)
3640 *
3641 * For datagram sockets, @addr is the addres to which datagrams are sent
3642 * by default, and the only address from which datagrams are received.
3643 * For stream sockets, attempts to connect to @addr.
3644 * Returns 0 or an error code.
3645 */
3646
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3647 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3648 int flags)
3649 {
3650 return sock->ops->connect(sock, addr, addrlen, flags);
3651 }
3652 EXPORT_SYMBOL(kernel_connect);
3653
3654 /**
3655 * kernel_getsockname - get the address which the socket is bound (kernel space)
3656 * @sock: socket
3657 * @addr: address holder
3658 *
3659 * Fills the @addr pointer with the address which the socket is bound.
3660 * Returns 0 or an error code.
3661 */
3662
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3663 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3664 {
3665 return sock->ops->getname(sock, addr, 0);
3666 }
3667 EXPORT_SYMBOL(kernel_getsockname);
3668
3669 /**
3670 * kernel_peername - get the address which the socket is connected (kernel space)
3671 * @sock: socket
3672 * @addr: address holder
3673 *
3674 * Fills the @addr pointer with the address which the socket is connected.
3675 * Returns 0 or an error code.
3676 */
3677
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3678 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3679 {
3680 return sock->ops->getname(sock, addr, 1);
3681 }
3682 EXPORT_SYMBOL(kernel_getpeername);
3683
3684 /**
3685 * kernel_getsockopt - get a socket option (kernel space)
3686 * @sock: socket
3687 * @level: API level (SOL_SOCKET, ...)
3688 * @optname: option tag
3689 * @optval: option value
3690 * @optlen: option length
3691 *
3692 * Assigns the option length to @optlen.
3693 * Returns 0 or an error.
3694 */
3695
kernel_getsockopt(struct socket * sock,int level,int optname,char * optval,int * optlen)3696 int kernel_getsockopt(struct socket *sock, int level, int optname,
3697 char *optval, int *optlen)
3698 {
3699 mm_segment_t oldfs = get_fs();
3700 char __user *uoptval;
3701 int __user *uoptlen;
3702 int err;
3703
3704 uoptval = (char __user __force *) optval;
3705 uoptlen = (int __user __force *) optlen;
3706
3707 set_fs(KERNEL_DS);
3708 if (level == SOL_SOCKET)
3709 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3710 else
3711 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3712 uoptlen);
3713 set_fs(oldfs);
3714 return err;
3715 }
3716 EXPORT_SYMBOL(kernel_getsockopt);
3717
3718 /**
3719 * kernel_setsockopt - set a socket option (kernel space)
3720 * @sock: socket
3721 * @level: API level (SOL_SOCKET, ...)
3722 * @optname: option tag
3723 * @optval: option value
3724 * @optlen: option length
3725 *
3726 * Returns 0 or an error.
3727 */
3728
kernel_setsockopt(struct socket * sock,int level,int optname,char * optval,unsigned int optlen)3729 int kernel_setsockopt(struct socket *sock, int level, int optname,
3730 char *optval, unsigned int optlen)
3731 {
3732 mm_segment_t oldfs = get_fs();
3733 char __user *uoptval;
3734 int err;
3735
3736 uoptval = (char __user __force *) optval;
3737
3738 set_fs(KERNEL_DS);
3739 if (level == SOL_SOCKET)
3740 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3741 else
3742 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3743 optlen);
3744 set_fs(oldfs);
3745 return err;
3746 }
3747 EXPORT_SYMBOL(kernel_setsockopt);
3748
3749 /**
3750 * kernel_sendpage - send a &page through a socket (kernel space)
3751 * @sock: socket
3752 * @page: page
3753 * @offset: page offset
3754 * @size: total size in bytes
3755 * @flags: flags (MSG_DONTWAIT, ...)
3756 *
3757 * Returns the total amount sent in bytes or an error.
3758 */
3759
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3760 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3761 size_t size, int flags)
3762 {
3763 if (sock->ops->sendpage)
3764 return sock->ops->sendpage(sock, page, offset, size, flags);
3765
3766 return sock_no_sendpage(sock, page, offset, size, flags);
3767 }
3768 EXPORT_SYMBOL(kernel_sendpage);
3769
3770 /**
3771 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3772 * @sk: sock
3773 * @page: page
3774 * @offset: page offset
3775 * @size: total size in bytes
3776 * @flags: flags (MSG_DONTWAIT, ...)
3777 *
3778 * Returns the total amount sent in bytes or an error.
3779 * Caller must hold @sk.
3780 */
3781
kernel_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)3782 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3783 size_t size, int flags)
3784 {
3785 struct socket *sock = sk->sk_socket;
3786
3787 if (sock->ops->sendpage_locked)
3788 return sock->ops->sendpage_locked(sk, page, offset, size,
3789 flags);
3790
3791 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3792 }
3793 EXPORT_SYMBOL(kernel_sendpage_locked);
3794
3795 /**
3796 * kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3797 * @sock: socket
3798 * @how: connection part
3799 *
3800 * Returns 0 or an error.
3801 */
3802
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3803 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3804 {
3805 return sock->ops->shutdown(sock, how);
3806 }
3807 EXPORT_SYMBOL(kernel_sock_shutdown);
3808
3809 /**
3810 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3811 * @sk: socket
3812 *
3813 * This routine returns the IP overhead imposed by a socket i.e.
3814 * the length of the underlying IP header, depending on whether
3815 * this is an IPv4 or IPv6 socket and the length from IP options turned
3816 * on at the socket. Assumes that the caller has a lock on the socket.
3817 */
3818
kernel_sock_ip_overhead(struct sock * sk)3819 u32 kernel_sock_ip_overhead(struct sock *sk)
3820 {
3821 struct inet_sock *inet;
3822 struct ip_options_rcu *opt;
3823 u32 overhead = 0;
3824 #if IS_ENABLED(CONFIG_IPV6)
3825 struct ipv6_pinfo *np;
3826 struct ipv6_txoptions *optv6 = NULL;
3827 #endif /* IS_ENABLED(CONFIG_IPV6) */
3828
3829 if (!sk)
3830 return overhead;
3831
3832 switch (sk->sk_family) {
3833 case AF_INET:
3834 inet = inet_sk(sk);
3835 overhead += sizeof(struct iphdr);
3836 opt = rcu_dereference_protected(inet->inet_opt,
3837 sock_owned_by_user(sk));
3838 if (opt)
3839 overhead += opt->opt.optlen;
3840 return overhead;
3841 #if IS_ENABLED(CONFIG_IPV6)
3842 case AF_INET6:
3843 np = inet6_sk(sk);
3844 overhead += sizeof(struct ipv6hdr);
3845 if (np)
3846 optv6 = rcu_dereference_protected(np->opt,
3847 sock_owned_by_user(sk));
3848 if (optv6)
3849 overhead += (optv6->opt_flen + optv6->opt_nflen);
3850 return overhead;
3851 #endif /* IS_ENABLED(CONFIG_IPV6) */
3852 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3853 return overhead;
3854 }
3855 }
3856 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3857