1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/ialloc.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * BSD ufs-inspired inode and directory allocation by
11 * Stephen Tweedie (sct@redhat.com), 1993
12 * Big-endian to little-endian byte-swapping/bitmaps by
13 * David S. Miller (davem@caip.rutgers.edu), 1995
14 */
15
16 #include <linux/time.h>
17 #include <linux/fs.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <linux/cred.h>
26
27 #include <asm/byteorder.h>
28
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33
34 #include <trace/events/ext4.h>
35
36 /*
37 * ialloc.c contains the inodes allocation and deallocation routines
38 */
39
40 /*
41 * The free inodes are managed by bitmaps. A file system contains several
42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
43 * block for inodes, N blocks for the inode table and data blocks.
44 *
45 * The file system contains group descriptors which are located after the
46 * super block. Each descriptor contains the number of the bitmap block and
47 * the free blocks count in the block.
48 */
49
50 /*
51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
52 * need to use it within a single byte (to ensure we get endianness right).
53 * We can use memset for the rest of the bitmap as there are no other users.
54 */
ext4_mark_bitmap_end(int start_bit,int end_bit,char * bitmap)55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
56 {
57 int i;
58
59 if (start_bit >= end_bit)
60 return;
61
62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
64 ext4_set_bit(i, bitmap);
65 if (i < end_bit)
66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67 }
68
ext4_end_bitmap_read(struct buffer_head * bh,int uptodate)69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
70 {
71 if (uptodate) {
72 set_buffer_uptodate(bh);
73 set_bitmap_uptodate(bh);
74 }
75 unlock_buffer(bh);
76 put_bh(bh);
77 }
78
ext4_validate_inode_bitmap(struct super_block * sb,struct ext4_group_desc * desc,ext4_group_t block_group,struct buffer_head * bh)79 static int ext4_validate_inode_bitmap(struct super_block *sb,
80 struct ext4_group_desc *desc,
81 ext4_group_t block_group,
82 struct buffer_head *bh)
83 {
84 ext4_fsblk_t blk;
85 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
86
87 if (buffer_verified(bh))
88 return 0;
89 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
90 return -EFSCORRUPTED;
91
92 ext4_lock_group(sb, block_group);
93 if (buffer_verified(bh))
94 goto verified;
95 blk = ext4_inode_bitmap(sb, desc);
96 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
97 EXT4_INODES_PER_GROUP(sb) / 8)) {
98 ext4_unlock_group(sb, block_group);
99 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
100 "inode_bitmap = %llu", block_group, blk);
101 ext4_mark_group_bitmap_corrupted(sb, block_group,
102 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
103 return -EFSBADCRC;
104 }
105 set_buffer_verified(bh);
106 verified:
107 ext4_unlock_group(sb, block_group);
108 return 0;
109 }
110
111 /*
112 * Read the inode allocation bitmap for a given block_group, reading
113 * into the specified slot in the superblock's bitmap cache.
114 *
115 * Return buffer_head of bitmap on success or NULL.
116 */
117 static struct buffer_head *
ext4_read_inode_bitmap(struct super_block * sb,ext4_group_t block_group)118 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
119 {
120 struct ext4_group_desc *desc;
121 struct ext4_sb_info *sbi = EXT4_SB(sb);
122 struct buffer_head *bh = NULL;
123 ext4_fsblk_t bitmap_blk;
124 int err;
125
126 desc = ext4_get_group_desc(sb, block_group, NULL);
127 if (!desc)
128 return ERR_PTR(-EFSCORRUPTED);
129
130 bitmap_blk = ext4_inode_bitmap(sb, desc);
131 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
132 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
133 ext4_error(sb, "Invalid inode bitmap blk %llu in "
134 "block_group %u", bitmap_blk, block_group);
135 ext4_mark_group_bitmap_corrupted(sb, block_group,
136 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
137 return ERR_PTR(-EFSCORRUPTED);
138 }
139 bh = sb_getblk(sb, bitmap_blk);
140 if (unlikely(!bh)) {
141 ext4_warning(sb, "Cannot read inode bitmap - "
142 "block_group = %u, inode_bitmap = %llu",
143 block_group, bitmap_blk);
144 return ERR_PTR(-ENOMEM);
145 }
146 if (bitmap_uptodate(bh))
147 goto verify;
148
149 lock_buffer(bh);
150 if (bitmap_uptodate(bh)) {
151 unlock_buffer(bh);
152 goto verify;
153 }
154
155 ext4_lock_group(sb, block_group);
156 if (ext4_has_group_desc_csum(sb) &&
157 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
158 if (block_group == 0) {
159 ext4_unlock_group(sb, block_group);
160 unlock_buffer(bh);
161 ext4_error(sb, "Inode bitmap for bg 0 marked "
162 "uninitialized");
163 err = -EFSCORRUPTED;
164 goto out;
165 }
166 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
167 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
168 sb->s_blocksize * 8, bh->b_data);
169 set_bitmap_uptodate(bh);
170 set_buffer_uptodate(bh);
171 set_buffer_verified(bh);
172 ext4_unlock_group(sb, block_group);
173 unlock_buffer(bh);
174 return bh;
175 }
176 ext4_unlock_group(sb, block_group);
177
178 if (buffer_uptodate(bh)) {
179 /*
180 * if not uninit if bh is uptodate,
181 * bitmap is also uptodate
182 */
183 set_bitmap_uptodate(bh);
184 unlock_buffer(bh);
185 goto verify;
186 }
187 /*
188 * submit the buffer_head for reading
189 */
190 trace_ext4_load_inode_bitmap(sb, block_group);
191 bh->b_end_io = ext4_end_bitmap_read;
192 get_bh(bh);
193 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
194 wait_on_buffer(bh);
195 if (!buffer_uptodate(bh)) {
196 put_bh(bh);
197 ext4_error(sb, "Cannot read inode bitmap - "
198 "block_group = %u, inode_bitmap = %llu",
199 block_group, bitmap_blk);
200 ext4_mark_group_bitmap_corrupted(sb, block_group,
201 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
202 return ERR_PTR(-EIO);
203 }
204
205 verify:
206 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
207 if (err)
208 goto out;
209 return bh;
210 out:
211 put_bh(bh);
212 return ERR_PTR(err);
213 }
214
215 /*
216 * NOTE! When we get the inode, we're the only people
217 * that have access to it, and as such there are no
218 * race conditions we have to worry about. The inode
219 * is not on the hash-lists, and it cannot be reached
220 * through the filesystem because the directory entry
221 * has been deleted earlier.
