1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright 2019 Google LLC
4 */
5
6 #include <linux/keyslot-manager.h>
7 #include "ufshcd.h"
8 #include "ufshcd-crypto.h"
9
ufshcd_cap_idx_valid(struct ufs_hba * hba,unsigned int cap_idx)10 static bool ufshcd_cap_idx_valid(struct ufs_hba *hba, unsigned int cap_idx)
11 {
12 return cap_idx < hba->crypto_capabilities.num_crypto_cap;
13 }
14
get_data_unit_size_mask(unsigned int data_unit_size)15 static u8 get_data_unit_size_mask(unsigned int data_unit_size)
16 {
17 if (data_unit_size < 512 || data_unit_size > 65536 ||
18 !is_power_of_2(data_unit_size))
19 return 0;
20
21 return data_unit_size / 512;
22 }
23
get_keysize_bytes(enum ufs_crypto_key_size size)24 static size_t get_keysize_bytes(enum ufs_crypto_key_size size)
25 {
26 switch (size) {
27 case UFS_CRYPTO_KEY_SIZE_128:
28 return 16;
29 case UFS_CRYPTO_KEY_SIZE_192:
30 return 24;
31 case UFS_CRYPTO_KEY_SIZE_256:
32 return 32;
33 case UFS_CRYPTO_KEY_SIZE_512:
34 return 64;
35 default:
36 return 0;
37 }
38 }
39
ufshcd_crypto_cap_find(struct ufs_hba * hba,enum blk_crypto_mode_num crypto_mode,unsigned int data_unit_size)40 int ufshcd_crypto_cap_find(struct ufs_hba *hba,
41 enum blk_crypto_mode_num crypto_mode,
42 unsigned int data_unit_size)
43 {
44 enum ufs_crypto_alg ufs_alg;
45 u8 data_unit_mask;
46 int cap_idx;
47 enum ufs_crypto_key_size ufs_key_size;
48 union ufs_crypto_cap_entry *ccap_array = hba->crypto_cap_array;
49
50 if (!ufshcd_hba_is_crypto_supported(hba))
51 return -EINVAL;
52
53 switch (crypto_mode) {
54 case BLK_ENCRYPTION_MODE_AES_256_XTS:
55 ufs_alg = UFS_CRYPTO_ALG_AES_XTS;
56 ufs_key_size = UFS_CRYPTO_KEY_SIZE_256;
57 break;
58 default:
59 return -EINVAL;
60 }
61
62 data_unit_mask = get_data_unit_size_mask(data_unit_size);
63
64 for (cap_idx = 0; cap_idx < hba->crypto_capabilities.num_crypto_cap;
65 cap_idx++) {
66 if (ccap_array[cap_idx].algorithm_id == ufs_alg &&
67 (ccap_array[cap_idx].sdus_mask & data_unit_mask) &&
68 ccap_array[cap_idx].key_size == ufs_key_size)
69 return cap_idx;
70 }
71
72 return -EINVAL;
73 }
74 EXPORT_SYMBOL(ufshcd_crypto_cap_find);
75
76 /**
77 * ufshcd_crypto_cfg_entry_write_key - Write a key into a crypto_cfg_entry
78 *
79 * Writes the key with the appropriate format - for AES_XTS,
80 * the first half of the key is copied as is, the second half is
81 * copied with an offset halfway into the cfg->crypto_key array.
82 * For the other supported crypto algs, the key is just copied.
