• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4  *
5  * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7 
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kmod.h>
13 #include <linux/ktime.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/string.h>
17 #include <linux/types.h>
18 
19 #include <drm/drm_connector.h>
20 #include <drm/drm_device.h>
21 #include <drm/drm_edid.h>
22 #include <drm/drm_file.h>
23 
24 #include "cec-priv.h"
25 
26 static void cec_fill_msg_report_features(struct cec_adapter *adap,
27 					 struct cec_msg *msg,
28 					 unsigned int la_idx);
29 
30 /*
31  * 400 ms is the time it takes for one 16 byte message to be
32  * transferred and 5 is the maximum number of retries. Add
33  * another 100 ms as a margin. So if the transmit doesn't
34  * finish before that time something is really wrong and we
35  * have to time out.
36  *
37  * This is a sign that something it really wrong and a warning
38  * will be issued.
39  */
40 #define CEC_XFER_TIMEOUT_MS (5 * 400 + 100)
41 
42 #define call_op(adap, op, arg...) \
43 	(adap->ops->op ? adap->ops->op(adap, ## arg) : 0)
44 
45 #define call_void_op(adap, op, arg...)			\
46 	do {						\
47 		if (adap->ops->op)			\
48 			adap->ops->op(adap, ## arg);	\
49 	} while (0)
50 
cec_log_addr2idx(const struct cec_adapter * adap,u8 log_addr)51 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
52 {
53 	int i;
54 
55 	for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
56 		if (adap->log_addrs.log_addr[i] == log_addr)
57 			return i;
58 	return -1;
59 }
60 
cec_log_addr2dev(const struct cec_adapter * adap,u8 log_addr)61 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
62 {
63 	int i = cec_log_addr2idx(adap, log_addr);
64 
65 	return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
66 }
67 
cec_get_edid_phys_addr(const u8 * edid,unsigned int size,unsigned int * offset)68 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
69 			   unsigned int *offset)
70 {
71 	unsigned int loc = cec_get_edid_spa_location(edid, size);
72 
73 	if (offset)
74 		*offset = loc;
75 	if (loc == 0)
76 		return CEC_PHYS_ADDR_INVALID;
77 	return (edid[loc] << 8) | edid[loc + 1];
78 }
79 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
80 
cec_fill_conn_info_from_drm(struct cec_connector_info * conn_info,const struct drm_connector * connector)81 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
82 				 const struct drm_connector *connector)
83 {
84 	memset(conn_info, 0, sizeof(*conn_info));
85 	conn_info->type = CEC_CONNECTOR_TYPE_DRM;
86 	conn_info->drm.card_no = connector->dev->primary->index;
87 	conn_info->drm.connector_id = connector->base.id;
88 }
89 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm);
90 
91 /*
92  * Queue a new event for this filehandle. If ts == 0, then set it
93  * to the current time.
94  *
95  * We keep a queue of at most max_event events where max_event differs
96  * per event. If the queue becomes full, then drop the oldest event and
97  * keep track of how many events we've dropped.
98  */
cec_queue_event_fh(struct cec_fh * fh,const struct cec_event * new_ev,u64 ts)99 void cec_queue_event_fh(struct cec_fh *fh,
100 			const struct cec_event *new_ev, u64 ts)
101 {
102 	static const u16 max_events[CEC_NUM_EVENTS] = {
103 		1, 1, 800, 800, 8, 8, 8, 8
104 	};
105 	struct cec_event_entry *entry;
106 	unsigned int ev_idx = new_ev->event - 1;
107 
108 	if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
109 		return;
110 
111 	if (ts == 0)
112 		ts = ktime_get_ns();
113 
114 	mutex_lock(&fh->lock);
115 	if (ev_idx < CEC_NUM_CORE_EVENTS)
116 		entry = &fh->core_events[ev_idx];
117 	else
118 		entry = kmalloc(sizeof(*entry), GFP_KERNEL);
119 	if (entry) {
120 		if (new_ev->event == CEC_EVENT_LOST_MSGS &&
121 		    fh->queued_events[ev_idx]) {
122 			entry->ev.lost_msgs.lost_msgs +=
123 				new_ev->lost_msgs.lost_msgs;
124 			goto unlock;
125 		}
126 		entry->ev = *new_ev;
127 		entry->ev.ts = ts;
128 
129 		if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
130 			/* Add new msg at the end of the queue */
131 			list_add_tail(&entry->list, &fh->events[ev_idx]);
132 			fh->queued_events[ev_idx]++;
133 			fh->total_queued_events++;
134 			goto unlock;
135 		}
136 
137 		if (ev_idx >= CEC_NUM_CORE_EVENTS) {
138 			list_add_tail(&entry->list, &fh->events[ev_idx]);
139 			/* drop the oldest event */
140 			entry = list_first_entry(&fh->events[ev_idx],
141 						 struct cec_event_entry, list);
142 			list_del(&entry->list);
143 			kfree(entry);
144 		}
145 	}
146 	/* Mark that events were lost */
147 	entry = list_first_entry_or_null(&fh->events[ev_idx],
148 					 struct cec_event_entry, list);
149 	if (entry)
150 		entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
151 
152 unlock:
153 	mutex_unlock(&fh->lock);
154 	wake_up_interruptible(&fh->wait);
155 }
156 
157 /* Queue a new event for all open filehandles. */
cec_queue_event(struct cec_adapter * adap,const struct cec_event * ev)158 static void cec_queue_event(struct cec_adapter *adap,
159 			    const struct cec_event *ev)
160 {
161 	u64 ts = ktime_get_ns();
162 	struct cec_fh *fh;
163 
164 	mutex_lock(&adap->devnode.lock);
165 	list_for_each_entry(fh, &adap->devnode.fhs, list)
166 		cec_queue_event_fh(fh, ev, ts);
167 	mutex_unlock(&adap->devnode.lock);
168 }
169 
170 /* Notify userspace that the CEC pin changed state at the given time. */
cec_queue_pin_cec_event(struct cec_adapter * adap,bool is_high,bool dropped_events,ktime_t ts)171 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
172 			     bool dropped_events, ktime_t ts)
173 {
174 	struct cec_event ev = {
175 		.event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
176 				   CEC_EVENT_PIN_CEC_LOW,
177 		.flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
178 	};
179 	struct cec_fh *fh;
180 
181 	mutex_lock(&adap->devnode.lock);
182 	list_for_each_entry(fh, &adap->devnode.fhs, list)
183 		if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
184 			cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
185 	mutex_unlock(&adap->devnode.lock);
186 }
187 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
188 
189 /* Notify userspace that the HPD pin changed state at the given time. */
cec_queue_pin_hpd_event(struct cec_adapter * adap,bool is_high,ktime_t ts)190 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
191 {
192 	struct cec_event ev = {
193 		.event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
194 				   CEC_EVENT_PIN_HPD_LOW,
195 	};
196 	struct cec_fh *fh;
197 
198 	mutex_lock(&adap->devnode.lock);
199 	list_for_each_entry(fh, &adap->devnode.fhs, list)
200 		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
201 	mutex_unlock(&adap->devnode.lock);
202 }
203 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
204 
205 /* Notify userspace that the 5V pin changed state at the given time. */
cec_queue_pin_5v_event(struct cec_adapter * adap,bool is_high,ktime_t ts)206 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
207 {
208 	struct cec_event ev = {
209 		.event = is_high ? CEC_EVENT_PIN_5V_HIGH :
210 				   CEC_EVENT_PIN_5V_LOW,
211 	};
212 	struct cec_fh *fh;
213 
214 	mutex_lock(&adap->devnode.lock);
215 	list_for_each_entry(fh, &adap->devnode.fhs, list)
216 		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
217 	mutex_unlock(&adap->devnode.lock);
218 }
219 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
220 
221 /*
222  * Queue a new message for this filehandle.
223  *
224  * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
225  * queue becomes full, then drop the oldest message and keep track
226  * of how many messages we've dropped.
227  */
cec_queue_msg_fh(struct cec_fh * fh,const struct cec_msg * msg)228 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
229 {
230 	static const struct cec_event ev_lost_msgs = {
231 		.event = CEC_EVENT_LOST_MSGS,
232 		.flags = 0,
233 		{
234 			.lost_msgs = { 1 },
235 		},
236 	};
237 	struct cec_msg_entry *entry;
238 
239 	mutex_lock(&fh->lock);
240 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
241 	if (entry) {
242 		entry->msg = *msg;
243 		/* Add new msg at the end of the queue */
244 		list_add_tail(&entry->list, &fh->msgs);
245 
246 		if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
247 			/* All is fine if there is enough room */
248 			fh->queued_msgs++;
249 			mutex_unlock(&fh->lock);
250 			wake_up_interruptible(&fh->wait);
251 			return;
252 		}
253 
254 		/*
255 		 * if the message queue is full, then drop the oldest one and
256 		 * send a lost message event.
257 		 */
258 		entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
259 		list_del(&entry->list);
260 		kfree(entry);
261 	}
262 	mutex_unlock(&fh->lock);
263 
264 	/*
265 	 * We lost a message, either because kmalloc failed or the queue
266 	 * was full.
267 	 */
268 	cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
269 }
270 
271 /*
272  * Queue the message for those filehandles that are in monitor mode.
273  * If valid_la is true (this message is for us or was sent by us),
274  * then pass it on to any monitoring filehandle. If this message
275  * isn't for us or from us, then only give it to filehandles that
276  * are in MONITOR_ALL mode.
277  *
278  * This can only happen if the CEC_CAP_MONITOR_ALL capability is
279  * set and the CEC adapter was placed in 'monitor all' mode.
