1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Authors: Karl MacMillan <kmacmillan@tresys.com>
3 * Frank Mayer <mayerf@tresys.com>
4 *
5 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/string.h>
11 #include <linux/spinlock.h>
12 #include <linux/slab.h>
13
14 #include "security.h"
15 #include "conditional.h"
16 #include "services.h"
17
18 /*
19 * cond_evaluate_expr evaluates a conditional expr
20 * in reverse polish notation. It returns true (1), false (0),
21 * or undefined (-1). Undefined occurs when the expression
22 * exceeds the stack depth of COND_EXPR_MAXDEPTH.
23 */
cond_evaluate_expr(struct policydb * p,struct cond_expr * expr)24 static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
25 {
26
27 struct cond_expr *cur;
28 int s[COND_EXPR_MAXDEPTH];
29 int sp = -1;
30
31 for (cur = expr; cur; cur = cur->next) {
32 switch (cur->expr_type) {
33 case COND_BOOL:
34 if (sp == (COND_EXPR_MAXDEPTH - 1))
35 return -1;
36 sp++;
37 s[sp] = p->bool_val_to_struct[cur->bool - 1]->state;
38 break;
39 case COND_NOT:
40 if (sp < 0)
41 return -1;
42 s[sp] = !s[sp];
43 break;
44 case COND_OR:
45 if (sp < 1)
46 return -1;
47 sp--;
48 s[sp] |= s[sp + 1];
49 break;
50 case COND_AND:
51 if (sp < 1)
52 return -1;
53 sp--;
54 s[sp] &= s[sp + 1];
55 break;
56 case COND_XOR:
57 if (sp < 1)
58 return -1;
59 sp--;
60 s[sp] ^= s[sp + 1];
61 break;
62 case COND_EQ:
63 if (sp < 1)
64 return -1;
65 sp--;
66 s[sp] = (s[sp] == s[sp + 1]);
67 break;
68 case COND_NEQ:
69 if (sp < 1)
70 return -1;
71 sp--;
72 s[sp] = (s[sp] != s[sp + 1]);
73 break;
74 default:
75 return -1;
76 }
77 }
78 return s[0];
79 }
80
81 /*
82 * evaluate_cond_node evaluates the conditional stored in
83 * a struct cond_node and if the result is different than the
84 * current state of the node it sets the rules in the true/false
85 * list appropriately. If the result of the expression is undefined
86 * all of the rules are disabled for safety.
87 */
evaluate_cond_node(struct policydb * p,struct cond_node * node)88 int evaluate_cond_node(struct policydb *p, struct cond_node *node)
89 {
90 int new_state;
91 struct cond_av_list *cur;
92
93 new_state = cond_evaluate_expr(p, node->expr);
94 if (new_state != node->cur_state) {
95 node->cur_state = new_state;
96 if (new_state == -1)
97 pr_err("SELinux: expression result was undefined - disabling all rules.\n");
98 /* turn the rules on or off */
99 for (cur = node->true_list; cur; cur = cur->next) {
100 if (new_state <= 0)
101 cur->node->key.specified &= ~AVTAB_ENABLED;
102 else
103 cur->node->key.specified |= AVTAB_ENABLED;
104 }
105
106 for (cur = node->false_list; cur; cur = cur->next) {
107 /* -1 or 1 */
108 if (new_state)
109 cur->node->key.specified &= ~AVTAB_ENABLED;
110 else
111 cur->node->key.specified |= AVTAB_ENABLED;
112 }
113 }
114 return 0;
115 }
116
cond_policydb_init(struct policydb * p)117 int cond_policydb_init(struct policydb *p)
118 {
119 int rc;
120
121 p->bool_val_to_struct = NULL;
122 p->cond_list = NULL;
123
124 rc = avtab_init(&p->te_cond_avtab);
125 if (rc)
126 return rc;
127
128 return 0;
129 }
130
cond_av_list_destroy(struct cond_av_list * list)131 static void cond_av_list_destroy(struct cond_av_list *list)
132 {
133 struct cond_av_list *cur, *next;
134 for (cur = list; cur; cur = next) {
135 next = cur->next;
136 /* the avtab_ptr_t node is destroy by the avtab */
137 kfree(cur);
138 }
139 }
140
cond_node_destroy(struct cond_node * node)141 static void cond_node_destroy(struct cond_node *node)
142 {
143 struct cond_expr *cur_expr, *next_expr;
144