222 *
223 * HOWEVER: we must make sure that we get no aliases,
224 * which means that we have to call "clear_inode()"
225 * _before_ we mark the inode not in use in the inode
226 * bitmaps. Otherwise a newly created file might use
227 * the same inode number (not actually the same pointer
228 * though), and then we'd have two inodes sharing the
229 * same inode number and space on the harddisk.
230 */
ext4_free_inode(handle_t * handle,struct inode * inode)231 void ext4_free_inode(handle_t *handle, struct inode *inode)
232 {
233 struct super_block *sb = inode->i_sb;
234 int is_directory;
235 unsigned long ino;
236 struct buffer_head *bitmap_bh = NULL;
237 struct buffer_head *bh2;
238 ext4_group_t block_group;
239 unsigned long bit;
240 struct ext4_group_desc *gdp;
241 struct ext4_super_block *es;
242 struct ext4_sb_info *sbi;
243 int fatal = 0, err, count, cleared;
244 struct ext4_group_info *grp;
245
246 if (!sb) {
247 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
248 "nonexistent device\n", __func__, __LINE__);
249 return;
250 }
251 if (atomic_read(&inode->i_count) > 1) {
252 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
253 __func__, __LINE__, inode->i_ino,
254 atomic_read(&inode->i_count));
255 return;
256 }
257 if (inode->i_nlink) {
258 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
259 __func__, __LINE__, inode->i_ino, inode->i_nlink);
260 return;
261 }
262 sbi = EXT4_SB(sb);
263
264 ino = inode->i_ino;
265 ext4_debug("freeing inode %lu\n", ino);
266 trace_ext4_free_inode(inode);
267
268 dquot_initialize(inode);
269 dquot_free_inode(inode);
270
271 is_directory = S_ISDIR(inode->i_mode);
272
273 /* Do this BEFORE marking the inode not in use or returning an error */
274 ext4_clear_inode(inode);
275
276 es = sbi->s_es;
277 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
278 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
279 goto error_return;
280 }
281 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
282 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
283 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
284 /* Don't bother if the inode bitmap is corrupt. */
285 grp = ext4_get_group_info(sb, block_group);
286 if (IS_ERR(bitmap_bh)) {
287 fatal = PTR_ERR(bitmap_bh);
288 bitmap_bh = NULL;
289 goto error_return;
290 }
291 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
292 fatal = -EFSCORRUPTED;
293 goto error_return;
294 }
295
296 BUFFER_TRACE(bitmap_bh, "get_write_access");
297 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
298 if (fatal)
299 goto error_return;
300
301 fatal = -ESRCH;
302 gdp = ext4_get_group_desc(sb, block_group, &bh2);
303 if (gdp) {
304 BUFFER_TRACE(bh2, "get_write_access");
305 fatal = ext4_journal_get_write_access(handle, bh2);
306 }
307 ext4_lock_group(sb, block_group);
308 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
309 if (fatal || !cleared) {
310 ext4_unlock_group(sb, block_group);
311 goto out;
312 }
313
314 count = ext4_free_inodes_count(sb, gdp) + 1;
315 ext4_free_inodes_set(sb, gdp, count);
316 if (is_directory) {
317 count = ext4_used_dirs_count(sb, gdp) - 1;
318 ext4_used_dirs_set(sb, gdp, count);
319 percpu_counter_dec(&sbi->s_dirs_counter);
320 }
321 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
322 EXT4_INODES_PER_GROUP(sb) / 8);
323 ext4_group_desc_csum_set(sb, block_group, gdp);
324 ext4_unlock_group(sb, block_group);
325
326 percpu_counter_inc(&sbi->s_freeinodes_counter);
327 if (sbi->s_log_groups_per_flex) {
328 ext4_group_t f = ext4_flex_group(sbi, block_group);
329
330 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
331 if (is_directory)
332 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
333 }
334 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
335 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
336 out:
337 if (cleared) {
338 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
339 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
340 if (!fatal)
341 fatal = err;
342 } else {
343 ext4_error(sb, "bit already cleared for inode %lu", ino);
344 ext4_mark_group_bitmap_corrupted(sb, block_group,
345 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
346 }
347
348 error_return:
349 brelse(bitmap_bh);
350 ext4_std_error(sb, fatal);
351 }
352
353 struct orlov_stats {
354 __u64 free_clusters;
355 __u32 free_inodes;
356 __u32 used_dirs;
357 };
358
359 /*
360 * Helper function for Orlov's allocator; returns critical information
361 * for a particular block group or flex_bg. If flex_size is 1, then g
362 * is a block group number; otherwise it is flex_bg number.