280  */
cec_queue_msg_monitor(struct cec_adapter * adap,const struct cec_msg * msg,bool valid_la)281 static void cec_queue_msg_monitor(struct cec_adapter *adap,
282 				  const struct cec_msg *msg,
283 				  bool valid_la)
284 {
285 	struct cec_fh *fh;
286 	u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
287 				      CEC_MODE_MONITOR_ALL;
288 
289 	mutex_lock(&adap->devnode.lock);
290 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
291 		if (fh->mode_follower >= monitor_mode)
292 			cec_queue_msg_fh(fh, msg);
293 	}
294 	mutex_unlock(&adap->devnode.lock);
295 }
296 
297 /*
298  * Queue the message for follower filehandles.
299  */
cec_queue_msg_followers(struct cec_adapter * adap,const struct cec_msg * msg)300 static void cec_queue_msg_followers(struct cec_adapter *adap,
301 				    const struct cec_msg *msg)
302 {
303 	struct cec_fh *fh;
304 
305 	mutex_lock(&adap->devnode.lock);
306 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
307 		if (fh->mode_follower == CEC_MODE_FOLLOWER)
308 			cec_queue_msg_fh(fh, msg);
309 	}
310 	mutex_unlock(&adap->devnode.lock);
311 }
312 
313 /* Notify userspace of an adapter state change. */
cec_post_state_event(struct cec_adapter * adap)314 static void cec_post_state_event(struct cec_adapter *adap)
315 {
316 	struct cec_event ev = {
317 		.event = CEC_EVENT_STATE_CHANGE,
318 	};
319 
320 	ev.state_change.phys_addr = adap->phys_addr;
321 	ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
322 	cec_queue_event(adap, &ev);
323 }
324 
325 /*
326  * A CEC transmit (and a possible wait for reply) completed.
327  * If this was in blocking mode, then complete it, otherwise
328  * queue the message for userspace to dequeue later.
329  *
330  * This function is called with adap->lock held.
331  */
cec_data_completed(struct cec_data * data)332 static void cec_data_completed(struct cec_data *data)
333 {
334 	/*
335 	 * Delete this transmit from the filehandle's xfer_list since
336 	 * we're done with it.
337 	 *
338 	 * Note that if the filehandle is closed before this transmit
339 	 * finished, then the release() function will set data->fh to NULL.
340 	 * Without that we would be referring to a closed filehandle.
341 	 */
342 	if (data->fh)
343 		list_del(&data->xfer_list);
344 
345 	if (data->blocking) {
346 		/*
347 		 * Someone is blocking so mark the message as completed
348 		 * and call complete.
349 		 */
350 		data->completed = true;
351 		complete(&data->c);
352 	} else {
353 		/*
354 		 * No blocking, so just queue the message if needed and
355 		 * free the memory.
356 		 */
357 		if (data->fh)
358 			cec_queue_msg_fh(data->fh, &data->msg);
359 		kfree(data);
360 	}
361 }
362 
363 /*
364  * A pending CEC transmit needs to be cancelled, either because the CEC
365  * adapter is disabled or the transmit takes an impossibly long time to
366  * finish.
367  *
368  * This function is called with adap->lock held.
369  */
cec_data_cancel(struct cec_data * data,u8 tx_status)370 static void cec_data_cancel(struct cec_data *data, u8 tx_status)
371 {
372 	/*
373 	 * It's either the current transmit, or it is a pending
374 	 * transmit. Take the appropriate action to clear it.
375 	 */
376 	if (data->adap->transmitting == data) {
377 		data->adap->transmitting = NULL;
378 	} else {
379 		list_del_init(&data->list);
380 		if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
381 			if (!WARN_ON(!data->adap->transmit_queue_sz))
382 				data->adap->transmit_queue_sz--;
383 	}
384 
385 	if (data->msg.tx_status & CEC_TX_STATUS_OK) {
386 		data->msg.rx_ts = ktime_get_ns();
387 		data->msg.rx_status = CEC_RX_STATUS_ABORTED;
388 	} else {
389 		data->msg.tx_ts = ktime_get_ns();
390 		data->msg.tx_status |= tx_status |
391 				       CEC_TX_STATUS_MAX_RETRIES;
392 		data->msg.tx_error_cnt++;
393 		data->attempts = 0;
394 	}
395 
396 	/* Queue transmitted message for monitoring purposes */
397 	cec_queue_msg_monitor(data->adap, &data->msg, 1);
398 
399 	cec_data_completed(data);
400 }
401 
402 /*
403  * Flush all pending transmits and cancel any pending timeout work.
404  *
405  * This function is called with adap->lock held.
406  */
cec_flush(struct cec_adapter * adap)407 static void cec_flush(struct cec_adapter *adap)
408 {
409 	struct cec_data *data, *n;
410 
411 	/*
412 	 * If the adapter is disabled, or we're asked to stop,
413 	 * then cancel any pending transmits.
414 	 */
415 	while (!list_empty(&adap->transmit_queue)) {
416 		data = list_first_entry(&adap->transmit_queue,
417 					struct cec_data, list);
418 		cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
419 	}
420 	if (adap->transmitting)
421 		cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED);
422 
423 	/* Cancel the pending timeout work. */
424 	list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
425 		if (cancel_delayed_work(&data->work))
426 			cec_data_cancel(data, CEC_TX_STATUS_OK);
427 		/*
428 		 * If cancel_delayed_work returned false, then
429 		 * the cec_wait_timeout function is running,
430 		 * which will call cec_data_completed. So no
431 		 * need to do anything special in that case.
432 		 */
433 	}
434 	/*
435 	 * If something went wrong and this counter isn't what it should
436 	 * be, then this will reset it back to 0. Warn if it is not 0,
437 	 * since it indicates a bug, either in this framework or in a
438 	 * CEC driver.
439 	 */
440 	if (WARN_ON(adap->transmit_queue_sz))
441 		adap->transmit_queue_sz = 0;
442 }
443 
444 /*
445  * Main CEC state machine
446  *
447  * Wait until the thread should be stopped, or we are not transmitting and
448  * a new transmit message is queued up, in which case we start transmitting
449  * that message. When the adapter finished transmitting the message it will
450  * call cec_transmit_done().
451  *
452  * If the adapter is disabled, then remove all queued messages instead.
453  *
454  * If the current transmit times out, then cancel that transmit.
455  */
cec_thread_func(void * _adap)456 int cec_thread_func(void *_adap)
457 {
458 	struct cec_adapter *adap = _adap;
459 
460 	for (;;) {
461 		unsigned int signal_free_time;
462 		struct cec_data *data;
463 		bool timeout = false;
464 		u8 attempts;
465 
466 		if (adap->transmit_in_progress) {
467 			int err;
468 
469 			/*
470 			 * We are transmitting a message, so add a timeout
471 			 * to prevent the state machine to get stuck waiting
472 			 * for this message to finalize and add a check to
473 			 * see if the adapter is disabled in which case the
474 			 * transmit should be canceled.
475 			 */
476 			err = wait_event_interruptible_timeout(adap->kthread_waitq,
477 				(adap->needs_hpd &&
478 				 (!adap->is_configured && !adap->is_configuring)) ||
479 				kthread_should_stop() ||
480 				(!adap->transmit_in_progress &&
481 				 !list_empty(&adap->transmit_queue)),
482 				msecs_to_jiffies(CEC_XFER_TIMEOUT_MS));
483 			timeout = err == 0;
484 		} else {
485 			/* Otherwise we just wait for something to happen. */
486 			wait_event_interruptible(adap->kthread_waitq,
487 				kthread_should_stop() ||
488 				(!adap->transmit_in_progress &&
489 				 !list_empty(&adap->transmit_queue)));
490 		}
491 
492 		mutex_lock(&adap->lock);
493 
494 		if ((adap->needs_hpd &&
495 		     (!adap->is_configured && !adap->is_configuring)) ||
496 		    kthread_should_stop()) {
497 			cec_flush(adap);
498 			goto unlock;
499 		}
500 
501 		if (adap->transmit_in_progress && timeout) {
502 			/*
503 			 * If we timeout, then log that. Normally this does
504 			 * not happen and it is an indication of a faulty CEC
505 			 * adapter driver, or the CEC bus is in some weird
506 			 * state. On rare occasions it can happen if there is
507 			 * so much traffic on the bus that the adapter was
508 			 * unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s).
509 			 */
510 			if (adap->transmitting) {
511 				pr_warn("cec-%s: message %*ph timed out\n", adap->name,
512 					adap->transmitting->msg.len,
513 					adap->transmitting->msg.msg);
514 				/* Just give up on this. */
515 				cec_data_cancel(adap->transmitting,
516 						CEC_TX_STATUS_TIMEOUT);
517 			} else {
518 				pr_warn("cec-%s: transmit timed out\n", adap->name);
519 			}
520 			adap->transmit_in_progress = false;
521 			adap->tx_timeouts++;
522 			goto unlock;
523 		}
524 
525 		/*
526 		 * If we are still transmitting, or there is nothing new to
527 		 * transmit, then just continue waiting.
528 		 */
529 		if (adap->transmit_in_progress || list_empty(&adap->transmit_queue))
530 			goto unlock;
531 
532 		/* Get a new message to transmit */
533 		data = list_first_entry(&adap->transmit_queue,
534 					struct cec_data, list);
535 		list_del_init(&data->list);
536 		if (!WARN_ON(!data->adap->transmit_queue_sz))
537 			adap->transmit_queue_sz--;
538 
539 		/* Make this the current transmitting message */
540 		adap->transmitting = data;
541 
542 		/*
543 		 * Suggested number of attempts as per the CEC 2.0 spec:
544 		 * 4 attempts is the default, except for 'secondary poll
545 		 * messages', i.e. poll messages not sent during the adapter
546 		 * configuration phase when it allocates logical addresses.