145 for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) {
146 next_expr = cur_expr->next;
147 kfree(cur_expr);
148 }
149 cond_av_list_destroy(node->true_list);
150 cond_av_list_destroy(node->false_list);
151 kfree(node);
152 }
153
cond_list_destroy(struct cond_node * list)154 static void cond_list_destroy(struct cond_node *list)
155 {
156 struct cond_node *next, *cur;
157
158 if (list == NULL)
159 return;
160
161 for (cur = list; cur; cur = next) {
162 next = cur->next;
163 cond_node_destroy(cur);
164 }
165 }
166
cond_policydb_destroy(struct policydb * p)167 void cond_policydb_destroy(struct policydb *p)
168 {
169 kfree(p->bool_val_to_struct);
170 avtab_destroy(&p->te_cond_avtab);
171 cond_list_destroy(p->cond_list);
172 }
173
cond_init_bool_indexes(struct policydb * p)174 int cond_init_bool_indexes(struct policydb *p)
175 {
176 kfree(p->bool_val_to_struct);
177 p->bool_val_to_struct = kmalloc_array(p->p_bools.nprim,
178 sizeof(*p->bool_val_to_struct),
179 GFP_KERNEL);
180 if (!p->bool_val_to_struct)
181 return -ENOMEM;
182 return 0;
183 }
184
cond_destroy_bool(void * key,void * datum,void * p)185 int cond_destroy_bool(void *key, void *datum, void *p)
186 {
187 kfree(key);
188 kfree(datum);
189 return 0;
190 }
191
cond_index_bool(void * key,void * datum,void * datap)192 int cond_index_bool(void *key, void *datum, void *datap)
193 {
194 struct policydb *p;
195 struct cond_bool_datum *booldatum;
196
197 booldatum = datum;
198 p = datap;
199
200 if (!booldatum->value || booldatum->value > p->p_bools.nprim)
201 return -EINVAL;
202
203 p->sym_val_to_name[SYM_BOOLS][booldatum->value - 1] = key;
204 p->bool_val_to_struct[booldatum->value - 1] = booldatum;
205
206 return 0;
207 }
208
bool_isvalid(struct cond_bool_datum * b)209 static int bool_isvalid(struct cond_bool_datum *b)
210 {
211 if (!(b->state == 0 || b->state == 1))
212 return 0;
213 return 1;
214 }
215
cond_read_bool(struct policydb * p,struct hashtab * h,void * fp)216 int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
217 {
218 char *key = NULL;
219 struct cond_bool_datum *booldatum;
220 __le32 buf[3];
221 u32 len;
222 int rc;
223
224 booldatum = kzalloc(sizeof(*booldatum), GFP_KERNEL);
225 if (!booldatum)
226 return -ENOMEM;
227
228 rc = next_entry(buf, fp, sizeof buf);
229 if (rc)
230 goto err;
231
232 booldatum->value = le32_to_cpu(buf[0]);
233 booldatum->state = le32_to_cpu(buf[1]);
234
235 rc = -EINVAL;
236 if (!bool_isvalid(booldatum))
237 goto err;
238
239 len = le32_to_cpu(buf[2]);
240 if (((len == 0) || (len == (u32)-1)))
241 goto err;
242
243 rc = -ENOMEM;
244 key = kmalloc(len + 1, GFP_KERNEL);
245 if (!key)
246 goto err;
247 rc = next_entry(key, fp, len);
248 if (rc)
249 goto err;
250 key[len] = '\0';
251 rc = hashtab_insert(h, key, booldatum);
252 if (rc)
253 goto err;
254
255 return 0;
256 err:
257 cond_destroy_bool(key, booldatum, NULL);
258 return rc;
259 }
260
261 struct cond_insertf_data {
262 struct policydb *p;
263 struct cond_av_list *other;
264 struct cond_av_list *head;
265 struct cond_av_list *tail;
266 };
267
cond_insertf(struct avtab * a,struct avtab_key * k,struct avtab_datum * d,void * ptr)268 static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
269 {
270 struct cond_insertf_data *data = ptr;
271 struct policydb *p = data->p;
272 struct cond_av_list *other = data->other, *list, *cur;
273 struct avtab_node *node_ptr;
274 u8 found;
275 int rc = -EINVAL;
276
277 /*
278 * For type rules we have to make certain there aren't any
279 * conflicting rules by searching the te_avtab and the
280 * cond_te_avtab.