83 *
84 * @cfg: The crypto config to write to
85 * @key: The key to write
86 * @cap: The crypto capability (which specifies the crypto alg and key size)
87 *
88 * Returns 0 on success, or -EINVAL
89 */
ufshcd_crypto_cfg_entry_write_key(union ufs_crypto_cfg_entry * cfg,const u8 * key,union ufs_crypto_cap_entry cap)90 static int ufshcd_crypto_cfg_entry_write_key(union ufs_crypto_cfg_entry *cfg,
91 const u8 *key,
92 union ufs_crypto_cap_entry cap)
93 {
94 size_t key_size_bytes = get_keysize_bytes(cap.key_size);
95
96 if (key_size_bytes == 0)
97 return -EINVAL;
98
99 switch (cap.algorithm_id) {
100 case UFS_CRYPTO_ALG_AES_XTS:
101 key_size_bytes *= 2;
102 if (key_size_bytes > UFS_CRYPTO_KEY_MAX_SIZE)
103 return -EINVAL;
104
105 memcpy(cfg->crypto_key, key, key_size_bytes/2);
106 memcpy(cfg->crypto_key + UFS_CRYPTO_KEY_MAX_SIZE/2,
107 key + key_size_bytes/2, key_size_bytes/2);
108 return 0;
109 case UFS_CRYPTO_ALG_BITLOCKER_AES_CBC:
110 /* fall through */
111 case UFS_CRYPTO_ALG_AES_ECB:
112 /* fall through */
113 case UFS_CRYPTO_ALG_ESSIV_AES_CBC:
114 memcpy(cfg->crypto_key, key, key_size_bytes);
115 return 0;
116 }
117
118 return -EINVAL;
119 }
120
ufshcd_program_key(struct ufs_hba * hba,const union ufs_crypto_cfg_entry * cfg,int slot)121 static int ufshcd_program_key(struct ufs_hba *hba,
122 const union ufs_crypto_cfg_entry *cfg, int slot)
123 {
124 int i;
125 u32 slot_offset = hba->crypto_cfg_register + slot * sizeof(*cfg);
126 int err;
127
128 pm_runtime_get_sync(hba->dev);
129 ufshcd_hold(hba, false);
130
131 if (hba->vops->program_key) {
132 err = hba->vops->program_key(hba, cfg, slot);
133 goto out;
134 }
135
136 /* Clear the dword 16 */
137 ufshcd_writel(hba, 0, slot_offset + 16 * sizeof(cfg->reg_val[0]));
138 /* Ensure that CFGE is cleared before programming the key */
139 wmb();
140 for (i = 0; i < 16; i++) {
141 ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[i]),
142 slot_offset + i * sizeof(cfg->reg_val[0]));
143 /* Spec says each dword in key must be written sequentially */
144 wmb();
145 }
146 /* Write dword 17 */
147 ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[17]),
148 slot_offset + 17 * sizeof(cfg->reg_val[0]));
149 /* Dword 16 must be written last */
150 wmb();
151 /* Write dword 16 */
152 ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[16]),
153 slot_offset + 16 * sizeof(cfg->reg_val[0]));
154 wmb();
155 err = 0;
156 out:
157 ufshcd_release(hba);
158 pm_runtime_put_sync(hba->dev);
159 return err;
160 }
161
ufshcd_clear_keyslot(struct ufs_hba * hba,int slot)162 static void ufshcd_clear_keyslot(struct ufs_hba *hba, int slot)
163 {
164 union ufs_crypto_cfg_entry cfg = { 0 };
165 int err;
166
167 err = ufshcd_program_key(hba, &cfg, slot);
168 WARN_ON_ONCE(err);
169 }
170
171 /* Clear all keyslots at driver init time */
ufshcd_clear_all_keyslots(struct ufs_hba * hba)172 static void ufshcd_clear_all_keyslots(struct ufs_hba *hba)
173 {
174 int slot;
175
176 for (slot = 0; slot < ufshcd_num_keyslots(hba); slot++)
177 ufshcd_clear_keyslot(hba, slot);
178 }
179
ufshcd_crypto_keyslot_program(struct keyslot_manager * ksm,const struct blk_crypto_key * key,unsigned int slot)180 static int ufshcd_crypto_keyslot_program(struct keyslot_manager *ksm,
181 const struct blk_crypto_key *key,
182 unsigned int slot)
183 {
184 struct ufs_hba *hba = keyslot_manager_private(ksm);
185 int err = 0;
186 u8 data_unit_mask;
187 union ufs_crypto_cfg_entry cfg;
188 int cap_idx;
189
190 cap_idx = ufshcd_crypto_cap_find(hba, key->crypto_mode,
191 key->data_unit_size);
192
193 if (!ufshcd_is_crypto_enabled(hba) ||
194 !ufshcd_keyslot_valid(hba, slot) ||
195 !ufshcd_cap_idx_valid(hba, cap_idx))
196 return -EINVAL;
197
198 data_unit_mask = get_data_unit_size_mask(key->data_unit_size);
199
200 if (!(data_unit_mask & hba->crypto_cap_array[cap_idx].sdus_mask))
201 return -EINVAL;
202
203 memset(&cfg, 0, sizeof(cfg));
204 cfg.data_unit_size = data_unit_mask;
205 cfg.crypto_cap_idx = cap_idx;
206 cfg.config_enable |= UFS_CRYPTO_CONFIGURATION_ENABLE;
207
208 err = ufshcd_crypto_cfg_entry_write_key(&cfg, key->raw,
209 hba->crypto_cap_array[cap_idx]);
210 if (err)
211 return err;
212
213 err = ufshcd_program_key(hba, &cfg, slot);
214
215 memzero_explicit(&cfg, sizeof(cfg));
216
217 return err;
218 }
219
ufshcd_crypto_keyslot_evict(struct keyslot_manager * ksm,const struct blk_crypto_key * key,unsigned int slot)220 static int ufshcd_crypto_keyslot_evict(struct keyslot_manager *ksm,
221 const struct blk_crypto_key *key,
222 unsigned int slot)
223 {
224 struct ufs_hba *hba = keyslot_manager_private(ksm);
225
226 if (!ufshcd_is_crypto_enabled(hba) ||
227 !ufshcd_keyslot_valid(hba, slot))
228 return -EINVAL;
229
230 /*
231 * Clear the crypto cfg on the device. Clearing CFGE
232 * might not be sufficient, so just clear the entire cfg.