547 		 */
548 		if (data->msg.len == 1 && adap->is_configured)
549 			attempts = 2;
550 		else
551 			attempts = 4;
552 
553 		/* Set the suggested signal free time */
554 		if (data->attempts) {
555 			/* should be >= 3 data bit periods for a retry */
556 			signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
557 		} else if (adap->last_initiator !=
558 			   cec_msg_initiator(&data->msg)) {
559 			/* should be >= 5 data bit periods for new initiator */
560 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
561 			adap->last_initiator = cec_msg_initiator(&data->msg);
562 		} else {
563 			/*
564 			 * should be >= 7 data bit periods for sending another
565 			 * frame immediately after another.
566 			 */
567 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
568 		}
569 		if (data->attempts == 0)
570 			data->attempts = attempts;
571 
572 		/* Tell the adapter to transmit, cancel on error */
573 		if (adap->ops->adap_transmit(adap, data->attempts,
574 					     signal_free_time, &data->msg))
575 			cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
576 		else
577 			adap->transmit_in_progress = true;
578 
579 unlock:
580 		mutex_unlock(&adap->lock);
581 
582 		if (kthread_should_stop())
583 			break;
584 	}
585 	return 0;
586 }
587 
588 /*
589  * Called by the CEC adapter if a transmit finished.
590  */
cec_transmit_done_ts(struct cec_adapter * adap,u8 status,u8 arb_lost_cnt,u8 nack_cnt,u8 low_drive_cnt,u8 error_cnt,ktime_t ts)591 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
592 			  u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
593 			  u8 error_cnt, ktime_t ts)
594 {
595 	struct cec_data *data;
596 	struct cec_msg *msg;
597 	unsigned int attempts_made = arb_lost_cnt + nack_cnt +
598 				     low_drive_cnt + error_cnt;
599 
600 	dprintk(2, "%s: status 0x%02x\n", __func__, status);
601 	if (attempts_made < 1)
602 		attempts_made = 1;
603 
604 	mutex_lock(&adap->lock);
605 	data = adap->transmitting;
606 	if (!data) {
607 		/*
608 		 * This might happen if a transmit was issued and the cable is
609 		 * unplugged while the transmit is ongoing. Ignore this
610 		 * transmit in that case.
611 		 */
612 		if (!adap->transmit_in_progress)
613 			dprintk(1, "%s was called without an ongoing transmit!\n",
614 				__func__);
615 		adap->transmit_in_progress = false;
616 		goto wake_thread;
617 	}
618 	adap->transmit_in_progress = false;
619 
620 	msg = &data->msg;
621 
622 	/* Drivers must fill in the status! */
623 	WARN_ON(status == 0);
624 	msg->tx_ts = ktime_to_ns(ts);
625 	msg->tx_status |= status;
626 	msg->tx_arb_lost_cnt += arb_lost_cnt;
627 	msg->tx_nack_cnt += nack_cnt;
628 	msg->tx_low_drive_cnt += low_drive_cnt;
629 	msg->tx_error_cnt += error_cnt;
630 
631 	/* Mark that we're done with this transmit */
632 	adap->transmitting = NULL;
633 
634 	/*
635 	 * If there are still retry attempts left and there was an error and
636 	 * the hardware didn't signal that it retried itself (by setting
637 	 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
638 	 */
639 	if (data->attempts > attempts_made &&
640 	    !(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) {
641 		/* Retry this message */
642 		data->attempts -= attempts_made;
643 		if (msg->timeout)
644 			dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
645 				msg->len, msg->msg, data->attempts, msg->reply);
646 		else
647 			dprintk(2, "retransmit: %*ph (attempts: %d)\n",
648 				msg->len, msg->msg, data->attempts);
649 		/* Add the message in front of the transmit queue */
650 		list_add(&data->list, &adap->transmit_queue);
651 		adap->transmit_queue_sz++;
652 		goto wake_thread;
653 	}
654 
655 	data->attempts = 0;
656 
657 	/* Always set CEC_TX_STATUS_MAX_RETRIES on error */
658 	if (!(status & CEC_TX_STATUS_OK))
659 		msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
660 
661 	/* Queue transmitted message for monitoring purposes */
662 	cec_queue_msg_monitor(adap, msg, 1);
663 
664 	if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
665 	    msg->timeout) {
666 		/*
667 		 * Queue the message into the wait queue if we want to wait
668 		 * for a reply.
669 		 */
670 		list_add_tail(&data->list, &adap->wait_queue);
671 		schedule_delayed_work(&data->work,
672 				      msecs_to_jiffies(msg->timeout));
673 	} else {
674 		/* Otherwise we're done */
675 		cec_data_completed(data);
676 	}
677 
678 wake_thread:
679 	/*
680 	 * Wake up the main thread to see if another message is ready
681 	 * for transmitting or to retry the current message.
682 	 */
683 	wake_up_interruptible(&adap->kthread_waitq);
684 	mutex_unlock(&adap->lock);
685 }
686 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
687 
cec_transmit_attempt_done_ts(struct cec_adapter * adap,u8 status,ktime_t ts)688 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
689 				  u8 status, ktime_t ts)
690 {
691 	switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
692 	case CEC_TX_STATUS_OK:
693 		cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
694 		return;
695 	case CEC_TX_STATUS_ARB_LOST:
696 		cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
697 		return;
698 	case CEC_TX_STATUS_NACK:
699 		cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
700 		return;
701 	case CEC_TX_STATUS_LOW_DRIVE:
702 		cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
703 		return;
704 	case CEC_TX_STATUS_ERROR:
705 		cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
706 		return;
707 	default:
708 		/* Should never happen */
709 		WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
710 		return;
711 	}
712 }
713 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
714 
715 /*
716  * Called when waiting for a reply times out.
717  */
cec_wait_timeout(struct work_struct * work)718 static void cec_wait_timeout(struct work_struct *work)
719 {
720 	struct cec_data *data = container_of(work, struct cec_data, work.work);
721 	struct cec_adapter *adap = data->adap;
722 
723 	mutex_lock(&adap->lock);
724 	/*
725 	 * Sanity check in case the timeout and the arrival of the message
726 	 * happened at the same time.
727 	 */
728 	if (list_empty(&data->list))
729 		goto unlock;
730 
731 	/* Mark the message as timed out */
732 	list_del_init(&data->list);
733 	data->msg.rx_ts = ktime_get_ns();
734 	data->msg.rx_status = CEC_RX_STATUS_TIMEOUT;
735 	cec_data_completed(data);
736 unlock:
737 	mutex_unlock(&adap->lock);
738 }
739 
740 /*
741  * Transmit a message. The fh argument may be NULL if the transmit is not
742  * associated with a specific filehandle.
743  *
744  * This function is called with adap->lock held.
745  */
cec_transmit_msg_fh(struct cec_adapter * adap,struct cec_msg * msg,struct cec_fh * fh,bool block)746 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
747 			struct cec_fh *fh, bool block)
748 {
749 	struct cec_data *data;
750 	bool is_raw = msg_is_raw(msg);
751 
752 	msg->rx_ts = 0;
753 	msg->tx_ts = 0;
754 	msg->rx_status = 0;
755 	msg->tx_status = 0;
756 	msg->tx_arb_lost_cnt = 0;
757 	msg->tx_nack_cnt = 0;
758 	msg->tx_low_drive_cnt = 0;
759 	msg->tx_error_cnt = 0;
760 	msg->sequence = 0;
761 
762 	if (msg->reply && msg->timeout == 0) {
763 		/* Make sure the timeout isn't 0. */
764 		msg->timeout = 1000;
765 	}
766 	msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW;
767 
768 	if (!msg->timeout)
769 		msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS;
770 
771 	/* Sanity checks */
772 	if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
773 		dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
774 		return -EINVAL;
775 	}
776 
777 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
778 
779 	if (msg->timeout)
780 		dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
781 			__func__, msg->len, msg->msg, msg->reply,
782 			!block ? ", nb" : "");
783 	else
784 		dprintk(2, "%s: %*ph%s\n",
785 			__func__, msg->len, msg->msg, !block ? " (nb)" : "");
786 
787 	if (msg->timeout && msg->len == 1) {
788 		dprintk(1, "%s: can't reply to poll msg\n", __func__);
789 		return -EINVAL;
790 	}
791 
792 	if (is_raw) {
793 		if (!capable(CAP_SYS_RAWIO))
794 			return -EPERM;
795 	} else {
796 		/* A CDC-Only device can only send CDC messages */
797 		if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) &&
798 		    (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) {
799 			dprintk(1, "%s: not a CDC message\n", __func__);
800 			return -EINVAL;
801 		}
802 
803 		if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
804 			msg->msg[2] = adap->phys_addr >> 8;
805 			msg->msg[3] = adap->phys_addr & 0xff;
806 		}
807 
808 		if (msg->len == 1) {
809 			if (cec_msg_destination(msg) == 0xf) {
810 				dprintk(1, "%s: invalid poll message\n",
811 					__func__);
812 				return -EINVAL;
813 			}
814 			if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
815 				/*
816 				 * If the destination is a logical address our
817 				 * adapter has already claimed, then just NACK
818 				 * this. It depends on the hardware what it will
819 				 * do with a POLL to itself (some OK this), so
820 				 * it is just as easy to handle it here so the
821 				 * behavior will be consistent.