363 */
get_orlov_stats(struct super_block * sb,ext4_group_t g,int flex_size,struct orlov_stats * stats)364 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
365 int flex_size, struct orlov_stats *stats)
366 {
367 struct ext4_group_desc *desc;
368 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
369
370 if (flex_size > 1) {
371 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
372 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
373 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
374 return;
375 }
376
377 desc = ext4_get_group_desc(sb, g, NULL);
378 if (desc) {
379 stats->free_inodes = ext4_free_inodes_count(sb, desc);
380 stats->free_clusters = ext4_free_group_clusters(sb, desc);
381 stats->used_dirs = ext4_used_dirs_count(sb, desc);
382 } else {
383 stats->free_inodes = 0;
384 stats->free_clusters = 0;
385 stats->used_dirs = 0;
386 }
387 }
388
389 /*
390 * Orlov's allocator for directories.
391 *
392 * We always try to spread first-level directories.
393 *
394 * If there are blockgroups with both free inodes and free blocks counts
395 * not worse than average we return one with smallest directory count.
396 * Otherwise we simply return a random group.
397 *
398 * For the rest rules look so:
399 *
400 * It's OK to put directory into a group unless
401 * it has too many directories already (max_dirs) or
402 * it has too few free inodes left (min_inodes) or
403 * it has too few free blocks left (min_blocks) or
404 * Parent's group is preferred, if it doesn't satisfy these
405 * conditions we search cyclically through the rest. If none
406 * of the groups look good we just look for a group with more
407 * free inodes than average (starting at parent's group).
408 */
409
find_group_orlov(struct super_block * sb,struct inode * parent,ext4_group_t * group,umode_t mode,const struct qstr * qstr)410 static int find_group_orlov(struct super_block *sb, struct inode *parent,
411 ext4_group_t *group, umode_t mode,
412 const struct qstr *qstr)
413 {
414 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
415 struct ext4_sb_info *sbi = EXT4_SB(sb);
416 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
417 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
418 unsigned int freei, avefreei, grp_free;
419 ext4_fsblk_t freeb, avefreec;
420 unsigned int ndirs;
421 int max_dirs, min_inodes;
422 ext4_grpblk_t min_clusters;
423 ext4_group_t i, grp, g, ngroups;
424 struct ext4_group_desc *desc;
425 struct orlov_stats stats;
426 int flex_size = ext4_flex_bg_size(sbi);
427 struct dx_hash_info hinfo;
428
429 ngroups = real_ngroups;
430 if (flex_size > 1) {
431 ngroups = (real_ngroups + flex_size - 1) >>
432 sbi->s_log_groups_per_flex;
433 parent_group >>= sbi->s_log_groups_per_flex;
434 }
435
436 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
437 avefreei = freei / ngroups;
438 freeb = EXT4_C2B(sbi,
439 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
440 avefreec = freeb;
441 do_div(avefreec, ngroups);
442 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
443
444 if (S_ISDIR(mode) &&
445 ((parent == d_inode(sb->s_root)) ||
446 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
447 int best_ndir = inodes_per_group;
448 int ret = -1;
449
450 if (qstr) {
451 hinfo.hash_version = DX_HASH_HALF_MD4;
452 hinfo.seed = sbi->s_hash_seed;
453 ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo);
454 grp = hinfo.hash;
455 } else
456 grp = prandom_u32();
457 parent_group = (unsigned)grp % ngroups;
458 for (i = 0; i < ngroups; i++) {
459 g = (parent_group + i) % ngroups;
460 get_orlov_stats(sb, g, flex_size, &stats);
461 if (!stats.free_inodes)
462 continue;
463 if (stats.used_dirs >= best_ndir)
464 continue;
465 if (stats.free_inodes < avefreei)
466 continue;
467 if (stats.free_clusters < avefreec)
468 continue;
469 grp = g;
470 ret = 0;
471 best_ndir = stats.used_dirs;
472 }
473 if (ret)
474 goto fallback;
475 found_flex_bg:
476 if (flex_size == 1) {
477 *group = grp;
478 return 0;
479 }
480
481 /*
482 * We pack inodes at the beginning of the flexgroup's
483 * inode tables. Block allocation decisions will do
484 * something similar, although regular files will
485 * start at 2nd block group of the flexgroup. See
486 * ext4_ext_find_goal() and ext4_find_near().
487 */
488 grp *= flex_size;
489 for (i = 0; i < flex_size; i++) {
490 if (grp+i >= real_ngroups)
491 break;
492 desc = ext4_get_group_desc(sb, grp+i, NULL);
493 if (desc && ext4_free_inodes_count(sb, desc)) {
494 *group = grp+i;
495 return 0;
496 }
497 }
498 goto fallback;
499 }
500
501 max_dirs = ndirs / ngroups + inodes_per_group / 16;
502 min_inodes = avefreei - inodes_per_group*flex_size / 4;
503 if (min_inodes < 1)
504 min_inodes = 1;
505 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
506
507 /*
508 * Start looking in the flex group where we last allocated an
509 * inode for this parent directory
510 */
511 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
512 parent_group = EXT4_I(parent)->i_last_alloc_group;
513 if (flex_size > 1)
514 parent_group >>= sbi->s_log_groups_per_flex;
515 }
516
517 for (i = 0; i < ngroups; i++) {
518 grp = (parent_group + i) % ngroups;
519 get_orlov_stats(sb, grp, flex_size, &stats);
520 if (stats.used_dirs >= max_dirs)
521 continue;
522 if (stats.free_inodes < min_inodes)
523 continue;
524 if (stats.free_clusters < min_clusters)
525 continue;
526 goto found_flex_bg;
527 }
528
529 fallback:
530 ngroups = real_ngroups;
531 avefreei = freei / ngroups;
532 fallback_retry:
533 parent_group = EXT4_I(parent)->i_block_group;
534 for (i = 0; i < ngroups; i++) {
535 grp = (parent_group + i) % ngroups;
536 desc = ext4_get_group_desc(sb, grp, NULL);
537 if (desc) {
538 grp_free = ext4_free_inodes_count(sb, desc);
539 if (grp_free && grp_free >= avefreei) {
540 *group = grp;
541 return 0;
542 }
543 }
544 }
545
546 if (avefreei) {
547 /*
548 * The free-inodes counter is approximate, and for really small
549 * filesystems the above test can fail to find any blockgroups
550 */
551 avefreei = 0;
552 goto fallback_retry;
553 }
554
555 return -1;
556 }
557
find_group_other(struct super_block * sb,struct inode * parent,ext4_group_t * group,umode_t mode)558 static int find_group_other(struct super_block *sb, struct inode *parent,
559 ext4_group_t *group, umode_t mode)
560 {
561 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
562 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
563 struct ext4_group_desc *desc;
564 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
565
566 /*
567 * Try to place the inode is the same flex group as its
568 * parent. If we can't find space, use the Orlov algorithm to
569 * find another flex group, and store that information in the
570 * parent directory's inode information so that use that flex
571 * group for future allocations.