233 */
234 ufshcd_clear_keyslot(hba, slot);
235
236 return 0;
237 }
238
239 /* Functions implementing UFSHCI v2.1 specification behaviour */
ufshcd_crypto_enable_spec(struct ufs_hba * hba)240 void ufshcd_crypto_enable_spec(struct ufs_hba *hba)
241 {
242 if (!ufshcd_hba_is_crypto_supported(hba))
243 return;
244
245 hba->caps |= UFSHCD_CAP_CRYPTO;
246
247 /* Reset might clear all keys, so reprogram all the keys. */
248 keyslot_manager_reprogram_all_keys(hba->ksm);
249 }
250 EXPORT_SYMBOL_GPL(ufshcd_crypto_enable_spec);
251
ufshcd_crypto_disable_spec(struct ufs_hba * hba)252 void ufshcd_crypto_disable_spec(struct ufs_hba *hba)
253 {
254 hba->caps &= ~UFSHCD_CAP_CRYPTO;
255 }
256 EXPORT_SYMBOL_GPL(ufshcd_crypto_disable_spec);
257
258 static const struct keyslot_mgmt_ll_ops ufshcd_ksm_ops = {
259 .keyslot_program = ufshcd_crypto_keyslot_program,
260 .keyslot_evict = ufshcd_crypto_keyslot_evict,
261 };
262
ufshcd_blk_crypto_mode_num_for_alg_dusize(enum ufs_crypto_alg ufs_crypto_alg,enum ufs_crypto_key_size key_size)263 enum blk_crypto_mode_num ufshcd_blk_crypto_mode_num_for_alg_dusize(
264 enum ufs_crypto_alg ufs_crypto_alg,
265 enum ufs_crypto_key_size key_size)
266 {
267 /*
268 * This is currently the only mode that UFS and blk-crypto both support.
269 */
270 if (ufs_crypto_alg == UFS_CRYPTO_ALG_AES_XTS &&
271 key_size == UFS_CRYPTO_KEY_SIZE_256)
272 return BLK_ENCRYPTION_MODE_AES_256_XTS;
273
274 return BLK_ENCRYPTION_MODE_INVALID;
275 }
276
277 /**
278 * ufshcd_hba_init_crypto - Read crypto capabilities, init crypto fields in hba
279 * @hba: Per adapter instance
280 *
281 * Return: 0 if crypto was initialized or is not supported, else a -errno value.
282 */
ufshcd_hba_init_crypto_spec(struct ufs_hba * hba,const struct keyslot_mgmt_ll_ops * ksm_ops)283 int ufshcd_hba_init_crypto_spec(struct ufs_hba *hba,
284 const struct keyslot_mgmt_ll_ops *ksm_ops)
285 {
286 int cap_idx = 0;
287 int err = 0;
288 unsigned int crypto_modes_supported[BLK_ENCRYPTION_MODE_MAX];
289 enum blk_crypto_mode_num blk_mode_num;
290
291 /* Default to disabling crypto */
292 hba->caps &= ~UFSHCD_CAP_CRYPTO;
293
294 /* Return 0 if crypto support isn't present */
295 if (!(hba->capabilities & MASK_CRYPTO_SUPPORT) ||
296 (hba->quirks & UFSHCD_QUIRK_BROKEN_CRYPTO))
297 goto out;
298
299 /*
300 * Crypto Capabilities should never be 0, because the
301 * config_array_ptr > 04h. So we use a 0 value to indicate that
302 * crypto init failed, and can't be enabled.