281 */
282 if (k->specified & AVTAB_TYPE) {
283 if (avtab_search(&p->te_avtab, k)) {
284 pr_err("SELinux: type rule already exists outside of a conditional.\n");
285 goto err;
286 }
287 /*
288 * If we are reading the false list other will be a pointer to
289 * the true list. We can have duplicate entries if there is only
290 * 1 other entry and it is in our true list.
291 *
292 * If we are reading the true list (other == NULL) there shouldn't
293 * be any other entries.
294 */
295 if (other) {
296 node_ptr = avtab_search_node(&p->te_cond_avtab, k);
297 if (node_ptr) {
298 if (avtab_search_node_next(node_ptr, k->specified)) {
299 pr_err("SELinux: too many conflicting type rules.\n");
300 goto err;
301 }
302 found = 0;
303 for (cur = other; cur; cur = cur->next) {
304 if (cur->node == node_ptr) {
305 found = 1;
306 break;
307 }
308 }
309 if (!found) {
310 pr_err("SELinux: conflicting type rules.\n");
311 goto err;
312 }
313 }
314 } else {
315 if (avtab_search(&p->te_cond_avtab, k)) {
316 pr_err("SELinux: conflicting type rules when adding type rule for true.\n");
317 goto err;
318 }
319 }
320 }
321
322 node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
323 if (!node_ptr) {
324 pr_err("SELinux: could not insert rule.\n");
325 rc = -ENOMEM;
326 goto err;
327 }
328
329 list = kzalloc(sizeof(*list), GFP_KERNEL);
330 if (!list) {
331 rc = -ENOMEM;
332 goto err;
333 }
334
335 list->node = node_ptr;
336 if (!data->head)
337 data->head = list;
338 else
339 data->tail->next = list;
340 data->tail = list;
341 return 0;
342
343 err:
344 cond_av_list_destroy(data->head);
345 data->head = NULL;
346 return rc;
347 }
348
cond_read_av_list(struct policydb * p,void * fp,struct cond_av_list ** ret_list,struct cond_av_list * other)349 static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other)
350 {
351 int i, rc;
352 __le32 buf[1];
353 u32 len;
354 struct cond_insertf_data data;
355
356 *ret_list = NULL;
357
358 rc = next_entry(buf, fp, sizeof(u32));
359 if (rc)
360 return rc;
361
362 len = le32_to_cpu(buf[0]);
363 if (len == 0)
364 return 0;
365
366 data.p = p;
367 data.other = other;
368 data.head = NULL;
369 data.tail = NULL;
370 for (i = 0; i < len; i++) {
371 rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
372 &data);
373 if (rc)
374 return rc;
375 }
376
377 *ret_list = data.head;
378 return 0;
379 }
380
expr_isvalid(struct policydb * p,struct cond_expr * expr)381 static int expr_isvalid(struct policydb *p, struct cond_expr *expr)
382 {
383 if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
384 pr_err("SELinux: conditional expressions uses unknown operator.\n");
385 return 0;
386 }
387
388 if (expr->bool > p->p_bools.nprim) {
389 pr_err("SELinux: conditional expressions uses unknown bool.\n");
390 return 0;
391 }
392 return 1;
393 }
394
cond_read_node(struct policydb * p,struct cond_node * node,void * fp)395 static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