572 */
573 if (flex_size > 1) {
574 int retry = 0;
575
576 try_again:
577 parent_group &= ~(flex_size-1);
578 last = parent_group + flex_size;
579 if (last > ngroups)
580 last = ngroups;
581 for (i = parent_group; i < last; i++) {
582 desc = ext4_get_group_desc(sb, i, NULL);
583 if (desc && ext4_free_inodes_count(sb, desc)) {
584 *group = i;
585 return 0;
586 }
587 }
588 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
589 retry = 1;
590 parent_group = EXT4_I(parent)->i_last_alloc_group;
591 goto try_again;
592 }
593 /*
594 * If this didn't work, use the Orlov search algorithm
595 * to find a new flex group; we pass in the mode to
596 * avoid the topdir algorithms.
597 */
598 *group = parent_group + flex_size;
599 if (*group > ngroups)
600 *group = 0;
601 return find_group_orlov(sb, parent, group, mode, NULL);
602 }
603
604 /*
605 * Try to place the inode in its parent directory
606 */
607 *group = parent_group;
608 desc = ext4_get_group_desc(sb, *group, NULL);
609 if (desc && ext4_free_inodes_count(sb, desc) &&
610 ext4_free_group_clusters(sb, desc))
611 return 0;
612
613 /*
614 * We're going to place this inode in a different blockgroup from its
615 * parent. We want to cause files in a common directory to all land in
616 * the same blockgroup. But we want files which are in a different
617 * directory which shares a blockgroup with our parent to land in a
618 * different blockgroup.
619 *
620 * So add our directory's i_ino into the starting point for the hash.
621 */
622 *group = (*group + parent->i_ino) % ngroups;
623
624 /*
625 * Use a quadratic hash to find a group with a free inode and some free
626 * blocks.
627 */
628 for (i = 1; i < ngroups; i <<= 1) {
629 *group += i;
630 if (*group >= ngroups)
631 *group -= ngroups;
632 desc = ext4_get_group_desc(sb, *group, NULL);
633 if (desc && ext4_free_inodes_count(sb, desc) &&
634 ext4_free_group_clusters(sb, desc))
635 return 0;
636 }
637
638 /*
639 * That failed: try linear search for a free inode, even if that group
640 * has no free blocks.
641 */
642 *group = parent_group;
643 for (i = 0; i < ngroups; i++) {
644 if (++*group >= ngroups)
645 *group = 0;
646 desc = ext4_get_group_desc(sb, *group, NULL);
647 if (desc && ext4_free_inodes_count(sb, desc))
648 return 0;
649 }
650
651 return -1;
652 }
653
654 /*
655 * In no journal mode, if an inode has recently been deleted, we want
656 * to avoid reusing it until we're reasonably sure the inode table
657 * block has been written back to disk. (Yes, these values are
658 * somewhat arbitrary...)
659 */
660 #define RECENTCY_MIN 5
661 #define RECENTCY_DIRTY 300
662
recently_deleted(struct super_block * sb,ext4_group_t group,int ino)663 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
664 {
665 struct ext4_group_desc *gdp;
666 struct ext4_inode *raw_inode;
667 struct buffer_head *bh;
668 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
669 int offset, ret = 0;
670 int recentcy = RECENTCY_MIN;
671 u32 dtime, now;
672
673 gdp = ext4_get_group_desc(sb, group, NULL);
674 if (unlikely(!gdp))
675 return 0;
676
677 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
678 (ino / inodes_per_block));
679 if (!bh || !buffer_uptodate(bh))
680 /*
681 * If the block is not in the buffer cache, then it
682 * must have been written out.
683 */
684 goto out;
685
686 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
687 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
688
689 /* i_dtime is only 32 bits on disk, but we only care about relative
690 * times in the range of a few minutes (i.e. long enough to sync a
691 * recently-deleted inode to disk), so using the low 32 bits of the
692 * clock (a 68 year range) is enough, see time_before32() */
693 dtime = le32_to_cpu(raw_inode->i_dtime);
694 now = ktime_get_real_seconds();
695 if (buffer_dirty(bh))
696 recentcy += RECENTCY_DIRTY;
697
698 if (dtime && time_before32(dtime, now) &&
699 time_before32(now, dtime + recentcy))
700 ret = 1;
701 out:
702 brelse(bh);
703 return ret;
704 }
705
find_inode_bit(struct super_block * sb,ext4_group_t group,struct buffer_head * bitmap,unsigned long * ino)706 static int find_inode_bit(struct super_block *sb, ext4_group_t group,
707 struct buffer_head *bitmap, unsigned long *ino)
708 {
709 next:
710 *ino = ext4_find_next_zero_bit((unsigned long *)
711 bitmap->b_data,
712 EXT4_INODES_PER_GROUP(sb), *ino);
713 if (*ino >= EXT4_INODES_PER_GROUP(sb))
714 return 0;
715
716 if ((EXT4_SB(sb)->s_journal == NULL) &&
717 recently_deleted(sb, group, *ino)) {
718 *ino = *ino + 1;
719 if (*ino < EXT4_INODES_PER_GROUP(sb))
720 goto next;
721 return 0;
722 }
723
724 return 1;
725 }
726
727 /*
728 * There are two policies for allocating an inode. If the new inode is
729 * a directory, then a forward search is made for a block group with both
730 * free space and a low directory-to-inode ratio; if that fails, then of
731 * the groups with above-average free space, that group with the fewest
732 * directories already is chosen.