822 				 */
823 				msg->tx_ts = ktime_get_ns();
824 				msg->tx_status = CEC_TX_STATUS_NACK |
825 					CEC_TX_STATUS_MAX_RETRIES;
826 				msg->tx_nack_cnt = 1;
827 				msg->sequence = ++adap->sequence;
828 				if (!msg->sequence)
829 					msg->sequence = ++adap->sequence;
830 				return 0;
831 			}
832 		}
833 		if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
834 		    cec_has_log_addr(adap, cec_msg_destination(msg))) {
835 			dprintk(1, "%s: destination is the adapter itself\n",
836 				__func__);
837 			return -EINVAL;
838 		}
839 		if (msg->len > 1 && adap->is_configured &&
840 		    !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
841 			dprintk(1, "%s: initiator has unknown logical address %d\n",
842 				__func__, cec_msg_initiator(msg));
843 			return -EINVAL;
844 		}
845 		/*
846 		 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be
847 		 * transmitted to a TV, even if the adapter is unconfigured.
848 		 * This makes it possible to detect or wake up displays that
849 		 * pull down the HPD when in standby.
850 		 */
851 		if (!adap->is_configured && !adap->is_configuring &&
852 		    (msg->len > 2 ||
853 		     cec_msg_destination(msg) != CEC_LOG_ADDR_TV ||
854 		     (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON &&
855 		      msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) {
856 			dprintk(1, "%s: adapter is unconfigured\n", __func__);
857 			return -ENONET;
858 		}
859 	}
860 
861 	if (!adap->is_configured && !adap->is_configuring) {
862 		if (adap->needs_hpd) {
863 			dprintk(1, "%s: adapter is unconfigured and needs HPD\n",
864 				__func__);
865 			return -ENONET;
866 		}
867 		if (msg->reply) {
868 			dprintk(1, "%s: invalid msg->reply\n", __func__);
869 			return -EINVAL;
870 		}
871 	}
872 
873 	if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
874 		dprintk(2, "%s: transmit queue full\n", __func__);
875 		return -EBUSY;
876 	}
877 
878 	data = kzalloc(sizeof(*data), GFP_KERNEL);
879 	if (!data)
880 		return -ENOMEM;
881 
882 	msg->sequence = ++adap->sequence;
883 	if (!msg->sequence)
884 		msg->sequence = ++adap->sequence;
885 
886 	data->msg = *msg;
887 	data->fh = fh;
888 	data->adap = adap;
889 	data->blocking = block;
890 
891 	init_completion(&data->c);
892 	INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
893 
894 	if (fh)
895 		list_add_tail(&data->xfer_list, &fh->xfer_list);
896 
897 	list_add_tail(&data->list, &adap->transmit_queue);
898 	adap->transmit_queue_sz++;
899 	if (!adap->transmitting)
900 		wake_up_interruptible(&adap->kthread_waitq);
901 
902 	/* All done if we don't need to block waiting for completion */
903 	if (!block)
904 		return 0;
905 
906 	/*
907 	 * Release the lock and wait, retake the lock afterwards.
908 	 */
909 	mutex_unlock(&adap->lock);
910 	wait_for_completion_killable(&data->c);
911 	if (!data->completed)
912 		cancel_delayed_work_sync(&data->work);
913 	mutex_lock(&adap->lock);
914 
915 	/* Cancel the transmit if it was interrupted */
916 	if (!data->completed)
917 		cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
918 
919 	/* The transmit completed (possibly with an error) */
920 	*msg = data->msg;
921 	kfree(data);
922 	return 0;
923 }
924 
925 /* Helper function to be used by drivers and this framework. */
cec_transmit_msg(struct cec_adapter * adap,struct cec_msg * msg,bool block)926 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
927 		     bool block)
928 {
929 	int ret;
930 
931 	mutex_lock(&adap->lock);
932 	ret = cec_transmit_msg_fh(adap, msg, NULL, block);
933 	mutex_unlock(&adap->lock);
934 	return ret;
935 }
936 EXPORT_SYMBOL_GPL(cec_transmit_msg);
937 
938 /*
939  * I don't like forward references but without this the low-level
940  * cec_received_msg() function would come after a bunch of high-level
941  * CEC protocol handling functions. That was very confusing.
942  */
943 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
944 			      bool is_reply);
945 
946 #define DIRECTED	0x80
947 #define BCAST1_4	0x40
948 #define BCAST2_0	0x20	/* broadcast only allowed for >= 2.0 */
949 #define BCAST		(BCAST1_4 | BCAST2_0)
950 #define BOTH		(BCAST | DIRECTED)
951 
952 /*
953  * Specify minimum length and whether the message is directed, broadcast
954  * or both. Messages that do not match the criteria are ignored as per
955  * the CEC specification.
956  */
957 static const u8 cec_msg_size[256] = {
958 	[CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
959 	[CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
960 	[CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
961 	[CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
962 	[CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
963 	[CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
964 	[CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
965 	[CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
966 	[CEC_MSG_STANDBY] = 2 | BOTH,
967 	[CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
968 	[CEC_MSG_RECORD_ON] = 3 | DIRECTED,
969 	[CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
970 	[CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
971 	[CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
972 	[CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
973 	[CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
974 	[CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
975 	[CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
976 	[CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
977 	[CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
978 	[CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
979 	[CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
980 	[CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
981 	[CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
982 	[CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
983 	[CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
984 	[CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
985 	[CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
986 	[CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
987 	[CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
988 	[CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
989 	[CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
990 	[CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
991 	[CEC_MSG_PLAY] = 3 | DIRECTED,
992 	[CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
993 	[CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
994 	[CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
995 	[CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
996 	[CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
997 	[CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
998 	[CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
999 	[CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
1000 	[CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
1001 	[CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
1002 	[CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
1003 	[CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
1004 	[CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
1005 	[CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
1006 	[CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
1007 	[CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
1008 	[CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
1009 	[CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
1010 	[CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
1011 	[CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
1012 	[CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
1013 	[CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
1014 	[CEC_MSG_ABORT] = 2 | DIRECTED,
1015 	[CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
1016 	[CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
1017 	[CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
1018 	[CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1019 	[CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1020 	[CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
1021 	[CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
1022 	[CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
1023 	[CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
1024 	[CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
1025 	[CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
1026 	[CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
1027 	[CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
1028 	[CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
1029 	[CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
1030 	[CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
1031 	[CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
1032 	[CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
1033 };
1034 
1035 /* Called by the CEC adapter if a message is received */
cec_received_msg_ts(struct cec_adapter * adap,struct cec_msg * msg,ktime_t ts)1036 void cec_received_msg_ts(struct cec_adapter *adap,
1037 			 struct cec_msg *msg, ktime_t ts)
1038 {
1039 	struct cec_data *data;
1040 	u8 msg_init = cec_msg_initiator(msg);
1041 	u8 msg_dest = cec_msg_destination(msg);
1042 	u8 cmd = msg->msg[1];
1043 	bool is_reply = false;
1044 	bool valid_la = true;
1045 	u8 min_len = 0;
1046 
1047 	if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1048 		return;
1049 
1050 	/*
1051 	 * Some CEC adapters will receive the messages that they transmitted.
1052 	 * This test filters out those messages by checking if we are the
1053 	 * initiator, and just returning in that case.
1054 	 *
1055 	 * Note that this won't work if this is an Unregistered device.
1056 	 *
1057 	 * It is bad practice if the hardware receives the message that it
1058 	 * transmitted and luckily most CEC adapters behave correctly in this
1059 	 * respect.
1060 	 */
1061 	if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1062 	    cec_has_log_addr(adap, msg_init))
1063 		return;
1064 
1065 	msg->rx_ts = ktime_to_ns(ts);
1066 	msg->rx_status = CEC_RX_STATUS_OK;
1067 	msg->sequence = msg->reply = msg->timeout = 0;
1068 	msg->tx_status = 0;
1069 	msg->tx_ts = 0;
1070 	msg->tx_arb_lost_cnt = 0;
1071 	msg->tx_nack_cnt = 0;
1072 	msg->tx_low_drive_cnt = 0;
1073 	msg->tx_error_cnt = 0;
1074 	msg->flags = 0;
1075 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1076 
1077 	mutex_lock(&adap->lock);
1078 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1079 
1080 	adap->last_initiator = 0xff;
1081 
1082 	/* Check if this message was for us (directed or broadcast). */
1083 	if (!cec_msg_is_broadcast(msg))
1084 		valid_la = cec_has_log_addr(adap, msg_dest);
1085 
1086 	/*
1087 	 * Check if the length is not too short or if the message is a
1088 	 * broadcast message where a directed message was expected or
1089 	 * vice versa. If so, then the message has to be ignored (according
1090 	 * to section CEC 7.3 and CEC 12.2).