396 {
397 __le32 buf[2];
398 u32 len, i;
399 int rc;
400 struct cond_expr *expr = NULL, *last = NULL;
401
402 rc = next_entry(buf, fp, sizeof(u32) * 2);
403 if (rc)
404 goto err;
405
406 node->cur_state = le32_to_cpu(buf[0]);
407
408 /* expr */
409 len = le32_to_cpu(buf[1]);
410
411 for (i = 0; i < len; i++) {
412 rc = next_entry(buf, fp, sizeof(u32) * 2);
413 if (rc)
414 goto err;
415
416 rc = -ENOMEM;
417 expr = kzalloc(sizeof(*expr), GFP_KERNEL);
418 if (!expr)
419 goto err;
420
421 expr->expr_type = le32_to_cpu(buf[0]);
422 expr->bool = le32_to_cpu(buf[1]);
423
424 if (!expr_isvalid(p, expr)) {
425 rc = -EINVAL;
426 kfree(expr);
427 goto err;
428 }
429
430 if (i == 0)
431 node->expr = expr;
432 else
433 last->next = expr;
434 last = expr;
435 }
436
437 rc = cond_read_av_list(p, fp, &node->true_list, NULL);
438 if (rc)
439 goto err;
440 rc = cond_read_av_list(p, fp, &node->false_list, node->true_list);
441 if (rc)
442 goto err;
443 return 0;
444 err:
445 cond_node_destroy(node);
446 return rc;
447 }
448
cond_read_list(struct policydb * p,void * fp)449 int cond_read_list(struct policydb *p, void *fp)
450 {
451 struct cond_node *node, *last = NULL;
452 __le32 buf[1];
453 u32 i, len;
454 int rc;
455
456 rc = next_entry(buf, fp, sizeof buf);
457 if (rc)
458 return rc;
459
460 len = le32_to_cpu(buf[0]);
461
462 rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
463 if (rc)
464 goto err;
465
466 for (i = 0; i < len; i++) {
467 rc = -ENOMEM;
468 node = kzalloc(sizeof(*node), GFP_KERNEL);
469 if (!node)
470 goto err;
471
472 rc = cond_read_node(p, node, fp);
473 if (rc)
474 goto err;
475
476 if (i == 0)
477 p->cond_list = node;
478 else
479 last->next = node;
480 last = node;
481 }
482 return 0;
483 err:
484 cond_list_destroy(p->cond_list);
485 p->cond_list = NULL;
486 return rc;
487 }
488
cond_write_bool(void * vkey,void * datum,void * ptr)489 int cond_write_bool(void *vkey, void *datum, void *ptr)
490 {
491 char *key = vkey;
492 struct cond_bool_datum *booldatum = datum;
493 struct policy_data *pd = ptr;
494 void *fp = pd->fp;
495 __le32 buf[3];
496 u32 len;
497 int rc;
498
499 len = strlen(key);
500 buf[0] = cpu_to_le32(booldatum->value);
501 buf[1] = cpu_to_le32(booldatum->state);
502 buf[2] = cpu_to_le32(len);
503 rc = put_entry(buf, sizeof(u32), 3, fp);
504 if (rc)
505 return rc;
506 rc = put_entry(key, 1, len, fp);
507 if (rc)
508 return rc;
509 return 0;
510 }
511
512 /*
513 * cond_write_cond_av_list doesn't write out the av_list nodes.
514 * Instead it writes out the key/value pairs from the avtab. This
515 * is necessary because there is no way to uniquely identifying rules
516 * in the avtab so it is not possible to associate individual rules
517 * in the avtab with a conditional without saving them as part of
518 * the conditional. This means that the avtab with the conditional
519 * rules will not be saved but will be rebuilt on policy load.