733 *
734 * For other inodes, search forward from the parent directory's block
735 * group to find a free inode.
736 */
__ext4_new_inode(handle_t * handle,struct inode * dir,umode_t mode,const struct qstr * qstr,__u32 goal,uid_t * owner,__u32 i_flags,int handle_type,unsigned int line_no,int nblocks)737 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
738 umode_t mode, const struct qstr *qstr,
739 __u32 goal, uid_t *owner, __u32 i_flags,
740 int handle_type, unsigned int line_no,
741 int nblocks)
742 {
743 struct super_block *sb;
744 struct buffer_head *inode_bitmap_bh = NULL;
745 struct buffer_head *group_desc_bh;
746 ext4_group_t ngroups, group = 0;
747 unsigned long ino = 0;
748 struct inode *inode;
749 struct ext4_group_desc *gdp = NULL;
750 struct ext4_inode_info *ei;
751 struct ext4_sb_info *sbi;
752 int ret2, err;
753 struct inode *ret;
754 ext4_group_t i;
755 ext4_group_t flex_group;
756 struct ext4_group_info *grp;
757 int encrypt = 0;
758
759 /* Cannot create files in a deleted directory */
760 if (!dir || !dir->i_nlink)
761 return ERR_PTR(-EPERM);
762
763 sb = dir->i_sb;
764 sbi = EXT4_SB(sb);
765
766 if (unlikely(ext4_forced_shutdown(sbi)))
767 return ERR_PTR(-EIO);
768
769 if ((IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
770 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
771 !(i_flags & EXT4_EA_INODE_FL)) {
772 err = fscrypt_get_encryption_info(dir);
773 if (err)
774 return ERR_PTR(err);
775 if (!fscrypt_has_encryption_key(dir))
776 return ERR_PTR(-ENOKEY);
777 encrypt = 1;
778 }
779
780 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
781 #ifdef CONFIG_EXT4_FS_POSIX_ACL
782 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
783
784 if (IS_ERR(p))
785 return ERR_CAST(p);
786 if (p) {
787 int acl_size = p->a_count * sizeof(ext4_acl_entry);
788
789 nblocks += (S_ISDIR(mode) ? 2 : 1) *
790 __ext4_xattr_set_credits(sb, NULL /* inode */,
791 NULL /* block_bh */, acl_size,
792 true /* is_create */);
793 posix_acl_release(p);
794 }
795 #endif
796
797 #ifdef CONFIG_SECURITY
798 {
799 int num_security_xattrs = 1;
800
801 #ifdef CONFIG_INTEGRITY
802 num_security_xattrs++;
803 #endif
804 /*
805 * We assume that security xattrs are never
806 * more than 1k. In practice they are under
807 * 128 bytes.
808 */
809 nblocks += num_security_xattrs *
810 __ext4_xattr_set_credits(sb, NULL /* inode */,
811 NULL /* block_bh */, 1024,
812 true /* is_create */);
813 }
814 #endif
815 if (encrypt)
816 nblocks += __ext4_xattr_set_credits(sb,
817 NULL /* inode */, NULL /* block_bh */,
818 FSCRYPT_SET_CONTEXT_MAX_SIZE,
819 true /* is_create */);
820 }
821
822 ngroups = ext4_get_groups_count(sb);
823 trace_ext4_request_inode(dir, mode);
824 inode = new_inode(sb);
825 if (!inode)
826 return ERR_PTR(-ENOMEM);
827 ei = EXT4_I(inode);
828
829 /*
830 * Initialize owners and quota early so that we don't have to account
831 * for quota initialization worst case in standard inode creating
832 * transaction
833 */
834 if (owner) {
835 inode->i_mode = mode;
836 i_uid_write(inode, owner[0]);
837 i_gid_write(inode, owner[1]);
838 } else if (test_opt(sb, GRPID)) {
839 inode->i_mode = mode;
840 inode->i_uid = current_fsuid();
841 inode->i_gid = dir->i_gid;
842 } else
843 inode_init_owner(inode, dir, mode);
844
845 if (ext4_has_feature_project(sb) &&
846 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
847 ei->i_projid = EXT4_I(dir)->i_projid;
848 else
849 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
850
851 err = dquot_initialize(inode);
852 if (err)
853 goto out;
854
855 if (!goal)
856 goal = sbi->s_inode_goal;
857
858 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
859 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
860 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
861 ret2 = 0;
862 goto got_group;
863 }
864
865 if (S_ISDIR(mode))
866 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
867 else
868 ret2 = find_group_other(sb, dir, &group, mode);
869
870 got_group:
871 EXT4_I(dir)->i_last_alloc_group = group;
872 err = -ENOSPC;
873 if (ret2 == -1)
874 goto out;
875
876 /*
877 * Normally we will only go through one pass of this loop,
878 * unless we get unlucky and it turns out the group we selected
879 * had its last inode grabbed by someone else.
880 */
881 for (i = 0; i < ngroups; i++, ino = 0) {
882 err = -EIO;
883
884 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
885 if (!gdp)
886 goto out;
887
888 /*
889 * Check free inodes count before loading bitmap.