1091 	 */
1092 	if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1093 		u8 dir_fl = cec_msg_size[cmd] & BOTH;
1094 
1095 		min_len = cec_msg_size[cmd] & 0x1f;
1096 		if (msg->len < min_len)
1097 			valid_la = false;
1098 		else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1099 			valid_la = false;
1100 		else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST))
1101 			valid_la = false;
1102 		else if (cec_msg_is_broadcast(msg) &&
1103 			 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 &&
1104 			 !(dir_fl & BCAST1_4))
1105 			valid_la = false;
1106 	}
1107 	if (valid_la && min_len) {
1108 		/* These messages have special length requirements */
1109 		switch (cmd) {
1110 		case CEC_MSG_TIMER_STATUS:
1111 			if (msg->msg[2] & 0x10) {
1112 				switch (msg->msg[2] & 0xf) {
1113 				case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE:
1114 				case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE:
1115 					if (msg->len < 5)
1116 						valid_la = false;
1117 					break;
1118 				}
1119 			} else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) {
1120 				if (msg->len < 5)
1121 					valid_la = false;
1122 			}
1123 			break;
1124 		case CEC_MSG_RECORD_ON:
1125 			switch (msg->msg[2]) {
1126 			case CEC_OP_RECORD_SRC_OWN:
1127 				break;
1128 			case CEC_OP_RECORD_SRC_DIGITAL:
1129 				if (msg->len < 10)
1130 					valid_la = false;
1131 				break;
1132 			case CEC_OP_RECORD_SRC_ANALOG:
1133 				if (msg->len < 7)
1134 					valid_la = false;
1135 				break;
1136 			case CEC_OP_RECORD_SRC_EXT_PLUG:
1137 				if (msg->len < 4)
1138 					valid_la = false;
1139 				break;
1140 			case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1141 				if (msg->len < 5)
1142 					valid_la = false;
1143 				break;
1144 			}
1145 			break;
1146 		}
1147 	}
1148 
1149 	/* It's a valid message and not a poll or CDC message */
1150 	if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1151 		bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1152 
1153 		/* The aborted command is in msg[2] */
1154 		if (abort)
1155 			cmd = msg->msg[2];
1156 
1157 		/*
1158 		 * Walk over all transmitted messages that are waiting for a
1159 		 * reply.
1160 		 */
1161 		list_for_each_entry(data, &adap->wait_queue, list) {
1162 			struct cec_msg *dst = &data->msg;
1163 
1164 			/*
1165 			 * The *only* CEC message that has two possible replies
1166 			 * is CEC_MSG_INITIATE_ARC.
1167 			 * In this case allow either of the two replies.
1168 			 */
1169 			if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1170 			    (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1171 			     cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1172 			    (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1173 			     dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1174 				dst->reply = cmd;
1175 
1176 			/* Does the command match? */
1177 			if ((abort && cmd != dst->msg[1]) ||
1178 			    (!abort && cmd != dst->reply))
1179 				continue;
1180 
1181 			/* Does the addressing match? */
1182 			if (msg_init != cec_msg_destination(dst) &&
1183 			    !cec_msg_is_broadcast(dst))
1184 				continue;
1185 
1186 			/* We got a reply */
1187 			memcpy(dst->msg, msg->msg, msg->len);
1188 			dst->len = msg->len;
1189 			dst->rx_ts = msg->rx_ts;
1190 			dst->rx_status = msg->rx_status;
1191 			if (abort)
1192 				dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1193 			msg->flags = dst->flags;
1194 			/* Remove it from the wait_queue */
1195 			list_del_init(&data->list);
1196 
1197 			/* Cancel the pending timeout work */
1198 			if (!cancel_delayed_work(&data->work)) {
1199 				mutex_unlock(&adap->lock);
1200 				flush_scheduled_work();
1201 				mutex_lock(&adap->lock);
1202 			}
1203 			/*
1204 			 * Mark this as a reply, provided someone is still
1205 			 * waiting for the answer.
1206 			 */
1207 			if (data->fh)
1208 				is_reply = true;
1209 			cec_data_completed(data);
1210 			break;
1211 		}
1212 	}
1213 	mutex_unlock(&adap->lock);
1214 
1215 	/* Pass the message on to any monitoring filehandles */
1216 	cec_queue_msg_monitor(adap, msg, valid_la);
1217 
1218 	/* We're done if it is not for us or a poll message */
1219 	if (!valid_la || msg->len <= 1)
1220 		return;
1221 
1222 	if (adap->log_addrs.log_addr_mask == 0)
1223 		return;
1224 
1225 	/*
1226 	 * Process the message on the protocol level. If is_reply is true,
1227 	 * then cec_receive_notify() won't pass on the reply to the listener(s)
1228 	 * since that was already done by cec_data_completed() above.
1229 	 */
1230 	cec_receive_notify(adap, msg, is_reply);
1231 }
1232 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1233 
1234 /* Logical Address Handling */
1235 
1236 /*
1237  * Attempt to claim a specific logical address.
1238  *
1239  * This function is called with adap->lock held.
1240  */
cec_config_log_addr(struct cec_adapter * adap,unsigned int idx,unsigned int log_addr)1241 static int cec_config_log_addr(struct cec_adapter *adap,
1242 			       unsigned int idx,
1243 			       unsigned int log_addr)
1244 {
1245 	struct cec_log_addrs *las = &adap->log_addrs;
1246 	struct cec_msg msg = { };
1247 	const unsigned int max_retries = 2;
1248 	unsigned int i;
1249 	int err;
1250 
1251 	if (cec_has_log_addr(adap, log_addr))
1252 		return 0;
1253 
1254 	/* Send poll message */
1255 	msg.len = 1;
1256 	msg.msg[0] = (log_addr << 4) | log_addr;
1257 
1258 	for (i = 0; i < max_retries; i++) {
1259 		err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1260 
1261 		/*
1262 		 * While trying to poll the physical address was reset
1263 		 * and the adapter was unconfigured, so bail out.
1264 		 */
1265 		if (!adap->is_configuring)
1266 			return -EINTR;
1267 
1268 		if (err)
1269 			return err;
1270 
1271 		/*
1272 		 * The message was aborted due to a disconnect or
1273 		 * unconfigure, just bail out.
1274 		 */
1275 		if (msg.tx_status & CEC_TX_STATUS_ABORTED)
1276 			return -EINTR;
1277 		if (msg.tx_status & CEC_TX_STATUS_OK)
1278 			return 0;
1279 		if (msg.tx_status & CEC_TX_STATUS_NACK)
1280 			break;
1281 		/*
1282 		 * Retry up to max_retries times if the message was neither
1283 		 * OKed or NACKed. This can happen due to e.g. a Lost
1284 		 * Arbitration condition.
1285 		 */
1286 	}
1287 
1288 	/*
1289 	 * If we are unable to get an OK or a NACK after max_retries attempts
1290 	 * (and note that each attempt already consists of four polls), then
1291 	 * then we assume that something is really weird and that it is not a
1292 	 * good idea to try and claim this logical address.
1293 	 */
1294 	if (i == max_retries)
1295 		return 0;
1296 
1297 	/*
1298 	 * Message not acknowledged, so this logical
1299 	 * address is free to use.
1300 	 */
1301 	err = adap->ops->adap_log_addr(adap, log_addr);
1302 	if (err)
1303 		return err;
1304 
1305 	las->log_addr[idx] = log_addr;
1306 	las->log_addr_mask |= 1 << log_addr;
1307 	adap->phys_addrs[log_addr] = adap->phys_addr;
1308 	return 1;
1309 }
1310 
1311 /*
1312  * Unconfigure the adapter: clear all logical addresses and send
1313  * the state changed event.
1314  *
1315  * This function is called with adap->lock held.
1316  */
cec_adap_unconfigure(struct cec_adapter * adap)1317 static void cec_adap_unconfigure(struct cec_adapter *adap)
1318 {
1319 	if (!adap->needs_hpd ||
1320 	    adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1321 		WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID));
1322 	adap->log_addrs.log_addr_mask = 0;
1323 	adap->is_configuring = false;
1324 	adap->is_configured = false;
1325 	memset(adap->phys_addrs, 0xff, sizeof(adap->phys_addrs));
1326 	cec_flush(adap);
1327 	wake_up_interruptible(&adap->kthread_waitq);
1328 	cec_post_state_event(adap);
1329 }
1330 
1331 /*
1332  * Attempt to claim the required logical addresses.
1333  */
cec_config_thread_func(void * arg)1334 static int cec_config_thread_func(void *arg)
1335 {
1336 	/* The various LAs for each type of device */
1337 	static const u8 tv_log_addrs[] = {
1338 		CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1339 		CEC_LOG_ADDR_INVALID
1340 	};
1341 	static const u8 record_log_addrs[] = {
1342 		CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1343 		CEC_LOG_ADDR_RECORD_3,
1344 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1345 		CEC_LOG_ADDR_INVALID
1346 	};
1347 	static const u8 tuner_log_addrs[] = {
1348 		CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1349 		CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1350 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1351 		CEC_LOG_ADDR_INVALID
1352 	};
1353 	static const u8 playback_log_addrs[] = {
1354 		CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1355 		CEC_LOG_ADDR_PLAYBACK_3,
1356 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1357 		CEC_LOG_ADDR_INVALID
1358 	};
1359 	static const u8 audiosystem_log_addrs[] = {
1360 		CEC_LOG_ADDR_AUDIOSYSTEM,
1361 		CEC_LOG_ADDR_INVALID
1362 	};
1363 	static const u8 specific_use_log_addrs[] = {
1364 		CEC_LOG_ADDR_SPECIFIC,
1365 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1366 		CEC_LOG_ADDR_INVALID
1367 	};
1368 	static const u8 *type2addrs[6] = {
1369 		[CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1370 		[CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1371 		[CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1372 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1373 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1374 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1375 	};
1376 	static const u16 type2mask[] = {
1377 		[CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1378 		[CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1379 		[CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1380 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1381 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1382 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1383 	};
1384 	struct cec_adapter *adap = arg;
1385 	struct cec_log_addrs *las = &adap->log_addrs;
1386 	int err;
1387 	int i, j;
1388 
1389 	mutex_lock(&adap->lock);
1390 	dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1391 		cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1392 	las->log_addr_mask = 0;
1393 
1394 	if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1395 		goto configured;
1396 
1397 	for (i = 0; i < las->num_log_addrs; i++) {
1398 		unsigned int type = las->log_addr_type[i];
1399 		const u8 *la_list;
1400 		u8 last_la;
1401 
1402 		/*
1403 		 * The TV functionality can only map to physical address 0.