303 */
304 hba->crypto_capabilities.reg_val =
305 cpu_to_le32(ufshcd_readl(hba, REG_UFS_CCAP));
306 hba->crypto_cfg_register =
307 (u32)hba->crypto_capabilities.config_array_ptr * 0x100;
308 hba->crypto_cap_array =
309 devm_kcalloc(hba->dev,
310 hba->crypto_capabilities.num_crypto_cap,
311 sizeof(hba->crypto_cap_array[0]),
312 GFP_KERNEL);
313 if (!hba->crypto_cap_array) {
314 err = -ENOMEM;
315 goto out;
316 }
317
318 memset(crypto_modes_supported, 0, sizeof(crypto_modes_supported));
319 /*
320 * Store all the capabilities now so that we don't need to repeatedly
321 * access the device each time we want to know its capabilities
322 */
323 for (cap_idx = 0; cap_idx < hba->crypto_capabilities.num_crypto_cap;
324 cap_idx++) {
325 hba->crypto_cap_array[cap_idx].reg_val =
326 cpu_to_le32(ufshcd_readl(hba,
327 REG_UFS_CRYPTOCAP +
328 cap_idx * sizeof(__le32)));
329 blk_mode_num = ufshcd_blk_crypto_mode_num_for_alg_dusize(
330 hba->crypto_cap_array[cap_idx].algorithm_id,
331 hba->crypto_cap_array[cap_idx].key_size);
332 if (blk_mode_num == BLK_ENCRYPTION_MODE_INVALID)
333 continue;
334 crypto_modes_supported[blk_mode_num] |=
335 hba->crypto_cap_array[cap_idx].sdus_mask * 512;
336 }
337
338 ufshcd_clear_all_keyslots(hba);
339
340 hba->ksm = keyslot_manager_create(ufshcd_num_keyslots(hba), ksm_ops,
341 crypto_modes_supported, hba);
342
343 if (!hba->ksm) {
344 err = -ENOMEM;
345 goto out_free_caps;
346 }
347
348 return 0;
349
350 out_free_caps:
351 devm_kfree(hba->dev, hba->crypto_cap_array);
352 out:
353 /* Indicate that init failed by setting crypto_capabilities to 0 */
354 hba->crypto_capabilities.reg_val = 0;
355 return err;
356 }
357 EXPORT_SYMBOL_GPL(ufshcd_hba_init_crypto_spec);
358
ufshcd_crypto_setup_rq_keyslot_manager_spec(struct ufs_hba * hba,struct request_queue * q)359 void ufshcd_crypto_setup_rq_keyslot_manager_spec(struct ufs_hba *hba,
360 struct request_queue *q)
361 {
362 if (!ufshcd_hba_is_crypto_supported(hba) || !q)
363 return;
364
365 q->ksm = hba->ksm;
366 }
367 EXPORT_SYMBOL_GPL(ufshcd_crypto_setup_rq_keyslot_manager_spec);
368
ufshcd_crypto_destroy_rq_keyslot_manager_spec(struct ufs_hba * hba,struct request_queue * q)369 void ufshcd_crypto_destroy_rq_keyslot_manager_spec(struct ufs_hba *hba,
370 struct request_queue *q)
371 {
372 keyslot_manager_destroy(hba->ksm);
373 }
374 EXPORT_SYMBOL_GPL(ufshcd_crypto_destroy_rq_keyslot_manager_spec);
375
ufshcd_prepare_lrbp_crypto_spec(struct ufs_hba * hba,struct scsi_cmnd * cmd,struct ufshcd_lrb * lrbp)376 int ufshcd_prepare_lrbp_crypto_spec(struct ufs_hba *hba,
377 struct scsi_cmnd *cmd,
378 struct ufshcd_lrb *lrbp)
379 {
380 struct bio_crypt_ctx *bc;
381
382 if (!bio_crypt_should_process(cmd->request)) {
383 lrbp->crypto_enable = false;
384 return 0;
385 }
386 bc = cmd->request->bio->bi_crypt_context;
387
388 if (WARN_ON(!ufshcd_is_crypto_enabled(hba))) {
389 /*
390 * Upper layer asked us to do inline encryption
391 * but that isn't enabled, so we fail this request.