890 */
891 if (ext4_free_inodes_count(sb, gdp) == 0)
892 goto next_group;
893
894 grp = ext4_get_group_info(sb, group);
895 /* Skip groups with already-known suspicious inode tables */
896 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
897 goto next_group;
898
899 brelse(inode_bitmap_bh);
900 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
901 /* Skip groups with suspicious inode tables */
902 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
903 IS_ERR(inode_bitmap_bh)) {
904 inode_bitmap_bh = NULL;
905 goto next_group;
906 }
907
908 repeat_in_this_group:
909 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
910 if (!ret2)
911 goto next_group;
912
913 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
914 ext4_error(sb, "reserved inode found cleared - "
915 "inode=%lu", ino + 1);
916 ext4_mark_group_bitmap_corrupted(sb, group,
917 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
918 goto next_group;
919 }
920
921 if (!handle) {
922 BUG_ON(nblocks <= 0);
923 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
924 handle_type, nblocks,
925 0);
926 if (IS_ERR(handle)) {
927 err = PTR_ERR(handle);
928 ext4_std_error(sb, err);
929 goto out;
930 }
931 }
932 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
933 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
934 if (err) {
935 ext4_std_error(sb, err);
936 goto out;
937 }
938 ext4_lock_group(sb, group);
939 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
940 if (ret2) {
941 /* Someone already took the bit. Repeat the search
942 * with lock held.
943 */
944 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
945 if (ret2) {
946 ext4_set_bit(ino, inode_bitmap_bh->b_data);
947 ret2 = 0;
948 } else {
949 ret2 = 1; /* we didn't grab the inode */
950 }
951 }
952 ext4_unlock_group(sb, group);
953 ino++; /* the inode bitmap is zero-based */
954 if (!ret2)
955 goto got; /* we grabbed the inode! */
956
957 if (ino < EXT4_INODES_PER_GROUP(sb))
958 goto repeat_in_this_group;
959 next_group:
960 if (++group == ngroups)
961 group = 0;
962 }
963 err = -ENOSPC;
964 goto out;
965
966 got:
967 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
968 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
969 if (err) {
970 ext4_std_error(sb, err);
971 goto out;
972 }
973
974 BUFFER_TRACE(group_desc_bh, "get_write_access");
975 err = ext4_journal_get_write_access(handle, group_desc_bh);
976 if (err) {
977 ext4_std_error(sb, err);
978 goto out;
979 }
980
981 /* We may have to initialize the block bitmap if it isn't already */
982 if (ext4_has_group_desc_csum(sb) &&
983 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
984 struct buffer_head *block_bitmap_bh;
985
986 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
987 if (IS_ERR(block_bitmap_bh)) {
988 err = PTR_ERR(block_bitmap_bh);
989 goto out;
990 }
991 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
992 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
993 if (err) {
994 brelse(block_bitmap_bh);
995 ext4_std_error(sb, err);
996 goto out;
997 }
998
999 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
1000 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1001
1002 /* recheck and clear flag under lock if we still need to */
1003 ext4_lock_group(sb, group);
1004 if (ext4_has_group_desc_csum(sb) &&
1005 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
1006 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1007 ext4_free_group_clusters_set(sb, gdp,
1008 ext4_free_clusters_after_init(sb, group, gdp));
1009 ext4_block_bitmap_csum_set(sb, group, gdp,
1010 block_bitmap_bh);
1011 ext4_group_desc_csum_set(sb, group, gdp);
1012 }
1013 ext4_unlock_group(sb, group);
1014 brelse(block_bitmap_bh);
1015
1016 if (err) {
1017 ext4_std_error(sb, err);
1018 goto out;
1019 }
1020 }
1021
1022 /* Update the relevant bg descriptor fields */
1023 if (ext4_has_group_desc_csum(sb)) {
1024 int free;
1025 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1026
1027 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1028 ext4_lock_group(sb, group); /* while we modify the bg desc */
1029 free = EXT4_INODES_PER_GROUP(sb) -
1030 ext4_itable_unused_count(sb, gdp);
1031 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1032 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1033 free = 0;
1034 }
1035 /*
1036 * Check the relative inode number against the last used
1037 * relative inode number in this group. if it is greater
1038 * we need to update the bg_itable_unused count
1039 */
1040 if (ino > free)
1041 ext4_itable_unused_set(sb, gdp,
1042 (EXT4_INODES_PER_GROUP(sb) - ino));
1043 up_read(&grp->alloc_sem);
1044 } else {
1045 ext4_lock_group(sb, group);
1046 }
1047
1048 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1049 if (S_ISDIR(mode)) {
1050 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1051 if (sbi->s_log_groups_per_flex) {
1052 ext4_group_t f = ext4_flex_group(sbi, group);
1053
1054 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1055 }
1056 }
1057 if (ext4_has_group_desc_csum(sb)) {
1058 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1059 EXT4_INODES_PER_GROUP(sb) / 8);
1060 ext4_group_desc_csum_set(sb, group, gdp);
1061 }
1062 ext4_unlock_group(sb, group);
1063
1064 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1065 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1066 if (err) {
1067 ext4_std_error(sb, err);
1068 goto out;
1069 }
1070
1071 percpu_counter_dec(&sbi->s_freeinodes_counter);
1072 if (S_ISDIR(mode))
1073 percpu_counter_inc(&sbi->s_dirs_counter);
1074
1075 if (sbi->s_log_groups_per_flex) {
1076 flex_group = ext4_flex_group(sbi, group);
1077 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1078 }
1079
1080 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1081 /* This is the optimal IO size (for stat), not the fs block size */
1082 inode->i_blocks = 0;
1083 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1084 ei->i_crtime = inode->i_mtime;
1085
1086 memset(ei->i_data, 0, sizeof(ei->i_data));
1087 ei->i_dir_start_lookup = 0;
1088 ei->i_disksize = 0;
1089
1090 /* Don't inherit extent flag from directory, amongst others. */
1091 ei->i_flags =
1092 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1093 ei->i_flags |= i_flags;
1094 ei->i_file_acl = 0;
1095 ei->i_dtime = 0;
1096 ei->i_block_group = group;
1097 ei->i_last_alloc_group = ~0;
1098
1099 ext4_set_inode_flags(inode);
1100 if (IS_DIRSYNC(inode))
1101 ext4_handle_sync(handle);
1102 if (insert_inode_locked(inode) < 0) {
1103 /*
1104 * Likely a bitmap corruption causing inode to be allocated
1105 * twice.