1404 		 * For any other address, try the Specific functionality
1405 		 * instead as per the spec.
1406 		 */
1407 		if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1408 			type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1409 
1410 		la_list = type2addrs[type];
1411 		last_la = las->log_addr[i];
1412 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1413 		if (last_la == CEC_LOG_ADDR_INVALID ||
1414 		    last_la == CEC_LOG_ADDR_UNREGISTERED ||
1415 		    !((1 << last_la) & type2mask[type]))
1416 			last_la = la_list[0];
1417 
1418 		err = cec_config_log_addr(adap, i, last_la);
1419 		if (err > 0) /* Reused last LA */
1420 			continue;
1421 
1422 		if (err < 0)
1423 			goto unconfigure;
1424 
1425 		for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1426 			/* Tried this one already, skip it */
1427 			if (la_list[j] == last_la)
1428 				continue;
1429 			/* The backup addresses are CEC 2.0 specific */
1430 			if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1431 			     la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1432 			    las->cec_version < CEC_OP_CEC_VERSION_2_0)
1433 				continue;
1434 
1435 			err = cec_config_log_addr(adap, i, la_list[j]);
1436 			if (err == 0) /* LA is in use */
1437 				continue;
1438 			if (err < 0)
1439 				goto unconfigure;
1440 			/* Done, claimed an LA */
1441 			break;
1442 		}
1443 
1444 		if (la_list[j] == CEC_LOG_ADDR_INVALID)
1445 			dprintk(1, "could not claim LA %d\n", i);
1446 	}
1447 
1448 	if (adap->log_addrs.log_addr_mask == 0 &&
1449 	    !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1450 		goto unconfigure;
1451 
1452 configured:
1453 	if (adap->log_addrs.log_addr_mask == 0) {
1454 		/* Fall back to unregistered */
1455 		las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1456 		las->log_addr_mask = 1 << las->log_addr[0];
1457 		for (i = 1; i < las->num_log_addrs; i++)
1458 			las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1459 	}
1460 	for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1461 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1462 	adap->is_configured = true;
1463 	adap->is_configuring = false;
1464 	cec_post_state_event(adap);
1465 
1466 	/*
1467 	 * Now post the Report Features and Report Physical Address broadcast
1468 	 * messages. Note that these are non-blocking transmits, meaning that
1469 	 * they are just queued up and once adap->lock is unlocked the main
1470 	 * thread will kick in and start transmitting these.
1471 	 *
1472 	 * If after this function is done (but before one or more of these
1473 	 * messages are actually transmitted) the CEC adapter is unconfigured,
1474 	 * then any remaining messages will be dropped by the main thread.
1475 	 */
1476 	for (i = 0; i < las->num_log_addrs; i++) {
1477 		struct cec_msg msg = {};
1478 
1479 		if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1480 		    (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1481 			continue;
1482 
1483 		msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1484 
1485 		/* Report Features must come first according to CEC 2.0 */
1486 		if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1487 		    adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1488 			cec_fill_msg_report_features(adap, &msg, i);
1489 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1490 		}
1491 
1492 		/* Report Physical Address */
1493 		cec_msg_report_physical_addr(&msg, adap->phys_addr,
1494 					     las->primary_device_type[i]);
1495 		dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1496 			las->log_addr[i],
1497 			cec_phys_addr_exp(adap->phys_addr));
1498 		cec_transmit_msg_fh(adap, &msg, NULL, false);
1499 
1500 		/* Report Vendor ID */
1501 		if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1502 			cec_msg_device_vendor_id(&msg,
1503 						 adap->log_addrs.vendor_id);
1504 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1505 		}
1506 	}
1507 	adap->kthread_config = NULL;
1508 	complete(&adap->config_completion);
1509 	mutex_unlock(&adap->lock);
1510 	return 0;
1511 
1512 unconfigure:
1513 	for (i = 0; i < las->num_log_addrs; i++)
1514 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1515 	cec_adap_unconfigure(adap);
1516 	adap->kthread_config = NULL;
1517 	mutex_unlock(&adap->lock);
1518 	complete(&adap->config_completion);
1519 	return 0;
1520 }
1521 
1522 /*
1523  * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1524  * logical addresses.
1525  *
1526  * This function is called with adap->lock held.
1527  */
cec_claim_log_addrs(struct cec_adapter * adap,bool block)1528 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1529 {
1530 	if (WARN_ON(adap->is_configuring || adap->is_configured))
1531 		return;
1532 
1533 	init_completion(&adap->config_completion);
1534 
1535 	/* Ready to kick off the thread */
1536 	adap->is_configuring = true;
1537 	adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1538 					   "ceccfg-%s", adap->name);
1539 	if (IS_ERR(adap->kthread_config)) {
1540 		adap->kthread_config = NULL;
1541 	} else if (block) {
1542 		mutex_unlock(&adap->lock);
1543 		wait_for_completion(&adap->config_completion);
1544 		mutex_lock(&adap->lock);
1545 	}
1546 }
1547 
1548 /* Set a new physical address and send an event notifying userspace of this.
1549  *
1550  * This function is called with adap->lock held.
1551  */
__cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1552 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1553 {
1554 	if (phys_addr == adap->phys_addr)
1555 		return;
1556 	if (phys_addr != CEC_PHYS_ADDR_INVALID && adap->devnode.unregistered)
1557 		return;
1558 
1559 	dprintk(1, "new physical address %x.%x.%x.%x\n",
1560 		cec_phys_addr_exp(phys_addr));
1561 	if (phys_addr == CEC_PHYS_ADDR_INVALID ||
1562 	    adap->phys_addr != CEC_PHYS_ADDR_INVALID) {
1563 		adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1564 		cec_post_state_event(adap);
1565 		cec_adap_unconfigure(adap);
1566 		/* Disabling monitor all mode should always succeed */
1567 		if (adap->monitor_all_cnt)
1568 			WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1569 		mutex_lock(&adap->devnode.lock);
1570 		if (adap->needs_hpd || list_empty(&adap->devnode.fhs)) {
1571 			WARN_ON(adap->ops->adap_enable(adap, false));
1572 			adap->transmit_in_progress = false;
1573 			wake_up_interruptible(&adap->kthread_waitq);
1574 		}
1575 		mutex_unlock(&adap->devnode.lock);
1576 		if (phys_addr == CEC_PHYS_ADDR_INVALID)
1577 			return;
1578 	}
1579 
1580 	mutex_lock(&adap->devnode.lock);
1581 	adap->last_initiator = 0xff;
1582 	adap->transmit_in_progress = false;
1583 
1584 	if ((adap->needs_hpd || list_empty(&adap->devnode.fhs)) &&
1585 	    adap->ops->adap_enable(adap, true)) {
1586 		mutex_unlock(&adap->devnode.lock);
1587 		return;
1588 	}
1589 
1590 	if (adap->monitor_all_cnt &&
1591 	    call_op(adap, adap_monitor_all_enable, true)) {
1592 		if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
1593 			WARN_ON(adap->ops->adap_enable(adap, false));
1594 		mutex_unlock(&adap->devnode.lock);
1595 		return;
1596 	}
1597 	mutex_unlock(&adap->devnode.lock);
1598 
1599 	adap->phys_addr = phys_addr;
1600 	cec_post_state_event(adap);
1601 	if (adap->log_addrs.num_log_addrs)
1602 		cec_claim_log_addrs(adap, block);
1603 }
1604 
cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1605 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1606 {
1607 	if (IS_ERR_OR_NULL(adap))
1608 		return;
1609 
1610 	mutex_lock(&adap->lock);
1611 	__cec_s_phys_addr(adap, phys_addr, block);
1612 	mutex_unlock(&adap->lock);
1613 }
1614 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1615 
cec_s_phys_addr_from_edid(struct cec_adapter * adap,const struct edid * edid)1616 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1617 			       const struct edid *edid)
1618 {
1619 	u16 pa = CEC_PHYS_ADDR_INVALID;
1620 
1621 	if (edid && edid->extensions)
1622 		pa = cec_get_edid_phys_addr((const u8 *)edid,
1623 				EDID_LENGTH * (edid->extensions + 1), NULL);
1624 	cec_s_phys_addr(adap, pa, false);
1625 }
1626 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1627 
cec_s_conn_info(struct cec_adapter * adap,const struct cec_connector_info * conn_info)1628 void cec_s_conn_info(struct cec_adapter *adap,
1629 		     const struct cec_connector_info *conn_info)
1630 {
1631 	if (IS_ERR_OR_NULL(adap))
1632 		return;
1633 
1634 	if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO))
1635 		return;
1636 
1637 	mutex_lock(&adap->lock);
1638 	if (conn_info)
1639 		adap->conn_info = *conn_info;
1640 	else
1641 		memset(&adap->conn_info, 0, sizeof(adap->conn_info));
1642 	cec_post_state_event(adap);
1643 	mutex_unlock(&adap->lock);
1644 }
1645 EXPORT_SYMBOL_GPL(cec_s_conn_info);
1646 
1647 /*
1648  * Called from either the ioctl or a driver to set the logical addresses.
1649  *
1650  * This function is called with adap->lock held.