392 */
393 return -EINVAL;
394 }
395 if (!ufshcd_keyslot_valid(hba, bc->bc_keyslot))
396 return -EINVAL;
397
398 lrbp->crypto_enable = true;
399 lrbp->crypto_key_slot = bc->bc_keyslot;
400 lrbp->data_unit_num = bc->bc_dun[0];
401
402 return 0;
403 }
404 EXPORT_SYMBOL_GPL(ufshcd_prepare_lrbp_crypto_spec);
405
406 /* Crypto Variant Ops Support */
407
ufshcd_crypto_enable(struct ufs_hba * hba)408 void ufshcd_crypto_enable(struct ufs_hba *hba)
409 {
410 if (hba->crypto_vops && hba->crypto_vops->enable)
411 return hba->crypto_vops->enable(hba);
412
413 return ufshcd_crypto_enable_spec(hba);
414 }
415
ufshcd_crypto_disable(struct ufs_hba * hba)416 void ufshcd_crypto_disable(struct ufs_hba *hba)
417 {
418 if (hba->crypto_vops && hba->crypto_vops->disable)
419 return hba->crypto_vops->disable(hba);
420
421 return ufshcd_crypto_disable_spec(hba);
422 }
423
ufshcd_hba_init_crypto(struct ufs_hba * hba)424 int ufshcd_hba_init_crypto(struct ufs_hba *hba)
425 {
426 if (hba->crypto_vops && hba->crypto_vops->hba_init_crypto)
427 return hba->crypto_vops->hba_init_crypto(hba,
428 &ufshcd_ksm_ops);
429
430 return ufshcd_hba_init_crypto_spec(hba, &ufshcd_ksm_ops);
431 }
432
ufshcd_crypto_setup_rq_keyslot_manager(struct ufs_hba * hba,struct request_queue * q)433 void ufshcd_crypto_setup_rq_keyslot_manager(struct ufs_hba *hba,
434 struct request_queue *q)
435 {
436 if (hba->crypto_vops && hba->crypto_vops->setup_rq_keyslot_manager)
437 return hba->crypto_vops->setup_rq_keyslot_manager(hba, q);
438
439 return ufshcd_crypto_setup_rq_keyslot_manager_spec(hba, q);
440 }
441
ufshcd_crypto_destroy_rq_keyslot_manager(struct ufs_hba * hba,struct request_queue * q)442 void ufshcd_crypto_destroy_rq_keyslot_manager(struct ufs_hba *hba,
443 struct request_queue *q)
444 {
445 if (hba->crypto_vops && hba->crypto_vops->destroy_rq_keyslot_manager)
446 return hba->crypto_vops->destroy_rq_keyslot_manager(hba, q);
447
448 return ufshcd_crypto_destroy_rq_keyslot_manager_spec(hba, q);
449 }
450
ufshcd_prepare_lrbp_crypto(struct ufs_hba * hba,struct scsi_cmnd * cmd,struct ufshcd_lrb * lrbp)451 int ufshcd_prepare_lrbp_crypto(struct ufs_hba *hba,
452 struct scsi_cmnd *cmd,
453 struct ufshcd_lrb *lrbp)
454 {
455 if (hba->crypto_vops && hba->crypto_vops->prepare_lrbp_crypto)
456 return hba->crypto_vops->prepare_lrbp_crypto(hba, cmd, lrbp);
457
458 return ufshcd_prepare_lrbp_crypto_spec(hba, cmd, lrbp);
459 }
460
ufshcd_complete_lrbp_crypto(struct ufs_hba * hba,struct scsi_cmnd * cmd,struct ufshcd_lrb * lrbp)461 int ufshcd_complete_lrbp_crypto(struct ufs_hba *hba,
462 struct scsi_cmnd *cmd,
463 struct ufshcd_lrb *lrbp)
464 {
465 if (hba->crypto_vops && hba->crypto_vops->complete_lrbp_crypto)
466 return hba->crypto_vops->complete_lrbp_crypto(hba, cmd, lrbp);
467
468 return 0;
469 }
470
ufshcd_crypto_debug(struct ufs_hba * hba)471 void ufshcd_crypto_debug(struct ufs_hba *hba)
472 {
473 if (hba->crypto_vops && hba->crypto_vops->debug)
474 hba->crypto_vops->debug(hba);
475 }
476
ufshcd_crypto_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)477 int ufshcd_crypto_suspend(struct ufs_hba *hba,
478 enum ufs_pm_op pm_op)
479 {
480 if (hba->crypto_vops && hba->crypto_vops->suspend)
481 return hba->crypto_vops->suspend(hba, pm_op);
482
483 return 0;
484 }
485
ufshcd_crypto_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)486 int ufshcd_crypto_resume(struct ufs_hba *hba,
487 enum ufs_pm_op pm_op)
488 {
489 if (hba->crypto_vops && hba->crypto_vops->resume)
490 return hba->crypto_vops->resume(hba, pm_op);
491
492 return 0;
493 }
494
ufshcd_crypto_set_vops(struct ufs_hba * hba,struct ufs_hba_crypto_variant_ops * crypto_vops)495 void ufshcd_crypto_set_vops(struct ufs_hba *hba,
496 struct ufs_hba_crypto_variant_ops *crypto_vops)
497 {
498 hba->crypto_vops = crypto_vops;
499 }
500