1106 */
1107 err = -EIO;
1108 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1109 inode->i_ino);
1110 ext4_mark_group_bitmap_corrupted(sb, group,
1111 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1112 goto out;
1113 }
1114 inode->i_generation = prandom_u32();
1115
1116 /* Precompute checksum seed for inode metadata */
1117 if (ext4_has_metadata_csum(sb)) {
1118 __u32 csum;
1119 __le32 inum = cpu_to_le32(inode->i_ino);
1120 __le32 gen = cpu_to_le32(inode->i_generation);
1121 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1122 sizeof(inum));
1123 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1124 sizeof(gen));
1125 }
1126
1127 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1128 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1129
1130 ei->i_extra_isize = sbi->s_want_extra_isize;
1131 ei->i_inline_off = 0;
1132 if (ext4_has_feature_inline_data(sb))
1133 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1134 ret = inode;
1135 err = dquot_alloc_inode(inode);
1136 if (err)
1137 goto fail_drop;
1138
1139 /*
1140 * Since the encryption xattr will always be unique, create it first so
1141 * that it's less likely to end up in an external xattr block and
1142 * prevent its deduplication.
1143 */
1144 if (encrypt) {
1145 err = fscrypt_inherit_context(dir, inode, handle, true);
1146 if (err)
1147 goto fail_free_drop;
1148 }
1149
1150 if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1151 err = ext4_init_acl(handle, inode, dir);
1152 if (err)
1153 goto fail_free_drop;
1154
1155 err = ext4_init_security(handle, inode, dir, qstr);
1156 if (err)
1157 goto fail_free_drop;
1158 }
1159
1160 if (ext4_has_feature_extents(sb)) {
1161 /* set extent flag only for directory, file and normal symlink*/
1162 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1163 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1164 ext4_ext_tree_init(handle, inode);
1165 }
1166 }
1167
1168 if (ext4_handle_valid(handle)) {
1169 ei->i_sync_tid = handle->h_transaction->t_tid;
1170 ei->i_datasync_tid = handle->h_transaction->t_tid;
1171 }
1172
1173 err = ext4_mark_inode_dirty(handle, inode);
1174 if (err) {
1175 ext4_std_error(sb, err);
1176 goto fail_free_drop;
1177 }
1178
1179 ext4_debug("allocating inode %lu\n", inode->i_ino);
1180 trace_ext4_allocate_inode(inode, dir, mode);
1181 brelse(inode_bitmap_bh);
1182 return ret;
1183
1184 fail_free_drop:
1185 dquot_free_inode(inode);
1186 fail_drop:
1187 clear_nlink(inode);
1188 unlock_new_inode(inode);
1189 out:
1190 dquot_drop(inode);
1191 inode->i_flags |= S_NOQUOTA;
1192 iput(inode);
1193 brelse(inode_bitmap_bh);
1194 return ERR_PTR(err);
1195 }
1196
1197 /* Verify that we are loading a valid orphan from disk */
ext4_orphan_get(struct super_block * sb,unsigned long ino)1198 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1199 {
1200 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1201 ext4_group_t block_group;
1202 int bit;
1203 struct buffer_head *bitmap_bh = NULL;
1204 struct inode *inode = NULL;
1205 int err = -EFSCORRUPTED;
1206
1207 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1208 goto bad_orphan;
1209
1210 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1211 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1212 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1213 if (IS_ERR(bitmap_bh))
1214 return ERR_CAST(bitmap_bh);
1215
1216 /* Having the inode bit set should be a 100% indicator that this
1217 * is a valid orphan (no e2fsck run on fs). Orphans also include
1218 * inodes that were being truncated, so we can't check i_nlink==0.
1219 */
1220 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1221 goto bad_orphan;
1222
1223 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1224 if (IS_ERR(inode)) {
1225 err = PTR_ERR(inode);
1226 ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1227 ino, err);
1228 return inode;
1229 }
1230
1231 /*
1232 * If the orphans has i_nlinks > 0 then it should be able to
1233 * be truncated, otherwise it won't be removed from the orphan
1234 * list during processing and an infinite loop will result.
1235 * Similarly, it must not be a bad inode.