1651  */
__cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1652 int __cec_s_log_addrs(struct cec_adapter *adap,
1653 		      struct cec_log_addrs *log_addrs, bool block)
1654 {
1655 	u16 type_mask = 0;
1656 	int i;
1657 
1658 	if (adap->devnode.unregistered)
1659 		return -ENODEV;
1660 
1661 	if (!log_addrs || log_addrs->num_log_addrs == 0) {
1662 		cec_adap_unconfigure(adap);
1663 		adap->log_addrs.num_log_addrs = 0;
1664 		for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1665 			adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1666 		adap->log_addrs.osd_name[0] = '\0';
1667 		adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1668 		adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1669 		return 0;
1670 	}
1671 
1672 	if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1673 		/*
1674 		 * Sanitize log_addrs fields if a CDC-Only device is
1675 		 * requested.
1676 		 */
1677 		log_addrs->num_log_addrs = 1;
1678 		log_addrs->osd_name[0] = '\0';
1679 		log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1680 		log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1681 		/*
1682 		 * This is just an internal convention since a CDC-Only device
1683 		 * doesn't have to be a switch. But switches already use
1684 		 * unregistered, so it makes some kind of sense to pick this
1685 		 * as the primary device. Since a CDC-Only device never sends
1686 		 * any 'normal' CEC messages this primary device type is never
1687 		 * sent over the CEC bus.
1688 		 */
1689 		log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1690 		log_addrs->all_device_types[0] = 0;
1691 		log_addrs->features[0][0] = 0;
1692 		log_addrs->features[0][1] = 0;
1693 	}
1694 
1695 	/* Ensure the osd name is 0-terminated */
1696 	log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1697 
1698 	/* Sanity checks */
1699 	if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1700 		dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1701 		return -EINVAL;
1702 	}
1703 
1704 	/*
1705 	 * Vendor ID is a 24 bit number, so check if the value is
1706 	 * within the correct range.
1707 	 */
1708 	if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1709 	    (log_addrs->vendor_id & 0xff000000) != 0) {
1710 		dprintk(1, "invalid vendor ID\n");
1711 		return -EINVAL;
1712 	}
1713 
1714 	if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1715 	    log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1716 		dprintk(1, "invalid CEC version\n");
1717 		return -EINVAL;
1718 	}
1719 
1720 	if (log_addrs->num_log_addrs > 1)
1721 		for (i = 0; i < log_addrs->num_log_addrs; i++)
1722 			if (log_addrs->log_addr_type[i] ==
1723 					CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1724 				dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1725 				return -EINVAL;
1726 			}
1727 
1728 	for (i = 0; i < log_addrs->num_log_addrs; i++) {
1729 		const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1730 		u8 *features = log_addrs->features[i];
1731 		bool op_is_dev_features = false;
1732 		unsigned j;
1733 
1734 		log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1735 		if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1736 			dprintk(1, "duplicate logical address type\n");
1737 			return -EINVAL;
1738 		}
1739 		type_mask |= 1 << log_addrs->log_addr_type[i];
1740 		if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1741 		    (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1742 			/* Record already contains the playback functionality */
1743 			dprintk(1, "invalid record + playback combination\n");
1744 			return -EINVAL;
1745 		}
1746 		if (log_addrs->primary_device_type[i] >
1747 					CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1748 			dprintk(1, "unknown primary device type\n");
1749 			return -EINVAL;
1750 		}
1751 		if (log_addrs->primary_device_type[i] == 2) {
1752 			dprintk(1, "invalid primary device type\n");
1753 			return -EINVAL;
1754 		}
1755 		if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1756 			dprintk(1, "unknown logical address type\n");
1757 			return -EINVAL;
1758 		}
1759 		for (j = 0; j < feature_sz; j++) {
1760 			if ((features[j] & 0x80) == 0) {
1761 				if (op_is_dev_features)
1762 					break;
1763 				op_is_dev_features = true;
1764 			}
1765 		}
1766 		if (!op_is_dev_features || j == feature_sz) {
1767 			dprintk(1, "malformed features\n");
1768 			return -EINVAL;
1769 		}
1770 		/* Zero unused part of the feature array */
1771 		memset(features + j + 1, 0, feature_sz - j - 1);
1772 	}
1773 
1774 	if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1775 		if (log_addrs->num_log_addrs > 2) {
1776 			dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1777 			return -EINVAL;
1778 		}
1779 		if (log_addrs->num_log_addrs == 2) {
1780 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1781 					   (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1782 				dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1783 				return -EINVAL;
1784 			}
1785 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1786 					   (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1787 				dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1788 				return -EINVAL;
1789 			}
1790 		}
1791 	}
1792 
1793 	/* Zero unused LAs */
1794 	for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1795 		log_addrs->primary_device_type[i] = 0;
1796 		log_addrs->log_addr_type[i] = 0;
1797 		log_addrs->all_device_types[i] = 0;
1798 		memset(log_addrs->features[i], 0,
1799 		       sizeof(log_addrs->features[i]));
1800 	}
1801 
1802 	log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1803 	adap->log_addrs = *log_addrs;
1804 	if (adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1805 		cec_claim_log_addrs(adap, block);
1806 	return 0;
1807 }
1808 
cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1809 int cec_s_log_addrs(struct cec_adapter *adap,
1810 		    struct cec_log_addrs *log_addrs, bool block)
1811 {
1812 	int err;
1813 
1814 	mutex_lock(&adap->lock);
1815 	err = __cec_s_log_addrs(adap, log_addrs, block);
1816 	mutex_unlock(&adap->lock);
1817 	return err;
1818 }
1819 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1820 
1821 /* High-level core CEC message handling */
1822 
1823 /* Fill in the Report Features message */
cec_fill_msg_report_features(struct cec_adapter * adap,struct cec_msg * msg,unsigned int la_idx)1824 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1825 					 struct cec_msg *msg,
1826 					 unsigned int la_idx)
1827 {
1828 	const struct cec_log_addrs *las = &adap->log_addrs;
1829 	const u8 *features = las->features[la_idx];
1830 	bool op_is_dev_features = false;
1831 	unsigned int idx;
1832 
1833 	/* Report Features */
1834 	msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1835 	msg->len = 4;
1836 	msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1837 	msg->msg[2] = adap->log_addrs.cec_version;
1838 	msg->msg[3] = las->all_device_types[la_idx];
1839 
1840 	/* Write RC Profiles first, then Device Features */
1841 	for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1842 		msg->msg[msg->len++] = features[idx];
1843 		if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1844 			if (op_is_dev_features)
1845 				break;
1846 			op_is_dev_features = true;
1847 		}
1848 	}
1849 }
1850 
1851 /* Transmit the Feature Abort message */
cec_feature_abort_reason(struct cec_adapter * adap,struct cec_msg * msg,u8 reason)1852 static int cec_feature_abort_reason(struct cec_adapter *adap,
1853 				    struct cec_msg *msg, u8 reason)
1854 {
1855 	struct cec_msg tx_msg = { };
1856 
1857 	/*
1858 	 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1859 	 * message!
1860 	 */
1861 	if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1862 		return 0;
1863 	/* Don't Feature Abort messages from 'Unregistered' */
1864 	if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1865 		return 0;
1866 	cec_msg_set_reply_to(&tx_msg, msg);
1867 	cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1868 	return cec_transmit_msg(adap, &tx_msg, false);
1869 }
1870 
cec_feature_abort(struct cec_adapter * adap,struct cec_msg * msg)1871 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1872 {
1873 	return cec_feature_abort_reason(adap, msg,
1874 					CEC_OP_ABORT_UNRECOGNIZED_OP);
1875 }
1876 
cec_feature_refused(struct cec_adapter * adap,struct cec_msg * msg)1877 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1878 {
1879 	return cec_feature_abort_reason(adap, msg,
1880 					CEC_OP_ABORT_REFUSED);
1881 }
1882 
1883 /*
1884  * Called when a CEC message is received. This function will do any
1885  * necessary core processing. The is_reply bool is true if this message
1886  * is a reply to an earlier transmit.
1887  *
1888  * The message is either a broadcast message or a valid directed message.
1889  */
cec_receive_notify(struct cec_adapter * adap,struct cec_msg * msg,bool is_reply)1890 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1891 			      bool is_reply)
1892 {
1893 	bool is_broadcast = cec_msg_is_broadcast(msg);
1894 	u8 dest_laddr = cec_msg_destination(msg);
1895 	u8 init_laddr = cec_msg_initiator(msg);
1896 	u8 devtype = cec_log_addr2dev(adap, dest_laddr);
1897 	int la_idx = cec_log_addr2idx(adap, dest_laddr);
1898 	bool from_unregistered = init_laddr == 0xf;
1899 	struct cec_msg tx_cec_msg = { };
1900 
1901 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1902 
1903 	/* If this is a CDC-Only device, then ignore any non-CDC messages */
1904 	if (cec_is_cdc_only(&adap->log_addrs) &&
1905 	    msg->msg[1] != CEC_MSG_CDC_MESSAGE)
1906 		return 0;
1907 
1908 	if (adap->ops->received) {
1909 		/* Allow drivers to process the message first */
1910 		if (adap->ops->received(adap, msg) != -ENOMSG)
1911 			return 0;
1912 	}
1913 
1914 	/*
1915 	 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1916 	 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1917 	 * handled by the CEC core, even if the passthrough mode is on.
1918 	 * The others are just ignored if passthrough mode is on.