520 */
cond_write_av_list(struct policydb * p,struct cond_av_list * list,struct policy_file * fp)521 static int cond_write_av_list(struct policydb *p,
522 struct cond_av_list *list, struct policy_file *fp)
523 {
524 __le32 buf[1];
525 struct cond_av_list *cur_list;
526 u32 len;
527 int rc;
528
529 len = 0;
530 for (cur_list = list; cur_list != NULL; cur_list = cur_list->next)
531 len++;
532
533 buf[0] = cpu_to_le32(len);
534 rc = put_entry(buf, sizeof(u32), 1, fp);
535 if (rc)
536 return rc;
537
538 if (len == 0)
539 return 0;
540
541 for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) {
542 rc = avtab_write_item(p, cur_list->node, fp);
543 if (rc)
544 return rc;
545 }
546
547 return 0;
548 }
549
cond_write_node(struct policydb * p,struct cond_node * node,struct policy_file * fp)550 static int cond_write_node(struct policydb *p, struct cond_node *node,
551 struct policy_file *fp)
552 {
553 struct cond_expr *cur_expr;
554 __le32 buf[2];
555 int rc;
556 u32 len = 0;
557
558 buf[0] = cpu_to_le32(node->cur_state);
559 rc = put_entry(buf, sizeof(u32), 1, fp);
560 if (rc)
561 return rc;
562
563 for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next)
564 len++;
565
566 buf[0] = cpu_to_le32(len);
567 rc = put_entry(buf, sizeof(u32), 1, fp);
568 if (rc)
569 return rc;
570
571 for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) {
572 buf[0] = cpu_to_le32(cur_expr->expr_type);
573 buf[1] = cpu_to_le32(cur_expr->bool);
574 rc = put_entry(buf, sizeof(u32), 2, fp);
575 if (rc)
576 return rc;
577 }
578
579 rc = cond_write_av_list(p, node->true_list, fp);
580 if (rc)
581 return rc;
582 rc = cond_write_av_list(p, node->false_list, fp);
583 if (rc)
584 return rc;
585
586 return 0;
587 }
588
cond_write_list(struct policydb * p,struct cond_node * list,void * fp)589 int cond_write_list(struct policydb *p, struct cond_node *list, void *fp)
590 {
591 struct cond_node *cur;
592 u32 len;
593 __le32 buf[1];
594 int rc;
595
596 len = 0;
597 for (cur = list; cur != NULL; cur = cur->next)
598 len++;
599 buf[0] = cpu_to_le32(len);
600 rc = put_entry(buf, sizeof(u32), 1, fp);
601 if (rc)
602 return rc;
603
604 for (cur = list; cur != NULL; cur = cur->next) {
605 rc = cond_write_node(p, cur, fp);
606 if (rc)
607 return rc;
608 }
609
610 return 0;
611 }
612
cond_compute_xperms(struct avtab * ctab,struct avtab_key * key,struct extended_perms_decision * xpermd)613 void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
614 struct extended_perms_decision *xpermd)
615 {
616 struct avtab_node *node;
617
618 if (!ctab || !key || !xpermd)
619 return;
620
621 for (node = avtab_search_node(ctab, key); node;
622 node = avtab_search_node_next(node, key->specified)) {
623 if (node->key.specified & AVTAB_ENABLED)
624 services_compute_xperms_decision(xpermd, node);
625 }
626 return;
627
628 }
629 /* Determine whether additional permissions are granted by the conditional
630 * av table, and if so, add them to the result
631 */
cond_compute_av(struct avtab * ctab,struct avtab_key * key,struct av_decision * avd,struct extended_perms * xperms)632 void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
633 struct av_decision *avd, struct extended_perms *xperms)
634 {
635 struct avtab_node *node;
636
637 if (!ctab || !key || !avd)
638 return;
639
640 for (node = avtab_search_node(ctab, key); node;
641 node = avtab_search_node_next(node, key->specified)) {
642 if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
643 (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
644 avd->allowed |= node->datum.u.data;
645 if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
646 (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
647 /* Since a '0' in an auditdeny mask represents a
648 * permission we do NOT want to audit (dontaudit), we use
649 * the '&' operand to ensure that all '0's in the mask
650 * are retained (much unlike the allow and auditallow cases).
651 */
652 avd->auditdeny &= node->datum.u.data;
653 if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
654 (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
655 avd->auditallow |= node->datum.u.data;
656 if (xperms && (node->key.specified & AVTAB_ENABLED) &&
657 (node->key.specified & AVTAB_XPERMS))
658 services_compute_xperms_drivers(xperms, node);
659 }
660 }
661