1236 */
1237 if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1238 is_bad_inode(inode))
1239 goto bad_orphan;
1240
1241 if (NEXT_ORPHAN(inode) > max_ino)
1242 goto bad_orphan;
1243 brelse(bitmap_bh);
1244 return inode;
1245
1246 bad_orphan:
1247 ext4_error(sb, "bad orphan inode %lu", ino);
1248 if (bitmap_bh)
1249 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1250 bit, (unsigned long long)bitmap_bh->b_blocknr,
1251 ext4_test_bit(bit, bitmap_bh->b_data));
1252 if (inode) {
1253 printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1254 is_bad_inode(inode));
1255 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1256 NEXT_ORPHAN(inode));
1257 printk(KERN_ERR "max_ino=%lu\n", max_ino);
1258 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1259 /* Avoid freeing blocks if we got a bad deleted inode */
1260 if (inode->i_nlink == 0)
1261 inode->i_blocks = 0;
1262 iput(inode);
1263 }
1264 brelse(bitmap_bh);
1265 return ERR_PTR(err);
1266 }
1267
ext4_count_free_inodes(struct super_block * sb)1268 unsigned long ext4_count_free_inodes(struct super_block *sb)
1269 {
1270 unsigned long desc_count;
1271 struct ext4_group_desc *gdp;
1272 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1273 #ifdef EXT4FS_DEBUG
1274 struct ext4_super_block *es;
1275 unsigned long bitmap_count, x;
1276 struct buffer_head *bitmap_bh = NULL;
1277
1278 es = EXT4_SB(sb)->s_es;
1279 desc_count = 0;
1280 bitmap_count = 0;
1281 gdp = NULL;
1282 for (i = 0; i < ngroups; i++) {
1283 gdp = ext4_get_group_desc(sb, i, NULL);
1284 if (!gdp)
1285 continue;
1286 desc_count += ext4_free_inodes_count(sb, gdp);
1287 brelse(bitmap_bh);
1288 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1289 if (IS_ERR(bitmap_bh)) {
1290 bitmap_bh = NULL;
1291 continue;
1292 }
1293
1294 x = ext4_count_free(bitmap_bh->b_data,
1295 EXT4_INODES_PER_GROUP(sb) / 8);
1296 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1297 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1298 bitmap_count += x;
1299 }
1300 brelse(bitmap_bh);
1301 printk(KERN_DEBUG "ext4_count_free_inodes: "
1302 "stored = %u, computed = %lu, %lu\n",
1303 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1304 return desc_count;
1305 #else
1306 desc_count = 0;
1307 for (i = 0; i < ngroups; i++) {
1308 gdp = ext4_get_group_desc(sb, i, NULL);
1309 if (!gdp)
1310 continue;
1311 desc_count += ext4_free_inodes_count(sb, gdp);
1312 cond_resched();
1313 }
1314 return desc_count;
1315 #endif
1316 }
1317
1318 /* Called at mount-time, super-block is locked */
ext4_count_dirs(struct super_block * sb)1319 unsigned long ext4_count_dirs(struct super_block * sb)
1320 {
1321 unsigned long count = 0;
1322 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1323
1324 for (i = 0; i < ngroups; i++) {
1325 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1326 if (!gdp)
1327 continue;
1328 count += ext4_used_dirs_count(sb, gdp);
1329 }
1330 return count;
1331 }
1332
1333 /*
1334 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1335 * inode table. Must be called without any spinlock held. The only place
1336 * where it is called from on active part of filesystem is ext4lazyinit
1337 * thread, so we do not need any special locks, however we have to prevent
1338 * inode allocation from the current group, so we take alloc_sem lock, to
1339 * block ext4_new_inode() until we are finished.
1340 */
ext4_init_inode_table(struct super_block * sb,ext4_group_t group,int barrier)1341 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1342 int barrier)
1343 {
1344 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1345 struct ext4_sb_info *sbi = EXT4_SB(sb);
1346 struct ext4_group_desc *gdp = NULL;
1347 struct buffer_head *group_desc_bh;
1348 handle_t *handle;
1349 ext4_fsblk_t blk;
1350 int num, ret = 0, used_blks = 0;
1351
1352 /* This should not happen, but just to be sure check this */
1353 if (sb_rdonly(sb)) {
1354 ret = 1;
1355 goto out;
1356 }
1357
1358 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1359 if (!gdp)
1360 goto out;
1361
1362 /*
1363 * We do not need to lock this, because we are the only one
1364 * handling this flag.
1365 */
1366 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1367 goto out;
1368
1369 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1370 if (IS_ERR(handle)) {
1371 ret = PTR_ERR(handle);
1372 goto out;
1373 }
1374
1375 down_write(&grp->alloc_sem);
1376 /*
1377 * If inode bitmap was already initialized there may be some
1378 * used inodes so we need to skip blocks with used inodes in
1379 * inode table.
1380 */
1381 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1382 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1383 ext4_itable_unused_count(sb, gdp)),
1384 sbi->s_inodes_per_block);
1385
1386 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) ||
1387 ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) -
1388 ext4_itable_unused_count(sb, gdp)) <
1389 EXT4_FIRST_INO(sb)))) {
1390 ext4_error(sb, "Something is wrong with group %u: "
1391 "used itable blocks: %d; "
1392 "itable unused count: %u",
1393 group, used_blks,
1394 ext4_itable_unused_count(sb, gdp));
1395 ret = 1;
1396 goto err_out;
1397 }
1398
1399 blk = ext4_inode_table(sb, gdp) + used_blks;
1400 num = sbi->s_itb_per_group - used_blks;
1401
1402 BUFFER_TRACE(group_desc_bh, "get_write_access");
1403 ret = ext4_journal_get_write_access(handle,
1404 group_desc_bh);
1405 if (ret)
1406 goto err_out;
1407
1408 /*
1409 * Skip zeroout if the inode table is full. But we set the ZEROED
1410 * flag anyway, because obviously, when it is full it does not need
1411 * further zeroing.
1412 */
1413 if (unlikely(num == 0))
1414 goto skip_zeroout;
1415
1416 ext4_debug("going to zero out inode table in group %d\n",
1417 group);
1418 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1419 if (ret < 0)
1420 goto err_out;
1421 if (barrier)
1422 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1423
1424 skip_zeroout:
1425 ext4_lock_group(sb, group);
1426 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1427 ext4_group_desc_csum_set(sb, group, gdp);
1428 ext4_unlock_group(sb, group);
1429
1430 BUFFER_TRACE(group_desc_bh,
1431 "call ext4_handle_dirty_metadata");
1432 ret = ext4_handle_dirty_metadata(handle, NULL,
1433 group_desc_bh);
1434
1435 err_out:
1436 up_write(&grp->alloc_sem);
1437 ext4_journal_stop(handle);
1438 out:
1439 return ret;
1440 }
1441