1919 	 */
1920 	switch (msg->msg[1]) {
1921 	case CEC_MSG_GET_CEC_VERSION:
1922 	case CEC_MSG_ABORT:
1923 	case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
1924 	case CEC_MSG_GIVE_OSD_NAME:
1925 		/*
1926 		 * These messages reply with a directed message, so ignore if
1927 		 * the initiator is Unregistered.
1928 		 */
1929 		if (!adap->passthrough && from_unregistered)
1930 			return 0;
1931 		/* Fall through */
1932 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1933 	case CEC_MSG_GIVE_FEATURES:
1934 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
1935 		/*
1936 		 * Skip processing these messages if the passthrough mode
1937 		 * is on.
1938 		 */
1939 		if (adap->passthrough)
1940 			goto skip_processing;
1941 		/* Ignore if addressing is wrong */
1942 		if (is_broadcast)
1943 			return 0;
1944 		break;
1945 
1946 	case CEC_MSG_USER_CONTROL_PRESSED:
1947 	case CEC_MSG_USER_CONTROL_RELEASED:
1948 		/* Wrong addressing mode: don't process */
1949 		if (is_broadcast || from_unregistered)
1950 			goto skip_processing;
1951 		break;
1952 
1953 	case CEC_MSG_REPORT_PHYSICAL_ADDR:
1954 		/*
1955 		 * This message is always processed, regardless of the
1956 		 * passthrough setting.
1957 		 *
1958 		 * Exception: don't process if wrong addressing mode.
1959 		 */
1960 		if (!is_broadcast)
1961 			goto skip_processing;
1962 		break;
1963 
1964 	default:
1965 		break;
1966 	}
1967 
1968 	cec_msg_set_reply_to(&tx_cec_msg, msg);
1969 
1970 	switch (msg->msg[1]) {
1971 	/* The following messages are processed but still passed through */
1972 	case CEC_MSG_REPORT_PHYSICAL_ADDR: {
1973 		u16 pa = (msg->msg[2] << 8) | msg->msg[3];
1974 
1975 		if (!from_unregistered)
1976 			adap->phys_addrs[init_laddr] = pa;
1977 		dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
1978 			cec_phys_addr_exp(pa), init_laddr);
1979 		break;
1980 	}
1981 
1982 	case CEC_MSG_USER_CONTROL_PRESSED:
1983 		if (!(adap->capabilities & CEC_CAP_RC) ||
1984 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1985 			break;
1986 
1987 #ifdef CONFIG_MEDIA_CEC_RC
1988 		switch (msg->msg[2]) {
1989 		/*
1990 		 * Play function, this message can have variable length
1991 		 * depending on the specific play function that is used.
1992 		 */
1993 		case 0x60:
1994 			if (msg->len == 2)
1995 				rc_keydown(adap->rc, RC_PROTO_CEC,
1996 					   msg->msg[2], 0);
1997 			else
1998 				rc_keydown(adap->rc, RC_PROTO_CEC,
1999 					   msg->msg[2] << 8 | msg->msg[3], 0);
2000 			break;
2001 		/*
2002 		 * Other function messages that are not handled.
2003 		 * Currently the RC framework does not allow to supply an
2004 		 * additional parameter to a keypress. These "keys" contain
2005 		 * other information such as channel number, an input number
2006 		 * etc.
2007 		 * For the time being these messages are not processed by the
2008 		 * framework and are simply forwarded to the user space.
2009 		 */
2010 		case 0x56: case 0x57:
2011 		case 0x67: case 0x68: case 0x69: case 0x6a:
2012 			break;
2013 		default:
2014 			rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
2015 			break;
2016 		}
2017 #endif
2018 		break;
2019 
2020 	case CEC_MSG_USER_CONTROL_RELEASED:
2021 		if (!(adap->capabilities & CEC_CAP_RC) ||
2022 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2023 			break;
2024 #ifdef CONFIG_MEDIA_CEC_RC
2025 		rc_keyup(adap->rc);
2026 #endif
2027 		break;
2028 
2029 	/*
2030 	 * The remaining messages are only processed if the passthrough mode
2031 	 * is off.
2032 	 */
2033 	case CEC_MSG_GET_CEC_VERSION:
2034 		cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
2035 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2036 
2037 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
2038 		/* Do nothing for CEC switches using addr 15 */
2039 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
2040 			return 0;
2041 		cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
2042 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2043 
2044 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2045 		if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
2046 			return cec_feature_abort(adap, msg);
2047 		cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
2048 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2049 
2050 	case CEC_MSG_ABORT:
2051 		/* Do nothing for CEC switches */
2052 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
2053 			return 0;
2054 		return cec_feature_refused(adap, msg);
2055 
2056 	case CEC_MSG_GIVE_OSD_NAME: {
2057 		if (adap->log_addrs.osd_name[0] == 0)
2058 			return cec_feature_abort(adap, msg);
2059 		cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
2060 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2061 	}
2062 
2063 	case CEC_MSG_GIVE_FEATURES:
2064 		if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2065 			return cec_feature_abort(adap, msg);
2066 		cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2067 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2068 
2069 	default:
2070 		/*
2071 		 * Unprocessed messages are aborted if userspace isn't doing
2072 		 * any processing either.
2073 		 */
2074 		if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2075 		    !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2076 			return cec_feature_abort(adap, msg);
2077 		break;
2078 	}
2079 
2080 skip_processing:
2081 	/* If this was a reply, then we're done, unless otherwise specified */
2082 	if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2083 		return 0;
2084 
2085 	/*
2086 	 * Send to the exclusive follower if there is one, otherwise send
2087 	 * to all followers.
2088 	 */
2089 	if (adap->cec_follower)
2090 		cec_queue_msg_fh(adap->cec_follower, msg);
2091 	else
2092 		cec_queue_msg_followers(adap, msg);
2093 	return 0;
2094 }
2095 
2096 /*
2097  * Helper functions to keep track of the 'monitor all' use count.
2098  *
2099  * These functions are called with adap->lock held.
2100  */
cec_monitor_all_cnt_inc(struct cec_adapter * adap)2101 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2102 {
2103 	int ret = 0;
2104 
2105 	if (adap->monitor_all_cnt == 0)
2106 		ret = call_op(adap, adap_monitor_all_enable, 1);
2107 	if (ret == 0)
2108 		adap->monitor_all_cnt++;
2109 	return ret;
2110 }
2111 
cec_monitor_all_cnt_dec(struct cec_adapter * adap)2112 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2113 {
2114 	adap->monitor_all_cnt--;
2115 	if (adap->monitor_all_cnt == 0)
2116 		WARN_ON(call_op(adap, adap_monitor_all_enable, 0));
2117 }
2118 
2119 /*
2120  * Helper functions to keep track of the 'monitor pin' use count.
2121  *
2122  * These functions are called with adap->lock held.
2123  */
cec_monitor_pin_cnt_inc(struct cec_adapter * adap)2124 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2125 {
2126 	int ret = 0;
2127 
2128 	if (adap->monitor_pin_cnt == 0)
2129 		ret = call_op(adap, adap_monitor_pin_enable, 1);
2130 	if (ret == 0)
2131 		adap->monitor_pin_cnt++;
2132 	return ret;
2133 }
2134 
cec_monitor_pin_cnt_dec(struct cec_adapter * adap)2135 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2136 {
2137 	adap->monitor_pin_cnt--;
2138 	if (adap->monitor_pin_cnt == 0)
2139 		WARN_ON(call_op(adap, adap_monitor_pin_enable, 0));
2140 }
2141 
2142 #ifdef CONFIG_DEBUG_FS
2143 /*
2144  * Log the current state of the CEC adapter.
2145  * Very useful for debugging.
2146  */
cec_adap_status(struct seq_file * file,void * priv)2147 int cec_adap_status(struct seq_file *file, void *priv)
2148 {
2149 	struct cec_adapter *adap = dev_get_drvdata(file->private);
2150 	struct cec_data *data;
2151 
2152 	mutex_lock(&adap->lock);
2153 	seq_printf(file, "configured: %d\n", adap->is_configured);
2154 	seq_printf(file, "configuring: %d\n", adap->is_configuring);
2155 	seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2156 		   cec_phys_addr_exp(adap->phys_addr));
2157 	seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2158 	seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2159 	if (adap->cec_follower)
2160 		seq_printf(file, "has CEC follower%s\n",
2161 			   adap->passthrough ? " (in passthrough mode)" : "");
2162 	if (adap->cec_initiator)
2163 		seq_puts(file, "has CEC initiator\n");
2164 	if (adap->monitor_all_cnt)
2165 		seq_printf(file, "file handles in Monitor All mode: %u\n",
2166 			   adap->monitor_all_cnt);
2167 	if (adap->tx_timeouts) {
2168 		seq_printf(file, "transmit timeouts: %u\n",
2169 			   adap->tx_timeouts);
2170 		adap->tx_timeouts = 0;
2171 	}
2172 	data = adap->transmitting;
2173 	if (data)
2174 		seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2175 			   data->msg.len, data->msg.msg, data->msg.reply,
2176 			   data->msg.timeout);
2177 	seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2178 	list_for_each_entry(data, &adap->transmit_queue, list) {
2179 		seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2180 			   data->msg.len, data->msg.msg, data->msg.reply,
2181 			   data->msg.timeout);
2182 	}
2183 	list_for_each_entry(data, &adap->wait_queue, list) {
2184 		seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2185 			   data->msg.len, data->msg.msg, data->msg.reply,
2186 			   data->msg.timeout);
2187 	}
2188 
2189 	call_void_op(adap, adap_status, file);
2190 	mutex_unlock(&adap->lock);
2191 	return 0;
2192 }
2193 #endif
2194